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ABSTRACT

By controlling the timing of events and enabling the transmission of data over
long distances, oscillators can be considered to generate the “heartbeat” of modern
electronic systems. Their utility, however, is boosted significantly by their peculiar
tendency to synchronize to external signals that are themselves periodic in time.
Although this fascinating phenomenon has been studied by scientists since the
1600s, models for describing this behavior have seen a disconnect between the
rigorous, methodical approaches taken by mathematicians and the design-oriented,
physically-based analyses carried out by engineers. While the analytical power of
the former is often concealed by an inundation of abstract mathematical machinery,
the accuracy and generality of the latter are constrained by the empirical nature of

the ensuing derivations. We hope to bridge that gap here.

In this thesis, a general theory of electrical oscillators under the influence of a
periodic injection is developed from first principles. Our approach leads to a fun-
damental yet intuitive understanding of the process by which oscillators lock to
a periodic injection, as well as what happens when synchronization fails and the
oscillator is instead injection pulled. By considering the autonomous and periodi-
cally time-varying nature that underlies all oscillators, we build a time-synchronous
model that is valid for oscillators of any topology and periodic disturbances of any
shape. A single first-order differential equation is shown to be capable of making
accurate, quantitative predictions about a wide array of properties of periodically
disturbed oscillators: the range of injection frequencies for which synchronization
occurs, the phase difference between the injection and the oscillator under lock,
stable vs. unstable modes of locking, the pull-in process toward lock, the dynamics
of injection pulling, as well as phase noise in both free-running and injection-locked
oscillators. The framework also naturally accommodates superharmonic injection-
locked frequency division, subharmonic injection-locked frequency multiplication,
and the general case of an arbitrary rational relationship between the injection and
oscillation frequencies. A number of novel insights for improving the performance
of systems that utilize injection locking are also elucidated. In particular, we ex-
plore how both the injection waveform and the oscillator’s design can be modified
to optimize the lock range. The resultant design techniques are employed in the im-
plementation of a dual-moduli prescaler for frequency synthesis applications which

features low power consumption, a wide operating range, and a small chip area.
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For the commonly used inductor-capacitor (LC) oscillator, we make a simple mod-
ification to our framework that takes the oscillation amplitude into account, greatly
enhancing the model’s accuracy for large injections. The augmented theory uniquely
captures the asymmetry of the lock range as well as the distinct characteristics ex-
hibited by different types of LC oscillators. Existing injection locking and pulling
theories in the available literature are subsumed as special cases of our model. It
is important to note that even though the veracity of our theoretical predictions
degrades as the size of the injection grows due to our framework’s linearization with
respect to the disturbance, our model’s validity across a broad range of practical
injection strengths are borne out by simulations and measurements on a diverse
collection of integrated LC, ring, and relaxation oscillators. Lastly, we also present
a phasor-based analysis of LC and ring oscillators which yields a novel perspective
into how the injection current interacts with the oscillator’s core nonlinearity to

facilitate injection locking.
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Chapter 1

INTRODUCTION AND BASIC DEFINITIONS

“If I have seen further, it is by

standing on the shoulders of giants.”

SIR Issac NEwTON, 1675

Within electronics, oscillators are employed in a wide variety of settings—the pre-
cise timing of events in microprocessors, the creation of carriers for modulating
information in communication systems, the periodic control of switches in power
management circuitry such as power inverters and DC-DC converters, and the gen-
eration of wireless power near the frequency limits of modern solid-state processes.
In essence, almost all electronic systems require time-varying behavior of some sort

and therefore need oscillators to actuate their functionality.

Oscillators exhibit a peculiar property due to their autonomous nature: the ability to
synchronize to periodic disturbances. Known as injection locking in the electrical
engineering community, this behavior has engendered a handful of applications in
modern, high-speed systems. Some examples include the recovery of timing infor-
mation from data streams [1], clock distribution and jitter reduction for high-density
input/output (I/0) links [2], [3], frequency division [4]-[13] and frequency multipli-
cation [14]—[18], the precise generation of quadrature or other multi-phase signals
[19]-[24], and the synchronization of elements in phased arrays [25]-[29]. Beyond
electronics, entrainment has also been applied to other oscillatory systems such as
lasers, where it is used to clean their output spectrum and improve performance by
reducing frequency chirp and nonlinear distortion [30]-[33]. Outside of electrical
engineering, the phenomenon of synchronization has been studied extensively in
a variety of other disciplines including physics [34], chemistry [35], neuroscience
[36], and biology [37].

Despite its usefulness, the capability to lock becomes problematic when an oscillator
is affected by unwanted disturbances in its environment. In particular, disturbances
that fail to lock the oscillator will instead corrupt the oscillator’s inherent periodicity
orits “ability to tell time,” an undesirable phenomenon known as injection pulling. In

communication circuits, for example, the large-signal output of the power amplifier



Figure 1.1: Arbitrary electromagnetic surface featuring multiple voltage-controlled
oscillators (VCOs) that drive the radiating elements.

(PA) in a radio frequency (RF) transmitter can pull the oscillator generating the
carrier, or pulling can occur between the receive and transmit local oscillators (LOs)
in a single-chip transceiver [38]. Note that external disturbances may couple into an
oscillator through any number of means: mechanically, electromagnetically, across

the substrate of an integrated circuit, or through a shared supply.

An example of how both the useful applications of injection locking and the unde-
sirable effects from injection pulling can appear in a single system is provided in
Figure 1.1. In this example, an assortment of antennas is being used to engineer an
arbitrary electromagnetic field pattern. The antennas are driven by a collection of
voltage-controlled oscillators (VCOs). As we can see, VCO; is also being used to
lock a “slave” VCO, whereby tuning the free-running frequency of the slave varies
the phase difference Ag between them. On the other hand, oscillators in close phys-
ical proximity, such as VCO; and VCO,, can pull one another, causing the signals
driving the antennas to deviate from their optimal frequencies or creating unwanted

interference patterns due to spurious phase relationships between the oscillators.
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Given the numerous applications of injection locking on the one hand and the
various settings in which unwanted pulling occurs on the other, there is a desire
for a fundamental understanding of how periodic perturbations can influence an
oscillator. In this thesis, we develop a general theory of injection locking and
pulling in electrical oscillators that 1) leads to a deep physical understanding of
the synchronization phenomenon, 2) makes accurate quantitative predictions about
a myriad of different properties of periodically disturbed oscillators, and 3) yields
design insights into how the implementation of systems that utilize injection locking

can be optimized.

1.1 Basic Setup and Notation

Stable Limit

Vi Cycle

Figure 1.2: Mathematical description of an oscillator as traversing a stable limit
cycle in n dimensions. Points in the state space not on the orbit will eventually
converge to the limit cycle.

An oscillator is a system that is capable of self-sustaining a periodic signal. Within
the dynamical systems community, oscillators are usually visualized in the state
space (see Figure 1.2) [39]-[43], where they traverse a closed trajectory, a limit
cycle, in a fixed amount of time, known as the free-running period of oscillation 7.
Although all observable signals within an electrical oscillator are periodic with this
oscillation period Ty, we will focus on a particular node voltage vos.(7) (or set of

node voltages), which we will call the oscillation voltage.

We are interested in the behavior of this oscillator when it is disturbed by an external
signal of some sort, periodic with a possibly different period T,;. For our purposes,

this signal will be an injection of current ij,j(¢) into one of the oscillator’s nodes—
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commonly (but not necessarily) the node at which the oscillation voltage is observed.

This setup is depicted conceptually in Figure 1.3.

Free-Running:

vosc(t) = V()((l)()t)

FIONEY, vosc(t) = 14O ol o ()]

T AN

Periodic with Orbital Instantaneous
Tinj = 270/ Win Deviations Phase

Figure 1.3: A basic cartoon of the setup and notation underlying the analysis. In
the free-running case (i.e., iinj = 0), £(t) = 0 and ¢(¢) = wot. Under injection, the
phase becomes ¢(t) = wot + ¢(t) = wipjt + O(1).

In the absence of injection—the free-running scenario—we write the oscillation

voltage as
Vosc(t) = vo(wo?),

where the oscillation waveform v((-) is 2n-periodic, and wg = 27/Tj is the free-
running (angular) oscillation frequency. The argument of vy(-) is the phase ¢ of the
oscillator in radians, a quantity which increases by 27 for each oscillation cycle. On
the other hand, vy(-) itself captures the free-running shape and size of the oscillation

voltage.

In the presence of an external disturbance, two things happen:

1. The oscillator’s phase may no longer increase at a constant rate equal to wy.

2. The oscillation voltage may deviate in size and shape from v(-).

Therefore, we write the oscillation voltage in the following form:

Vose(t) = [1 + &(0)] - vo [¢(0)], (1.1)

where ¢(f) is the total, instantaneous phase of the oscillator and £(f) represents

the (fractional) deviations of the oscillator from its free-running trajectory. The



5

instantaneous oscillation frequency wosc is defined as the time derivative of the total

phase:
dg

E.
It should be clear that when ij,; = 0 and the oscillator is free running, ¢(f) = wot

(1.2)

Wosc =

and £(f) = 0. Denoting the (angular) injection frequency winj = 27/Tiy;, it will be
useful to define the additional phases ¢(¢) and 6(¢) using the following relationship:

@(t) = wot + ¢(t) = winjt + 6(1). (1.3)

Physically, ¢(¢) is the phase in excess of free-running (wot), and 6(t) is the phase
referred to the injection (wiyjt). Table 1.1 reiterates the physical meaning behind
these important quantities. In injection locking and pulling scenarios, it is most
convenient to deal with 6 as the phase of interest, since we are interested in observing

if or how the oscillator synchronizes itself to the injection frequency wiy;.

Table 1.1: Oscillator Phase Definitions

®: ¢: :
Total, Instantaneous Phase in Excess of Phase Referred to the
Oscillator Phase Free-Running (wt) Injection (wip;t)

At this point, it should be noted from a mathematical standpoint that while the
phase can be accurately represented using a single scalar variable, an oscillator
in d-dimensional state space would require (d — 1) other scalars to fully describe
its orbital deviations. However, we will see that Eq. (1.1) will prove itself to be
sufficient for our purposes, while bringing in the full state-space representation of
the oscillator will clutter up the analysis with a significant amount of mathematical

machinery without contributing much physical insight.

1.2 Definition of Injection Locking and Pulling

The purpose of this study is to characterize the behavior of oscillators under the
influence of a periodic injection. Specifically, we are interested in the scenario
where the oscillator synchronizes itself to the injection and oscillates at the injection
frequency: wosc = winj.! We then say that the oscillator is injection locked to the
injection signal. An example of injection locking is shown in Figure 1.4, where an

oscillator which free-runs at fop = 1 GHz is injection locked to a sinusoidal injection

'The more general cases of injection-locked frequency division and multiplication will be
considered in Chapter 6.
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Figure 1.4: An example of injection locking. Note that the oscillation voltage is
observed at the node being injected into.

at fin,j = 0.8 GHz. Consequently, while the free-running oscillation voltage traverses
10 cycles in the 10 nanosecond interval shown, both the injection current and the
injection-locked oscillation voltage only undergo 8 cycles. Notice how the injection
alters both the shape and the size of the oscillation voltage.

In light of Eq. (1.3), observe that the phenomenon of injection locking is mathemat-
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Figure 1.5: An example of injection pulling where fo = 1 GHz and fiy; = 0.8 GHz.

ically represented by 6 being constant in time:

do _

Injection Locked &= 7 (1.4)

The value of 6 for an injection-locked oscillator, which represents the phase differ-
ence between the oscillator and the injection, is not arbitrary. For a given oscillator
and injection waveform, € varies with the injection frequency in a specific manner.

This relationship is known as the lock characteristic.

As we will see, the oscillator is only capable of injection locking when wiy; is
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sufficiently close to wg. The range of frequencies that the oscillator can lock to is
known as the lock range. More precisely, the upper/lower lock range w7 is defined
as the maximum/minimum value of the frequency deviation Aw = wjyj — wp for
which the oscillator is capable of injection locking. The lock range depends not

only on the oscillator but on the size and shape of the injection waveform as well.
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Figure 1.6: Zooming into a single “beat” for the injection-pulled oscillator of
Figure 1.5.

