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ABSTRACT

By controlling the timing of events and enabling the transmission of data over
long distances, oscillators can be considered to generate the “heartbeat” of modern
electronic systems. Their utility, however, is boosted significantly by their peculiar
tendency to synchronize to external signals that are themselves periodic in time.
Although this fascinating phenomenon has been studied by scientists since the
1600s, models for describing this behavior have seen a disconnect between the
rigorous, methodical approaches taken by mathematicians and the design-oriented,
physically-based analyses carried out by engineers. While the analytical power of
the former is often concealed by an inundation of abstract mathematical machinery,
the accuracy and generality of the latter are constrained by the empirical nature of
the ensuing derivations. We hope to bridge that gap here.

In this thesis, a general theory of electrical oscillators under the influence of a
periodic injection is developed from first principles. Our approach leads to a fun-
damental yet intuitive understanding of the process by which oscillators lock to
a periodic injection, as well as what happens when synchronization fails and the
oscillator is instead injection pulled. By considering the autonomous and periodi-
cally time-varying nature that underlies all oscillators, we build a time-synchronous
model that is valid for oscillators of any topology and periodic disturbances of any
shape. A single first-order differential equation is shown to be capable of making
accurate, quantitative predictions about a wide array of properties of periodically
disturbed oscillators: the range of injection frequencies for which synchronization
occurs, the phase difference between the injection and the oscillator under lock,
stable vs. unstable modes of locking, the pull-in process toward lock, the dynamics
of injection pulling, as well as phase noise in both free-running and injection-locked
oscillators. The framework also naturally accommodates superharmonic injection-
locked frequency division, subharmonic injection-locked frequency multiplication,
and the general case of an arbitrary rational relationship between the injection and
oscillation frequencies. A number of novel insights for improving the performance
of systems that utilize injection locking are also elucidated. In particular, we ex-
plore how both the injection waveform and the oscillator’s design can be modified
to optimize the lock range. The resultant design techniques are employed in the im-
plementation of a dual-moduli prescaler for frequency synthesis applications which
features low power consumption, a wide operating range, and a small chip area.
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For the commonly used inductor-capacitor (LC) oscillator, we make a simple mod-
ification to our framework that takes the oscillation amplitude into account, greatly
enhancing themodel’s accuracy for large injections. The augmented theory uniquely
captures the asymmetry of the lock range as well as the distinct characteristics ex-
hibited by different types of LC oscillators. Existing injection locking and pulling
theories in the available literature are subsumed as special cases of our model. It
is important to note that even though the veracity of our theoretical predictions
degrades as the size of the injection grows due to our framework’s linearization with
respect to the disturbance, our model’s validity across a broad range of practical
injection strengths are borne out by simulations and measurements on a diverse
collection of integrated LC, ring, and relaxation oscillators. Lastly, we also present
a phasor-based analysis of LC and ring oscillators which yields a novel perspective
into how the injection current interacts with the oscillator’s core nonlinearity to
facilitate injection locking.
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C h a p t e r 1

INTRODUCTION AND BASIC DEFINITIONS

“If I have seen further, it is by
standing on the shoulders of giants.”

Sir Issac Newton, 1675

Within electronics, oscillators are employed in a wide variety of settings—the pre-
cise timing of events in microprocessors, the creation of carriers for modulating
information in communication systems, the periodic control of switches in power
management circuitry such as power inverters and DC-DC converters, and the gen-
eration of wireless power near the frequency limits of modern solid-state processes.
In essence, almost all electronic systems require time-varying behavior of some sort
and therefore need oscillators to actuate their functionality.

Oscillators exhibit a peculiar property due to their autonomous nature: the ability to
synchronize to periodic disturbances. Known as injection locking in the electrical
engineering community, this behavior has engendered a handful of applications in
modern, high-speed systems. Some examples include the recovery of timing infor-
mation from data streams [1], clock distribution and jitter reduction for high-density
input/output (I/O) links [2], [3], frequency division [4]–[13] and frequency multipli-
cation [14]–[18], the precise generation of quadrature or other multi-phase signals
[19]–[24], and the synchronization of elements in phased arrays [25]–[29]. Beyond
electronics, entrainment has also been applied to other oscillatory systems such as
lasers, where it is used to clean their output spectrum and improve performance by
reducing frequency chirp and nonlinear distortion [30]–[33]. Outside of electrical
engineering, the phenomenon of synchronization has been studied extensively in
a variety of other disciplines including physics [34], chemistry [35], neuroscience
[36], and biology [37].

Despite its usefulness, the capability to lock becomes problematic when an oscillator
is affected by unwanted disturbances in its environment. In particular, disturbances
that fail to lock the oscillator will instead corrupt the oscillator’s inherent periodicity
or its “ability to tell time,” an undesirable phenomenon known as injection pulling. In
communication circuits, for example, the large-signal output of the power amplifier
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Figure 1.1: Arbitrary electromagnetic surface featuring multiple voltage-controlled
oscillators (VCOs) that drive the radiating elements.

(PA) in a radio frequency (RF) transmitter can pull the oscillator generating the
carrier, or pulling can occur between the receive and transmit local oscillators (LOs)
in a single-chip transceiver [38]. Note that external disturbances may couple into an
oscillator through any number of means: mechanically, electromagnetically, across
the substrate of an integrated circuit, or through a shared supply.

An example of how both the useful applications of injection locking and the unde-
sirable effects from injection pulling can appear in a single system is provided in
Figure 1.1. In this example, an assortment of antennas is being used to engineer an
arbitrary electromagnetic field pattern. The antennas are driven by a collection of
voltage-controlled oscillators (VCOs). As we can see, VCO2 is also being used to
lock a “slave” VCO, whereby tuning the free-running frequency of the slave varies
the phase difference ∆ϕ between them. On the other hand, oscillators in close phys-
ical proximity, such as VCO1 and VCO2, can pull one another, causing the signals
driving the antennas to deviate from their optimal frequencies or creating unwanted
interference patterns due to spurious phase relationships between the oscillators.
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Given the numerous applications of injection locking on the one hand and the
various settings in which unwanted pulling occurs on the other, there is a desire
for a fundamental understanding of how periodic perturbations can influence an
oscillator. In this thesis, we develop a general theory of injection locking and
pulling in electrical oscillators that 1) leads to a deep physical understanding of
the synchronization phenomenon, 2) makes accurate quantitative predictions about
a myriad of different properties of periodically disturbed oscillators, and 3) yields
design insights into how the implementation of systems that utilize injection locking
can be optimized.

1.1 Basic Setup and Notation

Figure 1.2: Mathematical description of an oscillator as traversing a stable limit
cycle in n dimensions. Points in the state space not on the orbit will eventually
converge to the limit cycle.

An oscillator is a system that is capable of self-sustaining a periodic signal. Within
the dynamical systems community, oscillators are usually visualized in the state
space (see Figure 1.2) [39]–[43], where they traverse a closed trajectory, a limit
cycle, in a fixed amount of time, known as the free-running period of oscillation T0.
Although all observable signals within an electrical oscillator are periodic with this
oscillation period T0, we will focus on a particular node voltage vosc(t) (or set of
node voltages), which we will call the oscillation voltage.

We are interested in the behavior of this oscillator when it is disturbed by an external
signal of some sort, periodic with a possibly different period Tinj. For our purposes,
this signal will be an injection of current iinj(t) into one of the oscillator’s nodes—
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commonly (but not necessarily) the node at which the oscillation voltage is observed.
This setup is depicted conceptually in Figure 1.3.

Figure 1.3: A basic cartoon of the setup and notation underlying the analysis. In
the free-running case (i.e., iinj = 0), ξ(t) = 0 and ϕ(t) = ω0t. Under injection, the
phase becomes ϕ(t) ≡ ω0t + φ(t) ≡ ωinjt + θ(t).

In the absence of injection—the free-running scenario—we write the oscillation
voltage as

vosc(t) = v0(ω0t),

where the oscillation waveform v0(·) is 2π-periodic, and ω0 ≡ 2π/T0 is the free-
running (angular) oscillation frequency. The argument of v0(·) is the phase ϕ of the
oscillator in radians, a quantity which increases by 2π for each oscillation cycle. On
the other hand, v0(·) itself captures the free-running shape and size of the oscillation
voltage.

In the presence of an external disturbance, two things happen:

1. The oscillator’s phase may no longer increase at a constant rate equal to ω0.

2. The oscillation voltage may deviate in size and shape from v0(·).

Therefore, we write the oscillation voltage in the following form:

vosc(t) = [1 + ξ(t)] · v0 [ϕ(t)] , (1.1)

where ϕ(t) is the total, instantaneous phase of the oscillator and ξ(t) represents
the (fractional) deviations of the oscillator from its free-running trajectory. The
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instantaneous oscillation frequency ωosc is defined as the time derivative of the total
phase:

ωosc B
dϕ
dt
. (1.2)

It should be clear that when iinj = 0 and the oscillator is free running, ϕ(t) = ω0t

and ξ(t) = 0. Denoting the (angular) injection frequency ωinj ≡ 2π/Tinj, it will be
useful to define the additional phases φ(t) and θ(t) using the following relationship:

ϕ(t) ≡ ω0t + φ(t) ≡ ωinjt + θ(t). (1.3)

Physically, φ(t) is the phase in excess of free-running (ω0t), and θ(t) is the phase
referred to the injection (ωinjt). Table 1.1 reiterates the physical meaning behind
these important quantities. In injection locking and pulling scenarios, it is most
convenient to deal with θ as the phase of interest, since we are interested in observing
if or how the oscillator synchronizes itself to the injection frequency ωinj.

Table 1.1: Oscillator Phase Definitions

ϕ: φ: θ:
Total, Instantaneous
Oscillator Phase

Phase in Excess of
Free-Running (ω0t)

Phase Referred to the
Injection (ωinjt)

At this point, it should be noted from a mathematical standpoint that while the
phase can be accurately represented using a single scalar variable, an oscillator
in d-dimensional state space would require (d − 1) other scalars to fully describe
its orbital deviations. However, we will see that Eq. (1.1) will prove itself to be
sufficient for our purposes, while bringing in the full state-space representation of
the oscillator will clutter up the analysis with a significant amount of mathematical
machinery without contributing much physical insight.

1.2 Definition of Injection Locking and Pulling
The purpose of this study is to characterize the behavior of oscillators under the
influence of a periodic injection. Specifically, we are interested in the scenario
where the oscillator synchronizes itself to the injection and oscillates at the injection
frequency: ωosc = ωinj.1 We then say that the oscillator is injection locked to the
injection signal. An example of injection locking is shown in Figure 1.4, where an
oscillator which free-runs at f0 = 1 GHz is injection locked to a sinusoidal injection

1The more general cases of injection-locked frequency division and multiplication will be
considered in Chapter 6.
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(a) Top: free-running oscillation voltage v0(ω0t) (blue, dashed curve) and injection-
locked oscillation voltage vosc(t) (red, solid curve). Bottom: injection current iinj(t).

(b) Magnitude spectra of the free-running and injection-locked oscillation voltages.

Figure 1.4: An example of injection locking. Note that the oscillation voltage is
observed at the node being injected into.

at finj = 0.8GHz. Consequently, while the free-running oscillation voltage traverses
10 cycles in the 10 nanosecond interval shown, both the injection current and the
injection-locked oscillation voltage only undergo 8 cycles. Notice how the injection
alters both the shape and the size of the oscillation voltage.

In light of Eq. (1.3), observe that the phenomenon of injection locking is mathemat-
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(a) Top: oscillation voltage of an injection-pulled oscillator. Bottom: injection
current.

(b) Magnitude spectrum of the injection-pulled oscillation voltage.

Figure 1.5: An example of injection pulling where f0 = 1 GHz and finj = 0.8 GHz.

ically represented by θ being constant in time:

Injection Locked ⇐⇒ dθ
dt
= 0. (1.4)

The value of θ for an injection-locked oscillator, which represents the phase differ-
ence between the oscillator and the injection, is not arbitrary. For a given oscillator
and injection waveform, θ varies with the injection frequency in a specific manner.
This relationship is known as the lock characteristic.

As we will see, the oscillator is only capable of injection locking when ωinj is
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sufficiently close to ω0. The range of frequencies that the oscillator can lock to is
known as the lock range. More precisely, the upper/lower lock range ω±L is defined
as the maximum/minimum value of the frequency deviation ∆ω ≡ ωinj − ω0 for
which the oscillator is capable of injection locking. The lock range depends not
only on the oscillator but on the size and shape of the injection waveform as well.

(a) Oscillation voltage and injection current.

(b) Threshold-crossing difference normalized to the injection period.

Figure 1.6: Zooming into a single “beat” for the injection-pulled oscillator of
Figure 1.5.

If the injection fails to lock the oscillator because it is outside of the lock range,
then dθ/dt , 0 and we instead say that the oscillator is injection pulled by the
injection signal. An example of injection pulling is depicted in Figure 1.5, obtained
by decreasing the injection strength, and therefore the lock range, from the injection-
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locked example of Figure 1.4. The frequency of the “beats”which appear in the time-
domain plot of the oscillation voltage is equal to the distance between the adjacent
tones in the frequency-domain spectrum. A closer look at what happens during
one of these low-frequency beats is shown in Figure 1.6. Essentially, the injection
“attempts” to lock the oscillator, but is unable to effect a sufficiently large change
in the oscillation frequency, causing the oscillator to eventually “slip” by an entire
cycle compared to the injection signal. One way of visualizing this is to compare the
threshold crossing times of the oscillator and the injection. Specifically, consider the
difference between the falling-edge 0.5 V-crossing times of the oscillation voltage
and the falling-edge zero-crossing times of the injection, normalized to Tinj. This
parameter increases (or decreases) by 1whenever the oscillator retards (or advances)
by a single cycle relative to the injection. Figure 1.6b plots this parameter as a
function of the number of elapsed cycles for the window under consideration and
compares the result against the injection-locked and free-running scenarios. As
we can see, an injection-locked oscillator features a constant threshold-crossing
difference over all cycles, whereas the threshold-crossing difference must grow by
a fixed amount per cycle for a free-running oscillator (at a different frequency).
On the other hand, for an injection-pulled oscillator, while the injection “tries” to
keep this threshold-crossing difference constant, it eventually fails and the oscillator
“runs off on its own” by an entire cycle. In light of this repeated behavior, one
might suspect that the oscillation voltage of an injection-pulled oscillator is periodic
with this (lower) beat frequency ωb. Unfortunately, this is not correct unless the
injection frequency ωinj is a multiple of ωb, which is not true in general. Therefore,
we surmise that the periodicity of the oscillator is corrupted by injection pulling.

1.3 Organization of Thesis
The rest of this thesis is organized as follows. Chapter 2 puts this work into context
by reviewing existing injection locking and pulling models. A distinction is made
betweenmathematicalmacromodeling approaches, which our theory falls under, and
physically-based behavioral analyses. Chapter 3 conducts a thought experiment that
examines the effect an impulse train has on an ideal LC oscillator. The understanding
gleaned from this thought experiment will motivate the development of our model
from a conceptual standpoint.

Chapter 4 develops, from first principles, a time-synchronous theory of oscillators
that are subjected to a periodic external perturbation. We demonstrate how the
oscillator’s autonomy and its periodically time-varying nature combine to enable
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injection locking. Chapter 5 augments the theory for the specific case of the LC
oscillator by accounting for the oscillation amplitude, resulting in a model which
is applicable for large injections. Novel insights into how different types of LC
oscillators behave, which are uniquely captured by this model, are also provided.
Chapter 6 generalizes the framework to allow for an arbitrary rational relationship
between the injection and oscillation frequencies under lock.

Chapter 7 focuses on an analysis of the transient behavior of periodically disturbed
oscillators. Issues such as mode stability, the pull-in process, and the dynamics of
injection pulling are covered. A theoretical treatment of the effect of a stochastic
disturbance, which illuminates the elementary connection between phase noise and
injection locking, is also performed. Chapter 8 explores design insights which arise
from the developed framework. Specifically, several ways of enhancing an oscil-
lator’s lock range are introduced and demonstrated. Chapter 9 uses the techniques
discussed in Chapter 8 to implement a low-power injection-locked prescaler for
frequency synthesis applications.

Chapter 10 takes an alternative, physical viewpoint of injection locking and carries
out a phasor-based analysis of sinusoidal injection locking in LC and ring oscillators.
Future research directions are suggested in Chapter 11, and other unrelated works
are presented in Chapter 12.
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C h a p t e r 2

EXISTING MODELS

“All models are wrong, but some are useful.”

George Edward Pelham Box, 1976

Injection locking and pulling of electrical oscillators has been studied extensively
for at least the past century [44]–[85]. In this chapter, we give a brief overview
of the existing models in the literature which are used more prominently in the
electronics community. In general, any analysis technique can be categorized as
either a behavioral model or a mathematical macromodel.

2.1 Behavioral Models
Behavioral approaches start with a physical model of the oscillator under injection,
such as a circuit model comprising resistors, capacitors, inductors, idealized non-
linear elements, and the injection source(s). Known analysis techniques for this
physical model (e.g., KCL/KVL, Ohm’s Law, phasors) are then used to study the
system, leading to conclusions about aspects of the system’s behavior that we seek
to understand. Due to their physically-based nature, such approaches tend to provide
intuition more directly. But their utility is limited because the analysis is restricted
to a particular oscillator topology (e.g., LC, ring, or relaxation), and their predictive
power is constrained by the accuracy of the model itself. The analysis presented in
Chapter 10 of this thesis is a behavioral model.

Adler’s Equation
Both experimental and theoretical work on the synchronization of electrical oscil-
lators have been conducted as early as the 1920’s [44]–[46]. However, perhaps the
most well-known behavioral model for injection locking is Adler’s equation, devel-
oped by Robert Adler in 1946 [47]. Adler’s equation describes the phase of an LC
oscillator under the influence of a weak sinusoidal injection close to the free-running
oscillation frequency.

We present a simplified derivation here. Consider the ideal LC oscillator shown
in Figure 2.1. The loss of the LC tank, represented by the parallel resistance RP,
is restored by the nonlinear −Gm-transconductor which generates a current whose
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fundamental component is in phase with vosc(t) and has an amplitude of Iosc. The
oscillator free-runs at the LC tank’s resonant frequency

ω0 =
1
√

LC
. (2.1)

The current consumed by the resistance is supplied by the oscillator current Iosc,
leading to a sinusoidal oscillation amplitude of

Vosc = IoscRP . (2.2)

Figure 2.1: Schematic of the basic LC oscillator under injection used in the deriva-
tion of Adler’s equation.

Suppose a weak sinusoidal current iinj(t) in the close vicinity of ω0 is injected into
the oscillator as shown. Utilizing complex exponential notation to simplify the
subsequent algebra, we express the injection current as

iinj(t) = Iinje jωinjt, (2.3)

where the injection amplitude is small in the sense that Iinj � Iosc, and the injection
frequency is near the free-running frequency in the sense that

��ωinj − ω0
�� � ω0. We

adopt the usual convention from Eq. (1.3) of expressing the phase of the oscillation
voltage as ωinjt + θ(t), where the objective of this analysis is to study the behavior of
θ, the phase difference between the oscillator and the injection. Because the injection
is weak compared to the oscillator current, its impact on the resistor current iR is
negligible, leaving the oscillation amplitude Vosc = IoscRP unchanged. Therefore,
we write the oscillation voltage as

vosc = Vosce j(ωinjt+θ), (2.4)

and we instead focus on how the injection influences the LC tank by writing KCL
for the remaining currents:

iinj = iC + iL

=⇒
diinj

dt
= C

d2vosc

dt2 +
vosc
L
.

(2.5)
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The intuition here is that the reactive current drawn by the LC tank when the
oscillator operates away from resonance must be supplied by the injection current.
Substituting for the injection current and the oscillation voltage, we get

jωinjIinje jωinjt =

{
C

[
j
d2θ

dt2 −
(
ωinj +

dθ
dt

)2
]
+

1
L

}
IoscRPe j(ωinjt+θ). (2.6)

Multiplying through by e− j(ωinjt+θ) and taking the real part, we get1

−
(
ωinj +

dθ
dt

)2
+ ω0

2 =
Iinj

Iosc

ω0ωinj

Q
sin θ, (2.7)

where we used the tank’s quality factor

Q =
RP

ω0L
= RPω0C. (2.8)

To simplify the left-hand-side, we use the fact that
��ωinj − ω0

�� � ω0 to approximate
ω0

2 −ωinj
2 ≈ 2ωinj(ω0 −ωinj), and we assume that θ varies slowly in comparison to

the injection: ����dθdt

���� � ωinj. (2.9)

With these approximations, we obtain

2ωinj

(
ω0 − ωinj −

dθ
dt

)
=

Iinj

Iosc

ω0ωinj

Q
sin θ. (2.10)

Rearranging, we arrive at Adler’s equation:

dθ
dt
= ω0 − ωinj −

ω0
2Q

Iinj

Iosc
sin θ. (2.11)

Since θ is constant under lock, the maximum frequency deviation that the oscillator
can lock to, known as the lock range, is given by

ωL =
ω0
2Q

Iinj

Iosc
. (2.12)

One of the key insights resulting from Adler’s equation is that the lock range
increases with the relative injection strength Iinj/Iosc but varies inversely with the
tank’s quality factor Q.

Recall the fundamental assumptions underlying this derivation:
1Obviously, both the real and imaginary parts need to be satisfied. In a more detailed analysis

which does not assume the transconductor and resistor currents cancel, the imaginary part of this
equation would describe the oscillation amplitude.
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1. The injection is much weaker than the oscillator: Iinj � Iosc.

2. The frequency deviation is small:
��ωinj − ω0

�� � ω0.

3. The oscillator’s phase varies slowly relative to the injection: |θ′(t)| � ωinj.

In light of Adler’s equation, the third assumption is implied by the first two. We will
challenge the first two conditions in this thesis.

Because of the accurate conclusions about the lock range, the pull-in process, and
the presence of “beats” in an unlocked oscillator that Adler’s equation is able to
predict, it has formed the basis for numerous other approaches to understanding
injection locking and pulling in electrical oscillators.

Related Works
Many have built upon Adler’s work over the years. Notable examples include
generalizing the treatment to non-triode oscillator topologies (Huntoon and Weiss,
1947) [48], modifying the equation for the lock range to account for large injection
currents (Paciorek, 1965) [49], focusing on the unlocked behavior of injection-
pulled oscillators (Stover, 1966; Armand, 1969) [50], [51], extension of the analysis
to microwave oscillators with distributed elements (Kurokawa, 1973) [52], [53],
and coming up with alternative derivations of Adler’s equation as well as applying
Adler’s equation in different settings to glean new insights (Razavi, 2004) [38].
Even recent works which focus on significantly more complicated scenarios, such
as mutual pulling between VCOs residing in different PLLs [86], often use Adler’s
equation as a starting point for their analysis.

Mirzaei’s Generalized Adler’s Equation
The most powerful generalization of Adler’s equation to date was proposed by
Mirzaei et al. in 2006 [59], where they use KCL and KVL to analyze the LC
oscillator without assuming a weak injection signal. Consequently, the result of
their analysis, which they call “Generalized Adler’s equation,” accounts for how the
injection can influence the amplitude of oscillation—not just the phase. In doing
so, the term Iosc in Adler’s equation Eq. (2.11) is replaced with Iosc + Iinj cos θ:

dθ
dt
= ω0 − ωinj −

ω0
2Q

Iinj sin θ
Iosc + Iinj cos θ

. (2.13)

They then use this equation to conduct a rather thorough analysis of the quadrature
LC oscillator [21], one of the most widely used applications of injection locking in
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modern high-frequency systems. The lock range associated with this more general
equation can be shown to be [38], [49], [59]

ωL =
ω0
2Q

Iinj

Iosc

1√
1 −

Iinj
2

Iosc
2

. (2.14)

In this thesis, we will demonstrate how both the time-synchronous model developed
in Chapters 4 and 5 as well as our phasor-based analysis presented in Chapter 10
analytically reduce to Adler’s equation and its generalization by Mirzaei et al.

Models for Ring Oscillators

Figure 2.2: A nonlinear model of the ring oscillator often used for injection locking
and pulling applications.

The most conspicuous limitation associated with Adler’s equation and its surround-
ing body of work is, of course, the fact that the analysis pertains only to LC
oscillators. Consequently a variety of behavioral approaches for modeling injec-
tion locking in ring oscillators have also been developed.2 The approach which
has gained the most traction in recent years models each stage of the ring as an
RC-delay cell driven by an idealized, nonlinear transconductor [10], [60]–[65], as
shown in Figure 2.2. In particular, this behavioral model allows for each node of
the ring oscillator to be injected into, a technique which can widen the lock range
significantly (see Section 6.7).

Among these approaches, several have stood out. Themodel proposed byGangasani
and Kinget [61], [62] is slightly more general in that it allows for an arbitrary delay

2The other type of non-LC electrical oscillator, the relaxation oscillator, has received much less
attention in this regard because ring oscillators are far more commonly used in integrated electronics
due to their ease of implementation and relatively reliable performance.
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dynamic (the “d-∆ relationship”) for each stage of the ring. On the more practical
side, the analyses carried out by by Chien et al. [63] and Mirzaei et al. [10], [60]
have led to the design of wideband CMOS ring-oscillator-based injection-locked
frequency dividers.

2.2 Mathematical Macromodels
In contrast to behavioral or physically-based approaches, macromodeling techniques
start with a collection of fundamental mathematical properties of the system under
study (e.g., linearity, time-invariance, memory, causality). An abstract, general
description of an arbitrary system that satisfies these properties is then formulated,
allowing for certain parameters3 of interest to be identified (e.g., impulse response,
transfer function, scattering matrix, Fourier series coefficients). These parameters
are then calculated analytically, simulated, or even measured for the actual system
of interest (i.e., the oscillator) and then used to make conclusions about the physical
properties of the system that we want to figure out.

The key to successful macromodeling lies in the choice of these parameters—they
need to be sufficiently easy to ascertain, but they also need to capture enough
information about the system’s behavior to be useful. In effect, these parameters
serve as an intermediary between the fundamental physics governing the system’s
operation and the system’s characteristics that we are actually interested in, as it
would be too difficult or computationally intractable to derive the latter from the
former directly. As an example, it would not be feasible or necessary to perform
a full-blown, brute-force analysis of the current through every branch and voltage
at every node of an oscillator just to derive its phase noise or synchronization
properties.

Such approaches tend to be very general in their applicability, but due to their abstract
nature, care must be taken when interpreting their results to ensure that they are both
physically meaningful and practically insightful. An exemplar of a mathematical
macromodel which simultaneously possesses tremendous predictive power while
being intuitive to understand is Hajimiri and Lee’s oscillator phase noise model
[87]–[90]. The core parameter at the heart of their model is a periodically time-
varying impulse response of the oscillator’s phase with respect to noise, embodied
in a parameter they named the Impulse Sensitivity Function (ISF) Γ(x). The ISF
will be discussed extensively in Chapter 4. The model developed in the bulk of

3Note that a “parameter” in this context could be a function, a scalar or matrix variable, a
sequence, etc.
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this thesis builds upon—but greatly generalizes—Hajimiri and Lee’s work, and is
therefore also a mathematical macromodel.

The Perturbation Projection Vector (PPV)
A theoretical framework based on Floquet theory, pioneered mostly by Demir and
Roychowdhury, has been developed over the past couple decades for modeling
oscillators in the presence of external disturbances. The framework, originally
developed to model phase noise [91]–[93], is based on a parameter known as the
Perturbation Projection Vector (PPV) v1(t). A key advantage of the PPV is that
it can be readily extracted from the steady-state solution of the oscillator, whereas
the ISF requires a collection of (possibly time-consuming) transient simulations.
As a result, this framework is particularly useful for performing efficient phase
noise simulations of large circuits with numerous noise sources. The PPV-based
framework has recently been extended to the modeling of injection locking and
pulling in oscillators [66]–[71], and has shown success in being able to capture
both the steady-state locked, as well as transient unlocked, behavior of an arbitrary
oscillator under injection. Recently, the PPV has also been used to model the effect
of weak coupling between oscillators [74] as well as injection-locked frequency
dividers by Maffezzoni [75], [76].

At its core, the PPV-based framework approaches the analysis problem from a dy-
namical systems standpoint—situated more closely to the mathematics rather than
the engineering community—leading to an overtly abstract and complicated formu-
lation. Furthermore, the PPV has not been demonstrated to offer more accuracy or
predictive power for electrical oscillators than other macromodeling approaches; in
fact, the PPV and the ISF are actually the same in many practical scenarios [94].
Consequently, while this body of work is mathematically rigorous, it has not found
mainstream usage within the circuit design community.

The Single-Period Injection Response (SPIR)
The Single-Period Injection Response (SPIR) was first utilized within the neuro-
science community to model neural oscillators [36]. It was later introduced within
the context of electrical oscillators by Dunwell and Carusone in 2013 [77], albeit
given a much less insightful name: the Phase Domain Response (PDR). The PDR,
which they denote as P(φ), measures the response of a free-running oscillator to a
single period of the external injection as the relative timing φ between the oscillator
and the injection is varied. This parameter is then used to determine properties such
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as the lock range, the lock time, and the jitter tracking bandwidth of the oscillator.
Although seemingly intuitive, simple to implement, and unconstrained by the type
of oscillator or the shape or size of the injection, we will show in Appendix B that
this framework is fundamentally flawed from a mathematical standpoint. This error
can be intuitively understood by noting that the PDR or SPIR captures the transient
behavior of a free-running oscillator, which is different from the steady-state be-
havior of an injection-locked oscillator. With that said, the PDR has found some
usage within the electronics community for designing oscillators injection locked
by short, tall pulses [18], [78].

Other Works
There are a few other macromodeling approaches in the literature which have found
some prominence. In 2008, Maffezzoni used the ISF to derive expressions for the
lock range of an arbitrary oscillator subjected to a periodic injection signal [72].
His analysis made no assumptions about the shape of the injection or to the relative
harmonic between the injection and oscillation (i.e., the injection-locked oscillation
frequencyωosc satisfies Nωosc = Mωinj where M and N are coprime integers). Con-
sequently, Maffezzoni’s work comes the closest to our model—but, it exposes only
the tip of the iceberg in terms of the wide array of properties and behaviors that can
be predicted using the ISF. Other, more design-oriented mathematical macromodels
have focused on analyzing the nonlinear frequency mixing effects that occur within
the oscillator and between the oscillator and the injection [4], [6], [79]. These ap-
proaches have led to several useful insights for designing integrated injection-locked
frequency dividers and prescalers for frequency synthesizer applications.
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C h a p t e r 3

A THOUGHT EXPERIMENT: SYNCHRONIZING AN LC
OSCILLATOR TO AN IMPULSE TRAIN

3.1 Introduction
In this chapter, we explore the possibility of using a current impulse train to entrain
a harmonic electrical oscillator. In doing so, our calculations will lead to an un-
derstanding of how the concept of the impulse response can be used to model the
phenomenon of injection locking.

(a) Parallel LC tank with a charge injection source.

(b) Unperturbed charge swing.

Figure 3.1: Idealized conceptual setup for our thought experiment.

3.2 A Thought Experiment
Consider the parallel LC tank shown in Figure 3.1a, where some amount of energy
resonates back and forth between the inductor L and the capacitor C, leading to the
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charge swing q(t) shown in Figure 3.1b. The period of oscillation is T0 = 2π
√

LC,
the tank’s resonant period. In parallel with the tank is a current source which
periodically injects an impulse of current. The area under each impulse is a discrete
amount of charge, whose (absolute) amount we will denote as qinj. Note that this
charge is deposited entirely onto the capacitor.

Let us restrict ourselves to the scenario where each injection does not change the
amount of energy in the tank; therefore, it merely switches the polarity of the
instantaneous charge swing q(t). Two such examples are shown in Figure 3.2.
Observe how positive (or negative) injections of charge at rising (or falling) edges of
the oscillation waveform will advance the phase, whereas the opposite arrangement
will retard the phase. We would like to derive a relationship between the amount
of injected charge qinj, the maximum charge swing qmax, and the change in the
oscillation frequency ∆ω B ωinj − ω0.

Let us compute the phase shift caused by each injection. If we adopt a sine reference,
meaning that q(t) = qmax sin ϕ(t), then each injection takes the instantaneous phase
from −φ to φ or vice versa, for some phase φ > 0. The amount of charge needed
to advance the phase by ∆ϕ = ±2φ is (the negative of) twice the capacitor charge at
the instant of injection:

qinj = 2qmax sin(φ) = 2qmax sin
(
±∆ϕ

2

)
. (3.1)

Solving for the phase shift ∆ϕ and assuming the injected charge is much less than
the maximum charge swing, qinj � qmax, we can approximate

∆ϕ = ±2 sin−1
(

qinj

2qmax

)
≈ ±

qinj

qmax
, (3.2)

where the sign depends on the polarity of the injections and on whether they are
applied at rising or falling edges.

Next, this phase shift ∆ϕ corresponds to a period difference ∆T B Tinj − T0 of and
a frequency shift ∆ω of

∆ϕ

2π
= −∆T

T0
=
∆ω

ωinj
. (3.3)

Thus, we obtain the following relationship:

∆ω =
∆ϕ

Tinj
. (3.4)
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(a) Injections which speed up the oscillation.

(b) Injections which slow down the oscillation.

Figure 3.2: Synchronizing an LC tank to an impulse train of current injections which
leave the amount of energy in the tank unchanged.

Combining this result with Eq. (3.2), we get

∆ω = ± 1
Tinj

qinj

qmax
. (3.5)

One might have noticed that our analysis thus far has really only dealt with an
LC tank. To extend our reasoning to an LC oscillator, which features nonlinear
amplitude restoration, we augment the setup of Figure 3.1 to the more complete
circuit of Figure 3.3. The current exchanged between the inductor and the capacitor
has a peak value of ω0qmax, whereas the “oscillator current” consumed by the loss
resistance RP and replenished by the active −Gm transconductor has an amplitude
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Figure 3.3: Applying an impulse train current injection to an LC oscillator. We are
interested in the steady-state behavior of this circuit.

of Iosc. Because the LC tank and the resistor are in parallel and therefore experience
the same voltage swing, these currents must be related through

ω0qmax · ω0L =
ω0qmax
ω0C

= IoscRP . (3.6)

In other words, as indicated in Figure 3.3, the amplitude of the current sloshing
within the LC tank is Q times the oscillator current:

ω0qmax = QIosc, (3.7)

where Q is the tank’s quality factor:

Q =
RP

ω0L
= RPω0C. (3.8)

For the sake of argument, let us look at the fundamental component of the impulse
train iinj(t). Its amplitude, which we shall denote by Iinj, is given by

Iinj =
2

Tinj

∫
Tinj

qinj

∞∑
n=−∞

δ(t − nTinj) e− jωinjt dt

=
2qinj

Tinj
.

(3.9)

Combining Eqs. (3.5), (3.7), and (3.9), we get

∆ω = ±ω0
2Q

Iinj

Iosc
, (3.10)

which yields a remarkable result: the frequency difference is equal to the lock range
obtained from Adler’s equation Eq. (2.12)!

One way of interpreting this result is that the current setup is poised at the “edge”
of the lock range. In other words, “all” of the injection current is being used to
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change the oscillation frequency. Mathematically, this follows from the fact that the
impulse train’s fundamental component is in quadrature with the oscillation. The
delineation of the injection’s “in-phase” and “quadrature-phase” components will
be discussed in great detail in Chapter 10.

3.3 Varying the Time of Injection

Figure 3.4: Varying the time at which the injections are applied.

Based on the preceding analysis, it should be apparent that for a fixed relative in-
jection strength qinj/qmax, there are only two instants during each cycle when the
injection can be applied so as to leave the tank’s energy unchanged. Specifically,
notice how the fundamental components of iinj(t) and q(t) are ±90° out-of-phase.
But what if we vary the time of injection, thereby allowing the injections to instan-
taneously change the tank’s energy? An example of this is shown in Figure 3.4.

To describe this situation precisely, we must characterize the point along the os-
cillation cycle at which the injection is applied. Specifically, let θ represent the
phase difference between the fundamental components of the injection current and
the charge swing. This is illustrated in Figure 3.5, where qfund(t) is the funda-
mental component of the actual charge swing q(t), and ifund(t) is the fundamental
component of the impulse train injection current. Notice how θ has two possi-
ble interpretations. As the phase difference between the fundamental components,
the difference between their rising (or falling) edge zero-crossing times is equal to
−θ/ωinj. Equivalently, for positive or negative injections of charge respectively, the
value of qfund(t) at the time of injection is equal to ±qmax cos θ, where qmax is the
amplitude of qfund(t). In other words, θ can be thought of as a generalized definition
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Figure 3.5: Defining the phase θ using the fundamental components of the wave-
forms from Figure 3.4.

of the phase of oscillation at the time of injection. In particular, θ = 0 or θ = π

correspond to peak/trough injections that respectively increase or decrease the tank
energy, whereas θ = ±π/2 correspond to zero-crossing injections that respectively
retard or advance the oscillation.

By dealing with fundamental components, observe how θ automatically accounts
for the polarity of the injection. For example, reversing the injection polarity has the
same effect on the oscillator as delaying the injections by half of a cycle. Likewise,
negating an impulse train delays its fundamental component by half of a period,
thereby shifting θ by π.

Next, wewill assume for now that the oscillation amplitude is quickly and completely
restored by the oscillator’s inherent nonlinearities within a single injection period—
but the phase perturbation remains. Now, in order for the oscillator to synchronize
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to the impulse train, the relationship between the frequency difference ∆ω and the
injection strength must involve the phase θ. To quantify this relationship, we need
to calculate the phase shift induced by the injection as a function of θ.

The Phase and Amplitude Response of an LC Oscillator
This treatment parallels that found inAppendixCof [88]. Let us assume the injection
is applied at time t = 0. With this time reference, we can see from Figure 3.5 that
the capacitor charge and the inductor current before the injection (t < 0) can be
written as

q(t) = qmax cos(ω0t + θ)
iL(t) = −q′(t) = ω0qmax sin(ω0t + θ).

(3.11)

After the injection, both the phase and the amplitude change. Therefore, for t ≥ 0+,
the capacitor charge and inductor current become

q(t) = (qmax + ∆qmax) cos(ω0t + θ + ∆ϕ)
iL(t) = −q′(t) = ω0 (qmax + ∆qmax) sin(ω0t + θ + ∆ϕ),

(3.12)

where amplitude restoration (i.e., the decay of ∆qmax with time) is irrelevant since
we are only interested in the immediate effect of the injection in this analysis.

But we also know that the capacitor charge changes instantaneously by qinj after
the injection, whereas the inductor current remains the same. Therefore, using
Eq. (3.11) gives

q(0+) = qmax cos θ + qinj

iL(0+) = ω0qmax sin θ.
(3.13)

Comparison with Eq. (3.12) at t = 0 therefore yields

(qmax + ∆qmax) cos(θ + ∆ϕ) = qmax cos θ + qinj

(qmax + ∆qmax) sin(θ + ∆ϕ) = qmax sin θ.
(3.14)

Assuming the amount of injected charge is small, qinj � qmax, we linearize the
equations above with respect to both ∆ϕ and ∆qmax to get

∆qmax cos θ − ∆ϕqmax sin θ = qinj

∆qmax sin θ + ∆ϕqmax cos θ = 0.
(3.15)

Now, we can easily solve for ∆ϕ and ∆qmax:

∆ϕ = −
qinj

qmax
sin θ

∆qmax = qinj cos θ.
(3.16)
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Adler’s Solution
With this result, the frequency difference ∆ω is now related to θ through

∆ω = − 1
Tinj

qinj

qmax
sin θ. (3.17)

Using Eqs. (3.7) and (3.9) to once again transform the charge quantities qinj and
qmax into the respective currents Iinj and Iosc, we arrive at

∆ω = −ω0
2Q

Iinj

Iosc
sin θ, (3.18)

which is the steady-state solution to Adler’s equation, as we can see from Eq. (2.11)!

3.4 Accounting for Changes in the Maximum Charge Swing

Figure 3.6: Depiction of how the oscillation amplitude qmax(t) evolves with time in
steady-state when the injections change the amount of energy stored in the tank.

We can take this thought experiment slightly further by assuming a realistic decay
dynamic for the tank’s energy in between consecutive injections. This is important
because as we can see from Eq. (3.16), the phase shift induced by an injection is
inversely proportional to the maximum charge swing. Although Eq. (3.16) already
gives the instantaneous change in qmax caused by an injection, we will also need to
quantify how qmax changes with time throughout the entire period.

The unperturbed or free-running amplitude satisfiesω0 qmax,0 = QIosc, as this charge
swing qmax,0 is sustained by an energetic balance between the transconductor, which
supplies Iosc, and the tank loss, which sets Q. Therefore, we will assume that
any deviation of the amplitude from qmax,0 decays exponentially with the relaxation
time constant of the parallel RLC circuit: τ0 = 2RPC = 2Q/ω0. Consequently,
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even though each injection instantaneously changes the amount of energy stored in
the LC tank, the oscillator also continuously attempts to restore this energy to the
free-running amount. Eventually, this process reaches an equilibrium, an example
of which is shown in Figure 3.6. Let δqmax denote the maximum charge swing in
excess (positive or negative) of qmax,0 immediately after an injection. In steady state,
the oscillator must return to the same amplitude over each period, and so we require

δqmaxe−Tinj/τ0 = δqmax − ∆qmax. (3.19)

Solving for δqmax, we get

δqmax =
∆qmax

1 − e−Tinj/τ0
. (3.20)

We know that between successive injections, the maximum charge swing as a
function of time is given by

qmax(t) = qmax,0 + δqmaxe−t/τ0 . (3.21)

For the sake of argument, let us consider the time-average of the maximum charge
swing:

〈qmax〉 B
1

Tinj

∫ Tinj

0
qmax(t) dt = qmax,0 +

τ0
Tinj

δqmax

(
1 − e−Tinj/τ0

)
. (3.22)

Substituting for δqmax from Eq. (3.20), we get

〈qmax〉 = qmax,0 +
τ0

Tinj
∆qmax. (3.23)

This equation makes sense: the longer it takes to dissipate energy (a larger τ0), or
the more frequent the injections (a smaller Tinj), the more influence the injections
will have on the average amplitude in steady state.

Replacing qmax with 〈qmax〉 in Eq. (3.17), our frequency shift becomes

∆ω = − 1
Tinj

qinj

〈qmax〉
sin θ = −

qinj

Tinj
sin θ

qmax,0 +
τ0

Tinj
qinj cos θ

. (3.24)

Using Eqs. (3.9) and (3.7) to eliminate qinj and qmax,0 respectively, and relating τ0

to the quality factor Q, we get

∆ω = −ω0
2Q

Iinj sin θ
Iosc + Iinj cos θ

. (3.25)

Interestingly, this is the steady-state solution to Eq. (2.13), which is Mirzaei’s
Generalized Adler’s equation [21].
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3.5 Concluding Thoughts
By making simple physical arguments about the behavior of an ideal LC oscillator
injected with an impulse train, we arrived at results which originally came from
behavioral analyses carried out by Adler [47] and Mirzaei [21]. Therefore, it may
be fruitful to use the concept of the impulse response to model the phenomenon of
injection locking and pulling. We conclude this chapter by pointing out that the
relationship between this thought experiment and the general model introduced in
this thesis will be established rigorously in Section 5.9.
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C h a p t e r 4

A TIME-SYNCHRONOUS MODEL

4.1 Introduction
In this chapter, we develop fromfirst principles a general model for the behavior of an
electrical oscillator subjected to a periodic disturbance. As we stated in Section 1.1,
within the context of electronics, the disturbance is usually taken to be an injection of
current into one or more of the oscillator’s nodes. The model makes no assumptions
about the topology of the oscillator or the shape of the injection. We will see
that our analysis leads to a single, first-order ordinary differential equation for the
oscillator’s phase which accurately predicts the phenomenon of injection locking
and pulling under a variety of scenarios. A distinguishing feature of this model is
its time synchronicity—its mathematical structure reveals how the autonomy of the
oscillator fundamentally facilitates injection locking and pulling behavior.

