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ABSTRACT

Multi-Loop-Ring-Oscillator Design and Analysis

for Sub-Micron CMOS. (December 2011 )

Erik Pankratz, B.S., University of Texas at Austin

Chair of Advisory Committee: Dr. Edgar Sánchez-Sinencio

Ring oscillators provide a central role in timing circuits for today’s mobile devices and

desktop computers. Increased integration in these devices exacerbates switching noise on

the supply, necessitating improved supply resilience. Furthermore, reduced voltage head-

room in submicron technologies limits the number of stacked transistors available in a

delay cell. Hence, conventional single-loop oscillators offer relatively few design options

to achieve desired specifications, such as supply rejection. Existing state-of-the-art supply-

rejection-enhancement methods include actively regulating the supply with an LDO, em-

ploying a fully differential or current-starved delay cell, using a hi-Z voltage-to-current

converter, or compensating/calibrating the delay cell. Multiloop ring oscillators (MROs)

offer an additional solution because by employing a more complex ring-connection struc-

ture and associated delay cell, the designer obtains an additional degree of freedom to meet

the desired specifications.

Designing these more complex multiloop structures to start reliably and achieve the

desired performance requires a systematic analysis procedure, which we attack on two

fronts: (1) a generalized delay-cell viewpoint of the MRO structure to assist in both analy-

sis and circuit layout, and (2) a survey of phase-noise analysis to provide a bank of meth-

ods to analyze MRO phase noise. We distill the salient phase-noise-analysis concepts/key

equations previously developed to facilitate MRO and other non-conventional oscillator

analysis. Furthermore, our proposed analysis framework demonstrates that all these meth-
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ods boil down to obtaining three things: (1) noise modulation function (NMF), (2) noise

transfer function (NTF), and (3) current-controlled-oscillator gain (KICO).

As a case study, we detail the design, analysis, and measurement of a proposed mul-

tiloop ring oscillator structure that provides improved power-supply isolation (more than

20dB increase in supply rejection over a conventional-oscillator control case fabricated

on the same test chip). Applying our general multi-loop-oscillator framework to this pro-

posed MRO circuit leads both to design-oriented expressions for the oscillation frequency

and supply rejection as well as to an efficient layout technique facilitating cross-coupling

for improved quadrature accuracy and systematic, substantially simplified layout effort.
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1. INTRODUCTION

1.1 Motivation

Ring oscillators act as voltage-controlled oscillators (VCOs) for numerous micropro-

cessor applications. Their small size and compatibility with digital processes makes them

ideally suited to provide clocks for microprocessors, and they can provide multi-phase

outputs for applications such as clock/data-recovery (CDR) circuits [1,2] and fractional-N

frequency synthesizers [3–5]. Multi-loop ring oscillators (MROs) in particular can pro-

vide precise phase relationships [4–10] and can offer increased oscillation frequency over

single-loop equivalents [3, 11–19]. However, ring oscillators’ lack of a resonant LC cir-

cuit means that their frequency depends primarily on semiconductor parameters and bi-

asing. In this fashion, internal device noise on supply-voltage and bias lines corrupts the

frequency of oscillation, leading to phase noise. Phase noise and jitter describe an os-

cillator’s spectral purity and timing accuracy. These qualities determine local-oscillator

leakage in transceivers, determine the signal-to-noise ratio (SNR) of angle-modulation

systems, and limit the synchronization of clocked devices. The strongly nonlinear action

of oscillator circuits and large-signal-amplitude swing cause noise behavior to deviate sig-

nificantly from conventional small-signal analysis about an assumed constant operating

point. Moreover, noise on the supply line such as that from high-speed logic switching

often dominates ring oscillators’ internal device noise, especially in digitally intensive

systems [20–23], thus requiring improved oscillator supply rejection.

The most prevalent class of ring oscillator is a single loop of inverting delay stages,

each of which can be either a single-ended CMOS inverter (possibly current starved) or

a fully differential source-coupled pair. Older technologies’ plentiful voltage headroom

(sometimes in excess of 5V) allowed the designer sufficient degrees of freedom to meet

target specifications such as static supply sensitivity and frequency tuning range. Single-

This dissertation follows the style of IEEE Journal Solid-State Circuits.
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loop ring oscillators’ (SROs’) simple structures mean that once the SRO delay cell and

number of stages is chosen, the overall oscillator performance is essentially fixed. On

the other hand, this topological simplicity greatly facilitates determining the oscillation

frequency fosc and in many cases, the phase noise [24]. To prevent oxide breakdown

of nanometer-scale devices, newer technologies restrict the amount of available voltage

headroom. This headroom reduction limits the number of vertically stacked devices that

can be biased in a useful region of operation, thus restricting designers’ SRO delay-cell

choices essentially to simple CMOS inverters.

We can regain the design degrees of freedom by employing MROs, which can im-

prove the speed of oscillation by connecting ordinary SRO delay cells in more elaborate

configurations [11], or as we shall see in this investigation, can allow for new delay cells

to oscillate that would not otherwise do in a simple single-loop structure. Enabling these

wider ranges of available unit delay cells can provide performance benefits, such as in-

creased supply rejection by allowing a ring of source-follower cells to oscillate.

However, with the benefits of these multiloop structures come the added challenges of

increased analysis and, ostensibly, physical circuit layout complexity, which complicate

the task of making reliable, manufacturable designs. While the analyses of SROs [24] and

certain classes of MROs [25] with basic CMOS delay cells have been presented, it hereto-

fore remains an open problem to have a systematic design/analysis procedure to determine

fosc and phase noise of more advanced MROs. The phase noise in particular can be dif-

ficult to anlayze for ring/relaxation oscillators because the large-signal, hard-switching

behavior creates noise-modulation (etc.) effects not at all modeled by conventional small-

signal (“AC”) noise analysis. While straightforward cookbook formulas/design procedures

exist for SRO phase-noise analysis [24], much of the phase-noise theory applicable to os-

cillators with more complex structures is geared toward CAD and numerical simulation

[26], yielding few design formulas. Thus, MROs do not fit into these typical formulas, and

moreover, MROs employing atypical delay cells are not at all addressed by the present ana-
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lytical theory. We therefore additionally propose to organize previous phase-noise analysis

techniques to provide a unified approach rooted in first principles that will allow both in-

tuitive and hand-calculation of phase noise of MRO structures that do not lend themselves

to typical formulas.

This dissertation hence contributes two key items:

1. Design and systematic analysis of multi-loop CMOS ring oscillators, and develop-

ment of a method for improved supply rejection.

2. Catalogue of extant phase-noise-analysis theories and a proposed, unified, first-

principles analysis approach applicable to oscillators in general and in particular

to MROs, which do not fit the mold of most cookie-cutter analytic phase-noise for-

mulas.

The proposed low-voltage-delay-cell MRO intrinsically rejects the supply even without

calibration or additional voltage regulation. To mitigate supply dependence, we employ a

source-follower structure, which isolates the supply with its saturation output resistance.

The source follower is naturally insensitive to voltage fluctuations at its drain. This intrin-

sic resilience to supply voltage gives designers the flexibility either to use the oscillator by

itself without regulation or calibration, or, in applications where extremely low sensitivity

is required, designers could combine the proposed oscillator with calibration and regula-

tion for even greater supply rejection. However, source followers conventionally are not

gain stages, so when connected in a ring, they will not provide enough gain for reliable

oscillation. Therefore, we employ a multi-loop structure to provide an additional gain

path and permit oscillation. We show that by exploiting these properties of multi-loop

structures, we can create a quadrature oscillator from a source-follower stage, allowing

superior supply-noise rejection; supply sensitivity is more than 20 dB lower than that of

conventional CMOS-inverter-based delay cells. Moreover, by viewing the multi-loop os-

cillator as an architecture ofNstage generalized “delay cells,” each of which has M>2 ports,
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we obtain both a systematic analysis framework as well as an efficient, straightforward

scheme to lay out multiloop interconnection of ostensibly complicated interstage loops. In

addition to minimizing layout complexity, this proposed layout technique also facilitates

common-centroid cross-coupled layout, which improves matching among the differential

I/Q paths.

In addition, with the results of the unified phase-noise analysis approach and com-

pilation of techniques, the designer can learn what error is incurred by common phase-

noise-analysis assumptions and what behavior each successively complex analysis method

reveals. Knowing both simpler, hand-calculation-oriented techniques as well as the calcu-

lation procedure for more accurate CAD-oriented techniques (i) gives the designer intu-

ition into how large-signal operation modulates device noise into phase noise, (ii) provides

knowledge of simulator operation, enabling more effective use of the tool, and (iii) allows

sound simplification of the circuit to include the exact noise-contribution effect desired to

facilitate simple design-oriented analysis.

1.2 Organization

This dissertation is organized in the following manner. We begin in Section 2 with a

discussion of oscillator fundamentals including steady-state, startup, and oscillator spec-

tral purity/phase noise. Section 3 then goes on to present a classification of oscillators into

resonant, ring, and relaxation oscillators along with a survey of the extant oscillator ring

topologies to illustrate their common patterns. The section also includes design tradeoffs

and common oscillator specifications. We furthermore examine the critical special case of

supply-noise-induced jitter/phase noise as well as common techniques used in the past to

avoid it or mitigate its effects. As discussed previously, supply noise plays a crucial role in

state-of-the-art integrated systems because the large amount of digital circuitry integrated

along with the clock-generation circuitry generates switching noise that can easily corrupt
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the system clock if not properly designed. Moreover, resonant supply noise can also prove

to be an issue.

Based on the previous discussion and survey of MRO and supply-rejection techniques,

Section 4 proposes an MRO architecture that achieves improved supply rejection by cre-

ating an unconventional source-follower delay cell. Embedding this delay cell in a multi-

loop structure enables oscillation and quadrature generation. We next present frameworks

to facilitate design and analysis of this nonconventional delay cell in Section 5. Both a

conceptual symmetry-based generalized delay-cell viewpoint as well as a unified phase-

noise-analysis flow are presented to facilitate design and analysis of the proposed oscilla-

tor.

To elaborate on the unified phase-noise flow, Section 6 includes synopses of six cate-

gories of phase-noise analysis techniques and explains when each is applicable/most suit-

able to certain classes of oscillators. The techniques are discussed in terms of our proposed

general framework and illustrated with an LC differential cross-coupled oscillator as well

as a single-loop ring oscillator in order to demonstrate the salient points of each method

with simple numerical/algebraic examples.

Section 7 then applies the theory developed over the previous sections to our pro-

posed source-follower-delay-cell-based quadrature MRO. We employ both the generalized

delay-cell and phase-noise analysis approaches discussed previously to demonstrate how

the proposed oscillator achieves improved supply rejection as well as to obtain oscilla-

tion frequency and startup design-oriented equations. We also present the transistor-level

design/layout of the proposed oscillator as well as its experimental results.

Finally, Section 8 summarizes and concludes the thesis.
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2. OSCILLATOR FUNDAMENTALS

An oscillator ideally provides a periodic output with well-defined amplitude and fre-

quency of oscillation without any input signal present:

Videal(t) = Vosc cos(2πfosct+ φ0) (2.1)

where Vosc denotes the peak fundamental amplitude, fosc denotes the [fundamental] fre-

quency of oscillation, and the steady-state (constant) phase φ0 is determined by the oscil-

lator startup conditions. In many respects, the frequency and amplitude are the two most

important aspects of an electronic oscillator.

2.1 Linear or Nonlinear?

Linear circuits obey the superposition principle, so without any input, a linear circuit

must have zero output. Even allowing initial conditions, the “linear LC oscillator” (e.g.

in Fig. 2.1, C d2vC
dt2

+ vC
L

= 0) can oscillate at different amplitudes, but in practice, os-

cillators have just one amplitude. Oscillations typically start as exponentially growing

+
vC
-

C L

Figure 2.1.: “Linear” Oscillator: Initial Conditions Determine Amplitude of Oscillation
(Not Physically Realistic)

sinusoids, but device nonlinearity (e.g. FET leaving saturation) eventually limits the expo-

nential growth (see below for mathematical treatment). Nonlinearity allows for a unique

oscillation amplitude. By nonlinear we mean that the voltages, currents, and charges are
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nonlinearly related, e.g. as a reverse-biased silicon diode has Idio(V ) = IS(eV/φt − 1)

and Q(V ) = Q0

√
1− V

V0
[27]. The ability of a nonlinear circuit to discriminate between

different-amplitude signals allows it to correct amplitude error in the steady-state oscilla-

tion waveform.

The simplest electrical-oscillator model properly capturing physical startup and steady-

state behavior is an LC oscillator with cubic nonlinearity (“van der Pol’s oscillator” [28])

such as that shown in Fig. 2.2. The (nonlinear) differential equation describing the oscil-

+
vC
-

iL

idio=fnln(vC)

VBin

(a)

idio=fnln(vdio)

vdio
V0

I0
+
vdio
-

idio

(b)

Figure 2.2.: Van der Pol Nonlinear Oscillator Model: (a) Schematic, (b) Negative Nonlin-
ear Resistor I-V Characteristic

lator is

C
d

dt
vC +

1

L

ˆ
vCdt+ fnln (vC) = in(t) = q0δ(t) (2.2)

where fnln(vC) ≡ I0−g1(vC−V0)+g3(vC−V0)3 as illustrated in Fig. 2.2(b). We assume

VB = V0 for simplicity, and the “noise” current q0δ(t) represents an impulse excitation to

initiate oscillation1. This nonlinear I-V characteristic is similar to that displayed in a Gunn

diode and is thus a reason for their use in microwave oscillators. For small deviations of

vC from V0, the system behaves in an approximately linear fashion:

sCṽC(s) +
1

sL
ṽC(s)− g1ṽC(s) = q0 (2.3)

1In a practical oscillator, thermal noise often provides this stimulus.
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Hence, the “small-signal” linear system displays an exponentially growing sinusoidal volt-

age across the capacitor:

vC(t) = VB +
q0

C
e+ t

τ cos

(
ωltit− atan

(
1

ωltiτ

))
(2.4)

where τ ≡ 2C
g1

and ωlti ≡
√

1
LC
−
(
g1
2C

)2.

For a “high-Q” tank such that Q ≡ (g1R0)−1 � 1 and R0 ≡
√

L
C

, we have 1
τ
�

1√
LC
≈ ωlti, and the amplitude exponential envelope is said to be “slowly varying.”2 This

situation allows us to substitute vC = VB + Vosca(t) cos (2πfosct) where the normalized

amplitude function a(t) is roughly constant during a single oscillation cycle, 2πfosc ≈
1√
LC

, and the quantity Vosc is defined as follows3

V 2
osc ≡

4

3

g1

g3

(2.5)

We then multiply by cos (2πfosct) and average the nonlinear differential equation in (2.2)

over one oscillation period to obtain the somewhat simpler (but still nonlinear) equation

for the envelope,

τ
d

dt
a− a(1− a2) = 0; a(t = 0) = a0 ≡

q0

CVosc
(2.6)

where the effect of the impulse current is shown as the initial conditions on the amplitude.

Solving, we obtain

a2(t) =
(

1 +
[
a−2

0 − 1
]
e
−2t
τ

)−1

(2.7)

The solution to this equation is plotted on Fig. 2.3 (“avg’d envelope”) along with the

linearized system’s exponential envelope and the instantaneous oscillation waveform.

2We shall revisit this slowly varying assumption in the context of modulation-method phase-noise anlaysis
in Section 6.1.2.
3It is shown in the subsequent discussion that this quantity is the steady-state amplitude of oscillation.
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Figure 2.3.: Van der Pol Oscillator Phase Portrait, Startup Waveforms, and Envelope

Examining the averaged equation (2.6), we note that for small amplitude a � 1, the

amplitude system has a single right-half-plane (RHP) pole (s0 = +1
τ

), corresponding to the

initial exponentially growing amplitude; however, as the amplitude approaches the steady-

state value (a→ 1), the pole moves to the origin (s1 = 0), as shown in Fig. 2.4, indicating

a constant steady-state amplitude. Furthermore, if the amplitude is perturbed to be larger

Re(s)

Im(s)

+1/τ

α∼0α∼1α>1

Figure 2.4.: Root Locus for Averaged Amplitude (Envelope) System of Van der Pol Os-
cillator

than the steady-state value Vosc, then the pole moves into the left-half plane (LHP), and the
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amplitude decays until it again reaches the steady-state value Vosc. This behavior indicates

an “orbitally stable” oscillator. Graphically, we can visualize orbital stability on a phase

portrait, which plots one oscillator “state variable” versus the other. For example, the

oscillator of Fig. 2.2(a) has two state variables, viz. the capacitor voltage and the inductor

current, which correspond to the y- and scaled x-axes, respectively, shown on the oscillator

phase portrait in Fig. 2.3. The plotted trajectory illustrates the oscillator startup plot for

an initial capacitor voltage of 5V and initial inductor current of -76.51 mA (corresponding

to q0 = 1.074 pC and a0 = 0.04409). For reference, the corresponding time-domain

waveform of the capacitor voltage is horizontally aligned with the phase portrait in Fig.

2.3 to show the relationship with each other. We scale the inductor current by the resonator

characteristic resistance R0 ≡
√

L
C

so that all plotted values are voltages and so that the

steady-state trajectory (called a limit cycle [29]) is roughly circular. Note that the “radius”

of that circle is the oscillation amplitude Vosc. An orbitally stable oscillator always returns

to this limit cycle if perturbed off of it. We will return to the concept of a limit cycle when

discussing phase noise and spectral purity later in this section.

While the voltages, currents, and charges must be nonlinearly related, lest the oscilla-

tion amplitude be undetermined, the question remains whether the device-noise-to-phase

relationships are at least approximately linear. The question of voltage/current to phase

transfer relationship is critically important to phase-noise analysis, as we shall see in Sec-

tion 2.5. The concept is also important in angle-modulation systems and in phase-locked-

loop (PLL) analysis . Furthermore, it has been shown [30–32] that to properly describe

injection locking ("entrainment")4 behavior, a nonlinear voltage/current-to-phase relation-

ship is required. We shall see a method of phase-noise analysis that is closely related to

the methods employed in injection-locking analysis [31,32], and is often termed the "mod-

ulation method" (cf. Section 6.1.2). Nonetheless, many phase-noise analysis techniques

4Injection locking is the synchronization of two oscillators by injecting a “master” oscillator’s waveform as
an input into a “slave” oscillator circuit so that the slave a a result runs at the same frequency as the master
[32].
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treat the transfer characteristic from device noise to phase as linear but time varying, and

this approximation yields reasonable results in many cases of interest, as we shall see in

Section 6.1.

Oscillator design consists of selecting a circuit topology and appropriate component

values to adjust the aforementioned oscillator attributes–oscillation frequency, oscillation

amplitude, and phase noise–to the desired/specified values. (See Section 3 for a de-

tailed discussion of oscillator design tradeoffs and performance metrics.) We continue

our present discussion with the two main classes of oscillator topologies from which to

begin the design procedure: resonant and relaxation oscillators.

2.2 Types of Oscillators: Resonant v. Relaxation

In his 1934 compendium of nonlinear oscillator theory, Balthazar van der Pol classified

oscillators as either "resonant" or "relaxation" depending on the resonator quality factor

[28], or alternatively how quickly the oscillation amplitude grew relative to the oscillation

frequency itself. At that time most oscillators comprised LC tanks and vacuum tubes, and

given the availability of relatively low-loss discrete passives, a relatively high Q could

be achieved, implying the oscillation amplitude grew slowly compared to the frequency

of oscillation5. Indeed van der Pol often employed the "slowly varying phase/amplitude

assumption" [28,33], akin to the envelope analysis (cf. previous section) in which only the

slow-varying components of the system response are examined.