If the injection fails to lock the oscillator because it is outside of the lock range,
then df/dt # 0 and we instead say that the oscillator is injection pulled by the
injection signal. An example of injection pulling is depicted in Figure 1.5, obtained

by decreasing the injection strength, and therefore the lock range, from the injection-
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locked example of Figure 1.4. The frequency of the “beats” which appear in the time-
domain plot of the oscillation voltage is equal to the distance between the adjacent
tones in the frequency-domain spectrum. A closer look at what happens during
one of these low-frequency beats is shown in Figure 1.6. Essentially, the injection
“attempts” to lock the oscillator, but is unable to effect a sufficiently large change
in the oscillation frequency, causing the oscillator to eventually “slip” by an entire
cycle compared to the injection signal. One way of visualizing this is to compare the
threshold crossing times of the oscillator and the injection. Specifically, consider the
difference between the falling-edge 0.5 V-crossing times of the oscillation voltage
and the falling-edge zero-crossing times of the injection, normalized to T;,j. This
parameter increases (or decreases) by 1 whenever the oscillator retards (or advances)
by a single cycle relative to the injection. Figure 1.6b plots this parameter as a
function of the number of elapsed cycles for the window under consideration and
compares the result against the injection-locked and free-running scenarios. As
we can see, an injection-locked oscillator features a constant threshold-crossing
difference over all cycles, whereas the threshold-crossing difference must grow by
a fixed amount per cycle for a free-running oscillator (at a different frequency).
On the other hand, for an injection-pulled oscillator, while the injection “tries” to
keep this threshold-crossing difference constant, it eventually fails and the oscillator
“runs off on its own” by an entire cycle. In light of this repeated behavior, one
might suspect that the oscillation voltage of an injection-pulled oscillator is periodic
with this (lower) beat frequency wp. Unfortunately, this is not correct unless the
injection frequency wiyj is a multiple of wp, which is not true in general. Therefore,

we surmise that the periodicity of the oscillator is corrupted by injection pulling.

1.3 Organization of Thesis

The rest of this thesis is organized as follows. Chapter 2 puts this work into context
by reviewing existing injection locking and pulling models. A distinction is made
between mathematical macromodeling approaches, which our theory falls under, and
physically-based behavioral analyses. Chapter 3 conducts a thought experiment that
examines the effect an impulse train has on an ideal LC oscillator. The understanding
gleaned from this thought experiment will motivate the development of our model

from a conceptual standpoint.

Chapter 4 develops, from first principles, a time-synchronous theory of oscillators
that are subjected to a periodic external perturbation. We demonstrate how the

oscillator’s autonomy and its periodically time-varying nature combine to enable
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injection locking. Chapter 5 augments the theory for the specific case of the LC
oscillator by accounting for the oscillation amplitude, resulting in a model which
is applicable for large injections. Novel insights into how different types of LC
oscillators behave, which are uniquely captured by this model, are also provided.
Chapter 6 generalizes the framework to allow for an arbitrary rational relationship

between the injection and oscillation frequencies under lock.

Chapter 7 focuses on an analysis of the transient behavior of periodically disturbed
oscillators. Issues such as mode stability, the pull-in process, and the dynamics of
injection pulling are covered. A theoretical treatment of the effect of a stochastic
disturbance, which illuminates the elementary connection between phase noise and
injection locking, is also performed. Chapter 8 explores design insights which arise
from the developed framework. Specifically, several ways of enhancing an oscil-
lator’s lock range are introduced and demonstrated. Chapter 9 uses the techniques
discussed in Chapter 8 to implement a low-power injection-locked prescaler for

frequency synthesis applications.

Chapter 10 takes an alternative, physical viewpoint of injection locking and carries
out a phasor-based analysis of sinusoidal injection locking in LC and ring oscillators.
Future research directions are suggested in Chapter 11, and other unrelated works

are presented in Chapter 12.
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Chapter 2

EXISTING MODELS

“All models are wrong, but some are useful.”

GEeoRrRGE EDWARD PELHAM Box, 1976

Injection locking and pulling of electrical oscillators has been studied extensively
for at least the past century [44]-[85]. In this chapter, we give a brief overview
of the existing models in the literature which are used more prominently in the
electronics community. In general, any analysis technique can be categorized as

either a behavioral model or a mathematical macromodel.

2.1 Behavioral Models

Behavioral approaches start with a physical model of the oscillator under injection,
such as a circuit model comprising resistors, capacitors, inductors, idealized non-
linear elements, and the injection source(s). Known analysis techniques for this
physical model (e.g., KCL/KVL, Ohm’s Law, phasors) are then used to study the
system, leading to conclusions about aspects of the system’s behavior that we seek
to understand. Due to their physically-based nature, such approaches tend to provide
intuition more directly. But their utility is limited because the analysis is restricted
to a particular oscillator topology (e.g., LC, ring, or relaxation), and their predictive
power is constrained by the accuracy of the model itself. The analysis presented in

Chapter 10 of this thesis is a behavioral model.

Adler’s Equation

Both experimental and theoretical work on the synchronization of electrical oscil-
lators have been conducted as early as the 1920’s [44]-[46]. However, perhaps the
most well-known behavioral model for injection locking is Adler’s equation, devel-
oped by Robert Adler in 1946 [47]. Adler’s equation describes the phase of an LC
oscillator under the influence of a weak sinusoidal injection close to the free-running

oscillation frequency.

We present a simplified derivation here. Consider the ideal LC oscillator shown
in Figure 2.1. The loss of the LC tank, represented by the parallel resistance Rp,

is restored by the nonlinear —G,,-transconductor which generates a current whose
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fundamental component is in phase with vs.(7) and has an amplitude of I,s.. The

oscillator free-runs at the LC tank’s resonant frequency

wo = L 2.1

VLC

The current consumed by the resistance is supplied by the oscillator current g,

leading to a sinusoidal oscillation amplitude of

Vose = loscRp. (2.2)

o+

; ; ; Tooe
lmj(t) <f> lC-T_ . 3 Ir +

L RP _Gm vosc(t)

[ .

Figure 2.1: Schematic of the basic LC oscillator under injection used in the deriva-
tion of Adler’s equation.

e]wm]t

Suppose a weak sinusoidal current ij,j(f) in the close vicinity of wy is injected into
the oscillator as shown. Utilizing complex exponential notation to simplify the

subsequent algebra, we express the injection current as
inj(t) = Iinje’ ™", (2.3)

where the injection amplitude is small in the sense that I;y; << Iosc, and the injection
frequency is near the free-running frequency in the sense that |wj,j — a)o| < wpy. We
adopt the usual convention from Eq. (1.3) of expressing the phase of the oscillation
voltage as winjt + 6(t), where the objective of this analysis is to study the behavior of
0, the phase difference between the oscillator and the injection. Because the injection
is weak compared to the oscillator current, its impact on the resistor current iy is
negligible, leaving the oscillation amplitude Vi = IoscRp unchanged. Therefore,

we write the oscillation voltage as
Vosc = Voscej(wijg)a (2.4)

and we instead focus on how the injection influences the LC tank by writing KCL

for the remaining currents:

(2.5)
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The intuition here is that the reactive current drawn by the LC tank when the
oscillator operates away from resonance must be supplied by the injection current.

Substituting for the injection current and the oscillation voltage, we get

: - d*0 do\?| 1 o
Jwinjlinje’ ™" = {C | ar (winj ’ Z) A eltrt?), 26)

Multiplying through by e~/(“ni’+?) and taking the real part, we get!

2
do 5 inj WoWinj
—|wini + — | +wo” = sin 6, .7
( " dt) Tl O .

where we used the tank’s quality factor

R
0=—-L = RpwyC. (2.8)
wolL

To simplify the left-hand-side, we use the fact that |wiyj — wo| < wp to approximate
wo? — winjz ~ 2winj(wo — wipj), and we assume that 6 varies slowly in comparison to

the injection:
do

dt

With these approximations, we obtain

< Wipj- (29)

do finj WoWin;
2Wipj — Wipj — — | = — ———siné. 2.10
Winj ((UO Winj d l‘) Ie O 1 ( )
Rearranging, we arrive at Adler’s equation:
do wo finj .
Ezwo—wmj—ﬁgsme. (211)

Since 6 is constant under lock, the maximum frequency deviation that the oscillator

can lock to, known as the lock range, is given by

wo inj
wp = ——. (2.12)
L 2Q IOSC

One of the key insights resulting from Adler’s equation is that the lock range

increases with the relative injection strength Iiyj/Iosc but varies inversely with the

tank’s quality factor Q.

Recall the fundamental assumptions underlying this derivation:

!Obviously, both the real and imaginary parts need to be satisfied. In a more detailed analysis
which does not assume the transconductor and resistor currents cancel, the imaginary part of this
equation would describe the oscillation amplitude.
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1. The injection is much weaker than the oscillator: Iip; << Iogc.
2. The frequency deviation is small: |wij — wo| < wy.

3. The oscillator’s phase varies slowly relative to the injection: |0'(¢)| < wip;.

In light of Adler’s equation, the third assumption is implied by the first two. We will
challenge the first two conditions in this thesis.

Because of the accurate conclusions about the lock range, the pull-in process, and
the presence of “beats” in an unlocked oscillator that Adler’s equation is able to
predict, it has formed the basis for numerous other approaches to understanding

injection locking and pulling in electrical oscillators.

Related Works

Many have built upon Adler’s work over the years. Notable examples include
generalizing the treatment to non-triode oscillator topologies (Huntoon and Weiss,
1947) [48], modifying the equation for the lock range to account for large injection
currents (Paciorek, 1965) [49], focusing on the unlocked behavior of injection-
pulled oscillators (Stover, 1966; Armand, 1969) [50], [51], extension of the analysis
to microwave oscillators with distributed elements (Kurokawa, 1973) [52], [53],
and coming up with alternative derivations of Adler’s equation as well as applying
Adler’s equation in different settings to glean new insights (Razavi, 2004) [38].
Even recent works which focus on significantly more complicated scenarios, such
as mutual pulling between VCOs residing in different PLLs [86], often use Adler’s

equation as a starting point for their analysis.

Mirzaei’s Generalized Adler’s Equation
The most powerful generalization of Adler’s equation to date was proposed by
Mirzaei et al. in 2006 [59], where they use KCL and KVL to analyze the LC
oscillator without assuming a weak injection signal. Consequently, the result of
their analysis, which they call “Generalized Adler’s equation,” accounts for how the
injection can influence the amplitude of oscillation—not just the phase. In doing
so, the term /o5 in Adler’s equation Eq. (2.11) is replaced with Ios + Iipj cos 6:

do wy [ipj sin @

= =Wy - Winj— 7 2.13

They then use this equation to conduct a rather thorough analysis of the quadrature

LC oscillator [21], one of the most widely used applications of injection locking in
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modern high-frequency systems. The lock range associated with this more general
equation can be shown to be [38], [49], [59]

wo Iinj 1
wp = — _—. (2.14)
t 2Q Iosc 2

1 i

2
lose

In this thesis, we will demonstrate how both the time-synchronous model developed
in Chapters 4 and 5 as well as our phasor-based analysis presented in Chapter 10

analytically reduce to Adler’s equation and its generalization by Mirzaei et al.

Models for Ring Oscillators

<]

e’

vosc,l ’\| vosc,2 vosc,N
Gm \G} [
Linj,2

finj,1 =C %R g:c R Tinj,v —C R

Figure 2.2: A nonlinear model of the ring oscillator often used for injection locking
and pulling applications.

The most conspicuous limitation associated with Adler’s equation and its surround-
ing body of work is, of course, the fact that the analysis pertains only to LC
oscillators. Consequently a variety of behavioral approaches for modeling injec-
tion locking in ring oscillators have also been developed.? The approach which
has gained the most traction in recent years models each stage of the ring as an
RC-delay cell driven by an idealized, nonlinear transconductor [10], [60]-[65], as
shown in Figure 2.2. In particular, this behavioral model allows for each node of
the ring oscillator to be injected into, a technique which can widen the lock range
significantly (see Section 6.7).

Among these approaches, several have stood out. The model proposed by Gangasani

and Kinget [61], [62] is slightly more general in that it allows for an arbitrary delay

2The other type of non-LC electrical oscillator, the relaxation oscillator, has received much less
attention in this regard because ring oscillators are far more commonly used in integrated electronics
due to their ease of implementation and relatively reliable performance.
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dynamic (the “d-A relationship”) for each stage of the ring. On the more practical
side, the analyses carried out by by Chien et al. [63] and Mirzaei et al. [10], [60]
have led to the design of wideband CMOS ring-oscillator-based injection-locked

frequency dividers.

2.2 Mathematical Macromodels

In contrast to behavioral or physically-based approaches, macromodeling techniques
start with a collection of fundamental mathematical properties of the system under
study (e.g., linearity, time-invariance, memory, causality). An abstract, general
description of an arbitrary system that satisfies these properties is then formulated,
allowing for certain parameters? of interest to be identified (e.g., impulse response,
transfer function, scattering matrix, Fourier series coefficients). These parameters
are then calculated analytically, simulated, or even measured for the actual system
of interest (i.e., the oscillator) and then used to make conclusions about the physical

properties of the system that we want to figure out.