4.2 The Impulse Sensitivity Function (ISF)
Here, we construct the fundamental differential equation that governs the behavior
of the oscillator’s phase. Let us begin by describing the effect that the injection
iinj(t) has on the oscillator’s excess phase φ. Naively reasoning from a perturbation-
based perspective, we can attempt to model how fast φ(t) changes in response to an
injection of charge iinj(t) ≡ dqinj/dt by using the chain rule:

dφ
dt
=

dφ
dqinj

·
dqinj

dt
. (4.1)

The first derivative represents the rate of change of the oscillator’s (excess) phase
with respect to injected charge. In other words, it characterizes the sensitivity of
the oscillator’s phase to an injection of an infinitesimally small impulse of current.
However, due to the periodically time-varying nature of the oscillator, this term is not
a constant but is instead dependent upon the point along the trajectory the oscillator
is at—the oscillator’s phase—when the injection occurs. This phase-dependent
derivative is known as the oscillator’s Impulse Sensitivity Function or ISF [87],
[88]:

Γ̃(ϕ) B ∂φ

∂qinj
, (4.2)
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with units of [radians/Coulomb]. Note that the ISF defined by Hajimiri and Lee
[87], which is denoted by Γ(x) without the overhead tilde ‘∼’, has been normalized
by an additional factor—the inverse of the maximum charge swing qmax across the
injection terminals:

Γ̃(x) ≡ Γ(x)
qmax

. (4.3)

However, our definition of the ISF will be more convenient for us to work with.
Being a function of the oscillator’s phase, the ISF is periodic with period 2π.

The second derivative in Eq. (4.1) is simply the injection current iinj(t). Therefore,
we can write

dφ
dt
= Γ̃(ϕ) · iinj(t). (4.4)

Before proceeding, we want to very carefully note that this model, by construction,
inherently assumes that the injection-to-phase relationship is a linear one. We will
discuss the justification for and the implications of this assumption shortly.

Figure 4.1: Relating the time-varying impulse response for the oscillator’s excess
phase to the ISF.

Although this reasoning makes sense intuitively, we must make the analysis rig-
orous. Given the set of observations and assumptions we have just made, we are
essentially adopting a linear, periodically time-varying (LPTV) dynamical system
model. Now, the ISF appears within the time-varying impulse response of this
system. Specifically, the oscillator’s excess phase φ at time t due to a unit impulse
of current injected at time τ is

hφ(t, τ) = Γ̃[ϕ(τ)] u(t − τ). (4.5)

The unit-step function in the impulse response signifies the fact that an oscillator
has no absolute time reference—any resultant perturbation in its phase appears
immediately and will persist indefinitely [87]. This interpretation of the ISF is
depicted in Figure 4.1.
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(a) Ideal LC oscillator. Amplitude limiting nonlinearities are not shown.

(b) The charge swing q(t) across the capacitor responding to an injection of charge
qinj at two different times. The red, dashed curve is the unperturbed version of q(t).

Figure 4.2: The impulse sensitivity function (ISF) captures the dependence of the
incurred phase shift on the time of injection.

An example of how time variance arises is given in Figure 4.2, which shows the
response of an ideal LC oscillator to an instantaneous injection of charge at two
different times. Notice that injecting near a zero-crossing (t = τ1) results in a large
phase shift, whereas injecting near one of the waveform’s peaks (t = τ2) results in
almost no phase shift.

The two equivalent viewpoints of the ISF that we have just described are reiterated
in Table 4.1. Methods for simulating or calculating the ISF are discussed extensively
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Table 4.1: Two Equivalent Viewpoints of the ISF

The gradient of the phase along the
limit cycle w.r.t. injected charge:

The kernel of the time-varying
impulse response of the (excess)
phase w.r.t. the injected current:

Γ̃ B
∂ϕ

∂qinj
hφ(t, τ) = Γ̃[ϕ(τ)] u(t − τ)

elsewhere [87], [88], [95].

An Aside: The ISF for Orthogonal States
It is worth noting that a closed-form formula for the ISF exists if the oscillator has an
orthogonal state-space representation. Consider a d-dimensional oscillator where
the d state variables are node voltages V1, . . . ,Vd with respective node capacitances
C1, . . . ,Cd . Writing the free-running state variables in terms of their oscillation
waveforms v1(ω0t), . . . , vd(ω0t) respectively, the ISF due to an injection at the ith

node can be computed as [87], [88]

Γ̃i(ϕ) =
v′i (ϕ)∑d

n=1 Cn [v′n(ϕ)]2
, (4.6)

where the derivatives with respect to the phase ϕ. If the nth state variable is a branch
current In instead, simply replace Vn → In and Cn → Ln (the branch inductance).
Notable oscillators with orthogonal state variables are the LC oscillator (using the
capacitor voltage and the inductor current) and instantaneously switching relaxation
oscillators (using the voltage across the timing capacitor and a binary hysteresis
state). Keep in mind, however, that most oscillator representations do not have
orthogonal states, and so this formula is only useful in limited circumstances.

Why Linear?
The system we have just described—whose input is the injection current iinj(t) and
output is the excess phase φ(t)—is in general nonlinear; most systems in nature are.
Interestingly, the mathematical construction of our model is itself incompatible with
true linearity due to its phase-variant nature: suppose we inject some charge qinj

into an oscillator at a phase ϕ. The incurred phase shift is equal to

∆φ0 = qinjΓ̃(ϕ). (4.7)

We can also decompose this injection into two consecutive injections, each of size
qinj/2. If the system were truly linear, we could use superposition to say that the
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incurred phase shift is also equal to

∆φ1 =
qinj

2

[
Γ̃(ϕ) + Γ̃

(
ϕ +
∆φ0

2

)]
. (4.8)

As we can see, these two approaches lead to different results in general (∆φ0 , ∆φ1)
unless qinj is infinitesimally small.

However, we also know that fundamentally, any functional dependence f (x) in
nature will exhibit linear behavior provided that the stimulus x is small enough
(assuming the first derivative f ′(x) is nonzero). This is justified mathematically by
looking at a first-order Taylor series expansion of the dependence, and in electrical
engineering contexts is frequently referred to as the “small-signal” regime. In
particular, it has been empirically observed on a variety of electrical oscillators
that when they are injected with a discrete amount of charge which is sufficiently
small, the incurred phase shift scales proportionally with the amount of charge [87],
[88]. (This proportionality constant is equal to the ISF.) Specifically, the amount
of injected charge can typically be considered to be “sufficiently small” when it is
much smaller than the maximum charge swing at the injection node. Let us call
this regime where linearity holds the “Linear Response Region” [82]–[85] of the
oscillator’s charge-to-phase relationship.

Let us now use this concept to discuss the linearity of the oscillator’s current-to-
phase relationship1, which is what we truly care about. Since the ISF is the gradient
of the oscillator’s phase along the limit cycle, we argue that as long as the oscillator’s
operation is close enough to its free-running trajectory such that it does not exhibit
qualitatively different behavior, linearity prevails. Furthermore, we reason that
this condition is achieved when the total amount of excess charge accumulated
at the injection node, qinj, is within the Linear Response Region defined above.2
Since the Linear Response Region corresponds to the injected charge being small
in comparison to the (free-running) maximum charge swing qmax,0, this reveals the
rather intuitive result that linearity simply requires qinj � qmax,0, as this preserves
the oscillator’s “operating point” (along its limit cycle).

We can crudely quantify the condition for current-to-phase linearity, or the “small-
injection condition,” a bit more precisely. For many oscillators, such as ring and

1Note that the current-to-phase relationship subsumes the charge-to-phase relationship since the
latter stimulus is merely an impulsive current waveform.

2For the more mathematically inclined, note that this is a physical argument—not a rigorous
proof. We are not claiming that a system which exhibits linearity with respect to impulses will be
linear in general with respect to all inputs.
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relaxation oscillators, strong amplitude-limiting mechanisms are in place and the
excess injected charge qinj decays very rapidly. Let us examine this dynamic using
a first-order, linear, time-invariant model via the following differential equation:

dqinj

dt
+

qinj

τd
= iinj(t), (4.9)

where τd is the time constant at which the excess charge decays. This is equivalent
to an impulse response equal to hq(t) = e−t/τdu(t). For a sinusoidal injection current
of amplitude Iinj, it is easy to show that the amplitude Qinj of the excess charge qinj(t)
is equal to

Qinj =
Iinj√

ωinj2 + 1/τd
2
< Iinjτd, (4.10)

where the bound holds for any nonzero injection frequency ωinj > 0. Next, note that
this decay usually takes place within a tiny fraction of the oscillation period, and so
τd � 1/ω0. Thus, we further have that Qinj < Iinj/ω0. Hence, a sufficient condition
to maintain linearity is given by

Iinj � ω0qmax,0. (4.11)

The right-hand-side is a rough estimate of the amplitude of the (free-running) current
flowing across the injection node’s capacitance.3 (In fact, for a sinusoidal swing,
they would be equal.) Defining this quantity as the oscillation current,

Imax B ω0qmax,0, (4.12)

we can rewrite our small-injection condition as

Iinj � Imax. (4.13)

Note that the time-invariance underlying this analysis can actually lead to woefully
inaccurate results—for an LC oscillator, for example, the periodically time-varying
nature of the oscillator plays a crucial role in the effect that the injection has on
the oscillation amplitude (see Chapter 5). A thorough analysis reveals that the true
small-injection condition is Iinj � Imax/Q, where Q is the tank’s quality factor.

Closing this discussion, it is worth mentioning that the range of injection strengths
for which linearity holds already covers a wide range of practical scenarios in
injection locking and pulling applications.

3Carefully note here that qmax,0 is technically defined as the amplitude of the charge displacement
from a DC operating point, which can be approximated as half of the peak-to-peak swing.
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4.3 A Differential Equation for the Oscillator’s Phase
Now, we can calculate the oscillator’s excess phase φ(t) in response to an arbitrary
injection of current iinj(t) using a superposition integral:

φ(t) =
∫ ∞

−∞
hφ(t, τ)iinj(τ) dτ =

∫ t

−∞
Γ̃[ϕ(τ)] iinj(τ) dτ. (4.14)

Differentiating with respect to time,

dφ
dt
= Γ̃[ϕ(t)] iinj(t), (4.15)

which is exactly what we expected intuitively from Eq. (4.1), but now established
rigorously. Next, we make use of Eq. (1.3) to write this differential equation in
terms of θ:

dθ
dt
= ω0 − ωinj + Γ̃

(
ωinjt + θ

)
iinj(t). (4.16)

As it stands, this equation has a subtle problem, best illustrated with a simple
example. If the oscillator is injection-locked, θ should be constant in time. However,
this outcome is not a solution of Eq. (4.16): if θ is constant, then both Γ̃

(
ωinjt + θ

)
and iinj(t) are periodic with a frequency ofωinj. Hence, their product can, in general,
exhibit infinitely many harmonics at DC, ωinj, 2ωinj, etc. Thus, the right-hand-
side of Eq. (4.16) will not be equal to zero (or any constant for that matter), as is
required by the steady-state solution where dθ/dt = 0. Therefore, we postulate
that Eq. (4.16) also captures intra-period dynamics that we are not interested in.
Instead, the physical behavior we seek to describe is actually encapsulated in the
time-average of the oscillator’s phase, which would eliminate the aforementioned
higher-order harmonics.

Time-Averaging and Spectral Decomposition
In order to enforce this conjecture, we need to appeal to the theory of averaging for
differential equations. The fundamental theorem governing this technique will be
briefly introduced here. Consider the following ordinary differential equation:

du
dt
= ε f (u, t), (4.17)

where f is periodic in t with period T , and the parameter ε > 0 is assumed to be
“small.” Now, calculate the time-average of f :

〈 f (u)〉 B 1
T

∫
T

f (u, t) dt, (4.18)
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where u is assumed to be a constant within this averaging integral. Then, it is
possible to prove that the solution to the averaged differential equation

dv
dt
= ε 〈 f (v)〉 (4.19)

is ε-close to u(t) on the time scale 1/ε [96].

Within our setting, the averaging period is clearly Tinj. The “amplitude” of the
injection signal iinj(t) takes the place of the parameter ε, in the sense that doubling
the injection current both doubles the error and halves the time scale over which the
error is bounded.4 Therefore, we obtain5

dθ
dt
= ω0 − ωinj +

1
Tinj

∫
Tinj

Γ̃
(
ωinjt + θ

)
iinj(t) dt . (4.20)

Once again, θ is to be treated as a constant within the averaging integral on the
right-hand-side. This is the basic differential equation that governs the oscillator’s
phase θ in the presence of a periodic external injection of current iinj(t). We will
refer to this important equation as the pulling equation.

The averaging operation is independent of the time scale. In other words, only the
size and shape of the injection current (and ISF) can directly affect the result—there
is no explicit dependence on the averaging period Tinj itself. To that end, let us
define the injection waveform iinj,0(x) as the injection current normalized in scale
to a period of 2π:

iinj(t) ≡ iinj,0(ωinjt). (4.21)

The injection waveform only captures the size and shape of the injection current,
properties which are independent of the injection periodTinj—inmuch the same way
that the oscillation waveform v0(x) contains no information about the free-running
oscillation period T0.

We can now use the injection waveform to rewrite the pulling equation in the
following equivalent manner:

dθ
dt
= ω0 − ωinj +

〈
Γ̃(x + θ) iinj,0(x)

〉
2π , (4.22)

where 〈·〉 is the averaging operation:

〈·〉T ≡
1
T

∫
T
· dt . (4.23)

4In Section 7.6 where we discuss phase noise, we will deal with the non-periodic case of
averaging.

5Excuse the abuse of notation—we have reused the variable θ as the solution to the averaged
equation.
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Figure 4.3 shows a block diagram to help visualize the process described by the
pulling equation. Note that since θ is a constant variablewith respect to the averaging
integral, we can shift it into the argument of the injection current. If the process
reaches a static equilibrium for θ, the oscillator becomes injection locked.

Figure 4.3: Block diagram depicting what happens to the phase of a periodically
disturbed oscillator.

The result of the averaging operation can also be expressed in a more insightful way
by utilizing Fourier analysis to expose the periodicity of the ISF and the injection.
Specifically, let us expand these two functions in terms of their Fourier series:

Γ̃(x) = Γ̃0
2
+

∞∑
n=1

��Γ̃n
�� cos(nx + ∠Γ̃n)

iinj(t) =
Iinj,0

2
+

∞∑
n=1

��Iinj,n
�� cos(nωinjt + ∠Iinj,n),

(4.24)

where the Fourier series coefficients are given by

Γ̃n =
1
π

∫
2π
Γ̃(x)e− jnx dx

Iinj,n =
2

Tinj

∫
Tinj

iinj(t)e− jnωinjt dt .
(4.25)

Because θ is constant within the averaging integral, we can evaluate the integral
directly in terms of the Fourier series coefficients of the ISF and the injection. This



38

yields

dθ
dt
= ω0 − ωinj +

1
2

[
Iinj,0Γ̃0

2
+

∞∑
n=1

��Iinj,nΓ̃n
�� cos

(
nθ + ∠Γ̃n − ∠Iinj,n

) ]
. (4.26)

This formulation is often more convenient to deal with, both analytically and con-
ceptually. A block diagram depicting the spectral decomposition of the ISF is given
in Figure 4.4.

Figure 4.4: Decomposing the ISF into its spectral components, emphasizing how
the injection waveform is filtered in the formation of the lock characteristic.

The Lock Range
The lock range is perhaps the most important parameter associated with the phe-
nomenon of injection locking. It is defined as the range of frequencies that the
oscillator is capable of locking to for a given injection waveform. Because the os-
cillator’s phase relative to the injection, θ, is constant in time for a locked oscillator,
the frequency deviation ∆ω ≡ ωinj − ω0 is given by

∆ω =
1

Tinj

∫
Tinj

Γ̃
(
ωinjt + θ

)
iinj(t) dt . (4.27)

Because of the importance of this relationship, let us define the following function
Ω(θ) of the oscillator’s phase θ:

Ω(θ) B 1
Tinj

∫
Tinj

Γ̃
(
ωinjt + θ

)
iinj(t) dt

=
〈
Γ̃(x + θ) iinj,0(x)

〉
2π

=
1
2

[
Iinj,0Γ̃0

2
+

∞∑
n=1

��Iinj,nΓ̃n
�� cos

(
nθ + ∠Γ̃n − ∠Iinj,n

) ]
.

(4.28)
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Notice that this function is periodic with a period of 2π. Since ∆ω = Ω(θ) for
an injection-locked oscillator, Ω(θ) dictates the relationship between the frequency
deviation ∆ω and the locked oscillator’s phase θ. Therefore, we will call Ω(θ)
the lock characteristic, which was first introduced in Section 1.2. As we will see,
the lock characteristic captures practically all of the essential information about an
oscillator’s injection locking and pulling behavior.

By definition, the lock range is equal to themaximum frequency deviation achievable
under lock:

ω±L B max/min
θ

∆ω

s.t.
dθ
dt
= 0.

(4.29)

Therefore, the lock range can be calculated by extremizing the lock characteristic:

ω±L = max/min
θ

Ω(θ). (4.30)

It should be apparent at this point that the lock range is only defined for an
“oscillator-injection pair”, as varying either fundamentally alters the lock char-
acteristic. On a final note, observe that if θ = θ∗ is an optimal solution to the above
optimization problem (upper or lower), then basic differential calculus dictates
Ω′(θ∗) =

〈
Γ̃′(x + θ∗) iinj,0(x)

〉
2π = 0, assuming differentiability. In other words, at

the edge of the lock range, the derivative of the ISF and the injection current must
be orthogonal to one another (in the L2 sense, over the appropriate period).

Sinusoidal Lock Range: Of particular importance and interest is the case of a
sinusoidal injection current

iinj(t) = Iinj cos(ωinjt),

due to its mathematical simplicity and the bandpass nature of many electronic
systems and devices. It is straightforward to see that the lock characteristic for a
sinusoidal injection is given by

∆ω =
1
2

Iinj
��Γ̃1

�� cos
(
θ + ∠Γ̃1

)
, (4.31)

and so the lock range is equal to [72]

ωL =
1
2

Iinj
��Γ̃1

�� . (4.32)
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4.4 Example: The Bose Relaxation Oscillator
In this section, we will derive a closed-form expression for the ISF of a comparator-
or Schmitt trigger-based relaxation oscillator, also known as a Bose oscillator. The
schematic of this oscillator is shown in Figure 4.5. The simple exponential-discharge
dynamicwhich governs the operation of this oscillatormakes it a particularly suitable
candidate for demonstrating the concepts discussed in this chapter. The key insight

Figure 4.5: Schematic of the comparator-based relaxation oscillator.

here is that the time shift induced by a small injection of charge is equal to the amount
of time it would take the original waveform to travel to the perturbed point. This is
because the oscillator simply continues to charge or discharge from the perturbed
point; the injection cannot “knock” the oscillator off of its limit cycle.

Assume the op amp’s positive and negative supplies are at VDD > 0 and −VSS < 0,
respectively. Further assume an equal resistive divider straddling the non-inverting
input (R1 = R2), and define the time constant τ = RC. We allow for the general case
of VDD , VSS which results in asymmetric charge/discharge times. The capacitor
charges and discharges between

q+max =
CVDD

2
and q−max = −

CVSS
2

.

The free-running oscillation period is T0 = TC + TD, where TC and TD are the
charge/discharge times respectively. It is easy to see that
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TC = τ · ln
(

q−max
q+max

+ 2
)

TD = τ · ln
(

q+max
q−max

+ 2
)
.

Thus,

T0 = τ · ln
[
2
(

q−max
q+max

+
q+max
q−max

)
+ 5

]
. (4.33)

Figure 4.6: Time shift ∆TD induced by an injection into a Bose oscillator while it is
discharging.

Let us analyze the discharge scenario. Say some amount of negative charge −qinj is
injected onto the capacitor when the oscillator is some fraction 0 ≤ fD ≤ 1 of the
way through the discharge process (see Figure 4.6). The injection will speed up the
discharge by ∆TD, which obeys

(q+max + 2q−max) exp
(
− fDTD

τ

)
exp

(
−∆TD

τ

)
= (q+max + 2q−max) exp

(
− fDTD

τ

)
− qinj.

But since q+max + 2q−max = q−max exp(TDτ), we can rewrite this as

q−max exp
[
(1 − fD)TD

τ

]
exp

(
−∆TD

τ

)
= q−max exp

[
(1 − fD)TD

τ

]
− qinj.

Solving for ∆TD, we get

∆TD = −τ · ln
(
1 −

qinj

q−max
exp

[
( fD − 1)TD

τ

] )
. (4.34)
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The linear phase shift induced with respect to only the discharge process is

∆φD ≡
∆TD

TD
= − τ

TD
· ln

(
1 −

qinj

q−max
exp

[
( fD − 1)TD

τ

] )
. (4.35)

Therefore, the discharge ISF, in units of fraction of the discharge period, can be
calculated by differentiating the phase shift with respect to the injected charge:

PD( fD) ≡
∂∆φD

∂(−qinj)

����
qinj=0

= − 1
q−max

·

(
eTD/τ

) fD−1

TD/τ
= −

(
q+max
q−max

+ 2
) fD−1

q−max ln
(

q+max
q−max

+ 2
) , (4.36)

where we have also given an equivalent form solely in terms of the charge swings.
Similarly, for the charging scenario, it is analogous to show that

PC( fC) ≡
∂∆φC

∂qinj

����
qinj=0

=
1

q+max
·

(
eTC/τ

) fC−1

TC/τ
=

(
q−max
q+max

+ 2
) fC−1

q+max ln
(

q−max
q+max

+ 2
) . (4.37)

Notice the exponential dependence of the ISF upon the phase ( fD and fC).

Symmetric Charge and Discharge
In the case where q+max = q−max = qmax and so TC = TD = τ ln 3, we get T0 = 2τ ln 3.
Furthermore, we can combine the charging and discharging ISFs into a single ISF.
Denoting f ∈ [0, 1] again as the fraction of the charge/discharge period,

Γ̃C/D( f ) = πPC/D( f ) = ±π
3 f−1

qmax ln 3
. (4.38)

Let us assume the reference for our oscillation charge waveform q0(ϕ) = Cv0(ϕ)
starts at −qmax (the beginning of the charging event) when ϕ = 0. Then

q0(ϕ ≡ ω0t)
qmax

=


2 − 3e−t/τ = 3

(
2
3
− 3−ϕ/π

)
, 0 ≤ ϕ ≤ π

−2 + 3e−(t − T0/2)/τ = −3
(
2
3
− 3−(ϕ−π)/π

)
, π ≤ ϕ ≤ 2π

(4.39)

where we made use of the fact that T0 = 2τ ln 3. Knowing that f = ϕ/π during
charging and f = (ϕ− π)/π during discharging, the ISF can therefore be written as

Γ̃(ϕ) =


π · 3ϕ/π

3 ln 3 qmax
, 0 ≤ ϕ < π

−π · 3
(ϕ−π)/π

3 ln 3 qmax
, π < ϕ ≤ 2π.

(4.40)
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Figure 4.7: One period of the free-running oscillation voltage of an ideal, symmetric
1 GHz Bose oscillator with VDD = VSS = 1 V.

Note that this oscillator actually has two states: one of them is the voltage across
the capacitor C, while the other is represented by the hysteresis within the op
amp. However, the latter is a binary state, which toggles only when the oscillator
transitions between the charging and discharging phases. Therefore, only the first
state is changing at all but two points in a cycle. We thus refer to this oscillator as a
“quasi-single-state” oscillator, and the ISF can also be very simply computed from
the waveform directly using the orthogonal state-space calculation of Eq. (4.6):

Γ̃(ϕ) = 1
C · v′0(ϕ)

=
1

q′0(ϕ)
. (4.41)

One can easily verify that taking the derivative of q0(ϕ) from Eq. (4.39) and substi-
tuting the result into Eq. (4.41) yields Eq. (4.40).

Figure 4.7 shows the free-running oscillation voltage of a symmetric 1 GHz Bose
oscillator implemented with an ideal comparator. Note that C = 9.1 pF. Figure 4.8
compares the simulated ISF against the closed-form formula of Eq. (4.40) and by
numerically differentiating the waveform in Figure 4.7 in accordance with (4.41).
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Figure 4.8: The impulse sensitivity function of the ideal Bose oscillator (whose
oscillation voltage is shown in Figure 4.7) obtained several different ways.

Notice the near identical match between the different approaches. The discrepancy
in the simulated ISF near the transition point is due to the fact that actual injections of
charge cannot be infinitesimally small in simulation, even though the ISF is defined
as a derivative evaluated at qinj = 0. For our simulation, we injected positive amounts
of charge. Thus, near the transition point from charging to discharging, there are a
few simulation points for which the injection pushes the capacitor voltage beyond
the positive supply rail, introducing a simulation “error” which causes deviations
from the true ISF.

The Sinusoidal Lock Range of the Bose Oscillator
The magnitude of the fundamental component of the ISF is��Γ̃1

�� = 1
π

����∫ 2π

0
Γ̃(x)e− j xdx

���� = 8π
3 ln 3

√
π2 + (ln 3)2

· 1
qmax

. (4.42)

For a general Bose oscillator with a peak-to-peak voltage swing of Vmax across a
timing capacitor C, the charge amplitude qmax is simply half of the peak-to-peak
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charge swing: qmax = CVmax/2. Thus,��Γ̃1
�� = 16π

3 ln 3
√
π2 + (ln 3)2

· 1
CVmax

≈ 4.582
CVmax

. (4.43)

Therefore, for a sinusoidal injection current, the linear lock range is given by

fL =
1

4π
Iinj

��Γ̃1
�� = 4

3 ln 3
√
π2 + (ln 3)2

Iinj

CVmax
≈ 0.3647

Iinj

CVmax
. (4.44)

4.5 Linearity Case Study: Injecting a DC Current into an Oscillator
What happens if the current injected into the oscillator is constant in time: iinj(t) =
IDC? In steady state, the pulling equation Eq. (4.20) predicts a constant shift in the
oscillation frequency given by

∆ω =
1

Tinj

∫
Tinj

Γ̃
(
ωinjt + θ

)
IDC dt

= Γ̃DC · IDC,

(4.45)

where Γ̃DC = Γ̃0/2 is the average value, or DC component, of the ISF. Thus,
according to our model, a constant injection of current induces a frequency shift
proportional to the current level. Let us examine if this is true in reality.

Figure 4.9a shows the simulated oscillation voltage for a 17-stage ring oscillator
where a DC current of ±5 mA is injected into one of the stages. In steady state,
we observe that the oscillator indeed oscillates at a constant frequency. Figure 4.9b
shows a plot of the oscillation frequency as a function of the injection current. As we
can see, the line generated by the ISFmodel does not accurately predict the oscillation
frequency. This is because the injection of DC current also introduces a significant
offset in the output voltage (see Figure 4.9a), and so the amount of excess charge
introduced by the injection is appreciable compared to the free-running maximum
charge swing. However, since the ISF model is equivalent to a linearization of this
behavior, notice that the line ∆ω = Γ̃DC · IDC serves as a tangent line to the simulated
data at the point IDC = 0.
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(a) Free-running oscillation voltage (blue dashed curve), and the oscillation voltages
with IDC = 5 mA (green curve) and IDC = −5 mA (red curve).

(b) Oscillation frequency fosc for −5 mA ≤ IDC ≤ 5 mA.

Figure 4.9: Exploring the effect of injecting a DC current into one of the stages of
a 1 GHz 17-stage ring oscillator.
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4.6 Simulation Results
In this section, we will simulate the lock characteristics for a collection of canonical
ring and relaxation oscillators6 injected with sinusoidal currents7 of various ampli-
tudes and compare them against the theoretical lock characteristics obtained from
the ISF. All the oscillators free-run at roughly f0 = 1 GHz. Because the injection is
sinusoidal, only the fundamental component of the ISF, Γ̃1, is relevant. To decide
what range of injection amplitudes to use, we calculated the oscillation current Imax

defined in Section 4.2 and chose values of Iinj that ranged from being much smaller
than Imax to being comparable to Imax. This allows us to observe how the predictive
power of our model begins to falter as the assumption of linearity fails. Table 4.2
lists the magnitude of the ISF’s fundamental component

��Γ̃1
�� and the oscillation

current Imax for each oscillator.

Table 4.2:
��Γ̃1

�� and Imax of the Simulated Ring and Relaxation Oscillators

Oscillator
��Γ̃1

�� Imax

3-Stage Ring 7.84 × 1012 rad/C 0.54 mA

17-Stage Ring 2.24 × 1011 rad/C 0.72 mA

6-Stage Differential Ring 6.51 × 1011 rad/C 3.0 mA

Ideal Bose 5.05 × 1011 rad/C 29 mA

Astable Multivibrator 2.02 × 1013 rad/C 1.2 mA

Because of the periodicity of the lock characteristic, there are at least two solutions
for the phase θ at each injection frequency. However, as we will show in Section 7.2,
only the solution where the lock characteristic has a negative slope is stable. This
will be reflected in our figures by plotting the stable and unstable parts of the lock
characteristic using solid and dashed lines, respectively. Note that the simulated
lock characteristic was obtained through repeated transient simulations: the lock
range was determined by inspection (to a 1 MHz accuracy), and then the injection
frequencywas swept over the lock range and θ was computed for each sweep point. It
should be apparent from the setup of our analysis (see Figure 1.3) that θ is calculated
by comparing the phase of the fundamental component of the oscillation voltage to
the phase of the injection current; this will be explained in more detail in Section 6.8.

6LC oscillators will be considered in much more detail in Chapter 5.
7Non-sinusoidal injection currents will be explored in Chapter 8.
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3-Stage Single-Ended Ring Oscillator
The schematic, free-running oscillation voltage, and ISF of this oscillator are shown
in Figure 4.10.

(a) Oscillator schematic. Note that each stage is loaded with an additional external
capacitance C.

(b) Free-running oscillation voltage. (c) Impulse sensitivity function.

Figure 4.10: 3-stage single-ended inverter-chain ring oscillator.

The sinusoidal lock characteristics for several different injection strengths are shown
in Figure 4.11. Notice how the upper edge of the lock characteristic deviates from
the ISF prediction as the injection amplitude grows.
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(a) Iinj = 0.25 mA

(b) Iinj = 0.5 mA

(c) Iinj = 0.75 mA

Figure 4.11: Lock characteristic of the 3-stage ring oscillator for sinusoidal injections
of varying amplitude Iinj.
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17-Stage Single-Ended Ring Oscillator
The schematic, free-running oscillation voltage, and ISF of this oscillator are shown
in Figure 4.12.

(a) Oscillator schematic.

(b) Free-running oscillation voltage.

(c) Impulse sensitivity function.

Figure 4.12: 17-stage single-ended inverter-chain ring oscillator.

The sinusoidal lock characteristics for several different injection strengths are shown
in Figure 4.13. Unlike the 3-stage ring oscillator, it is the lower edge of the
lock characteristic which deviates from theory as Iinj increases. Interestingly, the
assumption of linearity is still reasonable when Iinj > Imax for this oscillator.
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(a) Iinj = 1.5 mA

(b) Iinj = 3 mA

(c) Iinj = 4 mA

Figure 4.13: Lock characteristic of the 17-stage ring oscillator for sinusoidal injec-
tions of varying amplitude Iinj.
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6-Stage Differential Ring Oscillator
The schematic, free-running oscillation voltage, and ISF of this oscillator are shown
in Figure 4.14.

(a) Oscillator schematic. A single resistively biased current mirror was used to set
the same tail current Itail for all the stages.

(b) Free-running oscillation voltage. (c) Impulse sensitivity function.

Figure 4.14: 6-stage differential ring oscillator.

The sinusoidal lock characteristics for several different injection strengths are shown
in Figure 4.15.
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(a) Iinj = 2.5 mA

(b) Iinj = 4 mA

(c) Iinj = 5 mA

Figure 4.15: Lock characteristic of the 6-stage ring oscillator for sinusoidal injections
of varying amplitude Iinj.
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Ideal, Symmetric Bose Relaxation Oscillator
This is the same oscillator which was analyzed in Section 4.4 and whose schematic,
free-running oscillation voltage, and ISF are shown in Figures 4.5, 4.7, and 4.8 re-
spectively. The sinusoidal lock characteristics for several different injection strengths
are shown in Figure 4.16.

Note that the only way the charge on the capacitor C can be considered to be in
“excess” of free-running is if vosc has exceeded what is allowed by the supply rails
(VDD/2 and −VSS/2), in which case the dissipation of this excess charge will not
be governed by the simplified analysis conducted in Section 4.2. In other words,
for this oscillator, the oscillation current Imax carries less physical significance with
respect to the linearity of the current-to-phase relationship.

(a) Iinj = 2.5 mA
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(b) Iinj = 7.5 mA

(c) Iinj = 12 mA

Figure 4.16: Lock characteristic of the ideal Bose oscillator for sinusoidal injections
of varying amplitude Iinj.
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NMOS Differential Astable Multivibrator
The schematic, free-running oscillation voltage, and ISF of this oscillator are shown
in Figure 4.17. Note that this oscillator is also a type of relaxation oscillator.

(a) Oscillator schematic.

(b) Free-running oscillation voltage. (c) Impulse sensitivity function.

Figure 4.17: NMOS differential astable multivibrator.

The sinusoidal lock characteristics for several different injection strengths are shown
in Figure 4.18. This oscillator is known to be particularly sensitive—small changes
in its component values or in the bias point of the transistor can drastically alter
the oscillation frequency or shape of the oscillation waveform. Consequently, the
threshold for linearity on Iinj is much lower than what is dictated by Imax.
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(a) Iinj = 0.1 mA

(b) Iinj = 0.175 mA

(c) Iinj = 0.25 mA

Figure 4.18: Lock characteristic of the astable multivibrator oscillator for sinusoidal
injections of varying amplitude Iinj.
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4.7 Experimental Results
We conclude this chapter by presenting lock range measurements on integrated
versions of the oscillators considered in the previous section, fabricated in a 65-nm
bulk CMOS process. All but one of the oscillators were designed to oscillate at
around 1 GHz. The measurements are compared against the theoretical predictions
made by our model, where the ISFs were obtained through simulation of the post-
layout extracted oscillators.

For each oscillator, we measured the lock range at various sinusoidal injection
amplitudes. The predicted lock range is therefore given in Eq. (4.32) to be equal to

ω±L = ±
1
2

Iinj
��Γ̃1

�� .
To account for possible measurement error, each oscillator was measured three
separate times. Error bars depicting the entire range of measurements for each data
point are shown in black. (The error bars for most data points are not noticeable.)
Note that the injection amplitude Iinj is shown both on an absolute scale (top axis)
and as an injection strength normalized to the oscillation current Imax (bottom axis).
Likewise, the lock range fL is also shown both on an absolute scale (right axis) and
as a fractional lock range normalized to the free-running oscillation frequency f0
(left axis). The simulated ISF for each oscillator will also be shown for reference.

The measurement setup, including the implementation of the sinusoidal injection
current source, is detailed in Appendix A. Note that experimental results for LC
oscillators will be presented separately in Chapter 5. A die micrograph of the
fabricated chip is shown in Figure 4.19, where the locations of the oscillators
measured in this section are specified.

Ring Oscillators
The first set of experiments was performed on 3-stage and 17-stage inverter-chain
single-ended ring oscillators, as well as a 6-stage differential ring oscillator. In
order to tune the oscillation frequency to be around 1 GHz, identically sized MIM
capacitors were used to load each stage of the ring. Table 4.3 summarizes the
design parameters of the ring oscillators. All listed parameters were obtained
from extracted simulation or from the design kit directly, with the exception of the
oscillation frequency which was measured. The current consumption is the core
current drawn by the oscillator alone, neglecting bias circuitry.
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Figure 4.19: Die photo of the measured oscillators. Pads for the supply (‘VDD’) of
each oscillator, ground (‘GND’), and the injections (‘INJP’,‘INJN’) are labeled.

Table 4.3: Characteristics of the Measured Ring Oscillators

Parameter 3-Stage 17-Stage 6-Stage
Differential

Schematic Figure 4.10a Figure 4.12a Figure 4.14a

Load Capacitance C
(per stage) [fF] 135 111 350

Current Consumed [mA] 1.1 4.6 25

Supply VDD [V] 1 1 1

Peak-to-Peak Voltage
Swing Vmax [V]

0.88 1.0 1.0

ISF Fundamental
Magnitude

��Γ̃1
�� [rad/pC] 8.83 0.346 1.88

Measured Oscillation
Frequency f0 [GHz] 1.085 1.092 1.316

Figures 4.20, 4.21, and 4.22 present the measurement results. Decent agreement is
observed between theory and experiment. The deviation between the measured and
predicted lock ranges at higher injection amplitudes is reminiscent of the nonlinear
behavior seen in the simulation results of Figures 4.11, 4.13, and 4.15. It is notewor-
thy that our theoretical predictions seem to fare well even when Iinj is comparable
to or greater than Imax, although this may simply be indicative of the fact that Imax

is not a terribly robust metric for determining when linearity fails.
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(a) Simulated ISF.

(b) Measured lock range.

Figure 4.20: Measurement results for the 3-stage single-ended ring oscillator.
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(a) Simulated ISF.

(b) Measured lock range.

Figure 4.21: Measurement results for the 17-stage single-ended ring oscillator.
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(a) Simulated ISF.

(b) Measured lock range.

Figure 4.22: Measurement results for the 6-stage differential ring oscillator.
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Relaxation Oscillators
The next two experiments were performed on a comparator-based Bose oscillator
and a differential NMOS astable multivibrator.

The Bose oscillator was designed to oscillate at around 10MHz, as the bandwidth of
the comparator8 used did not exceed 100 MHz. The negative rail of the comparator
was biased to ground. The resistive divider of the Bose oscillator (see Figure 4.5)
featured resistances of R1 = 5 kΩ and R2 = 50 kΩ to enhance the voltage swing
at the output. Because of the low operation frequency, a Rigol Function Genera-
tor (DG4202) and Rigol Digital Oscilloscope (DS4032) were used to provide the
injection signal and observe the oscillation voltage directly.

Table 4.4 summarizes the design parameters of the two relaxation oscillators. Again,
the only listed parameter which was measured is the oscillation frequency. Note
that using Eq. (4.43) to calculate

��Γ̃1
�� for the Bose oscillator gives 8.56 rad/pC.

Table 4.4: Characteristics of the Measured Relaxation Oscillators

Parameter Bose Astable
Multivibrator

Schematic Figure 4.5 Figure 4.17a

Timing Capacitor C [fF] 820 597

Charging Resistor R [kΩ] 25 1

Current Consumed [mA] 0.47 6.5

Supply VDD [V] 1.2 2

Peak-to-Peak Voltage Swing Vmax [V] 0.653 2.17
ISF Fundamental Magnitude��Γ̃1

�� [rad/pC] 9.09 4.23

(Average) Measured
Oscillation Frequency f0 [MHz] 11.85 873.8

Figures 4.23 and 4.24 present the measurement results. Reasonable agreement is
observed between theory and experiment. It is noteworthy that the astable multivi-
brator appeared to be extremely noisy—its free-running spectrum was usually very
visibly spread out over several megahertz. It also exhibited the most short-term drift,
often necessitating repeated monitoring of the free-running oscillation frequency in
between measurements of the lock range.

8The comparator was designed by Matan Gal-Katziri.
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(a) Simulated oscillation voltage. (b) Simulated ISF.

(c) Measured lock range.

Figure 4.23: Measurement results for the Bose oscillator.
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(a) Simulated ISF.

(b) Measured lock range.

Figure 4.24: Measurement results for the differential astable multivibrator.
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4.8 The Sinusoidal Injection Compliance
Based on the preceding measurement results, it is apparent that having a uniform
metric which quantifies how “easy” it is to lock a particular oscillator would be
useful. To that end, we define a Sinusoidal Injection Compliance as the fractional,
two-sided, sinusoidal lock range normalized to the injection strength:9

η B
2ωL/ω0
Iinj/Imax

. (4.46)

In the linear regime, this quantity is independent of the size of the injection and can
be simplified to

η = qmax,0
��Γ̃1

�� , (4.47)

where qmax,0 is the maximum (free-running) charge swing across the injection termi-
nals. (Recall that this quantity is defined as half of the peak-to-peak charge swing.)
Calculated from Eq. (4.47), Table 4.5 lists the compliances of all the schematic-level
oscillators simulated in Section 4.6 and the laid-out, extracted oscillators measured
in Section 4.7. Two things are worth noting: relaxation oscillators tend to boast a
muchwider fractional lock range than ring oscillators for the same injection strength,
and the compliance of the ring oscillator decreases as the number of stages increases.

Table 4.5: Compliances of Various Ring and Relaxation Oscillators

Topology Version Sinusoidal Injection
Compliance η

3-Stage Ring
Section 4.6 67.8%

Section 4.7 52.6%

6-Stage Ring
Section 4.6 30.7%

Section 4.7 33.6%

17-Stage Ring
Section 4.6 2.6%

Section 4.7 1.9%

Ideal Bose Oscillator Sections 4.4 and 4.6 226.9%

Bose Oscillator Section 4.7 243.3%

Astable Multivibrator
Section 4.6 396.9%

Section 4.7 79.2%

9For LC oscillators, a slightly more general definition involving the quality factor will be
introduced in the next chapter.
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C h a p t e r 5

LC OSCILLATORS: AMPLITUDE DEPENDENCE

5.1 Introduction
The primary limitation of themodel developed inChapter 4 is its inability to dealwith
injections that are large enough to cause qualitative deviations from the oscillator’s
free-running behavior. This was due to our assumption that the injection-to-phase
relationship is a linear one. In this chapter, we overcome this shortcoming for the
specific—but widely utilized—case of the LC oscillator by making several crucial
observations about the dependence of the injection-to-phase relationship upon the
oscillation amplitude. Through this insight, we show that a simple modification
to the framework from Chapter 4 enables its usage for accurately modeling the
nonlinear behavior of the oscillator under large injection currents.

On a more fundamental level, this analysis owes its success to the fact that an
LC oscillator has only two states: the capacitor voltage and the inductor current.
Therefore, an equivalent two-state representation of the LC oscillator given by the
phase and the amplitude—which has a well-defined correspondence with the total
energy stored in the LC tank—also forms a mathematically complete description of
the state space.

5.2 Inverse Dependence on Amplitude

Figure 5.1: An example of how the injection could alter the oscillation amplitude.
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Other than influencing the phase, the external injection is also capable of changing
the size and shape of the oscillation waveform. These so-called orbital deviations
were encapsulated in the term ξ(t) from Eq. (1.1) and Figure 1.3. Due to the nar-
rowband nature of the LC tank, however, we will assume that the shape of the output
voltage remains fairly sinusoidal—only its size, or amplitude, can be modulated by
the injection on average. A hypothetical example is shown in Figure 5.1.