Resonant oscillators typically have a nearly sinusoidal output waveform with relatively

few harmonics6, while relaxation oscillators’ output often resembles either a square wave

5This slow amplitude time constant compared to a relatively high oscillation frequency is related to the
quality factor through the intuitive pseudo-Q definition "full-width/half-max": Q ≡ ∆f

f0
, where ∆f denotes

the half-power bandwidth of the resonator, and f0 denotes the resonator center frequency
6The nearly sinusoidal approximation most closely parallels van der Pol’s cubic nonlinear analysis for
the oscillation amplitude and frequency [28], while a hard-switching approximation is quite useful for
ring/relaxation oscillators.
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(for ring oscillators), or a triangle wave (often seen across the timing capacitor of so-called

“multivibrators” – see Section 3 for examples).

As previously mentioned, the oscillator frequency and amplitude are an oscillator’s two

most common attributes of interst. Perhaps equally important is the question of whether

the oscillator will start running (“startup”), and finally, the question of “how accurately”

the oscillator runs (the issue of phase noise/jitter) also proves critical in many applications.

The following sections will demonstrate how to ascertain these oscillator characteristics

for both resonant and relaxation/ring oscillators by means of simple examples.

2.3 Steady-State Frequency and Amplitude (“Large Signal”)

Table 2.1: Component values: (a) LC NMOS Oscillator, (b) Ring Oscillator
(a)

L C Rp µn Cox W/L Vtn Itail γ

[nH] [pF] [Ω] [ cm2

Vs ] [ fF
µm2 ] [µm

µm ] [V] [mA] [-]

1.3 4.87 326 481.5 4.209 32× (1.05/0.35) 0.5 2.2 2/3

(b)

µn = µp Cox Vtn = Vtp
(
W
L

)
n

=
(
W
L

)
p

VDD Nstage γ Kf

[ cm2

Vs ] [ fF
µm2 ] [V] [µm

µm ] [V] [-] [-] [(µV)2pF]

200 3 0.5 10× (10/0.1) 1 7 2/3 3

The following sections demonstrate how to solve for the oscillator periodic steady state

for two simple “extreme” cases: (1) an LC resonant oscillator which is nearly sinusoidal

(shown in Fig. 2.5(a)), and (2) a single-loop ring oscillator that exhibits nearly ideal hard

switching (illustrated in Fig. 2.6(a)). Table 2.1 lists representative numerical component

values of the two oscillators for sample calculations as we proceed.
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Figure 2.5.: Cross-Coupled LC oscillator (a) Schematic, (b) Peak Amplitude v. Itail, and
(c) Simplified Half Circuit

2.3.1 LC-Oscillator

The following equations describe the oscillator circuit shown in Fig. 2.5(a):

[
2

Rp

+ 2C
d

dt
+

2

L

ˆ
dt

]
VC1,2 = I1,2 + inr1,2 + in1,2 (2.8)
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tr/f[1] tr/f[Nstage]

Nstage1

v1(t) vNstage
(t)

...

Vdd
(W/L)p

(W/L)n

(a)
off sat. triode

Vd=Vk+1 Vg=Vk

t

t

V(t)

In(t)

Vdd

Vdd/2

Ipeak

Iav

td

(b)

Figure 2.6.: Ring Oscillator: (a) Schematic, (b) Voltage/Current Waveforms for Single
Stage

I1,2 =
K

2
(0− VC2,1 − VS − Vtn)2; I1 + I2 = Itail − (intail + in1 + in2︸ ︷︷ ︸

in

) (2.9)

where K = µnCox
W
L

, I1,2 are the drain currents of M1,2, and inr1,2/in1,2 are the noise

currents from the resistors/transistors, respectively, as indicated in Fig. 2.5(a). Eliminating

VS , we obtain

I1,2 = f(VC1,2 − VC2,1, in)

f(Vdm, in) ≡ Itail−in
2

(
1 + 2x

√
1− x2

)
x ≡ Vdm

2
√

(Itail−in)/K

(2.10)

⇒ gm1,2 ≡
∂I1,2

∂Vgs1,2
=
√
K(Itail − in)

(
±x+

√
1− x2

)
(2.11)
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Assuming vC1 ≈ −vC2 yields a single-terminal nonlinear resistor on each side of the

oscillator, so we can decouple the problem into half circuits as shown in Fig. 2.5(c).

Evaluating a Taylor series of (2.10),

I1(vC1) ≈ Itail
2︸︷︷︸
g0

+
√
KItail︸ ︷︷ ︸
g1

VC1 + 0︸︷︷︸
g2

V 2
C1 −

K

2

√
K

Itail︸ ︷︷ ︸
g3

V 3
C1 (2.12)

For systematic harmonic-balance analysis, turn off the noise sources, and assume a

“harmonic” solution vC1,2(t) = ±Vosc cos (2πfosct). Next, substitute into (2.8), and solve

for Vosc and fosc by neglecting higher-order harmonics and setting each harmonic coef-

ficient on the LHS to zero (“balancing” with the RHS). This single-harmonic method is

sometimes called a “describing-function” method [34]; in this case, the describing func-

tion is an equivalent admittance at the vC1 node:

Ydescribe(Vosc, 2πjfosc) ≡ 1
Vosc

´
2π

dθ
2π
e−jθ {

−[2πfosc]2CVosc sin (θ) + Vosc sin(θ)
[2πfosc]L/2

− I1 (Vosc cos (θ) )

+ 2
Rp
Vosc cos (θ)

}
(2.13)

Setting the describing function equal to 0 + j0 yields the following two oscillation condi-

tions [35], sometimes termed the “Barkhausen self-excitation condition:”

Re {Ydescribe(Vosc, 2πjfosc)} = 0 “Energy-Balance”

Im {Ydescribe(Vosc, 2πjfosc)} = 0 “Resonance”
(2.14)

Substituting into the describing function (2.13) yields Vosc ≈
√

4
3

g1−2/Rp
g3

= 137 mVpeak

and fosc ≈ 1/(2π
√
LC)=2.00 GHz for the values in Table 2.1–within about 5% of the sim-

ulated values. For reference, Fig. 2.5(b) plots the simulated and calculated peak amplitude

as a function of Itail with other components fixed at the values in Table 2.1. Note that
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because the peak amplitude Vosc < Vtn/2 for the chosen values, our implicit assumption

that the switch transistors M1,2 remain in saturation is valid.

2.3.2 Ring Oscillator

For the ring oscillator in Fig. 2.6(a), we use hard-switching analysis to find the

oscillation frequency and amplitude. For simplicity, we assume that µn = µp = µ,

Vtp = Vtn = Vt, and VDD/Vt = 2. Hence, we have a delay-cell trip point of Vtrip = VDD/2

as shown in the waveforms of Fig. 2.6(b). Approximating the current as a triangle wave

as sketched in the figure,

td =
CVtrip
Iav

= (2CoxWL)(VDD/2)
1
4
µCox(VDD−Vt)2

⇒ fosc = 1
2Nstagetd

= 1
8Nstage

µ
L2VDD

(
1− Vt

VDD

)2

= 89.3 MHz
(2.15)

for the component values in Table 2.1, and we have defined

C ≡ 2CoxWL; Ipeak ≡
µCox

2
(VDD − Vt)2; Iav ≈

1

2
Ipeak (2.16)

Note that assuming VDD/Vt = 2 ensures the transistor remains in saturation until the

waveform reaches the trip point as labeled on Fig. 2.6(b). The simulated value is 90.0 MHz

(< 1% error). Similarly,

P ≈ IavVDD ≈ 37.5 µW (2.17)

within 1% of the simulated value of 37.83 µW. This power expression reflects the fact

that only a single inverter is active at a time (“class B operation” [36]). Finally, the peak

fundamental amplitude is, assuming a square-wave from 0 to VDD,

Vosc =
4

π

VDD
2
≈ 637 mVpeak (2.18)

within 7.5% of the simulated value (600 mVpeak).
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2.4 Startup Analysis

Having an unstable linearized DC operating point (i.e. characteristic roots in the RHP)

allows an oscillator to start. For example, linearizing the ring-oscillator circuit in Fig.

2.6(a) assuming that all oscillation nodes are at VDD/2, we obtain the characteristic equa-

tion:

1−

(
−A0

1 + A0s
GBW

)Nstage

︸ ︷︷ ︸
=T (s)=loop gain

= 0 (2.19)

whereA0 ≡ (gmp+gmn)(rop||ron) andGBW ≡ gmp+gmn
Cgp+Cgn

. Solving yields the characteristic

roots, written algebraically in (2.20) and illustrated graphically for Nstage = 7 in Fig. 2.7:

s

GBW
= −

(
11/Nstage +

1

A0

)
(2.20)

where 11/Nstage denotes one of the Nstage complex Nstage-th roots of unity. As illustrated

s/GBWA0

(unit circle)

360o/(2*7)

1

Re

Im

Figure 2.7.: Single-Loop Ring Oscillator Startup: Characteristic Roots

in the figure, the poles shift towards the LHP by 1/A0, so the gain must be sufficiently

large, i.e. A0 > sec
(

360◦

2Nstage

)
, for the oscillator to start. Note that as Nstage increases,

sec
(

360◦

2Nstage

)
→ 1, and the gain requirement relaxes.

Likewise for the LC oscillator of Fig. 2.5(a), linearizing about the balanced DC oper-

ating point, we obtain the half circuit in Fig. 2.8, where g1 is given by (2.12). Hence, the

LC circuit starts for g1 >
2
Rp

.
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L/2 2C

+
vC1
-

(Rp/2)||(-g1)

Figure 2.8.: LC-Oscillator Startup: Linearized Half Circuit

2.5 Spectral Purity

The frequency of oscillation and its accuracy and consistency are among the most im-

portant attributes of oscillators. The frequency can be measured in the "time domain"

by counting the number of cycles in a given precisely-determined reference interval (or

conversely by measuring the time taken to reach a certain number of cycles) [24, 37, 38].

Ideally, the number of counts increases linearly with the reference time interval; however,

the presence of device and supply noise corrupts the zero-crossing instants of the oscillator

output waveform, changing the times at which the oscillation cycles are completed. Re-

lating one oscillator cycle to a single rotation of a mechanical wheel, we intuitively term

the phase as our position on the wheel relative to the angle where we started, taking into

account how many revolutions (cycles) we have completed. This viewpoint coincides with

the common oscillator theoretical construct of a limit cycle, which plots a closed contour

in the oscillator state space.

Alternatively, one can measure the power spectrum in the "frequency domain" with a

swept-frequency heterodyne analyzer and infer the frequency from the fundamental spec-

tral peak. An ideal oscillator without noise, disturbances, or component aging would have

a single infinitessimally narrow peak (for an ideal spectrum analyzer with zero resolution

bandwidth). Thus, measuring frequency accuracy involves determination of threshold-

crossing instants of the oscillator’s output voltage in the time domain, or requires deter-
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mining the spectrum of the oscillator in the frequency domain. Fig. 2.9 illustrates the ideal

and noisy oscillator waveforms in both the time and frequency domain. See Section 2.5.2

for further derivation and discussion of the oscillator output-voltage spectrum Svv(f).

T0 T0

TIE[1] TIE[2]

t

t

Videal(t)

Vnoisy(t)

TIE[0]=0
(aligned @t=0 by definition)

fosc fosc- f

fosc fosc- f

Sideal(f)

vvSnoisy(f)

vv

Vosc
2 δ(f-fosc)

1
2

Vosc

2πfoscκ

2
f-fosc

πfoscκ
22

2

+1

-1

where E[ TIE2[n] ] = κ2(nTosc)

TIME DOMAIN FREQUENCY DOMAIN

Figure 2.9.: Oscillator Frequency Error Measurement in Time and Frequency Domain

While radio-frequency (RF) applications typically describe this quality of the oscilla-

tion frequency as spectral purity in the frequency domain (typically called phase noise),

microprocessor applications look at the performance in the time domain (typically called

jitter). Phase noise and jitter both describe the underlying phenomenon of spectral pu-

rity/timing accuracy. Before delving further into metrics of spectral purity, the following

section elaborates on the concept of phase, as different works in the literature often make

varying assumptions/definitions as to what it means.

2.5.1 What “Phase” Means

Free-running oscillators, i.e. those not in a phase-locked loop (PLL), have no syn-

chronization input (e.g. the PLL’s reference clock), so the φ0 in (2.1) depends on startup

conditions. Thus, free-running oscillators cannot correct phase error. Any phase error in-

troduced by noise remains indefinitely, and the effects of phase perturbation accumulate

over time, becoming arbitrarily large. For instance, consider the oscillator in Fig. 2.2(a),

with state voltages ~v ≡ [vC , vLe]
T , where we define vLe ≡ iL

√
L
C

so that all state variables
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are voltages. As mentioned in Section 2.1, if we plot of the oscillation waveform on axes

vC vs. vLe, we obtain a phase portrait as shown in Fig. 2.10, and the steady-state wave-

forms ~vss (t) correspond to the roughly circular trajectory in the figure called a limit cycle

[29].

vss(t)

vC

v(t)

vLe

≈φ1

vss(t+φ1/2πfosc)
∆v

1
(t+φ1/2πfosc)

vss(t)

vC

v(t)

vLe

≈φ2

vss(t+φ2/2πfosc)
∆v

2
(t+φ2/2πfosc)

Phase/Amplitude-Error Decomposition #1 Phase/Amplitude-Error Decomposition #2

Figure 2.10.: Gunn-Diode-Oscillator Phase Portrait, Limit Cycle, and Illustration of
Phase-Definition Ambiguity: Two “Arbitrary” Decompositions into Amplitude (∆~v) and
Phase (φ) Error

With noise, the oscillation waveforms deviate from ~vss (t), becoming

~v(t) ≡

 vC(t)

vLe(t)

 = ~vss

(
t+

φ(t)

2πfosc

)
+ ∆~v

(
t+

φ(t)

2πfosc

)
(2.21)

where φ(t) indicates phase error (“along the limit cycle” because φ(t) shifts the position

on the steady-state limit-cycle contour ~vss
(
t̃ ≡ t+ φ(t)

2πfosc

)
), and ∆~v

(
t̃
)

indicates ampli-

tude error (“away from the limit cycle” as shown in Fig. 2.10). The vectors ~vss (t) and

~v(t) are the same in both diagrams and represent the steady-state and noisy oscillation

voltages, respectively. The two pictures show two different selections of φ and ∆~v, indi-

cating that the choice of these two error functions φ(t), ∆~v
(
t̃
)

is not unique, and how we

choose them (1) determines whether φ(t) or ∆~v
(
t̃
)

are “small” w.r.t. 1 rad or ~vss
(
t̃
)
,

respectively, and (2) affects the spectra [35].
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The multiple methods of phase-noise that will be discussed in Section 6 have different

definitions for phase, and sometimes they assume φ(t) is “small” to simplify calculation.

While not true for free-running oscillators, this approximation gives reasonable results

for white device-noise currents [30, 35, 39, 40]. The most precise definition of phase is

the “position on the limit cycle [26, 41]7,” because this allows the instantanous amplitude

perturbations to remain small, consistent with experimental observation. This theoretical

position on the limit cycle is difficult to measure, although we can infer when this “phase”

has crossed integer multiples of 2π by monitoring when a single state variable, say ca-

pacitor voltage, has a rising-edge zero crossing. Comparing the (nth) such zero crossing

to a nearly ideal atomic clock will in fact show that the zero-crossing error with respect

to the corresponding (nth) good clock edge grows without bound and eventually exceeds

one oscillator period (on average) [42]. Such experimental observations confirm that free-

running oscillator phase noise is not small, but accumulates to arbitrarily large values (on

average). Locking the oscillator to a cleaner clock reference in a PLL will mitigate this

effect.

2.5.2 Phase Spectrum vs. Voltage Spectrum

Consider the capacitor voltage vC of the LC oscillator Fig. 2.2 mentioned above;

device noise will cause both amplitude and phase fluctuations:

vC(t) = Vosc [1 + a(t)] cos (2πfosct+ φ(t)) (2.22)

where a(t) is the normalized amplitude fluctuation for the capacitor voltage, and φ(t)

is the phase fluctuation (ideally unique irrespective of the node at which the phase is

measured [43–45]). (The quantity Vosca(t) cos (2πfosct+ φ(t)) = ∆vC

(
t+ φ(t)

2πfosc

)
in

(2.21).) Thus, we technically have three different spectra: phase noise Sφ, output oscil-

7For theoretically precise definition, see Section 6.1.6 or [26, 41].
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lator total voltage noise SvC , and normalized amplitude noise Sa. The units of Sφ, SvC ,

and Sa are rad2/Hz, V2/Hz, and 1/Hz, respectively. Neglecting the amplitude noise a(t),

because typically a(t) � 1 (cf. Section 2.5.1 and below)8, we can obtain the capacitor

voltage spectrum given the phase-noise spectrum:

SvC (f) ≡ Fτ→f

[
lim
T→∞

ˆ T/2

−T/2

dt

T
{RvC (t, τ)}

]
(2.23)

where Fτ→f denotes the Fourier Transform, and RvC is the capacitor-voltage autocorrela-

tion:

RvC (t, τ) ≡ E [vC(t+ τ/2)vC(t− τ/2)] =
V 2
osc

4
E
[
ej[2πfoscτ+φ(t+τ/2)−φ(t−τ/2)] + . . .

]
(2.24)

where “. . .” indicates other similar terms from substituting a complex-exponential expan-

sion of (2.22) (with a(t)→ 0) into (2.24), and ensemble average E [.] is defined in the ap-

pendix. We shall see in Section 6.1.6 that the phase noise φ(t) is asymptotically Gaussian

for large t (considering white device noise alone) and has autocorrelation [35, 40, 46–48]:

Rφ(t, τ) ≡ E [φ(t+ τ/2)φ(t− τ/2)] = (2πfoscκ)2 min(t+ τ/2, t− τ/2) (2.25)

for a “jitter constant” κ [units =
√
sec], assuming white device noise only (see Section

6.1.3). Hence, using the characteristic function for Gaussian variables [49],

E
[
ej[φ(t+τ/2)−φ(t−τ/2)]

]
= e−

1
2 [Rφ(t+τ/2,0)+Rφ(t−τ/2,0)−2Rφ(t, τ)] = e−

1
2

(2πfoscκ)2|τ | (2.26)

The time-averaged capacitor voltage autocorrelation RvC is hence

RvC (τ) =
V 2
osc

2
cos (2πfoscτ) e−

1
2

(2πfoscκ)2|τ | (2.27)

8For some subtleties of amplitude-noise behavior, especially when Floquet normalization (cf. Section 6.1.6)
is not employed, see [45].
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This output-voltage autocorrelation corresponds to a “Lorentzian” spectrum (magnitude-

squared response of 1st-order RC low-pass filter) [26, 50]9:

SvC (f) =
V 2
osc

2

2

(2πfoscκ)2

 1

1 +
(
f−fosc
πf2oscκ

2

)2 +
1

1 +
(
f+fosc
πf2oscκ

2

)2

 (2.28)

where fosc denotes the oscillation frequency [Hz], and we have given the one-sided (pos-

itive frequencies only) spectrum. However, the phase spectrum is not Lorentzian, but on

the contrary increases without bound for lower frequencies. Taking the time average of

(2.25) with respect to t and then Fourier transforming10, we obtain

Sφ(fm) = κ2f
2
osc

f 2
m

(2.29)

where fm is the offset from the carrier frequency fm = f − fosc. This unbounded “spec-

trum” at low frequencies reflects the fact that the free-running oscillator has no phase

reference, so its phase becomes arbitrarily distant, on average, from the reference phase

for large times. Fig. 2.11 plots typical curves for the phase-noise Sφ, [normalized] out-

put voltage SvC , amplitude-noise spectra Sa, and the quantity L (defined below), where

Sφ(fa1) = Sa(fa1) [34,39,40,45,54–62], and we have sketched a “typical” amplitude spec-

trum with corner frequencies fa2,3 [34, 39, 45]. For small fm, phase noise dominates the

voltage spectrum. While the phase-nosie spectrum is proportional to f−2
m for white device

noise, the shape of the amplitude spectrum depends on the specific oscillator, the output

node measured, and the phase/amplitude decomposition as discussed above [45]. Because

for most practical oscillators, the amplitude noise is negligible compared to the phase noise

9When flicker noise is included, the voltage spectrum changes to a “Voigt profile,” Lorentzian at large
frequency offsets, and ∝ e−(fm/fV oigt)

2

at small offsets [51, 52].
10N.B. technically, defining spectra for φ proves problematic, as it is not stationary and, what is worse,
not bounded. This is in fact one reason why the Allan Variance is used [53, 54]. Moreover, not all random
processes even have well-defined spectra. It is possible to “fudge” the spectra of unbounded signals by taking
the limit of a Laplace transform S(p): Seff (ω) ≡ limε→0[S(ε + jω) + S(ε − jω)], e.g. Fτ→f (−|τ |) =
2/(2πf)2 [43].
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for offsets fm of interest, we do not consider it further for brevity’s sake. Comparing the

fm

3dB

Sφ

Sa
SVC

10*log(S...)

