104 research outputs found

    Review of Injected Oscillators

    Get PDF
    Oscillators are critical components in electrical and electronic engineering and other engineering and sciences. Oscillators are classified as free-running oscillators and injected oscillators. This chapter describes the background necessary for the analysis and design of injected oscillators. When an oscillator is injected by an external periodic signal mentioned as an injection signal, it is called an injected oscillator. Consequently, two phenomena occur in the injected oscillators: (I) pulling phenomena and (II) locking phenomena. For locking phenomena, the oscillation frequency of the injection signal must be near free-running oscillation frequency or its sub-/super-harmonics. Due to these phenomena are nonlinear phenomena, it is tough to achieve the exact equation or closed-form equation of them. Therefore, researchers are scrutinizing them by different analytical and numerical methods for accomplishing an exact inside view of their performances. In this chapter, injected oscillators are investigated in two main subjects: first, analytical methods on locking and pulling phenomena are reviewed, and second, applications of injected oscillators are reviewed such as injection-locked frequency dividers at the latter. Furthermore, methods of enhancing the locking range are introduced

    Injection Locked Oscillator for Radiometer

    Get PDF
    The main goal of this project was to design an injection locked oscillator (ILO) with free-running frequency of 70 GHz, and with locking capability to the third and the fifth harmonics of the reference signal upon injection. The circuit was realized using the silicon-germanium (SiGe) bipolar-complementary metal-oxide-semiconductor (BiCMOS) technology and the locking condition were verified after simulating the resistor-capacitor (RC) extracted netlist of the layout. The cadence virtuoso toolkit was used for the design process and the simulation purpose. The locking phenomenon, quasi-lock and fast-beat mode, lock range upon different injection power and phase noise characteristics of the ILO upon subharmonic injection were studied. The ILO was implemented using the direct (parallel) injection topology. The designed ILO circuit consists of two main components; conventional cross-coupled oscillator with oscillation frequency of 71 GHz and harmonic generator that injects the harmonics of the reference signal into the oscillator. The nonlinearity of the transistor was studied under different biasing conditions and the optimal bias point of 0.83 V was chosen that provided the maximum frequency conversion gain. The power consumed by the core oscillator is 2.64 mW and 3.4 mW by the harmonic generator under the supply voltage of 1.2 V, making the total power consumption of 6.04 mW as a whole by the ILO. The ILO achieved the locking range (LR) of 7.9% for the fifth harmonics injection and 1.22% for the third harmonics injection of the reference signal with input injection power of 0 dBm. The oscillator even achieved 0.32% LR for the seventh harmonics injection with the injection power of 0 dBm. The corresponding frequency ranges are 18.9-24.5 GHz, 13.29-14.16 GHz, 9.8-10.03 GHz for the third, fifth and the seventh harmonics respectively