Next, recall from our calculations in Chapter 3 that the phase shift induced by
injecting a small, discrete amount of charge into an LC tank is inversely proportional
to the maximum charge swing qmax:

∆ϕ ∝
qinj

qmax
(5.1)

for qinj � qmax. This is demonstrated in Figure 5.2, where the same amount of
charge qinj is injected at the same time τ into two identical LC tanks containing
different amounts of energy. Because qmax,1 > qmax,2, we see that ∆ϕ1 < ∆ϕ2.

We therefore conjecture that the ISF of an LC oscillator is inversely proportional to
the oscillation amplitude. We can prove this by returning to the orthogonal state-
space description of the ISF given by Eq. (4.6). Since the two state variables are the
capacitor voltage v(ϕ) and the inductor current i(ϕ), the ISF is given by

Γ̃(ϕ) = v′(ϕ)
Cv′(ϕ)2 + Li′(ϕ)2

. (5.2)

Since both the capacitor voltage and the inductor current scale with the oscillation
amplitude1, increasing the amplitude by a factor of A > 0 decreases the ISF by a
factor of 1/A.

Consequently, we model the effective ISF of the LC oscillator with the following
inverse dependence on the amplitude:

Γ̃eff =
Γ̃

1 + ξ
, (5.3)

where ξ is equal to the fractional change in the oscillation amplitude. With this idea
in mind, our next step will be to relate ξ to the injection current.

1In case this is not obvious, note that the oscillation amplitude is proportional to the square root
of the total amount of energy stored in the LC tank, which periodically alternates between being
stored entirely in the capacitor and entirely in the inductor. Therefore, E = CV0

2/2 = LI0
2/2, where

V0 and I0 are the amplitudes of the capacitor voltage and the inductor current, respectively.
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(a) LC oscillator perturbed by an injection of charge.

(b) Note that the time of injection τ is the same in both examples.

Figure 5.2: The phase shift ∆ϕ induced by the injection of charge qinj depends
inversely on the maximum charge swing qmax across the capacitor.

5.3 Modeling the Amplitude: The Amplitude Perturbation Function (APF)
To calculate the orbital deviation ξ(t) in response to the injection current iinj(t),
we will once again appeal to a linear, periodically time-varying (LPTV) model.
However, unlike the permanent nature of phase perturbations, amplitude distur-
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bances must decay to 0 eventually in any stable oscillator. We therefore write the
time-varying impulse response for ξ(t) as

hξ(t, τ) = D
(
t − τ, ωinjτ + θ

)
· u(t − τ), (5.4)

where D(∆t, ϕ) is a decay functionwhich physically represents the fractional change
in the oscillation amplitude due to a unit impulse applied at a phase ϕ after time
∆t has passed since the application of the impulse. For oscillators which possess a
stable limit cycle, D(∆t, ϕ) → 0 as ∆t →∞ for all ϕ.

(a) Decay of the excess amplitude of the charge waveform after an injection.

(b) Decay of the excess energy stored in the oscillator after an injection.

Figure 5.3: The dynamic by which the oscillator dissipates excess energy is captured
by the decay function D(· , ·).

How does one compute the orbital deviation ξ(t) of an actual LC oscillator for
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the purposes of simulating the decay function? First and foremost, note that the
voltage (and current) waveforms of interest [e.g., the v(ϕ) and i(ϕ) referenced in
Eq. (5.2)] have a zero DC value; they only correspond to variations about the bias
voltage (or current).2 This is because the peak values of the voltage and current
must correspond to the total amount of energy in the tank being exchanged back
and forth between the capacitor and the inductor. Therefore, comparing only the
voltage (or the current) waveform between the perturbed and free-running cases
is problematic, as one would run into the numerical issue of dealing with zero-
crossings. Instead, both the voltage and the current should be used to calculate the
instantaneous oscillation amplitude:

[1 + ξ(t)] · Vosc =

√
2E(t)

C
=

√
v(t)2 + L

C
i(t)2. (5.5)

Consequently, for LC oscillators, the orbital deviation ξ also represents the fractional
change in the square root of the energy E stored in the oscillator’s tank. If this tank
consists of a network containing multiple capacitors and inductors, then

E =
1
2

∑
k

Ckvk
2 +

1
2

∑
k

Lkik
2 +

∑
p<q

Mpqipiq, (5.6)

where Mpq represents themutual inductance between inductors Lp and Lq (assuming
ip and iq both leave/enter the dotted terminal). It is worth noting, however, that at
RF and mm-wave frequencies, integrated inductors are typically modeled using
scattering parameters obtained from electromagnetic simulation, making the energy
stored in the tank considerably more cumbersome to calculate. Fortunately, lumped-
element models for on-chip inductors [97]–[99] usually provide sufficient accuracy
for our purposes.

Once the energy has been ascertained, we can calculate the orbital deviation by

ξ =

√
E
E0
− 1, (5.7)

where E0 is the amount of tank energy stored by the free-running oscillator in steady
state. The concept of the decay function is shown in Figure 5.3 from both the
perspective of the oscillation amplitude and the stored energy.

2This is obviously a moot point for the voltage in differential LC oscillators.
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Given the impulse response, we can use a superposition integral to calculate the
orbital deviation:

ξ(t) =
∫ ∞

−∞
iinj(τ) · hξ(t, τ) dτ

=

∫ t

−∞
iinj(τ)D

(
t − τ, ωinjτ + θ

)
dτ

=

∫ ∞

0
iinj(t − τ)D

(
τ, ωinj(t − τ) + θ

)
dτ.

(5.8)

The change of variables in the last step allows us to see that ξ(t) is itself periodic
with frequency ωinj. Thus, we once again appeal to the theory of time-averaging
[96] and replace ξ with its time-average over an injection period:

=⇒ ξ =
1

Tinj

∫
Tinj

∫ ∞

0
iinj(t − τ)D

(
τ, ωinj(t − τ) + θ

)
dτdt

=
1

Tinj

∫ ∞

0

∫
Tinj

iinj(t − τ)D
(
τ, ωinj(t − τ) + θ

)
dtdτ.

(5.9)

Due to the periodicity of the integrand with respect to t, the inner integral is
invariant to the specific period being integrated over, so long as it has a length of
Tinj. Therefore, this integral is also independent of τ. Hence,

ξ =
1

Tinj

∫ ∞

0

∫
Tinj

iinj(t)D
(
τ, ωinjt + θ

)
dtdτ

=
1

Tinj

∫
Tinj

iinj(t)
∫ ∞

0
D

(
τ, ωinjt + θ

)
dτdt.

(5.10)

To conceptually decouple the instantaneous change in the amplitude induced by the
impulse from the subsequent decay dynamic, we decompose the decay function as

D(τ, ϕ) ≡ Λ̃(ϕ) · d(τ, ϕ), (5.11)

where we normalize
d(0, ϕ) ≡ 1 ∀ϕ. (5.12)

Let us refer to d(τ, ϕ) as the oscillator’s characteristic decay function. Like the
decay function D(τ, ϕ), it also represents the fractional change in the oscillation
amplitude due to a unit impulse applied at a phase ϕ after time τ has elapsed,
but normalized to the initial amplitude change immediately after application of the
impulse. It is then easy to see that Λ̃(ϕ) is the Amplitude ISF first introduced by
Hajimiri andLee [88], [100] (up to a normalization factor of qmax—i.e.,Λ = qmax·Λ̃).
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Figure 5.4: Relating the time-varying impulse response for orbital deviations to the
amplitude ISF and the APF.

We will now define the Amplitude Perturbation Function or APF ∆(ϕ) by

∆(ϕ) B
∫ ∞

0
D(τ, ϕ) dτ = Λ̃(ϕ) ·

∫ ∞

0
d(τ, ϕ) dτ. (5.13)

The Amplitude Perturbation Function ∆ has units of [1/Ampere]; multiplying it
by a current yields a unit-less quantity. In practice, one need only integrate up to
some observation time Tobs, beyond which the decay functions D or d are negligibly
small. Notice that the APF is equal to the area under the orbital deviation impulse
response hξ(t, τ), as shown in Figure 5.4.

With this definition, the average orbital deviation becomes

ξ =
1

Tinj

∫
Tinj

∆
(
ωinjt + θ

)
iinj(t) dt . (5.14)

It should be apparent that the oscillation amplitude of an injection-locked LC oscil-
lator is therefore given by

Vosc = (1 + ξ)Vosc,0, (5.15)

where Vosc,0 is the free-running oscillation amplitude.

Note that the APF is a measure of both how much the oscillation amplitude changes
and how long it takes for the perturbation to decay. More importantly, its spectral
components give us a sense for how malleable the oscillator’s amplitude is to a
current injection at that harmonic. A block diagram summarizing the process by
which the APF filters the injection to create amplitude modulation is shown in
Figure 5.5.
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Figure 5.5: The APF captures the perturbation in the oscillation amplitude caused
by the injection—for which the ISF of an LC oscillator has an inverse dependence.

5.4 A Modified Differential Equation for the Phase
We start with the original pulling equation for the phase θ(t), which was given in
Eq. (4.20) as

dθ
dt
= ω0 − ωinj +

1
Tinj

∫
Tinj

Γ̃eff
(
ωinjt + θ

)
iinj(t) dt

= ω0 − ωinj +
1

Tinj

∫
Tinj

Γ̃
(
ωinjt + θ

)
1 + ξ

iinj(t) dt .
(5.16)

Notice that we used the effective ISF for LC oscillators from Eq. (5.3). In light of
our expression for the average orbital deviation, Eq. (5.14), we can rewrite this as:

dθ
dt
= ω0 − ωinj +

1
Tinj

∫
Tinj

Γ̃
(
ωinjt + θ

)
iinj(t) dt

1 +
1

Tinj

∫
Tinj

∆
(
ωinjt + θ

)
iinj(t) dt

. (5.17)

We can also express the APF in terms of its Fourier series expansion:

∆(x) = ∆0
2
+

∞∑
n=1
|∆n | cos(nx + ∠∆n) (5.18)

where
∆n =

1
π

∫
2π
∆(x)e− jnx dx. (5.19)

This allows us to rewrite Eq. (5.17) as

dθ
dt
= ω0 − ωinj +

〈
Γ̃(x + θ) iinj,0(x)

〉
2π

1 +
〈
∆(x + θ) iinj,0(x)

〉
2π

= ω0 − ωinj +

1
2

[
Iinj,0Γ̃0

2
+

∞∑
n=1

��Iinj,nΓ̃n
�� cos

(
nθ + ∠Γ̃n − ∠Iinj,n

) ]
1 +

1
2

[
Iinj,0∆0

2
+

∞∑
n=1

��Iinj,n∆n
�� cos

(
nθ + ∠∆n − ∠Iinj,n

) ] .
(5.20)
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In essence, this model can be viewed as a “quasi-nonlinear” approach, as it models
the nonlinear behavior within the injection-to-phase relationship by decomposing it
into separate quantities, each of which is assumed to have a linear dependence on
the injection current input.

Since the ISF and APF of an LC oscillator are usually fairly sinusoidal, it is often the
case that only the fundamental component of the injection is relevant. Therefore,
we present the simplified case of a sinusoidal injection current here. Assuming that
iinj(t) = Iinj cos(ωinjt), the pulling equation becomes

dθ
dt
= ω0 − ωinj +

1
2

Iinj
��Γ̃1

�� cos
(
θ + ∠Γ̃1

)
1 +

1
2

Iinj |∆1 | cos(θ + ∠∆1)
, (5.21)

which also results in the following lock characteristic:

Ω(θ) =

1
2

Iinj
��Γ̃1

�� cos
(
θ + ∠Γ̃1

)
1 +

1
2

Iinj |∆1 | cos(θ + ∠∆1)
. (5.22)

This lock characteristic can be optimized over θ to obtain the lock range:

ω±L =

1
2

Iinj
��Γ̃1

��
1
2

Iinj |∆1 | cos β ±

√
1 −

(
1
2

Iinj |∆1 | sin β
)2
, (5.23)

where β ≡ ∠Γ̃1−∠∆1. This lock range is generally asymmetric, meaningω+L , −ω−L .
In particular, the lower lock range is wider when |β| < π/2, whereas the upper lock
range is wider when π/2 < |β | < π. If, however, β = ±π/2, indicating that the ISF
and APF are in perfect quadrature with respect to one another, the upper and lower
lock ranges become symmetric:

ω±L = ±

1
2

Iinj
��Γ̃1

��√
1 −

(
1
2

Iinj |∆1 |
)2
. (5.24)

Another thing to observe is how the lock characteristic becomes unbounded when
Iinj |∆1 | ≥ 2, resulting in an infinite lock range! Physically, this is because the
fractional amplitude change ξ is able to dip below −1 for certain values of θ,
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corresponding to the nonphysical scenario of an oscillation amplitude which is zero
or negative. Consequently, it may be necessary in these situations to constrain the
range of phases θ to be a subset of [−π, π). Note that this downside of our model
only manifests for rather large injection strengths, and it is a property of other large-
injection models for LC oscillators as well.3 As we will see empirically from the
simulation results of the next section, restricting θ ∈ [−110°, 110°] for very large
injection amplitudes usually results in reliable estimates of the lock range.

5.5 Simulation Results
In this section, we present simulation results for two differential LC oscillators
and a bipolar Colpitts oscillator, all implemented in a bulk CMOS process. The
injection will be applied across the tank’s effective capacitance. For each oscillator,
we will show (1) the free-running oscillation voltage, inductor current, and tank
energy over a single period; (2) the ISF, Amplitude ISF, APF, and characteristic
decay function; and (3) the theoretical and simulated lock characteristic for several
different sinusoidal injection amplitudes. The theoretical lock characteristic which
does not incorporate the APF is also shown for comparison. To further demonstrate
the validity of our model, a plot of the oscillation amplitude as a function of
the injection frequency is also shown. The theoretical oscillation amplitude was
calculated using Eq. (5.15). For each injection frequency, there are two solutions for
the phase θ and therefore also two possible oscillation amplitudes. As we will see,
the stable mode corresponds to the larger oscillation amplitude. Again, the unstable
portions of all theoretical curves are delineated with dashed lines.

CMOS Differential LC Oscillator
The schematic, free-running oscillation voltage, and free-running inductor current
of this oscillator are shown in Figure 5.6. The tank’s parameters are L = 6 nH and
C = 4.15 pF with a quality factor of Q = 15. The oscillation frequency is around
f0 = 1 GHz, and the oscillator is biased at Itail = 1 mA.

3For example, both Mirzaei’s Generalized Adler’s equation [21] and the model in Chapter 10
predict an infinite lock range when Iinj ≥ Iosc.
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(a) Oscillator schematic. Itail is implemented with a resistively biased current mirror.

(b) Free-running oscillation voltage. (c) Free-running inductor current.

Figure 5.6: Cross-coupled CMOS differential LC oscillator.

The free-running tank energy, sensitivity functions, and characteristic decay function
are shown in Figure 5.7. Note that the tank energy is not necessarily constant, as
the transistors do not merely present a negative linear resistance to the tank. The
characteristic decay function d(t, ϕ) quite closely follows the same exponential decay
over all phases ϕ. The associated time constant is roughly τ = 5ns, which is slightly
longer than that of a linear RLC tank with the same quality factor: 2Q/ω0 = 4.8 ns.
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(a) Free-running tank energy. (b) Impulse sensitivity function.

(c) Amplitude ISF. (d) Amplitude perturbation function.

(e) Characteristic decay function. Each curve corresponds to a different phase ϕ.

Figure 5.7: Other properties of the cross-coupled CMOS differential LC oscillator.
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The lock characteristic and the oscillation amplitude as a function of the injection
frequency for an injection amplitude of Iinj = 0.5 mA are shown in Figure 5.8.

(a) Sinusoidal lock characteristic.

(b) Oscillation amplitude vs. injection frequency under lock.

Figure 5.8: Predicted and simulated behavior of a sinusoidally injection-locked
CMOS differential LC oscillator with an injection amplitude of Iinj = 0.5 mA.

Figure 5.9 shows the same plots for Iinj = 0.75 mA. Again, good agreement is
observed between simulation and theory. The error incurred from neglecting the
APF and using the ISF alone to predict the lock characteristic is much more evident
for this injection amplitude.
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(a) Sinusoidal lock characteristic.

(b) Oscillation amplitude vs. injection frequency under lock.

Figure 5.9: Predicted and simulated behavior of a sinusoidally injection-locked
CMOS differential LC oscillator with an injection amplitude of Iinj = 0.75 mA.

Figure 5.10 shows the same plots for Iinj = 1 mA. Notice that the simulated lock
range is narrower (on both ends) than its theoretical prediction. This is because
the edges of the lock range correspond to the smallest oscillation amplitudes, and
the oscillator fails to stably oscillate at such small amplitudes. Unfortunately, our
model fails to capture this dynamic, but this issue is discussed to some extent in
Chapter 10.
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(a) Sinusoidal lock characteristic.

(b) Oscillation amplitude vs. injection frequency under lock.

Figure 5.10: Predicted and simulated behavior of a sinusoidally injection-locked
CMOS differential LC oscillator with an injection amplitude of Iinj = 1 mA.

Figure 5.11 shows the same plots for Iinj = 2 mA. Since Iinj |∆1 | = 3.2 > 2, the
range of phases θ portrayed in the lock characteristic is between −115° and 110°.
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(a) Sinusoidal lock characteristic.

(b) Oscillation amplitude vs. injection frequency under lock.

Figure 5.11: Predicted and simulated behavior of a sinusoidally injection-locked
CMOS differential LC oscillator with an injection amplitude of Iinj = 2 mA.

Notice the deviation between theory and simulation near the center of the oscillation
amplitude plot for larger injection strengths. This occurs since nonlinear amplitude
restoring effects, which are not captured by the APF, are more prominent at larger
oscillation amplitudes. Fortunately, as we can see, this deviation does not affect
the accuracy of the predicted lock characteristic, since the size of Γ̃eff becomes
increasingly less relevant for injection frequencies close to f0.
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NMOS-Only Differential LC Oscillator
A differential LC oscillator with only the NMOS cross-coupled pair has different
amplitude properties than one utilizing complementary pairs (PMOS and NMOS).
In particular, even though the former has half the voltage swing for the same bias
current in the current-limited regime, it features a maximum differential swing of
2VDD, which is twice that of the CMOS LC oscillator [89]. Here, we consider an
NMOS-only differential LC oscillator with the same tank parameters as the CMOS
oscillator of Figures 5.6 and 5.7, but biased at Itail = 2 mA to maintain the same
voltage swing. The schematic, free-running oscillation voltage, and free-running
inductor current are shown in Figure 5.12, while the free-running tank energy,
sensitivity functions, and characteristic decay function are shown in Figure 5.13.

(a) Oscillator schematic. Itail is implemented with a resistively biased current mirror.

(b) Free-running oscillation voltage. (c) Free-running inductor current.

Figure 5.12: Cross-coupled NMOS-only differential LC oscillator.
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Notice how the tank energy only iterates through a single cycle per oscillation period,
while the tank energy in the presence of complementary pairs oscillates at twice the
oscillation frequency. The characteristic decay is also slower with a time constant of
roughly τ = 7.2 ns. This leads to a larger APF compared to a CMOS LC oscillator
with the same voltage swing.

(a) Free-running tank energy. (b) Impulse sensitivity function.

(c) Amplitude ISF. (d) Amplitude perturbation function.

(e) Characteristic decay function. Each curve corresponds to a different phase ϕ.

Figure 5.13: Other properties of the NMOS-only differential LC oscillator.
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The lock characteristic and the oscillation amplitude as a function of the injection
frequency for an injection amplitude of Iinj = 0.5 mA are shown in Figure 5.14.

(a) Sinusoidal lock characteristic.

(b) Oscillation amplitude vs. injection frequency under lock.

Figure 5.14: Predicted and simulated behavior of a sinusoidally injection-locked
NMOS-only differential LC oscillator with an injection amplitude of Iinj = 0.5 mA.
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Figure 5.15 shows the same plots for Iinj = 0.75 mA. Because of the larger APF
compared to the CMOS oscillator, the overestimation of the lock range occurs for
lower injection strengths.

(a) Sinusoidal lock characteristic.

(b) Oscillation amplitude vs. injection frequency under lock.

Figure 5.15: Predicted and simulated behavior of a sinusoidally injection-locked
NMOS-only differential LC oscillator with an injection amplitude of Iinj = 0.75mA.
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Figures 5.16 and 5.17 show the same plots for Iinj = 1 mA and Iinj = 2 mA,
respectively. Because 2/|∆1 | = 0.81 mA, the range of values for the phase θ was
confined for both of these injection amplitudes.

(a) Sinusoidal lock characteristic.

(b) Oscillation amplitude vs. injection frequency under lock.

Figure 5.16: Predicted and simulated behavior of a sinusoidally injection-locked
NMOS-only differential LC oscillator with an injection amplitude of Iinj = 1 mA.
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(a) Sinusoidal lock characteristic.

(b) Oscillation amplitude vs. injection frequency under lock.

Figure 5.17: Predicted and simulated behavior of a sinusoidally injection-locked
NMOS-only differential LC oscillator with an injection amplitude of Iinj = 2 mA.

One may wonder how the lock ranges of the NMOS-only and the CMOS differential
LC oscillator compare for the same tank Q, free-running swing qmax, and injection
amplitude Iinj. There are two competing factors at play here. While the slower
decay and larger APF of the former translate into a bigger Γ̃eff (for certain θ values)
and correspondingly wider lock range, one must also be mindful of the limitation
imposed by the inability to oscillate at very small amplitudes. Since the latter only
becomes an issue for rather large injection strengths near Itail, we conclude that for
injections which are weak in comparison to the tail bias current, differential LC
oscillators with only the NMOS cross-coupled pair boast a wider lock range.
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Bipolar Colpitts Oscillator
The schematic, free-running oscillation voltage, and free-running inductor current
of this oscillator are shown in Figure 5.18. The tank’s parameters are L = 6 nH
and C = 8 pF with a quality factor of Q = 15. The oscillation frequency is around
f0 = 1 GHz, and the oscillator is biased at Ibias = 10 mA.

(a) Oscillator schematic. Vb is set with a resistive divider, and Ibias is implemented
using a resistively biased current mirror.

(b) Free-running oscillation voltage. (c) Free-running inductor current.

Figure 5.18: Common-base bipolar Colpitts oscillator.

The free-running tank energy, sensitivity functions, and characteristic decay function
are shown in Figure 5.19. Notice the rather unusual characteristic decay function:
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the energy does not necessarily decay monotonically with time, and the decay
dynamic can vary significantly based on when the injection was applied. While a
physical analysis of how these traits affects the oscillator’s behavior under injection
might be difficult to perform, it is readily captured by the APF.

(a) Free-running tank energy. (b) Impulse sensitivity function.

(c) Amplitude ISF. (d) Amplitude perturbation function.

(e) Characteristic decay function. Each curve corresponds to a different phase ϕ.

Figure 5.19: Other properties of the common-base bipolar Colpitts oscillator.
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The lock characteristic and the oscillation amplitude as a function of the injection
frequency for an injection amplitude of Iinj = 2.5 mA are shown in Figure 5.20.

(a) Sinusoidal lock characteristic.

(b) Oscillation amplitude vs. injection frequency under lock.

Figure 5.20: Predicted and simulated behavior of a sinusoidally injection-locked
Colpitts oscillator with an injection amplitude of Iinj = 2.5 mA.
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Figure 5.21 shows the same plots for Iinj = 5 mA, whereas Figure 5.22 shows them
for Iinj = 10 mA. The upper edge of the lock range is overestimated by our model
at the latter injection strength, again due to energetic stability issues associated with
smaller oscillation amplitudes.

(a) Sinusoidal lock characteristic.

(b) Oscillation amplitude vs. injection frequency under lock.

Figure 5.21: Predicted and simulated behavior of a sinusoidally injection-locked
Colpitts oscillator with an injection amplitude of Iinj = 5 mA.
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(a) Sinusoidal lock characteristic.

(b) Oscillation amplitude vs. injection frequency under lock.

Figure 5.22: Predicted and simulated behavior of a sinusoidally injection-locked
Colpitts oscillator with an injection amplitude of Iinj = 10 mA.

Notice how the Colpitts oscillator exhibits the starkest asymmetry in its lock range,
since its ISF and APF are the least in quadrature (β ≡ ∠Γ̃1 − ∠∆1 = 113°). This
asymmetry is uniquely captured by our model, since Adler’s equation [47] neglects
amplitude modulation, and as we will show in Section 5.7, Mirzaei’s analysis [21]
implicitly assumes the ISF and APF are exactly 90° out-of-phase.
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5.6 Experimental Results
Wenow present lock rangemeasurements as a function of the injection amplitude for
the same types of LC oscillators considered in the previous section: cross-coupled
CMOS and NMOS-only differential LC oscillators, as well as a MOS common-gate
Colpitts oscillator. Implemented in a 65-nm bulk CMOS process, the LC tanks
were constructed using Metal-Insulator-Metal (MIM) capacitors and 50-µm-radius
planar spiral symmetric inductors with 6 turns.

Figure 5.23: Die photo of the measured oscillators. The supply (‘VDD’) pads for
each oscillator as well as the ground (‘GND’) and injection (‘INJP’,‘INJN’) pads
are labeled.

The details of the measurement setup can be found in Appendix A. Figure 5.23
shows a die micrograph of the fabricated chip, where the locations of the measured
LC oscillators are indicated.4

For each oscillator, we also show the ISF and APF, which were obtained through
simulation of the extracted oscillator. As discussed in Section 5.3, to calculate the
tank energy for determining the APF, we used the lumped-element networks shown
in Figure 5.24 to model the on-chip inductor. Specifically, the CMOS differential
and Colpitts oscillators utilized Figure 5.24a, whereas the center-tapped version of
Figure 5.24b was used in the NMOS-only differential oscillator. Note that mutual
inductance played a significant role in the center-tapped inductor; however, the total
differential inductance is simply (1 + k)Ls.

4The lower-left inductor corresponds to a bipolar Colpitts oscillator which did not oscillate. The
BJTs in this process are not well-modeled and have extremely low gains.
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(a) Two-terminal inductor (with substrate grounded).

(b) Center-tapped inductor (with substrate grounded).

Figure 5.24: Lumped-element model for an on-chip symmetric spiral inductor [97]–
[99]. Cs and rs are the series capacitance and resistance,Cox is the capacitance across
the oxide, andCSi, and RSi are the capacitance and resistance of the silicon substrate.

The component values in the lumped-element model were chosen through a combi-
nation of: (1) matching the limiting behavior of the network at DC and at very high
frequencies to the S-parameters provided by the design kit, and (2) using numerical
optimization to directly minimize the element-wise error between the scattering
matrices. For each oscillator, replacing the kit inductor with its lumped-element
model incurred a less than 5% change in the oscillation frequency, voltage swing,
power dissipation, and the ISF (at all simulated phases).
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Figure 5.25: Schematic of the common-gate MOS Colpitts oscillator. A resistively
biased current mirror and a resistive divider generate Ibias and Vb, respectively.

Table 5.1: Characteristics of the Measured LC Oscillators

Parameter CMOS
Differential

NMOS-Only
Differential MOS Colpitts

Schematic Figure 5.6a Figure 5.12a Figure 5.25

Tank Capacitance C [pF] 2.75 2.75 5.5

Tank Inductance L [nH] 7.37 6.91 7.36

Inductor Q 8.07 7.83 8.04

Current Consumed [mA] 3.1 7.6 9.2

Supply VDD [V] 1.5 1.5 2

Voltage Swing Vosc,0 [V] 1.0 0.48 1.3

ISF Fundamental
Harmonic Γ̃1 [rad/nC] 369 ∠92.3° 759 ∠91.5° 243 ∠107.4°

APF Fundamental
Harmonic ∆1 [1/mA] 0.515 ∠1.5° 3.17 ∠8.3° 0.47 ∠3°

Measured Oscillation
Frequency f0 [GHz] 1.0917 1.099 1.0923
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Table 5.1 summarizes the design parameters of the LC oscillators. The only mea-
sured parameter is the oscillation frequency; everything else was obtained from
extracted simulation or listed directly in the design kit. Note that the current con-
sumption does not include bias circuitry, and the tank capacitance C only pertains
to the MIM capacitors and does not account for the parasitics of the active devices.

The predicted lock range was calculated from Eq. (5.23). For comparison purposes,
our plots will also show the linear prediction of the lock range based on the ISF
alone. To demonstrate the superiority of our model over the state-of-the-art, we will
also include the theoretical lock range from the best previously available model for
LC oscillators, which is the generalization of Adler’s lock range for large injection
currents. Given in Eq. (2.14), this expression was derived separately by Paciorek
[49], Razavi [38], and Mirzaei [21]. The various approaches for modeling the lock
range of an LC oscillator are summarized in Table 5.2.

Table 5.2: Various Models for the Lock Range of an LC Oscillator

Model Formula Diverges?

Ours ω±L =

1
2

Iinj
��Γ̃1

��
1
2

Iinj |∆1 | cos β ±

√
1 −

(
1
2

Iinj |∆1 | sin β
)2

Diverges for
Iinj ≥

2
|∆1 |

ISF Only ω±L = ±
1
2

Iinj
��Γ̃1

�� No

Best Prior
ω±L = ±

ω0
2Q

Iinj

Iosc

1√
1 −

Iinj
2

Iosc
2

Diverges for
Iinj ≥ Iosc

Adler ω±L = ±
ω0
2Q

Iinj

Iosc
No

Notice that utilization of the best prior model requires Iosc, the oscillator current. For
the three LC oscillators under consideration, the topology-dependent relationship
between Iosc and the current consumption is given in Table 5.3, assuming operation
in the current-limited regime [89], [101].

In differential LC oscillators, the tail current is commutated into a square wave
which is delivered to the tank, whose fundamental component gives rise to the 4/π
factor [89]. However, since the differential amplitude of the square wave is Itail/2
per cross-coupled pair, the NMOS-only oscillator only sees half of this current [21].
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The analysis of the Colpitts oscillator is slightlymore involved; a describing function
analysis which approximates the current delivered by the transistor as consisting of
short, tall pulses [102] results in the expression given in the table, where C1 and C2

are the top and bottom capacitors, respectively [88].

Also, because the layout can often de-Q the tank significantly, instead of using the
inductor Q, we calculated an effective quality factor based on the simulated voltage
swing of the extracted oscillator using the relationship Vosc,0 = IoscQeffω0L.

Table 5.3: Oscillator Currents for Various LC Oscillators

CMOS Differential NMOS-Only
Differential MOS Colpitts

Iosc =
4
π

Itail Iosc =
2
π

Itail
Iosc = 2Ibias

C2
C1 + C2

= Ibias for C1 = C2

Table 5.4 lists the computed oscillator current Iosc and effective quality factor Qeff

of the measured LC oscillators. Again, the current consumption and voltage swing
used in the calculations were obtained from post-layout simulation.

Table 5.4: Simulated Iosc and Qeff of the Measured LC Oscillators

Parameter CMOS
Differential

NMOS-Only
Differential MOS Colpitts

Iosc [mA] 3.95 4.84 9.2

Qeff 5.01 2.09 2.88

Figures 5.26, 5.27, and 5.28 present the measurement results. Again, error bars
covering the entire range of the three measurements that were taken for each data
point are also shown. Excellent agreement is observed between theory and ex-
periment, indicating the usefulness of our model for practical LC oscillator design
applications. In particular, the APF is shown to accurately capture the asymmetric
deviation of the lock range from the linear ISF-only model—something which is
not captured by the best prior model. As shown in Table 5.2, both our model and
the best prior model diverge for sufficiently large injections due to the possibility of
having a zero oscillation amplitude.
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(a) Simulated ISF (left axis) and APF (right axis).

(b) Measured lock range.

Figure 5.26: Measurement results for the CMOS differential LC oscillator.
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(a) Simulated ISF (left axis) and APF (right axis).

(b) Measured lock range.

Figure 5.27: Measurement results for the NMOS-only differential LC oscillator.
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Notice how the NMOS-only differential LC and the Colpitts oscillators exhibit wider
lower and upper lock ranges as the injection strength increases, respectively. This is
because the phase difference β between the ISF and the APF for these two oscillators
are 83.2° and 110.4°, which are below and above 90° respectively.

(a) Simulated ISF (left axis) and APF (right axis).

(b) Measured lock range.

Figure 5.28: Measurement results for the MOS Colpitts oscillator.
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5.7 Reduction to Mirzaei’s Generalized Adler’s Equation
In this section, we show how our quasi-nonlinear model for LC oscillators, namely
Eq. (5.17), reduces to the so-called “Generalized Adler’s equation” by Mirzaei et
al. [21]. Their work, which is based on a behavioral analysis (i.e., KVL/KCL) of
current-limited LC oscillators under a large sinusoidal injection, results in the most
accurate and general model currently found in the literature. Furthermore, it reduces
to Adler’s original equation [47] for small injection currents.

Figure 5.29: Behavioral model of an ideal, current-biased LC oscillator with a
sinusoidal injection.

We start by computing the sensitivity functions of the ideal, current-biased LC
oscillator depicted in Figure 5.29. In response to a periodic tank voltage, the −Gm-
transconductor generates a periodic current whose fundamental component has an
amplitude of Iosc. The other harmonics are irrelevant from the perspective of the
oscillation voltage due to the tank’s narrowband nature. Although these calculations
were already performed in Section 3.3, we present simpler and more academically
mature derivations here.

The ISF of an Ideal LC Oscillator
An ideal LC oscillator features a perfectly sinusoidal free-running output voltage.
Without loss of generality, assume

v0(ϕ) = Vosc,0 sin ϕ. (5.25)

The key insight for calculating the ISF is that the phase can be uniquely determined
once the capacitor charge and inductor current are known. In the free-running case,

qC(t) = qmax,0 sin(ω0t)
iL(t) = −iC(t) = −q′C(t) = −ω0 qmax,0 cos(ω0t),

(5.26)

where qmax,0 = CVosc,0 is the free-running maximum charge swing across the capac-
itor. Thus, the free-running phase is

ϕ = tan−1
(
−ω0 qC

iL

)
= ω0t, (5.27)
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as expected. An injection of charge instantaneously changes qC but leaves the
inductor current invariant. The change in the oscillator’s phase due to an injection
qinj applied at an initial phase ϕ = ω0t is therefore given by

∆ϕ = tan−1
(

qmax,0 sin ϕ + qinj

qmax,0 cos ϕ

)
− tan−1

(
qmax,0 sin ϕ
qmax,0 cos ϕ

)
= tan−1

(
tan ϕ +

qinj

qmax,0 cos ϕ

)
− ϕ.

(5.28)

Taking a linear approximation with respect to qinj, we obtain

∆ϕ =
∂∆ϕ

∂qinj

����
qinj=0

qinj =
1

1 + tan2 ϕ
· 1

qmax,0 cos ϕ
· qinj =

qinj

qmax,0
cos ϕ. (5.29)

The derivative above is actually the ISF, which is defined as the phase shift normal-
ized to the injected charge:

Γ̃(ϕ) ≡ lim
qinj→0

∆ϕ

qinj
=

1
qmax,0

cos ϕ. (5.30)

Note that we could also have computed the ISF using its state-space decomposition,
Eq. (5.2), and the state variable expressions given in Eq. (5.26). Specifically,

Γ̃(ϕ) =
q′C(ϕ)

q′C(ϕ)
2 + LCi′L(ϕ)

2 =
1

qmax,0
cos ϕ, (5.31)

where we made use of the fact that the oscillator free-runs at the tank’s resonant
frequency ω0 = 1/

√
LC.

One might have noticed that there are always two values of ϕ ∈ [0, 2π) that result in
the same value of Γ̃(ϕ), since cos(2π − x) = cos(x). That is, there are two different
points in a cycle where the same injection results in the same phase shift. This can be
understood intuitively by noting that the phase can be unambiguously determined by
the time until the next peak or trough in the oscillation voltage. Physically, this is the
amount of time needed for the inductor to fully de-energize or “de-flux.” An abrupt
injection of charge changes this time by altering the voltage across the inductor,
which controls the rate at which the inductor de-fluxes (since v = L · di/dt). By
way of physical analogy, notice that the amount of time saved by driving slightly
faster is given by ∆t ≈ (∆v/v) · t0, which is the fractional change in the speed, ∆v/v,
multiplied by the original amount of time needed to complete the trip, t0. Although
the inductor does not de-flux at a constant rate, we can still roughly intuit that
the phase shift induced by the injection is proportional to the fractional change in
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−di/dt, which scales with −qinj/qmax,0, multiplied by the amount of current flowing
through the inductor at the time of injection, iL(ϕ). Therefore, the phase ISF is
oblivious to the amount of charge on the capacitor and depends only on how fast
that charge is changing—which is equal to the current flowing through the inductor.

The Amplitude ISF of an Ideal LC Oscillator
To calculate the effect that an injection of charge has on the oscillation amplitude,
observe that the energy stored in the tank is a unique determinant of the oscillation
amplitude:

E =
qmax

2

2C
. (5.32)

At any instant in time, however, the tank energy is also equal to

E =
qC

2

2C
+

1
2

LiL
2, (5.33)

and so the maximum charge swing can be expressed as

qmax =

√
qc

2 + (iL/ω0)2. (5.34)

Therefore, the oscillation amplitude after an injection of charge qinj is applied at an
initial phase ϕ is

qmax =

√(
qmax,0 sin ϕ + qinj

)2
+

(
qmax,0 cos ϕ

)2

=

√
qmax,02 + 2qinjqmax,0 sin ϕ + qinj2.

(5.35)

Taking a linear approximation with respect to qinj, we get

qmax = qmax,0 +
∂qmax
∂qinj

����
qinj=0

qinj

= qmax,0 + qinj sin ϕ.
(5.36)

The derivative above essentially gives the amplitude ISF, which is defined as the
fractional change in the oscillation amplitude, normalized to the injected charge:

Λ̃(ϕ) ≡ lim
qinj→0

1
qinj

∆qmax
qmax,0

=
1

qmax,0
sin ϕ. (5.37)

Although this derivation is perfectly sound, it ismore insightful—andmuch simpler—
to note that thework done by an infinitesimal injection of charge dqinj on the oscillator
is given by

dE = vC(ϕ) dqinj =
qC(ϕ)

C
dqinj =

qmax,0 sin ϕ
C

dqinj. (5.38)
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By definition,

Λ̃(ϕ) ≡ 1
qmax

∂qmax
∂qinj

����
qinj=0

. (5.39)

Applying the chain rule and using Eq. (5.32), we calculate

Λ̃(ϕ) = 1
qmax

∂qmax
∂E

∂E
∂qinj

����
qinj=0

=
1

qmax,0
· C

qmax,0
· qmax,0 sin ϕ

C

=
1

qmax,0
sin ϕ.

(5.40)

Again, observe how there are always two values of ϕ ∈ [0, 2π) that result in the same
value of Λ̃(ϕ), since sin(π − x) = sin(x). That is, there are two different points in a
cycle where the same injection results in the same amplitude change. This is easy to
understand. As mentioned above, the oscillation amplitude is tied unambiguously
to the amount of energy stored in the tank. But, the amount by which the tank’s
energy changes due to the injection depends only on the electric potential across
which the charge was injected. Therefore, the amplitude ISF is impervious to the
inductor current and depends only on the capacitor voltage.

We summarize our results, including what the expressions would be if we had
adopted a cosine reference for v0, in Table 5.5. Again, we reiterate the fact that for

Table 5.5: The Impulse Sensitivity Functions (ISFs) of an Ideal LC Oscillator

Phase Convention Phase ISF Amplitude ISF

v0(ϕ) = Vosc,0 sin ϕ Γ̃(ϕ) = 1
qmax,0

cos ϕ Λ̃(ϕ) = 1
qmax,0

sin ϕ

v0(ϕ) = Vosc,0 cos ϕ Γ̃(ϕ) = − 1
qmax,0

sin ϕ Λ̃(ϕ) = 1
qmax,0

cos ϕ

an LC oscillator, the phase ISF depends only on the slope of the voltage waveform
and not on its polarity, whereas the amplitude ISF depends only on the value of the
voltage waveform and not on the direction of the inductor current.

The APF of an Ideal LC Oscillator
Finally, let us analyze how excess energy in the oscillator decays. Since the transcon-
ductor only acquiesces the current consumed by the parallel resistance RP up to the
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free-running oscillation amplitude, we can assume that any excess energy simply
decays in accordance with the LTI dynamics of a damped LC resonator. In other
words, the characteristic decay function is

d(t, ϕ) = e−t/τ0, (5.41)

where τ0 = 2Q/ω0 is the characteristic time constant and Q = RP/ω0L = Rpω0C

is the tank’s quality factor. Since
∫ ∞

0 d(t, ϕ) dt = τ0, this leads to an Amplitude
Perturbation Function (APF) equal to

∆(ϕ) = τ0 · Λ̃(ϕ). (5.42)

Generalized Adler’s Equation
Now, we can put everything together. As detailed in Section 6.8, wewill use the same
phase reference for (the fundamental components of) the free-running oscillation
voltage v0(ϕ) and the injection current iinj(t). With this in mind, one can easily
verify that

1
Tinj

∫
Tinj

Γ̃
(
ωinjt + θ

)
iinj(t) dt = −1

2
Iinj

qmax,0
sin θ (5.43)

and
1

Tinj

∫
Tinj

∆
(
ωinjt + θ

)
iinj(t) dt =

1
2
τ0

Iinj

qmax,0
cos θ. (5.44)

Substituting these expressions into Eq. (5.17), we obtain the pulling equation for
ideal LC oscillators:

dθ
dt
= ω0 − ωinj −

1
2

Iinj

qmax,0
sin θ

1 +
1
2
τ0

Iinj

qmax,0
cos θ

. (5.45)

Recall that the peak current which flows within the LC tank is Q times larger than
the oscillator current Iosc which flows through the loss resistance RP. Therefore, we
can see that ω0 qmax,0 = QIosc. Using this relationship to eliminate the maximum
charge swing qmax,0, we can rewrite Eq. (5.45) as

dθ
dt
= ω0 − ωinj −

ω0
2Q

Iinj sin θ
Iosc + Iinj cos θ

, (5.46)

which is Mirzaei’s Generalized Adler’s equation [21]. It is apparent that assuming
the injection to be small (Iinj � Iosc) yields Adler’s original equation [47].
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5.8 The Injection Compliance for LC Oscillators
Recall from Section 4.8 that we defined the sinusoidal injection compliance as the
ratio of the fractional lock range to the injection strength. As we can see from
the measurement and analysis results of this chapter, the injection strength for LC
oscillators is more appropriately obtained by normalizing the injection amplitude
Iinj to the oscillator current Iosc = Imax/Q. Physically, this is due to the current
“recycling” capabilities of the LC tank. Consequently, we define the sinusoidal
injection compliance for LC oscillators as

ηLC B
2ωL/ω0
Iinj/Iosc

. (5.47)

This definition reflects the fact that for the same power consumption, an LC oscillator
with a higher tank Q will have a narrower lock range. In the small-injection regime
(where amplitude modulation can be neglected), this can be simplified to

ηLC =
qmax,0

Q

��Γ̃1
�� . (5.48)

Table 5.6 lists the sinusoidal injection compliances for the various LC oscillators
we encountered in this chapter, calculated from Eq. (5.48). The parameters for
the (simulated) LC oscillators in Section 5.5 were obtained from schematic-level
simulation, whereas the parameters for the (measured) LC oscillators in Section 5.6
were obtained from extracted simulation. The ideal LC oscillator is technically a
mathematical construct—one whose sensitivity functions conform exactly to that of
a parallel LC tank and whose excess energy decays via a first-order dynamic.