The key to successful macromodeling lies in the choice of these parameters—they
need to be sufficiently easy to ascertain, but they also need to capture enough
information about the system’s behavior to be useful. In effect, these parameters
serve as an intermediary between the fundamental physics governing the system’s
operation and the system’s characteristics that we are actually interested in, as it
would be too difficult or computationally intractable to derive the latter from the
former directly. As an example, it would not be feasible or necessary to perform
a full-blown, brute-force analysis of the current through every branch and voltage
at every node of an oscillator just to derive its phase noise or synchronization

properties.

Such approaches tend to be very general in their applicability, but due to their abstract
nature, care must be taken when interpreting their results to ensure that they are both
physically meaningful and practically insightful. An exemplar of a mathematical
macromodel which simultaneously possesses tremendous predictive power while
being intuitive to understand is Hajimiri and Lee’s oscillator phase noise model
[87]-[90]. The core parameter at the heart of their model is a periodically time-
varying impulse response of the oscillator’s phase with respect to noise, embodied
in a parameter they named the Impulse Sensitivity Function (ISF) I'(x). The ISF
will be discussed extensively in Chapter 4. The model developed in the bulk of

3Note that a “parameter” in this context could be a function, a scalar or matrix variable, a
sequence, etc.
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this thesis builds upon—but greatly generalizes—Hajimiri and Lee’s work, and is

therefore also a mathematical macromodel.

The Perturbation Projection Vector (PPV)

A theoretical framework based on Floquet theory, pioneered mostly by Demir and
Roychowdhury, has been developed over the past couple decades for modeling
oscillators in the presence of external disturbances. The framework, originally
developed to model phase noise [91]-[93], is based on a parameter known as the
Perturbation Projection Vector (PPV) v (7). A key advantage of the PPV is that
it can be readily extracted from the steady-state solution of the oscillator, whereas
the ISF requires a collection of (possibly time-consuming) transient simulations.
As a result, this framework is particularly useful for performing efficient phase
noise simulations of large circuits with numerous noise sources. The PPV-based
framework has recently been extended to the modeling of injection locking and
pulling in oscillators [66]—[71], and has shown success in being able to capture
both the steady-state locked, as well as transient unlocked, behavior of an arbitrary
oscillator under injection. Recently, the PPV has also been used to model the effect
of weak coupling between oscillators [74] as well as injection-locked frequency
dividers by Maffezzoni [75], [76].

At its core, the PPV-based framework approaches the analysis problem from a dy-
namical systems standpoint—situated more closely to the mathematics rather than
the engineering community—Ieading to an overtly abstract and complicated formu-
lation. Furthermore, the PPV has not been demonstrated to offer more accuracy or
predictive power for electrical oscillators than other macromodeling approaches; in
fact, the PPV and the ISF are actually the same in many practical scenarios [94].
Consequently, while this body of work is mathematically rigorous, it has not found

mainstream usage within the circuit design community.

The Single-Period Injection Response (SPIR)

The Single-Period Injection Response (SPIR) was first utilized within the neuro-
science community to model neural oscillators [36]. It was later introduced within
the context of electrical oscillators by Dunwell and Carusone in 2013 [77], albeit
given a much less insightful name: the Phase Domain Response (PDR). The PDR,
which they denote as P(¢), measures the response of a free-running oscillator to a
single period of the external injection as the relative timing ¢ between the oscillator

and the injection is varied. This parameter is then used to determine properties such
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as the lock range, the lock time, and the jitter tracking bandwidth of the oscillator.
Although seemingly intuitive, simple to implement, and unconstrained by the type
of oscillator or the shape or size of the injection, we will show in Appendix B that
this framework is fundamentally flawed from a mathematical standpoint. This error
can be intuitively understood by noting that the PDR or SPIR captures the transient
behavior of a free-running oscillator, which is different from the steady-state be-
havior of an injection-locked oscillator. With that said, the PDR has found some
usage within the electronics community for designing oscillators injection locked
by short, tall pulses [18], [78].

Other Works

There are a few other macromodeling approaches in the literature which have found
some prominence. In 2008, Maffezzoni used the ISF to derive expressions for the
lock range of an arbitrary oscillator subjected to a periodic injection signal [72].
His analysis made no assumptions about the shape of the injection or to the relative
harmonic between the injection and oscillation (i.e., the injection-locked oscillation
frequency wosc satisfies Nwosc = M winj where M and N are coprime integers). Con-
sequently, Maffezzoni’s work comes the closest to our model—but, it exposes only
the tip of the iceberg in terms of the wide array of properties and behaviors that can
be predicted using the ISF. Other, more design-oriented mathematical macromodels
have focused on analyzing the nonlinear frequency mixing effects that occur within
the oscillator and between the oscillator and the injection [4], [6], [79]. These ap-
proaches have led to several useful insights for designing integrated injection-locked

frequency dividers and prescalers for frequency synthesizer applications.
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Chapter 3

A THOUGHT EXPERIMENT: SYNCHRONIZING AN LC
OSCILLATOR TO AN IMPULSE TRAIN

3.1 Introduction

In this chapter, we explore the possibility of using a current impulse train to entrain
a harmonic electrical oscillator. In doing so, our calculations will lead to an un-
derstanding of how the concept of the impulse response can be used to model the

phenomenon of injection locking.

ami(¥) 40 —=c L

(a) Parallel LC tank with a charge injection source.

q(?)
A

: Ty |
NANWANA
0 > {

—qmax'

(b) Unperturbed charge swing.

Figure 3.1: Idealized conceptual setup for our thought experiment.

3.2 A Thought Experiment
Consider the parallel LC tank shown in Figure 3.1a, where some amount of energy

resonates back and forth between the inductor L and the capacitor C, leading to the
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charge swing ¢(r) shown in Figure 3.1b. The period of oscillation is Ty = 27VLC,
the tank’s resonant period. In parallel with the tank is a current source which
periodically injects an impulse of current. The area under each impulse is a discrete
amount of charge, whose (absolute) amount we will denote as gj,;. Note that this

charge is deposited entirely onto the capacitor.

Let us restrict ourselves to the scenario where each injection does not change the
amount of energy in the tank; therefore, it merely switches the polarity of the
instantaneous charge swing ¢(f). Two such examples are shown in Figure 3.2.
Observe how positive (or negative) injections of charge at rising (or falling) edges of
the oscillation waveform will advance the phase, whereas the opposite arrangement
will retard the phase. We would like to derive a relationship between the amount
of injected charge gy, the maximum charge swing gmax, and the change in the

oscillation frequency Aw = wjyj — wo.

Let us compute the phase shift caused by each injection. If we adopt a sine reference,
meaning that g(f) = gmax sin (), then each injection takes the instantaneous phase
from —¢ to ¢ or vice versa, for some phase ¢ > 0. The amount of charge needed
to advance the phase by Ag = +2¢ is (the negative of)) twice the capacitor charge at

the instant of injection:

: _[£Ag
qinj = 2Gmax $in(¢) = 2¢max sin T . (3.1)

Solving for the phase shift Ag and assuming the injected charge is much less than

the maximum charge swing, ginj < gmax, W€ can approximate

; (3.2)

Ap = £2 sin_l( i ) x+ inj

dmax dmax

where the sign depends on the polarity of the injections and on whether they are

applied at rising or falling edges.

Next, this phase shift Ag corresponds to a period difference AT := T;,; — Ty of and

a frequency shift Aw of
Ap AT  Aw

2 B T() - (,L)inj.

(3.3)

Thus, we obtain the following relationship:

Aw = % (3.4)
Tinj
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(b) Injections which slow down the oscillation.

Figure 3.2: Synchronizing an LC tank to an impulse train of current injections which
leave the amount of energy in the tank unchanged.

Combining this result with Eq. (3.2), we get

Aw = ii Jing .
inj gmax

(3.5)

One might have noticed that our analysis thus far has really only dealt with an
LC tank. To extend our reasoning to an LC oscillator, which features nonlinear
amplitude restoration, we augment the setup of Figure 3.1 to the more complete
circuit of Figure 3.3. The current exchanged between the inductor and the capacitor
has a peak value of wogmax, Whereas the “oscillator current” consumed by the loss

resistance Rp and replenished by the active —G,, transconductor has an amplitude
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woqmax = Q X Iosc
Z ~

iit) = 7 RN
inj i
Gini ) > 8(t— nTw;) @ amlzc %L 2Rs |G,

Figure 3.3: Applying an impulse train current injection to an LC oscillator. We are
interested in the steady-state behavior of this circuit.

of I,s.. Because the LC tank and the resistor are in parallel and therefore experience

the same voltage swing, these currents must be related through

WO Gmax
woC

WoGmax " WoL = = IoscRp. (3.6)

In other words, as indicated in Figure 3.3, the amplitude of the current sloshing

within the LC tank is Q times the oscillator current:

’(UOQmaX = Qlosc, (3.7)
where Q is the tank’s quality factor:
R
0 =—L = RpwyC. (3.8)
woL

For the sake of argument, let us look at the fundamental component of the impulse

train ij,;(#). Its amplitude, which we shall denote by /iy, is given by

2 C o
Iinj == qinj Z ot - nTinj) e~/ dt
Tm] mJ n=-—oo (3 9)
_ 2qmj
Tinj .

Combining Egs. (3.5), (3.7), and (3.9), we get

wq Tinj
Aw = +20 0
2Q IOSC

which yields a remarkable result: the frequency difference is equal to the lock range

(3.10)

obtained from Adler’s equation Eq. (2.12)!

One way of interpreting this result is that the current setup is poised at the “edge”

of the lock range. In other words, “all” of the injection current is being used to
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change the oscillation frequency. Mathematically, this follows from the fact that the
impulse train’s fundamental component is in quadrature with the oscillation. The
delineation of the injection’s “in-phase” and “quadrature-phase” components will
be discussed in great detail in Chapter 10.

3.3 Varying the Time of Injection
q(t)
A

qmax T

—qmax'

Figure 3.4: Varying the time at which the injections are applied.

Based on the preceding analysis, it should be apparent that for a fixed relative in-
jection strength ginj/gmax, there are only two instants during each cycle when the
injection can be applied so as to leave the tank’s energy unchanged. Specifically,
notice how the fundamental components of ij,j(f) and g(t) are +£90° out-of-phase.
But what if we vary the time of injection, thereby allowing the injections to instan-

taneously change the tank’s energy? An example of this is shown in Figure 3.4.

To describe this situation precisely, we must characterize the point along the os-
cillation cycle at which the injection is applied. Specifically, let 8 represent the
phase difference between the fundamental components of the injection current and
the charge swing. This is illustrated in Figure 3.5, where gfnq(#) is the funda-
mental component of the actual charge swing ¢(z), and ignq(?) is the fundamental
component of the impulse train injection current. Notice how 6 has two possi-
ble interpretations. As the phase difference between the fundamental components,
the difference between their rising (or falling) edge zero-crossing times is equal to
—6/winj. Equivalently, for positive or negative injections of charge respectively, the
value of ggung(f) at the time of injection is equal to +gmax cOs 8, where gmax is the

amplitude of ggng(?). In other words, 6 can be thought of as a generalized definition
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Figure 3.5: Defining the phase 6 using the fundamental components of the wave-
forms from Figure 3.4.

of the phase of oscillation at the time of injection. In particular, 8 = 0 or 6 =«
correspond to peak/trough injections that respectively increase or decrease the tank
energy, whereas 6§ = +m/2 correspond to zero-crossing injections that respectively

retard or advance the oscillation.

By dealing with fundamental components, observe how 6 automatically accounts
for the polarity of the injection. For example, reversing the injection polarity has the
same effect on the oscillator as delaying the injections by half of a cycle. Likewise,
negating an impulse train delays its fundamental component by half of a period,

thereby shifting 8 by 7.

Next, we will assume for now that the oscillation amplitude is quickly and completely
restored by the oscillator’s inherent nonlinearities within a single injection period—

but the phase perturbation remains. Now, in order for the oscillator to synchronize
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to the impulse train, the relationship between the frequency difference Aw and the
injection strength must involve the phase 6. To quantify this relationship, we need

to calculate the phase shift induced by the injection as a function of 6.