    Periodically Disturbed Oscillators

    Get PDF
    By controlling the timing of events and enabling the transmission of data over long distances, oscillators can be considered to generate the "heartbeat" of modern electronic systems. Their utility, however, is boosted significantly by their peculiar ability to synchronize to external signals that are themselves periodic in time. Although this fascinating phenomenon has been studied by scientists since the 1600s, models for describing this behavior have seen a disconnect between the rigorous, methodical approaches taken by mathematicians and the design-oriented, physically-based analyses carried out by engineers. While the analytical power of the former is often concealed by an inundation of abstract mathematical machinery, the accuracy and generality of the latter are constrained by the empirical nature of the ensuing derivations. We hope to bridge that gap here. In this thesis, a general theory of electrical oscillators under the influence of a periodic injection is developed from first principles. Our approach leads to a fundamental yet intuitive understanding of the process by which oscillators lock to a periodic injection, as well as what happens when synchronization fails and the oscillator is instead injection pulled. By considering the autonomous and periodically time-varying nature that underlies all oscillators, we build a time-synchronous model that is valid for oscillators of any topology and periodic disturbances of any shape. A single first-order differential equation is shown to be capable of making accurate, quantitative predictions about a wide array of properties of periodically disturbed oscillators: the range of injection frequencies for which synchronization occurs, the phase difference between the injection and the oscillator under lock, stable vs. unstable modes of locking, the pull-in process toward lock, the dynamics of injection pulling, as well as phase noise in both free-running and injection-locked oscillators. The framework also naturally accommodates superharmonic injection-locked frequency division, subharmonic injection-locked frequency multiplication, and the general case of an arbitrary rational relationship between the injection and oscillation frequencies. A number of novel insights for improving the performance of systems that utilize injection locking are also elucidated. In particular, we explore how both the injection waveform and the oscillator's design can be modified to optimize the lock range. The resultant design techniques are employed in the implementation of a dual-moduli prescaler for frequency synthesis applications which features low power consumption, a wide operating range, and a small chip area. For the commonly used inductor-capacitor (LC) oscillator, we make a simple modification to our framework that takes the oscillation amplitude into account, greatly enhancing the model's accuracy for large injections. The augmented theory uniquely captures the asymmetry of the lock range as well as the distinct characteristics exhibited by different types of LC oscillators. Existing injection locking and pulling theories in the available literature are subsumed as special cases of our model. It is important to note that even though the veracity of our theoretical predictions degrades as the size of the injection grows due to our framework's linearization with respect to the disturbance, our model's validity across a broad range of practical injection strengths are borne out by simulations and measurements on a diverse collection of integrated LC, ring, and relaxation oscillators. Lastly, we also present a phasor-based analysis of LC and ring oscillators which yields a novel perspective into how the injection current interacts with the oscillator's core nonlinearity to facilitate injection locking.</p

    Multi-Loop-Ring-Oscillator Design and Analysis for Sub-Micron CMOS

    Get PDF
    Ring oscillators provide a central role in timing circuits for today?s mobile devices and desktop computers. Increased integration in these devices exacerbates switching noise on the supply, necessitating improved supply resilience. Furthermore, reduced voltage headroom in submicron technologies limits the number of stacked transistors available in a delay cell. Hence, conventional single-loop oscillators offer relatively few design options to achieve desired specifications, such as supply rejection. Existing state-of-the-art supply-rejection- enhancement methods include actively regulating the supply with an LDO, employing a fully differential or current-starved delay cell, using a hi-Z voltage-to-current converter, or compensating/calibrating the delay cell. Multiloop ring oscillators (MROs) offer an additional solution because by employing a more complex ring-connection structure and associated delay cell, the designer obtains an additional degree of freedom to meet the desired specifications. Designing these more complex multiloop structures to start reliably and achieve the desired performance requires a systematic analysis procedure, which we attack on two fronts: (1) a generalized delay-cell viewpoint of the MRO structure to assist in both analysis and circuit layout, and (2) a survey of phase-noise analysis to provide a bank of methods to analyze MRO phase noise. We distill the salient phase-noise-analysis concepts/key equations previously developed to facilitate MRO and other non-conventional oscillator analysis. Furthermore, our proposed analysis framework demonstrates that all these methods boil down to obtaining three things: (1) noise modulation function (NMF), (2) noise transfer function (NTF), and (3) current-controlled-oscillator gain (KICO). As a case study, we detail the design, analysis, and measurement of a proposed multiloop ring oscillator structure that provides improved power-supply isolation (more than 20dB increase in supply rejection over a conventional-oscillator control case fabricated on the same test chip). Applying our general multi-loop-oscillator framework to this proposed MRO circuit leads both to design-oriented expressions for the oscillation frequency and supply rejection as well as to an efficient layout technique facilitating cross-coupling for improved quadrature accuracy and systematic, substantially simplified layout effort