5.9 Relation to the Thought Experiment from Chapter 3
In Chapter 3, we conducted a thought experiment that involved “locking” an ideal
LC oscillator to an injection current which took on the form of an impulse train—
essentially a periodic injection of discrete amounts of charge that instantaneously
change the phase of oscillation. Specifically, for a maximum charge swing across
the capacitor of qmax and amount of injected charge per impulse qinj, we determined
that the resultant frequency shift can be expressed as

∆ω =
∆ϕ

Tinj
= − 1

Tinj

qinj

qmax
sin θ, (5.49)

where ∆ϕ is the phase shift caused by each injection and the phase θ characterized
the time of injection during the oscillation cycle. More precisely, we needed to define
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Table 5.6: Compliances of Various LC Oscillators

Topology Version Sinusoidal Injection
Compliance ηLC

Ideal LC Section 5.7
1
Q

CMOS Differential LC
Section 5.5 6.62%

Section 5.6 21.2%

NMOS-Only Differential LC
Section 5.5 6.63%

Section 5.6 53.3%

Bipolar Colpitts Section 5.5 6.29%

MOS Colpitts Section 5.6 32.5%

θ as the phase difference between the fundamental components of the oscillation
voltage and the impulse train. This result should be straightforward to see in light
of the ISF of an ideal LC oscillator, since Γ̃(θ) ≡ ∆ϕ/qinj by definition.

In our thought experiment, we somewhat arbitrarily decided to “convert” the injected
charge qinj to an injection current using the fundamental amplitude of the impulse
train: Iinj = 2qinj/Tinj. We also argued that the amplitude of the tank current at
resonance, ω0 qmax, is Q times as large as the oscillator current Iosc supplied by
the active circuitry. This allowed us to arrive at the steady-state solution to Adler’s
equation:

∆ω = − 1
Tinj

qinj

qmax
sin θ =⇒ ∆ω = −ω0

2Q
Iinj

Iosc
sin θ. (5.50)

We then generalized the experiment by accounting for how the impulses altered the
amplitude of oscillation as well. By denoting the free-running maximum charge
swing as qmax,0 and assuming an exponential decay of the amplitude in between
injections with a time constant of τ0 = 2Q/ω0, we calculated the time-averaged
maximum charge swing:

〈qmax〉 = qmax,0 +
τ0

Tinj
qinj cos θ. (5.51)

Again, this expression makes sense in light of the amplitude ISF and APF of an
ideal LC oscillator, since ∆(θ) = τ0 cos θ/qmax,0. Substituting 〈qmax〉 for qmax in
Eq. (5.49) then yielded the steady-state solution to Mirzaei’s Generalized Adler’s
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equation:

=⇒ ∆ω = −ω0
2Q

Iinj sin θ
Iosc + Iinj cos θ

. (5.52)

We are now in a position to rigorously explain why this procedure relating the
impulse train to its fundamental component, which may have seemed somewhat
contrived at first, led to meaningful results. Note that what our thought experiment
actually shows is the following statement:

An ideal LC oscillator injection-locked by an impulse train behaves in the same
way as an ideal LC oscillator injection-locked by a sinusoidal injection current
equal to the fundamental component of the impulse train.

Figure 5.30: Equivalence between the thought experiment of Chapter 3 and the
time-synchronous model of Chapters 4 and 5.

This equivalence, shown in Figure 5.30, is not surprising. After all, the ISF and
the APF of an ideal LC oscillator are perfectly sinusoidal and therefore only contain
the fundamental harmonic. As a result, only the fundamental component of the
injection matters anyways, since the rest are filtered out by the averaging depicted in
the block diagrams of Figures 4.4 and 5.5. Therefore, our model subsumes, justifies,
and illuminates the fundamental physics behind our thought experiment.
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C h a p t e r 6

SUPERHARMONIC AND SUBHARMONIC INJECTION
LOCKING AND PULLING

In this chapter, we generalize our framework to accommodate synchronization sce-
narios where the injection and oscillation frequencies are not equal to each other.
Instead, we will see how the injection frequency can be a multiple N of the os-
cillation frequency, the oscillation frequency can be a multiple M of the injection
frequency, and the most general case where ratio between the two is an arbitrary
rational number. Injection-locked frequency dividers and frequency multipliers are
often used as building blocks in frequency synthesizers.

6.1 Superharmonic Injection
It is well-known that oscillators are also capable of locking onto an injection at a
harmonic of the oscillation frequency, giving rise to what is known as injection-
locked frequency division [6], [8], [11]–[13]. This is readily captured by our model
as well: Eq. (4.20) merely requires that iinj(t) be periodic with Tinj, and a function
which has a period of Tinj/N for any positive integer N is also periodic with Tinj. In
other words, our framework never required the fundamental period of iinj(t) to be
equal to the interval being averaged over. However, for the purposes of analyzing
superharmonic locking onto an injection current iinj(t)whose fundamental frequency
ωinj is “near” Nω0 for some positive integer N , it makes much more sense to define
the oscillator’s phase θ via

ϕ(t) ≡
ωinj

N
t + θ(t). (6.1)

Then, the phase pulling equation can be rewritten as
dθ
dt
= ω0 −

ωinj

N
+

1
NTinj

∫
NTinj

Γ̃

(ωinj

N
t + θ

)
iinj(t) dt, (6.2)

and so the lock characteristic Ω(θ) is now redefined as the steady-state solution for
the frequency deviation ∆ω B ωinj/N . It is instructive to look at the “frequency
domain” expansion of this lock characteristic:

∆ω B
ωinj

N
− ω0

=
1
2

[
Iinj,0Γ̃0

2
+

∞∑
n=1

��Iinj,nΓ̃nN
�� cos

(
nNθ + ∠Γ̃nN − ∠Iinj,n

) ]
.

(6.3)
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Carefully note that the lock characteristic is now periodic with a period of 2π/N .
The key insight to be had here is that the only harmonics of the ISF which matter
here are those that are multiples of N . In particular, a sinusoidal injection current
must “utilize” the N th harmonic of the ISF to lock the oscillator. This explains why,
for example, the injection current is usually applied at the tail node of LC oscillators
implemented as divide-by-2 circuits.

6.2 Simulation Results
Here, we compare a few examples of the simulated superharmonic lock characteristic
against the theoretical one predicted by Eq. (6.3). All injections are sinusoidal.

Differential LC Oscillator – Tail Injection: The first example is an injection at
the 2nd harmonic into the tail node of a 1 GHz CMOS differential LC oscillator.
Note that this is the same oscillator from Figure 5.6 (with a different injection site).
The schematic, free-running positive and negative oscillation voltages, voltage at
the tail node, and ISF are shown in Figure 6.1.

(a) Oscillator schematic.
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(b) Free-running positive osc. voltage. (c) Free-running negative osc. voltage.

(d) Free-running tail voltage. (e) Impulse sensitivity function.

Figure 6.1: Injection into the tail node of a CMOS differential LC oscillator.

Notice how the tail voltage and the ISF both iterate through two cycles over the course
of a single oscillation period, indicating that Γ̃(x) actually has a fundamental period
of π as opposed to 2π. Therefore, this ISF contains no odd harmonics. Physically,
this is a consequence of the fact that the tail node cannot distinguish between the
two arms of the oscillator due to symmetry. As we can see, the tail voltage vtail rises
with both the positive and negative single-ended oscillation voltages. As a result,
the sensitivity at the tail is the same regardless of whether the differential oscillation
voltage across the capacitor, vosc ≡ vosc,+ − vosc,−, is increasing or decreasing.

The sinusoidal lock characteristics for two different injection strengths are shown in
Figure 6.2.
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(a) Iinj = 1 mA

(b) Iinj = 2 mA

Figure 6.2: Lock characteristic of the differential LC oscillator for a sinusoidal
injection at the 2nd harmonic into the tail node.
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Ring Oscillator: In the following example, we again consider the 17-stage single-
ended ring oscillator of Figure 4.12, but the injection is sinusoidal at the third and
fifth harmonics. The resultant lock characteristics are shown in Figure 6.3.

(a) Divide by N = 3 with Iinj = 1.5 mA.

(b) Divide by N = 5 with Iinj = 1 mA.

Figure 6.3: Lock characteristic of the 17-stage single-ended ring oscillator for a
sinusoidal injection at the 3rd and 5th harmonics.
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The next example is injection at the first five harmonics into one stage of a 7-stage
single-ended ring oscillator constructed using “asymmetric” inverters with unequal
rise and fall times.1 The free-running oscillation voltage and ISF for this scenario
are shown in Figure 6.4. As we can see, the fall time is much shorter than the rise
time, due to the size of the NMOS transistors being triple that of the PMOS devices.

(a) Free-running oscillation voltage. (b) Impulse sensitivity function.

Figure 6.4: 7-stage asymmetric ring oscillator with WN/WP = 3.

The sinusoidal lock characteristics for the first five harmonics are shown in Fig-
ure 6.5. Despite the relatively weak injection amplitude compared to our other
examples, deviations between simulation and theory due to nonlinear behavior are
apparent. Note that Imax = 89 µA for this oscillator.

(a) N = 1 (fundamental harmonic)

1The reason for making the inverters asymmetric will be discussed in Section 8.5.
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(b) Divide by N = 2

(c) Divide by N = 3
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(d) Divide by N = 4

(e) Divide by N = 5

Figure 6.5: Lock characteristic of the 7-stage single-ended asymmetric ring oscil-
lator for a Iinj = 0.25 mA sinusoidal injection at the first 5 harmonics.
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Relaxation Oscillator: The final example involves using the ideal Bose oscillator
from Section 4.4 in a divide-by-3 configuration. Note that the ISF of the Bose oscil-
lator contains no even harmonics; therefore, dividing by even ratios is impossible.
The lock characteristic is shown in Figure 6.6.

Figure 6.6: Lock characteristic of the ideal Bose oscillator for a 5 mA sinusoidal
injection at the 3rd harmonic.
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6.3 Experimental Results
A collection of measurement results are also provided here to accommodate the
simulations of the previous section. Specifically, the same set of integrated oscilla-
tors from Section 4.7 was subjected to sinusoidal injections at various higher order
harmonics, and second harmonic sinusoidal injections were applied to the tail nodes
of the two differential LC oscillators from Section 5.6. Again, each set of lock
range measurements was repeated twice, and error bars that encompass all three
trials are shown for each data point. Note that the absolute lock range is referred
to the injection frequency—it corresponds to the maximum and minimum values of
finj−N f0 for which the oscillator is locked, where N is the division ratio. Therefore,
the predicted lock range that the measurements are compared against is equal to [72]

Nω±L = ±
1
2

NIinj
��Γ̃N

�� . (6.4)

Table 6.1 lists the magnitudes of the relevant harmonics of the ISFs of these oscilla-
tors. Appendix A explains the details of the measurement setup. A die micrograph
of the fabricated chip is shown in Figure 6.7, where the locations of the measured
oscillators are specified.

Figure 6.7: Die photo of the measured oscillators. The supply (‘VDD’) pads for
each oscillator, the ground (‘GND’) pad, the differential injection (‘INJP’,‘INJN’)
pads, and the tail injection (‘INJT’) pad are labeled.
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Table 6.1: Higher Order ISF Harmonics of the Measured Oscillators

Oscillator Schematic Magnitudes of Relevant
ISF Harmonics

17-Stage Ring Figure 4.12a

��Γ̃2
�� = 55.5 rad/nC��Γ̃3
�� = 316 rad/nC��Γ̃5
�� = 266 rad/nC

6-Stage Differential Ring Figure 4.14a
��Γ̃3

�� = 606 rad/nC

Bose Oscillator Figure 4.5

��Γ̃2
�� = 4.95 rad/pC��Γ̃3
�� = 1.96 rad/pC��Γ̃4
�� = 3.14 rad/pC��Γ̃5
�� = 2.01 rad/pC

Astable Multivibrator Figure 4.17a
��Γ̃3

�� = 1.73 rad/pC��Γ̃5
�� = 0.29 rad/pC

CMOS Differential LC Tail Figure 6.1a
��Γ̃2

�� = 38.8 rad/nC

NMOS Differential LC Tail Figure 6.11
��Γ̃2

�� = 2.45 rad/nC

Ring Oscillators
The first set of experiments measured the second, third, and fifth harmonic lock
ranges of the 17-stage ring oscillator, as well as the third harmonic lock range of the
6-stage differential ring oscillator. As will be discussed in Section 8.5, the 17-stage
ring oscillator is able to divide by N = 2, albeit with a rather limited lock range,
due to the asymmetry between the rising and falling edges of the oscillation. The
6-stage ring oscillator features no such asymmetry because of its differential nature
and can therefore only divide by odd ratios. The measurement results are presented
in Figure 6.8.

Compared to the fundamental harmonic, nonlinear behavior appears at smaller
injection amplitudes. This may be attributed to the fact that the oscillator’s nodes
are comparatively more perturbed from their free-running operating point since the
injections occur on a time scale that is N times faster, leaving less time for the excess
charge deposited by the injection to dissipate.
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(a) Measured 2nd harmonic lock range for the 17-stage ring oscillator.

(b) Measured 3rd harmonic lock range for the 17-stage ring oscillator.
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(c) Measured 5th harmonic lock range for the 17-stage ring oscillator.

(d) Measured 3rd harmonic lock range for the 6-stage differential ring oscillator.

Figure 6.8: Superharmonic lock range measurement results for two different ring
oscillators.
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Relaxation Oscillators
The second set of experiments measured the second, third, fourth, and fifth harmonic
lock ranges of the 10 MHz Bose oscillator, as well as the third and fifth harmonic
lock ranges of the NMOS astable multivibrator. The measurement results for the
Bose oscillator are presented in Figure 6.9. Observe how the ISF of the fabricated
Bose oscillator (Figure 4.23b) features a single sharp peak. In the frequency domain,
this impulse-like waveform translates into more equally distributed energy across
all harmonics, leading to the ability to divide by both even and odd ratios.

(a) Measured 2nd harmonic lock range.

(b) Measured 3rd harmonic lock range.
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(c) Measured 4th harmonic lock range.

(d) Measured 5th harmonic lock range.

Figure 6.9: Superharmonic lock range measurement results for the 10 MHz Bose
relaxation oscillator.

The Bose oscillator is rather “well-behaved” with respect to being faithful to the
theoretically predicted lock range. This is due to its relatively simple “quasi-single-
state” nature, which corresponds to a comparatively more linear lock characteristic
with respect to the injection.
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The measurement results for the astable multivibrator are presented in Figure 6.10.

(a) Measured 3rd harmonic lock range.

(b) Measured 5th harmonic lock range.

Figure 6.10: Superharmonic lock range measurement results for the NMOS differ-
ential astable multivibrator.

Interestingly, higher-order lock ranges for the astable multivibrator appear to ap-
proach some limit as the injection amplitude grows.
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Differential LC Oscillator Tail Injections
The final set of experiments measured the second harmonic lock ranges associated
with injecting into the tail nodes of the CMOS and NMOS-only differential LC
oscillators. The schematic for the latter is given in Figure 6.11. The simulated
tail-injection ISFs and the measurement results are presented in Figures 6.12 and
6.13 for the CMOS and NMOS-only oscillators, respectively. Note that the bottom
axis normalizes the injection amplitude to the tail bias current, Itail.

Figure 6.11: Schematic of the NMOS-only differential LC oscillator with a tail
injection. Itail is implemented with a resistively biased current mirror.

Notice how the NMOS-only version has a considerably narrower lock range for
the same injection amplitude due to its much smaller

��Γ̃2
��. We can explain this

physically by noting that the voltage swing of the NMOS-only oscillator is both
lower (see Table 5.1) and occurs at nodes that have an elevated DC operating
point, specifically the supply VDD. Thus, the drain voltage of the tail transistor is
significantly less affected by the oscillation and therefore fluctuates much less over
a single period. This, in turn, translates into a diminished effect that an injection
into the tail has on the phase of oscillation.
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(a) Simulated ISF.

(b) Measured lock range.

Figure 6.12: Measurement results for injecting into the tail of the CMOS differential
LC oscillator.
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(a) Simulated ISF.

(b) Measured lock range.

Figure 6.13: Measurement results for injecting into the tail of the NMOS-only
differential LC oscillator.
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6.4 Higher Order Sinusoidal Injection Compliances
We can generalize the concept of the sinusoidal injection compliance introduced
in Section 4.8 to include injection-locked frequency division. Specifically, the
compliance for sinusoidal injections that are not large enough to violate linearity is
given by

ηN B
2ωL/ω0
Iinj/Imax

= qmax,0
��Γ̃N

�� . (6.5)

For differential oscillator tail injections, we calculated the injection strength via
normalization to the tail bias current. Therefore,

ηtail,2 B
2ωL/ω0
Iinj/Itail

=
qmax,0

κtail

��Γ̃2
�� , (6.6)

where qmax,0 is still the charge amplitude across the oscillation terminals (not at
the tail), and κtail is a conversion factor from the tail current to the oscillation
current Imax B ω0qmax,0. For CMOS and NMOS-only differential LC oscillators,
κtail is equal to 4Q/π and 2Q/π, respectively. For differential ring oscillators (see
Figure 4.14a), the charge swing is given by qmax,0 = ItailRC, which leads to a
conversion factor of κtail = ω0RC. Estimating the period of oscillation as twice
the number of stages K multiplied by the RC-delay per stage, we can approximate
κtail ≈ π/K . Table 6.2 lists the higher order sinusoidal injection compliances
based on Eqs. (6.5) and (6.6) for the various oscillators simulated and measured
in this chapter. Again, Sections 6.2 and 6.3 contain schematic-level and extracted
oscillators, respectively.

6.5 Subharmonic Injection
Now consider the possibility of locking onto an injection which is at a subharmonic
of the oscillation frequency: ωosc = Mωinj for some positive integer M under lock
[14]–[17]. Again, Eq. (4.20) can also predict locking if Γ̃(ωosct) has a fundamental
period of Tinj/M , since this still implies periodicity with respect to the averaging
interval Tinj. To that end, it again makes sense to redefine the oscillator’s phase θ so
that

ϕ(t) ≡ Mωinjt + θ(t). (6.7)

With this definition, the phase pulling equation becomes

dθ
dt
= ω0 − Mωinj +

1
Tinj

∫
Tinj

Γ̃
(
Mωinjt + θ

)
iinj(t) dt, (6.8)



130

Table 6.2: Higher Order Compliances of Various Oscillators

Oscillator Version Sinusoidal Injection
Compliance ηN

6-Stage Differential Ring Section 6.3 η3 = 10.83%

7-Stage Asymmetric Ring Section 6.2

η1 = 17.03%
η2 = 8.75%
η3 = 11.20%
η4 = 5.85%
η5 = 5.09%

17-Stage Ring

Section 6.2
η3 = 2.34%
η5 = 1.97%

Section 6.3
η2 = 0.31%
η3 = 1.75%
η5 = 1.48%

Ideal Bose Section 6.2 η3 = 79.02%

Bose Section 6.3

η2 = 132.63%
η3 = 52.53%
η4 = 84.14%
η5 = 53.84%

Astable Multivibrator Section 6.3
η3 = 32.31%
η5 = 5.43%

CMOS Diff. LC Tail
Section 6.2 ηtail,2 = 2.87%

Section 6.3 ηtail,2 = 1.76%

NMOS-Only Diff. LC Tail Section 6.3 ηtail,2 = 0.27%

and so the lock characteristic Ω(θ), which is now the steady-state solution for the
modified frequency deviation ∆ω B Mωinj − ω0, admits the following frequency
domain representation:

∆ω B Mωinj − ω0

=
1
2

[
Iinj,0Γ̃0

2
+

∞∑
n=1

��Iinj,nM Γ̃n
�� cos

(
nθ + ∠Γ̃n − ∠Iinj,nM

) ]
.

(6.9)

We see that for subharmonic injection locking to occur, the oscillator must lock onto
the M th-multiple harmonics of the injection current. However, it is important to note
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that the higher-order harmonics required of the injection current are typically gen-
erated within the oscillator itself as byproducts of mixing [14]–[17]. Unfortunately,
this nonlinear phenomenon is not explicitly captured by our model.

6.6 Generalized M:N Sub-/Super-Harmonic Injection
It is not hard to extend the aforementioned concepts of superharmonic and sub-
harmonic injection locking to a more general scenario. Assume M and N are two
positive, coprime integers such that Mωinj = Nωosc under lock [34], [72]. Then, the
oscillator’s phase θ should now satisfy

ϕ(t) ≡ M
N
ωinjt + θ(t), (6.10)

which means the phase pulling equation becomes

dθ
dt
= ω0 −

M
N
ωinj +

1
NTinj

∫
NTinj

Γ̃

(
M
N
ωinjt + θ

)
iinj(t) dt. (6.11)

Again, we redefine the lock characteristic Ω(θ) as the steady-state solution for the
generalized frequency deviation ∆ω B (M/N)ωinj − ω0, which can therefore be
expressed in the frequency domain as:2

∆ω B
M
N
ωinj − ω0

=
1
2

[
Iinj,0Γ̃0

2
+

∞∑
n=1

��Iinj,nM Γ̃nN
�� cos

(
nNθ + ∠Γ̃nN − ∠Iinj,nM

) ]
.

(6.12)

Therefore, for locking to take place, the M th-multiple harmonics of the injection
need to interact with the N th-multiple harmonics of the oscillator’s ISF. A block
diagram of this generalized fractional harmonic injection process, as well as its
frequency domain decomposition, is shown in Figure 6.14.

Notice that it is mathematically feasible for modes corresponding to different sub-
/super-harmonics of the injection to exist simultaneously, leading to more than one
possibility for the oscillation frequency that the locked oscillator can assume. That
is, for a given injection signal iinj(t) at a particular injection frequency ωinj, there
could be multiple pairs of positive, coprime integers M and N that satisfy the

2If M and N have any common factors besides one, then the representation of Eq. (6.12) would
be missing components of the injection waveform and the ISF that can actually contribute to locking.
Specifically, it is not hard to see from the averaging in Eq. (6.11) that M and N in Eq. (6.12)
should generally be replaced with M/gcd(M, N) and N/gcd(M, N), respectively (where gcd stands
for greatest common divisor).



132

(a) How a periodic injection at the fractional (N/M)th harmonic with respect to the
oscillator affects the oscillator’s phase.

(b) Decomposition of the ISF into its Fourier series components.

Figure 6.14: Generalization of Figures 4.3 and 4.4 to allow for M:N sub-/super-
harmonic injection locking and pulling.

lock characteristic—albeit with different solutions for θ in general. This usually
occurs for rather large injections, as it requires the lock characteristics of different
harmonics to overlap for a range of injection frequencies.

The foregoing analysis might also seem to suggest that an oscillator is capable of
locking to practically any injection frequency, since any positive real number can
be approximated by a ratio of coprime integers—a rational number—to an arbitrary
degree of accuracy (i.e., by “increasing the number of decimal places”). This is
because the rational numbers are dense in the set of real numbers [103]. However,
one should note that M and N increase with the accuracy of the approximation,
and it is difficult in practice to generate very high-order harmonics of appreciable
amplitude.
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6.7 Example: Multi-Phase Injections into a Ring Oscillator

Figure 6.15: A ring oscillator with an injection applied to every stage. Differential
ring oscillators consisting of an even number of stages have an additional inversion
in the feedback path.

Consider a K-stage ring oscillator with injection current iinj,i(t) applied at the ith

stage where i = 1, . . . ,K , as shown in Figure 6.15. Assume that the only differences
between the K injection currents are their phases; they all have the same frequency,
shape, and size. In other words, there exists a 2π-periodic injection waveform
iinj,0(x) such that for all i ∈ {1, . . . ,K}, we can write

iinj,i(t) = iinj,0(ωinjt + αi), (6.13)

where αi represents the phase of the ith injection. The objective of this section is to
figure out how to set the injection phases to optimize the lock range.

By symmetry, the only differences between the K oscillation voltages are also their
phases—there exists a 2π-periodic oscillation waveform v0(x) such that

vosc,i(t) = v0(ωosct + φi). (6.14)

Similarly, the K impulse sensitivity functions must also be related via

Γ̃i(x) = Γ̃(x + φi) (6.15)

for some Γ̃(x), a “global” ISF for all of the injection sites.

Again, we define the oscillator’s phase θ with respect to the injection by the relation
ωosct = ωinjt + θ. Due to the linearity of our model, we know that θ satisfies the
differential equation:

dθ
dt
= ω0 −

ωinj

N
+

K∑
i=1

1
NTinj

∫
NTinj

Γ̃i

(ωinj

N
t + θ

)
iinj,i(t) dt, (6.16)
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where we assumed the injection to be at the N th superharmonic. Assuming the
oscillator is locked and simplifying the right-hand-side, we arrive at the following
lock characteristic:

∆ω ≡
ωinj

N
− ω0 =

K∑
i=1

〈
Γ̃

( x
N
+ θ + φi

)
iinj,0(x + αi)

〉
2πN

. (6.17)

Extremizing this with respect to θ then yields the lock range. Without loss of
generality, consider just the upper lock range, which we shall denote as ωL . Assume
θ∗ maximizes the lock characteristic, meaning that ωL = Ω(θ∗), whereas θ∗i is the
value of θ that maximizes only the ith term in the above sum. Noting that the
maximum of a sum is bounded by the sum of the individual maxima, we have that

ωL =

K∑
i=1

〈
Γ̃

( x
N
+ θ∗ + φi

)
iinj,0(x + αi)

〉
2πN

≤
K∑

i=1

〈
Γ̃

( x
N
+ θ∗i + φi

)
iinj,0(x + αi)

〉
2πN

,

(6.18)

where equality is attained only if all the θ∗i ’s are the same. This, of course, is
achievable: we simply need to distribute the phases of the injection currents, αi, in
accordance with the phases of the oscillation voltages and ISFs, φi. More precisely,
we obtain the largest lock range under this injection topology by setting αi = Nφi

(up to a constant shift which can be absorbed by θ). This renders all the terms in the
sum equal to one another, as the functions being averaged become shifted versions
of each other. Therefore, both the lock characteristic and therefore the lock range
are enhanced by a factor of K compared to having a single injection:

∆ω = K ×
〈
Γ̃

( x
N
+ θ

)
iinj,0(x)

〉
2πN

. (6.19)

It is easy to see that if only P out of the K stages are injected into, we simply replace
K with P.

In a ring oscillator, the amplifiers Ai are all inverting, and so the phase difference
between successive stages is

∆φ ≡ φi+1 − φi = π −
π

N
. (6.20)

Thus, the phase difference between between successive injections should therefore
be N times this:

∆αi ≡ αi+1 − αi = N ×
(
π − π

N

)
. (6.21)

This result was implemented by Mirzaei et al. in [10], [60]. We will also use this
scheme in Chapter 9 for the design of our injection-locked prescaler.
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Simulation Results
To demonstrate the validity of the above result, we took the 7-stage asymmetric ring
oscillator of Figure 6.4 and applied a sinusoidal injection current to every single
stage. We distributed the phases in accordance with Eq. (6.21), and we show that
altering the phase distribution by changing N enables the oscillator to divide by
different integer ratios. We then compared the simulated lock characteristic against
a theoretically calculated one, which was obtained by simply multiplying the ISF-
based lock characteristic for a single injection by 7. The results for the first five
harmonics are shown in Figure 6.16. We used an injection amplitude of Iinj = 0.1mA
throughout, except for the N = 3 case (Figure 6.16c) where we used Iinj = 0.05 mA
due to bizarre nonlinear behavior which appeared at stronger injection strengths.
Compare these results against those shown in Figure 6.5.

(a) N = 1 (fundamental harmonic)
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(b) Divide by N = 2

(c) Divide by N = 3
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(d) Divide by N = 4

(e) Divide by N = 5

Figure 6.16: Multi-phase injection lock characteristic of the 7-stage single-ended
asymmetric ring oscillator for a sinusoidal injection at the first 5 harmonics.
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6.8 General Definition of the Phase Difference θ
In this section, we attack the problem of using the oscillation voltage vosc(t) and the
injection current iinj(t) to calculate the phase difference θ between a locked oscillator
and its injection. Note that θ is unambiguously given once the oscillation waveform
v0(x) and the injection waveform iinj,0(x) are defined, since

vosc(t) = v0

(
M
N
ωinjt + θ

)
iinj(t) ≡ iinj,0(ωinjt).

(6.22)

However, the idea of determining the phase difference between two non-sinusoidal
periodic functions with possibly different frequencies may seem confusing or even
ill-posed at first glance. Therefore, we address the technical details of this process
below.

First, let us expand the oscillation waveform, v0(x), using Fourier series:

v0(x) =
Vosc,0

2
+

∞∑
n=1

��Vosc,n
�� cos(nx + ∠Vosc,n), (6.23)

where
Vosc,n =

1
π

∫
2π

v0(x)e− jnx dx. (6.24)

Therefore, the fundamental components of the oscillation voltage and the injection
current are given by

vosc(t) =
��Vosc,1

�� cos
(

M
N
ωinjt + θ + ∠Vosc,1

)
+ · · ·

iinj(t) =
��Iinj,1

�� cos(ωinjt + ∠Iinj,1) + · · · ,
(6.25)

where the other harmonics (including DC) are suppressed in this representation.

The objective of this analysis is to compute θ from vosc(t) and iinj(t). Before we do
so, however, let us set up some basic conventions.

Technical Details and Assumptions:

1. Both the oscillation waveform, v0(x), and the injection waveform, iinj,0(x),
have nonzero fundamental components, meaning Vosc,1 , 0 and Iinj,1 , 0.
Note that the absence of this condition does not pose any difficulty from
a mathematical standpoint—but, this assumption is reasonable to make in
practice for our purposes, and it simplifies the exposition of our solution.
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2. The oscillation waveform, v0(x), and the injection waveform, iinj,0(x), are
defined such that their fundamental components are aligned in the following
sense:

N∠Vosc,1 ≡ M∠Iinj,1. (6.26)

Although this condition may seem arbitrary, it is actually necessary to avoid
confusion. For the simplest case of a sinusoidal injection and a sinusoidal
oscillation voltage at the same frequency, we want θ to be a reflection of the
“actual” phase difference between the two waveforms. For example, if we
defined v0(x) = Vosc cos(x) and iinj,0(x) = Iinj| sin(x), then θ = 0 corresponds
to the injection and the oscillation being in quadrature, which makes no sense.

Suppose we observe the oscillation voltage and the injection current with respect to
some time reference t′. The first step is to calculate their fundamental components:

vosc(t′) =
��Vosc,1

�� cos
(

M
N
ωinjt′ + φosc

)
+ · · ·

iinj(t′) =
��Iinj,1

�� cos(ωinjt′ + φinj) + · · · .
(6.27)

To translate these signals back to our reference t, define

ωinjt′ + φinj ≡ ωinjt + ∠Iinj,1. (6.28)

Substituting back into Eq. (6.27) yields

vosc(t) =
��Vosc,1

�� cos
(

M
N
ωinjt +

M
N
∠Iinj,1 −

M
N
φinj + φosc

)
+ · · ·

iinj(t) =
��Iinj,1

�� cos(ωinjt + ∠Iinj,1) + · · · .
(6.29)

Comparison with Eq. (6.25) reveals that

M
N
∠Iinj,1 −

M
N
φinj + φosc = θ + ∠Vosc,1. (6.30)

Since N∠Vosc,1 ≡ M∠Iinj,1, we get

θ = φosc −
M
N
φinj. (6.31)

In other words, θ is obtained by comparing the phases of the fundamental com-
ponents of the oscillation voltage and the injection current, where the phase of
the injection is scaled by M/N . This scaling factor can be understood intuitively
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by noting that the same time delay at the N th harmonic corresponds to N times the
phase shift.

One may wonder how our phase convention affects the representation of the lock
characteristic as shown in Eq. (6.12), for example. Note that the definition of the
ISF, Γ̃(x), must be consistent, or synchronized, with the oscillation waveform v0(x).
Specifically, this means that Γ̃(0) must correspond to the phase shift incurred when
the oscillator, as represented by v0(x), experiences an injection at x = 0. In light of
the fact that N∠Vosc,1 ≡ M∠Iinj,1, observe how the phase of the nth harmonic of the
lock characteristic can be written as

αn B nNθ + ∠Γ̃nN − ∠Iinj,nM

= nNθ +
(
∠Γ̃nN − nN∠Vosc,1

)
−

(
∠Iinj,nM − nM∠Iinj,1

)
.

(6.32)

In otherwords, by relating the oscillation and injectionwaveforms throughEq. (6.26),
the phases ∠Γ̃nN and ∠Iinj,nM are effectively referenced to the fundamental phases of
the oscillation and injection waveforms, respectively.

Finally, notice how the lock characteristic is periodic with a period of 2π/N . This
is because shifting the oscillation voltage by 1/N th of a cycle does not change
the relative timing between the oscillation and the injection. For example, if the
injection frequency is twice the oscillation frequency, an oscillation voltage which
is shifted by half of a cycle appears the same from the perspective of the injection.

Examples
Let us illustrate these concepts with a few quick examples. Figure 6.17 depicts one
period of the oscillation voltage and the corresponding injection current for a 1 mA
sinusoidal injection at the 2nd harmonic into the tail of a CMOS differential LC
oscillator. The lock characteristic for this scenario was shown in Figure 6.2a. Three
specific examples are shown: the lower edge of the lock range, the upper edge of
the lock range, and an injection at 2 f0.
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(a) φinj = 18° and φosc = −39°, which yields θ = −48°.

(b) φinj = −90° and φosc = −135°, which yields θ = −90° = 90°.

(c) φinj = 90° and φosc = −85°, which yields θ = −130° = 50°.

Figure 6.17: Example calculations of θ for a 2nd harmonic sinusoidal injection
into the tail of a differential LC oscillator. The phases φinj and φosc are computed
assuming the time reference t′ starts at the beginning of the depicted window.
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For a more analytical example, consider the following injection current consisting
of triangular pulses:3

iinj(t) = 2Iinj

∞∑
n=−∞

[tri(8 freft − 1 − 4n) − tri(8 freft − 3 − 4n)] , (6.33)

and square-wave oscillation voltage:4

vosc(t) = Vmax

∞∑
n=−∞

rect
(
6 freft +

1
10
− 2n

)
, (6.34)

where Iinj is the injection current amplitude,Vmax is themaximumvoltage swing, and
fref is some reference frequency. A plot of these two signals is shown in Figure 6.18
for Vmax = 1.2 V, Iinj = 2 mA, and fref = 1 GHz. As we can see, the fundamental
frequencies of the injection current and the oscillation voltage are 2 fref and 3 fref ,
respectively, which means that M = 3 and N = 2.

Figure 6.18: A plot of the example oscillation voltage from Eq. (6.34) and injection
current from Eq. (6.33).

3We use the standard definition of the triangle function:

tri(x) B
{

1 − |x |, |x | ≤ 1
0, otherwise.

4We use the standard definition of the rectangle function:

rect(x) B
1, |x | ≤ 1

2
0, otherwise.
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The fundamental components are easily shown to be

vosc(t) =
2
π

Vmax cos
(
6π freft +

π

10

)
iinj(t) =

8(2 −
√

2)
π2 Iinj sin(4π freft) ,

(6.35)

from which we deduce that φosc = π/10 and φinj = −π/2. Therefore, we calculate

θ = φosc −
M
N
φinj =

17π
20
= 153°. (6.36)

On a final note, observe how the two waveforms look identical with respect to one
another, thereby leaving θ invariant, when vosc(t) is shifted by half of a cycle or
when iinj(t) is shifted by a third of a cycle. Furthermore, notice how removing either
the upward or the downward triangular pulses from iinj(t) also does not change θ, as
this preserves the phase of the fundamental (while halving its amplitude).
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C h a p t e r 7

TRANSIENT BEHAVIOR: STABILITY, PULLING, AND NOISE

7.1 Introduction
Our analyses thus far have really only focused on the steady-state, locked behavior of
the oscillator—namely when dθ/dt = 0. In this chapter, we show how the transient
behavior of the differential equations Eqs. (4.20) and (4.26) can be used to predict
a wide range of interesting properties: stable vs. unstable modes, the dynamics of
injection pulling both inside and outside of the lock range, and phase noise in both
free-running and injection-locked oscillators.

7.2 Range of Stable Oscillation Phases
Recall that the lock characteristicΩ(θ), which is the steady-state relationship between
the frequency deviation ∆ω B (M/N)ωinj − ω0 and the oscillator’s phase θ under
lock, is periodic in θ with a period of 2π/N . Consequently, for each frequency
deviation ∆ω within the lock range, there are multiple solutions for θ to the equation
Ω(θ) = ∆ω, which implies the existence of more than one mode that the oscillator
can lock to. For example, the lock characteristic for a sinusoidal injection at the
fundamental harmonic, given in Eq. (4.31) to be ∆ω = (1/2)Iinj

��Γ̃1
�� cos

(
θ + ∠Γ̃1

)
,

features two modes. In this section, we will employ a perturbation analysis of our
pulling equation Eq. (4.20) to show that not all of these modes are mathematically
stable, and consequently, only stable modes will be observed in practice.

We will make extensive usage of the lock characteristic, which was defined in
Chapter 4 as the relationship between the frequency deviation∆ω and the oscillation
phase θ under lock. We will work in the more general setting of an injection at the
fractional M th:N th sub-/super-harmonic, as this does not complicate the analysis in
any way. The lock characteristic can be expressed in several different ways, which
we reproduce below:

Ω(θ) B 1
NTinj

∫
NTinj

Γ̃

(
M
N
ωinjt + θ

)
iinj(t) dt

=

〈
Γ̃

(
M
N

x + θ
)

iinj,0(x)
〉

2πN

=
1
2

[
Iinj,0Γ̃0

2
+

∞∑
n=1

��Iinj,nM Γ̃nN
�� cos

(
nNθ + ∠Γ̃nN − ∠Iinj,nM

) ]
.

(7.1)
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Notice that we can use Ω(θ) to write the pulling equation in the following way:

dθ
dt
= −∆ω +Ω(θ). (7.2)

We now carry out a perturbation analysis. Assume the injection is capable of locking
the oscillator (i.e., is within the lock range), and that θ(t) = θ0 + θ̂(t), where θ0 is
the steady-state injection-locked phase and θ̂ � 1 is some small disturbance. Then,
utilizing a first-order Taylor series approximation yields the following differential
equation for θ̂(t):

dθ̂
dt
= Ω′(θ0) · θ̂ . (7.3)

For θ0 to be a stable oscillation phase under lock, θ̂ must decay to 0 as time
progresses. That is,

θ0 is a stable mode ⇐⇒ Ω
′(θ0) < 0. (7.4)

In other words, θ0 is stable if and only if the lock characteristic has a negative slope
at θ0. But, recall that the lock characteristic gives the relationship between the
frequency deviation ∆ω and the oscillator’s phase. Therefore, we conclude that

θ0 is a stable mode ⇐⇒ ∂∆ω

∂θ

����
θ=θ0

< 0. (7.5)

This explains why all of the simulated lock characteristics depicted thus far only
feature data where the injection frequency finj decreases with the oscillator’s phase
θ. In the next few sections, we will see how the value of the slope itself contains
important information about the oscillator as well.

7.3 Graphical Interpretation
With an understanding of how the slope of the lock characteristic affects stability,
it is useful to think about the dynamics of a periodically perturbed oscillator from
another perspective. We start by rearranging the pulling equation. Recall that the
oscillator’s total phase is equal to ϕ(t) = ωinjt + θ(t). Therefore, Eq. (7.2) can be
written as

Ω(θ) = dϕ
dt
− ω0. (7.6)

But the derivative of ϕ(t) is the oscillator’s instantaneous oscillation frequencyωosc.
Thus,

Ω(θ) = ωosc − ω0. (7.7)
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Figure 7.1: A feedback block diagram representation of fundamental pulling equa-
tion. The ISF and the injection waveform govern the behavior of the lock character-
istic Ω(θ).

In other words, the lock characteristic does not only represent the relationship
between the oscillator’s phase θ and the locked frequency difference ∆ω between
the injection and the oscillator—it is equal to the amount by which the oscillator’s
instantaneous frequency differs from the free-running frequency for a particular
phase shift θ between the oscillator and the injection. If this difference is equal to
∆ω, then the oscillator is locked. Otherwise, any deviation between Ω(θ) and ∆ω
causes θ to change with time, which in turn feeds back into the lock characteristic
and alters Ω(θ). We emphasize this feedback process by redrawing the block
diagram of Figure 6.14a in the form of Figure 7.1. The averaging of the product
iinj,0[x − (N/M)θ] · Γ̃[(M/N)x] has been abstracted away into a single feedback
block: the lock characteristic Ω(θ), which is nonlinear with respect to θ. The
frequency difference ∆ω is portrayed as an input that the system is trying to match.

Let us see how the graph of the lock characteristic affects this process. A plot
of a hypothetical lock characteristic is shown in Figure 7.2. Based on the pulling
equation, we see that θ moves to the right or to the left whenever Ω(θ) is above or
below ∆ω, respectively. Therefore, for a given frequency deviation ∆ω which lies
within the lock range, the red arrows drawn in Figure 7.2 indicate the direction in
which a perturbation from a solution to the equation Ω(θ) = ∆ω will move, giving
rise to the stable and unstable regions shown. Consequently, the only stable solution
for the phase associated with the frequency deviation ∆ω is θ0. Observe how this
reasoning jibes with our analysis of the lock characteristic’s slope from Section 7.2.

We can also consider a frequency deviation ∆ωpull which is outside of the lock
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Figure 7.2: A graphical viewpoint of the lock characteristic which shows the lock
range and stable vs. unstable regions. Note that the lock characteristic is periodic
with a period of 2π/N .

range, causing injection pulling. Now, the lock characteristic Ω(θ) is always strictly
greater than ∆ωpull, and so dθ/dt > 0 for all time, preventing the oscillator from
ever locking. The phenomenon of “beating,” first depicted in Figure 1.5, occurs as
Ω(θ) periodically moves toward and away from ∆ω. When Ω(θ) ventures close to
the lower edge of the lock range and Ω(θ) − ∆ωpull is small, θ will change more
slowly, giving rise to the flatter portion of the curve in Figure 1.6b. Eventually,
however, θ will have moved sufficiently to the right that Ω(θ) − ∆ωpull begins to
grow, thereby increasing dθ/dt until the oscillator slips by an entire period relative
to the injection. (In fact, if the upper and lower lock ranges have opposite signs
(ω−L < 0 < ω+L) as is usually the case, then |dθ/dt | > |∆ω | whenever Ω(θ) is on
the opposite side of zero from ∆ω, which means that the injection actually causes
the oscillator’s phase θ to change more rapidly during slippage than if the oscillator
were free-running!) The repetition of this process creates the “beats” observed in a
pulled oscillator.
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7.4 The Pull-In Process
The pull-in process is a term used to describe the behavior of an oscillator within
the lock range of the injection when its phase θ(t) has not yet reached its steady-state
value θ0. Solving the differential equation Eq. (7.3) for the disturbance θ̂ reveals that
for small perturbations, the pull-in process follows an exponential decay dynamic:

θ̂(t) ∝ e−t/τp (7.8)

where the pull-in time constant τp is given by

τp = −
1

Ω′(θ0)
. (7.9)

Furthermore, this means that the pull-in time constant is related to the slope of the
lock characteristic through

1
τp
≡ ωp = −

∂∆ω

∂θ

����
θ=θ0

, (7.10)

where we defined the pull-in frequency ωp B 1/τp as the reciprocal of the pull-in
time constant. An example of ωp is depicted graphically in Figure 7.2.