The Phase and Amplitude Response of an LC Oscillator

This treatment parallels that found in Appendix C of [88]. Let us assume the injection
is applied at time t = 0. With this time reference, we can see from Figure 3.5 that
the capacitor charge and the inductor current before the injection (r < 0) can be

written as
1) = cos(wot + 0
.61() qma:x ( ). 311
iL(t) = —=q'(t) = wogmax sin(wot + 6).
After the injection, both the phase and the amplitude change. Therefore, for ¢ > 07,

the capacitor charge and inductor current become

q(t) = (gmax + Agmax) cos(wot + 0 + Ayp)

. , (3.12)
ir(t) = —q'(t) = wo (gmax + Agmax) sin(wot + 6 + Ag),

where amplitude restoration (i.e., the decay of Agmax With time) is irrelevant since

we are only interested in the immediate effect of the injection in this analysis.

But we also know that the capacitor charge changes instantaneously by giy; after
the injection, whereas the inductor current remains the same. Therefore, using
Eq. (3.11) gives

q(0%) = Gmax €OS 0 + Ginj

(3.13)
ir(0%) = wogmax sin 6.
Comparison with Eq. (3.12) at ¢ = O therefore yields
(gmax *+ Agmax) 08(0 + Ap) = Gmax c0s 0 + qinj (3.14)

(gmax + Agmax) Sin(6 + Ap) = gmax sin 6.

Assuming the amount of injected charge is small, ginj < gmax, we linearize the

equations above with respect to both Ap and Agmax to get

Agmax €08 8 — ApGmax SN 0 = Gin;

(3.15)
AGmax Sin 0 + A@@max cos 6§ = 0.
Now, we can easily solve for Ap and Agmax:
A = =T Ging
Gmax (3.16)

AqInaX = Qm_] COS 9.
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Adler’s Solution
With this result, the frequency difference Aw is now related to 6 through
L qinj

inj 9max

Aw = - sin 6. (3.17)

Using Egs. (3.7) and (3.9) to once again transform the charge quantities gi,j and
gmax into the respective currents iy; and o, we arrive at

wo Tinj |
Aw = ———s5iné, (3.18)
2Q IOSC

which is the steady-state solution to Adler’s equation, as we can see from Eq. (2.11)!

3.4 Accounting for Changes in the Maximum Charge Swing
q(?)
A
@ max,0 + Sqmax'

@ max,0 7 \ 7 \ 7
| | | \
L N ——; ’
nnj
—qmax,O T \/

Figure 3.6: Depiction of how the oscillation amplitude gmax(#) evolves with time in
steady-state when the injections change the amount of energy stored in the tank.

maxt
/q ()

We can take this thought experiment slightly further by assuming a realistic decay
dynamic for the tank’s energy in between consecutive injections. This is important
because as we can see from Eq. (3.16), the phase shift induced by an injection is
inversely proportional to the maximum charge swing. Although Eq. (3.16) already
gives the instantaneous change in gmax caused by an injection, we will also need to

quantify how gmax changes with time throughout the entire period.

The unperturbed or free-running amplitude satisfies wg gmax0 = Qlosc, as this charge
swing gmax.0 is sustained by an energetic balance between the transconductor, which
supplies Iy, and the tank loss, which sets Q. Therefore, we will assume that
any deviation of the amplitude from gmax o decays exponentially with the relaxation

time constant of the parallel RLC circuit: 79 = 2RpC = 20Q/wp. Consequently,
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even though each injection instantaneously changes the amount of energy stored in
the LC tank, the oscillator also continuously attempts to restore this energy to the
free-running amount. Eventually, this process reaches an equilibrium, an example
of which is shown in Figure 3.6. Let 6gmax denote the maximum charge swing in
excess (positive or negative) of gmax 0 immediately after an injection. In steady state,

the oscillator must return to the same amplitude over each period, and so we require

55]max3_ij/To = 0¢max — Agmax- (3.19)
Solving for dgmax, We get
_ Aqmax
OGmax = m (3.20)

We know that between successive injections, the maximum charge swing as a

function of time is given by

Clmax(l) = (@max,0 T 6Qmaxe_t/T0- (3.21)

For the sake of argument, let us consider the time-average of the maximum charge

swing:
1 Tinj TO T _/TO
<Qmax> = Qmax(t) dt = dmax,0 + _6Qmax (1 —e M ) . (3.22)
Tinj 0 Tinj
Substituting for dgmax from Eq. (3.20), we get
70
(qmax) = Gmax,0 + T_AQmax- (3.23)
inj

This equation makes sense: the longer it takes to dissipate energy (a larger 7y), or
the more frequent the injections (a smaller 7j,;), the more influence the injections

will have on the average amplitude in steady state.

Replacing gmax With (gmax) in Eq. (3.17), our frequency shift becomes

! inj sin 6
w=-—— T Gng = mJTO (3.24)
Tinj <‘]max> Gmax0 + T_qinj cos @
inj

Using Eqs. (3.9) and (3.7) to eliminate gjy; and gmax,0 respectively, and relating 7
to the quality factor Q, we get
w( Iinj sin @

Aw=-2 M7
2Q IOSC + Ian COS 9

(3.25)

Interestingly, this is the steady-state solution to Eq. (2.13), which is Mirzaei’s
Generalized Adler’s equation [21].
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3.5 Concluding Thoughts

By making simple physical arguments about the behavior of an ideal LC oscillator
injected with an impulse train, we arrived at results which originally came from
behavioral analyses carried out by Adler [47] and Mirzaei [21]. Therefore, it may
be fruitful to use the concept of the impulse response to model the phenomenon of
injection locking and pulling. We conclude this chapter by pointing out that the
relationship between this thought experiment and the general model introduced in

this thesis will be established rigorously in Section 5.9.
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Chapter 4

A TIME-SYNCHRONOUS MODEL

4.1 Introduction

In this chapter, we develop from first principles a general model for the behavior of an
electrical oscillator subjected to a periodic disturbance. As we stated in Section 1.1,
within the context of electronics, the disturbance is usually taken to be an injection of
current into one or more of the oscillator’s nodes. The model makes no assumptions
about the topology of the oscillator or the shape of the injection. We will see
that our analysis leads to a single, first-order ordinary differential equation for the
oscillator’s phase which accurately predicts the phenomenon of injection locking
and pulling under a variety of scenarios. A distinguishing feature of this model is
its time synchronicity—its mathematical structure reveals how the autonomy of the

oscillator fundamentally facilitates injection locking and pulling behavior.

4.2 The Impulse Sensitivity Function (ISF)

Here, we construct the fundamental differential equation that governs the behavior
of the oscillator’s phase. Let us begin by describing the effect that the injection
iinj(?) has on the oscillator’s excess phase ¢. Naively reasoning from a perturbation-
based perspective, we can attempt to model how fast ¢(¢) changes in response to an

injection of charge i;nj(t) = dginj/dt by using the chain rule:

@ _ d(b . dqmj
dt — dgpn; dt

4.1)

The first derivative represents the rate of change of the oscillator’s (excess) phase
with respect to injected charge. In other words, it characterizes the sensitivity of
the oscillator’s phase to an injection of an infinitesimally small impulse of current.
However, due to the periodically time-varying nature of the oscillator, this term is not
a constant but is instead dependent upon the point along the trajectory the oscillator
is at—the oscillator’s phase—when the injection occurs. This phase-dependent
derivative is known as the oscillator’s Impulse Sensitivity Function or ISF [87],
[88]:

¢
OGinj

[(p) = (4.2)
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with units of [radians/Coulomb]. Note that the ISF defined by Hajimiri and Lee
[87], which is denoted by I'(x) without the overhead tilde ‘~’, has been normalized
by an additional factor—the inverse of the maximum charge swing gmax across the

injection terminals:

['(x)= . 4.3)

dmax

However, our definition of the ISF will be more convenient for us to work with.

Being a function of the oscillator’s phase, the ISF is periodic with period 2.

The second derivative in Eq. (4.1) is simply the injection current ij,j(¢). Therefore,
we can write
d¢

a5 ['(g) - iinj(?)- (4.4)

Before proceeding, we want to very carefully note that this model, by construction,
inherently assumes that the injection-to-phase relationship is a linear one. We will

discuss the justification for and the implications of this assumption shortly.

Excess
Phase
b0 Response
iin' t t f 0OyT) -
0 T > { 0 T > {

hy(t,7) = T(067) - u(t—1)

Figure 4.1: Relating the time-varying impulse response for the oscillator’s excess
phase to the ISF.

Although this reasoning makes sense intuitively, we must make the analysis rig-
orous. Given the set of observations and assumptions we have just made, we are
essentially adopting a linear, periodically time-varying (LPTV) dynamical system
model. Now, the ISF appears within the time-varying impulse response of this
system. Specifically, the oscillator’s excess phase ¢ at time ¢ due to a unit impulse

of current injected at time 7 is

he(t, 7) = Ilo(t)]u(t - 7). 4.5)

The unit-step function in the impulse response signifies the fact that an oscillator
has no absolute time reference—any resultant perturbation in its phase appears
immediately and will persist indefinitely [87]. This interpretation of the ISF is
depicted in Figure 4.1.
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ami(}) 40T—=cC L

(a) Ideal LC oscillator. Amplitude limiting nonlinearities are not shown.
q(?)
A

G max

(b) The charge swing ¢(t) across the capacitor responding to an injection of charge
ginj at two different times. The red, dashed curve is the unperturbed version of g(z).

Figure 4.2: The impulse sensitivity function (ISF) captures the dependence of the
incurred phase shift on the time of injection.

An example of how time variance arises is given in Figure 4.2, which shows the
response of an ideal LC oscillator to an instantaneous injection of charge at two
different times. Notice that injecting near a zero-crossing (+ = 7p) results in a large
phase shift, whereas injecting near one of the waveform’s peaks (¢ = 17) results in

almost no phase shift.

The two equivalent viewpoints of the ISF that we have just described are reiterated

in Table 4.1. Methods for simulating or calculating the ISF are discussed extensively
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Table 4.1: Two Equivalent Viewpoints of the ISF

The kernel of the time-varying
impulse response of the (excess)
phase w.r.t. the injected current:

he(1,7) = Tlp(D)] u(t - 7)

The gradient of the phase along the
limit cycle w.r.t. injected charge:

oy

[=
(9%1]'

elsewhere [87], [88], [95].

An Aside: The ISF for Orthogonal States

It is worth noting that a closed-form formula for the ISF exists if the oscillator has an
orthogonal state-space representation. Consider a d-dimensional oscillator where
the d state variables are node voltages Vi, . . ., V; with respective node capacitances
Cy,...,Cy. Writing the free-running state variables in terms of their oscillation
waveforms vi(wot), . . ., va(wot) respectively, the ISF due to an injection at the i

node can be computed as [87], [88]

vi(ep)
> Colvn(@))*

where the derivatives with respect to the phase ¢. If the n' state variable is a branch

Ti(p) = (4.6)

current [, instead, simply replace V,, — I, and C,, — L, (the branch inductance).
Notable oscillators with orthogonal state variables are the LC oscillator (using the
capacitor voltage and the inductor current) and instantaneously switching relaxation
oscillators (using the voltage across the timing capacitor and a binary hysteresis
state). Keep in mind, however, that most oscillator representations do not have

orthogonal states, and so this formula is only useful in limited circumstances.

Why Linear?

The system we have just described—whose input is the injection current i;,;(¢) and
output is the excess phase ¢(7)—is in general nonlinear; most systems in nature are.
Interestingly, the mathematical construction of our model is itself incompatible with
true linearity due to its phase-variant nature: suppose we inject some charge gip;

into an oscillator at a phase ¢. The incurred phase shift is equal to

Ago = ginil (). 4.7)

We can also decompose this injection into two consecutive injections, each of size

Ginj/2. If the system were truly linear, we could use superposition to say that the
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incurred phase shift is also equal to

inj | ~ ~ A
Ag; = % [F(cp) + F(go + %)] . 4.8)

As we can see, these two approaches lead to different results in general (A¢g # A¢gy)

unless gjy; is infinitesimally small.

However, we also know that fundamentally, any functional dependence f(x) in
nature will exhibit linear behavior provided that the stimulus x is small enough
(assuming the first derivative f’(x) is nonzero). This is justified mathematically by
looking at a first-order Taylor series expansion of the dependence, and in electrical
engineering contexts is frequently referred to as the “small-signal” regime. In
particular, it has been empirically observed on a variety of electrical oscillators
that when they are injected with a discrete amount of charge which is sufficiently
small, the incurred phase shift scales proportionally with the amount of charge [87],
[88]. (This proportionality constant is equal to the ISF.) Specifically, the amount
of injected charge can typically be considered to be “sufficiently small” when it is
much smaller than the maximum charge swing at the injection node. Let us call
this regime where linearity holds the “Linear Response Region™ [82]-[85] of the

oscillator’s charge-to-phase relationship.