    Mathematical Modeling of Electronic Systems: From Oscillators to Multipliers

    Get PDF
    The ubiquity of electronics in modern technology is undeniable. Although it is not feasible to design or analyze circuits in an exhaustively detailed fashion, it is still imperative that circuit design engineers understand the pertinent physical tradeoffs and are able to think at the appropriate level of mathematical abstraction. This thesis presents several mathematical modeling techniques of common electronic systems. First, we derive, ab initio, a general analytical model for the behavior of electrical oscillators under injection without making any assumptions about the type of oscillator or the size or shape of the injection. This model provides novel insights into the phenomena of injection locking and pulling while subsuming existing theories found in the literature. Next, we focus on the familiar scenario of an inductor-capacitor (LC) oscillator locked to a sinusoidal signal. An exact analysis of this circuit is carried out for an arbitrary injection strength and frequency, a task which has not been executed to fruition in the existing literature. This analysis intuitively illuminates the fundamental physics underlying the synchronization of electrical harmonic oscillators, and it generalizes the notion of the lock range for such oscillators into separate necessary and sufficient conditions. We then turn to the classical estimate of the bandwidth of a linear time-invariant (LTI) system via the sum of its zero-value time constants (ZVTs), and we show that this sum can actually be used to tightly bound the bandwidth—both from above and from below—in addition to simply estimating it. Finally, we look at a natural generalization of the Gilbert cell topology: an analog multiplier for an arbitrary number of inputs; we then analyze its large- and small-signal characteristics as well as its frequency response. Throughout, we will demonstrate how infusing physical intuition with mathematical rigor whilst seeking a balance between detailed analysis and abstract modularity results in models that are conceptually insightful, sufficiently accurate, and computationally feasible.</p

    Computationally Efficient Innovative Techniques for the Design-Oriented Simulation of Free-Running and Driven Microwave Oscillators

    Get PDF
    Analysis techniques for injection-locked oscillators/amplifiers (ILO) can be broadly divided into two classes. To the first class belong methods with a strong and rigorous theoretical basis, that can be applied to rather general circuits/systems but which are very cumbersome and/or time-consuming to apply. To the second class belong methods which are very simple and fast to apply, but either lack of validity/accuracy or are applicable only to very simple or particular cases. In this thesis, a novel method is proposed which aims at combining the rigorousness and broad applicability characterizing the first class of analysis techniques above cited with the simplicity and computational efficiency of the second class. The method relies in the combination of perturbation-refined techniques with a fundamental frequency system approach in the dynamical complex envelope domain. This permits to derive an approximate, but first-order exact, differential model of the phase-locked system useable for the steady-state, transient and stability analysis of ILOs belonging to the rather broad (and rigorously identified) class of nonlinear oscillators considered. The hybrid (analytical-numerical) nature of the formulation developed is suited for coping with all ILO design steps, from initial dimensioning (exploiting, e.g., the simplified semi-analytical expressions stemming from a low-level injection operation assumption) to accurate prediction (and fine-tuning, if required) of critical performances under high-injection signal operation. The proposed application examples, covering realistically modeled low- and high-order ILOs of both reflection and transmission type, illustrate the importance of having at one's disposal a simulation/design tool fully accounting for the deviation observed, appreciable for instance in the locking bandwidth of high-frequency circuits with respect to the simplified treatments usually applied, for a quick arrangement, in ILO design optimization procedures.Analysis techniques for injection-locked oscillators/amplifiers (ILO) can be broadly divided into two classes. To the first class belong methods with a strong and rigorous theoretical basis, that can be applied to rather general circuits/systems but which are very cumbersome and/or time-consuming to apply. To the second class belong methods which are very simple and fast to apply, but either lack of validity/accuracy or are applicable only to very simple or particular cases. In this thesis, a novel method is proposed which aims at combining the rigorousness and broad applicability characterizing the first class of analysis techniques above cited with the simplicity and computational efficiency of the second class. The method relies in the combination of perturbation-refined techniques with a fundamental frequency system approach in the dynamical complex envelope domain. This permits to derive an approximate, but first-order exact, differential model of the phase-locked system useable for the steady-state, transient and stability analysis of ILOs belonging to the rather broad (and rigorously identified) class of nonlinear oscillators considered. The hybrid (analytical-numerical) nature of the formulation developed is suited for coping with all ILO design steps, from initial dimensioning (exploiting, e.g., the simplified semi-analytical expressions stemming from a low-level injection operation assumption) to accurate prediction (and fine-tuning, if required) of critical performances under high-injection signal operation. The proposed application examples, covering realistically modeled low- and high-order ILOs of both reflection and transmission type, illustrate the importance of having at one's disposal a simulation/design tool fully accounting for the deviation observed, appreciable for instance in the locking bandwidth of high-frequency circuits with respect to the simplified treatments usually applied, for a quick arrangement, in ILO design optimization procedures