Finally, using the definition of Ω(θ), we can use Eq. (7.1) to express ωp in terms of
the ISF in the following ways:

ωp = −
1

NTinj

∫
Tinj

Γ̃
′ (ωinjt + θ0

)
iinj(t) dt

= −
〈
Γ̃
′
(

M
N

x + θ0

)
iinj,0(x)

〉
2πN

=
1
2

∞∑
n=1

nN
��Iinj,nM Γ̃nN

�� sin
(
nNθ0 + ∠Γ̃nN − ∠Iinj,nM

)
.

(7.11)

A block diagram showing how the ISF’s Fourier series coefficients can be used to
calculate ωp is given in Figure 7.3.

Sinusoidal Injection: In the case of a sinusoidal injection (at the N th superhar-
monic), the only nonzero term in its Fourier series is the fundamental component or
the first harmonic, whose amplitude and phase we shall denote as Iinj ≡ |Iinj,1 | and
∠Iinj respectively. Thus, the pull-in frequency becomes

ωp =
1
2

NIinj
��Γ̃N

�� sin
(
Nθ0 + ∠Γ̃N − ∠Iinj

)
. (7.12)
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Figure 7.3: A block diagram showing how the injection waveform and the ISF
interact to form the pull-in frequency.

But based on the lock characteristic of Eq. (7.1), we also know that the frequency
deviation under lock between the injection and the free-running oscillator is given
by

∆ω ≡
ωinj

N
− ω0 =

1
2

Iinj
��Γ̃N

�� cos
(
Nθ0 + ∠Γ̃N − ∠Iinj

)
. (7.13)

Additionally, extremizing this lock characteristic yields the sinusoidal lock range:

ωL =
1
2

Iinj
��Γ̃N

�� . (7.14)

Therefore, these three equations reveal that the pull-in frequency, the frequency
deviation, and the lock range are related through a Pythagorean relationship:

ωp = ±N
√
ωL

2 − ∆ω2, (7.15)

where ωp > 0 if and only if θ0 is a stable solution.

Simulation Results: Figure 7.4 depicts the Spectre simulated pull-in process for
a 1 GHz 17-stage ring oscillator injection locked to a 1 GHz sinusoidal injection
current for two different injection strengths. The phase deviation is introduced into
the locked oscillator by injecting a small impulse of charge onto one of the nodes of
the ring. This simulation was repeated for 10 different injection times which were
equally distributed throughout a cycle. For each simulation, the deviation of the
oscillator’s phase from its steady-state value θ0 was normalized to its initial value
after the injection1, and the result was plotted as a function of the number of elapsed

1We waited for 10% of a period (i.e., 0.1 ns) to allow orbital deviations to decay so the phase
could be unambiguously determined through comparing threshold crossings.
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Figure 7.4: Simulated pull-in process of a sinusoidally injection-locked 17-stage
ring oscillator for two different injection amplitudes.
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cycles. An exponential decay dynamic is evident. At this point, let us define the
pull-in “cycle constant” γ as the number of cycles needed for the phase perturbation
to decay by a factor of 1/e. Therefore,

γ =
τp

Tinj
. (7.16)

The simulated value of γ is easily found from the displayed trendline equation,
which was averaged over all 10 simulations. Across simulations, the data points
were all within 5% of each other, which led to a less than 1% total variation in γ.
This supports our model’s implication that the rate at which an oscillator gets pulled
toward lock depends only on the current discrepancy between the oscillator’s phase
and its steady-state solution, θ̂ ≡ θ−θ0, and not on how the discrepancy was initially
introduced.

Next, we will calculate the value of γ predicted by our model. The magnitude of
the ISF’s fundamental component is |Γ̃1 | = 2.24 × 1011 rad/C. Since ∆ω = 0, we
know that θ0 + ∠Γ̃1 − ∠Iinj = π/2. Therefore, the pull-in frequency simplifies to
ωp = Iinj

��Γ̃1
�� /2. The results of this analysis are summarized in the table below. As

we can see, simulation and theory match quite closely, even for larger injections.

Injection Amplitude Theoretical γ Simulated γ

Iinj = 1.5 mA
2 finj

Iinj
��Γ̃1

�� = 5.95 1
0.1667

= 6

Iinj = 5 mA
2 finj

Iinj
��Γ̃1

�� = 1.79 1
0.5358

= 1.87

Let us look at an example with a more complicated lock characteristic. Figure 7.5
shows the Spectre simulated pull-in process for a 1 GHz CMOS differential LC
oscillator injection-locked to a 1 GHz 0.5 mA sinusoidal injection current. Instead
of differentiating the pulling equation involving the APF Eq. (5.17) directly, we
numerically calculated the slope of the lock characteristic. However, because the
oscillator is current-limited, its behavior should also be reasonably well-captured
by Mirzaei’s Generalized Adler’s equation, the simplified version of the pulling
equation for ideal LC oscillators derived in Section 5.7. To that end, we can
differentiate the lock characteristic from Eq. (5.46) to obtain the following pull-in
time constant [21]:

τp =
2Q
ω0

(
Iosc + Iinj cos θ0

)2

Iinj(Iinj + Iosc cos θ0)
. (7.17)
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Figure 7.5: Simulated pull-in process of a sinusoidally injection-locked CMOS
differential LC oscillator.

A comparison of these two approaches to the simulated pull-in cycle constant is
given in the table below. Note that this oscillator features an oscillator current
of Iosc = (4/π) mA and a quality factor of Q = 15, whereas the solution for the
oscillator’s phase is θ0 = 0. Once again, simulation and theory match very closely.

Theor. γ from Ω′(θ0) Theor. γ from Eq. (7.17) Simulated γ

17.4 16.9 1
0.059

= 16.9

The Large-Perturbation Pull-In Process for a Sinusoidal Injection
It turns out that for the case of a sinusoidal injection, we can actually solve the pulling
equation exactly—without assuming that θ(t) only exhibits small perturbations from
its steady-state locked value θ0. Note that this analysis will parallel the treatment by
Adler [47] and Kurokawa [52], which was for the specific case of an LC oscillator
injected at the fundamental harmonic.

Suppose a sinusoidal injection at the N th superharmonic, represented by the phasor
Iinje j∠Iinj , pulls the oscillator toward lock. Then, the pulling equation Eq. (6.2) can
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be written as

dθ
dt
= ω0 −

ωinj

N
+

1
2

Iinj
��Γ̃N

�� cos(Nθ + ∠Γ̃N − ∠Iinj)

= −∆ω + ωL cos N θ̃,
(7.18)

where we have used the definition of ∆ω, substituted in the lock range ωL for a
sinusoidal injection at the N th superharmonic, and defined a new phase variable θ̃
out of notational convenience via

N θ̃ ≡ Nθ + ∠Γ̃N − ∠Iinj, (7.19)

which simply differs from θ by a constant offset. Note that for this analysis, we
assume that the oscillator iswithin the lock range of the injection; that is, |∆ω | < ωL .
Separating variables, we get

dθ̃
−∆ω + ωL cos N θ̃

= dt . (7.20)

Since |∆ω| < ωL , we can apply the integral Eq. (C.3) from Appendix C.1:

2√
ωL

2 − ∆ω2
tanh−1

[
ωL + ∆ω√
ωL

2 − ∆ω2
tan

(
N θ̃
2

)]
= Nt + C, (7.21)

where C is an integration constant. But we know that
√
ωL

2 − ∆ω2 = ωp/N ,
assuming the steady-state solution is stable. Thus,

tan
(

N θ̃
2

)
=

1
N

ωp

ωL + ∆ω
tanh

(
ωpt + φ0

2

)
, (7.22)

where the constant φ0 is set by initial conditions.

Observe the important fact that θ(t) always tends toward the stable solution (as
expected). This can be seen by noting that since lim

x→∞
tanh(x) = 1, the steady-state

solution θ̃0 for θ̃ satisfies

tan
(

N θ̃0
2

)
=

1
N

ωp

ωL + ∆ω
. (7.23)

Using the half-angle formula for the tangent function and recalling that the lock
characteristic is ∆ω = ωL cos N θ̃0, we can rearrange this equation to get

sin(N θ̃0) =
1
N
ωp

ωL
. (7.24)
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This is consistentwith Eq. (7.12). Sincewe replaced
√
ωL

2 − ∆ω2 withωp/N earlier,
this shows that ωL sin(N θ̃0) > 0, which indicates that the steady-state solution θ̃0

for θ̃ is indeed stable.

Finally, let us rewrite the solution for θ̃(t) in terms of its steady-state value θ̃0:

tan
(

N θ̃
2

)
= tan

(
N θ̃0

2

)
tanh

(
ωpt + φ0

2

)
. (7.25)

By using the approximation tanh x ≈ 1 − 2e−2x for x � 1, one can verify that this
solution reduces to the small-perturbation pull-in dynamic derived above in Eq. (7.8)
as time progresses.

7.5 The Spectrum of an Injection-Pulled Oscillator
Our derivation above begs the question of what would happen if |∆ω | > ωL when
Eq. (7.20) is integrated; that is, what if the oscillator is outside the lock range of the
injection. Before carrying out this calculation, however, let us think about what we
qualitatively expect the behavior of an injection-pulled oscillator to be. Because the
oscillator is unable to lock to the injection and hence θ never reaches a steady-state
constant value, the periodicity of the oscillator’s output is corrupted, resulting in a
frequency spectrum which exhibits a rich collection of tones, or sidebands. This
behavior has been treated analytically by a number of authors [38], [86], [104],
but only for the case of an LC oscillator being pulled near (the fundamental of) its
free-running frequency.

In general, Eq. (4.20) can be solved numerically to observe the time evolution of
the oscillator’s phase θ. Of course, this information alone may not reveal all of
the properties of the spectrum of vosc(t), since amplitude modulation (i.e., orbital
deviations) is also present in general. Still, θ(t) readily captures the way in which
a pulled oscillator “beats” at a low frequency, which is typically considered to be
the salient feature of injection pulling. In this section, we analytically describe the
scenario where an oscillator is injection pulled by a sinusoidal injection at the N th

superharmonic. In doing so, we also derive a simple expression which quantifies
the aforementioned beat frequency.

Again, we start with the superharmonic pulling equation Eq. (6.2) from Section 6.1
and echo the first few steps of Section 7.4 to arrive at the separated differential
equation for the phase θ̃ ≡ θ + (∠Γ̃N − ∠Iinj)/N given in Eq. (7.20):

dθ̃
−∆ω + ωL cos N θ̃

= dt .
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This time, however, |∆ω| > ωL , and so we apply the integral Eq. (C.1) from
Appendix C.1:

2√
∆ω2 − ωL

2
tan−1

[
− ωL + ∆ω√
∆ω2 − ωL

2
tan

(
N θ̃
2

)]
= Nt + C, (7.26)

At this point, we define the beat frequency ωb as

ωb B N
√
∆ω2 − ωL

2. (7.27)

Rearranging, we have that

tan
(

N θ̃
2

)
= − 1

N
ωb

ωL + ∆ω
tan

(
ωbt + φ0

2

)
, (7.28)

where φ0 is again set by initial conditions. The tangent function has a period of π,
and so θ(t) is periodicwith the beat frequencyωb (hence its name). Thus, elementary
phase modulation theory tells us that the distance between adjacent sidebands is ωb.

Examples
Figure 7.6 shows two examples of the magnitude spectrum of an injection-pulled
17-stage ring oscillator, obtained via an FFT of a Spectre transient simulation over
several hundred injection periods. For both examples, the spectrum is also calcu-
lated numerically by solving the pulling equation Eq. (4.20) over several thousand
injection periods. Because the pulling equation only conveys phase information, we
normalized the spectrum by the amplitude of the strongest tone, leaving us with a
unit-less y-axis. The match is reasonable—note that any deviations between the ac-
tual and ISF-predicted lock characteristics will contribute directly to discrepancies
between the simulated and numerically calculated spectra.

Because the injection is sinusoidal, we should also be able to analytically predict
the distance between adjacent sidebands via ωb =

√
∆ω2 − ωL

2. To focus on
the predictive power of this formula, we will use the simulated upper and lower
lock ranges for ωL instead of the theoretical lock range predicted by the ISF-based
lock characteristic. For the first example of Figure 7.6a where finj = 1.04 GHz,
the simulated upper lock range is f +L = 23.8 MHz and the frequency deviation is
∆ f = 38.8 MHz. For the second example of Figure 7.6b where finj = 0.95 GHz,
the simulated lower lock range is f −L = −30.6 MHz and the frequency deviation is
∆ f = −51.3 MHz. The comparison between simulation and theory is summarized
in the table below:
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(a) finj = 1.04 GHz

(b) finj = 0.95 GHz

Figure 7.6: Two examples of the magnitude spectrum of an injection-pulled 17-stage
ring oscillator. The free-running frequency is f0 = 1.0013 GHz and the injection is
sinusoidal with an amplitude of Iinj = 1.5 mA.
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Injection Frequency Theoretical fb Simulated fb

finj = 1.04 GHz
√
∆ f 2 − fL

2 = 30.6 MHz 30.4 MHz

finj = 0.95 GHz
√
∆ f 2 − fL

2 = 41.2 MHz 40.9 MHz

Let us consider an example where the oscillator is at the cusp of being injection
locked. Figure 7.7 shows the spectrum of the 17-stage ring oscillator being injection
pulled at finj = 0.97 GHz, which is barely below the lower edge of the lock range at
f0+ f −L = 0.9707GHz. In this situation, the dominant tone is no longer one sideband
away from the injection as we saw in Figure 7.6 but is instead at the injection
frequency [104]. Again, notice the agreement between the numerically calculated
and the Spectre simulated results. Also, the predicted distance between sidebands

is
√
∆ f 2 − fL

2 = 6.6 MHz, which matches the simulated value of fb = 6.8 MHz.

Figure 7.7: Magnitude spectrum of a 1.0013 GHz 17-stage ring oscillator pulled by
a 1.5 mA sinusoidal injection at 0.97 GHz.

Our final example examines the opposite scenario where the injection is very far
away from the edge of the lock range. Figure 7.8 shows the spectrum of a 1 GHz
Colpitts oscillator perturbed by a 7.5 mA sinusoidal injection at 0.7 GHz. The
lower lock range at this injection amplitude is f −L = −135 MHz, indicating that the



158

minimum injection frequency that can lock the oscillator is 0.865GHz. Because this
is an LC oscillator, we need to account for amplitude modulation by the injection.
This was done by solving the pulling equation of Eq. (5.17), which includes the APF
augmentation, and by assuming the following form for the oscillation voltage:

vosc(t) ∝ [1 + ξ(t)] · cos[ωinjt + θ(t)],

where the amplitude deviation term ξ was also updated at every time step due to its
dependence on θ [see Eq. (5.14)]. As we can see from Figure 7.8, incorporating
the APF into the analysis is critical here. Furthermore, an ISF-only model would

allow us to use the formula fb =
√
∆ f 2 − fL

2, which erroneously predicts a beat
frequency of 268 MHz. Finally, note that as the injection becomes weaker or moves
further away, the magnitude of the sideband on the opposite side of the main tone
from the injection (i.e., at 1.3 GHz in our example) will approach the magnitude of
the tone at the injection [87], [88], [105].

Figure 7.8: Magnitude spectrum of a 1 GHz Colpitts oscillator pulled by a 7.5 mA
sinusoidal injection at 0.7 GHz.

7.6 The Phase Noise of a Free-Running Oscillator
There is a deep mathematical connection between the concepts of phase noise and
injection pulling. At its core, the relationship between these two phenomena stems
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from the fact that phase noise can be interpreted as the result of being pulled by
small, randomnoise currents. Indeed, the impulse sensitivity function (ISF)was first
used by Hajimiri and Lee [87], [88] to characterize phase noise within an oscillator.
As fully autonomous systems, oscillators do not possess an absolute time reference,
which explains why perturbations to their phase both manifest immediately and re-
main permanently. Mathematically, this is expressed by the unit-step function which
appears in the time-varying impulse response of the phase, as we saw in Eq. (4.5)
and Figure 4.1. Therefore, one can surmise that the oscillator’s phase response can
be viewed as a time-varying integrator of external disturbances. Consequently, it
becomes possible for a deterministic, periodic input to effect a fixed, average phase
shift per period, thereby changing the oscillation frequency. On the other hand, a
random perturbation would cause the phase to become increasingly less predictable
over time. Physically, this property of oscillators bears significant implications—
it allows oscillators to exhibit entrainment and synchronization phenomena, and it
fundamentally underlies the mechanism by which clock jitter grows unbounded with
time [106].

In this section, we illuminate this connection by using our phase pulling equation to
calculate the phase noise spectrum of an arbitrary (free-running) oscillator subject
to white noise, which was originally derived by Hajimiri and Lee [87], [88]. Before
we do so, however, we will first show the much simpler case of how Adler’s equation
[47] leads to Leeson’s phase noise expression for an ideal LC oscillator [107], an
exercise first carried out by Mirzaei [104].

The Phase Noise of an Ideal LC Oscillator: From Adler to Leeson
We start with Adler’s equation:

dθ
dt
= ω0 − ωinj −

ω0
2Q

Iinj

Iosc
sin θ. (7.29)

Let iinj(t) = in cos [(ω0 + ∆ω)t] be a small, sinusoidal noise current at an offset
frequency ∆ω from free-running.2 Thus, Iinj = in � Iosc and ωinj = ω0 + ∆ω. To
characterize phase noise, we write the total phase as ϕ ≡ ωinjt + θ = ω0t + φ̂, where
φ̂ is the perturbation from the free-running phase ω0t induced by the current. That
is, φ̂ is the phase noise. Substituting into Adler’s equation, we get

dφ̂
dt
= −ω0

2Q
in

Iosc
sin

(
−∆ωt + φ̂

)
. (7.30)

2Noise “near” other harmonics is irrelevant because Adler’s equation implicitly assumes that the
ISF is perfectly sinusoidal and hence has no components at DC or higher order harmonics.
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Because φ̂ represents noise, we assume it is small in the sense that
��φ̂′�� � |∆ω|.

Applying this approximation and solving the differential equation, we obtain

φ̂ = − ω0
2Q∆ω

in

Iosc
cos(∆ωt). (7.31)

On average, 〈φ̂〉 = 0, but the mean-square variation of the phase is〈
φ̂2〉 = 1

2

(
ω0

2Q∆ω

)2 in
2

Iosc
2 . (7.32)

For an LC oscillator featuring a loss resistance R, the power spectral density of the
noise current can be written as

i2
n

∆ f
=

4FkT
R

(7.33)

where F is an empirical noise-fitting factor, left unspecified by Leeson, but later
separately clarified by Hajimiri [87], Rael [108], and Hegazi [109], [110], among
others.

Note that noise current on the other side of the free-running frequency (i.e., ωinj =

ω0 − ∆ω) contributes the same amount of variance in the phase. So, the (single-
sideband) power spectral density of the phase is

Sφ(∆ω) = 2 ×
E
[〈
φ̂2〉]
∆ f

= 2 × 1
2

(
ω0

2Q∆ω

)2 1
Iosc

2 ×
i2
n

∆ f
. (7.34)

Thus, the single-sideband phase noise at an offset ∆ω is given by

L{∆ω} = Sφ(∆ω) =
(

ω0
2Q∆ω

)2 4FkT
Iosc

2R
=

2FkT
P

(
ω0

2Q∆ω

)2
, (7.35)

where P is the average power dissipated by the oscillator. This is the result from
Leeson [107] in the 1/ f 2 region.3

The Phase Noise of a General Oscillator
This time, we will use the model for the phase of an oscillator under injection
developed in Chapter 4. However, because we are interested in noise, let us hold off
on averaging the differential equation and start with Eq. (4.16) instead:

dθ
dt
= ω0 − ωinj + Γ̃

(
ωinjt + θ

)
iinj(t). (7.36)

3The relationship L{∆ω} = Sφ(∆ω) does not hold for very close-in offsets ∆ω, in which case
one must defer to the full derivation of the Lorentzian spectrum.
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Now, let iinj(t) = in cos[(nω0 + ∆ω)t] be a small, sinusoidal noise current at an offset
∆ω from the nth harmonic of the free-running frequency, where n = 0, 1, 2, . . . is
a nonnegative integer. Thus, the injection frequency is ωinj = nω0 + ∆ω. Again,
we write the total phase as ϕ = ωinjt + θ = ω0t + φ̂, where φ̂ is the phase noise.
Substituting, we get

dφ̂
dt
= Γ̃

(
ω0t + φ̂

)
· in cos[(nω0 + ∆ω)t] . (7.37)

Notice that ∆ω is arbitrary, and so the right-hand-side is no longer periodic. To
resolve non-periodic scenarios, we must resort to an indefinite average [96]:

dφ̂
dt
= lim

T→∞

1
T

∫
T
Γ̃
(
ω0t + φ̂

)
· in cos[(nω0 + ∆ω)t] dt . (7.38)

Again, the solution to the averaged equation can be shown to be δ(ε)-close to the
original equation on a time scale of 1/ε, where δ(ε) is a suitable order function [96].

At this point, it becomes convenient to expand the ISF in terms of its Fourier series.
Referring to Eqs. (4.24) and (4.25), we get

dφ̂
dt
= in lim

T→∞

1
T

∫
T

[
Γ̃0
2
+

∞∑
k=1

��Γ̃k
�� cos

(
kω0t + k φ̂ + ∠Γ̃k

) ]
cos[(nω0 + ∆ω)t] dt.

Recall from above that nω0 = ωinj − ∆ω. Therefore, the most significant term that
emerges from this averaging integral is the “DC component” from the frequency
difference term at k = n:

dφ̂
dt
≈

in
��Γ̃n

��
2

cos
(
∆ωt − nφ̂ − ∠Γ̃n

)
. (7.39)

Assuming the phase noise is small in the sense that
��nφ̂′�� � |∆ω| and solving the

differential equation, we get

φ̂ =
in

��Γ̃n
��

2∆ω
sin

(
∆ωt − ∠Γ̃n

)
, (7.40)

which has a mean-square variation of

〈
φ̂2〉 = 1

2

(
in

��Γ̃n
��

2∆ω

)2

. (7.41)

Assuming the noise is white and therefore has a flat spectrum, we now account for all
the other (uncorrelated) noise components of equal amplitude at the same absolute
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offset ±∆ω from different harmonics nω0 of the free-running frequency. Note that
for n = 0, we only have ωinj = ∆ω since the frequency must be positive. This yields

〈
φ̂2〉

Total =

(
in

2∆ω

)2
(

1
2

��Γ̃0
��2 + ∞∑

n=1

��Γ̃n
��2) = 2

(
inΓ̃rms
2∆ω

)2

, (7.42)

where Γ̃rms is the root-mean-square of the ISF. Note that Parseval’s identity was
used:

2Γ̃2
rms ≡

1
π

∫
2π
Γ̃

2(x) dx =
1
2

��Γ̃0
��2 + ∞∑

n=1

��Γ̃n
��2 . (7.43)

Thus, the single-sideband phase noise at an offset ∆ω is given by

L{∆ω} = Sφ(∆ω) =
E
[〈
φ̂2〉

Total
]

∆ f
=
Γ̃2

rms

2 · ∆ω2 ·
i2
n

∆ f
, (7.44)

which is the result from Hajimiri [87], [88] in the 1/ f 2 region. Again, for very
close-in offsets, L{∆ω} = Sφ(∆ω) is no longer valid and one must defer to the full
derivation of the Lorentzian spectrum.

7.7 The Phase Noise of an Injection-Locked Oscillator
Due to the dynamics of the locking phenomena, injection-locked oscillators display
qualitatively different phase noise behavior than free-running oscillators. In this
section, we use the perturbation analysis carried out in Section 7.2 to express the
phase noise of an injection-locked oscillator in terms of the phase noise profiles of
the underlying free-running oscillator and of the injection signal. The key piece of
insight that governs this analysis is that it takes time for the oscillator to track the
phase of the injection signal. To form a more general analysis, we will work in the
setting of an M:N sub-/super-harmonic injection-locked oscillator.

Free-Running Noise
Let us analyze the effect of the free-running phase noise first, which we shall denote
as L0{∆ω}. We know from Section 7.2 that an injection-locked oscillator recovers
from small deviations from the locked phase via a first-order exponential decay
dynamic. Thus, we can model the time-varying impulse response of the oscillator’s
phase (relative to lock) to a noise source with associated ISF ˆ̃Γ(·) as

hθ̂(t, τ) = ˆ̃Γ[ϕ(τ)] e−ωp(t−τ)u(t − τ), (7.45)

where ωp, the pull-in time constant introduced in Section 7.2, is the negative of the
slope of the lock characteristic.
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In the free-running case, there is no phase restoration process and the perturbation
persists indefinitely, meaning that hφ(t, τ) = ˆ̃Γ[ϕ(τ)] u(t − τ) as given in Eq. (4.5).
(The concept of a “perturbation” is context dependent—whereas the phase pertur-
bation in the free-running case is φ, it becomes θ̂ in the injection-locked scenario.)
Of course, this response is what gives rise to the free-running phase noise L0{∆ω}.
Hence, we can now see that the process of injection locking passes the oscillator’s
free-running phase perturbations through an additional linear, time-invariant
system whose unit step response is [79]

s0(t) = e−ωptu(t). (7.46)

This can be proven by calculating the the response of the system formed from
cascading hφ(t, τ) with h0(t) ≡ s′0(t) to an impulse x(t) = δ(t − τ0) at some time τ0.
The response to the first system is hφ(t, τ0), and so the cascaded response is given
by

y(t) = hφ(t, τ0) ∗ h0(t)

=

∫ ∞

−∞
h0(τ)hφ(t − τ, τ0) dτ

= ˆ̃Γ[ϕ(τ0)]
∫ ∞

−∞
s′0(τ)u(t − τ − τ0) dτ

= ˆ̃Γ[ϕ(τ0)] s0(t − τ0)
= hθ̂(t, τ).

(7.47)

Next, the transfer function associated with the impulse response h0(t) is

H0(s) =
s

s + ωp
, (7.48)

which is a first-order high-pass filter with its pole at s = −ωp.

On a more subtle note, notice that the “noiseless” argument of the ISF—the oscilla-
tor’s total phase—becomes ϕ(t) = ωinjt+θ0 for the injection-locked case as opposed
to ϕ(t) = ω0t in the free-running case. Consequently, the injection locking process
also shifts the free-running phase noise profile such that the offset ∆ω is referred to
the injection frequency ωinj instead of the free-running frequency ω0.

Injection Noise
Next, let us analyze how the oscillator reacts to phase noise in the injectionLinj{∆ω}.
Suppose the injection phase suddenly changes by some amount ∆ϕinj. We know that
the oscillator will “track” this change, approaching a new steady-state value through
a first-order exponential decay dynamic with time constant τp ≡ 1/ωp. Because
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the same time shift at the N th-harmonic corresponds to N times the phase shift, the
steady-state change in the oscillator’s phase should be ∆θ0 = (M/N)∆ϕinj. More
rigorously, we can see this by noting that preservation of the oscillation frequency
as dictated by the lock characteristic requires

∆ω =

〈
Γ̃

(
M
N

x + θ0 + ∆θ0

)
iinj,0(x + ∆ϕinj)

〉
2πN
=

〈
Γ̃

(
M
N

x + θ0

)
iinj,0(x)

〉
2πN

.

As we can see, for this equation to be satisfied, we need

∆θ0 =
M
N
∆ϕinj. (7.49)

Notice that what we have effectively reasoned through is the step response of the
oscillator’s phase with respect to small changes in the injection phase [79]:

sinj(t) =
M
N

(
1 − e−ωpt ) u(t). (7.50)

This corresponds to the following transfer function:

Hinj(s) = s × M
N
×

(
1
s
− 1

s + ωp

)
=

M
N
·

ωp

s + ωp
, (7.51)

which is a first-order low-pass filter with its pole at s = −ωp.

Total Noise
Now, assuming that the oscillator and the injection have uncorrelated sources of
noise, we can use theWiener-Khinchin Theorem and basic properties of LTI systems
to derive the power spectral density of the locked oscillator’s phase [111], which
serves as a good estimate of the phase noise in the 1/ f 2 region:4

L{∆ω} = |H0( j∆ω)|2 L0{∆ω} +
��Hinj( j∆ω)

��2 Linj{∆ω}. (7.52)

Utilizing the transfer functions we derived, we get [79]

=⇒ L{∆ω} = ∆ω2

∆ω2 + ωp
2
L0{∆ω} +

(
M
N

)2 ωp
2

∆ω2 + ωp
2
Linj{∆ω}. (7.53)

4Note that ∆ω here represents the frequency offset from the carrier (ωinj in this case) at which
the oscillator’s noise level is being evaluated. In this section, ∆ω is not the frequency deviation
ωinj − ω0 we have previously defined.
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As a simple example, consider an ideal LC oscillator locked to a sinusoidal injection
(M = N = 1). Eqs. (7.12) and (7.14) reveal that ωp = ωL sin

(
θ0 + ∠Γ̃1 − ∠Iinj

)
.

Adopting the usual convention that v0 and iinj,0 have the same phase reference and
referring to Table 5.5, we have that ∠Γ̃1 − ∠Iinj = π/2. Therefore, the pull-in
frequency reduces to ωp = ωL cos θ0; substituting this into Eq. (7.53) yields the
same result for phase noise from [81].

Figure 7.9: Evolution of an injection-locked oscillator’s phase noise from the in-
jection noise and the free-running noise. The injection noise is low-pass filtered,
whereas the free-running noise is high-pass filtered.

The results of this analysis are summarized in Figure 7.9. Effectively, the oscillator
is only capable of tracking the injection phase over time scales slower than the
pull-in process. Consequently, low-frequency phase noise originating from the free-
running oscillator is filtered out by the locking dynamic, whereas high-frequency
noise in the injection is transparent to the oscillator and therefore does not appear in
the oscillation voltage either. For this reason, the phase dynamics of an injection-
locked oscillator are similar to that of a first-order phase-locked loop (PLL), where
the injection signal takes the place of the PLL’s input reference and ωp is the loop
bandwidth of the PLL.5

5One main difference is that in a PLL, the input frequency can be M times lower than the output
frequency (e.g., high-frequency clock generation from a clean, low-frequency, crystal reference)
without the presence of the M th-harmonic in the reference signal, as the loop’s implementation
inherently accounts for the frequency multiplication that needs to take place.
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C h a p t e r 8

DESIGN INSIGHTS – OPTIMIZATION OF THE LOCK RANGE

8.1 Introduction
In this chapter, we put the theory we have developed to use, aiding in the design and
practical implementation of electronic systems that rely on injection locking. The
endeavor which holds the most potential in this context is that of utilizing the lock
characteristic to expand the range of frequencies over which the oscillator will lock.
We will first explore how the injection can be modulated to achieve this, and then
look at how the oscillator itself can be changed to widen the lock range.

8.2 Constraining the Injection Power
Since the lock range increases with the injection strength, we must constrain the size
of the injection current in a meaningful way to form a well-defined optimization
problem. Although thismay be straightforward to do for relatively simplewaveforms
like sine or square waves, it becomes difficult to ascertain the injection “amplitude”
when a complicated assortment of harmonics is present. A more universal measure
of the injection size which accounts for power in all harmonics is the root-mean-
square (RMS) of the injection current:

Irms ≡
√〈

i2
inj

〉
B

√
1

Tinj

∫
Tinj

iinj(t)2 dt =

√
1

2π

∫
2π

iinj,0(x)2 dx. (8.1)

At first glance, the RMS injection current might also seem to represent the average
power injected into the oscillator, but this assumes a fixed load, which is rarely
the case in practice for the input impedances of actual oscillators. However, from a
different andmuchmore practical perspective, Irms actually serves as a goodmeasure
of the average power consumption of the injection circuitry itself.

To understand why, consider the differential transistor pair in Figure 8.1 which com-
mutates a static tail bias current Ibias. In the most efficient scenario, the differential
injected current iinj strictly alternates between ±Ibias. This injection current has
an RMS amplitude of Irms = Ibias, which is proportional to the static power con-
sumption of the injection circuit: IbiasVDD. In reality, however, the circuit cannot
transition between ±Ibias instantaneously, resulting in time periods where the circuit
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Figure 8.1: Simplified schematic showing an example of how the injection circuitry’s
static bias current Ibias, which dictates the power consumption, is converted to the
injected current iinj.

is injecting less current. Thus, the average power consumption of the injection
circuitry is usually at least IrmsVDD.

In summary, the root-mean-square injection current is a meaningful metric to con-
sider because of its physical significance from a design standpoint—the minimum
average power drawn by the injection circuitry scales with Irms—and because it
serves as an unambiguous definition of the injection amplitude regardless of the
shape of the injection waveform. With this in mind, we are now in a position to
think about how we can broaden the lock range by shaping the injection current for
a fixed “injection power,” or more precisely, RMS amplitude Irms.

8.3 Maximizing the Lock Range
Weare interested in optimizing the lock range for a given injection power by changing
the injection waveform iinj,0:(

ω±L
)∗
B max/min

iinj,0
ω±L

s.t.
〈
i2
inj

〉
= I2

RMS,

(8.2)

where IRMS is a fixed constant which represents our constraint on the RMS injection
current Irms (with lowercase subscripts). But, recall that the lock range itself is given
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by the largest achievable steady-state frequency deviation (i.e., ω±L B max/min∆ω
for dθ/dt = 0) for a given injection waveform, which is akin to extremizing the lock
characteristic with respect to the oscillator’s phase θ:

ω±L = max/min
θ

〈
Γ̃(x + θ) iinj,0(x)

〉
2π . (8.3)

Although this technically completes the description of the optimization problem we
are trying to solve, there are two important observations we can make at this point
which greatly simplify the problem’s statement.

1. Shifting the relative phase θ between the oscillator and the injection can be
interpreted as away inwhich the injectionwaveform can bemodulatedwithout
changing the injection power. After all, the optimization of the lock range
should always seek out the value of θ that achieves the maximal frequency
shift for a given injection waveform, and so the optimal solution is impervious
to the specification of θ in the problem’s formulation. In other words, we can
“bypass” the optimization problem in Eq. (8.3) altogether, since the degree of
freedom embodied in θ has already been absorbed into the setup of Eq. (8.2)
and is therefore redundant.

2. While the upper and lower lock ranges ω±L for a given injection waveform iinj,0

could in general be quite different, the upper and lower optimal lock ranges
(ω±L)∗ for a given injection power IRMS are always equal and opposite. To
see this, notice that reversing the direction of the injection current requires
an equal but opposite injection frequency difference ∆ω to achieve the same
oscillation phase θ, thereby interchanging the upper and lower lock ranges
(in magnitude). Consequently, the injection waveforms which optimize the
upper and lower lock ranges must be the negative of one another. As a result,
the problem of separately optimizing the upper and lower lock ranges can be
reduced to a single absolute lock range optimization problem.

With these two ideas in mind, we can rewrite our lock range optimization problem
as:

ω∗L = max
〈i2

inj〉=I2
RMS

��〈Γ̃(x) iinj,0(x)
〉

2π

�� . (8.4)

Based on our first observation above, this formulation has the added benefit that its
solution automatically tells us what what relative phase θ achieves the lock range
for the optimal injection waveform.
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Now, we proceed to solve this optimization problem. Observe that the average
of the product of the ISF and the injection waveform,

〈
Γ̃(x) iinj,0(x)

〉
, is actually

a (real) inner product of Γ̃(x) and iinj,0(x) on the space of 2π-periodic functions
square-integrable over a single period.1 That is, for any two 2π-periodic functions
f (x) and g(x) square-integrable over a single period, the following constitutes an
inner product over R:

〈 f , g〉 B 〈 f (x)g(x)〉2π ≡
1

2π

∫
2π

f (x)g(x) dx. (8.5)

Furthermore, the norm induced by this inner product is the root-mean-square am-
plitude of the function:

‖ f ‖ ≡
√〈

f 2(x)
〉

2π ≡

√
1

2π

∫
2π

f (x)2 dx ≡ frms. (8.6)

Therefore, the constraint on the injection power is equivalent to fixing the norm of
the injection current iinj,0, and our optimization problem can be rewritten as

ω∗L = max
‖iinj,0‖=IRMS

��〈Γ̃, iinj,0
〉�� . (8.7)

This optimization problem is readily solved by applying the Cauchy-Schwarz In-
equality [112]. Specifically, optimality is obtained when the vectors are collinear,
and so the optimal injection current i∗inj,0 satisfies:

i∗inj,0(x) ∝ Γ̃(x). (8.8)

Of course, the constant of proportionality is dictated by the constraint on the injection
power. Specifically,

i∗inj,0(x) = ±
Irms

Γ̃rms
Γ̃(x), (8.9)

where the positive solution optimizes the upper lock range (ω+L)∗ and the negative
solution optimizes the lower lock range (ω−L)∗. Finally, the optimal lock range is
therefore equal to the product of their norms:

ω∗L =
���〈Γ̃, i∗inj,0

〉��� = ‖iinj,0‖ · ‖Γ̃‖ = IrmsΓ̃rms. (8.10)

Effectively, the lock range is maximized when the injection current waveform is
proportional to the ISF. This idea is illustrated conceptually in the cartoon of

1In fact, it is equal to the standard L2 inner product over any 2π-long interval, normalized by a
factor of 2π.
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Figure 8.2: For a fixed injection power Irms, the injection waveform that optimizes
the lock range is one whose shape matches that of the ISF.

Figure 8.2. After all, the ISF is a measure of the sensitivity of the oscillator’s phase
to external disturbances as a function of when the disturbance is applied. Therefore,
an injection waveform which looks like the ISF is more active at points along the
oscillation cycle that are more sensitive to the injection. We can also extend this
intuition to a more physical level. For a given injection node, the oscillator’s phase
is more impressionable—and the ISF is larger—when the voltage at that node is
changing more rapidly.2 It makes sense that displacing charge at the injection node
during these times will advance or retard the oscillation more effectively. We will
explore this idea in more detail in the following example.

Considerations for Rapidly Switching Oscillators
Oscillators which feature rapid switching behavior, such as long ring oscillators
and the differential astable multivibrator, have ISFs which contain short, tall pulses.
Physically, this corresponds to the marked increase in the phase’s sensitivity to
perturbations when the oscillator is switching. Consequently, the lock range for
such oscillators can be widened significantly by taking advantage of this fact and
more “efficiently” injecting the same amount of power. We present three examples
below. Notice how the deviation of the shape of the lock characteristic compared to
a sinusoidal injection is accurately captured by our model.

2To the first order, this is embodied by the numerator of Eq. (4.6), the formula for the ISF
assuming orthogonal state variables.
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Our first example is applying a rectangular pulse injection to the 17-stage ring
oscillator of Figure 4.12. This injection waveform is shown alongside the ISF in
Figure 8.3. Note that the vertical axis for iinj,0 has “arbitrary units,” as we will
specify the injection amplitude for each example. Specifically, we will use the same
root-mean-square amplitudes of the sinusoidal injections from Figure 4.13.

(a) Impulse sensitivity function.

(b) Injection waveform.

Figure 8.3: Using a rectangular pulse injection to match the ISF of a 17-stage ring.

The lock characteristics for several different injection strengths are shown in Fig-
ure 8.4. Theoretical lock characteristics for a sinusoidal injection and for the optimal
injection which exactly matches the shape of the ISF3 (of the same RMS amplitude)
are also shown for comparison. Observe the deviation between theory and simula-
tion for the lower edge of the lock range at higher injection strengths, which also
appeared in the sinusoidal lock characteristics of Figure 4.13.

3This optimizes the upper lock range. The lower lock range is optimized by matching the
negative of the ISF. This distinction is not terribly significant here, as the ISF is fairly symmetric.
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(a) Irms = 1.5/
√

2 mA

(b) Irms = 3/
√

2 mA

(c) Irms = 4/
√

2 mA

Figure 8.4: Lock characteristic of the 17-stage ring oscillator for rectangular pulse
injections of varying power.
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Although using a rectangular pulse enhances the lock range by over 50% (in theory)
compared to a sinusoidal injection, there is still room for improvement, as is apparent
from the optimal lock characteristic shown in Figure 8.4. To mimic the ISF even
more closely, we use pulses shaped like “half sine waves,” as shown in Figure 8.5.

Figure 8.5: Using a sinusoidally shaped pulse injection to more closely match the
ISF of a 17-stage ring oscillator.

The lock characteristics for several different injection strengths are shown in Fig-
ure 8.6. Note that the optimal lock range is nearly double the sinusoidal lock range.
Also, even though the lock characteristic for these sinusoidally shaped pulses now
matches the optimal one much more closely in theory, observe how injecting rect-
angular pulses results in a wider simulated lower lock for injections strong enough
to invoke nonlinear behavior.
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(a) Irms = 1.5/
√

2 mA

(b) Irms = 3/
√

2 mA

(c) Irms = 4/
√

2 mA

Figure 8.6: Lock characteristic of the 17-stage ring oscillator for sinusoidally shaped
pulse injections of varying power.
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To gain a deeper understanding of how this injection shape enhances the lock
range, Figure 8.7 shows the injection current and the oscillation voltage (which is
observed at the injection node) at the lower and upper edges of the lock range for
Irms = 1.5/

√
2 mA. Observe how the pulses target the transitions of the oscillation

voltage—specifically, the pulses aid the transitions at the upper edge (upward pulses
at rising transitions and vice versa), while they hinder the transitions at the lower
edge (upward pulses at falling transitions and vice versa). In fact, due to the opposing
nature of the injection pulses at the lower edge of the lock range, one can see how
the rising and falling transitions are both less steep, and therefore longer, than the
transitions at the upper edge. Lastly, note that this transition-targeting behavior
must occur at the edges of the lock range, as injecting current into a supply- or
ground-saturated node has little effect on the oscillator’s phase.

Figure 8.7: A depiction of how an optimized injection current targets the transitions
of rapidly switching oscillators at the lower and upper edges of the lock range
( finj = 0.95 GHz and finj = 1.04 GHz, respectively).

As another example of a rapidly switching oscillator, we will look at injecting
triangular pulses into the differential NMOS astable multivibrator of Figure 4.17.
Note that the optimal lock range is only around 36% wider than the sinusoidal one.
The results are shown in Figure 8.8.

To summarize, the primary takeaway from the examples presented here is that the
lock range for rapidly switching oscillators is generally enhanced by injecting short,
tall pulses of current.



176

(a) Impulse sensitivity function.

(b) Injection waveform.

(c) Irms = 0.1/
√

2 mA

Figure 8.8: Lock characteristic of the astable multivibrator for a triangular pulse
injection.
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Other Examples
Not all oscillators benefit significantly from altering the injection shape. For exam-
ple, the lock range of the ideal Bose oscillator would only increase by roughly 10%
after optimizing the injection waveform. Furthermore, this optimal injection would
be difficult to generate in practice, due to the exponentially-rising and discontinuous
nature of the ISF. Instead, we will consider the square wave injection shown in
Figure 8.9.

(a) Impulse sensitivity function.

(b) Injection waveform.

Figure 8.9: Injecting a square wave into an ideal Bose oscillator.