πκ2fosc
2 fa1 fa2 fa3

Vosc
2 /2

3dB

Figure 2.11.: Phase, Amplitude, and Output-Voltage Spectra: Sφ, Sa, and SVC , respec-
tively (cf. [34, 39, 40, 45, 54–62]) in presence of white noise alone

t

t

t

τcoherence

1rad2

σ2(t)φ

V(t)

R    (t)

ωoscκ
22

vC

Figure 2.12.: “Virtual Damping” due to unbounded free-running-oscillator phase noise
[39, 63, 64]

phase and normalized capacitor-voltage spectra equations, for fm � π(foscκ)2, we get

SvC (fosc + fm)

V 2
osc/2

≈ 1

2
Sφ(fm) (2.30)
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The plot thus demonstrates the relationship between Sφ, Svc , and Sa and shows that

Sφ(fm) can be obtained by measuring the oscillator output spectrum Svc(fosc + fm) pro-

vided that πf 2
oscκ

2 � fm � fa1, where fa1 indicates the frequency at which the ampli-

tude and phase-noise spectra have comparable magnitude. Inferring the phase noise from

the output-voltage spectrum under these constraints is the “direct-spectrum” phase-noise-

measurement technique [57].

Experimentally, the effect of increasingly bad phase error can be observed by trigger-

ing multiple periods of oscillation on an oscilloscope and averaging the records together

[63, 64]11. Fig. 2.12 plots this “virtual damping” effect along with the increasing phase

variance σ2
φ(t).

Phase-noise notation abounds in the literature. The current IEEE standard on time

metrology [54] dicatates that the symbol L refers to phase noise alone :

L(fm) ≡ 1

2
Sφ(fm) (2.31)

However, in the past the convention used to be to normalize the voltage spectrum to total

carrier power [54]:

Lold(fm) ≡ SvC (fosc + fm)´∞
0
SvC (f)df

(2.32)

i.e. “single-sideband noise due to phase modulation.” Commonly, phase-noise units are

quoted as “dBc[arrier]/Hz,” alluding to the older carrier-normalization definition; however,

a more accurate notation would be dB(rad2/Hz).

2.5.3 Sources of Phase Noise

Much of the discussion above has described white device noise, which typically arises

from Johnson thermal noise [49]. However, for ring oscillators in particular, two other

11N.B. One could also perform Monte-Carlo transient simulations and average the runs to determine phase-
noise properties [65].
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noise sources are often dominant: flicker noise, bias noise, and often more significantly,

supply noise.

Flicker device noise is theorized to arise from oxide interface traps in complementary

metal-oxide-semiconductor (CMOS) devices [27]. The noise spectrum typically is sig-

nificant at lower frequencies; however, as we shall discuss in Section 6, mixing effects

generated by the large-signal switching action of the oscillator often convert this noise to

around the frequency of oscillation, so that the flicker noise can dominate oscillator phase

noise close to the carrier.

Power-supply noise arises from fluctuations to the oscillator’s voltage supply. In mod-

ern microprocessors and application-specific integrated circuits, copious digital logic is in-

tegrated together with the oscillator, and the switching of this digital logic causes glitches

on the supply, which in turn lead to oscillator phase noise. A ring oscillator’s frequency is

directly related to stage delay, which conventionally was a strong function of the supply-

voltage level. Hence, developing methods to combat this dependence has become crucial

to ensure that digital switching noise does not induce substantial jitter in the oscillator’s

zero-crossing points. Based on the oscillator fundamentals developed in this section, the

next section surveys state-of-the-art oscillators and identifies design tradeoffs; the section

also includes a dedicated discussion of state-of-the-art supply-noise rejection techniques,

given the increasing importance of this phenomenon in modern integrated circuits with

ring-oscillator-based clocks.
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3. OSCILLATOR DESIGN TRADEOFFS

3.1 Overview of State-of-the Art Resonant & Relaxation Oscillators

Since Balthazar van der Pol’s time, the varieties of oscillators have exploded, with an

increasing emphasis on the "relaxation" flavor, as these oscillators require no resonator and

are therefore area efficient. This attribute makes them compatible with modern integrated-

circuit CMOS processes and has led to their wide use in microprocessor and clock gener-

ation/recovery applications. Table 3.1 summarizes the main varieties of oscillators along

with a taxonomy of the main distinguishing attributes among various types of ring oscil-

lators. We next survey the recent literature to illustrate the variety of single/multiloop ring

as well as LC oscillators and to provide a rough idea of their circuit attributes (frequency

tuning/supply voltage/etc.).

First, consider the fully differential ring oscillator category [66–70]–Table 3.2 illus-

trates several different single-loop topologies with different voltage-controlled resistor

(VCR) loads. Some topologies also have included a latch to sharpen the edges, improving

slew rate (SR) and hence phase noise as well [12,67,68,71–74]. Table 3.3 shows some ex-

amples of fully differential relaxation oscillators with multivibrator “delay cells” [75, 76];

often, multivibrators have just one “stage” as shown in the table. Next, Table 3.4 includes

several illustrative multiloop, fully differential ring oscillators [6,13,67,77], most notably

Maneatis’ array oscillator [6], which achieves sub-gate-delay timing resolution from its

multiloop structure.
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Table 3.1: Oscillator Taxonomy: (a) Overall (b) Ring/Relaxation-Oscillator Attributes
(a)

Type Signalling

• Resonant/LC

• Relaxation/Ring

• Fully Differential

• Pseudo Differential

• Single Ended

(b)

Loops Delay Cell Freq. Tuning

• Single

• Multi

• Simple CMOS

• Current Starved

– Saturated Starving Transistor

– Triode Starving Transistor

• Resistor/VCR Load

• Multivibrator

• Supply Voltage

• Current

• VCR

• Capacitor

• Delay Interpolation
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Tables 3.5-3.6 demonstrate several “single-loop” pseudo-differential ring oscillators

[10, 71–74, 78–80]. The cases listed coincidentally are all quadrature oscillators. Quadra-

ture oscillators are especially common, especially for half-rate clock-recovery circuits. In

addition, Mirzaei et al. have shown that one can create a low-power, wide-locking range

injection-locked frequency divider from a multi-loop ring-oscillator structure [81] pro-

vided that differential, quadrature outputs are available from an external VCO. Table 3.7

includes multi-loop pseudo-differential ring oscillators. We also note that even “single-

loop” pseudo-differential ring oscillators could be considered multi loop if the latch path

were considered as an alternate signal path instead.

Table 3.8 contains some representative single-ended MROs [13,77,82–84]. First, note

the “skewed-negative-delay” oscillator proposed by Lee et al. [82]. We also include ex-

amples of delay-interpolation-tuned oscillators (cf. Section 3.6 for more details).

Finally, some “ring” oscillators use parasitic or explicit inductors to extract harmonics

of the oscillation frequency–Table 3.9 has two examples [85–87]. While these oscillators

could technically be listed as resonant oscillators, the frequency of oscillation and phase-

noise performance more closely resemble that of ring oscillators because the resonator is

“not in the loop,” i.e. the LC circuit acts as a post filter rather than as a part of the oscillator

core.
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Table 3.2: Fully-Differential Oscillators: Single-Loop
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Table 3.3: Fully Differential Multivibrators
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Table 3.4: Fully Differential Oscillators: Multi-Loop
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Table 3.5: Pseudo-Differential Single-Loop Oscillators (1/2)
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Table 3.6: Pseudo-Differential Single-Loop Oscillators (2/2)
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Table 3.7: Pseudo-Differential Multi-Loop Oscillators
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Table 3.8: Single-Ended MROs
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Table 3.9: LC+Ring-Oscillator
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3.2 Oscillator Specifications

An oscillator is an autonomous circuit which has no input yet generates a periodic out-

put. Therefore, the oscillator characteristics such as frequency depend on the oscillator

circuit parameters, and the design goal to have a frequency-stable oscillator is to control

those parameters upon which the oscillation frequency depends as much as possible [24].

The most critical integrated-circuit VCO specs are typically frequency tuning range, phase

noise/jitter, VCO gain KV CO [GHz/V], power consumption, and area. Additionally, sup-

ply rejection or “pushing” as discussed previously is becoming increasingly important as

more and more digital circuitry is integrated into the chip. Table 3.10 lists these specifica-

tions along with a few other oscillator performance metrics sometimes required.

Table 3.10: Typical Oscillator/VCO Specifications

Spec. Description
fosc & TR frequency tuning range
L (fm) Phase Noise typically specified for RF/LC VCOs

tj

Jitter (same phenomenon as phase noise) typically specified for micro-
processor applications; specific jitter metrics often include period jitter
and cycle-to-cycle jitter)

KVDD Static power-supply sensitivity KVDD ≡
VDD
fosc

∂fosc
∂VDD

PSRR [dynamic] power-supply ripple rejection
P time-average oscillator power consumption

KV CO

VCO gain [GHz/V]; also its variaiton over control voltage range
V
min/max
ctrl as well as any associated settling time or input capacitance at

the VCO control terminal may be important for PLL dynamics
A oscillator die area

Pout
output level/power: dictates whether level shifter/low-to-high-swing
buffer required for integrated VCOs

drift variation of frequency over (say) temperature

harmonics
purity of the output spectrum/harmonic levels [dBc] less important for
microprocessor clock generators than for pure-tone generators.
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3.3 Oscillator Figures of Merit (FOMs)

Table 3.11 itemizes several VCO figures of merit (FOMs) found in the literature, with

the more commonly used FOMs listed at the top [25, 88–97]. By far the most commonly

reported is the standard VCO FOM (FOMstd listed in the first row), which conveys the

phase noise of the oscillatorL (fm) normalized by both the relative offset from the oscilla-

tion or “carrier” frequency
(
fosc
fm

)
and the power in [mW]. This normalization assumes that

the phase noise is dominated by white device noise so that the phase noise L (fm) rolls off

with respect to fm at a rate of -20 dB/dec (as discussed in Section 2). The next common

performance metric is oscillation frequency for a given power consumption FOMpower,

which is often important in microprocessors for mobile applications. This performance

could also be particularly important for the real-time clock (RTC), as this component of-

ten must run when the remainder of the chip is in sleep mode and hence must be quite

power efficient. The last two FOMs (FOMA and FOMT ) are slight variants on the stan-

dard VCO FOM to account for oscillator area and percentage tuning range, respectively.

3.4 State-of-the-Art Multi-Loop Ring-Oscillator Performance Survey

To give an idea of achievable performance, Table 3.12 lists the salient attributes of

state-of-the-art ring-oscillator VCOs from the last 10 years [2, 10, 13–15, 18, 19, 22, 71,

74, 76, 79, 93, 95, 98–106]. Phase-noise numbers marked with an asterisk (*) indicate that

the equivalent free-running VCO phase noise was inferred from a closed-loop PLL jitter

measurement, assuming white noise [24]. The number of phases indicates the number

of equivalent single-ended stages in the ring. From these data, we see that most ring-

oscillator VCOs achieve figures of merit in the range of 140-160 dBc/Hz. LC VCOs have

higher FOMstd because their resonator Q improves the phase noise without any power

penalty–the amount by which their FOM exceeds typical ring-oscillator FOMs (assuming
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Table 3.11: (a) Summary of VCO Figures of Merit (FOMs) Found in the Literature, (b) Formula Term Definitions
(a)

Name Definition Units Comments Ref.

FOM(std)
1

L(fm)

(
fosc
fm

)2
1 mW
P [Hz] most commonly reported for VCOs [25, 88–90]

FOMpower
P
fosc

[W/Hz] for microprocessor/controller PLLs and RTCs [91]

FOMA
1

L(fm)

(
fosc
fm

)2
1 mW
P

1 mm2

A [Hz] accounts for VCO area [92–94]

FOMT
1

L(fm)

(
fosc
fm

)2
1 mW
P

10
TR [Hz] accounts for VCO % tuning range [95–97]

(b)

Name Units Description

fosc [Hz] [nominal] frequency of oscillation

L (fm) [1/Hz] SSB “Phase Noise” L (fm) ≡ 1
2Sφ (fm) (often quoted in [dBc/Hz])

fm [Hz] offset from fosc for Phase Noise

P [mW] oscillator average power consumption

A [mm2] oscillator active area

TR [unitless] normalized frequency tuning range TR ≡ fmaxosc −fminosc
fcenterosc
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same process) depends on the achievable inductor Q; however, FOMs from around 170-

190 dBc/Hz have typically been reported [89, 92].

Table 3.12: Performance Comparison of State-of-the-Art Ring-Oscillator VCOs over Last
10 Years

f tuneosc VDD P L(1 MHz) @ fosc FOMstd #φ Tech. Area
[MHz] [V] [mW] [dBc/Hz] [MHz] [dBc/Hz] [-] [µm] [mm2]

[71] 100-973 3.3 79 -117 973 157.8 4 0.35 n/a
[15] 356-931 2 30 -113.6 856 157.5 8 0.5 2‡

[98] 500-2000 1 6.8 -89.5∗ 1400 144.1 8 0.13 0.064
[13] 880-1648 3.3 109 -83.23∗ 1250 124.8 8 0.35 1‡

[22] 130-1600 2.5 2 -84.71∗ 1000 141.7 8 0.25 0.028‡

[10] 100-3500 1.8 0.162 -93.96 3500 172.7 4 0.18 n/a
[99] 2250-2750 1.3 2.86 -95.4 2500 158.8 2 0.13 0.006
[100] 1800 1 0.087 -83.87 2005 160.5 3 0.09 0.013
[19] 1770-1920 1.8 13 -102 1770 155.8 8 0.18 0.002
[101] 3140-3890 1.2 2 -93 2400 157.6 6 0.13 0.001
[95] 160-2500 0.5 1.157 -87 2240 153.4 8 0.09 0.002
[102] 1100-1450 3.3 19.8 -88 1250 137 4 0.13 0.003
[103] 2240-2650 2.5 19.2 -96 2481 151.1 4 0.28 0.007
[14] 2500-9000 1.8 135 -82 5000 134.7 4 0.18 0.003
[104] 350-616 0.5 0.21 -114 550.9 175.6 6 0.13 0.017
[2] 2050-2850 3.3 10 -76.02 2500 134 4 0.4 320000

[105] 0.004-1100 3.3 10 -105.8 900 154.9 6 0.35 0.002
[18] 7300-7860 1.5 60 -103.4 7640 163.3 6 0.13 0.009
[76] 4300-6100 2 80 -85 5000 139.9 10 0.18 0.276
[74] 661.5-1270 2.5 15.4 -109.9 900 157.1 4 0.5 0.013
[79] 650-1040 2 18.95 -121 913 167.4 4 0.18 0.007
[106] 549-756 1.8 15.34 -114 700 159.1 8 0.18 0.007
[93] 3100-10600 1.2 13 -88.5 10600 157.9 4 0.13 0.013

∗ L=4πLBWPLL

(
fosct

rms
j

fm

)2
, ‡ Area of entire PLL
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3.5 Topology Selection

The first step in the design procedure is to select an oscillator topology. Selection be-

tween LC and ring oscillators is primarily decided by (1) phase noise for a given power

budget, (2) tuning range, and (3) area. Compared to LC oscillators, ring oscillators typi-

cally have order of magnitude higher phase noise for a given power, order of magnitude

higher tuning range, and order of magnitude lower area.

Fully differential ring oscillators offer better supply and other common-mode-noise

immunity, but are less power efficient to achieve a given phase noise [24, 107]. This is

because the single-ended ring oscillator uses current more efficiently by burning the peak

current one delay cell at a time only during a transition (class B operation [36]), whereas

the fully differential ring oscillator always burns Itail in every delay cell simultaneously

(class A operation). Also, due to its tail current source, the fully differential oscillator

requires more headroom than the single-ended oscillator.

Finally, the fully differential delay cell suffers from tail-current noise. Integrated LC

oscillators are typically differential cross-coupled structures like the one previously shown

in Fig. 2.5(a). Additional LC-oscillator topologies are discussed in detail in [108].

3.6 Frequency-Tuning Method

3.6.1 Ring Oscillators

Ring oscillators can be tuned in a variety of ways:

• Supply: Changing the supply voltage of a simple CMOS ring oscillator adjusts its

frequency. The technique is quite common in smaller size technologies where low

voltage headroom constrains oscillator topologies essentially to simple single-loop

CMOS ring oscillators. Note that this method requires a level shifter or low-to-high

swing output buffer, as the oscillation amplitude changes along with the frequency.
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• Current: The idea is to adjust the current available to charge a fixed load capaci-

tance:

– This method is used in current-starved ring oscillators with saturation-region

starving transistors. The technique has the advantage of better supply rejection

due to the output resistance of the starving transistor; however, the tradeoff

is the reduced swing (and hence diminished phase-noise performance) along

with reduced maximum oscillation frequency due to the reduced switching cur-

rent available. For this reason, the current-starved topology typically employs

fewer stages (Nstage) to obtain a give fosc than would a supply-tuned oscillator.

It may still be advantageous to use a larger number of stages for low oscillation

frequencies (instead of adding an explicit load capacitor) either (1) if the area

consumed by the additional stages is less than that needed to add the explicit

load capacitor for each stage, or (2) if the delay cell needed to track over pro-

cess variations with, say, a logic gate which would not have such a capacitor

[24].

– Some digital PLLs have also tuned the oscillation frequency by digitally en-

abling how many parallel inverters are active to drive a fixed capacitive load

[109]–this likewise amounts to a current-tuning scheme of sorts.