Let us now use this concept to discuss the linearity of the oscillator’s current-to-
phase relationship!, which is what we truly care about. Since the ISF is the gradient
of the oscillator’s phase along the limit cycle, we argue that as long as the oscillator’s
operation is close enough to its free-running trajectory such that it does not exhibit
qualitatively different behavior, linearity prevails. Furthermore, we reason that
this condition is achieved when the total amount of excess charge accumulated
at the injection node, giyj, is within the Linear Response Region defined above.?
Since the Linear Response Region corresponds to the injected charge being small
in comparison to the (free-running) maximum charge swing gmax 0, this reveals the
rather intuitive result that linearity simply requires ginj << gmax,0, as this preserves

the oscillator’s “operating point” (along its limit cycle).

We can crudely quantify the condition for current-to-phase linearity, or the “small-

injection condition,” a bit more precisely. For many oscillators, such as ring and

"Note that the current-to-phase relationship subsumes the charge-to-phase relationship since the
latter stimulus is merely an impulsive current waveform.

For the more mathematically inclined, note that this is a physical argument—not a rigorous
proof. We are not claiming that a system which exhibits linearity with respect to impulses will be
linear in general with respect to all inputs.
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relaxation oscillators, strong amplitude-limiting mechanisms are in place and the
excess injected charge giyj decays very rapidly. Let us examine this dynamic using
a first-order, linear, time-invariant model via the following differential equation:
innj qinj
[ + —_— = i : l’ 8 4.9
it = i) (4.9)
where 7, is the time constant at which the excess charge decays. This is equivalent
to an impulse response equal to /(1) = e™ /Tay(t). For a sinusoidal injection current
of amplitude Iy, it is easy to show that the amplitude Qjn; of the excess charge giyj(?)

is equal to
Iin;

\/winjz +1/74%

where the bound holds for any nonzero injection frequency wj,j > 0. Next, note that

Oinj = < ILinjty, (4.10)

this decay usually takes place within a tiny fraction of the oscillation period, and so
74 < 1/wg. Thus, we further have that Qjn; < Iinj/wo. Hence, a sufficient condition

to maintain linearity is given by
Iinj < WoYGmax,0- 4.11)

The right-hand-side is a rough estimate of the amplitude of the (free-running) current
flowing across the injection node’s capacitance.®> (In fact, for a sinusoidal swing,

they would be equal.) Defining this quantity as the oscillation current,

Imax = WoYmax,0» (4.12)

we can rewrite our small-injection condition as

Iinj < Imax- (413)

Note that the time-invariance underlying this analysis can actually lead to woefully
inaccurate results—for an LC oscillator, for example, the periodically time-varying
nature of the oscillator plays a crucial role in the effect that the injection has on
the oscillation amplitude (see Chapter 5). A thorough analysis reveals that the true

small-injection condition is ljnj < Inax/Q, where Q is the tank’s quality factor.

Closing this discussion, it is worth mentioning that the range of injection strengths
for which linearity holds already covers a wide range of practical scenarios in

injection locking and pulling applications.

3Carefully note here that gmx.o is technically defined as the amplitude of the charge displacement
from a DC operating point, which can be approximated as half of the peak-to-peak swing.
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4.3 A Differential Equation for the Oscillator’s Phase

Now, we can calculate the oscillator’s excess phase ¢(¢) in response to an arbitrary

injection of current ij,j(f) using a superposition integral:

o t
60)= [ ho0immdr= [ Fle@limdr. @14
Differentiating with respect to time,
dg oo
i I'l()] iini (1), (4.15)

which is exactly what we expected intuitively from Eq. (4.1), but now established
rigorously. Next, we make use of Eq. (1.3) to write this differential equation in
terms of 6:

do

Z = Wo — Wipj t+ f(winjt + 9) iinj(l). (4.16)

As it stands, this equation has a subtle problem, best illustrated with a simple
example. If the oscillator is injection-locked, 6 should be constant in time. However,
this outcome is not a solution of Eq. (4.16): if 6 is constant, then both I (winj? + 6)
and i;pi(7) are periodic with a frequency of wiyj. Hence, their product can, in general,
exhibit infinitely many harmonics at DC, wjyj, 2wiyj, etc. Thus, the right-hand-
side of Eq. (4.16) will not be equal to zero (or any constant for that matter), as is
required by the steady-state solution where df/dt = 0. Therefore, we postulate
that Eq. (4.16) also captures intra-period dynamics that we are not interested in.
Instead, the physical behavior we seek to describe is actually encapsulated in the
time-average of the oscillator’s phase, which would eliminate the aforementioned

higher-order harmonics.

Time-Averaging and Spectral Decomposition
In order to enforce this conjecture, we need to appeal to the theory of averaging for
differential equations. The fundamental theorem governing this technique will be

briefly introduced here. Consider the following ordinary differential equation:

du

e (4.17)

where f is periodic in ¢ with period 7', and the parameter £ > 0 is assumed to be

“small.” Now, calculate the time-average of f:

(f(u)) = %/Tf(u, 1) dt, (4.18)
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where u is assumed to be a constant within this averaging integral. Then, it is
possible to prove that the solution to the averaged differential equation
dv
= = 4.19
5 — e (4.19)

is e-close to u(t) on the time scale 1/& [96].

Within our setting, the averaging period is clearly Tj,;. The “amplitude” of the
injection signal i;yj(7) takes the place of the parameter &, in the sense that doubling
the injection current both doubles the error and halves the time scale over which the

error is bounded.4 Therefore, we obtain’

o _
dr

1 .
WO — Winj + /= / F(winjt + 9) iinj(t) dt. (420)
Tinj J1,

nj

Once again, 6 is to be treated as a constant within the averaging integral on the
right-hand-side. This is the basic differential equation that governs the oscillator’s
phase 6 in the presence of a periodic external injection of current ijyj(). We will

refer to this important equation as the pulling equation.

The averaging operation is independent of the time scale. In other words, only the
size and shape of the injection current (and ISF) can directly affect the result—there
is no explicit dependence on the averaging period Tj,; itself. To that end, let us
define the injection waveform i;,;o(x) as the injection current normalized in scale
to a period of 27:

Iinj(t) = iinj0(Winjt). 4.21)
The injection waveform only captures the size and shape of the injection current,
properties which are independent of the injection period Tij—in much the same way
that the oscillation waveform vo(x) contains no information about the free-running

oscillation period 7.

We can now use the injection waveform to rewrite the pulling equation in the

following equivalent manner:

do - .
—7 = W0~ Winj + <F(x +6) linj,()(x)>27r , (4.22)
where (-) is the averaging operation:
1
() = —/-dt. (4.23)
T Jr
4In Section 7.6 where we discuss phase noise, we will deal with the non-periodic case of

averaging.
SExcuse the abuse of notation—we have reused the variable @ as the solution to the averaged
equation.
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Figure 4.3 shows a block diagram to help visualize the process described by the
pulling equation. Note that since 6 is a constant variable with respect to the averaging
integral, we can shift it into the argument of the injection current. If the process

reaches a static equilibrium for 6, the oscillator becomes injection locked.

Lock Characteristic Formation
1
4 \

F(x) Integrate &
Average Phase-Modulate
; Aw+dO/de
Iinj,0(x—0) <.> : o volwot + Aw+0(f)] F— Vosc(?)
"~ “Time S—h—.i.——1 ELJ‘
[ Time-Sifé o]
! Injection vs. |
! __Oscillator |

do/de

| -ar

Integrate
over Time

Figure 4.3: Block diagram depicting what happens to the phase of a periodically
disturbed oscillator.

The result of the averaging operation can also be expressed in a more insightful way
by utilizing Fourier analysis to expose the periodicity of the ISF and the injection.

Specifically, let us expand these two functions in terms of their Fourier series:

ad oo

- T - -
I'x) = ?0 + |Fn| cos(nx + /1)
n=1 (4.24)
. Lnjo .
linj(t) = 11; + Z |Iinj,n| cos(nwinjt + ZIinj,n)’
n=1

where the Fourier series coefficients are given by
a 1 a —jnx
I,=— I'(x)e™ "™ dx
T Jon
2 : — jnWin;jt
Linjn = 7 [ dinj(1)e™"™" d1.
Tvinj Tinj

Because 6 is constant within the averaging integral, we can evaluate the integral

(4.25)

directly in terms of the Fourier series coefficients of the ISF and the injection. This



38

yields
do 111 ',()1:‘0 > - -
E = Wo — Winj + E 1nj2 + Z |Iinj,,,1",,| COS(nQ + /I, - Zlinj,n) . (426)
n=1

This formulation is often more convenient to deal with, both analytically and con-

ceptually. A block diagram depicting the spectral decomposition of the ISF is given

in Figure 4.4.
To/2
—®———————f>
[Ty| cos(x +£T)
- &
iinj,o(x - 0) —> * Aw+db/dt

IT',| cos(nx +£T,)

Q>

Figure 4.4: Decomposing the ISF into its spectral components, emphasizing how
the injection waveform is filtered in the formation of the lock characteristic.

The Lock Range

The lock range is perhaps the most important parameter associated with the phe-
nomenon of injection locking. It is defined as the range of frequencies that the
oscillator is capable of locking to for a given injection waveform. Because the os-
cillator’s phase relative to the injection, 6, is constant in time for a locked oscillator,
the frequency deviation Aw = wiyj — wy is given by

Aw = — [ (wingt + 6) dinj(1) dt. (4.27)

inj J Ty

Because of the importance of this relationship, let us define the following function
Q(0) of the oscillator’s phase 6:

Q) = TL/ f(winjt + 9) iinj(t) dt

inj Tinj
= (F(x + 0) itnjo(x)), . (4.28)

1
2

IinjoT 0
2

+ Z |Iinj,nfn| COS(I’IQ + an — Zlinj,n)
n=1
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Notice that this function is periodic with a period of 2. Since Aw = Q(6) for
an injection-locked oscillator, () dictates the relationship between the frequency
deviation Aw and the locked oscillator’s phase 6. Therefore, we will call €Q(6)
the lock characteristic, which was first introduced in Section 1.2. As we will see,
the lock characteristic captures practically all of the essential information about an

oscillator’s injection locking and pulling behavior.

By definition, the lock range is equal to the maximum frequency deviation achievable

under lock:
wy = maxe/min Aw
do 4.29)
t. — =0
; dt

Therefore, the lock range can be calculated by extremizing the lock characteristic:

wy = maxe/min Q(0). (4.30)

It should be apparent at this point that the lock range is only defined for an
“oscillator-injection pair”’, as varying either fundamentally alters the lock char-
acteristic. On a final note, observe that if § = §* is an optimal solution to the above
optimization problem (upper or lower), then basic differential calculus dictates
Q") = <f’(x + 9*)iinj,0(x)>2ﬂ = 0, assuming differentiability. In other words, at
the edge of the lock range, the derivative of the ISF and the injection current must

be orthogonal to one another (in the L? sense, over the appropriate period).

Sinusoidal Lock Range: Of particular importance and interest is the case of a

sinusoidal injection current
Iinj(t) = Linj cOs(winj?),

due to its mathematical simplicity and the bandpass nature of many electronic
systems and devices. It is straightforward to see that the lock characteristic for a

sinusoidal injection is given by
1 - -
Aw = = lin 1| cos(6 + £T7), (4.31)
and so the lock range is equal to [72]

1 -
wr =l |T4|. (4.32)
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4.4 Example: The Bose Relaxation Oscillator

In this section, we will derive a closed-form expression for the ISF of a comparator-
or Schmitt trigger-based relaxation oscillator, also known as a Bose oscillator. The
schematic of this oscillator is shown in Figure 4.5. The simple exponential-discharge
dynamic which governs the operation of this oscillator makes it a particularly suitable

candidate for demonstrating the concepts discussed in this chapter. The key insight

Rz R1
J_ Wy T Wy

vOSC

—W
iinj C— R

T

Figure 4.5: Schematic of the comparator-based relaxation oscillator.

here is that the time shift induced by a small injection of charge is equal to the amount
of time it would take the original waveform to travel to the perturbed point. This is
because the oscillator simply continues to charge or discharge from the perturbed

point; the injection cannot “knock” the oscillator off of its limit cycle.