The lock characteristics for several different injection strengths are shown in Fig-
ure 8.10. While little difference between the lock ranges exists, notice how our
theoretical framework accurately captures the subtle changes in the shape of the
lock characteristic. Also, observe the lack of smoothness (discontinuous derivative)
at the points dividing the stable and unstable portions of the lock characteristic. This
occurs because both the ISF and the injection are not smooth themselves.
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(a) Irms = 2.5/
√

2 mA

(b) Irms = 5/
√

2 mA

(c) Irms = 7.5/
√

2 mA

Figure 8.10: Lock characteristic of the ideal Bose oscillator for square wave injec-
tions of varying power.
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8.4 Optimization of Injection-Locked Frequency Dividers
While the preceding section dealt with optimizing the fundamental lock range of
an oscillator, injection-locked oscillators which lock to higher-order harmonics
are arguably more important due to their prevalence in RF frequency synthesizer
applications. However, the case of optimizing the lock range of injection-locked
frequency dividers (ILFDs) is not merely a straightforward extension of optimizing
the fundamental lock range. We cannot simply set the injection current to be
proportional to the ISF, as the injection waveform must “iterate through” N periods
over a single period of the ISF. More precisely, our new optimization problem can
be posed as

ω∗L = max
〈i2

inj〉=I2
RMS

����〈Γ̃( x
N

)
iinj,0(x)

〉
2πN

����
s.t. iinj,0(x) = iinj,0(x + 2π) ∀x.

(8.11)

Although this additional constraint may seem difficult to manage at first glance, we
can recast this optimization problem in the frequency domain via Fourier series:

ω∗L = max
〈i2

inj〉=I2
RMS

1
2

[
Iinj,0Γ̃0

2
+

∞∑
n=1

��Iinj,nΓ̃nN
�� cos

(
∠Γ̃nN − ∠Iinj,n

) ]
. (8.12)

We can further rewrite this expression using complex vector notation:

ω∗L =
1
2

max
〈i2

inj〉=I2
RMS

������������
Re





Iinj,0√
2

Iinj,1

Iinj,2
...



H 

Γ̃0√
2
Γ̃N

Γ̃2N
...





������������
, (8.13)

where uH denotes the conjugate transpose or Hermitian of u. The quantity being
optimized can again be shown to be the absolute value of a real inner product. That
is, we have the following proposition [112].

Claim 8.4.1. For any pair of square-summable complex sequences u = {un} and
v = {vn}, the following is an inner product over the field of real numbers R:

〈u , v〉 B Re{uHv} ≡ Re

{∑
n

unvn

}
, (8.14)

with the same induced norm as the usual Euclidean complex inner product uHv.
(See Appendix C.2 for a proof of this.)
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By Parseval’s relation, our constraint on the root-mean-square injection current 〈i2
inj〉

is equivalent to specifying the norm of the injection current vector in Eq. (8.13).
Therefore, the Cauchy-Schwarz inequality [112] is directly applicable once again,
and optimality is similarly obtained when the two vectors are collinear:

=⇒



I∗inj,0√
2

I∗inj,1
I∗inj,2
...


∝



Γ̃0√
2
Γ̃N

Γ̃2N
...


. (8.15)

Carefully note at this point that even though the vectors themselves might feature
complex elements (as they are Fourier series coefficients), the inner product is a real
inner product. Therefore, the constant of proportionality must be real4, which leads
to the following set of expressions for the optimal injection current:

I∗inj,n = ±
Irms√√

Γ̃2
0

2
+

∞∑
n=1

��Γ̃nN
��2 Γ̃nN, (8.16)

where n = 0, 1, . . . . With this optimizer, the optimal lock range is:

ω∗L = Irms

√√
Γ̃2

0
2
+

∞∑
n=1

��Γ̃nN
��2. (8.17)

Thus, the shape of the optimal injection current can thus be constructed by setting its
Fourier series coefficients equal to the N th-multiple Fourier series coefficients of the
ISF. In some sense, the remaining spectral components of the ISF are “irrelevant”
because the corresponding components of the injection current are zero by definition
of the divide-by-N nature of the problem.

Example: Locking Long Ring Oscillators to 2nd Harmonic Pulses
The preceding results are best illustrated on oscillators where the ISF contains
significant power at harmonics which are multiples of N . Consider locking the
17-stage ring oscillator of Figure 4.12 to an injection at the second harmonic.
Figure 8.11 shows the upper and lower optimal injection currents calculated from

4This is because the Cauchy-Schwarz inequality relies on the the property of linearity in the first
argument, 〈αu , v〉 = α 〈u , v〉 where α is a scalar, which is not satisfied if the inner product is real
and α is complex with nonzero imaginary part. In other words, Re{uHv} is not an inner product
over the field of complex numbers C.
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Eq. (8.16) over a single oscillation period, or two injection periods. Because
this shape may be difficult to generate in practice, we injected a rectangular pulse
instead with a pulse width equal to 20% of the injection period. Note that unlike the
rectangular pulse of Figure 8.3, these waveforms only contain upward or downward
pulses, not both. For comparison, the results from injecting a sinusoidal current
with the same RMS amplitude were also simulated. To avoid the nonlinearities
that result when a DC current is injected into the oscillator, as was demonstrated in
Section 4.5, we zeroed the DC component of the injection current (Iinj,0 = 0), with
the remaining components re-normalized to the original RMS amplitude.

Figure 8.11: Optimizing the injection waveform for using a 17-stage inverter-chain
ring oscillator as a divide-by-2 ILFD. Injections for optimizing the upper and lower
lock ranges are signified with ‘(U)’ and ‘(L)’, respectively. The RMS injection
amplitude is Irms = 1.5/

√
2 mA.

The resultant lock characteristic is shown in Figure 8.12. Although deviations
between prediction and simulation due to nonlinear behavior are apparent, using
this theoretical framework still lead to the discovery of the downward rectangular
pulse injection, whose simulated lock range is more than double the sinusoidal lock
range.

Notice how the lock range is extremely narrow—the sinusoidal lock range is only
16 MHz, while the lock range for a sinusoidal injection of the same amplitude at
the third harmonic is 148 MHz (see Figure 6.3), for example. This is because the
ISF of the 17-stage ring oscillator does not contain strong even harmonics due to
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Figure 8.12: Lock characteristic for a 17-stage ring oscillator with a division ratio
of N = 2 using the injection waveforms shown in Figure 8.11.

the symmetry between the rising and falling edges of the oscillation waveform.
Essentially, the technique presented in this section is capitalizing on the slight
asymmetry between the rising and falling edges, which becomes more pronounced
in the ISF as the number of stages increases. Therefore, in addition to shaping the
injection, it is perhaps fruitful to think about how the oscillator can be topologically
altered in order to optimize the lock range. This concept will be explored next.

8.5 Shaping the ISF
Although we saw in the previous sections how we can “shape” the injection iinj(t)
to optimize the lock range, this can be quite difficult to do in practice from a circuit
design perspective. Thus far, we have taken the injection for granted as if it came
from an ideal current source—in reality, the injection current is usually generated by
one or more transistors whose gate voltage is being driven by the desired injection
signal. But transistors have a finite large-signal output impedance—a particularly
troublesome issue if the voltage at the injection terminal varies significantly. In fact,
this is frequently the case, since most injections are applied across the oscillator’s
“output” terminals, which feature oscillation voltages whose swing is comparable
to the supply voltage. In other words, in addition to the desired dependence of
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the injection current on VGS, the large voltage swing at the drain can also influ-
ence the injection current rather drastically [113], [114]. Thus, the time-domain
characteristics of the injection current are heavily affected by the oscillation voltage
vosc(t) itself, resulting in a complicated dynamic that can be difficult to control.
Consequently, designing the injection circuitry to have a sufficiently high output
impedance often presents a significant challenge in the implementation of systems
that rely on injection locking.

One way to address this issue is to directly increase the output impedance through
the use of a series “injection resistor.” In doing so, we intentionally shift our design
efforts to generating an injection voltage instead of an injection current. This is
because the Norton equivalent of this circuit is a current source in parallel with
the injection resistor [115], as shown in Figure 8.13. Reliable voltage waveforms
can be much easier to generate and maintain through the design of a proper buffer.
(Buffers are also necessary for isolation purposes if the desired injection signal
is the output voltage of another oscillator.) Note that the buffer is anything that
converts the original source of the injection to a voltage—if we are interested in
locking to an optical signal, for example, we could use a photodiode combined with
a transimpedance amplifier [116].

Figure 8.13: Actual implementation of the injection circuitry (left) and its Norton
equivalent (right). The voltage source vinj can come from an off-chip signal generator
or from the output of an amplifier, for example.

This technique entails several design considerations. First, the buffer’s output
impedance must be small compared to the injection resistor. Put another way, the
output devices of the buffer must be large enough to supply the desired amount of
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injection current. Second, the effect of the injection resistor should be accounted
for in the design of the oscillator, as indicated in Figure 8.13. These two constraints
imply a fundamental trade-off with the injection strength: a larger injection resistor
will load the oscillator and the buffer less, but it will also decrease the injection
current amplitude for a given output swing from the buffer. In particular, the
maximum peak-to-peak injection current for a given supply VDD is Iinj = VDD/Rinj.

Even with this technique at our disposal, it can still be challenging to create specific
shapes in the injection voltage at high frequencies, since these shapes require higher
order harmonics which are attenuated or distorted by the parasitics in the active
devices. Note that passive linear filters are incapable of shaping a signal without
changing the signal power, as this process requires energy to be moved around
between harmonics. However, it is often difficult to justify the extra power that is
needed by an active circuit to shape the injection voltage, as this power might have
been better spent increasing the amplitude of a sinusoidal or otherwise sub-optimally
shaped injection current.

Therefore, it may be much more convenient—or even necessary—in many scenarios
to shape the ISF instead of the injection in order to widen the lock range. This is
done by altering the design of the oscillator. One such example was alluded to at
the end of the last section—introducing asymmetry between the rising and falling
edges of of a ring oscillator to enable frequency division by even ratios. We will
explore this technique below.

Half-Wave Symmetry in the ISF
Most oscillators feature symmetry between the “rise” and “fall” of their oscillation
waveform, either due to the circuit’s differential nature or the physical similarity
between how the node capacitances charge and discharge. Consequently, many ISFs
exhibit what is known as half-wave symmetry:

Γ̃(x) = −Γ̃(x + π). (8.18)

In other words, each half period is the negative of the previous half period. A
hypothetical example of an ISF which exhibits half-wave symmetry is shown in Fig-
ure 8.14. Periodic functions which satisfy this property contain no even harmonics
[115]; that is, Γ̃n = 0 for all n = 0, 2, 4, . . . . This is easy to see through direct
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Figure 8.14: Hypothetical ISF which contains no even harmonics due to its half-
wave symmetry. The “rising edge” happens when 0 < x < π and the “falling edge”
happens when π < x < 2π.

calculation:

Γ̃n =
1
π

∫ π

−π
Γ̃(x)e− jnx dx

=
1
π

∫ 0

−π
Γ̃(x)e− jnx dx +

1
π

∫ π

0
Γ̃(x)e− jnx dx

= −1
π

∫ 0

−π
Γ̃(x + π)e− jnx dx +

1
π

∫ π

0
Γ̃(x)e− jnx dx

= −1
π

∫ π

0
Γ̃(u)e− jnue jnπ du +

1
π

∫ π

0
Γ̃(x)e− jnx dx

= [1 − (−1)n] 1
π

∫ π

0
Γ̃(x)e− jnx dx,

(8.19)

which vanishes for n even. This makes most oscillators incapable of dividing
by an even ratio when the injection is applied across the terminals at which the
oscillation voltage is observed. Instead, even-ratio division is usually achieved by
injecting into the tail node of a differential LC oscillator [4], [5], [8], [11] or a
differential ring oscillator [6], [10], [60], [63], since the tail voltage iterates through
two cycles per oscillation period, giving the ISF at that node rich even-harmonic
behavior. However, these two oscillators are costly in terms of area and power,
respectively. Single-ended inverter-chain ring oscillators, which are small and
power-efficient, present a unique opportunity here because their rising and falling
edges can be independently designed and need not be perfectly symmetric. As
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shown in Figure 8.15, this is achieved by controlling the widths of the P-channel
and N-channel transistors.

Figure 8.15: Intentionally introducing asymmetry into the rising and falling edges
of the inverters in a ring oscillator by modifying the device sizes, WP and WN .

For a brief analytical example, consider the triangular approximation to the ISF of a
ring oscillator proposed byHajimiri et al. [90], shown in Figure 8.16. The parameters
t̂R and t̂F are the rise and fall times of the oscillation waveform, normalized to the
oscillation period and multiplied by 2π.5 The magnitudes of the Fourier series
coefficient of this particular ISF can be calculated to be:

��Γ̃n
�� = 

2
πN2qmax

��cos
(
Nt̂R

)
− cos

(
Nt̂F

) �� , n = 0, 2, 4, . . .
2

πN2qmax

[
2 − cos

(
Nt̂R

)
− cos

(
Nt̂F

) ]
, n = 1, 3, 5, . . .

(8.20)

We see that all the even harmonics are equal to zero if t̂R = t̂F . Within reason, these
expressions can be used to optimize for a particular harmonic of the ISF.

Figure 8.16: Triangular approximation of the ISF of a ring oscillator with asym-
metric rising and falling edges [90]. Note that qmax is the maximum charge swing
at the injection node.

5They are also equal to 1/ f ′rise and 1/ f ′fall from Appendix B of [90].
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Design Example: Single-Ended Ring Oscillators with Asymmetric Inverters
For a more design-oriented example, we will implement another 1 GHz 17-stage
single-ended ring oscillator using asymmetric inverters whose rising transition is
shorter and steeper than the falling transition (WP � WN ). The 2nd harmonic locking
properties of this oscillator will then be compared against the oscillator from the
previous section, which featured fairly symmetric inverters. Figure 8.17 shows the
rising and falling edges of the symmetric inverter, while Figure 8.18 shows them for
the asymmetric inverter.

(a) Fall time of the inverter’s output from 90% to 10% of the maximum swing VDD
in response to a rising input from the previous stage.

(b) Rise time of the inverter’s output from 10% to 90% of the maximum swing VDD
in response to a falling input from the previous stage.

Figure 8.17: Rising and falling edges of an inverter inside a fairly symmetric 17-stage
single-ended inverter-chain ring oscillator.

Note that the depicted signals are steady-state oscillation waveforms—the input
voltage to the inverter is the output from the preceding inverter. Although rise and
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fall times are usually simulated by placing an idealized ramp or sequence of steps
at the input [117] since the actual waveforms are not known a priori, we are not
interested in illustrating the design process of the inverter here. We only want to
show how the actual switching behavior during oscillation is affected.

(a) Fall time of the inverter’s output from 90% to 10% of the maximum swing VDD
in response to a rising input from the previous stage.

(b) Rise time of the inverter’s output from 10% to 90% of the maximum swing VDD
in response to a falling input from the previous stage.

Figure 8.18: Rising and falling edges of an inverter inside an asymmetric 17-stage
single-ended inverter-chain ring oscillator with stronger PFETs.

Also, keep in mind that the rise and fall times are different from the propagation
delays used to calculate the oscillation frequency [90] (although they are related),
which is defined as the delay between when the input and the output reach the
inverter’s toggle point.6 The sum of the rising and falling propagation delays,

6The toggle point is the input voltage that results in the same output voltage—namely the
intersection between the large-signal input-output characteristic and the line Vout = Vin.
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multiplied by the number of stages, then yields the oscillation period. Although the
asymmetry also affects the rising and falling propagation delays, what is relevant
for our purposes is not the propagation delay but the whole switching period, as the
oscillator’s phase remains sensitive to injections during this entire time. Figure 8.19
depicts the asymmetry’s effect on the oscillation waveform and the ISF.

(a) Symmetric oscillation voltage. (b) Symmetric ISF.

(c) Asymmetric oscillation voltage. (d) Asymmetric ISF.

Figure 8.19: Comparison of symmetric and PFET-dominant asymmetric 17-stage
ring oscillators.

For the asymmetric ring oscillator, we can also optimize the shape of the injection
for dividing by 2 as we did for the relatively symmetric version in the previous
section. The results of this optimization for an RMS amplitude of 0.5/

√
2 mA are

shown in Figure 8.20. Notice how the optimized injection waveforms for the upper
and lower lock ranges are in the opposite direction compared to Figure 8.11 because
now the dominant lobe of the ISF points downward, in the negative direction.
Although the inverters in the original ring oscillator optimized in Figure 4.12 are
fairly symmetrical, they still exhibit a slight asymmetry—with the NFETs being
stronger than the PFETs.
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(a) Injections for optimizing the upper and lower lock ranges are signified with ‘(U)’
and ‘(L)’, respectively. The RMS injection amplitude is Irms = 0.5/

√
2 mA.

(b) Lock characteristics with a division ratio of N = 2 using the injection waveforms
shown in Figure 8.20a.

Figure 8.20: Optimizing the injection waveform for using the PFET-dominant asym-
metric 17-stage inverter-chain ring oscillator as a divide-by-2 ILFD.

Therefore, we surmise that reversing the asymmetry also reverses the the polarity of
the injection current needed to optimize the lock range in a particular direction (i.e.,
upper or lower). Consequently, in contrast to the symmetric ring oscillator, the total
lock range is enhanced by using the upward rectangular pulse injection instead.
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Comparison with Figure 8.12 reveals that all three lock ranges are more than tripled
for the asymmetric ring oscillator, despite using an injection amplitude that is three
times smaller. However, this comparison is not entirely fair, as the asymmetric ring
oscillator features a somewhat lower maximum charge swing due to the smaller
amount of capacitance loading each stage, which leads to a larger overall ISF [87].
We will discuss this in more detail shortly.

(a) Fall time of the inverter’s output from 90% to 10% of the maximum
swing VDD in response to a rising input from the previous stage.

(b) Rise time of the inverter’s output from 10% to 90% of the maximum
swing VDD in response to a falling input from the previous stage.

Figure 8.21: Rising and falling edges of an inverter inside an asymmetric 17-stage
single-ended inverter-chain ring oscillator with stronger NFETs.

From a design standpoint, asymmetry is more efficiently introduced by making the
NFETs stronger than the PFETs. This is because the electron mobility µn is already
two to three times larger than the hole mobility µp [118]. Therefore, we repeated
the above exercise for an asymmetric 17-stage inverter-chain ring oscillator where
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we set WN � WP instead, and we demonstrate how the 2nd harmonic lock range
is enhanced even further (essentially for the same area and power consumption).
Figure 8.21 shows the rising and falling edges of the inverters in this oscillator, and
Figure 8.22 contrasts the oscillation waveform and ISF against that of our original,
fairly symmetric 17-stage ring oscillator.

(a) Symmetric oscillation voltage. (b) Symmetric ISF.

(c) Asymmetric oscillation voltage. (d) Asymmetric ISF.

Figure 8.22: Comparison of symmetric and NFET-dominant asymmetric 17-stage
ring oscillators.

Optimizing the shape of the injection waveform for division-by-2 is again performed
on this oscillator, with the results shown in Figure 8.23. Because of the even lower
charge swing compared to the PFET-dominant oscillator, the RMS amplitude of the
injection current was further decreased to 0.4/

√
2 mA. Notice how the waveform

for optimizing the upper lock range consists of upward oriented pulses (and vice
versa), unlike the optimal waveforms for the PFET-dominant oscillator, but similar
to the those for the “symmetric” oscillator which contained inverters with slightly
stronger NFETs. Once again, we utilized 20% duty-cycle rectangular pulses (with
an average value of zero) to emulate the optimal injection waveforms.
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(a) Injections for optimizing the upper and lower lock ranges are signified with ‘(U)’
and ‘(L)’, respectively. The RMS injection amplitude is Irms = 0.4/

√
2 mA.

(b) Lock characteristics with a division ratio of N = 2 using the injection waveforms
shown in Figure 8.23a.

Figure 8.23: Optimizing the injection waveform for using the NFET-dominant
asymmetric 17-stage inverter-chain ring oscillator as a divide-by-2 ILFD.

Table 8.1 summarizes the differences between these three ring oscillators. The
parameters WP and WN are the widths of the PMOS and NMOS devices in the
inverter, and tR and tF are the rise and fall times of the inverter. Note that all lock
ranges (LRs) are simulated, not predicted.
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To tune all of the oscillators to free-run at roughly the same frequency, we used
smaller transistors overall and a smaller load capacitance per stage (40 fF instead
of 200 fF) to construct the asymmetric ring oscillator, which lead to a smaller
qmax and hence a larger ISF. Therefore, to form a more unbiased comparison, we
need to account for the “overall size” of the ISF, which is embodied in its RMS
amplitude Γ̃rms. In particular, the 2nd harmonic magnitudes of the ISFs should first
be normalized by

√
2Γ̃rms. (This ratio cannot exceed unity due to Parseval’s identity.)

Observe how the oscillator’s 2nd harmonic injection locking properties are starkly
influenced by making the inverters asymmetrical.

Table 8.1: Comparison Between Symmetric and Asymmetric Ring Oscillators

(Fairly)
Symmetric

PFET-Dom.
Asymmetric

NFET-Dom.
Asymmetric

Device Sizing:
WP [µm]
WN [µm]

17.76
12.96

≈ 1.37
12

1.44
≈ 8.33

2.1
12
= 0.175

Rise/Fall Asymmetry:
tF [ps]
tR [ps]

37.93
50.92

≈ 0.74
60.83
31.73

≈ 1.92
26.35
87.44

≈ 0.30

Free-Running Oscillation
Frequency f0

1.001 GHz 1.010 GHz 1.001 GHz

ISF RMS Amplitude
Γ̃rms [rad/pC] 0.282 1.33 1.64

ISF 2nd Harm.
��Γ̃2

��
√

2Γ̃rms
0.0655 0.213 0.262

2nd Harmonic
Compliance η2

0.30% 1.04% 1.30%

2nd Harmonic 1.5 mA
Sinusoidal LR 2 fL

16 MHz 560 MHz 710 MHz

RMS Injection Amplitude
for Optimization Irms

1.5/
√

2 mA 0.5/
√

2 mA 0.4/
√

2 mA

2nd Harmonic Sinusoidal
LR 2 fL at Irms

16 MHz 77 MHz 94 MHz

2nd Harmonic Upper
Optimal LR 2 fL at Irms

10 MHz 43 MHz 57 MHz

2nd Harmonic Lower
Optimal LR 2 fL at Irms

33 MHz 103 MHz 129 MHz
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C h a p t e r 9

A LOW-POWER DUAL-MODULI PRESCALER FOR
FRACTIONAL-N FREQUENCY SYNTHESIS APPLICATIONS

9.1 Motivation
Modern frequency synthesizers see an ever increasing demand for higher operation
frequency and lower power consumption [119]–[123]. Implementations based on
phase-locked loops (PLLs) typically generate the output frequency from a stable,
low-frequency reference such as a crystal. Therefore, in the loop’s feedback path,
the output frequency of the voltage-controlled oscillator (VCO) needs to be divided
down to the input frequency provided by the reference. While the overall division
ratio would need to be in the hundreds or thousands for output frequencies in the
gigahertz and terahertz ranges, it is the “first few” divisions—the initial reduction
of fout to fout/P where P = 2, 3, or 4, for example—that experience the sharpest
trade-off between speed and power and therefore prove the most challenging to
realize.

To enable the synthesis of multiple output frequencies from the same reference,
another design consideration for the frequency divider is the ability to be config-
urable between different division ratios. The minimum spacing between possible
output frequencies is the synthesizer’s reference frequency, fref , as the output fre-
quency must be an integer multiple of fref . However, by dynamically toggling or
continuously dithering between division ratios, a fractional relationship between the
output and reference frequencies can be achieved, leading to a finer frequency tun-
ing resolution. This approach is known as fractional-N frequency synthesis [124].
Over the years, a variety of techniques for countering the non-idealities associated
with dithering (e.g., spurs, quantization noise) have been developed, such as ∆-Σ
modulation [125].

Digital and current-mode logic (CML) dividers [7], [126] can operate over a wide
range of frequencies and division ratios but consume unacceptably high amounts of
power as the frequency of operation increases. This is because the capacitances of
the active devices in these implementations must fully charge and discharge every
cycle [5]. Consequently, frequency dividers based on injection-locked oscillators
(i.e., ILFDs) are usually used to “pre-scale” the output down to frequencies that
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can be feasibly handled by programmable digital dividers. However, ILFDs have
conventionally been associated with a number of drawbacks:

1. They suffer from a limited lock range, and methods to enhance the lock range
are not well understood.

2. LC dividers, which are used to divide-by-2 or divide-by-4 [5], [8], [11], require
a large amount of area for the on-chip inductor, adding additional cost to the
system.

3. They traditionally have only a single division ratio, as an oscillator’s operation
frequency and lock characteristic are topology and parameter dependent.

Figure 9.1: A fractional-N PLL which synthesizes output frequencies in the range
2N fref ≤ fout ≤ 3N fref from a crystal reference. A general implementation based
on a phase-frequency detector (PFD), charge pump (CP), and loop filter (LF) in the
forward path is assumed.

In this chapter, we will present the design of an injection-locked prescaler which
addresses all three of these issues. Our design, which is based on a reconfigurable
ring oscillator, is capable of dividing by both 2 and 3 from 8.4 GHz to 11.5 GHz,
consumes less than 2.5 mW of power off of a 1 V supply, and occupies only
30 × 15 µm2 of area in a 65-nm bulk CMOS process. A system diagram of a
fractional-N frequency synthesizer which places this work in context is shown in
Figure 9.1.
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9.2 Theory
The core of our design is a single-ended inverter-chain ring oscillator, switchable
between five and seven stages. The 5-stage configuration is designed for divide-by-2
operation, whereas the 7-stage configuration is designed for divide-by-3 operation.
Asymmetric inverters were used to enable efficient division by an even ratio, as
discussed in Section 8.5. We assumed the frequency synthesizer’s VCO produced
quadrature outputs, which gives us access to four injection signals with quadrature
phases: IP (φinj = 0), IN (φinj = π), QP (φinj = π/2), and QN (φinj = 3π/2).
To decide which stages of the ring oscillator to inject into, we followed the scheme
discussed in Section 6.7. Specifically, the phase of the injection into stage k (relative
to stage 0) needs to be

φinj(k) = kN
(
π − π

K

)
, (9.1)

for k = 0, 1, . . . ,K − 1, where K is the total number of stages and N is the division
ratio. Tables 9.1 and 9.2 show the phases that should be injected into each stage of
the 5-stage and 7-stage ring oscillators, respectively.

Table 9.1: Quadrature Injection Scheme: 5 Stages for Division-By-2

Stage Ideal Phase to be Injected Closest QVCO Injection
0 0 (reference) IP
1 8π/5 = 1.6π QN
2 6π/5 = 1.2π IN
3 4π/5 = 0.8π IN
4 2π/5 = 0.4π QP

Table 9.2: Quadrature Injection Scheme: 7 Stages for Division-By-3

Stage Ideal Phase to be Injected Closest QVCO Injection
0 0 (reference) IP
1 4π/7 ≈ 0.57π QP
2 8π/7 ≈ 1.14π IN
3 12π/7 ≈ 1.71π
4 2π/7 ≈ 0.29π
5 6π/7 ≈ 0.86π
6 10π/7 ≈ 1.43π QN

In general, by following Eq. (9.1), this design scheme is applicable for any number
of stages and for an arbitrary division ratio. However, utilizing a smaller number of
stages increases the operating frequency that we can obtain from a ring oscillator
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for a particular design process, and lower division ratios feature wider lock ranges
since most of the energy in an ISF is contained in its first few harmonics.

9.3 Design

Figure 9.2: Schematic of the designed injection-locked prescaler.

The schematic of the prescaler is shown in Figure 9.2. The inverters were made
asymmetric by setting

WN

WP
=

4.5 µm
3 µm

= 1.5, (9.2)

whereWN andWP are the widths of the NMOS and PMOS devices, respectively. To
ensure maximum overlap between the divide-by-2 and divide-by-3 lock ranges of
the 5-stage and 7-stage ring oscillators, the “last” stage of the 7-stage ring oscillator
was loaded with a 20 fF MIM capacitor. A signal bit, S, controls the switches.

The injection currents, shown as ideal current sources, were implemented using
the technique discussed at the beginning of Section 8.5 and shown in Figure 8.13.
Specifically, the buffered outputs of the quadrature VCO were used to drive series
“injection resistors.” A short chain of inverters served as each buffer, and each
injection resistor was a 780Ω un-silicided poly-resistor. The layouts of the prescaler
and the QVCO1 are shown in Figure 9.3.

1The QVCO was designed by Dr. Behrooz Abiri.
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(a) Injection-locked prescaler, measuring 30 × 15 µm2.

(b) Quadrature voltage-controlled CMOS LC oscillator, measuring 120 × 95 µm2

(courtesy of Dr. B. Abiri).

Figure 9.3: Layouts of the ring oscillator prescaler and the quadrature LC VCO
which was fabricated alongside it.
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9.4 Extracted Simulation Results
The sensitivity of the ring oscillator to parasitic resistances and capacitances, partic-
ularly at multi-GHz frequencies, necessitated an iterative schematic-layout design
process. The free-running oscillation frequencies of the 5-stage and 7-stage ring
oscillators after extraction are given in the table below.

5 Stages (÷2) 7 Stages (÷3)
f0 = 4.124 GHz f0 = 2.948 GHz

Figure 9.4 depicts the lock range of the prescaler by plotting the ratio of the injection
frequency from the VCO to the output frequency of the divider as a function of the
injection frequency. Aswe can see, there is a range of injection frequencies for which
this ratio is constant, equal to the desired division ratio for a given configuration,
indicating lock. The effective lock range of the prescaler is the intersection of the
lock ranges for the divide-by-2 and divide-by-3 configurations. This simulation
was performed by replacing the QVCO with ideal voltage sources so the injection
frequency could be swept beyond the QVCO’s tuning range. The lock range was also
simulated with the quadrature injections QP and QN disabled (grounded), showing
how the quadrature injections nearly double the lock range.

(a) With all four quadrature injections, the effective lock range is 3.1 GHz.

The QVCO is tunable from 9GHz to 11GHz, which is encompassed by the effective
lock range of the prescaler. Figure 9.5 plots the output voltage of the prescaler
alongside one of the injection voltages from the QVCO for both division ratios and
at multiple injection frequencies.
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(b) With only differential injections (IP and IN), the effective lock range is 1.6 GHz.

Figure 9.4: Extracted simulation of the divide-by-2 and divide-by-3 lock ranges of
the designed prescaler.

The prescaler alone consumes less than 2.5 mW over the entire effective lock range
for both division ratio configurations. Table 9.3 compares the simulated performance
of this design against the measured results of state-of-the-art frequency dividers.

Table 9.3: Prescaler Performance Comparison

Reference Process /
Area [µm2] Type Division

Ratios
Frequency
[GHz]

Power
[mW]

This Work 65-nm /
30 × 15 Ring 2, 3 8.4 – 11.5 2.5

JSSC 2007
[63]

0.18-µm /
60 × 50 Ring 2 13 – 25 24

TMTT
2009 [11]

90-nm /
130 × 290 LC 2 51 – 74 3

TMTT
2012 [12]

90-nm /
800 × 700 LC 3 91.4 – 93.5 1.5

ESSCIRC
2014 [126]

65-nm /
25 × 50 Digital

64, 80, 96,
100, 112,
120, 140

∼0 – 17 2

TVLSI
2015 [127]

0.18-µm /
40 × 80 Digital 16, 17 0.002 – 5.8 2.6



202

(a) fVCO = 9 GHz

(b) fVCO = 10 GHz

(c) fVCO = 11 GHz

Figure 9.5: Extracted simulation of one of the injection voltages from the QVCO
and the locked oscillation voltage of the designed prescaler.



203

C h a p t e r 10

A PHASOR-BASED ANALYSIS OF SINUSOIDAL INJECTION
LOCKING IN LC AND RING OSCILLATORS

[1] B. Hong and A. Hajimiri, “A phasor-based analysis of sinusoidal injection
locking in LC and ring oscillators,” IEEE Transactions on Circuits and
Systems I: Regular Papers, vol. 66, no. 1, pp. 355–368, Jan. 2019. doi:
10.1109/TCSI.2018.2860045,

In this chapter, we present an alternative perspective into the locking behavior of LC
and ring oscillators. By decomposing a sinusoidal injection current into in-phase and
quadrature-phase components, exact expressions for the amplitude and phase of an
injection-locked LC oscillator which hold for any injection strength and frequency
are derived and confirmed by simulation. The analysis, which can be naturally
extended to an arbitrary LC resonator topology, leads to a rigorous understanding
of the fundamental physics underlying the locking phenomenon. Furthermore, an
investigation of the different necessary and sufficient conditions for injection locking
to occur is carried out, leading to a more precise notion of the lock range. The ring
oscillator is also analyzed in an analogous fashion, resulting in simple yet accurate
closed-form expressions for the fractional lock range in the small-injection and
long-ring regimes; the expressions are validated by simulations of single-ended
inverter-based ring oscillators in 65-nm CMOS. The mathematics behind how the
injection modifies the phase delay contributed by each stage in the ring is discussed.
A corollary that generalizes the small-injection lock range to any feedback-based
oscillator topology is established. Conceptual and analytical connections to the
existing literature are reviewed.

10.1 Introduction
As we mentioned in Chapter 2, the behavior of LC oscillators under a sinusoidal
injection of current has been studied extensively over the years by many, including
Adler [47], Razavi [38], and Mirzaei [21]. Still, the analyses thus far fail to com-
pletely address some important scenarios or make simplifying assumptions which
can yield inaccurate results. For example, the large-signal lock range derived in
[38], [49] is infinite when the injection current exceeds the oscillator current, which

http://dx.doi.org/10.1109/TCSI.2018.2860045
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can be verified via simulation to be untrue. All of these analyses also do not fully
consider the important question of how the oscillator’s core nonlinearity reacts to
phase modulation in the oscillation voltage, which is of critical concern since the
phase of the oscillation voltage is exactly what gets modulated under injection. This
chapter derives a comprehensive, large-signal model of injection-locked LC oscil-
lators based on a physical analysis of the currents flowing through the circuit in
sinusoidal steady state.

The material is organized as follows. Section 10.2 sets up the problem, intro-
duces notation, and defines a new parameter known as the reactive tangent; while
Section 10.3 briefly reviews the geometry of injection. Section 10.4 carries out
a physically-based analysis of the LC oscillator under injection by calculating the
various currents flowing within the oscillator, which leads to a derivation of distinct
necessary and sufficient conditions for injection locking to occur. Section 10.5
addresses some important general issues governing the behavior of LC oscillators.
Section 10.6 adapts the analytical tools developed for the LC oscillator to calculate
the lock range of the ring oscillator. Section 10.7 establishes a general corollary
relating the small-injection lock range to the oscillator’s open-loop transfer function.

Figure 10.1: Conceptual circuit model of an injection-locked LC oscillator. All
depicted signals are sinusoidal steady-state phasors at ωinj, the injection frequency.

10.2 Preliminaries
Problem Setup and Circuit Model
Our problem setup is depicted in Figure 10.1. The oscillator is behaviorally modeled
as an ideal LC tank in parallel1 with a loss resistance RP, compensated for by
an active transconductor presenting a negative conductance: the −Gm-cell. The

1The scenario where the inductorQ is very low and its series loss is no longer accurately modeled
as a parallel resistance is considered in detail elsewhere [3]; however, a natural modification to our
framework also easily subsumes the analysis of this situation (Section 10.4).
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transconductor’s instantaneous current, iGm(t), is a memoryless, time-invariant, and
nonlinear function, f (·), of the instantaneous voltage vosc(t) across it. We adopt
the usual assumption [21], [89] that the impedance of the LC tank filters out all
but the fundamental component of the transconductor current iGm(t) near the tank’s
resonant frequency ω0 = 1/

√
LC, resulting in a sinusoidal oscillation voltage vosc(t)

with amplitudeVosc and frequencyωosc. Wewill refer to the fundamental component
of iGm(t) as the oscillator current iosc(t); its phasor I⇀osc is labeled in the circuit model
of Figure 10.1. This set of abstractions allows us to work exclusively with phasors
in sinusoidal steady state.
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(a) I = f (V)
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(c) iosc(t)

Figure 10.2: Example depictions of a nonlinear, time-invariant, memoryless
transconductor’s response to a cosine oscillation voltage vosc(t) = V0 cos(ωosct)
with an amplitude of V0 = 1 V. The (a) transconductor’s I = f (V) characteristic,
(b) resultant transconductor current iGm(t), and (c) its fundamental component or
oscillator current iosc(t) are shown for a MOS Colpitts oscillator (top) and a cross-
coupled bipolar differential pair (bottom). Note how iosc(t) is perfectly in phase with
vosc(t) in both cases.

Since the −Gm-cell is memoryless and time-invariant, the oscillator current I⇀osc and
the oscillation voltage V⇀osc are either perfectly in phase or in antiphase.2 However,
considering the fact that the transconductor is active—it generates power—the for-
mer must be true. Figure 10.2 shows the transconductor and oscillator currents for
two different oscillator transconductor examples. The amplitude of the oscillator

2This is easily proven by comparing the Fourier series expansions of vosc(t) and iGm(t).
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current Iosc can thus be computed as

Iosc =
2
T

∫
T

f [Vosc cos(ωosct)] · cos(ωosct) dt. (10.1)

As an example, if the transconductor is a hard-limited current commutator f (x) =
sign(x) · Ibias, then Iosc = (4/π)Ibias. This serves as a reasonable model of a
cross-coupled differential pair wherein Ibias = Itail/2 (or for complementary pairs
Ibias = Itail) [88], [89], [128]. We assume throughout that Iosc is a (known) constant
and does not depend onVosc, as is usually the case for well-designed (current-biased)
oscillators that have sufficient loop gain to fully saturate the transconductor (i.e.,
Gm B f ′(0) > 1/RP, although this constraint must be tightened for “softer” non-
linearities that saturate more smoothly). Finally, observe that because the oscillator
current I⇀osc is in phase with the oscillation voltage V⇀osc, it can only flow into the
parallel loss resistance RP.

Figure 10.3: Phasor diagram depicting the injection current, the oscillator current,
the tank current, the injection current’s orthogonal decomposition, and the phase of
the oscillation voltage.

In the absence of injection (Iinj = 0), the oscillation frequency is3 ωosc = ω0 and the
oscillation amplitude is Vosc = IoscRP [88], [89], [128]. Now, suppose the oscillator
is perturbed by some periodic injection current iinj(t) at a frequencyωinj nearω0. We
once again assume that the bandpass nature of the LC tank leaves us with only the
voltage due to the injection current’s fundamental component at ωinj, whose phasor
we shall denote by I⇀inj. A key observation—key to the rest of this analysis—is
that in order for the circuit to oscillate at the injection frequency, or be injection
locked, the injection current must supply net reactive current to the LC tank. This
is because if ωinj , ω0, the LC tank no longer appears as an open circuit at ωinj

3In actuality, higher order harmonics in iGm(t) slightly disrupt the tank’s harmonic balance and
decrease the free-running oscillation frequency away from resonance [108], [129]. Also see [130]
for a transient analysis of the impact that an oscillator’s nonlinearity has on its oscillation frequency.
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as it does at resonance and therefore must draw current. Based on our reasoning
above, this current, which is ±90° out of phase with V⇀osc, cannot be provided by
the transconductor. Instead, this reactive current must be supplied in its entirety by
the injection—we thus label it as I⇀inj⊥. The remaining component of the injection
current, which we denote as I⇀inj‖ , is therefore co-linear (i.e., either in-phase or 180°
out-of-phase) with V⇀osc and I⇀osc.

Therefore, we have the following phasor decomposition of the injection current:

I⇀inj = I⇀inj‖ + I⇀inj⊥, (10.2)

which by the Pythagorean theorem implies

Iinj
2 = Iinj‖

2 + Iinj⊥
2. (10.3)

Finally, byKCL, it is obvious that the total current I⇀T flowing into the lossy resonator
(LC tank + parallel resistance RP) comes from the oscillator and injection currents:

I⇀T = I⇀osc + I⇀inj. (10.4)

These decompositions are depicted physically in Figure 10.1 and geometrically in
Figure 10.3.

Geometric Conventions
Let us precisely define the various angles in Figure 10.3. We see that φ B ∠V⇀osc −
∠ I⇀T is the phase difference between the oscillation voltage and the tank current,
which is equal to the phase of the resonator’s impedance. For resonators featuring
a positive net conductance, φ is bounded between ±90°.

Also, θ B ∠V⇀osc − ∠ I⇀inj is the phase difference between the oscillation voltage
and the injection current. We will adopt the convention that the angular domain is
θ ∈ [−π, π). Much of the literature on injection locking and pulling focuses on the
dynamics of θ, the most notable result being Adler’s original equation [47]. Note
that φ and θ are both positive (negative) if the voltage leads (lags) the currents,
which occurs if ∆ω < 0 (∆ω > 0) and we inject below (above) resonance.

The Reactive Tangent χ(ωinj)
Here, we will introduce a new parameter, which we call the reactive tangent χ(ωinj),
defined as the tangent of the phase of the resonator’s impedance at the injection
frequency:

χ(ωinj) B tan φ. (10.5)
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The reactive tangent is a measure of “how reactive” the resonator is at the injection
frequency. If ωinj = ω0, the tank is purely resistive and not reactive at all, and so
χ(ω0) = 0. On the other hand, frequencies below resonance result in χ(ωinj) > 0
and a resonator that appears partially inductive. Finally, if ωinj > ω0, then the
reactive tangent is negative and the resonator appears partially capacitive.

For the parallel RLC resonator under consideration,

χ(ωinj) =
RP

XLC(ωinj)

=
RP

ωinjL

(
1 −

ωinj
2

ω02

)
= Q

(
ω0
ωinj
−
ωinj

ω0

) (10.6)

where XLC is the reactance of the ideal parallel LC tank (without RP) and Q =

RP/ω0L is the resonator’s quality factor. If the injection and free-running frequen-
cies are close to one another (i.e., |∆ω | � ω0, where ∆ω B ωinj − ω0) as most
papers assume, we can approximate

χ(ωinj) ≈ −2Q
(
∆ω

ω0

)
. (10.7)

Figure 10.4 compares this approximation against Eq. (10.6).

Although the reactive tangent is not a fundamentally novel parameter, its significance
stems from the following facts:

1. Its magnitude is the ratio of the net reactive current to the net resistive current
flowing into the lossy resonator. It will therefore serve as a convenient quantity
to deal with in the subsequent analysis.

2. The lock range on χ(ωinj) is symmetric (about 0), whereas the lock range on
∆ω is not.

3. The reactive tangent is applicable to other types of tank topologies, and so
our analysis will not be constrained to the parallel RLC resonator (e.g., see
the discussion on low-Q inductors in Section 10.4).
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Figure 10.4: A plot of χ(ωinj) against ωinj/ω0 for a parallel RLC resonator with a
quality factor of Q = 10. Observe that χ(ωinj) decreases monotonically from +∞
to −∞ as ωinj increases from DC to +∞.

10.3 Review of Injection Geometry
Here, we will briefly review the geometric argument the existing literature [38],
[49] has used to derive the lock range for large injections. However, we will also
illustrate how such an analysis may not fully lend itself to a solid understanding of
the physics governing the phenomenon of injection locking, particularly at the edge
of the lock range. Consider Figure 10.3. The lock range is defined as the range of
allowable injection frequencies ωinj over all possible injection phases θ for a given
resonator, injection current Iinj, and oscillator current Iosc. Since φ is the phase of the
resonator’s impedance at ωinj, the quantity sin φ decreases monotonically from +1
to −1 as ωinj varies from 0 to ∞. Therefore, optimizing for the injection frequency
is akin to extremizing sin φ, which yields the following solution for the optimum
injection phase θ∗ [38]:

cos θ∗ =


−

Iinj

Iosc
, Iinj ≤ Iosc

− Iosc
Iinj

, Iinj ≥ Iosc.

(10.8)
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This implies

|sin φ| ≤


Iinj

Iosc
, Iinj ≤ Iosc

1 , Iinj ≥ Iosc.