• Voltage-Controlled Resistor (VCR): Assuming the stage delay is an RC product,

a voltage-controlled resistor can adjust the oscillation frequency. This method is

employed in both fully-differential rings [110] and in current-starved rings with the

starving transistor in triode [24].

• Load Capacitor: Conversely, the capacitor can be adjusted either digitally [80],

with a series resistor to change the “effective” capacitance (really a lead/lag network)

[15], or with a varactor.
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• Delay Interpolation: The delay-interpolation method is somewhat older and suffers

from inherent KV CO variation assuming linear delay interpolation with respect to

tuning voltage [24]. It has also been recommended [83, 84] that outer loop delay

should be less than twice inner loop delay to avoid phase ambiguity (analogous to

spurious modes of oscillation–cf. [6]).

3.6.2 LC Oscillators

LC oscillators are almost always varactor tuned [111], often combined with a switched

array of capacitors to broaden the tuning range as MOS varactors typically only vary by

30%. Similar to the ring-oscillator case, newer digital PLLs sometimes forgo the varactor

altogether to yield a digitally controlled oscillator (DCO) driven by a digital loop filter

[112].

3.7 Oscillation Frequency, Power, and Phase Noise

Oscillation frequency, power, and phase noise are closely tied together in oscillators.

Timing error or jitter is inversely proportional to the slew rate and directly proportional

to the voltage noise using the jitter slew-rate equation (3.1), as illustrated conceptually in

Fig. 3.1:

∆t =
∆Vnoise

SR ≡ ∂V
∂t

∣∣
zero crossing

(3.1)

These relationships are derived more rigorously in Section 6.1.3. Because slew rate is

typically given by the ratio of a current to a capacitance, we intuitively conclude that

better phase noise typically requires increased power consumption, which is indeed the

case for both ring and LC oscillators [24, 36, 107, 113, 114]. Larger oscillation amplitude

for a given freuqency also yields improved slew rate and hence better jitter, assuming noise

remains the same in both cases. Furthermore, it can be shown [24] that in the presence of
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Noisy

SR
t

V(t)

Ideal
∆Vnoise

∆tj

Figure 3.1.: Jitter-Slew-Rate Equation Conceptual Illustration

white noise only, the jitter σ2
j (T ) and phase noise Sφ (fm) of any free-running oscillator

take the form

σ2
j (T ) ≡ E

[
t2j(T )

]
= κ2T ; Sφ (fm) = κ2

(
fosc
fm

)2

(3.2)

for some κ, where T is the time between the initial and final observed zero crossings

of the oscillator waveform. Finally, it will be shown in Section 6.1.5 that conversion

of flicker noise to phase noise/jitter is related to the DC level of the slew rate. Thus,

symmetric rise/fall characteristics are desired for low flicker-noise-induced phase noise

[107, 113, 114]. These phase-noise issues yield the following design guidelines/tradeoffs

for ring/resonant-LC oscillators.

3.7.1 Ring Oscillators

The power, fosc, and phase noise of single-loop ring oscillators are completely deter-

mined by the characteristics of a single delay cell and by the number of such cells. In the

single-loop oscillator, fosc is increased by either reducing the load capacitance for fixed

transistor drive strength or by increasing the drive strength. For a simple CMOS ring, this

involves reducing L with W held fixed. The tradeoff is increased flicker noise [107]. To

the first order, changing the width W with L held fixed will not affect the fosc because

capacitance and peak current both scale linearly with W [24]. Similarly, one could explic-
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itly add capacitance to each delay stage to reduce fosc instead of having a large number

of stages. This action makes the oscillation frequency depend less on transistor parasitics,

yielding improved predictability.

By symmetry of the ring, one can show that the jitter number κ does not depend on

the number of stages, so the accuracy of the oscillator to resolve time and hence the jitter

depends on the unit-delay cell’s accuracy alone and not on the number of stages [24].

However, further examining (3.2), we note that because fosc is inversely proportional to

the number of stages Nstage (as derived in Section 2.3.2), the phase noise for a fixed fm

will change w.r.t. Nstage assuming the delay cell remains the same. We will revisit this

focus on the unit delay cell in Section 5 when discussing our proposed general approach

to multi-loop ring-oscillator design and analysis.

To optimize phase-noise performance for fully differential oscillators, minimize the

number of stages, as this allows the most power per stage and hence the lowest phase

noise [24, 36, 107]. Because single-ended ring oscillators only burn power one delay cell

at a time, their phase-noise performance is largely unchanged as Nstage changes assuming

fixed power and fosc (shown rigorously in Section 6.1.3).1 To maximize the slew rate and

improve phase noise, increase the transistor drive strength by choosing the lowest threshold

voltage Vt devices and by using the maximum power available in the budget (achieved by

either increasing Itail or
(
W
L

)
in the fully differential or single-ended cases, respectively).

Also, choose the maximum possible supply voltage to maximize swing. Inclusion of a

latch helps to sharpen the edges and improve jitter performance. To sharpen the waveform

transition and enhance the slew rate, some have proposed to include a latch even in a fully

differential oscillator that would not otherwise need one to sustain oscillation [12, 67, 68,

71–74]; however, it has been noted that adding a latch does not always yield phase-noise

1The above guideline assumes thermal/white phase noise dominates; if flicker noise dominates instead, a
larger number of stages will yield less noise for a fixed fosc and overall power for both single-ended and
fully differential rings (cf. Section 6.1.4) [24, 36, 107].
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performance improvement [24]. Symmetric rise/fall times are achieved by choosing the

appropriate sizing ratio (W/L)p
(W/L)n

(typically ≈ 3) to compensate for the fact that µp < µn.

3.7.2 LC Oscillators

LC-oscillator frequency is fixed by inductor/capacitor selection; however, the oscilla-

tion amplitude and with it the phase noise improve as either the tank Q or tail current is

increased. While the tail current remains in saturation, the oscillator is “current limited,”

and Vosc = 2
π
RpItail, where Rp is the equivalent parallel resistance of the differential tank

seen by both switching transistors. However, for higher currents, the tail source begins

to enter the triode region; the oscillation amplitude is roughly VDD; and the oscillator be-

comes “voltage limited” [115]. Phase-noise-improvement marginal returns for increased

power (i.e. Itail) diminish once the oscillator enters the voltage-limited regime, as the am-

plitude no longer appreciably increases with additional increases in current, so typically,

the efficient design point for optimal phase-noise performance under a given power bud-

get is right around the boundary between the current- and voltage-limited regimes, as this

maximizes Vosc for a given Itail [113, 115].

Furthermore, complementary switching transistors (i.e. NMOS+PMOS) are recom-

mended because (1) higher small-signal gm and correspondingly better slew rate for a give

power is achieved; (2) the single-ended waveforms have improved symmetry (causing less

flicker-noise-induced phase noise); and (3) less voltage drop appears across each individ-

ual transistor (reducing short-channel effects, SCEs) [113]. LC oscillators have numerous

other minor tweaks to improve phase noise further [116], most notably

1. minimize the analog component of KV CO, and rely on discretely switching a capac-

itor bank as much as possible to minimize control-noise-to-phase-noise conversion

[61, 117].
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2. Filter the (tail) bias with an additional series LC resonator at freson = 2fosc, as the

source node of the switching transistors has a strong second-harmonic component

[118].

3. Feed the tail current into a center-tapped inductor (part of the oscillator’s resonator)

to isolate high-frequency signals from reaching the tail source, thereby reducing

flicker-noise upconversion [116, 118].

4. Also, a capacitor can be placed in parallel with the tail current source to shape the

current pulses delivered to the switching transistors and reduce the phase noise by

4.5 dB or so [113, 119]. A potential tradeoff is increased capacitive coupling to the

supply and with it degraded supply-noise rejection.

3.8 Supply-Noise Rejection

In older technologies, designers favored source-coupled delay cells because their dif-

ferential operation and tail current source provided supply rejection; adding a replica bi-

ased, linearized voltage-controlled-resistor (VCR) load in each delay cell could also help

the supply isolation [120, 121]. Another technique to increase VCOs’ supply rejection

is combining a high-impedance voltage-to-current (V/I) converter to supply the oscillator

core (now effectively a current-controlled oscillator) [122]. By a similar token, each delay

cell can be current starved: so long as the top/bottom “starving” transistors remain in satu-

ration (requiring headroom), supply rejection would be improved [71, 120]. Additionally,

laying out ring stages as symmetrically as possible causes the supply noise to be correlated

so that only noise near integer multiples of Nstagefosc is significant [71, 72, 107].

Newer technologies’ reduced headroom has driven designers to consider simple CMOS-

inverter rings to limit the number of stacked devices. These CMOS ring oscillators’ fre-

quency f cosc is determined by the number Nstage of stages and the delay time tD to charge
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a transistor’s gate capacitance CG to a switching threshold V sw
th with an approximately

constant current ID from the previous stage:

f cosc ≈
1

2NstagetD
≈ ID

2NstageCGV sw
th

=
µCox

2
W
L

(VDD − Vt)2

2Nstage (CoxWL) (VDD/2)
(3.3)

Multi-loop ring oscillators (MROs) have more complex frequency expressions; however,

if the MRO delay cell has transistors with their source terminal connected to the supply,

i.e. the supply connected with a low-impedance path to the output such as that illustrated

in the conventional CMOS-delay-cell quadrature oscillator of Fig. 3.2, then the frequency

again heavily depends on supply. While allowing low-voltage designs with wide tuning

VI VQ

VIBVQB

Vdd

Vdd

Vmain

Vlat

Vout

CL

main out

lat

Figure 3.2.: Conventional CMOS-Delay-Cell Quadrature Oscillator [10, 78]

range, this supply dependence makes the circuit extremely sensitive to supply noise. These

oscillators often need a dedicated regulator, and moreover, the regulator typically acts to

buffer the PLL’s charge pump voltage to tune the oscillator with the VCO “virtual” supply

voltage, improving the oscillator’s PSRR by that of the LDO. However, the LDO’s poles

then hinder the PLL’s transient response, requiring either large regulator power to make

the LDO agile, or more complicated split-tuned dual-loop PLL architectures to stabilize
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the PLL [23, 121, 123–126]. Finally, recent works have compensated delay cells’ sup-

ply dependence by carefully calibrating positive and negative delay-cell supply-sensitivity

components to cancel each other [20, 22, 98, 100, 127]. Fig. 3.3 graphically summarizes

these supply-rejection methods and illustrates each one with a conceptual schematic.

Figure 3.3.: Summary of Previous Supply-Rejection Methods
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4. PROPOSED MRO ARCHITECTURE TO IMPROVE SUPPLY REJECTION

First, consider the conventional quadrature oscillator formed from CMOS-inverter de-

lay cells illustrated in Fig. 4.1. The source terminal is connected directly to VDD, so

VI VQ

VIBVQB

Vdd

Vdd

Vmain

Vlat

Vout

CL

main out

lat

Figure 4.1.: Conventional CMOS-Delay-Cell Quadrature Oscillator [10, 78]

the conventional structure offers no intrinsic isolation of the supply, and its static supply

sensitivity VDD
fosc

∂fosc
∂VDD

is nearly unity. To enhance the intrinsic delay-cell supply isolation,

we replace the PMOS transistors with an NMOS source follower so that its saturation

drain-source resistance (rds) provides supply isolation, as shown in Fig. 4.2. The primary

source-follower path (input Vinbuf through transistor M1) provides supply isolation, while

an inverting-latch secondary path (input Vinlat through transistor M2) intuitively provides

the voltage gain necessary to sustain the oscillation, forcing complementary nodes to be

180◦ out of phase. Use of this multi-loop architecture enables the source-follower structure

to sustain oscillation and simultaneously provide supply rejection governed by transistor

M1’s saturation drain-source resistance. With the supply now isolated from the oscillator

core, we add a phase-shift/bias network (shown conceptually as “∆φ” in Fig. 4.2) to bias

the source follower in saturation and provide frequency tuning. Fig. 4.3(a) shows the cor-
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VI VQ

VIBVQB

VDD

V
D

D

V
D

D

VDD

Buffer Primary Path:
  - supply isolation
  - phase shift ⇒  freq. control

Latch Secondary Path:
  - gain to sustain osc.
  - force 180o

Vinbuf

Vinlat

Vtune
freq Vout

∆φ

VDD

M1

M2

CL

buf out

lat

Figure 4.2.: Proposed Oscillator: Conceptual Block Diagram

responding circuit-level schematic of the unit delay cell. The frequency fosc is controlled

by the phase-shift/bias network; adjusting differential tuning voltage V freq
tune = Vb − Vcp

changes variable resistor Rv, which is implemented by a PMOS transistor MP in triode, as

shown in Fig. 4.3(a) and (b). The capacitanceCopbuf is the capacitance of the output buffer

to drive 50-ohm equipment; Cc,k+1 is the AC coupling capacitance to the next buffer stage

in the primary loop, and Cgd/s2,k−1 are the gate capacitances of the 180◦ coupling latch.

We arrange four buffer cells in a ring to establish a quadrature oscillator through symme-

try. Fig. 4.4 demonstrates typical waveforms at the three delay-cell nodes Vinbuf , Vinlat,

and Vout to illustrate the relative phases (quadrature/etc.) from transistor-level SPECTRE

simulation. To analyze the multiloop structure, we propose a generalized delay-cell view-

point along with a unified phase-noise-analysis framework, which are presented in the next

two sections. The circuit-level design, analysis, and measurement of this proposed MRO

architecture is subsequently presented as a case study in Section 7.
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Figure 4.3.: Unit Cell of Proposed Quadrature Oscillator: (a) Circuit Implementation with
Parasitics, and Fig. 4.3(b) Component Values
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5. FRAMEWORKS FOR MRO DESIGN/ANALYSIS

5.1 Generalized Delay-Cell Viewpoint

To analyze the oscillator frequency tuning and steady-state response, we view the mul-

tiloop oscillator as a generalized Nstage oscillator illustrated in Fig. 5.1. Fig. 5.1(a) shows

a ring ofNstage unit delay cells, and Fig. 5.1(b) indicates the general case for an MRO with

M ports, where the number of ports M and the number of stages Nstage do not necessarily

have any relation to each other (M 6= Nstage). The number of stages and the relative con-

nections of the ports determines the phase relationships among the ports, shown concep-

tually in the phasor diagram in Fig. 5.1(b). For instance, for 1 input and 1 output (M=2),

Fig. 5.1(c) shows the delay cell for a single-loop oscillator; assuming inverting delay cells

and odd Nstage, the single-loop case has φout = φin − 180◦ (1 + 1/Nstage), as shown in

the phasor diagram in Fig. 5.1(c). For our oscillator, the latches force 180◦ between the

differential nodes VI/VIB and VQ/VQB in Fig. 4.2 to avoid the DC latching condition. The

phase shift through the primary path and the symmetry of the structure hence cause 90◦

lag between each successive stage, as illustrated in the phasor diagram in Fig. 5.1(d).

General MRO
 "Delay Cell"

...

V1

VM

M ports, Nstage delay cells

Vin Vout

Vinbuf

Vinlat

Vout

Ordinary Ring
(M=2, Nstage)

Proposed
(M=3, Nstage=4)

Nstage

Vinbuf

Vout

Vinlat (+90o)

(0o)

(-90o)

Vin

Vout
V1

(φ21)
V2

φout,in=−180ο(1+1/         )
(φM1)
VM

(φout,in)

(d)(b) (c)

......
...

stage

......
...

stage

......
...

stage
...

1 2 Nstage

(a)

Figure 5.1.: Proposed Viewpoint of Multi-Loop Oscillator with M-Port Generalized Delay
Cells and Phase Relationship among Ports (a) Ring Structure, (b) General Delay Cell, (c)
Special Case: Single-Loop Ring Oscillator, (d) Special Case: Proposed Oscillator
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Further exploiting symmetry, the waveform at each node has the same shape even if it

has harmonic content, as seen previously in Fig. 4.4 (see also [81]). Hence, denoting the

oscillator periodic waveform as vp(t) with period Tosc, one unit cell of our oscillator has

the following phase relationships:

Vinbuf (t) = vp(t) ≡ VI(t)

Vinlat(t) = vp(t+ Tosc/4) ≡ VQB(t)

Vout(t) = vp(t− Tosc/4) ≡ VQ(t)

(5.1)

Other unit cells have analogous phase relationships. Identifying these relationships allows

us to focus design, analysis, and layout efforts on a single delay cell as we shall show

with a design case-study example in Section 7. In addition, as Mirzaei et al. noted [81],

when configuring a ring oscillator with auxilliary injection paths to operate as an injection-

locked frequency divider (ILFD), the relative phases among stages also play a crucial role

in determining the locking/divide range. More specifically, Mirzaei demonstrates that,

to maximize locking range, signals injected into adjacent stages should possess the same

relative-phase progressions as those of the ring oscillator itself [81]. Furthermore, LC-

quadrature oscillators’ phase-noise levels and sensitivity to component mismatch depend

on the phase shift between the injected coupling current and the main oscillator signal

[128].

We also note that LC quadrature oscillators could be viewed as “ring” oscillators of

sorts except that they contain resonant-tank circuits, which filter noise at the expense of

IC area. Indeed, given sufficient area, one could also form a ring of resonant oscillators

coupled together by phase-shift networks, such as that shown conceptually in [129]. Fig.

5.2 illustrates one such configuration where two differential LC oscillators are coupled

together by phase-shift networks, and we have represented the cross-coupled negative-gm

cells as back-to-back inverters to emphasize the analogy with ring oscillators [128, 130].

In our proposed multi-loop ring oscillator, the phase-shift network provides frequency
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Figure 5.2.: Illustration of “Ring” of LC Oscillators Coupled by Phase-Shift Networks

tuning. On the other hand, in quadrature LC oscillators, the phase shift is ideally adjusted

to 90 degrees to improve phase-noise performance and to reduce sensitivity to component

mismatch [128], as the LC oscillator’s frequency is primarily determined by the resonant

tank.

5.2 Phase-Noise Analysis

5.2.1 Background

The earliest work on oscillator noise assumed slowly varying amplitude/phase fluc-

tuations in the form of a complex envelope and solved averaged differential equations

(following Balthazar van der Pol’s at the time recent compendium of nonlinear oscillator

theory [28]) to recover the amplitude/phase from the [nonlinear] voltage/current equations

[31, 34, 40, 45, 55, 131–149] [150]. These methods fall into the “Fokker-Planck-Equation

(FPE)” and “Modulation-Method” analysis categories of Sections 6.1.6 and 6.1.2, respec-

tively.
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Later treatments focused on Leeson’s analogy of phase noise to phase-modulation

(PM) voltage-spectrum sidebands, attempting to apply conventional small-signal noise

analysis despite the large-signal oscillation amplitude [60–62, 151–163]. While high-Q

resonant oscillators yielded reasonable results, this linear, time-invariant (LTI) approach

not only proves numerically inaccurate for ring/relaxation oscillators, but also can provide

qualitatively incorrect trends/design intuition, as we shall see in Section 6.1.3. Modifying

the approach to include linear periodically time varying (LPTV) effects can yield more ac-

curate results [56, 164–174] (see LTI/LPTV “Mixer-Conversion-Gain” method in Section

6.1.1).