Assume the op amp’s positive and negative supplies are at Vpp > 0 and —Vss < 0,
respectively. Further assume an equal resistive divider straddling the non-inverting
input (R; = R»), and define the time constant T = RC. We allow for the general case
of Vpp # Vss which results in asymmetric charge/discharge times. The capacitor

charges and discharges between

. CVop and L Cs

Qmax - 2 Qmax - 2

The free-running oscillation period is 7oy = T¢ + Tp, where T¢ and Tp are the

charge/discharge times respectively. It is easy to see that
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- +
TC:T-ln(qmax+2) TD:T-ln(@+2).

+ p—
qmax qmax

Thus,
) (4.33)

+ —
Qm ax qm ax

- +
Ty=7-In [2 (—q‘na" + —q““‘") +5

q(?)
A

qlTlax'

Figure 4.6: Time shift ATp induced by an injection into a Bose oscillator while it is
discharging.

Let us analyze the discharge scenario. Say some amount of negative charge —giy; is
injected onto the capacitor when the oscillator is some fraction 0 < fp < 1 of the
way through the discharge process (see Figure 4.6). The injection will speed up the
discharge by ATp, which obeys

_ foTp ATp _
(dmax + 2Gmax) €XP (_T exp (——— = (dmax *+ 2qmax) €Xp | -

fDTD)
— {inj-

But since g7« + 2¢max = 9max €XP(TpT), we can rewrite this as

_ (1-/p)Tp ATp\  _ (1-/p)Tp
9max XP f eXp _T = dmax XP f — Yinj-

Solving for ATp, we get

(4.34)

ATp = —T-ln(l L . [MD

ql’;laX T



42

The linear phase shift induced with respect to only the discharge process is

A(/)DE&:—L-In(l— wp.

qinj ex
Tp Tp m P

(4.35)

Qmax
Therefore, the discharge ISF, in units of fraction of the discharge period, can be

calculated by differentiating the phase shift with respect to the injected charge:

+ fp-1
" | (eTD/T)fD_l (%fax +2)
Pofo) = Gty = e = | (430
—{inj Ginj=0 max D | ( max 2)
Gmax IN | —— +
max

where we have also given an equivalent form solely in terms of the charge swings.

Similarly, for the charging scenario, it is analogous to show that

_ fo-1
oA ) (qTax ' 2)
Pc(fc) = 3 bc = = \max 1 @37
qinj Ginj=0 dmax C/T ;I—lax In (qr_'r-lax + 2)
max

Notice the exponential dependence of the ISF upon the phase (fp and f¢).

Symmetric Charge and Discharge

In the case where ¢,y = gmax = gmax and so T = Tp = 71n 3, we get Ty = 271n3.

Furthermore, we can combine the charging and discharging ISFs into a single ISF.

Denoting f € [0, 1] again as the fraction of the charge/discharge period,
3/t

GmaxIn3’

Let us assume the reference for our oscillation charge waveform go(¢) = Cvo(p)

Le/p(f) = nPeip(f) = £n (4.38)

starts at —gmax (the beginning of the charging event) when ¢ = 0. Then

2
2—3e—f/7:3(——3—¢/”) 0<g¢<n
= t ’ - T -
qo(¢ = wot) _ 3 , 4.39)
dmax -2+ 36—(t—T0/2)/‘r =3 (_ _ 3—(go—n)/7r) << 20
3 ’ -

where we made use of the fact that 7y = 271In3. Knowing that f = ¢/ during
charging and f = (¢ — m)/x during discharging, the ISF can therefore be written as

- 3%
W, 0< <
=~ 3 gmax
I'(p) = 4.4
@=1 e , (440)
- < .
33 gm =T
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Figure 4.7: One period of the free-running oscillation voltage of an ideal, symmetric
1 GHz Bose oscillator with Vpp = Vgg = 1 V.

Note that this oscillator actually has two states: one of them is the voltage across
the capacitor C, while the other is represented by the hysteresis within the op
amp. However, the latter is a binary state, which toggles only when the oscillator
transitions between the charging and discharging phases. Therefore, only the first
state is changing at all but two points in a cycle. We thus refer to this oscillator as a
“quasi-single-state” oscillator, and the ISF can also be very simply computed from

the waveform directly using the orthogonal state-space calculation of Eq. (4.6):
1 1
C-vi(e) qyle)

One can easily verify that taking the derivative of go(¢) from Eq. (4.39) and substi-
tuting the result into Eq. (4.41) yields Eq. (4.40).

[(p) = (4.41)

Figure 4.7 shows the free-running oscillation voltage of a symmetric 1 GHz Bose
oscillator implemented with an ideal comparator. Note that C = 9.1 pF. Figure 4.8
compares the simulated ISF against the closed-form formula of Eq. (4.40) and by

numerically differentiating the waveform in Figure 4.7 in accordance with (4.41).
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Figure 4.8: The impulse sensitivity function of the ideal Bose oscillator (whose
oscillation voltage is shown in Figure 4.7) obtained several different ways.

Notice the near identical match between the different approaches. The discrepancy
in the simulated ISF near the transition point is due to the fact that actual injections of
charge cannot be infinitesimally small in simulation, even though the ISF is defined
as aderivative evaluated at gj,; = 0. For our simulation, we injected positive amounts
of charge. Thus, near the transition point from charging to discharging, there are a
few simulation points for which the injection pushes the capacitor voltage beyond
the positive supply rail, introducing a simulation “error” which causes deviations
from the true ISF.

The Sinusoidal Lock Range of the Bose Oscillator
The magnitude of the fundamental component of the ISF is
N N : 8 1
|F1| = — ‘/ I'(x)e™’*dx il . :
T 1Jo 3In3/n% + (In3)?  gmax

(4.42)

For a general Bose oscillator with a peak-to-peak voltage swing of V.« across a

timing capacitor C, the charge amplitude gmax is simply half of the peak-to-peak
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charge swing: gmax = CVmax/2. Thus,

)| 167 1 4.582
1 = . ~ .
3In3yr2 + (In3)2 CVimax  CVinax

(4.43)

Therefore, for a sinusoidal injection current, the linear lock range is given by

Ii; Iin;

~ 0.3647

1 -
Jo = —Iin || = .
" | | 3In3 7T2 + (ln 3)2 CVmaX CVmax

4r

(4.44)

4.5 Linearity Case Study: Injecting a DC Current into an Oscillator
What happens if the current injected into the oscillator is constant in time: ij,;(t) =
Ipc? In steady state, the pulling equation Eq. (4.20) predicts a constant shift in the

oscillation frequency given by

1 .
Aw = — F(winjt + 9) Ipc dt
Tinj J1y (4.45)
= I'bc - Inc,

where I'pc = T/2 is the average value, or DC component, of the ISF. Thus,
according to our model, a constant injection of current induces a frequency shift

proportional to the current level. Let us examine if this is true in reality.

Figure 4.9a shows the simulated oscillation voltage for a 17-stage ring oscillator
where a DC current of +5 mA is injected into one of the stages. In steady state,
we observe that the oscillator indeed oscillates at a constant frequency. Figure 4.9b
shows a plot of the oscillation frequency as a function of the injection current. As we
can see, the line generated by the ISF model does not accurately predict the oscillation
frequency. This is because the injection of DC current also introduces a significant
offset in the output voltage (see Figure 4.9a), and so the amount of excess charge
introduced by the injection is appreciable compared to the free-running maximum
charge swing. However, since the ISF model is equivalent to a linearization of this
behavior, notice that the line Aw = I'pc - Ipc serves as a tangent line to the simulated

data at the point Ipc = 0.
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(a) Free-running oscillation voltage (blue dashed curve), and the oscillation voltages
with Ipc = 5 mA (green curve) and Ipc = —5 mA (red curve).
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(b) Oscillation frequency fosc for =5 mA < Ipc < 5 mA.

Figure 4.9: Exploring the effect of injecting a DC current into one of the stages of
a 1 GHz 17-stage ring oscillator.
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4.6 Simulation Results

In this section, we will simulate the lock characteristics for a collection of canonical
ring and relaxation oscillators® injected with sinusoidal currents’ of various ampli-
tudes and compare them against the theoretical lock characteristics obtained from
the ISF. All the oscillators free-run at roughly fo = 1 GHz. Because the injection is
sinusoidal, only the fundamental component of the ISF, [}, is relevant. To decide
what range of injection amplitudes to use, we calculated the oscillation current I,
defined in Section 4.2 and chose values of I;,; that ranged from being much smaller
than I« to being comparable to Iax. This allows us to observe how the predictive
power of our model begins to falter as the assumption of linearity fails. Table 4.2
lists the magnitude of the ISF’s fundamental component |f1| and the oscillation

current I,,x for each oscillator.

Table 4.2: |f1| and Iy« of the Simulated Ring and Relaxation Oscillators

Oscillator |f1 | [ —
3-Stage Ring 7.84 x 10'? rad/C 0.54 mA
17-Stage Ring 2.24 x 10! rad/C 0.72 mA

6-Stage Differential Ring 6.51 x 10" rad/C 3.0 mA

Ideal Bose 5.05 x 10" rad/C 29 mA

Astable Multivibrator 2.02 x 1013 rad/C 1.2 mA

Because of the periodicity of the lock characteristic, there are at least two solutions
for the phase 6 at each injection frequency. However, as we will show in Section 7.2,
only the solution where the lock characteristic has a negative slope is stable. This
will be reflected in our figures by plotting the stable and unstable parts of the lock
characteristic using solid and dashed lines, respectively. Note that the simulated
lock characteristic was obtained through repeated transient simulations: the lock
range was determined by inspection (to a 1 MHz accuracy), and then the injection
frequency was swept over the lock range and 6§ was computed for each sweep point. It
should be apparent from the setup of our analysis (see Figure 1.3) that 8 is calculated
by comparing the phase of the fundamental component of the oscillation voltage to

the phase of the injection current; this will be explained in more detail in Section 6.8.

LC oscillators will be considered in much more detail in Chapter 5.
"Non-sinusoidal injection currents will be explored in Chapter 8.
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3-Stage Single-Ended Ring Oscillator

The schematic, free-running oscillation voltage, and ISF of this oscillator are shown

in Figure 4.10.

Voo

Vi %>ckvout = Vi Vout

linj —C —cC —cC

(a) Oscillator schematic. Note that each stage is loaded with an additional external
capacitance C.
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(b) Free-running oscillation voltage. (c) Impulse sensitivity function.

Figure 4.10: 3-stage single-ended inverter-chain ring oscillator.

The sinusoidal lock characteristics for several different injection strengths are shown
in Figure 4.11. Notice how the upper edge of the lock characteristic deviates from

the ISF prediction as the injection amplitude grows.
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Figure4.11: Lock characteristic of the 3-stage ring oscillator for sinusoidal injections
of varying amplitude fy;.
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17-Stage Single-Ended Ring Oscillator

The schematic, free-running oscillation voltage, and ISF of this oscillator are shown

in Figure 4.12.
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(b) Free-running oscillation voltage.
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(c) Impulse sensitivity function.

Figure 4.12: 17-stage single-ended inverter-chain ring oscillator.

The sinusoidal lock characteristics for several different injection strengths are shown
in Figure 4.13. Unlike the 3-stage ring oscillator, it is the lower edge of the
lock characteristic which deviates from theory as I, increases. Interestingly, the

assumption of linearity is still reasonable when I;y; > Iyax for this oscillator.
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Figure 4.13: Lock characteristic of the 17-stage ring oscillator for sinusoidal injec-
tions of varying amplitude /jy;.
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6-Stage Differential Ring Oscillator
The schematic, free-running oscillation voltage, and ISF of this oscillator are shown

in Figure 4.14.

o—1+
vin vout —
O] —
+ + + + + +

iinj @ Vosce ><

(a) Oscillator schematic. A single resistively biased current mirror was used to set
the same tail current I,; for all the stages.
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(b) Free-running oscillation voltage. (c) Impulse sensitivity function.

Figure 4.14: 6-stage differential ring oscillator.

The sinusoidal lock characteristics for several different injection strengths are shown

in Figure 4.15.
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Figure 4.15: Lock characteristic of the 6-stage ring oscillator for sinusoidal injections

of varying amplitude fy;.



Ideal, Symmetric Bose Relaxation Oscillator

This is the same oscillator which was analyzed in Section 4.4 and whose schematic,
free-running oscillation voltage, and ISF are shown in Figures 4.5, 4.7, and 4.8 re-

spectively. The sinusoidal lock characteristics for several different injection strengths

are shown in Figure 4.16.