(10.9)

Since χ(ωinj) = tan φ, the lock range on χ(ωinj) is

��χ(ωinj)
�� ≤


1√

Iosc
2

Iinj
2 − 1

, Iinj < Iosc

+∞ , Iinj ≥ Iosc.

(10.10)

Shown in Figure 10.5, there is a geometric picture which illuminates this situation
quite clearly [21]. The oscillator current phasor I⇀osc is always oriented horizontally,
as its phase is equal to that of the oscillation voltage and is therefore taken as the
reference. The injection phase θ (the angle that I⇀inj makes with I⇀osc) is allowed to
vary over [−π, π), creating a circle of radius Iinj centered at the endpoint of I⇀osc.
Therefore, each point on the circle represents a possible solution for I⇀T = I⇀osc+ I⇀inj.
The phase φ of the lossy resonator’s impedance is equal to the angle between I⇀T

and I⇀osc. For RP > 0, φ ∈ [−π/2, π/2]. The lock range is dictated by the attainable
values for φ. Optimal solutions, corresponding to the edge of the lock range where
φ = φmax, are indicated by an asterisk: “ ∗ ”.

The Iinj < Iosc case is well-documented [38], [49]. But, this result does bring up
the intriguing notion of an infinite lock range when Iinj ≥ Iosc. Although mathe-
matically accurate within the presented geometric framework, we will demonstrate
in Section 10.4 that this conclusion for the lock range when the injection current
exceeds the oscillator current is physically incorrect.

10.4 A Physically-Based Analysis
We start by using the parameter χ(ωinj) to quantify a very specific relationship
between the currents within the oscillator, alluded to at the end of Section 10.2. For
notational simplicity, we will sometimes write χ(ωinj) as χ with the understanding
that this parameter is always to be evaluated at ωinj. Given the parallel nature of
the resonator, the oscillation amplitude can be written as the net resistive current
multiplied by RP or as the net reactive current multiplied by XLC . In light of
Eq. (10.6), we can therefore write

Vosc =
(
Iosc + Iinj‖

)
RP = Iinj⊥

RP

χ(ωinj)
. (10.11)
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Figure 10.5: Geometric depiction of the lock range (a) Left: The (lower) edge
of the lock range, showing that |φmax | < π/2 if Iinj < Iosc. Right: For each φ
where |φ| < |φmax | (i.e., for each injection frequency strictly inside the lock range),
two possible solutions exist. Solution 1 (blue) is stable whereas Solution 2 (red)
is unstable. (b) If Iinj ≥ Iosc, then the edge of the lock range corresponds to
φmax = ±π/2. Also, only one mode exists.

Here, we leave open the possibility that Iinj‖ < 0. That is, the non-reactive com-
ponent of the injection could be 180° out-of-phase with the oscillation voltage and
oppose the oscillator current (see Figure 10.5). Note that we are also adopting the
convention that Iinj⊥ shares the same sign as θ and φ. Using Eq. (10.3) then yields

Iosc + Iinj‖ =

√
Iinj

2 − Iinj‖
2��χ(ωinj)

�� . (10.12)
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Solving for Iinj‖ , we get

Iinj‖ =
±
√(

1 + χ2) Iinj
2 − χ2Iosc

2 − χ2Iosc

1 + χ2 (10.13)

which indicates two possible solutions or modes [21], as depicted in Figure 10.5(a).

For the solutions to be real, the discriminant needs to be nonnegative, which is
always the case if Iinj ≥ Iosc. Assume not. Then we need��χ(ωinj)

�� ≤ 1√
Iosc

2

Iinj
2 − 1

, (10.14)

which is equivalent to Eq. (10.10), re-derived physically instead of geometrically.
Thus, the “lock range” derived in Section 10.3 is precisely the condition that needs
to be satisfied in order for the oscillator to have a sinusoidal steady-state solution at
the injection frequency ωinj. In other words, Eq. (10.10) is a necessary condition
for injection locking to occur.

We will now consider the two solutions of Eq. (10.13) separately. In [21], Mirzaei et
al. derive a differential equation for perturbations in the phase to show that only the
solution with the higher oscillation amplitude is mathematically stable. However,
the subtle issue of stability extends beyond the notion of being able to recover from
disturbances in the phase. Notice from both Figure 10.5 and Eq. (10.13) that solu-
tions exist where Iinj‖ < 0 and the injection’s non-reactive component is 180° out
of phase with the oscillation voltage. This implies that although the oscillator cur-
rent is supplying power to the resonator, the injection current is dissipating power.
Consequently, in the presence of perturbations (due to noise for example), while the
transconductor will always strive to restore the oscillation amplitude to its equilib-
rium value, the injection current will “fight” the transconductor’s efforts. As the
circuit ventures closer to the edge of Eq. (10.14), these two opposing forces become
comparable since Iinj‖ approaches −Iosc. Therefore, at some point, it will become
energetically favorable for the oscillator to lose lock altogether and become injection
pulled. We suspect that a simple first-order equation for modeling the oscillation
amplitude like Eq. (10.36) (also see [21]) is unable to capture this dynamic.

The Stable Solution: The stable solution is

Iinj‖,1 =

√(
1 + χ2) Iinj

2 − (χIosc)2 − χ2Iosc

1 + χ2 . (10.15)
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It is not hard to see that Iinj‖,1 ≥ 0 if and only if Iinj ≥
��χ(ωinj)

�� Iosc. This result
is highly intuitive. If the non-reactive portion of the injection current is in-phase
with the oscillation voltage and therefore adds to the oscillator current, then the
oscillation amplitude is at least IoscRP (the free-running amplitude). Therefore, the
injection must be able to supply at least |XLC | IoscRP of reactive current, which leads
to Iinj ≥

��χ(ωinj)
�� Iosc. In light of our discussion regarding energetic stability, we

can therefore see that
|χtank | ≤

Iinj

Iosc
(10.16)

is a sufficient condition for injection locking to occur, since there will always exist an
energetically stable sinusoidal steady-state solution at ωinj provided that Eq. (10.16)
holds.

The Unstable Solution: The unstable solution, shown in red in Figure 10.5(a), is

Iinj‖,2 =
−
√(

1 + χ2) Iinj
2 − (χIosc)2 − χ2Iosc

1 + χ2 . (10.17)

This solution is valid only if Iosc + Iinj‖,2 ≥ 0, as indicated by the original equation
Eq. (10.12). Thus, this mode comes into existence if and only if Iinj ≤ Iosc. Note
that the two solutions coincide at the edge of the lock range.

Summary
Let us recapitulate our results. First, recall that the lock rangewas formally computed
in terms of the reactive tangent χ(ωinj), defined in Eq. (10.5). For a parallel RLC
resonator,

χ(ωinj) = Q
(
ω0
ωinj
−
ωinj

ω0

)
.

Next, the lock range was deconstructed into necessary and sufficient conditions
which are distinct.

Sufficient Condition: If the following condition holds:��χ(ωinj)
�� ≤ Iinj

Iosc
, (10.18)

then the oscillator will injection lock (in steady state).
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Necessary Condition: In order for the oscillator to injection lock, the following
condition must hold:

��χ(ωinj)
�� ≤


1√

Iosc
2

Iinj
2 − 1

, Iinj < Iosc

+∞ , Iinj ≥ Iosc.

(10.19)

Notice that the sufficient condition subsumes the necessary one. Unfortunately,
given the current framework, we were not able to develop a necessary and sufficient
condition for injection locking. Fortunately, for Iinj reasonably smaller than Iosc

(e.g., Iinj/Iosc / 1/2), which covers many practical scenarios, it can be verified
empirically that the necessary condition is a sufficient one as well. We suspect that
satisfying Eq. (10.19) allows an oscillator to lock onto the injection initially in its
transient response, but an oscillator which does not satisfy Eq. (10.18) may have
trouble maintaining lock in steady state and will be prone to being pulled eventually.

Note that if the frequency deviation is small |∆ω| � ω0 and the injection is weak
Iinj � Iosc, then both Eqs. (10.18) and (10.19) simplify to the lock range originally
given by Adler [47]:

|∆ω| ≤ ωL =
ω0
2Q
·

Iinj

Iosc
. (10.20)

Assuming the oscillator is injection-locked, the non-reactive component of the
injection current is given by

Iinj‖ =

√(
1 + χ2) Iinj

2 − (χIosc)2 − χ2Iosc

1 + χ2 .

The oscillation amplitude is given by

Vosc =
(
Iosc + Iinj‖

)
RP .

Accounting for the correct sign, the oscillator’s phase relative to the injection is
given by

θ = − sign(∆ω) · cos−1
(

Iinj‖
Iinj

)
.

Note that the oscillator’s phase |θ | increases monotonically from 0 as
��χ(ωinj)

��
increases from 0, and it reaches 90° when Iinj =

��χ(ωinj)
�� Iosc.
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A Driven Parallel RLC Resonator
We would like to demonstrate how this framework reduces when the transconductor
turns off (Iosc = 0) and the system is not an oscillator—just a damped LC resonator.
Notice that based on Eq. (10.18), the “lock range” becomes infinite. Then

Iinj‖ =
Iinj√

1 + χ(ωinj)2
. (10.21)

It is not hard to see that this yields an oscillation amplitude of Vosc =
��Zres( jωinj)

�� Iinj

and an oscillation phase of θ = tan−1 χ(ωinj) = ∠Zres( jωinj), where Zres is the
impedance of the RLC resonator. These results are in accordance with LTI system
theory: a sinusoidal input results in a sinusoidal output at the same frequency
(infinite lock range), whose amplitude and phase are shaped by the magnitude and
phase of the system’s transfer function at the input frequency.

Low-Q Inductors
Tanks featuring inductorswith very low quality factors cannot be accuratelymodeled
by a parallel loss resistance [3]. Still, the concept of decomposing the net current
which flows into the resonator into in-phase and quadrature-phase components is
still valid, and so the analysis above can be modified very simply to account for
this scenario. In particular, we need to compute the reactive tangent based on its
fundamental definition Eq. (10.5) χ(ωinj) B tan φ; physically, it still represents the
ratio of the net reactive to resistive current drawn by the entire resonator, and so
Eq. (10.12) still holds.

We now consider a capacitor C in parallel with an inductor L that features a series
loss resistance Rs. The quality factor is now defined as Q = ω0L/Rs, where ω0 is
the resonant frequency—the frequency at which the resonator’s admittance is purely
real. Assuming L/Rs > RsC, it is not hard to show that

ω0 =

√
1

LC
−

(
Rs

L

)2
=

1√
LC

(
1 +

1
Q2

) , (10.22)

and4

χ(ωinj) =
Q

1 +
1

Q2

ωinj

ω0

(
1 −

ωinj
2

ω02

)
. (10.23)

4Equation (2) in [3] is incorrect. The term
(
1 − 1/Q2)1.5 should be

(
1 + 1/Q2)−1. Their

expression makes no sense when Q < 1.
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To compute the oscillation amplitude, replace RP with the inverse of the resonator’s
conductance G(ωinj), given by

1
G(ωinj)

=
ω0L
Q

[
1 +

(
Qωinj

ω0

)2
]
. (10.24)

Simulation Results
To demonstrate the validity of the phase and amplitude expressions we derived
above, we used SpectreRF to simulate the behavioral model of Figure 10.1 under
lock. The transconductor was implemented using a Verilog-A cell coded with the
usual hard-limited current commutator functionality f (x) = sign(x) · Ibias and so
Iosc = (4/π)Ibias. The resonator featured a parallel resistance of RP = 300 Ω, an
inductance of L = 5 µH, and a capacitance of C = 5.066 nF, resulting in a resonant
frequency of approximately f0 = 1 MHz.

The first set of simulations, depicted in Figure 10.6a, sweeps the injection current
while the bias current is held at Ibias = 1 mA. The injection frequency is finj =

1.1 MHz, resulting in χ(ωinj) � −1.823. Note that it is important that we use
Eq. (10.6) and not its approximation Eq. (10.7) to compute the reactive tangent, as
the approximation gives χ(1.1 MHz) ≈ −1.910.

The second set of simulations, depicted in Figure 10.6b, sweeps the bias current
while the injection current is held at Iinj = 2.5 mA. The injection frequency is
finj = 0.98 MHz. The plots are given as a function of the oscillator current. A
smooth plot for the theoretical predictions could not be generated here, since the
strength of the oscillator current slightly lowers the oscillation frequency due to
the higher-order harmonics contained in its square waveform [108], [129]. We
therefore simulated the free-running oscillation frequency f0 and computed the
reactive tangent at each simulation point. On average, χ(0.98 MHz) ∼ 0.4759.

To demonstrate how drastically large injections can change the behavior of the
oscillator, we also plotted the steady-state solution to Adler’s equation [47] for the
oscillation phase:

θ = − sin−1
(
2Q
∆ω

ω0

Iinj

Iosc

)
. (10.25)

Note that Adler’s solution does not allow |θ | to exceed 90°.

There is excellent agreement between the presented model and the example simu-
lations. The error increases near the edge of the lock range, which is in accordance
with our discussion in Section 10.4 that our sinusoidal steady-state framework is
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Figure 10.6: Theoretical and simulated oscillation phase relative to the injection θ
(top) and amplitude Vosc (bottom) of an injection-locked LC oscillator plotted (a)
against the injection current Iinj and (b) against the oscillator current Iosc. For the
graphs depicting θ, Adler’s solution for the phase is also plotted for comparison.

incapable of predicting when and how the energetics and dynamics of injection
pulling become apparent.

10.5 General Considerations for LC Oscillators under Sinusoidal Injection
In this section, we will use the same circuit model of Figure 10.1, but without the
assumption of sinusoidal steady state.

The Transconductor’s Effect on Phase Modulation
An important but often overlooked issue is how the transconductor reacts to phase
modulation (PM) in the oscillation voltage. We stated in Section 10.2 that if vosc(t) is
purely sinusoidal at a single tone (constant phase), then the fundamental component
of the transconductor current iGm(t) = f [vosc(t)] has the same phase as vosc(t). But,
what if the oscillation voltage has a time-varying phase θ(t)? Intuitively, we would
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expect a memoryless, time-invariant system to be incapable of changing the time-
or phase- dynamics of its input. However, the situation is complicated by the higher
order harmonics that are introduced by the nonlinearity.

We will assume the usual setting of an oscillator under injection: that the carrier
frequency is ωosc = ωinj and so any PM θ(t) is referred to ωinjt. Thus, we write
the oscillation voltage as vosc(t) = Vosc cos

[
ωinjt + θ(t)

]
, where θ(t) is an arbitrary

signal. Define the PM-free v0(t) B Vosc cos(ωinjt) and its corresponding output
i0(t) B f [v0(t)]. Starting from iGm(t) B f [vosc(t)], we can therefore write

iGm(t) = f
(
Vosc cos[ωinjt + θ(t)]

)
= f

[
v0

(
t +

θ(t)
ωinj

)]
= i0

(
t +

θ(t)
ωinj

)
,

(10.26)

where the last step follows from the fact that for any t0 ∈ R, f [x(t0)] depends only on
the value that x(t) takes on at t = t0 and not explicitly on t0 itself (time-invariant) or on
what x(t) is when t , t0 (memoryless). Next, notice that i0(t) ≡ f

[
Vosc cos

(
ωinjt

) ]
is an even, periodic function with period ωinj and therefore admits the following
Fourier series representation:

i0(t) =
∞∑

n=0
Fn cos(nωinjt), (10.27)

where the Fn are the Fourier series coefficients of the transconductor current in
response to v0(t). Consequently, we can similarly expand the transconductor current
due to vosc(t) as

iGm(t) =
∞∑

n=0
Fn cos

(
n[ωinjt + θ(t)]

)
. (10.28)

This result confirms the intuition that the transconductor preserves the input voltage’s
phase modulation in its first harmonic term F1 cos[ωinjt + θ(t)]. More importantly,
however, this analysis elicits the core issue at hand: PM accompanying higher order
harmonics (n > 1) could interfere or overlap with that of the fundamental (n = 1),
as shown in Figure 10.7.

Although describing the spectra of the various harmonics cos
(
n[ωinjt + θ(t)]

)
is in

general quite difficult for arbitrary θ(t),5 we can use Carson’s bandwidth rule [131],
5For example, a single-tone PM θ(t) ∝ sin (ωmt) results in a spectrum with infinitely many

side-tones about ωinj, separated by ωm, whose strengths are modulated by Bessel functions of the
first kind.
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Figure 10.7: Conceptual depiction of how nonlinearities in the transconductor can
cause PM accompanying higher order harmonics to “spill over” into PM of the
fundamental. The graphs represent the magnitude spectra of vosc(t) (top) and iGm(t)
(bottom). Notice that the sideband-to-carrier ratios of the fundamental harmonic’s
PM are preserved by the transconductor.

for example, to approximate the bandwidths (up to a 2% error in the energy) of the
individual phase-modulated components of iGm(t). Some simple algebra then leads
to the following condition for keeping the input voltage’s PM intact, and therefore
recoverable, at the output of the transconductor:

4θ′max + 2σθ < ωinj, (10.29)

where θ′max = maxt∈R |θ′(t)| is the maximum absolute time-derivative of θ(t) and
σθ is the one-sided bandwidth of or maximum frequency present within θ(t). As
a mathematical note, Bernstein’s inequality [132] allows us to bound the derivative
of a bounded, band-limited signal via θ′max ≤ σθθmax. Therefore, another sufficient
condition in place of Eq. (10.29) would be 2σθ (2θmax + 1) < ωinj.

It is noteworthy that by using aTaylor series to linearize the time-dependent transcon-
ductance f ′(vosc(t)) about the phase modulation, and then using a Fourier series to
expand the result, Samori et al. [110], [133], [134] prove that small, single-tone
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PM about the fundamental is preserved. Our argument above, using Eq. (10.28),
shows that arbitrary PM about the fundamental is always preserved, a much more
general conclusion. However, they failed to consider the important issue of whether
or not PM from higher order harmonics might interfere with the PM about the
fundamental. Our analysis above addresses this crucial point.

General Equations for the Amplitude and Phase
Referring to the circuit of Figure 10.1, KCL yields

vosc(t)
L
+ C

d2vosc(t)
dt2 +

1
RP

dvosc(t)
dt

=
d
dt

[
iGm(t) + iinj(t)

]
. (10.30)

We utilize a complex exponential representation for the injection current iinj(t) =
Iinje jωinjt , and we assume the following ansatz for the oscillation voltage vosc(t) =
Vosc(t)e j ·θosc(t), which allows for amplitude modulation in the envelope Vosc(t). De-
note θ(t) B θosc(t) − ωinjt as the phase difference between the oscillator and the
injection. Assuming the conditions discussed in the previous subsection are met,
and accounting for the filtering action of the resonator, we approximate the oscil-
lator current as iosc(t) ≈ Iosc(t)e j ·θosc(t), which has the same phase as the oscillation
voltage.

Substituting these expressions into Eq. (10.30) and separating out the real and
imaginary parts (i.e., sine and cosine components), we get the following two coupled
differential equations:

Q
ω0ωinj

d2Vosc

dt2 +
1
ωinj

dVosc
dt
+

[
χ(ωinj) − 2

Q
ω0

dθ
dt
− Q
ω0ωinj

(
dθ
dt

)2
]

Vosc

=

(
1
ωinj

dIosc
dt
+ Iinj sin θ

)
RP

(10.31)

Q
ω0ωinj

Vosc
d2θ

dt2 +

(
2

Q
ω0

dVosc
dt
+ Vosc − IoscRP

) (
1 +

1
ωinj

dθ
dt

)
= IinjRP cos θ.

(10.32)

In the subsequent sections, we will use these general equations to subsume various
existing models.

Reduction to the Locked Model of Section 10.4
In an injection-locked oscillator in steady state, all quantities Vosc, Iosc, and θ are
constant in time. Therefore, taking d/dt → 0, Eqs. (10.31) and (10.32) reduce to

χ(ωinj)Vosc = IinjRP sin θ (10.33)
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and
Vosc =

(
Iosc + Iinj cos θ

)
RP (10.34)

respectively. Recalling from Figure 10.3 that Iinj‖ = Iinj cos θ and Iinj⊥ = Iinj sin θ,
we can simplify these to

Vosc =
(
Iosc + Iinj‖

)
RP = Iinj⊥

RP

χ(ωinj)
, (10.35)

whichmatches Eq. (10.11), the entire analytical basis for our physically-basedmodel
of an injection-locked LC oscillator.

Reduction to “Generalized Adler’s Equation” [21]
Here, we showhowEqs. (10.31) and (10.32) can be reduced toMirzaei’sGeneralized
Adler’s equation [21]. First, we derive a differential equation that captures the
dynamics of the oscillation amplitude. Assuming the phase is sufficiently slowly
varying such that |θ′(t)| � ω0 and |θ′′(t)| � ω0

2/Q, it is easily seen that Eq. (10.32)
simplifies to

2RPC
dVosc

dt
+ Vosc =

(
Iosc + Iinj cos θ

)
RP (10.36)

which matches equation (7) in [21].6

Now, we want to obtain a first-order differential equation for the dynamics of the
oscillation phase. Further assume that 1) the envelope of the oscillation voltage Vosc

is roughly constant in time and so Eq. (10.36) becomes Vosc ≈
(
Iosc + Iinj cos θ

)
RP,

2) the transconductor is a hard-limited commutator which results in a constant
oscillator current Iosc = 4I/π, and 3) the injection frequency is close to resonance
|∆ω| � ω0 and so χ(ωinj) ≈ −2Q (∆ω/ω0). Then Eq. (10.31) can be simplified as

dθ
dt
= ω0 − ωinj −

ω0
2Q

Iinj sin θ
4I
π
+ Iinj cos θ

, (10.37)

which matches equation (8) from [21], setting aside notational differences for the
phase (replace θinj − θ in [21] with −θ).

Further assuming Iinj � Iosc in Eq. (10.37) yields Adler’s original equation [47]:

dθ
dt
= ω0 − ωinj −

ω0
2Q

Iinj

Iosc
sin θ. (10.38)

6Equation (7) in [21] is missing the factor of 2 in front of the dVosc/dt term. (It is well-known
that 2RPC = 2Q/ω0 is the relaxation time constant of a parallel RLC resonator.)
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10.6 The Lock Range of the Ring Oscillator
The analysis carried out for LC oscillators under sinusoidal injection can also be
adapted for ring oscillators, provided an appropriate behavioral model is utilized.
Again, the physical insight that governs this analysis is that the injection must supply
enough “out-of-phase” current, and therefore, induce a large enough phase shift, to
cause the circuit to successfully operate away from its free-running oscillation
frequency. By finding the maximum phase shift which can be provided for a given
injection strength, we can compute the maximum deviation away from free-running
at which the circuit can operate, which yields the lock range.

Figure 10.8: Conceptual circuit model of a ring oscillator under injection. Each
Gm-cell is a nonlinear system which produces a sinusoidal output current whose
phase is the same as the input voltage and whose amplitude Iosc is independent of
the input amplitude. An ideal inverter in the loop provides a π phase shift along the
return path. All depicted signals are assumed to be sinusoidal steady-state phasors
at ωinj, the injection frequency.

Behavioral Model
We start with the sinusoidal steady-state behavioral model of a ring oscillator shown
in Figure 10.8 [10], [63], which consists of N first-order delay stages and an ideal
inverter connected sequentially in a closed loop, where N > 2. Note that the
number of stages could be either odd or even. Successive stages are interconnected
via a nonlinear transconductor (the Gm-cell), which supplies energy to the oscillator
by converting the previous stage’s output voltage into a current. In general, the
transconductor current will contain higher order harmonics due to its nonlinear
behavior. But, within the context of our behavioral model, we assume that these
higher order harmonics are suppressed by the RC-load’s low-pass nature, leaving
us with a clean fundamental harmonic in steady state with a (fixed) amplitude Iosc
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which is set through biasing.7 While this “quasi-linear” assumption makes the
analysis tractable by facilitating the use of phasors, it is also this model’s greatest
limitation [62].

First, we compute the free-running oscillation frequency. The impedance of each
stage’s load is

Z( jω) = R
1 + jωRC

. (10.39)

For oscillation to sustain, the phase shift around the loop must be 2π. Since all the
stages are identical, each stage must therefore contribute a phase delay of π/N . So,
the free-running oscillation frequency satisfies

∠Z( jω0) = −
π

N
(10.40)

which implies

ω0 =
1

RC
tan

( π
N

)
. (10.41)

At this point, we can already gauge the implications of relying on a quasi-linear,
sinusoidal steady-state assumption by comparing Eq. (10.41) against simulation.
Figure 10.9 shows the simulated free-running oscillation frequency for single-ended
inverter-chain ring oscillators designed in a 65-nm bulk CMOS process as the
number of (identical) stages varied from N = 3 to N = 17. As we can see, the
oscillation frequency scales as f0 ∝ 1/N instead of f0 ∝ tan(π/N), confirming
the conventional wisdom that in the large-signal regime, it is the time delay per
stage—as opposed to the phase delay per stage—that is invariant.

Next, the free-running oscillation amplitude is given by

Vosc = Iosc |Z( jω0)| = IoscR cos
( π

N

)
. (10.42)

In practice, matching an actual ring oscillator with the depicted behavioral model
may not be so obvious. Most notably, how does one compute Iosc? The most
accurate way is to simulate the fundamental component of the current flowing onto
the capacitor of a particular stage, call it IC , and note that

IC

ω0C
= Vosc = IoscR cos

( π
N

)
. (10.43)

Thus,
Iosc =

IC

sin
( π

N

) . (10.44)

Finally, we define the injection strength r B Iinj/Iosc.
7This assumption loses its validity as the number of stages increases.
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Figure 10.9: Free-running oscillation frequency f0 of the simulated ring oscillator
vs. number of stages N .

Injection into a Single Tap
Here, we assume the traditional setting of injection at a single tap—say tap 1 without
loss of generality. To compute the lock range, we will assume that this injection
current I⇀inj,1 exhibits a phase difference of θ with respect to the oscillator current it
adds to ( I⇀osc,1). Note that the exact definition of θ is irrelevant—all that is required
is that the injection current exhibit some phase shift with respect to any one of the
other signals in the circuit; we then treat that phase shift as the decision variable to
be optimized over. Specifically,

I⇀inj,n = Iinje jθ · δn1 (10.45)

where δi j is the Kronecker delta.

Again, for oscillation to occur, the total phase delay along all of the stages must be
π. Thus, it can be shown that

N∠Z( jωinj) + ∠(1 + re jθ) = −π. (10.46)

Solving for the injection frequency, we get

ωinj =
1

RC
tan

[
π + ∠(1 + re jθ)

]
mod 2π

N
. (10.47)

We leave it as an exercise to the reader to show that for r > 1, the range of
∠(1 + re jθ) is the entire interval [0, 2π), and so the range of ωinj becomes [0,∞).
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From a physical standpoint, at infinitely high frequencies, each stage contributes
a delay of −π/2 since the capacitor shorts out the resistor. On the other hand,
at DC, the capacitor opens and so none of the stages contribute any delay. Of
course, this seemingly infinite lock range, although mathematically correct, is not
physically meaningful. Much like the results of the analysis for the LC oscillator
(see Section 10.4), in scenarios where a solution mathematically exists at DC or
as ωinj → ∞, the oscillator will lose lock at some point because the solution is no
longer energetically favorable to being pulled.

Assume Iinj ≤ Iosc. The upper and lower optimizers for θ can be computed to be
θmax/min = ± cos−1(−r) [compare with Eq. (10.8)], which leads to the following
optimum values for the injection frequency:

ωmax/min =


1

RC
tan

(
π ± sin−1 r

N

)
, r ≤ 1

+∞/0 , r > 1.
(10.48)

Because the value of R may not be apparent for a particular topology, it is easier to
work with the fractional lock range ω±L/ω0, which is defined as

ω±L
ω0

B
ωmax/min − ω0

ω0
. (10.49)

Let us briefly elucidate some limiting characteristics of the fractional lock range.
As the number of stages grows, the fractional lock range approaches

lim
N→∞

ω±L
ω0
= ±1

π
sin−1

(
Iinj

Iosc

)
, (10.50)

whereas for small injections (r � 1), the small-angle approximation gives

ω±L
ω0

����
Iinj�Iosc

≈ ± 2

N sin
(
2π
N

) Iinj

Iosc
, (10.51)

which matches equation (9) in [63], equation (2) in [62], and equation (29) in [2].

Multiple Distributed-Phase Injections into All N Taps
Here, we analyze the scheme proposed by Mirzaei in [10] to increase the lock
range of ring oscillators by injecting current into every single stage, with injections
between successive stages separated by a phase of π/N . Although the fact that
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this scheme significantly increases the lock range was mentioned and demonstrated
experimentally in [10], a simple and intuitive analysiswhich yields qualitative insight
was not provided. Note that injecting N times as much current into a single stage
has diminishing returns since it will eventually saturate that stage. Mathematically,
the injection phasors are

I⇀inj,n = Iinje− jθe j(n−1)π/N, (10.52)

where the phase is referred to the oscillator current of the first stage. Now, the total
phase shift along all the delay stages can be shown to be

N∠Z( jωinj) + N∠(1 + re jθ) = −π. (10.53)

Solving for the injection frequency,

ωinj =
1

RC
tan

[
∠(1 + re jθ) + π

N

]
. (10.54)

Again, we leave it as an exercise to the reader to explore the circumstances under
which an infinite lock range would mathematically prevail. Note that due to the
symmetric injection topology, each stage must contribute a net phase delay of π/N .
Assuming the lock range does not extend to positive infinity or DC, we can again
optimize the injection frequency, which again yields θmax/min = ± cos−1(−r). This
gives an upper lock range of

ωmax =


1

RC
tan

( π
N
+ sin−1 r

)
, r < cos

( π
N

)
+∞ , otherwise

(10.55)

and a lower lock range of

ωmin =


1

RC
tan

( π
N
− sin−1 r

)
, r < sin

( π
N

)
0 , otherwise.

(10.56)

For small injections, the small-angle approximation gives a fractional lock range of

ω±L
ω0

����
Iinj�Iosc

≈ ± 2

sin
(
2π
N

) Iinj

Iosc
, (10.57)

which shows that for Iinj � Iosc, this scheme increases the lock range by a factor of
N . Furthermore, it is easy to show that if only a fraction of the N injections were
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turned on, say M out of N (with M ≤ N), and the same phase progression dictated
by Eq. (10.52) is maintained, then the lock range would increase by a factor of M

instead. By symmetry, this result is independent of which M stages we choose.

On the other hand, for long rings, whileωmin = 0 becomes achievable for sufficiently
large N , the upper fractional lock range scales linearly with the number of stages as

ω+L
ω0

����
N→∞

−→ N

π

√
Iosc

2

Iinj
2 − 1

. (10.58)

Simulation Results
To assess the validity and utility of these results, we ran transient simulations via
SpectreRF on single-ended inverter-based ring oscillators with N identical stages
designed in a 65-nm bulk CMOS process. Shown in Figure 10.10, we compared
the simulated lock ranges against Eqs. (10.48), (10.55), and (10.56). Each tap was
loaded with a 1 nF capacitor so as to dominate over the device capacitances within
the inverters. This allowed us to compute Iosc from the current of this load cap using
Eq. (10.44). Interestingly, the oscillator current was found to be roughly 0.12 mA,
independent of the number of stages. As we can see from Figure 10.9, the free-
running oscillation frequency ranged from f0 = 32 kHz for N = 3 to f0 = 5.5 kHz
for N = 17.

The accuracy of our model degrades most prominently as the injection strength
increases (for a fixed N), and as the number of stages decreases (for a fixed r).
The reason for this is that Eqs. (10.48), (10.55), and (10.56) diverge to +∞/0
under certain scenarios. Although mathematically valid within the confines of our
behavioral model, such lock ranges are not physically realistic (in the same way that
Eq. (10.19) is meaningless for Iinj > Iosc). Our model’s deviation from the simulated
results also increases slightly for longer rings, since higher order harmonics in the
waveforms become more apparent.

Our results—while lacking the veracity of the transcendental, exponential-decay-
based results of equations (6) and (7) in [10]—are succinct and straightforward,
making them amenable to lending design insight, at least to the first order. Fur-
thermore, our expressions for the fractional lock range are independent of the load
resistance R, a parameter that appears in the abstract behavioral model which is dif-
ficult to estimate in reality. Furthermore, it should be noted that a plethora of other
ring oscillator injection locking models and lock range analyses can be found in the
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literature [2], [62]–[65], most of which are considerably more complicated than the
presented analysis and some of which are more accurate in one scenario or another.
However, none of them depict simulation results over a wide range of the number of
stages and of the injection strength. As such, it is difficult to see the general trends
that their results and expressions have, nor is it practical to evaluate under what
scenarios their models break down. Our analysis leads to good predictions in two
asymptotic regimes: the small-injection (Iinj � Iosc) regime, given by Eqs. (10.51)
and (10.57); and the long ring case (N � 1), given by Eqs. (10.50) and (10.58).

10.7 The Small-Injection Lock Range: A Corollary
Here, we illuminate a mathematical connection between the small-injection lock
ranges of LC oscillators Eq. (10.20) and ring oscillators Eq. (10.51). Let us assume
that an arbitrary feedback-based oscillator has a small-signal (i.e., linearized) open-
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Figure 10.10: Theoretical versus simulated fractional lock ranges fL/ f0 for various
scenarios. A fractional lock range of −100% indicates that the oscillator locks for
arbitrarily low frequencies (“down to DC”).

loop transfer functionH(s), as shown inFigure 10.11. It holds true that ∠H( jω0) = 0,
where ω0 is the free-running oscillation frequency. In order for the oscillator to
lock to ωinj, the phase that the transfer function bears at the injection frequency,
∠H( jωinj), must be offset by the phase shift introduced by the injection current
φ = ∠( I⇀inj + I⇀osc) [2], [62].

Using a first-order Taylor series approximation,

∠H( jωinj) ≈ ∆ω ·
∂∠H( jω)

∂ω

����
ω=ω0

. (10.59)

Next, from injection geometry, in the small-injection limit, the maximum phase shift
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that the injection can produce occurs when the injection and oscillator currents are
mutually orthogonal (see the phasor triangle in Figure 10.11). Using the small-angle
approximation, we get8

tan φmax ≈ φmax =
Iinj

Iosc
. (10.60)

Since the maximum allowable frequency deviation occurs when
��∠H( jωinj)

�� = φmax,
the small-injection (Iinj � Iosc), one-sided lock range is given by

ωL =
1����� ∂∠H( jω)∂ω

����
ω=ω0

�����
·

Iinj

Iosc
. (10.61)

This expression is applicable to any feedback-based oscillator subject to a sinusoidal
current injection which is added to an internal oscillator current that is produced by
the oscillator’s core energy-restoring nonlinearity.

Figure 10.11: Simplified and linearized mathematical model of a feedback-based
oscillator under injection.

Example: LC Oscillator of Figure 10.1
It is easy to show that

H(s) = Gm

1
RP
+ sC +

1
sL

=
GmRP

Q
ω0

s + 1 +
Qω0

s

(10.62)

8This can also be justified rigorously by linearizing Eq. (10.9) about Iinj = 0.
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=⇒ ∂∠H( jω)
∂ω

����
ω=ω0

= −2Q
ω0
, (10.63)

which is consistent with Eq. (10.20).

Example: N-Stage Ring Oscillator of Figure 10.8
For this oscillator, the open-loop transfer function is

H(s) = −
(

GmR
1 + sRC

)N

=
(GmR)N[

1 +
s
ω0

tan
( π

N

)]N , (10.64)

and so
∂∠H( jω)

∂ω

����
ω=ω0

= − N
2ω0

sin
(
2π
N

)
, (10.65)

in accordance with Eq. (10.51). It is noteworthy that [2] shows similar derivations
for these two specific examples.

10.8 Conclusion
This chapter presented a sinusoidal steady-state analysis of LC and ring oscillators
under injection. Exact equations that describe an LC oscillator’s amplitude and
phase which make no assumptions about the injection strength or frequency were
derived and verified by simulation. The extension of the analysis to other types of
resonator topologies, such as thosewith low-Q inductors, was shown. The conditions
under which the transconductor “preserves” a time-varying phase in the oscillation
voltage—an often overlooked issue in the analysis of oscillators—was illuminated.
Next, the response of the ring oscillator to both a single sinusoidal current injection
andmultiple distributed-phase injections was examined. Simulation results revealed
that our analysis possesses good predictive power for small injections and long
rings in the form of clean, crisp, closed-form expressions for the fractional lock
range that yield significantly more physical intuition than many existing models.
Finally, a general corollary was proven that relates the rate of change of the phase
of an oscillator’s open-loop gain near resonance to its small-injection lock range,
underlining the mathematical connection between our apparently disparate analyses
of LC and ring oscillators.

At its core, our analysis starts by assuming the circuit is operating at sinusoidal
steady state (i.e., the oscillator is already locked), and then solving for the range of
frequencies for which a solution to the circuit exists. That a solution does not exist for
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all frequencies (as would be the case for a linear circuit) is due to the transconductor
elements within the behavioral model, which capture the essential nonlinear aspect
of the oscillator’s operation. Although powerful, this technique suffers from themain
drawback that the existence of a sinusoidal steady-state solution does not guarantee
that the solution is energetically stable, and hence does not imply that the oscillator
will actually follow that solution. Nevertheless, the physical insight gleaned from
applying this methodology to both LC and ring oscillators yields valuable design
intuition while also contributing to a fundamental understanding of the injection
locking phenomenon.
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C h a p t e r 11

CONCLUSION

A general, time-synchronous theory of injection locking and pulling in electri-
cal oscillators was presented, applicable to oscillators of any topology and peri-
odic disturbances of arbitrary shape. The analysis was engendered from a thought
experiment—the entrainment of an LC oscillator to an impulse train. This moti-
vated us to develop the model using the concept of the Impulse Sensitivity Function
(ISF), which represents the periodically time-varying impulse response of the os-
cillator’s phase to external perturbations. A single first-order differential equation
is shown to capture the phase behavior of a periodically disturbed oscillator and
accurately predict a wide array of properties. The steady-state solution gave rise to
the lock characteristic, defined as the phase difference between the locked oscillator
and the injection signal, which allowed us to calculate the lock range. A transient
analysis of the equation elucidated the dynamics behind the pull-in process, mode
stability, the spectrum of an injection-pulled oscillator, as well as phase noise in
both free-running and injection-locked oscillators. The analysis was also extended
to cover injections at superharmonic and subharmonic frequencies, along with their
general combination whereby the injection and oscillation frequencies are related
through any rational number. The developed theorywas supported by simulation and
measurement results on a diverse collection of LC, ring, and relaxation oscillators.

For the commonly used LC oscillator, an observation concerning the inverse depen-
dence of the ISF on the oscillation amplitude led to a nonlinear generalization of
the framework, enabling it to handle large injections as well. The resultant model
elucidates hitherto unknown properties of injection-locked LC oscillators, such as
asymmetry in the lock range and the benefits of using only an NMOS cross-coupled
pair as opposed to complementary pairs. In the specific case of an ideal LC oscilla-
tor, the amplitude-dependent pulling equation reduced down to other known models
such as Adler’s equation and Mirzaei’s Generalized Adler’s equation.

The framework also shed design insight into how the lock range could be optimized.
Specifically, we used the Cauchy-Schwarz inequality to show that the optimal in-
jection waveform for a fixed injection power was one whose shape matched the ISF.
This methodology was generalized to frequency dividers by only considering the
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relevant spectral components of the ISF. We also investigated how the oscillator’s
design could be modified to enhance its lock range for certain applications. This
led to the realization of a low-power dual-moduli prescaler for frequency synthesis
applications which featured a wide range of operating frequencies and a small chip
area, making it competitive with the state-of-the-art.

11.1 Future Directions
There are a number of unsolved questions which are of potential interest in light
of the results presented in this thesis. On the theoretical front, a challenging but
fruitful endeavor would be to investigate the nonlinearity of the lock characteristic
with respect to large injections for non-LC oscillators. This may require a number
of state-space limit cycle modeling techniques as well as general observations to be
made about the behavior of a specific class of oscillators (i.e., ring or relaxation).
Another theoretical avenue would be to look into the error associated with the
averaging technique that resulted in the autonomous differential equation which
formed the basis of our model. Of particular importance would be to figure out
under what conditions this error becomes practically significant. Finally, being
able to model the stability of the amplitude dynamics in LC oscillators would be
very worthwhile, as this would allow us to determine which oscillation amplitudes
are too small to sustain lock. In doing so, we would no longer need to, for large
injection amplitudes, restrict the range of phases over which the lock characteristic
is considered, as this was done in a somewhat ad hoc manner in Chapter 5.

Future research directions also exist on the applied side. For example, optimizing
the lock range under different or additional constraints, besides the maximum root-
mean-square injection current, would be useful to the design community. Applica-
tions where the lock range should be minimized or shifted as opposed to widened
could also be investigated. Additionally, a much more systematic method of making
the inverters in a ring oscillator asymmetric to enable division by even ratios could
be developed. Also, consider the technique of applying distributed-phase injections
into multiple stages of a single-ended ring oscillator to be used as a frequency di-
vider. Notice that if the division ratio N and the number of stages K are equal, then
according to Eq. (9.1), the injection phase for all of the stages becomes the same:
φinj(k) = kN (π − π/N) = k(N − 1)π = 0, where we used the fact that the number
of stages N is odd. This would obviate the need for multi-phase injections and for
switching the injection sites for different division ratios, which significantly eases
implementation and potentially leads to enhanced performance.
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C h a p t e r 12

OTHER WORKS

12.1 Upper and Lower Bounds on a System’s Bandwidth Based on its Zero-
Value Time Constants

[1] B. Hong and A. Hajimiri, “Upper and lower bounds on a system’s bandwidth
based on its zero-value time constants,” Electronics Letters, vol. 52, no. 16,
pp. 1383–1385, Aug. 2016. doi: 10.1049/el.2016.1724,

Introduction
The estimate of a low-pass circuit’s 3-dB bandwidth via the method of zero-value
time constants is well-known [135]–[137]. This procedure entails computing the
time constant of each reactive element in a circuit based on the resistance it seeswhen
all other reactive elements are zero-valued (capacitors opened, inductors shorted).
The inverse of the sum of these zero-value time constants, or ZVTs, is then taken to
be an estimate of the circuit’s 3-dB high-cutoff frequency. For a linear time-invariant
nth-order system with m zeros and n poles (m < n) whose transfer function can be
written as1

H(s) = a0 + a1s + a2s2 + · · · + amsm

1 + b1s + b2s2 + · · · + bnsn , (12.1)

it can be shown [135]–[137] that the sum of the ZVTs is equal to b1. For now, we
will consider systems with no zeros (a1 = a2 = · · · = am = 0), which serve as a
good model for circuits where the zeros occur at very high frequencies beyond the
passband and are hence unimportant. We thus rewrite the transfer function as

H(s) = H0

1 + b1s + b2s2 + · · · + bnsn , (12.2)

where |H0 | = |a0 | is the DC gain of the system. We then argue that as the frequency
increases from DC, the first term in the denominator that becomes significant is b1s,
and so near the −3-dB point the system can be approximated as

H(s) ≈ H0
1 + b1s

(12.3)

from which the ZVT bandwidth estimate of ωc ≈ 1/b1 follows [135], [137].
1If b0 = 0 as in the case of the impedance of a capacitor, one can consider the reciprocal of the

transfer function instead.

http://dx.doi.org/10.1049/el.2016.1724
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In this short treatise, we prove that for a system whose poles are all real, this ZVT
estimate of the bandwidth is always a lower bound on the system’s actual bandwidth
ωc. We also prove a nontrivial upper bound on ωc that depends only on the sum of
the ZVTs b1 and the system’s order n.