Various more rigorous techniques more oriented towards computer-aided design (CAD)

either solve nonlinear stochastic differential equations (SDEs) [26,30,35,41,43,46–48,63,

64, 150, 175–188] (the FPE method) or determine the sensitivity of the oscillator phase to

noise at different times during the oscillation cycle [44, 58, 69, 71–73, 107, 113–115, 130,

189–198] (the “Phase-Sensitivity Method” in Section 6.1.5). Such methods can predict the

phase noise quite accurately, even for hard-switching ring oscillators, but involve compli-

cated mathematics and can be difficult for the practicing engineer to use for circuit analysis

or to obtain tractable, closed-form analytical expressions suitable for design intuition or

trade-off analysis. To remedy this difficulty, we analyze simple, practical circuits with the

techniques and relate the mathematics to physical circuit parameters.

A final class of analysis geared specifically to ring/relaxation oscillators can provide

simple yet accurate phase-noise expressions and design recipes for certain ring-oscillator

configurations (the Jitter [24, 36, 39, 199–215] and Direct ICO [21, 51, 216–220] methods

of Sections 6.1.3 and 6.1.4).

5.2.2 Unified Flow

Despite these multifarious, ostensibly different procedures, phase-noise analysis of

an oscillator at its heart is identifying (i) a current-controlled oscillator gain (KICO),
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(ii) device-noise modulation functions (NMFs), and (iii) device-noise transfer functions

(NTFs), as conceptually illustrated in Fig. 5.3. Fig. 5.4 shows a Gunn-diode LC oscillator

as a concrete example of the flowchart’s block diagram. Device noise is referred to an

“output node” (more accurately to the state variables) through a noise transfer function

NTF = itank/in (loosely), where itank denotes the noise enterring the “output node” (e.g.

vC in Fig. 5.4(a)). The effect of periodically-changing bias conditions on noise statistics

(viz. spectrum Sin(f ; vC , iL)) is included in the noise-modulation function NMF. The

sensitivity of the oscillator frequency/phase to the noise at the “output node” can be inter-

preted as a VCO/ICO gain (KICO), which is generally time varying. The different analysis

techniques mentioned in Section 5.2.1 fit into this general paradigm; however, some of

the simplified methods neglect various aspects–for instance, applying typical noise anal-

ysis to oscillators is tantamount to neglecting noise modulation and assuming that the

NTF and KICO blocks are ordinary time-invariant linear filters (cf. Section 6.1.1; “mixer

conversion-gain method/LTI”).

φ

δfosc

transfered noise

NTF

modulated noise

NMF

device noise

∫dt

PHASE
NOISE

KICO

Ztank

αVosc

AMPL.
NOISE

Vosccos[ωosct+       ] ∗ [1+          ]φ(t) α(t)

Figure 5.3.: Conceptual VCO/ICO Viewpoint of Oscillator-Phase-Noise Computation
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+
vC
-

iL

idio=fnln(vC)

VBin NTF(vC, iL)in

S   ,DC(f)NMF2(vC, iL)S  (f;vC, iL)=in in

(a)

idio=fnln(vdio)

vdio
V0

I0
+
vdio
-

idio

(b)

Figure 5.4.: (a) Gunn-Diode Oscillator to Illustrate Overall PN-Analysis Flow, (b) Exam-

ple Nonlinear Current Relationship

Based on the block diagram in Fig. 5.3, we outline the following framework to find Sφ

common to all the different analysis techniques of Section 6. Section 6.1 will then discuss

each technique separately but will follow these steps.

1. Periodic Steady State (PSS): Find the PSS response, most importantly the [funda-

mental] amplitude Vosc and frequency fosc of oscillation, both of which are necessary

to compute phase noise–this step is common to all the phase-noise analysis proce-

dures in Section 6.1. Two common approaches to find the PSS include Harmonic

Balance (HB) and Hard Switching approximations (as previously discussed in Sec-

tion 2.3).

2. Perturbation Model: Choose a perturbation model that describes how the device

noise turns into amplitude/phase errors from the ideal PSS waveforms. This step is

specific to each technique in Section 6.1.
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3. Noise Modulation Function (NMF): Account for the effect of [periodically] vary-

ing device bias points on noise statistics (“cyclostationarity”)1:

(a) Given that a device has stationary noise with spectrum S(f ; ~Vbias) for constant

~Vbias, its noise is cyclostationary when ~Vbias(t) is periodic.

(b) The noise modulation function (NMF) is given by [133, 164, 182]

NMF (2πfosct) ≡

√√√√√S
(
f ; ~Vbias (2πfosct)

)
maxS

(
f ; ~Vbias

) (5.2)

For example, given a diode with stationary, white shot-noise PSD Si(f) =

2qIS
(
eV/φt − 1

)
, V (t) = V0 + Vosc cos (2πfosct) , and

NMF (θ) =
√

e[V0+Vosc cos(θ)]/φt−1
e[V0+Vosc]/φt−1

.

4. Noise Transfer Function (NTF): Refer device noise to the oscillator “output” (or

state variables).

5. Current-Controlled-Oscillator Gain KICO: Extract the equivalent ICO gain based

on a given technique’s approximation for phase–this can be done either in the fre-

quency domain or in the time domain.

6. Spectrum: To obtain the spectrum Sφ for φ(t), either substitute parameter values

into a known form of the spectrum, most commonly Sφ(fm) = κ2
(
fosc
fm

)2

, or use

Sφ(f) = Fτ→f
[
Rφ(τ)

]
.

The following section presents the principal results of each phase-noise-analysis technique

discussed in Section 5.2.1 and works through a practical example in each case to illustrate

how to apply these methods to design/analysis.

1The noisy free-running oscillator is not truly periodic, but cyclostationary analysis captures the effect of
changing bias point/mixing action on noise statistics.
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6. SYNOPSIS OF PHASE-NOISE-ANALYSIS TECHNIQUES

Each of the following subsections presents the analysis techniques of Table 6.1 by ex-

ample of either the LC cross-coupled oscillator of Fig. 2.5(a) or the CMOS ring oscillator

of Fig. 2.6(a), as some of the techniques are better suited to one or the other. We assume

the same numerical component values as previously listed in Table 2.1. For reference,

Appendix B also enumerates how to generalize all these procedure to other oscillators. Fi-

nally, Section 6.2 compares the methods to one another and provides a selection guide of

when each analysis method is most accurate or useful. Numerical values for all these tech-

niques using the component values in Table 2.1 are summarized and compared in Section

6.2.3.

6.1 Specific Phase-Noise-Analysis Methods

6.1.1 Mixer Conversion-Gain Method

Description

The mixer conversion-gain method treats noise in(t) as a sum of narrow-band modu-

lated sinusoids at harmonics of the carrier frequency [221] as shown in Fig. 6.1(a). We

denote the spectrum of each equivalent narrowband noise process about the kth harmonic

as Ik(f). These noise sources are considered as parasitic “RF” inputs to a mixing network

driven by the oscillator’s own large-signal switching action, as illustrated in Fig. 6.1(b).

In this fashion, we view the oscillator as a self-oscillating mixer, and the noise sources

experience “conversion gains” Z1,k from around the kth harmonic to the fundamental at

the oscillator “output node” as shown in Fig. 6.1(b). The frequency-shifted noise then

appears at the oscillator output as depicted in Fig. 6.1(c).
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Table 6.1: Phase-Noise-Analysis Categories

Section Method Complexity* Brief Reference List
6.1.1 Conversion 1 [60–62, 151–163]
6.1.2 Modulation 3-5 [31, 34, 40, 45, 55, 131–149]
6.1.3 Jitter 2 [24, 36, 39, 199–215]
6.1.4 Direct-KICO 2 [21, 51, 216–220]
6.1.5 Phase-Sensitivity 4 [44, 58, 69, 71–73, 107, 113–115, 130, 189–198]
6.1.6 Fokker-Planck Equation 5 [26, 30, 35, 41, 43, 46–48, 63, 64, 150, 175–188]

* 1=least, 5=most complex
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Ĩn (f) =
∑
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Figure 6.1.: Mixer Conversion-Gain Method: (b) Conceptual Illustration, (a) Broadband
noise as sum of narrowband components, (c) Corresponding Output-Voltage
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Using the “RHS” offset ±fosc + fm as highlighted in Fig. 6.1(c), we decompose the

overall voltage Ṽout into phase/amplitude-modulation (PM/AM) sidebands [155]. First

consider the (more important) PM sidebands; assuming small φpk � 1,

V PM
out = Vosc cos (2πfosct− φpk sin (2πfmt))

≈ Vosc[cos (2πfosct) + φpk sin (2πfmt) sin (2πfosct)]

= Vosc
2

[e2πjfosct − φpk
2

(e2πj[fosc+fm]t − e2πj[−fosc+fm]t) + C?]

(6.1)

where C? denotes corresponding complex-conjugate terms. Likewise, it can be shown that

AM sidebands take the form

V AM
out =

Vosc
2

[e2πjfosct +
apk
2

(e2πj[fosc+fm]t + e2πj[−fosc+fm]t) + C?] (6.2)

Thus, we see that by subtracting the complex amplitudes of the +fosc + fm component

of the output voltage Ṽout from that of the −fosc + fm component1, we extract the PM

sideband component while nulling the AM sideband component. The Fourier-series plot

of Fig. 6.2(a) illustrates these relations for the special case of φpk = apk = m. One can

also visualize the PM/AM sidebands as a phasor sum with “counter-rotating” modulation

phasors as illustrated in Fig. 6.2(b). Note that the PM phasors add to produce a compo-

nent in quadrature with the main carrier phasor (corresponding to φ being multiplied by

sin (2πfosct) while the carrier is cos (2πfosct) in (6.1))2.

Two “flavors” of conversion analysis exist, depending on whether one employs a linear

time-invariant (LTI) model [60–62,151–163], or a linear periodically time varying (LPTV)

model [56,164–174]. LPTV hand analysis with a single harmonic is sometimes called the

“phasor method,” and CAD approaches using multiple harmonics are commonly termed

“conversion analysis” ( cf. Section 6.1.2: “modulation anlaysis”).

1Note that we single out ±fosc + fm and not +fosc ± fm.
2Note that pure phase modulation with no accompanying amplitude modulation would require an infinite
number of sidebands at ±fosc ± kfm, k ∈ Z (sideband magnitudes given by Bessel functions [155]);
however, for small φpk, we can consider only ±fosc ± fm.
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Figure 6.2.: Phase/Amplitude Modulation: (a) Fourier-Series Mag./Phase, (b) “Rotating
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Procedure/Example

1. Perturbation Model: We choose the capacitor voltage vC1 of Fig. 2.5(a) as our

“output,” and for simplicity consider the “half circuit” of Fig. 2.5(c). Model the

effect of noise currents as additive voltage noise on top of large harmonics at fixed

frequencies:

vC1(t) =

[
Vosc

2
+ ∆V +1

C1 (t)

]
ej2πfosct +

[
Vosc

2
+ ∆V −1

C1 (t)

]
e−j2πfosct (6.3)

where we assume ∆V ±1
C1 (t) is much smaller than the fundamental and slowly vary-

ing with respect to the fundamental frequency, allowing the narrowband decompo-

sition illustrated in Fig. 6.1(a). Hence, for each of the noise sources, the circuit is

described by

~V (fm) =



V −2 (fm)

V −1 (fm)

V +0 (fm)

V +1 (fm)

V +2 (fm)


= Z (fm)NTF n

~In (6.4)

where V k (fm) is the narrow-band voltage perturbation about the kth harmonic, and

~In has a similar decomposition. NTF is determined in a later step, and Z(fm)

is a matrix of conversion-gain impedances: Zk,j (fm) denotes the conversion-gain

impedance mixing the output-node current around the jth harmonic to the kth har-
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monic of the output-voltage3 perturbation as illustrated in Fig. 6.1(b). For LPTV

analysis, linearize the circuit about the “PSS” operating point Vo(t) = Vosc cos (2πfosct):

g(t) = ∂I1
∂vC1

∣∣∣
PSS

= − (g1 −
2

Rp

)︸ ︷︷ ︸
g′1

+3g3
2
V 2
osc (1 + cos(2[2πfosct]))

=
(
g1 − 2

Rp

)
[1 + 2 cos(2θ)]

(6.5)

where we use V 2
osc ≈ 4(g1 − 2/Rp)/(3g3) to simplify expressions. Z for LPTV

analysis is given by

Z (fm) ≈



−2jG0 0 g′1 0 0

0 g′1 + 2jG0
fm
fosc

0 g′1 0

g′1 0 −jG0
fosc
fm

0 g′1

0 g′1 0 g′1 + 2jG0
fm
fosc

0

0 0 g′1 0 2jG0



−1

(6.6)

⇒ Z±1,0 = 0, Z±1,±2 = 0, (Z1,±1 − Z−1,±1) ≈ ±fosc
2jfmG0

(6.7)

For LTI analysis, we perform the same except about a DC operating point and

consider only Zk,k (fm) for k = ±1, which is the tank impedance evaluated at

f = ±fosc + fm.

2. NMF: For each noise source, we apply definition (5.2) from Section 5.2.2. In LTI

analysis, NMF = 1 because the bias point is constant; the results for LPTV are

summarized in Table 6.2(a) for the LC NMOS oscillator.4

3N.B. Phase noise should not depend upon the node at which it is measured [43, 44]); however, because
the conversion method infers phase noise from PM voltage-noise sidebands, there could be some small
dependence.
4cf. slightly different technique in [24, 170, 174].
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3. NTF: To obtain the noise-transfer functions, we use the intuition that the differential

action of the tank is most significant–hence, we seek NTFk = id=i1−i2
inoise,k

, where i1,2

indicate the small-signal versions of I1,2. For instance,

Ai (θ) ≡ ∂(I1−I2)
∂intail

∣∣∣
operating point

= i1−i2
intail

= −
1− gm2(θ)

gm1(θ)

1+
gm2(θ)
gm1(θ)

=

 0 , LTI

≈ − Vosc√
Itail/K

cos (θ) , LPTV

(6.8)

and gm1,2 are given in (2.11). Table 6.2(a) summarizes the NTFs for the LC NMOS

oscillator for both the LTI and LPTV cases. Note that for LTI analysis, we evaluate

the NTF about the DC operating point VC1,2 = 0, whereas for LPTV, we evaluate at

the periodic steady-state VC1,2 = ±Vosc cos (θ) .

4. KICO: Subtracting the noise around fosc+fm from that around−fosc+fm to extract

the PM sideband as indicated in (6.1), we obtain KICO:

~KICO =
2πjfm
2Vosc



Z1,−2 (fm) − Z−1,−2 (fm)

Z1,−1 (fm) − Z−1,−1 (fm)

Z1,0 (fm) − Z−1,0 (fm)

Z1,1 (fm) − Z−1,1 (fm)

Z1,2 (fm) − Z−1,2 (fm)


(6.9)

where we use 2Vosc because we computed the NTFs for the differential tank. N.B.

we normalize w.r.t. peak fundamental oscillation amplitude Vosc and not the RMS

value because the PM sideband approximation normalizes to the peak sinusoid com-

ponent in (6.1). For LTI, Zk,j = 0 unless k = j, i.e. no conversion among frequen-

cies:

~K†ICO ≈
−2πjfm

2Vosc

1

−g′1 + j2 fm
fosc

G0

[0, 1, 0, −1, 0] (6.10)
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Table 6.2: Conversion-Method (a) NTFs & NMFs, and (b) Fourier-Series Coefficients
(a)

noise NTF † NMFLPTV

Rp1,2 ∓1 1

switch1,2 ∓1− Ai (θ)
√

gm1,2(θ)

gmmax
≈

√
1± Vosc√

Itail/K
cos(θ)

1+
Vosc√
Itail/K

tail −Ai (θ) 1

† Ai defined in (6.8)

(b)

k 0 ±1 ±{2, 3, 4}

T ksw1 −1 1
2

Vosc√
Itail/K

≈ 0

Mk
sw1

1√
1+

Vosc√
Itail/K

1
4

Vosc√
Itail/K

1√
1+

Vosc√
Itail/K

≈ 0

T ktail 0 1
2

Vosc√
Itail/K

≈ 0

Mk
tail 1 0 0

NTF (θ) =
∑+∞

k=−∞ T
kejkθ, NMF (θ) =

∑+∞
k=−∞M

kejkθ
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where G0 ≡ 2
√

C
L

corresponds to the characteristic conductance of each tank. For

the LPTV case, substituting expressions from (6.7), we obtain:

~K†ICO ≈
2πjfm
2Vosc

fosc
2jfmG0

[0, 1, 0, −1, 0] (6.11)

5. Spectrum: For each noise source

Sφ (fm) =

1
(2πfm)2

~K†ICO (fm) ×NTF ×NMF × S (fm) ×NMF † ×NTF † × ~KICO (fm)

(6.12)

where NTF and NMF are matrices with the NTF/NMF Fourier coefficients from

Table 6.2(b) arranged in a so-called “Toeplitz Conversion Matrix” (TCM) pattern

[164], i.e.

TCM =



C+0 C−1 C−2 C−3 C−4

C+1 C+0 C−1 C−2 C−3

C+2 C+1 C+0 C−1 C−2

C+3 C+2 C+1 C+0 C−1

C+4 C+3 C+2 C+1 C+0


(6.13)

and Ck could denote either T k or Mk for NTF or NMF , respectively. The LTI

and LPTV expressions are hence

SLTIφ (fm) =
1

(g′1)2 +
(

2Go
fm
fosc

)2

4kBT

V 2
osc

(
1

Rp

+
γ

2

√
KItail

)
(6.14)

SLPTVφ (fm) ≈ kBT(
G0Vosc

fm
fosc

)2
(

1
Rp

+γ
√
KItail
2

[
1− 1

96

(
Vosc√
Itail/K

)2

+ 1
64

(
Vosc√
Itail/K

)4
]

+ γgtaild0

[
1
4

Vosc√
Itail/K

]2
) (6.15)
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We see that LPTV method captures additional amplitude (Vosc) dependence and in-

cludes tail-current noise, which LTI analysis could not. We also see the true f−2
m

close-in behavior.5.

6.1.2 Modulation Method

Description

The modulation method [31, 34, 40, 45, 55, 131–149] assumes solutions of the form

[V0 + ∆V (t)] cos [2πfosct+ φ(t)] where ∆V, φ are slowly varying with respect to the os-

cillation frequency. This slowly-varying assumption facilitates extraction of the ampli-

tude/phase equations by averaging over one cycle. As Mirzaei et al. observed [31, 128],

this analysis closely parallels that of Robert Adler in injection-locked oscillators [32].

Moreover, Mirzaei’s generalization of Adler’s equation to large-signal injection facili-

tates application of the modulation method to evaluate mode stability, as demonstrated

for quadrature LC oscillators [128]. This technique has since been extended to CAD

harmonic-balance noise analysis [35, 133], and this HB formulation can also obtain the

voltage spectrum SvC (f) for close-in phase noise [51, 149].

Procedure/Example

1. Perturbation Model: Consider the half circuit of Fig. 2.5(c). For simplicity, con-

sider only tank-resistor noise, and convert to an equivalent differential tank:

vC(t) ≡ vC1 − vC2 = (2Vosc + ∆VC(t)) cos (2πfosct+ φ(t)) (6.16)

5Some formulations of conversion analysis [164] arbitrarily set the imaginary part of one harmonic to zero.
In large-signal analysis, this is necessary to solve for the solution uniquely, because the circuit is autonomous.
However, this phase ambiguity is what allows phase-noise to accumulate [35]–hence arbitrarily setting the
imaginary part to zero removes the singularity at fm = 0, which could make conversion analysis less
accurate for close-in phase noise. Thus, in our analysis above, we preserve the singularity at fm = 0.
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where ∆VC , φ are slowly varying with respect to the oscillation frequency fosc, and

Vosc denotes the single-ended oscillation peak amplitude as derived in Section 2.3.