Note that the only way the charge on the capacitor C can be considered to be in
“excess” of free-running is if vos has exceeded what is allowed by the supply rails
(Vbp/2 and —Vss/2), in which case the dissipation of this excess charge will not
be governed by the simplified analysis conducted in Section 4.2. In other words,

for this oscillator, the oscillation current Iy« carries less physical significance with

respect to the linearity of the current-to-phase relationship.
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Figure 4.16: Lock characteristic of the ideal Bose oscillator for sinusoidal injections
of varying amplitude /y;.
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NMOS Differential Astable Multivibrator
The schematic, free-running oscillation voltage, and ISF of this oscillator are shown

in Figure 4.17. Note that this oscillator is also a type of relaxation oscillator.
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(b) Free-running oscillation voltage. (c) Impulse sensitivity function.

Figure 4.17: NMOS differential astable multivibrator.

The sinusoidal lock characteristics for several different injection strengths are shown
in Figure 4.18. This oscillator is known to be particularly sensitive—small changes
in its component values or in the bias point of the transistor can drastically alter
the oscillation frequency or shape of the oscillation waveform. Consequently, the

threshold for linearity on I;y; is much lower than what is dictated by Ipax.
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4.7 Experimental Results

We conclude this chapter by presenting lock range measurements on integrated
versions of the oscillators considered in the previous section, fabricated in a 65-nm
bulk CMOS process. All but one of the oscillators were designed to oscillate at
around 1 GHz. The measurements are compared against the theoretical predictions
made by our model, where the ISFs were obtained through simulation of the post-

layout extracted oscillators.

For each oscillator, we measured the lock range at various sinusoidal injection

amplitudes. The predicted lock range is therefore given in Eq. (4.32) to be equal to
1

a)"L—L = iilinj |f1| .
To account for possible measurement error, each oscillator was measured three
separate times. Error bars depicting the entire range of measurements for each data
point are shown in black. (The error bars for most data points are not noticeable.)
Note that the injection amplitude j,j is shown both on an absolute scale (top axis)
and as an injection strength normalized to the oscillation current /.« (bottom axis).
Likewise, the lock range f7 is also shown both on an absolute scale (right axis) and
as a fractional lock range normalized to the free-running oscillation frequency fy

(left axis). The simulated ISF for each oscillator will also be shown for reference.

The measurement setup, including the implementation of the sinusoidal injection
current source, is detailed in Appendix A. Note that experimental results for LC
oscillators will be presented separately in Chapter 5. A die micrograph of the
fabricated chip is shown in Figure 4.19, where the locations of the oscillators

measured in this section are specified.

Ring Oscillators

The first set of experiments was performed on 3-stage and 17-stage inverter-chain
single-ended ring oscillators, as well as a 6-stage differential ring oscillator. In
order to tune the oscillation frequency to be around 1 GHz, identically sized MIM
capacitors were used to load each stage of the ring. Table 4.3 summarizes the
design parameters of the ring oscillators. All listed parameters were obtained
from extracted simulation or from the design kit directly, with the exception of the
oscillation frequency which was measured. The current consumption is the core

current drawn by the oscillator alone, neglecting bias circuitry.
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Figure 4.19: Die photo of the measured oscillators. Pads for the supply (‘VDD’) of
each oscillator, ground (‘GND’), and the injections (‘INJP’,‘'INJN”) are labeled.

Table 4.3: Characteristics of the Measured Ring Oscillators

6-Stage
Parameter 3-Stage 17-Stage Differential
Schematic Figure 4.10a Figure 4.12a Figure 4.14a
Load Capacitance C
(per stage) [£F] 135 111 350
Current Consumed [mA ] 1.1 4.6 25
Supply Vbp [V] 1 1 1
Peak-to-Peak Voltage
Swing Vi [V] 0.88 1.0 1.0
ISF Fundamental
Magnitude |f1| (rad/pC] 8.83 0.346 1.88
Measured Oscillation
Frequency fy [GHz] 1.085 1.092 1.316

Figures 4.20, 4.21, and 4.22 present the measurement results. Decent agreement is
observed between theory and experiment. The deviation between the measured and
predicted lock ranges at higher injection amplitudes is reminiscent of the nonlinear
behavior seen in the simulation results of Figures 4.11, 4.13, and 4.15. It is notewor-
thy that our theoretical predictions seem to fare well even when I;; is comparable
to or greater than /., although this may simply be indicative of the fact that I,

is not a terribly robust metric for determining when linearity fails.
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Measurement results for the 3-stage single-ended ring oscillator.
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Figure 4.21: Measurement results for the 17-stage single-ended ring oscillator.
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Relaxation Oscillators
The next two experiments were performed on a comparator-based Bose oscillator
and a differential NMOS astable multivibrator.

The Bose oscillator was designed to oscillate at around 10 MHz, as the bandwidth of
the comparator® used did not exceed 100 MHz. The negative rail of the comparator
was biased to ground. The resistive divider of the Bose oscillator (see Figure 4.5)
featured resistances of R; = 5 kQ and R, = 50 kQ to enhance the voltage swing
at the output. Because of the low operation frequency, a Rigol Function Genera-
tor (DG4202) and Rigol Digital Oscilloscope (DS4032) were used to provide the
injection signal and observe the oscillation voltage directly.

Table 4.4 summarizes the design parameters of the two relaxation oscillators. Again,
the only listed parameter which was measured is the oscillation frequency. Note
that using Eq. (4.43) to calculate |f1| for the Bose oscillator gives 8.56 rad/pC.

Table 4.4: Characteristics of the Measured Relaxation Oscillators

Astable
Parameter Bose Multivibrator
Schematic Figure 4.5 Figure 4.17a
Timing Capacitor C [{F] 820 597
Charging Resistor R [kQ] 25 1
Current Consumed [mA] 0.47 6.5
Supply Vpp [V] 1.2 2
Peak-to-Peak Voltage Swing Viyax [V] 0.653 2.17
ISF Fundamental Magnitude
~ 9.09 4.23
|F1| [rad/pC]
(Average) Measured
Oscillation Frequency fy [MHz] 11.85 873.8

Figures 4.23 and 4.24 present the measurement results. Reasonable agreement is
observed between theory and experiment. It is noteworthy that the astable multivi-
brator appeared to be extremely noisy—its free-running spectrum was usually very
visibly spread out over several megahertz. It also exhibited the most short-term drift,
often necessitating repeated monitoring of the free-running oscillation frequency in

between measurements of the lock range.

8The comparator was designed by Matan Gal-Katziri.
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Figure 4.23: Measurement results for the Bose oscillator.
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Figure 4.24: Measurement results for the differential astable multivibrator.
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4.8 The Sinusoidal Injection Compliance

Based on the preceding measurement results, it is apparent that having a uniform
metric which quantifies how “easy” it is to lock a particular oscillator would be
useful. To that end, we define a Sinusoidal Injection Compliance as the fractional,

two-sided, sinusoidal lock range normalized to the injection strength:®

_ 2wp/wo
Iinj/lmax.

(4.46)

In the linear regime, this quantity is independent of the size of the injection and can

be simplified to

1l = qmax,0 |f1|, (4.47)

where gmax 0 is the maximum (free-running) charge swing across the injection termi-

nals. (Recall that this quantity is defined as half of the peak-to-peak charge swing.)
Calculated from Eq. (4.47), Table 4.5 lists the compliances of all the schematic-level
oscillators simulated in Section 4.6 and the laid-out, extracted oscillators measured
in Section 4.7. Two things are worth noting: relaxation oscillators tend to boast a
much wider fractional lock range than ring oscillators for the same injection strength,

and the compliance of the ring oscillator decreases as the number of stages increases.

Table 4.5: Compliances of Various Ring and Relaxation Oscillators

Topolo Version Sinusoidal Injection
pology Compliance
Section 4.6 67.8%
3-Stage Ring -
Section 4.7 52.6%
Section 4.6 30.7%
6-Stage Ring -
Section 4.7 33.6%
Section 4.6 2.6%
17-Stage Ring -
Section 4.7 1.9%
Ideal Bose Oscillator Sections 4.4 and 4.6 226.9%
Bose Oscillator Section 4.7 243.3%
Section 4.6 396.9%
Astable Multivibrator
Section 4.7 79.2%

For LC oscillators, a slightly more general definition involving the quality factor will be
introduced in the next chapter.
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Chapter 5

LC OSCILLATORS: AMPLITUDE DEPENDENCE

5.1 Introduction

The primary limitation of the model developed in Chapter 4 is its inability to deal with
injections that are large enough to cause gualitative deviations from the oscillator’s
free-running behavior. This was due to our assumption that the injection-to-phase
relationship is a linear one. In this chapter, we overcome this shortcoming for the
specific—but widely utilized—case of the LC oscillator by making several crucial
observations about the dependence of the injection-to-phase relationship upon the
oscillation amplitude. Through this insight, we show that a simple modification
to the framework from Chapter 4 enables its usage for accurately modeling the

nonlinear behavior of the oscillator under large injection currents.

On a more fundamental level, this analysis owes its success to the fact that an
LC oscillator has only two states: the capacitor voltage and the inductor current.
Therefore, an equivalent two-state representation of the LC oscillator given by the
phase and the amplitude—which has a well-defined correspondence with the total
energy stored in the LC tank—also forms a mathematically complete description of

the state space.

5.2 Inverse Dependence on Amplitude

q(?)
A

Free-Running

@ max,0 /
qmax,l - A
0 > f
M/ Under
Injection

Figure 5.1: An example of how the injection could alter the oscillation amplitude.
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Other than influencing the phase, the external injection is also capable of changing
the size and shape of the oscillation waveform. These so-called orbital deviations
were encapsulated in the term &(7) from Eq. (1.1) and Figure 1.3. Due to the nar-
rowband nature of the LC tank, however, we will assume that the shape of the output
voltage remains fairly sinusoidal—only its size, or amplitude, can be modulated by

the injection on average. A hypothetical example is shown in Figure 5.1.

Next, recall from our calculations in Chapter 3 that the phase shift induced by
injecting a small, discrete amount of charge into an LC tank is inversely proportional
to the maximum charge swing gmax:

qinj

dmax

Ag o

(5.1)

for ginj < gmax. This is demonstrated in Figure 5.2, where the same amount of
charge gy is injected at the same time 7 into two identical LC tanks containing

different amounts of energy. Because gmax1 > gmax2, We see that Ag; < Ags.

We therefore conjecture that the ISF of an LC oscillator is inversely proportional to
the oscillation amplitude. We can prove this by returning to the orthogonal state-
space description of the ISF given by Eq. (4.6). Since the two state variables are the
capacitor voltage v(¢) and the inductor current i(¢), the ISF is given by

V'(e)

N = o s LR

(5.2)

Since both the capacitor voltage and the inductor current scale with the oscillation
amplitude!, increasing the amplitude by a factor of A > 0 decreases the ISF by a
factor of 1/A.

Consequently, we model the effective ISF of the LC oscillator with the following

inverse dependence on the amplitude:

s}

[t = (53)

1+&

where £ is equal to the fractional change in the oscillation amplitude. With this idea

in mind, our next step will be to relate £ to the injection current.

'In case this is not obvious, note that the oscillation amplitude is proportional to the square root
of the total amount of energy stored in the LC tank, which periodically alternates between being
stored entirely in the capacitor and entirely in the inductor. Therefore, E = C Vo2 /2= LIy? /2, where
Vo and I are the amplitudes of the capacitor voltage and the inductor current, respectively.
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gmi () 90T—C

(a) LC oscillator perturbed by an injection of charge.

q(?)
A

qmax,l T

A(PZ ocC l/qmax,2

(b) Note that the time of injection 7 is the same in both examples.

Figure 5.2: The phase shift A¢ induced by the injection of charge gi,j depends
inversely on the maximum charge swing gmax across the capacitor.

5.3 Modeling the Amplitude: The Amplitude Perturbation Function (APF)

To calculate the orbital deviation &(¢) in response to the injection current ij;(?),

we will once again appeal to a linear, periodically time-varying (LPTV) model.

However, unlike the permanent nature of phase perturbations, amplitude distur-
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bances must decay to O eventually in any stable oscillator. We therefore write the

time-varying impulse response for £(¢) as
he(t,7) = D(t — 7, winjT + 6) - u(t — 1), (5.4)

where D(At, ¢) is adecay function which physically represents the fractional change
in the oscillation amplitude due to a unit impulse applied at a phase ¢ after time
At has passed since the application of the impulse. For oscillators which possess a
stable limit cycle, D(At, ¢) — 0 as At — oo for all ¢.

qgt) — qo(D[1 + qinj D(t— 7, 0y7)]

qo(?)
(a) Decay of the excess amplitude of the charge waveform after an injection.
E(7)
4 2
——Eo@)[1+ginj D(t— 7, wo7)]
e 2
[4inj A(007)]*Eo(7)
N N /"\ //‘\ /"\ ’ ’ ”
A E(9)

(b) Decay of the excess energy stored in the oscillator after an injection.