Statement of the Theorem
Consider a linear time-invariant nth-order low-pass system with no zeros and no
complex poles whose transfer function is

H(s) = H0

1 + b1s + b2s2 + · · · + bnsn . (12.4)

The system’s 3-dB bandwidth, or high-cutoff frequency, is defined as the (lowest)
angular frequency ωc that satisfies

|H( jωc)| ≡
|H0 |√

2
. (12.5)

If n = 1, then trivially ωc = 1/b1. For n > 1, the following lower and upper bounds
on ωc hold:

1
b1

< ωc ≤
n
b1

√
21/n − 1. (12.6)

Furthermore, these inequalities are tight, or achievable, in the sense that there exists
systems whose bandwidths are arbitrarily close to the lower bound or are given by
the upper bound. �

A couple comments are in order:

1. The lower bound also holds for systems with complex poles whose quality
factors are no larger than Q ≤

√
2. (The upper bound does not.) We will

prove this separately in a later section.

2. The lower bound is physically intuitive. Loosely speaking, the ZVT estimate
1/b1 considers the worst case scenario where the system’s reactive elements
“energize” one after the other, as the time constants are added together. In gen-
eral, however, the system’s energy-storage elements may energize in parallel,
leading to a “faster” response than that dictated by b1.

Proof of the Lower Bound
Assume n > 1. Since all the poles are real, by the fundamental theorem of algebra,
the denominator of Eq. (12.4) can be factored as

H(s) = H0

n∏
i=1

1
1 + τis

(12.7)
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where τi ∈ R++ for i = 1, . . . , n are the time constants associated with the system’s n

poles2. To simplify the notation, we define the following variables for i = 1, . . . , n:

xi B ωτi (12.8)

where the frequency ω will be specified based on context. Lastly, based on the
easily seen fact that b1 =

∑n
i=1 τi, we can also write ωb1 =

∑n
i=1 xi.

Tomake the proof more analytically tractable, we reformulate the problem statement
in an equivalent way. By definition of the bandwidth, the lower bound ωc > 1/b1 is
equivalent to:

|H( jω)| > |H0 |√
2

(12.9)

for all ω ≤ 1/b1. That is, the system’s magnitude is always above −3-dB (relative
to the DC gain) for frequencies up to 1/b1, the ZVT estimate of the high-cutoff
frequency.3

We can then express the problem statement as follows: for xi > 0 ∀i, show that

n∏
i=1

(
1 + xi

2
)
< 2 (12.10)

subject to
n∑

i=1
xi ≤ 1. (12.11)

Now we proceed with the proof proper. First, we establish the following claim:
given constants a and b such that 0 < a, b < 1, it holds true that

(1 + a2)(1 + b2) = 1 + a2 + b2 + (ab)2

= (1 − ab)2 + (a + b)2

< 1 + (a + b)2
(12.12)

where equality is approached by taking a→ 0 or b→ 0 (or both). We need to repeat
this argument for a total of n − 1 times, where the k th step features a =

∑k
i=1 xi and

b = xk+1. For each step, it is apparent that 0 < a, b < 1, since xi > 0 ∀i combined
2Note that the τi’s are only equal to the system’s ZVTs if the poles are decoupled [137] from one

another. In general, each τi could depend on multiple energy storage elements. Indeed, there may
even be fewer poles than there are reactive elements in the circuit! It is only true that the ZVTs and
the τi’s have the same total sum, namely b1.

3We can invoke the fact that |H( jω)| decreases monotonically with frequency ω to simplify the
reformulation of the lower bound to |H( j/b1)| > |H0 |/

√
2, but we choose not to do so here because

monotonicity no longer holds in the presence of complex poles, which we deal with in a later section.
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with the constraint Eq. (12.11) implies that
∑

i∈S xi < 1 ∀S ⊂ {1, . . . , n}. Thus, we
arrive at

n∏
i=1

(
1 + xi

2
)
<

[
1 + (x1 + x2)2

] n∏
i=3

(
1 + xi

2
)

< · · ·

< 1 +

(
n∑

i=1
xi

)2

≤ 2

(12.13)

where the final inequality follows from the constraint
∑n

i=1 xi ≤ 1. By letting one
of the xi’s approach unity (which takes the remaining xi’s to zero), we can also see
that this inequality is tight. This establishes the lower bound. �

Notice what is happening here physically. We are “merging” the system’s poles
together one at a time (by adding their time constants together), and with each step,
the bandwidth of the system worsens until we end up with a 1st-order system whose
bandwidth is exactly equal to the ZVT estimate 1/b1. The proof also shows how
this lower bound is achievable: as one of the system’s poles becomes increasingly
dominant (where to dominate means to have a larger time constant), the system’s
bandwidth will approach the lower bound dictated by Eq. (12.6).

Proof of the Upper Bound
The proof of the upper bound is somewhat similar in spirit, but we take a slightly
different approach. Consider the following system:

Hmax(s) B
H0

(1 + τ̄s)n , (12.14)

where

τ̄ B
1
n

n∑
i=1

τi =
b1
n

(12.15)

is the arithmetic mean of all the time constants. Notice that this system has the
same b1 coefficient as Eq. (12.4). We claim that of all nth-order systems (with no
zeros or complex poles) that share the same b1 coefficient, Hmax(s) has the best,
or maximum, bandwidth. In other words, for a given sum of the ZVTs, the best
bandwidth is achieved by stacking all of the poles on top of each other. Appealing
to the fact that |Hmax( jω)| is monotonically decreasing with ω, we can establish this
claim by proving that the magnitude of Hmax at the cutoff frequency ωc of Eq. (12.4)
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is always no less than −3-dB (relative to the DC gain):

|Hmax( jωc)| ≥ |H( jωc)| ≡
|H0 |√

2
. (12.16)

Letting ω = ωc in Eq. (12.8), this is equivalent to the following: given xi > 0 ∀i,
show that (

1 + x̄2
)n
≤ 2 (12.17)

subject to
n∏

i=1

(
1 + xi

2
)
= 2, (12.18)

where x̄ B ωcτ̄ ≡
∑n

i=1 xi/n is the arithmetic mean of the xi’s.

The general idea of the proof is to “move” the τi’s to τ̄ one by one, whilst improving
the bandwidth of the system with each move. To that end, we will actually prove,
subject to the constraint Eq. (12.18), the equivalent inequality

n∏
i=1

(
1 + xi

2
)
≥

(
1 + x̄2

)n
. (12.19)

We now proceed with the proof proper. If xi = x̄ ∀i, the upper bound is trivially
attained, so assume otherwise. Then ∃xp > x̄, xq < x̄. Denote ∆p B xp − x̄ > 0.
We will now establish the following inequality:

(1 + xp
2)(1 + xq

2) > (1 + x̄2)
[
1 + (xq + ∆p)2

]
. (12.20)

To see this, define the function

f (ζ) B
[
1 + (xp − ζ)2

] [
1 + (xq + ζ)2

]
. (12.21)

We want to show that f (0) > f (∆p). One can compute that

f (0) − f (∆p) = ∆p(x̄ − xq)
{
∆p(x̄ − xq) + 2

[
1 − x̄(xq + ∆p)

]}
.

By construction, xq < x̄. Hence, to establish the strict positivity of f (0) − f (∆p),
we can just check that 1 − x̄(xq + ∆p) > 0. Since the xi’s are positive, by the
constraint (12.18), we know that xi < 1 ∀i. Then we can see that 0 < x̄ < xp < 1
and 0 < xq + ∆p < x̄ + ∆p = xp < 1. Thus, 0 < x̄(xq + ∆p) < 1, which shows that
f (0) > f (∆p). This proves Eq. (12.20).

By renaming xp ← x̄ and xq ← xq+∆p, we have effectively moved xp to the mean x̄

while moving xq (which was on the other side of x̄) by the same but opposite amount
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in order to maintain the average x̄. This procedure, as we just showed, decreases∏n
i=1

(
1 + xi

2) . We now repeat the above algorithm until all of the xi’s are equal to4
x̄, which yields the right-hand-side of Eq. (12.19), proves Eq. (12.17) and thus also
Eq. (12.16), and finally establishes our claim.

Now that we have shown that Hmax(s) is indeed the nth-order system (with no zeros
or complex poles) with the best bandwidth for the given b1 coefficient, all that is left
for us to do is to compute this optimal bandwidth. It is a simple exercise to show
that the bandwidth of Hmax(s), which we shall denote by ωmax, is given by

ωmax =
n
b1

√
21/n − 1. (12.22)

This proves the upper bound and also establishes its tightness. �

There is a simple mathematical intuition that we can glean from the upper bound.
Since the lower bound is approached when one of the poles is dominant—in the
extreme case all non-dominant poles are infinitely far away and we are left with the
1st-order system H0/(1+b1s)whose bandwidth is exactly 1/b1—it makes sense that
the upper bound is attained when none of the poles dominates, in which case all the
poles are identical.

Impact of Complex Poles
Here, we show that the lower bound ωc > 1/b1 of Eq. (12.6) still holds when the
system has complex poles whose quality factors do not exceed Q ≤

√
2. Consider

the canonical form of the denominator polynomial that describes a pair of complex
conjugate poles:

D(s) = 1 +
s

Qω0
+

(
s
ω0

)2
(12.23)

where Q > 1/2. The time constant associated with this complex pole is the
coefficient of the s term τ = 1/(Qω0), and so we proceed to denote, just like before,
y B ωτ = ω/(Qω0). Then it holds true that

|D( jω)|2 =
[
1 − (Qy)2

]2
+ y2 < 1 + y2 (12.24)

if 0 < y < 1 andQ ≤
√

2. Now, to account for m pairs of complex conjugate poles in
the original system, the left-hand-side of Eq. (12.10) is multiplied by the additional
term

∏m
j=1

( [
1 − (Q j y j)2

]2
+ y j

2
)
and the constraint Eq. (12.11) is modified to

4Obviously, when there are only two xi’s left that are not equal to x̄, they will be equidistant
from but on opposite sides of x̄, so this procedure “centers” both of them to x̄.
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i=1 xi +

∑m
j=1 y j ≤ 1. Noting that 0 < y j < 1∀ j due to the modified constraint and

applying the above reasoning of Eq. (12.24) to first deal with the complex poles, we
can subsequently proceed with the proof of the lower bound as usual.

It is left as a tedious algebra exercise to show that the upper bound does not hold
when the system has complex poles. That is, for any pair of complex conjugate
poles, there exists a system with those poles whose bandwidth exceeds the upper
bound of Eq. (12.6). To elaborate on this point a little bit further, define

Q0 B
1
2

√
7

2
√

2 − 1
≈ 0.97832.

Then, if Q < Q0, the 2nd-order system constructed from the complex poles them-
selves suffices. On the other hand, when Q ≥ Q0 (which implies resonant peaking
since Q0 > 1/

√
2), we need to add a dominant real pole to the system in such a way

that Hmax(s) decays to −3-dB at a frequency where H(s) is still “riding” the resonant
peak. This demands that the time constant of this added pole be large enough such
that it dominates b1 sufficiently, but small enough such that its frequency is still
close to the resonance frequency of the complex poles.

Impact of Zeros
The effect that zeros have on the bandwidth is discussed in [137]. Assuming that
the zeros are at sufficiently high frequencies, we can approximate the numerator of
the transfer function Eq. (12.1) as H0(1 + as) where a = a1/a0. Then, since as is
still quite small (compared to unity) around the frequencies of interest, we can write
(1+ as) ≈ 1/(1− as), which further allows us to crudely approximate Eq. (12.1) as,
and therefore replace Eq. (12.4) with

H(s) ≈ H0

1 + (b1 − a)s + (b2 − ab1)s2 + · · · + (bn − abn−1)sn − abnsn+1 . (12.25)

We can then replace the ZVTs with the modified ZVTs described in [137], whose
sum is equal to b1 − a. The bounds stated in Eq. (12.6) can then be “improved,” in
some sense, by using b1 − a in place of b1. Of course, given the nature of the many
approximations being made here, the rigor of these bounds (as established here) no
longer holds.

Conclusion
In this chapter, we proved that the (strict) lower bound on the bandwidth of a
low-pass system with no zeros, order exceeding unity, and whose complex poles
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feature quality factors satisfying Q ≤
√

2 is given by its well-known zero-value time
constant estimate

ωc >
1
b1
, (12.26)

and this bound can be approached by making one of the system’s (real) poles
increasingly dominant. We also proved that the upper bound on the bandwidth of
an nth-order low-pass system with no zeros and no complex poles is given by

ωc ≤
n
b1

√
21/n − 1, (12.27)

and this bound is attained when all the poles are at the same location. Both bounds
are equally important from a conceptual standpoint, as the lower bound should not
be “favored” over the upper bound, except perhaps for the reason that the system
performs at least as well as the lower bound—i.e., the lower bound serves as a
conservative estimate. However, in a system where all the poles are around the same
ballpark of frequencies, the upper bound may actually serve as a better estimate of
the bandwidth.

In passing, we would also like to note that analogous bounds hold for the low-cutoff
frequency of a high-pass filter based on its infinite-value time constants (IVTs).
Specifically, for the low-cutoff ωc,l of an nth-order (where n > 1) high-pass system
with no non-DC zeros and no complex poles, we have

1

n
√

21/n − 1
≤ ωc,l∑

k 1/τ∞k
< 1 (12.28)

where the τ∞k ’s are the system’s IVTs5, and again, the upper bound also holds in the
presence of complex poles with Q ≤

√
2.

5As a mathematical note, observe that∑
k

1
τ∞
k

=

n∑
i=1
−pi =

n∑
i=1

1
τi
=

bn−1
bn

where pi, i = 1, . . . , n are the system’s poles.
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12.2 Holistic Design of Multi-Phase Switched-Capacitor DC-DC Converters
with a Large Number of Conversion Ratios

[1] R. Fatemi, B. Hong, P. P. Khial, and A. Hajimiri, “Holistic design of multi-
phase switched-capacitor DC-DC converters with a large number of conver-
sion ratios,” submitted to Electronics Letters,

Sharp tuning resolution and low ripple in the output voltage are essential to power
converters for achieving optimal power efficiency in the systems they regulate. Here,
we present a switched-capacitor DC-DC converter based on a cascaded architecture
of triple-mode reconfigurable blocks, where the number of non-redundant conver-
sion ratios that can be generated by cascading N stages scales as 6N . Each block
consists of 15 parallel sections being switched at equally distributed phases. To the
best of the authors’ knowledge, this architecture achieves the finest output resolution
with the lowest number of cascaded stages to date. The 3-stage cascaded system
presented here realizes 115 non-redundant conversion ratios, a peak efficiency of
82%, and a large power density of 1.08 mW/mm2. The circuit was implemented in
a 65-nm bulk CMOS process and occupies 1.31 mm2 of die area.

Introduction
Modern low-power systems-on-chips (SoCs) operating in the subthreshold regime
typically feature multiple systems in different power domains. Consequently, the
power efficiency of such systems depends critically on the performance of the power
management DC-DC converters regulating each system’s supply voltage. Such a
converter should lend itself to complete integration, feature high power efficiency,
and be capable of providing a large power density. Switched-capacitor DC-DC
converters have been studied extensively due to the superior energy density and
quality factor of on-chip capacitors relative to inductors [138]–[145]. While highly
efficient switched-capacitor (SC) DC-DC converters have been implemented in
various forms, they usually only provide a handful of different conversion ratios
[138]–[142]. Regardless, the supply must be regulated to a voltage which is at least
as high as what the system nominally requires. However, since the circuit must still
draw the same amount of current, any supply voltage in excess of what the circuit
needs at any point in time is effectively wasted [138]. Therefore, having both a fine
output voltage tuning resolution and a smooth, low-ripple output voltage waveform
is crucial.

Since a basic switched-capacitor topology exhibits optimal efficiency at a conversion
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ratio of 1/2, systems utilizing blocks of 1/2-ratio converters have been realized in
successive approximation architectures [141] or cascaded recursive SC structures
[143]–[145] to provide multiple ratios with finer resolutions. However, cascading
blocks together reduces overall efficiency, since each stage contributes additional
loss. In fact, for the same tuning resolution, cascading a large number of efficient
stages could be significantly less power-efficient than utilizing fewer lossier stages
with multiple conversion ratios. Hence, to optimize performance, the design of the
switched-capacitor blocks and the overall system architecture must be considered
holistically.

Figure 12.1: High-level schematic of the multi-phase switching scheme of a single
conversion block.

Another degree of freedom to achieve voltage regulation is through tuning of the
switching frequency, which can change the steady-state output voltage. While
deviating from the frequency which optimally trades off the switching loss and
the charge-sharing loss of each block might seem inefficient at first glance, the
alternatives of adding extra cascaded stages to realize a finer tuning resolution or
delivering excess voltage to the load also lower the overall efficiency of the system
[138].
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Design
We present a switched-capacitor DC-DC converter that utilizes fifteen-phase triple-
ratio blocks in a cascaded architecture to provide multiple output voltage levels with
a fine resolution. Furthermore, frequency tuning is then used to cover the gaps
between these discrete voltage steps, which, due to the small size of the gaps, does
not appreciably degrade the efficiency. Each block can provide output ratios of 1/3,
1/2, and 2/3 [144], which can be set using digital control signals. A reconfigurable
flying capacitor was designed to switch between a high-voltage mode (where the
two capacitors are in series) and a low-voltage mode (where the two capacitors
are in parallel). Non-overlapping switching provides efficient transitions between
the modes and eliminates crowbar currents through the switch transistors during
switching events. The number of input and ground connections is maximized to
minimize charge-sharing loss [143].

Figure 12.2: Diagram of the cascading topology.

As shown in Figure 12.1, a conversion block consists of 15 parallel stages that operate
at different phases, each of which causes one of the flying capacitors to rotate into
the charging state or the discharging state. Generated by a ring oscillator, the
large number of equally-distributed phases reduces the charge-transfer loss between
these two modes and suppresses output voltage ripple. The correspondingly smooth
output voltage thereby enhances the efficiency of the system [140], since fluctuations
in the regulated voltage contribute directly to loss.



246

While the architecture is scalable, cascading just three stages (shown in Figure 12.2)
already gives 115 unique conversion ratios, realizable through different settings
and which cover a large dynamic range. It is important to note, however, that
redundant ratios will not necessarily have the same output voltage in practice due
to the different loss of the system in each setting. Therefore, an even finer tuning
resolution is possible than what is combinatorically allowed.

Table 12.1: Number of Unique DC-DC Conversion Ratios

Scheme Number of Ratios

Ours 2 · 6N − 5 · 3N + 6 · 2N

3
Recursive Ternary [144] 2 · 3N − 2N − 1

Lower Bound from [144] 3
2

(
3N − 1

)
Binary Successive Approximation [141] 2N − 1

Closed-form expressions for the exact number of non-redundant conversion ratios
(not including 0 or 1) as a function of the number of stages N , obtained through proof
by induction, are given in Table 12.1 for various cascading schemes. (The lower
bound given in [144] for the recursive ternary scheme is also shown for reference.) A
numerical simulation counting the number of ratios which confirms these formulas
is plotted in Figure 12.3, clearly depicting the advantage of our scheme over others.

Figure 12.3: Number of conversion ratios (on a log scale) vs. number of cascaded
stages for different cascading schemes.
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Measurement Results
Figure 12.4 shows the ideal and measured output voltages for a cascade of two
stages. A three-stage cascade provides an even finer resolution of output voltages
with minimum and maximum step sizes of 4.6 mV and 37 mV, respectively.

Figure 12.4: Measured output voltage of all 17 ratios for a 2-stage cascade with no
load (red dots) plotted against the ideal output voltage (blue line).

Figure 12.5: Efficiency vs. switching frequency for conversion ratios of 1/3, 1/2,
and 2/3 with various loads. (Bottom Right) Efficiency vs. output voltage for the
same conversion ratios with a 1 kΩ load.
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The efficiency of the system for various settings is shown in Figure 12.5. As we
can see, small deviations from the optimum switching frequency do not degrade the
efficiency significantly. Therefore, as mentioned above, tuning the switching period
can be reliably used as another degree of freedom to adjust the output voltage.
Figure 12.6 depicts the peak efficiency of the system as a function of the power
density.

Figure 12.6: Peak efficiency vs. power density.

Figure 12.7: Efficiency vs. switching frequency for various loads with a 1/2 con-
version ratio.
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Finally, Figure 12.7 compares the efficiency vs. switching frequency characteristic
of the converter for various different loads. A peak efficiency of 82% is achieved
for a load of 2 kΩ. While driving a 1 kΩ load, the converter provides a large power
density of 1.08 mW/mm2 and maintains 80% power efficiency.

Table 12.2: DC-DC Converter Performance Comparison

JSSC’16 [141] ISSCC’14 [143] This Work

Technology 0.18µm CMOS 0.25µm CMOS 65nm CMOS

Peak Power Efficiency 72% 85% 82%

Number of Stages 7 4 3

Conversion Ratios 117 15 115

Total Capacitance [nF] 2.24 3 1.05
Power Density
[mW/mm2]

0.16
at 3kΩ load

0.86
at 1kΩ load

1.08
at 1kΩ load

Chip Area [mm2] 4.3 4.645 1.31

Table 12.2 shows a performance comparison with other state-of-the-art DC-DC
converters, and a die micrograph of a conversion block is shown in Figure 12.8.

Figure 12.8: Die photo of a conversion block, measuring 1.17mm × 0.16mm.

Conclusion
A high-efficiency switched-capacitor DC-DC converter achieving a large number
of conversion ratios was demonstrated in 65-nm bulk CMOS. Measurements show
that the circuit is capable of simultaneously providing a large power density while
maintaining excellent power efficiency. Combined with the small silicon footprint of
the system, this makes it suitable for integration with low-cost, low-power systems.
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A p p e n d i x A

MEASUREMENT SETUP

(a) Setup for a single-ended injection.

(b) Setup for a differential injection. The balun was implemented with a Krytar
Double Arrow 180° Hybrid Coupler.

Figure A.1: Setup for injecting a current into an on-chip oscillator to measure its
lock range. The injection signal, Psrc, came from an off-chip signal source.

To build reliable and precise injection current sources, we resorted to the technique
discussed at the beginning of Section 8.5, whereby an injection voltage was used to
drive an injection resistor in series with the oscillator. While the injection resistor
was integrated on-chip, the sinusoidal injection voltage came from an off-chip signal
generator. Figure A.1 shows the details of the setup for the injection circuitry; note
that both single-ended and differential injections were needed. An Agilent MXG
Analog Signal Generator (N5181B) and a Hewlett Packard Synthesized Sweeper
(83650B) were used to produce injections below and above 3 GHz, respectively.
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As illustrated in Figure 8.13, the injection resistor was accounted for in the design
process and included as part of the oscillator in the simulation of the ISF. The value
of the injection resistance, Rinj, was chosen based on the range of injection strengths
we wished to test, while also ensuring that it was sufficiently large compared to the
input impedance looking into the injection port, Zin, so as to not load the oscillator
significantly.

The effective injection current is the Norton equivalent current of the depicted
injection voltage, Vinj, and the series injection resistor, Rinj. For both the single-
ended and differential cases, the amplitude of the injection current is given by

Iinj =
Vinj

Rinj
. (A.1)

We will now calculate Vinj from the power output of the signal generator, Psrc. Note
that Psrc is the power that would be delivered to a matched load, ZL = Z0 = 50 Ω.
Therefore, the incident voltage produced by the signal generator is given by

V+ =
√

2PsrcZ0, (A.2)

where
Psrc = 10 Psrc [dBm] / 10 dBm [mW]. (A.3)

The injection voltage is given by the sum of the incident and the reflected voltages,

Vinj = V+ + V− = |1 + Γ |V+, (A.4)

where Γ is the reflection coefficient:

Single-Ended: Differential:

Γ =
Rinj + Zin − Z0

Rinj + Zin + Z0
Γ =

Rinj + Zin − 2Z0

Rinj + Zin + 2Z0
.

Putting everything together, the injection current amplitude is therefore given by

Single-Ended: Differential:

Iinj =
2V+

Rinj

����1 + Z0
Rinj + Zin

���� Iinj =
2V+

Rinj

����1 + 2Z0
Rinj + Zin

���� .
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Because the injection resistors for all of the oscillators are at least several kΩs, the
reflection coefficient is very nearly unity: Γ ≈ 1. Thus, for both the single-ended
and differential injection scenarios, we can approximate1

Iinj ≈
2V+

Rinj
. (A.5)

A list of the injection resistance Rinj used for each oscillator is provided in Table A.1.
Finally, the lock range was measured by observing the spectrum of the oscillation
voltage on a Keysight PXA Signal Analyzer (N9030B).

Table A.1: List of Injection Resistors for the Measured Oscillators

Oscillator Injection Resistor Rinj

3-Stage Ring 20 kΩ

17-Stage Ring 4 kΩ

6-Stage Differential Ring 10 kΩ

Bose Oscillator 1 MΩ

Astable Multivibrator 20 kΩ

CMOS Differential LC 8 kΩ

CMOS Differential LC Tail 4 kΩ

NMOS-only Differential LC 8 kΩ

NMOS-only Differential LC Tail 4 kΩ

Colpitts Oscillator 2.5 kΩ

A die micrograph of the fabricated chip containing all of the oscillators and a photo
of the PCB used for testing the chip is shown in Figure A.2.

1This means that nearly all of the power delivered by the signal generator was reflected. We
did not care about matching here, as the fraction of power which was delivered to the oscillator was
sufficient to establish the injection current amplitudes that we needed.
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(a) Die photo of the measured oscillators fabricated in TSMC’s 65-nm GP bulk-
CMOS process, measuring 1 × 1 mm2.

(b) Printed-circuit board (PCB) used to test the chip. Clockwise from the top: ‘Pinj’
and ‘Pinjn’ are the differential injection ports, ‘PVDDB’ and ‘PVDDO’ are the
respective supplies for the output buffer and the oscillator, and ‘Pout’ is the output
(from the buffer). For single-ended injections, ‘Pinjn’ was left floating.

Figure A.2: The hardware underlying the experimental results in this thesis. Note
that the testing of each oscillator required its own chip wirebonded to its own PCB.
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A p p e n d i x B

THE PROBLEMWITH THE SINGLE-PERIOD INJECTION
RESPONSE (SPIR)

Figure B.1: Conceptual diagram of the Single-Period Injection Response. Two
possible ways of varying θ are shown: (a) shifting the oscillator’s injection window,
and (b) phase-shifting the injection waveform itself. That these two methods result
in the same phase shift is demonstrated in Figure B.3. (c) The resultant time shift
in the oscillation voltage is then used to calculate the SPIR Ψ(θ).

Earlier in Section 2.2, we mentioned an injection locking model based on the
Single Period Injection Response (SPIR) [77]. The SPIR is formally defined as
the phase shift Ψ(θ) induced by injecting into the oscillator a single period of the
injection current iinj,0(ω0t) time-scaled to the free-running period T0, where θ is the
oscillator’s initial phase relative to the injection. Specifically, the Phase Domain
Response (PDR) P(·) defined in [77] is related to the SPIR via Ψ(x) = −P(x).
A cartoon that depicts this definition is given in Figure B.1. An actual example
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simulation of the SPIR is shown in Figure B.2.

Figure B.2: SPIR simulation on a 6-stage differential ring oscillator for a 7.5 mA
sinusoidal injection current. Five different values of θ are shown.

Proponents of the SPIR tout that it is capable of capturing nonlinear aspects of
the injection-to-phase relationship as it directly exposes the oscillator to the entire
waveform at the desired amplitude instead of calculating the response from a linear,
impulse-response based model [77]. However, we claimed in Section 2.2 that this
approach was fundamentally flawed, stating that injection locking was a steady-state
phenomena while the SPIR is only capable of capturing the oscillator’s transient
behavior in response to the injection. We demonstrate this analytically here.

Recall from Eq. (4.28) that the lock characteristic is given by

Ω(θ) = 1
Tinj

∫
Tinj

Γ̃
(
ωinjt + θ

)
iinj(t) dt. (B.1)

The invariance of the averaging operation with respect to the time scale allows us to
rewrite the lock characteristic as

Ω(θ) = 1
T0

∫
T0

Γ̃(ω0t + θ) iinj,0(ω0t) dt. (B.2)

This equation exposes the intuition behind the SPIR, which is formally defined as
the phase shift Ψ(θ) induced by a single period of the injection iinj,0(ω0t), time-
scaled to the free-running period T0 and at a relative phase −θ with respect to the
(unperturbed) oscillation waveform. In effect, the SPIR attempts to simulate the



269

lock characteristic (multiplied by T0) directly:

Ψ(θ) ?
=

∫
T0

Γ̃(ω0t + θ) iinj,0(ω0t) dt . (B.3)

Assuming this is correct, we arrive at the following lock characteristic and lock
range in terms of the SPIR [77]:

∆ω
?
=
Ψ(θ)
T0

(B.4)

and
ω±L

?
=
Ψmax/min

T0
. (B.5)

Also, observe that because the SPIR is essentially an approximation of the lock
characteristic, it can also be used to predict the transient behavior of an injection-
locked oscillator.1

However, carefully note that during the course of the injection, the accumulated
phase shift φ(t) becomes part of the oscillator’s total phase ϕ(t), and should therefore
be included in the argument of the ISF. To see this, recall the original differential
equation Eq. (4.15) for the oscillator’s excess phase φ(t), which we derived from
first principles earlier:

dφ
dt
= Γ̃[ϕ(t)] iinj(t). (B.6)

Assuming without loss of generality that the injection iinj(t) = iinj,0(ω0t) occurs from
t = 0 to t = T0, and that the oscillator’s phase at the start of the injection is equal to
θ, observe that the SPIR Ψ(θ) is actually the solution φ(t) evaluated at t = T0:

φ(t) =
∫ t

0
Γ̃[ω0τ + θ + φ(τ)] iinj,0(ω0τ) dτ. (B.7)

Consequently,

φ(t) ,
∫ t

0
Γ̃[ω0τ + θ +��

�HHHφ(τ)] iinj,0(ω0τ) dτ

=

∫ t

0
Γ̃(ω0t + θ) iinj,0(ω0t) dt .

(B.8)

Therefore, the SPIR does not have the direct correspondence with the lock charac-
teristic postulated in Eq. (B.3):

=⇒ Ψ(θ) = φ(T0) ,
∫

T0

Γ̃(ω0t + θ) iinj,0(ω0t) dt . (B.9)

1Note that equations (29) and (30) in [77] are wrong: finj should be replaced with the free-
running oscillation frequency f0. This is because the jitter-tracking bandwidth ωTB, which is the
pull-in frequency from Section 7.4, is equal to ωTB = − ∂∆ω/∂θ |θ=θss

?
= −Ψ′(θss) · f0.
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In other words, the SPIR approach tomodeling injection locking neglects this “phase
accumulation” term and is therefore fundamentally flawed from a mathematical
standpoint. Intuitively, the SPIR can be thought of as the oscillator’s transient
response to a single period of the injection current. However, the actual phase
shift per period that the injection produces in a locked oscillator is a steady-state
phenomenon. In the latter scenario, there is no “extra” phase accumulation to
account for, as the oscillator’s phase must always experience a total change of 2π
per injection period.

One aspect of the SPIR we wanted to demonstrate is its invariance with respect
to the injection current’s absolute phase, which can be thought of as the particular
single-period “window” of the injection under use. As we demonstrated analytically
using our linear periodically time-varying model, Ψ(θ) depends only on the relative
phase θ between the injection and oscillation waveforms. In other words, the two
approaches of varying θ shown in Figures B.1a and B.1b should lead to identical
results. These simulations lend further credence to the accuracy of our model—
the slight variations in the phase of the resultant waveform are invariably due to
nonlinearities in the oscillator’s response to the injection current. Figs. B.3 depicts
this for a ring oscillator and an LC oscillator.

Another major limitation of the single-period injection response is that the incurred
phase shift is technically restricted to the range [−π, π]. In other words, phase
shifts “beyond” ±π cannot be unambiguously resolved, as a phase shift of 4π/3, for
example, is mathematically identical to a phase shift of −2π/3. Consequently, the
lock range predicted by the SPIR through Eq. (B.5) is bounded by ωL ≤ ω0/2. This
issue can be empirically addressed to a certain extent by arguing that the incurred
phase shift for a given θ should be continuous with respect to the injection strength,
and so one can unwrap the SPIR with respect to the injection strength in order
to resolve ambiguities that arise in the incurred phase. However, note that this
issue does not appear when simulating the ISF because such simulations consist of
small injections which induce phase shifts that are |∆φ| � 2π. Furthermore, the
inaccuracy of the SPIR model due to neglecting phase accumulation usually already
precludes its usage when the injection is so strong that the incurred phase shift is
close to ±π.
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(a) Invariance of the SPIR to the injection window for a 6-stage differential ring
oscillator under a 7.5 mA sinusoidal injection.

(b) Invariance of the SPIR to the injection window for a bipolar Colpitts oscillator
under a 10 mA sinusoidal injection.

Figure B.3: Demonstration that the SPIR depends only on the relative phase θ and
not on the absolute phase of the injection. For each simulation, both the oscillator’s
phase at which the injection takes place and the injection’s phase are shifted by the
same amount.

Let us compare the predictions made by the SPIR model of Eq. (B.4) against those
from our ISF-based model as well as Spectre injection locking simulation results
for several illustrative examples. For the ideal Bose oscillator, Figure B.4 depicts
a surface plot of the SPIR vs. the oscillator phase θ and the injection strength,
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examines the lock range as a function of the injection strength, and shows the lock
characteristic for two different injection strengths. Note that we unwrapped the SPIR
with respect to the injection strength as mentioned above, thereby allowing |Ψ(θ)| to
exceed π. Also, observe that as θ increases from 0 to 2π,Ψ(θ) starts out negative and
decreases to its minimum value, begins increasing and crosses 0, and then increases
to its maximum positive value before returning to Ψ(2π) = Ψ(0). Finally, the SPIR
prediction of the lock range is shown by overlaying the SPIR (normalized byT0) over
all phases θ and looking at the minimum and maximum for each injection current,
leading to the “envelope” of the SPIR points as shown.

For the Bose oscillator, the ISF model follows the simulated lock characteristic
follows the ISF model much more closely than the SPIR model does, particularly as
the injection strength increases. But the SPIR model is not always inferior; it fares
rather well for long ring oscillators. Figure B.5 depicts the same set of analyses for a
17-stage single-ended ring oscillator (from Figure 4.12), where one can see that the
simulated lock characteristic for large injections ismore closely captured by the SPIR
model for frequencies below f0, leading to much better predictions of the lower lock
range compared to the ISFmodel. This fortuity does not extend to all ring oscillators,
however. Consider the 6-stage differential ring oscillator (from Figure 4.14), whose
plots are shown in Figure B.6. Although the SPIR is capable of predicting the lock
range somewhat more accurately than the ISF for large injections, the shape of the
SPIR deviates much more significantly from the simulated lock characteristic than
does the ISF model. As a more extreme example, the differential NMOS astable
multivibrator (from Figure 4.17) is analyzed in Figure B.7, where both the ISF
and SPIR models fail to capture the severely nonlinear behavior invoked by large
injection currents.

In closing, we wanted to point out a distinct advantage of the SPIR over the ISF-
based model, which is its ability to capture subharmonic injection locking. As
we saw from Section 6.5, our model requires the M th harmonics of the injection
to appear explicitly in the injection current iinj(t), whereas these harmonics are
usually generated within the oscillator internally through mixing. The SPIR-based
model inherently captures this phenomenon by directly simulating the oscillator’s
response to a disturbance which lasts M times the free-running period. Indeed,
a number of applications involving subharmonic injection-locked oscillators have
already emerged based on the SPIR framework [18], [77], [78].
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(a) SPIR surface plot.

(b) Sinusoidal lock range.

(c) Lock characteristic for Iinj = 2.5 mA. (d) Lock characteristic for Iinj = 12 mA.

Figure B.4: Bose oscillator SPIR analysis.
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(a) SPIR surface plot.

(b) Sinusoidal lock range.

(c) Lock characteristic for Iinj = 1.5 mA. (d) Lock characteristic for Iinj = 6.5 mA.

Figure B.5: 17-stage single-ended ring oscillator SPIR analysis.
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(a) SPIR surface plot.

(b) Sinusoidal lock range.

(c) Lock characteristic for Iinj = 2.5 mA. (d) Lock characteristic for Iinj = 7.5 mA.

Figure B.6: 6-stage differential ring oscillator SPIR analysis.
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(a) SPIR surface plot.

(b) Sinusoidal lock range.

(c) Lock characteristic for Iinj = 0.1 mA. (d) Lock characteristic for Iinj = 1 mA.

Figure B.7: NMOS astable multivibrator SPIR analysis.
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A p p e n d i x C

MISCELLANEOUS MATHEMATICAL FACTS

C.1 Some Standard Integrals
For |a| > 1, we have the following antiderivatives:∫

dx
a + cos x

=
2

√
a2 − 1

tan−1
[

a − 1
√

a2 − 1
tan

( x
2

)]
+ C (C.1)

∫
dx

a + sin x
=

2
√

a2 − 1
tan−1


a tan

( x
2

)
+ 1

√
a2 − 1

 + C, (C.2)

where C is an integration constant.

For |a| < 1, we can appeal to Euler’s identity, which allows us to derive the relation
tan−1(ix) = i tanh−1(x). This yields the following antiderivatives:1∫

dx
a + cos x

=
2

√
1 − a2

tanh−1
[

1 − a
√

1 − a2
tan

( x
2

)]
+ C (C.3)

∫
dx

a + sin x
= − 2
√

1 − a2
tanh−1


a tan

( x
2

)
+ 1

√
1 − a2

 + C. (C.4)

C.2 Proof of Claim 8.4.1
Claim. Consider the infinite-dimensional vector space of square-summable complex
sequences `2(C). The map 〈· , ·〉 : `2(C) × `2(C) → R, defined for any choice of
u, v ∈ `2(C) as

〈u , v〉 B Re{uHv} ≡ Re

{∑
n

unvn

}
, (C.5)

is an inner product for `2(C) over the field of real numbers R. Furthermore, the
norm induced by this inner product is the same as that for the usual Euclidean
complex inner product uHv.

1The careful reader might wonder if these integral formulas are consistent, given the fact that
sin x = cos(x − π/2). Here, we point out that if one utilizes this identity, the formulas given in
Eqs. (C.1) and (C.2), or in Eqs. (C.3) and (C.4), will be “off by a constant” (which is absorbed by
the integration constant C anyways).
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Proof:
We will rely on the fact that uHv is itself an inner product over C.

• Symmetry:

For any u, v ∈ `2(C),
〈u , v〉 = Re{uHv}

= Re{vHu}
= Re{vHu}
= 〈v , u〉 .

(C.6)

• Linearity in the first argument:

For any u, v,w ∈ `2(C) and α ∈ R,

〈αu , v〉 = Re{αuHv}
= α · Re{uHv}
= α 〈u , v〉 .

(C.7)

and
〈u + v,w〉 = Re{(u + v)Hw}

= Re{uHw + vHw}
= Re{uHw} + Re{vHw}
= 〈u ,w〉 + 〈v ,w〉 .

(C.8)

• Positive-definiteness:

For any u ∈ `2(C),

〈u , u〉 = Re{uHu} = Re

{∑
n

unun

}
=

∑
n

|un |2 ≥ 0. (C.9)

It is trivial to see that equality is achieved if and only if un = 0∀n⇔ u = 0.

• Induced norm:

For any u ∈ `2(C), it is straightforward to see that uHu is real. Therefore, the
norm induced by this inner product is

‖u‖ ≡
√
〈u , u〉 =

√
uHu, (C.10)

which is the same norm induced by the standard Euclidean inner product uHv
defined for all u, v ∈ `2(C).
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A p p e n d i x D

CORRECTION TO “A STUDY OF INJECTION LOCKING AND
PULLING IN OSCILLATORS” BY RAZAVI

Wewould like to take this opportunity to rectify a small error we noticed in Razavi’s
prominent paper1 [38]. The equation in Section III, Subsection C on the 4th line
from the bottom of the 2nd column on page 1419 should actually be(

ω0 − ωinj
)2

ωL
2 =

1
1 − (1/n2)

. (D.1)

Therefore, contrary to the claim made in the last paragraph of this subsection of
[38], it is indeed possible for a sideband to appear at ω0 when ωinj is outside of the
lock range, provided an integer solution to Eq. (D.1) exists for n.

There does not appear to be a physical reason why a sideband at ω0 cannot exist.
The reason we say the oscillator is “pulled” from its natural frequency is not because
the oscillator output Vosc,p contains no components at ω0 as [38] states, but rather
because the largest component of Vosc,p does not appear at ω0 [104].

To see this, let us elucidate where exactly the largest component of the oscillator
output Vosc,p falls, which we will denote as ωmain. That is, ωmain is the “oscillation
frequency” of an injection-pulled oscillator. Note from Eq. (D.1) that |n| > 1, and
so only a sideband at least twice the beat frequency away fromωinj can coincide with
ω0. This should also be evident from the fact that the distance between adjacent
tones, known as the beat frequency [38], isωb =

√
∆ω2 − ωL

2 < |∆ω|, which is less
than the distance between ωinj and ω0. Hence, ω0 always lies more than a sideband
away from ωinj. It is convenient here to define a parameter known as the “pulling
strength” [104]:

ζ B
ωL

|ω0 − ωinj |
. (D.2)

If ζ ≥ 1, then the oscillator is injection locked; unity ζ corresponds to the edge of the
lock range. We consider the case where ζ < 1 and the oscillator is injection pulled.
It is easily shown from [104] that if ζ >

√
4/5 (approximately 0.9), then the pulled

oscillator “oscillates” at the injection frequency
(
ωmain = ωinj

)
and we can say that

the oscillator is “quasi-locked” as per the vocabulary in [38]; whereas if ζ <
√

4/5,
1Archived at: https://perma.cc/42RP-YF2F

http://www.seas.ucla.edu/brweb/papers/Journals/RSep04.pdf
http://www.seas.ucla.edu/brweb/papers/Journals/RSep04.pdf
https://perma.cc/42RP-YF2F
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Figure D.1: Transient simulation of an injection-pulled cross-coupled differen-
tial LC oscillator composed on a 65-nm bulk CMOS process with Q = 15.088,
Iosc = (4/π)mA, and f0 = 1.0049 GHz. At an injection current of Iinj = 0.5 mA,
the lock range is roughly fL = 13.077 MHz. Pulling the oscillator from an injection
frequency of finj = 1.02 GHz leads to a beat frequency of fb = 7.55 MHz, which
positions the second sideband from the injection frequency right at f0.

then ωmain = ωinj ±ωb.2 (Again, the sign in front of ωb here is the same as the sign
of

(
ω0 − ωinj

)
, since ωmain is pulled away from ω0 towards ωinj.) Therefore, the

claim is verified: the oscillation frequency ωmain of a pulled oscillator is no longer
at its free-running value ω0 but instead is at either the injection frequency ωinj or is
one sideband toward ω0 away from the injection frequency at ωinj ± ωb.

We show a simulated example of a scenario where one of the sidebands of an
injection-pulled LC oscillator falls at ω0 in Figure D.1.

2If ζ =
√

4/5, then the components at ωinj and at ωinj ±ωb contain equal amounts of power. It is
easily computed that the remaining sidebands carry the remaining

√
5 − 2 (roughly 1/4) of the total

output power.
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