2. NMF and NTF: For the tank resistor, NMF = 1 because it is bias independent,

and NTF = 1 as derived in Section 6.1.1.

3. “KICO:” To extract the phase/amplitude equations, consider the differential equa-

tion describing the oscillator:

dvC
dt

+
vC/Rp − I1(vC/2) + inR(t)

C
+ (2πfosc)

2

ˆ t

t0

dτ {vC(t)} = 0 (6.17)

(a) Because the amplitude/phase perturbations vary slowly, we can approximate

the capacitor and inductor currents [34] as follows by integrating by parts:

dvC(t)
dt

= −2πfosc [2Vosc + ∆VC(t)]
[
1 + 1

2πfosc

dφ(t)
dt

]
sin (2πfosct+ φ(t))

+d∆VC
dt

cos (2πfosct+ φ(t))

(2πfosc)
2
´ t
t0
dτ {vC(τ)}

≈ +2πfosc [2Vosc + ∆VC(t)]
[
1− 1

2πfosc

dφ(t)
dt

]
sin (2πfosct+ φ(t))

+d∆VC
dt

cos (2πfosct+ φ(t))

(6.18)

(b) Substituting (6.18) into (6.17), multiplying by sin (2πfosct+ φ(t)), and inte-

grating over one period to obtain the phase expression, we have

∆ω ≡ dφ(t)

dt
≈ 1

2CVosc

ˆ t

t−Tosc

dτ

Tosc
{in(τ) sin (2πfoscτ + φ(τ))} (6.19)

Mirzaei noted that by treating noise in as a sum of sinusoids with random

phase/amplitude, the above equation becomes Adler’s equation for oscilla-

tor injection locking [31]. This nonlinear relation hence displays a parasitic

frequency-control relationship from the noise.
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4. Spectrum:

(a) We first show that the frequency noise is roughly white, and then integrate to

obtain the phase spectrum:

R∆ω(τ) ≡ lim
T→∞

ˆ T

0

dt

T
{R∆ω(τ, t)} (6.20)

where

R∆ω(t, τ) = E [∆ω(t)∆ω(t+ τ)] =

1
(2CVosc)

2

´ t
t−Tosc

´ t+τ
t+τ−Tosc

dxdy
Tosc2
{

E [iw(x)iw(y) sin (2πfoscx+ φ(x)) sin (2πfoscy + φ(y))]}

(6.21)

and iw(t) represents Gaussian white noise with E [iw(t)iw(t+ τ)] =

2kBT
1
Rp
δ(τ) because we consider the equivalent differential tank for simplic-

ity in this example.

(b) It can be shown that by assuming φ(t) is roughly Gaussian, the above expres-

sions evaluate to

R∆ω(τ) =
kBT/Rp

(2CVosc)
2

1

Tosc
tri
(

τ

Tosc

)
(6.22)

where tri(.) is the triangle function as shown in Fig. 6.3. Provided that

f � fosc, S∆ω(f) ≈ constant, and hence roughly white.

(c) Thus, we have a spectrum

Sφ (fm) ≈ S∆ω(0)/ (2πfm)2 (6.23)
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0 0

Tosc-Tosc

R∆ω(τ)

(2CVosc)
2 Tosc

τ

R(0)=
1kBT/Rp

(a)

f

S∆ω(f)=ToscR(0)sinc2(fTosc)

+1
Tosc

+2
Tosc

-1
Tosc

-2
Tosc

(b)

Figure 6.3.: Frequency-Perturbation (a) Autocorrelation and (b) Spectrum
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6.1.3 Jitter Method

Description

The jitter method analyzes switching/ring/relaxation oscillators in the time domain

[24, 36, 39, 199–215]. Considering only white noise sources, the phase variance of a free-

running oscillator monotonically increases with time: σ2
φ(t) = (2πfoscκtot)

2t for some

constant κ2
tot–the jitter method seeks this constant. This technique best applies to single-

loop Nstage ring oscillators, such as the one in Fig. 2.6(a), where each of the (not neces-

sarily identical) delay cells6 has rise/fall times tr/f [k], respectively, and k = 1 . . . Nstage

denotes which stage, so fosc = [
∑Nstage

k=1 (tr[k] + tf [k])]−1. Fig. 6.4(a) illustrates the

definition of “rising/falling times” in this context. Therefore, rising-edge zero cross-

V(t)

t

tr[k]

Vth

VkVk-1

-Assuming same Vth in each stage

crossing switching threshold
triggers next stage to start

-Likewise for tf[k]

(a)

ideal
slope=2πfosc

t

t

slope=(2πfoscκtot)
2

2π

4π

φ(t)

σφ(t)
2

≡Ε[φ2(τ)]

Tosc 2Tosc

ideal

actual

(b)

Figure 6.4.: Jitter Method: (a) Rising/Falling Times, (b) Phase Random Walk and Vari-
ance

ings of the kth node correspond to the phase φ(t) crossing an integer multiple of the

2π + kπ(1 + 1/Nstage).7 Fig. 6.4(b) illustrates this definition of phase as the integral

of instantaneous frequency and displays the variance of phase as a function of time assum-

ing only white noise sources. N.B. the fact that the variance changes with time indicates

that the phase noise is nonstationary.

6These “delay cells” could also be interpretted as different regions of operation within a single delay cell,
e.g. if a transistor enters triode [215].
7The extra π is because each delay stage is assumed inverting.
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Procedure/Example

1. Perturbation: Break up the oscillation period into segments based on the ideal

switching approximation. During each segment, construct an equivalent model for

the switched-on part of the circuit; e.g. the simplified current and voltage wave-

forms for a single stage of the ring oscillator are shown in Fig. 2.6(b). The ca-

pacitor (timing) voltage waveform vk(t) becomes vk (t+ tj(t)) with noise, where

E
[
t2j(t)

]
= κ2t.

2. NMF: Within a single switching interval, we find the mean-squared NMF due to

changing bias point of the white-noise source by applying (5.2) as follows:

NMF 2
rms ≡

ˆ td

0

gd0(Vgs)

gd0,max

dt

td
=

ˆ td

0

K
(
VDD

2
(1 + t

td
)− Vt

)
K(VDD − Vt)

=
3
4
VDD − Vt
VDD − Vt

(6.24)

Hence, the accumulated timing voltage due to the noise and associated standard

deviation is (assuming tr = tf = td)

V (t) =

ˆ td

0

ip(t)

C
dt (6.25)

where C ≡ 2CoxWL is the total gate capacitance of both transistors. Thus,

σ2
v(td) ≡ E [V 2(t)] =

´ td
0

´ td
0

2kBTγg
eff
d0 δ(x− y)︸ ︷︷ ︸

=E[ip(x)ip(y)]

dxdy
C2

= 2kBTγµCox(3/4VDD−Vt)
C2 td

(6.26)

3. NTF: For the ring oscillator shown, the noise currents are already referred to the

timing voltage node, so NTF = 1.



78

4. “KICO”–the Jitter Slew-Rate Equation: Approximating the slew rate right before

the switching instant SR ≈ Ipeak/C, we obtain

κ2 ≡ σ2
v(td)

SR2(td)× td
= 2

8kBTγ

µCox

(3
4
VDD − Vt)

(VDD − V 4
t)

(6.27)

where the initial factor of two is to account for the noise from both NMOS & PMOS

transistors in the inverter, and C, Ipeak are in (2.16).

5. Spectrum: Substituting expressions for P from (2.17) and Ipeak from above, we

obtain

Sφ(fm) = κ2f
2
osc

f 2
m

≈ 4kBTγ

P

f 2
osc

f 2
m

(6.28)

Jitter-Method analysis thus correctly predicts that phase noise due to white [thermal] noise

is independent of the number of stages for single-ended ring oscillators, assuming fixed

power and frequency of oscillation. The analysis works because it explicitly takes into

account the hard switching, time-varying nature of the oscillator.

CAVEAT about using LTI analysis with Ring Oscillators

To illustrate the inadequacies of the LTI method for hard-switching oscillators, model

each delay stage as shown in Fig. 6.5. By symmetry of the oscillator, the effective KICO

gmVtiming

prev

Vtiming
prev
+

-

C Vtiming

+

-
in ip+

Figure 6.5.: Ring-Oscillator LTI Delay-Cell Model



79

for LTI Conversion analysis for each noise source k = 0, . . . , Nstage − 1 is

KICO,k (fm) =
Hk (fosc + fm)

1− T (fosc + fm)

2πjfm
2πj (fosc + fm)CVosc

; H ≡ −gm
2πjfC

; T ≡ HNstage

(6.29)

Loop gain T (fosc) = 1∠0◦ to satisfy the oscillation conditions, so |H|k ≈ 1. Thus, all

noise sources contribute roughly equally, according to LTI analysis. Approximating the

loop gain with a Taylor series (cf. [156]) for fm � fosc, we obtain

Sφ (fm) =
∑
k

|KICO,k|2

[2πfm]2
SI,k ≈

NstageSI
|2πfoscCVosc|2

1∣∣∣∣ ∂T∂f ∣∣∣
fosc

fm

∣∣∣∣2 (6.30)

where Vosc denotes the peak fundamental amplitude of a given ring-oscillator node and

SI ≡ 2kBT (γn + γp)gm. Substituting the above expressions for C, P , Vosc, and fosc, and

using gm ≈ µCox
1
2
VDD, we have

Sφ(fm) =
kBT (γn + γp)

2P

f 2
osc

f 2
m

Nstage (6.31)

so for a fixed power and oscillation frequency, LTI analysis predicts that phase noise wors-

ens as the number of stages Nstage increases. This result is incorrect [36, 107]. The error

occurs because LTI analysis assumes that |H|k ≈ 1 and hence that all noise sources con-

tribute to phase noise at all times during the oscillation cycle. This incorrect assumption

neglects the large-signal hard switching of the oscillator–once a stage has “switched,” it

is no longer sensitive to noise sources influencing its timing voltage. LTI analysis funda-

mentally cannot capture this time-varying behavior.
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Kvco1

Kico2

Kvco3

Vosccos ∫
Kvco1VDD(t)

+ Kico2Itail(t)

+ Kvco3VSS(t)

dt2πfosct+

VDD

Itail

VSS

Figure 6.6.: Conceptual Illustration of Direct-KICO Method

6.1.4 Direct KICO Method

Description

With “Direct-KICO” analysis, for noise concentrated at low frequencies, such as flicker

noise, we obtain a constant KICO by directly differentiating the expression for the oscil-

lation frequency (from periodic-steady-state (PSS) analysis of Section 2.3) with respect to

a given noise quantity [21, 51, 216–220], hence directly obtaining the current-controlled

oscillator gain as conceptually illustrated in Fig. 6.6. For ring-oscillator supply noise or

tail-current noise, this technique works quite well (cf. [36, 216]); however, for LC oscilla-

tors, the method is harder to apply unless one can obtain higher-order corrections to fosc

(e.g. for varactor-tuned oscillators see [217, 219]).

Procedure/Example

1. Perturbation: In the presence of low-frequency noise, the delay-cell voltage vk(t) =

p(fosct+
´ t
t0
dτ {KICOinoise(τ)}), where p(fosct) denotes a squarewave.

2. NMF: Because only one delay cell is on at a time, the effective spectrum for a single

noise source assuming gmp = gmn is

Seff,singleip,n (f) =
1

Nstage

Si,1/f (f)⇒ Seff,toti =
Kf

(CoxWL)f
g2
m (6.32)
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where the (two-sided–positive/negative frequency) flicker-noise spectrum of each

transistor is [27]

Si,1/f (f) =
1

2

Kf

CoxWLf
g2
m (6.33)

3. KICO and NTF: We find both the NTF and theKICO gain [for low-frequency noise]

at once by differentiating the oscillation frequency with respect to the noise source

in question:

Kdirect
ico = dfosc

din

∣∣∣
in=0

= d
din

2
CVDD

[∑2Nstage
k=1

1
I+ik

]−1

= 1
2Nstage2CVDD

= fosc
2NstageIav

(6.34)

where C, Ipeak are given in (2.16).

4. Spectrum: Hence, the phase noise due to flicker noise is

Sφ(fm) =
K2
vco,LF

f 2
m

Seffi (fm) ≈ 8Kf

NstageP

f 2
osc

f 3
m

(6.35)

where P is given in (2.17). Thus, flicker noise performance improves as Nstage

increases for fixed frequency of oscillation and power [36, 107].

CAVEAT: the direct-KICO method does NOT work for white noise, e.g. were we to use

the low-frequency VCO gain for white noise, we would get the following incorrect result:

S
white,V CO[wrong]
φ (fm) =

K2
vco,LF

f2m
Swhitei

= kBT (γp+γn)

4Nstage2P
f2osc
f2m

(6.36)

which predicts phase noise ∝ 1/Nstage
2, but the phase noise is actually independent of

Nstage (cf. Section 6.1.3).
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6.1.5 Phase-Sensitivity Method

Description

The Phase-Sensitivity Method [44, 58, 69, 71–73, 107, 113–115, 130, 189–198] views

the oscillator as a system converting (noise) inputs into phase/amplitude (perturbations),

as shown in Fig. 6.7. To be consistent with Section 6.1.1, we show M noise inputs, one

...
i1

iM
...

∆φ
∆vc1

∆vcn

osc.

Figure 6.7.: Phase-Sensitivity Method Oscillator Model

phase output, and n amplitude perturbations, corresponding to the n [capacitor-voltage]

state variables of the oscillator. For the simplified model of the NMOS LC oscillator in

Fig. 2.5(c), we have two state variables VC and VLe ≡
√

L
C
iL, as illustrated on the “phase

protrait” of VC v. VLe in Fig. 6.8 that juxtapposes the phase portrait with corresponding

time-domain waveforms. As shown in the figure, an impulse, i.e. an instantaneous change

to one of the state variables, leads to amplitude and phase error. Intuitively, perturbations

near zero crossings cause greater steady-state phase perturbation, while those occuring

when the given state variable is maximum cause little phase perturbation but more am-

plitude perturbation. Generalizing to all points within the oscillation cycle, the “impulse-

sensitivity function” (ISF) ΓCo (2πfosct) weights the contributions of noise sources de-

pending on when during the cycle they occur–e.g. in Fig. 6.8, ΓCo(2πfosct1) ≈ 0, while at

t2, |ΓCo(2πfosct2)| is roughly maximum. Thus, phase sensitivity to impulse perturbation

depends on the time within the cycle that the impulse occurs. Hajimiri and Lee [114] also

demonstrated with simulation that the steady-state phase shift is nearly proportional to the

state-variable perturbation at a given time during the cycle, provided that the perturbation

is much less than the state variable’s maximum value.
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+
−

Vpulse(t;tk=1,2)

Co

Co

=CoVinjδ(t-tk)

Vo

0Ipulse(t;tk=1,2)

Qinj

(a)

t

t

t

0

t1
t2

@t1

t

VLe

VC

VLe

VC

N
.B

. Perturbations
in V

C  direction only

VLe

VC

VC(t)

@t1

@t1

@t2

@t2

@t2

t3

@t3

@t3

@t3

φ1

φ2

2πfosc

φ2

φ1

2πfosc

Ipulse(t;tk=1,2)

CASE 3:
no Ipulse

CASE 2:
Ipulse at t2

CASE 1:
Ipulse at t1

(b)

Figure 6.8.: Oscillator Phase-Perturbation: (a) Impulse Current Injection, (b) Correspond-
ing Capacitor-Voltage Waveforms

Procedure/Example

1. Perturbation: From the above observations, Hajimiri and Lee proposed the follow-

ing linear, periodically time-varying (LPTV) model for the response of the oscilla-

tor’s phase:

∆φ(t) ≡
∑
k

ˆ t

t0

dτ

{
ΓCok (2πfoscτ)ik(τ)

qmax

}
(6.37)
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where qmax ≡ CoVosc, Vosc is the peak fundamental amplitude across Co, and ΓCok is

a unitless, periodic (2π) function that captures the periodically changing sensitivity

of the phase over each cycle. The subscript k indicates that each noise source in

general has a different sensitivity function because it is located in a different place

in the circuit. Superscript Co indicates that all noises’ effects are refered to the

capacitor voltage VCo .

2. NMF, NTF: Calculated in same fashion as discussed in Section 6.1.1 (see Table

6.2(a)).

3. “KICO:” For the LC NMOS oscillator, using the equivalent differential tank, qmax ≡

CoVpk,fund = C(2Vosc). Hence, for differential capacitor Co = C, we can approxi-

mate [44, 114]:8

ΓCo (θ) ≈ qmax
Co

d
dθ
VCo∑

k(
d
dθ
VCk)

2
=

sin (θ)

−2
(6.38)

(cf. [114] and Appendix B.6 for more accurate procedures to find Γ). The overall

ISF is

ΓCok (θ) ≡ Γeff (θ) = ΓCo (θ)NTFk (θ)NMFk (θ) (6.39)

Thus, we can intuitively think of KICO = ΓCo (x)
qmax

as weight in time (during the

cycle) for the noise sources, the NTF as weight due to circuit placement of the noise

sources, and the NMF as an adjustment to the noise statistics based on changing

bias.

4. Spectrum: To obtain Sφ (fm) using (6.37), suppose the “noise” is

8Note, however, that using the derivative (“tangent”) approximation for the ISF, while often good for LC os-
cillators, can prove extremely misleading for ring oscillators. In fact, for a 3-stage ring oscillator, Srivastava
and Roychowdhury obtained an analytic expression for sensitivity obtained with the FPE method, demon-
strating that a node’s phase sensitivity is in fact maximum when the next node undergoes a sharp transition
[186].
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in(t) = Ik (fm) cos[2π(kfosc + fm)t] with fm/fosc � 1 and expand the sensitivity

function ΓCok in a Fourier series–for simplicity assume that it is an even function:

ΓCok (θ) = c0
2

+
∑∞

n=1 cn cos (nθ). Substituting the expansion into (6.37):

φ(t) ≈ cnIn (fm)

2qmax[2πfm]︸ ︷︷ ︸
φpeak

sin(2πfmt) (6.40)

P (fosc + fm)

P (fosc)
=

V 2
SB,peak/2R

V 2
carrier,peak/2R

=

(
φpeak =

√
2φrms

2

)2

↔ 1

2
Sφ (fm) (6.41)

Interpreting E [|In (fm) |2] = 2Si(nfosc + fm) (cf. Section 6.1.1), the total single

sideband power due to phase modulation is given by

Ptot(fosc + fm)

P (fosc)
=

2

(4qmax[2πfm])2

∞∑
n=0

c2
n 2Si(nfosc + fm)︸ ︷︷ ︸

E[|In|2]

(6.42)

where the first factor of two is to account for both nfosc± fm. This noise mixing ac-

tion intuitively means that only noise near integer multiples of fosc matters. Further

symmetry in the ISF, such as that for ring-oscillator supply noise or differential-pair

tail-current noise, lessens the number of harmonics that matter, as illustrated in Fig.