Figure 5.3: The dynamic by which the oscillator dissipates excess energy is captured
by the decay function D(-, -).

How does one compute the orbital deviation £(¢) of an actual LC oscillator for
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the purposes of simulating the decay function? First and foremost, note that the
voltage (and current) waveforms of interest [e.g., the v(¢) and i(¢) referenced in
Eq. (5.2)] have a zero DC value; they only correspond to variations about the bias
voltage (or current).? This is because the peak values of the voltage and current
must correspond to the total amount of energy in the tank being exchanged back
and forth between the capacitor and the inductor. Therefore, comparing only the
voltage (or the current) waveform between the perturbed and free-running cases
is problematic, as one would run into the numerical issue of dealing with zero-
crossings. Instead, both the voltage and the current should be used to calculate the

instantaneous oscillation amplitude:

(14 £0)] - Voo =y 22 = \/v<r>2 + 07 (5.5)

Consequently, for LC oscillators, the orbital deviation & also represents the fractional
change in the square root of the energy E stored in the oscillator’s tank. If this tank

consists of a network containing multiple capacitors and inductors, then

E = % Z Covi + % Z Liir? + Z Myipig, (5.6)
k k p<q

where M),, represents the mutual inductance between inductors L, and L, (assuming
i, and i, both leave/enter the dotted terminal). It is worth noting, however, that at
RF and mm-wave frequencies, integrated inductors are typically modeled using
scattering parameters obtained from electromagnetic simulation, making the energy
stored in the tank considerably more cumbersome to calculate. Fortunately, lumped-
element models for on-chip inductors [97]-[99] usually provide sufficient accuracy

for our purposes.

Once the energy has been ascertained, we can calculate the orbital deviation by

E
£ = E_o -1, 5.7

where E is the amount of tank energy stored by the free-running oscillator in steady
state. The concept of the decay function is shown in Figure 5.3 from both the

perspective of the oscillation amplitude and the stored energy.

2This is obviously a moot point for the voltage in differential LC oscillators.
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Given the impulse response, we can use a superposition integral to calculate the

orbital deviation:
e = [ ino)- heteryar
= /t iinj(T)D(t — 7, WinjT + 0) dT (5.8)
= /000 iinj(t — T)D (7, winj(r — 7) + 0) dT.

The change of variables in the last step allows us to see that £(¢) is itself periodic
with frequency wiyj. Thus, we once again appeal to the theory of time-averaging

[96] and replace & with its time-average over an injection period:

1 )
— &= / / iinj(t = T)D (7, winj(t = 7) + 0) drdr
inj Tinj (59)
/ / lan(t - T)D(T wmj(t - T) + 9) drdr.
an Tinj

Due to the periodicity of the integrand with respect to ¢, the inner integral is
invariant to the specific period being integrated over, so long as it has a length of

Tiyj. Therefore, this integral is also independent of 7. Hence,

/ / lmj(l‘)D T, Winjt + 0) dtdr
an m]

= — zmj(t)/ (7, winjt + 0) drdt.
711n] Tinj

(5.10)

To conceptually decouple the instantaneous change in the amplitude induced by the

impulse from the subsequent decay dynamic, we decompose the decay function as

D(t,¢) = Alp) - d(1, ¢), (5.11)

where we normalize
d0,¢) =1 Y. (5.12)

Let us refer to d(t, ¢) as the oscillator’s characteristic decay function. Like the
decay function D(t, ¢), it also represents the fractional change in the oscillation
amplitude due to a unit impulse applied at a phase ¢ after time 7 has elapsed,
but normalized to the initial amplitude change immediately after application of the
impulse. It is then easy to see that A(yp) is the Amplitude ISF first introduced by
Hajimiri and Lee [88], [100] (up to a normalization factor of gp,x—i.e., A = qmax-f\).
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he(t,7)
0 p >t 0 T ~— > f

he(t,7)=D(t—7,007) u(t—7)

Figure 5.4: Relating the time-varying impulse response for orbital deviations to the
amplitude ISF and the APF.

We will now define the Amplitude Perturbation Function or APF A(y) by

Ap) = /0 D(1,¢)dt = A(p) - /0 d(t, ¢)dr. (5.13)

The Amplitude Perturbation Function A has units of [1/Ampere]; multiplying it
by a current yields a unit-less quantity. In practice, one need only integrate up to
some observation time Ty, beyond which the decay functions D or d are negligibly
small. Notice that the APF is equal to the area under the orbital deviation impulse

response hg(t, 7), as shown in Figure 5.4.

With this definition, the average orbital deviation becomes

1
f = —/ A(winjt + 9) iinj(l) dt. (5.14)
’I'inj Tinj
It should be apparent that the oscillation amplitude of an injection-locked LC oscil-

lator is therefore given by
Vose = (1 + f) VOSC,O’ (5.15)

where Vg0 is the free-running oscillation amplitude.

Note that the APF is a measure of both how much the oscillation amplitude changes
and how long it takes for the perturbation to decay. More importantly, its spectral
components give us a sense for how malleable the oscillator’s amplitude is to a
current injection at that harmonic. A block diagram summarizing the process by
which the APF filters the injection to create amplitude modulation is shown in

Figure 5.5.
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Ao/2
%} Amplitude Modulate
— o>
|Aq] cos(x +ZLAy) — (1+§)'v0(minjt+ 0) > vosc(?)
& 0
Einj,0(xX — O)— * [
|Aul .cos(nx +ZA,) r T
1+¢ eff
Scale ISF

Figure 5.5: The APF captures the perturbation in the oscillation amplitude caused
by the injection—for which the ISF of an LC oscillator has an inverse dependence.

5.4 A Modified Differential Equation for the Phase
We start with the original pulling equation for the phase 6(z), which was given in
Eq. (4.20) as

deo 1 ~ .
d_ = Wo — Wipj + _T / l"eff(a)injt + 9) linj(t) dt
! inj JTiy (5.16)
N 1 / f(winjt + 9) . (t) dt '
= Wy — Wipj + =— ————inj .
0 inj Tm] T 1+ f inj

Notice that we used the effective ISF for LC oscillators from Eq. (5.3). In light of

our expression for the average orbital deviation, Eq. (5.14), we can rewrite this as:

1 -
— I'(winit + ) iini () dt
40 Tinj T ( nj ) 1n]( )
E = W — Wipj + 1 (5.17)
1+ — A(a)injt + 9) iinj(t) dt
inj m]
We can also express the APF in terms of its Fourier series expansion:
Ax) = 7" Z |An| cos(nx + ZA,) (5.18)
where .
A, = — / A(x)e ™" dx. (5.19)
T Jon
This allows us to rewrite Eq. (5.17) as
do <F(x +6) lanO(x)>2
— = W) — Wipj t
dt P14 (A + ) dingo(x)),,
1 Im] OFO
3 Z | Linn | cOS(n6 + T = 26nia) | (5:20)
= Wy — Winj + : A
00
1+ 5 mj Z |IannA |cos no + LA, Imj,,,)]
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In essence, this model can be viewed as a “quasi-nonlinear” approach, as it models
the nonlinear behavior within the injection-to-phase relationship by decomposing it
into separate quantities, each of which is assumed to have a linear dependence on

the injection current input.

Since the ISF and APF of an LC oscillator are usually fairly sinusoidal, it is often the
case that only the fundamental component of the injection is relevant. Therefore,
we present the simplified case of a sinusoidal injection current here. Assuming that

iinj(t) = Iinj cos(win;t), the pulling equation becomes

1 - -
40 5 fing |T't| cos(6 + £T7)
E = Wy — Winj + 1 , (5.21)
1+ Elinj |A1|cos(8 + ZA1)

which also results in the following lock characteristic:

1 i
5 fn 1| cos (6 + £T7)

Q) = . (5.22)
1+ zlmj |A1|cos(6 + ZA1)
This lock characteristic can be optimized over 8 to obtain the lock range:
1 .
> 1in In1
w7 = , (5.23)

1 1 2
Elinj |A1| cosf3 + \/1 - (Elinj |A1| sinﬁ)

where 8 = /I'| - ZA. This lock range is generally asymmetric, meaning w] * —w;.
In particular, the lower lock range is wider when |3| < /2, whereas the upper lock
range is wider when 71/2 < |B| < &. If, however, 8 = +x/2, indicating that the ISF
and APF are in perfect quadrature with respect to one another, the upper and lower

lock ranges become symmetric:

1 -
Elinj |F1|
- . (5.24)

1 2
1= (3t ]

Another thing to observe is how the lock characteristic becomes unbounded when

~H

w

Linj |A1| > 2, resulting in an infinite lock range! Physically, this is because the

fractional amplitude change ¢ is able to dip below —1 for certain values of 6,
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corresponding to the nonphysical scenario of an oscillation amplitude which is zero
or negative. Consequently, it may be necessary in these situations to constrain the
range of phases 6 to be a subset of [—m, 7). Note that this downside of our model
only manifests for rather large injection strengths, and it is a property of other large-
injection models for LC oscillators as well.3 As we will see empirically from the
simulation results of the next section, restricting § € [-110°, 110°] for very large

injection amplitudes usually results in reliable estimates of the lock range.

5.5 Simulation Results

In this section, we present simulation results for two differential LC oscillators
and a bipolar Colpitts oscillator, all implemented in a bulk CMOS process. The
injection will be applied across the tank’s effective capacitance. For each oscillator,
we will show (1) the free-running oscillation voltage, inductor current, and tank
energy over a single period; (2) the ISF, Amplitude ISF, APF, and characteristic
decay function; and (3) the theoretical and simulated lock characteristic for several
different sinusoidal injection amplitudes. The theoretical lock characteristic which
does not incorporate the APF is also shown for comparison. To further demonstrate
the validity of our model, a plot of the oscillation amplitude as a function of
the injection frequency is also shown. The theoretical oscillation amplitude was
calculated using Eq. (5.15). For each injection frequency, there are two solutions for
the phase 6 and therefore also two possible oscillation amplitudes. As we will see,
the stable mode corresponds to the larger oscillation amplitude. Again, the unstable

portions of all theoretical curves are delineated with dashed lines.

CMOS Differential LC Oscillator

The schematic, free-running oscillation voltage, and free-running inductor current
of this oscillator are shown in Figure 5.6. The tank’s parameters are L = 6 nH and
C = 4.15 pF with a quality factor of Q = 15. The oscillation frequency is around
Jo = 1 GHz, and the oscillator is biased at Ii,;; = 1 mA.

3For example, both Mirzaei’s Generalized Adler’s equation [21] and the model in Chapter 10
predict an infinite lock range when Iinj > Iogc.
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(b) Free-running oscillation voltage. (c) Free-running inductor current.

Figure 5.6: Cross-coupled CMOS differential LC oscillator.

The free-running tank energy, sensitivity functions, and characteristic decay function
are shown in Figure 5.7. Note that the tank energy is not necessarily constant, as
the transistors do not merely present a negative linear resistance to the tank. The
characteristic decay function d(¢, ¢) quite closely follows the same exponential decay
over all phases ¢. The associated time constant is roughly 7 = 5ns, which is slightly
longer than that of a linear RLC tank with the same quality factor: 2Q/wy = 4.8 ns.
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Figure 5.7: Other properties of the cross-coupled CMOS differential LC oscillator.
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The lock characteristic and the oscillation amplitude as a function of the injection

frequency for an injection amplitude of /;;j = 0.5 mA are shown in Figure 5.8.
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(b) Oscillation amplitude vs. injection frequency under lock.

Figure 5.8: Predicted and simulated behavior of a sinusoidally injection-locked
CMOS differential LC oscillator with an injection amplitude of f;,; = 0.5 mA.

Figure 5.9 shows the same plots for [j; = 0.75 mA. Again, good agreement is
observed between simulation and theory. The error incurred from neglecting the

APF and using the ISF alone to predict the lock characteristic is much more evident

for this injection amplitude.
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(b) Oscillation amplitude vs. injection frequency under lock.

Figure 5.9: Predicted and simulated behavior of a sinusoidally injection-locked
CMOS differential LC oscillator with an injection amplitude of f;,; = 0.75 mA.

Figure 5.10 shows the same plots for /;;; = 1 mA. Notice that the simulated lock
range is narrower (on both ends) than its theoretical prediction. This is because
the edges of the lock range correspond to the smallest oscillation amplitudes, and
the oscillator fails to stably oscillate at such small amplitudes. Unfortunately, our

model fails to capture this dynamic, but this issue is discussed to some extent in
Chapter 10.
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