    Multi-Loop-Ring-Oscillator Design and Analysis for Sub-Micron CMOS

    Get PDF
    Ring oscillators provide a central role in timing circuits for today?s mobile devices and desktop computers. Increased integration in these devices exacerbates switching noise on the supply, necessitating improved supply resilience. Furthermore, reduced voltage headroom in submicron technologies limits the number of stacked transistors available in a delay cell. Hence, conventional single-loop oscillators offer relatively few design options to achieve desired specifications, such as supply rejection. Existing state-of-the-art supply-rejection- enhancement methods include actively regulating the supply with an LDO, employing a fully differential or current-starved delay cell, using a hi-Z voltage-to-current converter, or compensating/calibrating the delay cell. Multiloop ring oscillators (MROs) offer an additional solution because by employing a more complex ring-connection structure and associated delay cell, the designer obtains an additional degree of freedom to meet the desired specifications. Designing these more complex multiloop structures to start reliably and achieve the desired performance requires a systematic analysis procedure, which we attack on two fronts: (1) a generalized delay-cell viewpoint of the MRO structure to assist in both analysis and circuit layout, and (2) a survey of phase-noise analysis to provide a bank of methods to analyze MRO phase noise. We distill the salient phase-noise-analysis concepts/key equations previously developed to facilitate MRO and other non-conventional oscillator analysis. Furthermore, our proposed analysis framework demonstrates that all these methods boil down to obtaining three things: (1) noise modulation function (NMF), (2) noise transfer function (NTF), and (3) current-controlled-oscillator gain (KICO). As a case study, we detail the design, analysis, and measurement of a proposed multiloop ring oscillator structure that provides improved power-supply isolation (more than 20dB increase in supply rejection over a conventional-oscillator control case fabricated on the same test chip). Applying our general multi-loop-oscillator framework to this proposed MRO circuit leads both to design-oriented expressions for the oscillation frequency and supply rejection as well as to an efficient layout technique facilitating cross-coupling for improved quadrature accuracy and systematic, substantially simplified layout effort

    Low power low voltage quadrature RC oscillators for modern RF receivers

    Get PDF
    Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para a obtenção do grau de Mestre em Engenharia Electrotécnica e de ComputadoresThis thesis proposes a study of three different RC oscillators, two relaxation and a ring oscillator. All the circuits are implemented using UMC 130 nm CMOS technology with a supply voltage of 1.2 V. We present a wideband MOS current/voltage controlled quadrature oscillator constituted by two multivibrators. Two different forms of coupling named, soft (traditional)and hard (proposed) are differentiated and investigated. It is found that hard coupling reduces the quadrature error and results in a low phase-noise (about 2 dB improvement) with respect to soft coupling. The behaviour of the singular and coupled multivibrators is investigated, when an external synchronizing harmonic is applied. We introduce a new RC relaxation oscillator with pulse self biasing, to reduce power consumption, and with harmonic ltering and resistor feedback, to reduce phase-noise. The designed circuit has a very low phase-noise, -132.6 dBc/Hz @ 10 MHz offset, and the power consumption is only 1 mW, which leads to a gure of merit (FOM) of -159.1 dBc/Hz. The nal circuit is a two integrator fully implemented in CMOS technology, with low power consumption. The respective layout is made and occupies a total area of5.856x10-3 mm2, post-layout simulation is also done
    • …
    corecore