6.9. Thus,

0 1 2 3 4 65 7

f/fosc

Device Noise

Svv(f)

KEY

marker "relevant noise bands" for:

osc. noise in general

tail-current noise

N=3-stage ring supply noise

-1

Figure 6.9.: Frequency-Conversion Viewpoint of ISF [114]
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Ptot(fosc + fm)

P (fosc)
≈ 1

2 (qmax[2πfm])2

 Γ2
rmsSi,const , white

Γ2
DCSi,flicker (fm) , flicker

 ≈ 1

2
Sφ (fm)

(6.43)

where Γ2
rms ≡

´
2π

dθ
2π

{
Γ2
eff (θ)

}
, ΓDC ≡

´
2π

dθ
2π
{Γeff (θ) }. Comparing to the

jitter method, we find κ2 =
Γ2
rmsSi,white

(qmax[2πfosc])
2 . Table 6.3 lists the values of Γ2

rms for the

LC NMOS oscillator. Substituting these values, we obtain

Sφ (fm) = kBT

(2CVosc[2πfm])2

(
1
Rp

+1
2

(
1−

[
1
2

Vosc√
Itail/K

]2
)
γ
√
KItail

+ 1
4

(
Vosc√
Itail/K

)2

γgd0tail

) (6.44)

Note the analytic confirmation of the intuitive behavior that for small amplitudes, the

switch transistors’ noise is more significant because they act like a differential class-

A amplifier, while the tail noise is less significant because it appears as “common

mode.” However, for larger amplitudes, we see that their roles reverse: intuitively,

the switch transistors appear as a cascode device when fully switched, and the tail

current noise feeds directly to the output [113].

Table 6.3: Effective Γ2
rms

Rp1,2 Msw1 +Msw2 Itail

1
8

1
4

(
1−

[
1
2

Vosc√
Itail/K

]2
)

1

1+
Vosc√
Itail/K

1
32

(
Vosc√
Itail/K

)2
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6.1.6 Fokker-Planck-Equation (FPE) Method

Description

The FPE Method first defines amplitude/phase perturbations to ensure that amplitude

noise remains small but that phase noise is accumulated [35, 43, 47, 175]9. The technique

then shows that the phase distribution is asymptotically Gaussian and solves for constants

that characterize that distribution and can be substituted into a known form for the spec-

trum Sφ. The Fokker-Planck equation describes the distribution of a random process,

rather than the process itself. Ham/Hajimiri [63, 64] also form a Fokker-Planck equa-

tion for the phase distribution, but instead of rigorously solving the math, they obtain the

spectrum constant with an intuitive argument based on the phase-sensitivity method and

a comparison to Einstein’s Brownian motion paper [49], arguably the first application ap-

pearance of the FPE method.

Procedure/Example

1. Perturbation: Noise perturbs the oscillator’s amplitude and phase:

~v(t) = ~vss

(
t+

φ(t)

2πfosc

)
+ ∆~v

(
t+

φ(t)

2πfosc

)
(6.45)

9Kaertner’s original paper [175] chose to decompose perturbations into components orthogonal and parallel
to the oscillator limit cycle, and Li et al. provide an intuitive discussion for a transmission-line oscillator with
this orthogonal projection [187]; however, most later formulations typically use the Floquet decomposition
to decouple phase and amplitude responses, making the phase response independent of the choice of state
variables [41,43]. The Floquet decomposition can also be generalized for injection-locked oscillators [188].
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where the vector ~v denotes the state-variables of the oscillator, e.g. the state-variable

formulation (6.46) of the LC-NMOS oscillator derived from (2.8)-(2.9) including

noise sources is

d
dt

2C


VC1

VL1e

VC2

VL2e


︸ ︷︷ ︸

~q(~v)=2C~v

=



−2VL1e√
L/C
− 2VC1

Rp
+ f(VC1 − VC2, in) + in1 + ir1

2VC1√
L/C

−2VL2e√
L/C
− 2VC2

Rp
+ f(VC2 − VC1, in) + in2 + ir2

2VC2√
L/C


︸ ︷︷ ︸

−~inln(~v,~inoise)

~inoise ≡



in1(t)

in2(t)

intail(t)

inr1(t)

inr2(t)



(6.46)

where in = in1 + in2 + intail and f(Vdm, in) is given by (2.10). Substituting (6.45)

into (6.46), neglecting 2nd-order term dφ(t)
dt

d
dt̃

∆~v
(
t̃
)
, and setting t̃ ≡ t + φ(t)

2πfosc
, we

obtain10

dφ(t)
dt

d
dt̃
~vss
(
t̃
)

+ d
dt̃

∆~v
(
t̃
)
≈

C−1
(
~vss
(
t̃
))
G(~vss

(
t̃
)
)∆~v

(
t̃
)

+ C−1
(
~vss
(
t̃
))
NTF (~vss

(
t̃
)
)~inoise

(6.47)

where

C(~v) ≡ ∂~q

∂~v
, G(~v) ≡ ∂~i(~v, ~inoise)

∂~v
, NTF (~v) ≡ ∂~i(~v, ~inoise)

∂~inoise

∣∣∣∣∣
~inoise=~0

(6.48)

10Swain [181] has solved the special case of Coram’s 2D oscillator for high noise levels by solving for the
distribution exactly without neglecting these higher-order terms.
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Scalar φ(t) denotes phase error, and vector ∆~v
(
t̃
)

denotes amplitude error in all n

capacitor voltages/inductor currents.

2. NMF/NTF: Calculated similarly to previous methods, except now, we explicitly

include all state variables:

NMF
√
Smax ≡

√
2kBTγ



√
gd0;1 (θ) 0 0 0 0

0
√
gd0;2 (θ) 0 0 0

0 0
√
gd0tail 0 0

0 0 0
√

2
γRp

0

0 0 0 0
√

2
γRp


(6.49)

gd0;1,2 (θ) ≈ gm1,2 =
√
KItail

(
x1,2 +

√
1− x2

1,2

)
x1,2 ≡ Vdm

2
√
Itail/K

= ±Vosc cos(θ)√
Itail/K

(6.50)

NTF ≡ ∂~inln
∂~inoise

∣∣∣
~inoise=~0, ~v=~vss(θ/2πfosc)

= −


1 + Ai1 (θ) Ai1 (θ) Ai1 (θ) 1 0

0 0 0 0 0

Ai2 (θ) 1 + Ai2 (θ) Ai2 (θ) 0 1

0 0 0 0 0


(6.51)

Ai1,2 ≡
∂I1,2

∂in

∣∣∣∣
in=0, ~v=~vss(θ/2πfosc)

=
−1

2

1 +
x1,2√

1− x2
1,2

 (6.52)

3. KICO: Conceptually, we want to “divide” by the phase coefficient d
dy
~vss
(
t̃
)

in

(6.47). This feat is accomplished by multiplying by a solution to the adjoint lin-

ear companion system [47]. Intuitively, the adjoint system has the same behavior

as the forward system, except with the time axis reversed, e.g. the linear system
dv
dt

= −1
RC
v has associated adjoint system dva

dt
= +1

RC
va–their product is a constant, as

shown in Fig. 6.10. Hence, the adjoint linear companion system is
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v(t) va(t)

t

product=const.

Figure 6.10.: Adjoint System Response Illustration

d

dt̃
∆~vTa (t̃ ) = −∆~vTa

(
t̃
)

Ω(~vss
(
t̃
)
) (6.53)

Ω[~vss
(
t̃
)
] ≡

[
∂~q

∂~v

]−1
∂~inln
∂~v

∣∣∣∣∣
~v=~vss(t̃ )

= 2πfosc


−1
Qp

+ 1
Qa
−1 − 1

Qa
0

1 0 0 0

− 1
Qa

0 −1
Qp

+ 1
Qa
−1

0 0 1 0


(6.54)

1

Qp

≡ 2

RpG0

,
1

Qa

≡
√
KItail
2G0

1− 2x2

√
1− x2

(6.55)

whereG0 ≡ 2
√

C
L

and x is given in (6.52). Assuming negligible harmonics (Qa,p →

∞), we obtain

~KT
ico (θ) ≈ A[cos (θ) , sin (θ) ,− cos (θ) ,− sin (θ) ]

+ B[sin (θ) ,− cos (θ) ,− sin (θ) , cos (θ) ]
(6.56)

Next, normalize: ~KT
ico

d~qss(t̃ )
d(2πfosc t̃ )

= 1⇒ A = 0, B = −1/(4CVosc) [rad/s/A]. This

vector ~KT
ico(t) is actually a “Floquet eigenvector,” which is in general not exactly

tangent to the oscillator limit cycle [47,183,222,223] (recall the picture of the limit

cycle in Fig. 2.10); often the tangent vector is a good approximation, but not always

[176,179]. As mentioned in Section 2.5.1, using these (n+1) quantities φ(t), ∆~v(t̃ )

to describe n state-variable deviations allows more than one choice of perturbations.

We choose that the amplitude perturbations satisfy ~KT
ico(t̃ )∆~v

(
t̃
)

= 0. Hence, mul-
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tiplying by this periodic solution to the “time reversed” or adjoint linear companion

equation decouples the amplitude and phase:

dφ(t)

dt
= ~KT

ico(t̃ )NTF (~vss
(
t̃
)
)~inoise (6.57)

d

dt̃
∆~v
(
t̃
)

= Ω(~vss
(
t̃
)
)∆~v

(
t̃
)

(6.58)

Note that the equation for the phase is still nonlinear in φ because t̃ = t + φ(t)
2πfosc

,

but the amplitude equation is linear. Furthermore, it can be shown that defining

amplitude perturbations in this fashion ensures that ∆~v
(
t̃
)

remains small as long

as the instantaneous noise currents~inoise remain small, while φ(t) can grow without

bound [47]. This situation properly reflects physical oscillator behavior, as discussed

in Section 2.5.1.

4. Spectrum: The goal is to show that the phase distribution is asymptotically (for

large t) Gaussian and hence easy to deal with. Therefore, we want to show that φ

has characteristic function Φ(ξ, t) ≡ E
[
ejξφ(t)

]
≈ ejξµ(t)− 1

2
ξ2σ2(t) for large t. For

simplicity, we show the case for white noise; however, the corresponding case for

flicker noise can also be shown [26].

(a) First, re-write (6.57) in standard stochastic-differential-equation (SDE) form

[49]:

dφ(t) = ~pT
(
t+

φ(t)

2πfosc

)
d ~W (t) (6.59)

~p =
[
~KT
ICO ×NTF ×NMF ×

√
Smax

]T

= sin(θ)
4CVosc



(1 +Ai1 (θ) −Ai2 (θ) )
√
SM1 (θ)

(−1 +Ai1 (θ) −Ai2 (θ) )
√
SM2 (θ)

(+Ai1 (θ) −Ai2 (θ) )
√
Stail√

SRp/2

−
√
SRp/2


(6.60)
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where ~p has units 1/
√
sec. Roughly speaking d

dt
~W (t) = ~iunmodnoise , i.e. unmodulated

white noise, and the Wiener process ~W (t) has the following properties:

•E
[
~hT (t)d ~W (t)

]
= 0 (zero mean)

•E
[
~hT (t)d ~W (t)d ~W T (t)~h(t)

]
= ~hT (t)~h(t)dt; roughly “dW (t) ≈

√
dt”

•Given iwhite (t) with two-sided spectrum 2kBT
R

, the corresponding scaled Wiener

process is
√

2kBT
R
dW (t).

(b) Hence, we have ∂
∂t
E
[
ejξφ(t)

]
= 1

dt
E
[
jξejξφ(t)dφ(t)− ξ2

2
ejξφ(t) (dφ(t))2

]
where

we include up to second-order derivatives in φ(t) because the derivatives involve

white noise, which is not smooth. Applying the properties above, we have

∂
∂t
E
[
ejξφ(t)

]
= E

[
− ξ2

2
ejξφ(t)~pT

(
t+ φ(t)

2πfosc

)
~p
(
t+ φ(t)

2πfosc

) ]
= − ξ2

2

∑
k,n E

[
~P T
k
~P ?
ne

j[(ξ+k−n)φ(t)+(k−n)2πfosct]
] (6.61)

where ~Pk denote the Fourier coefficients of periodic vector function ~p.

(c) Substituting the characteristic function Φ(ξ, t) ≡ E
[
ejξφ(t)

]
, we obtain

d

dt
Φ(ξ, t) =

−ξ2

2

∑
k,n

~P T
k
~P ?
nΦ(ξ + k − n, t)ej(k−n)2πfosct (6.62)

By substituting the characteristic function11 for a Gaussian random variable Φg(ξ, t) =

ejξµ(t)− 1
2
ξ2σ2(t), one finds that the equation is approximately satisfied for large t and

furthermore that [47]

µ(t) ≈ constant, σ2(t) ≈ (2πfoscκ)2t (6.63)

κ22πfosc
2 =

∑
k

~P T
k
~P ?
k = p2

rms =

ˆ
2π

dθ

2π

{
~pT
(

θ

2πfosc

)
~p

(
θ

2πfosc

)}
(6.64)

11It can be shown that (6.62) corresponds to the following Fokker-Planck equation ∂D
∂t = 1

2
∂
∂φ2 [~pT (t +

φ/2πfosc)~p(t+ φ/2πfosc)D] where D is the probability distribution function.
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(d) Again using the properties of the Wiener processes mentioned above, we find

that asymptotically [26],

E [φ(t)[φ(t+ τ)− φ(t)]] = 0 and that E [φ(t)φ(t+ τ)] = (2πfoscκ)2 min(t, t+ τ),

which is the autocorrelation function 12 so Sφ (fm) = κ2
(
fosc
fm

)2

.

(e) Evaluating the integral above and neglecting the higher-order terms yields roughly

Sφ (fm) = kBT

(2CVosc[2πfm])2

(
1
Rp

+1
2

(
1−

[
1
2

Vosc√
Itail/K

]2
)
γ
√
KItail

+ 1
4

(
Vosc√
Itail/K

)2

γgd0tail

) (6.65)

For small oscillation amplitude, Ai1 (θ) − Ai2 (θ) ≈ 0, and we recover the LTI

expressions of Table 6.2(a)– in particular, the tail-current noise plays only a small

role for small-amplitude oscillations. Flicker-noise expressions are analogous to

those derived in Section 6.1.5 cf. also Appendix B.7. Thus, we see the FPE method

simplifies to the LPTV conversion method (1) when we consider the same number

of harmonics and (2) when the limit-cycle tangent is a good approximation for the

Floquet eigenvector (adjoint solution).

6.2 Summary and Comparison

6.2.1 Discussion

Table 6.4 compares the analysis techniques and indicates which aspects they include/omit.

LTI analysis is the simplest, but cannot capture noise-modulation effects. The FPE method

is the most rigorous and gives the most systematic procedure to write phase-noise equa-

tions, albeit the most complicated. The Cadence PNOISE analysis is derived from the

FPE method; however, amplitude noise ∆~v is sometimes included in the plotted values
12Thus, we know that φ(t), φ(t+τ) are individually Gaussian, and the increments φ(t), [φ(t+τ)−φ(t)] are
uncorrelated. Uncorrelated Gaussian variables are independent, so the two must also be jointly Gaussian.
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Table 6.4: Comparison of Analysis Methods
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Types of Noise Effects Captured
white 1 1 1 1 0 1 1
flicker 0 1 1 0 1 1 1

Oscillator Nonidealities
NMF (changing device bias

point)
0 1 1 1 0∗ 1 1

NTF mixing 0 1 1 1 0 1 1
Equation for Phase

Equation Type‡ LTI LPTV NLN LPTV LTI LPTV NLN
Assume small device noise 1 1 1 1 1 1 1

Assume small φ(t) 1 1 0 0 0 1 0
Analysis

Easiest Oscillator to Analyze LC LC LC RO RO ALL ALL
Complexity (1=least, 5=most) 1 2− 4† 3− 5† 2 2− 3† 4 5

Most Common Use HAND HAND CAD HAND HAND CAD CAD

* Not explicitly, but can find "effective" spectrum
† depending on # harmonics included and whether NTF/NMF included
‡ Equation for phase φ is either LTI, LPTV or nonlinear (NLN).
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[182]. The harmonic-balance (HB) formulation of the modulation method is equivalent

to the FPE method provided that Floquet normalization is used and sufficient harmonics

are considered (cf. Appendix B.3 and [35, 139]). The “small phase” assumption effec-

tively means that only the nonlinear phase equations of the Modulation/Fokker-Planck

methods can capture injection-locking behavior [30]; however, the LPTV phase equation

is sufficient to capture most noise of interest, including flicker.

For hand calculation, the conversion method is simplest for LC oscillators, while the

Jitter method and direct-KICO method are most straightforward for ring/relaxation os-

cillators. Furthermore, the Jitter Method is extremely accurate when the ring oscillator

exhibits hard switching [24]; this is precisely the case when the conversion method is the

least accurate, so these two methods complement each other.

6.2.2 When to Use Which Method

1. Conversion/LTI: Resonant oscillators with little noise modulation (e.g. LC-tank-

resistor noise and noise whose noise transfer function does not involve any switching

networks.

2. Conversion/LPTV: Resonant oscillators and noise sources whose (1) bias points are

modulated (e.g. switch/negative-resistance transistors in differential LC oscillator),

or (2) transfer function to the output involves passing through a switching network

(e.g. tail current of differential LC oscillator).

3. Modulation: Chiefly for accurate simulation of resonant oscillators; however, the

“slowly varying” assumption is useful for mode analysis [19, 33] and squegging

analysis [196].

4. Jitter: Ring oscillators’ white noise sources
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5. Direct KICO: Ring oscillators’ flicker noise sources and supply noise sources [216]

(assuming fmaxvdd−noise � fosc).

6. Phase Sensitivity: The tangent approximation for the ISF is useful for resonant

oscillators [44, 192, 193, 196, 197] with a small caveat about coupled LC quadrature

oscillators [193]. Also, the sensitivity viewpoint gives useful design insight [113,

115].

7. FPE: Mainly for accurate simulation; however, sketching the equations as illustrated

in Section 6.1.6 can yield insight into what type of modulation to expect and hence

can guide simplification of the oscillator to the simplest possible model while still

capturing the desired behavior (noise modulation, flicker upconversion, etc.). This

information can then be used to apply a simpler approach for hand calculation, such

as the Conversion Method, and can indicate how many harmonics to consider or

what degree of noise modulation to include.

6.2.3 Phase-Noise Numerical Examples

Table 6.5 lists the numerical phase-noise results obtained by substituting the values

from Table 2.1 on page 12 into the corresponding equation listed in the table columns.

Noise contributions are subdivided by noise source.

Because we have employed a single-harmonic approximation for the LC-NMOS oscil-

lator, the LPTV, modulation, phase-sensitivity, and FPE methods all yield nearly identical

results. Numerical simulation in Cadence SPECTRE (MMSIM7) agrees with these meth-

ods to within 1dB, indicating the accuracy of these methods and of the harmonic approx-

imation for the LC oscillator considered. On the other hand, we see that the LTI method

has a large error, and even if we fudge the result by neglecting the g′1 term, LTI analysis

still cannot capture tail-current noise.
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Table 6.5: Phase Noise Sφ(10kHz)[dB(rad2/Hz)] (a) LC NMOS Oscillator, (b) Ring
Oscillator

(a)

Conversion Mod. Ph. Sens. FPE SPECTRE†

LTI LTI(smart) LPTV
Equation (6.14) (6.14)‡ (6.15) (6.23) (6.44) (6.65) n/a
Rp1,2 -137.88 -87.43 -87.43 -87.43 -87.43 -87.43 -86.96

M1 +M2 -139.36 -88.91 -89.05 n/c -89.10 -89.10 -88.70
Itail ∗ ∗ -112.14 n/c -112.14 -112.14 -111.71

(b)

Jitter Direct-KICO SPECTRE†

Equation (6.28) (6.35) n/a
Thermal -76.29 ∗∗ -76.78
Flicker ∗∗ -65.85 -66.20

∗ = method would predict no phase noise
n/c = not calculated, but method can account for this noise

∗∗ = method cannot calculate this noise
† = results of PNOISE “jitter” analysis and dividing by two for “two-sided”

(positive/negative frequencies) spectrum
‡ = fudge by setting g′1 = 0

Table 6.5(b) shows the white and flicker phase noise components for the ring oscillator

whose values are give in Table 2.1(b). Again, we see that for ring oscillators, the phase

noise due to both flicker and thermal noise can be accurately predicted by a combina-

tion of the Jitter and Direct-KICO methods (<1dB discrepancy with SPECTRE numerical

simulation).
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7. DESIGN/ANALYSIS CASE STUDY: HIGH-PSR, QUADRATURE MRO IN 90-NM

CMOS

This section details the design-oriented analysis of our proposed high-power-supply-

rejection (PSR) quadrature multi-loop ring oscillator, shown in Fig. 7.1, to demonstrate

both the application of the MRO analysis framework to design as well as the potential

performance benefits that multi-loop ring oscillators can attain.

VI VQ

VIBVQB

VDD
V

D
D

V
D

D

VDD

Buffer Primary Path:
  - supply isolation
  - phase shift ⇒  freq. control

Latch Secondary Path:
  - gain to sustain osc.
  - force 180o

Vinbuf

Vinlat

Vtune
freq Vout

∆φ

VDD

M1

M2

CL

buf out

lat

Figure 7.1.: Proposed Oscillator: Conceptual Block Diagram

Intuitively, the source-follower delay-cell structure isolates the oscillator core from

the supply through the transistor’s saturation drain-source resistance rds. The oscillation

amplitude is established by the latch transistor entering the triode region. As long as

the peak oscillation amplitude Vosc satisfies Vb + Vosc < VDD + Vt1 (where Vb is shown

in Fig. 4.3(a)), the source-follower transistor M1 will remain in saturation, have a high

drain-source impedance, and therefore provide improved supply rejection.
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7.1 Oscillation Frequency

To derive these relationships more rigorously, we subdivide the unit delay cell into

the phase-shift and nonlinear buffer/latch components as indicated in Fig. 4.3(a). These

sections determine the steady-state oscillation frequency fosc by analyzing the LTI phase-

shift network ( Section 7.1.1) and the nonlinear buffer/latch (Section 7.1.2).

7.1.1 Phase-Shift Network

Overview

The following analysis will show that the phase shift network has a transfer function

H = Vg/Vinbuf with magnitude response ≈ − 3dB and phase response ≈ − arctan
(
f
f2

)
where

f2 =
0.159

RvCc||[Cgs1 + Cgd1 + Cd]
(7.1)

and where coupling capacitance Cc, gate capacitances Cgs/d1, drain capacitance Cd, and

variable resistance Rv are in Fig. 4.3(a). For fosc ∈ [0.1, 10]f2, we hence obtain a roughly

flat-magnitude phase-shift network.

Derivation

First, consider the bias/phase-shift network in Fig. 4.3(a) and (b). Because we ad-

just the frequency by tuning control voltages Vb and Vcp differentially, we consider the

two extremes of the tuning range: (i) high oscillation frequency (Rv � Rb) and (ii) low

oscillation frequency (Rv � Rb).
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Treating the bias network as linear and performing superposition, we obtain the trans-

fer functions from the Vinbuf (VI) and Vout (VQ) nodes to the gate voltage Vg:

HI(s) ≡ Vg
VI

= 1

1+
Rv+1/sCc

Rb||(1/s[Cgs1+Cgd1+Cd])
= 1

1+ Zs
ZL

HQ(s) ≡ Vg
VQ

= 1

1+
1/sCgs1

Rb||(1/s[Cgd1+Cd])||(Rv+1/sCc)

(7.2)

Thus, the composite response is the “quadrature sum” of the two transfer functions:

Vg = HIVI +HQVQ = (HI − jHQ)︸ ︷︷ ︸
Hnet

VI (7.3)

In case (i) (Rv � Rb), we define fv ≡ 0.159/(RvCc) � fb ≡ 0.159/(Rb[Cgs1 +

Cgd1 + Cd]). For the component values in Table 7.1 and V freq
tune =1 V for high-frequency,

Rv
−1 = Kp(V

freq
tune − Vtp) = 4.32mf, so fb =71 MHz and fv =3.8 GHz, which indeed

satisfies our assumption. Adding the two component transfer functions HI,Q in quadrature

yields Fig. 7.2. The net response is hence roughly a first-order high pass magnitude

with a two-pole phase response. For the component values in Table 7.1 and approximating

Cgs1 ≈ 4
5
Cox (WL)1 and Cgd1 ≈ 1

5
Cox (WL)1, the pass-band gains of HI and HQ are(

1 +
Cgs1+Cgd1+Cd

Cc

)−1

≈ -4.19 dB and
(

1 +
Cgd1+Cd
Cgs1

)−1

≈ -2.58 dB, respectively, so we

can approximate |Hnet| ≈ -3 dB and ∠Hnet ≈ − arctan
(
f
f2

)
, f2= 0.159

RvCc||[Cgs1+Cgd1+Cd]
.

In case (ii) (Rv � Rb), the analysis is similar, except now fv � fb. It can be shown

that the net response takes the same form as before except now, f ′2= 0.159
Rb[Cgs1+Cgd1+Cd]

, so

the phase response is not sensitive to Rv. Because our frequency-tuning scheme depends

on adjusting the phase shift into the buffer cell, we must ensure Rv ≤ Rb so the tuning

response remains a strong function of Rv.
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Table 7.1: Proposed-MRO Component and Parasitic Values

Rb [kΩ] 20
Rg [kΩ] 5.74
Cc [fF] 180.1

Copbuf [fF] 50
Kp [mA/V2] 5.43

(W/L)p [µm/µm] 8(.8/.09)
Vtp [V] 0.205
Coxp [fF/µm2] 14
Cd/s [fF] 8
K1 [mA/V2] 131.8

(W/L)1 [µm/µm] 48(1.5/.09)
Vt1 [V] 0.3165
K2 [mA/V2] 65.92

(W/L)2 [µm/µm] 24(1.5/.09)
Vt2 [V] 0.2743
Coxn [fF/µm2] 16
VA [V] 1.05

Kx ≡ µxCox
(
W
L

)
x

7.1.2 Buffer/Latch Nonlinear Analysis

Overview

Next, to determine the steady-state frequency of oscillation, we consider the nonlinear

buffer/latch component of the delay cell. Substituting the results for the phase-shift net-

work shown in Fig. 4.3(a), approximating the equivalent lumped capacitance to ground

seen by the delay cell CL as

CL ≈ Copbuf + Cgs2 + 4Cgd2 + Cgs1||(Cc + Cgd1 + Cd) + Cc||(Cgs1 + Cgd1 + Cd) (7.4)
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f

≈1/(1+Cp/Cgs1)

f
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.159
fCgs1

"I" "Q"

fv

Cp ≡ Cgd1 + Cd

Figure 7.2.: Phase-Shift Network Response: Hnet = HI − jHQ “Algebra on the Graph”
(case (i) shown)

and performing harmonic balance (HB) analysis with a modified square-law model of the

FETs, we will obtain the oscillation frequency:

fosc ≈
f2

1 + f2
f0

(7.5)
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where

f0 = 0.159
K1

CL
(Vb − VDC − Vt1)

(
1 +

VDD
VA

)
|H|√

2
(7.6)

in which |H| ≈ 0.707; K1 = µnCox
(
W
L

)
1
; VDC is the DC level of the oscillator waveform

(derived in Section 7.1); Vt1 is the threshold voltage of M1; and VA is the “Early Voltage”

s.t. rds1 = VA
ID

[224].

Details

Examining Fig. 4.3(a), and exploiting the quadrature symmetry of the circuit as de-

scribed by (5.1), we have the following single-harmonic approximation for the node volt-

ages:

VI (θ) = VDC + Vosc cos (θ + 90◦)

Vg (θ) = Vb + |H (fosc) |Vosc cos (θ + 90◦ + ∠H (fosc))

VQ,QB (θ) = VDC ± Vosc cos (θ)

(7.7)

where Vosc denotes the fundamental amplitude of oscillation, H (fosc) = Hnet (fosc) from

(7.3), and VDC denotes the DC level of the oscillator output voltages.

Applying Kirchoff’s Current Law (KCL) to the Vout node in the delay-cell inset of Fig.

4.2,
CL

d
dt
VQ − K1

2
(Vg − VQ − VT1)2

(
1 +

VDD−VQ
VA

)
+ K2fmos (VDC − Vt2, VQB, Vt2 + VQ) = 0

(7.8)

where Vg,Q,QB are given above, VA denotes the “Early Voltage” s.t. rds ≡ VA/ID, and

fmos is a function to model transistor drain current at the edge of the triode and saturation

regions (explained below).

To model the behavior of a transistor at the edge of triode and saturation, we note that

the square-law model for a MOSFET, neglecting channel-length modulation and short-
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channel effects, can be written as ID = K
(
VovVx − 1

2
V 2
x

)
, where Vov ≡ Vgs − VT and

Vx = min (Vov, Vds). Approximating min (x, y) ≈ √xy, we can write

ID ≈ KVov

(√
VovVds −

1

2
Vds

)
≈ Kfmos(V0, ∆Vov, ∆Vds) ≡

∑
i,j

ai,j
(∆Vov)

i

i!

(∆Vds)
j

j!

(7.9)

at the border between triode and saturation, where aij ≡ ∂i+jID
∂V iovV

j
ds

are Taylor-series coeffi-

cients evaluated about Vds = Vov = V0. Substituting up to 3rd-order Taylor-series terms to

be able to find the oscillation amplitude [28] and performing HB analysis [225], we obtain

the fundamental-component:

−K1µxVosc
2

[Vb − VDC − VT1]
[
1 + VDD

VA

]
−K1

2
µ2x
8
V 3
osc

VA

−K2

2

(
VDC − Vt2

2

)
Vosc

+ K2Vosc
VDC−Vt2

[
9
64
V 2
osc + 3

16
V 2
t2

]
+ j2πfoscCLVosc

2

= 0

(7.10)

µx ≡ jH(fosc)− 1 (7.11)

SubstitutingHnet (fosc) from (7.3) into (7.10), solving the imaginary part for the frequency

yields (7.5),where the DC component is obtained from DC analysis (neglecting effect of

even-order harmonics on the DC level):

VDC ≈

√
K1

K2
(Vb − Vt1) + Vt2

1 +
√

K1

K2

(7.12)

Hence, with the values in Table 7.1 and using V freq
tune = 0.25→ 1V, we obtain

fosc ≈ 0.159 Kp(Vtune−Vtp)

Cc||[Coxn(WL)1+Cd/s]
= 0.564→ 9.96 GHz, which is within around 20% of the

measured values (0.63-8.1 GHz). More importantly, the equation captures the fosc-Vb-Vcp



105

“plane” contour shape visible in the measured curve of Fig. 7.17(a), so we have the proper

trends for design.

7.2 Supply Sensitivity

Based on the discussion in Section 6.1.4, the phase noise due to supply noise can be

obtained by differentiating the expression for fosc with respect to VDD to obtain the equiv-

alent VCO gain. To obtain a normalized metric of the oscillator frequency’s sensitivity

to the supply voltage, we then multiply by the supply voltage and divide by the nominal

oscillation frequency:

Static Sensitivity ≡ VDD
fosc

∂fosc
∂VDD

≈ fosc
f0

1

1 + VA
VDD

(7.13)

Therefore, as we predicted intuitively in Section 4, the output resistance rds = VA
ID

of the

transistor improves supply rejection.

7.3 Startup Analysis

To answer the question of startup, consider the model of the delay cell in Fig. 4.3(a);

for simplicity we assume coupling capacitor Cc = ∞, Rb = ∞, and Cgd2 ≈ 0. By

gm2

(gm1+sCgs1)Vg

1/gm1 CL

Rv

Cv=Cgs1+Cgd1+Cd

sCgs1Vout

Vg

+
Vinbuf
-

Vout

Cv

Rv

Neglect loading
from next-stage Vinbuf
(1/(sCL+gm1)<<Rv+1/sCv)

CL≈Copbuf+Cgs1+Cgs2+Cd

Cv

Vinlat

Figure 7.3.: Oscillator Startup Analysis: Delay-Cell Simplified LTI model
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symmetry of the structure and performing equivalent circuit analysis, we obtain Fig. 7.3.

We hence obtain the following “equivalent unilateral gains:”

Vout =

1+
sCgs1
gm1

1+sCvRv
Vinbuf−

gm2
gm1

Vinlat(
1+

sCL
gm1

)1−
1+

sCgs1
gm1

1+sCvRv

sCgs1Rv

1+
sCL
gm1


≈

1
1+ s

ω2

Vinbuf−rVinlat(
1+ s

ω0

)(
1−

s
ω2

(1+ s
ω2 )(1+ s

ω0 )

)

=
1

1 + s
ω0

+ s2

ω0ω2︸ ︷︷ ︸
Hbuf (s)

Vinbuf −
r
(

1 + s
ω2

)
1 + s

ω0
+ s2

ω0ω2︸ ︷︷ ︸
Hlat(s)

Vinlat

(7.14)

where Cv and CL are indicated in Fig. 7.3; the relative latch strength r ≡ gm2

gm1
; and we

have neglected the sCgs1
gm1

terms because we assume ω2 ≡ (RvCv)
−1 < ω0 ≡ gm1

CL
and ω2 �

gm1

Cgs1
.

Examining the delay-cell connections in Fig. 4.2, we obtain
1 0 Hlat(s) −Hbuf (s)

−Hbuf (s) 1 0 Hlat(s)

Hlat(s) −Hbuf (s) 1 0

0 Hlat(s) −Hbuf (s) 1




VI

VQ

VIB

VQB

 = A(s)~v = ~0 (7.15)

Computing the determinant yields the following characteristic equation for the system

poles: (
1−H2

lat(s)
)2

+H2
buf (s)

(
4Hlat(s)−H2

buf (s)
)

= 0 (7.16)

To determine the range of latch strengths that allow reliable startup, we set ω0

ω2
= 2.5 based

on the discussion in Section 7.4.1 and sweep the relative latch strength r. 1 Fig. 7.4

plots the root locus obtained from setting detA(s) = 0 in (7.15) for relative latch strength

1We also modifyHbuf (s) to include an attenuation termm =-4 dB to account for attenuation from Cc <∞
and other unmodeled parasitics based on the analysis in Section 7.1.2.
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r ∈ [0, 1]. For r ≈ 0 (no latch), we see that the poles are barely in the LHP, while for larger

−2 −1 0 1 2
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2
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Im
ag

(s
/ω

2)

Swept r=g
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/g
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∈ [0,1]; ω
0
/ω

2
=2.5

increasing r

Figure 7.4.: Oscillator Startup: Root Locus for Relative Latch Strength r ∈ [0, 1]

r, the complex-conjugate poles move further into the RHP (allowing startup). In addition,

the imaginary part decreases, possibly indicating a reduced oscillation frequency.

However, too large a value of r could also damp oscillation, even though the above

small-signal analysis does not show it. Intuitively, if the latch is too strong, the buffer

cannot overpower it to turn around the waveform at the peaks and sustain oscillation.

Fig. 7.5 displays a schmoo plot from transistor-level SPECTRE simulations indicating

whether the oscillation starts for different latch sizes and tuning-voltage values. From the

plot, we see that between r > 0.4 and r < 1.0, the oscillator successfully starts. Also,

from simulation the maximum oscillation frequency decreases from around 9 GHz near

r = 0.4 to 2.5 GHz for r = 1.0, consistent with the small-signal-analysis trend predictions

above. Therefore, we select r = 1/2 for margin, higher oscillation frequency, and ease of

common-centroid/interdigitized layout as discussed in Section 7.4.1.
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Figure 7.5.: Oscillator Startup: Transistor-Level SPECTRE Simulation Schmoo Plot

7.4 Transistor-Level Design of the Proposed MRO

7.4.1 Source-Follower/Latch Design

To operate the oscillator at high frequency, we use the simplest possible buffer and

latch cells – a single-transistor NMOS source-follower buffer and a single NMOS latch

transistor. We size the transistors at minimum length (L=90nm in this prototype) also

to maximize speed performance. If flicker noise is a greater concern than speed, larger

lengths could be employed. We select the transistor aspect ratio
(
W
L

)
↔ K so that f0 from

(7.6) satisfies f0 ≥ 2.5fmaxosc so that fosc is a strong function of f2 (given in (7.1)) for a

good tuning response.

To determine the relative size of the latch and buffer transistors r ≡ (W/L)2
(W/L)1

, we note

that intuitively, the relative latch strength rmust be> 0 for startup to provide the additional

regenerative feedback for the circuit to oscillate. However, relative latch strength should

be < 1 because the buffer must be able to drive the latch. We select r = 1/2 as a mid-

point value because larger latch size also tends to reduce the frequency due to increase in
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parasitic loading. Transistor-level SPECTRE simulation shows that relative latch strength

> 0.4 and < 1 successfully starts up (for details as well as small-signal analysis, see

Section 7.3). Thus, choosing r = 0.5 provides margin, and this ratio of 1:2 also allows for

simple interdigitized, common-centroid layout of the latch/buffer transistors.

7.4.2 Phase-Shift/Bias Network Design

Designing the phase-shift/bias network shown in Fig. 4.3(a) and (b) determines the

high-frequency performance of the oscillator, requiring minimal parasitics. The following

sections discuss its tradeoffs.

Phase-Shift Variable Resistor Rv

The variable resistor Rv is implemented with a PMOS transistor in triode as shown

in Fig. 4.3(b). Adjusting the differential control voltage V freq
tune = Vb − Vcp changes the

(triode) resistance

Rv ≈
[
µpCox

(
W
L

)
p

(
V freq
tune − Vtp

)]−1

before arriving at the gate of the source follower.

As indicated in (7.5), modifying this phase shift changes the frequency of oscillation.

Smaller resistance (requiring a wider PMOS transistor) tends to yield a higher frequency;

however, the PMOS transistor should be sized appreciably smaller than the source follower

and latch transistor (e.g. (W/L)p ≈ 0.1× (W/L)1), lest its parasitic capacitance load the

preceeding source-follower stage and reduce the oscillation frequency.

Bias Resistor Rb and Coupling Capacitor Cc

We bias the source-follower transistor at Vb through a large-value resistor Rb. The

resistor Rb should be sufficiently large so that Rb � Rv to have a good tuning character-

istic (cf. Section 7.1) but not so large that it would contribute parasitic capacitance to the
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subtrate or consume excessive area. The source follower is AC coupled to the preceeding

stage’s output node through Cc so that it can be biased in saturation. Since “MIMCAPs”

(metal-insulator-metal capacitors) are not available in this pure logic process, we select Cc

to be a “MOMCAP” (metal-oxide-metal capacitor) formed by a fingered hairpin structure

using the inter-layer dielectric (ILD). Though making the coupling capacitor larger ideally

eliminates its impact on the oscillation frequency, it also creates more parasitic capaci-

tance to the substrate, which could load the oscillator and lower the oscillation frequency.

The coupling capacitor is therefore increased to the point where its parasitic capacitance

to ground (roughly 5% of the desired floating capacitance in our case) is on the order of

the parasitic drain capacitance of the PMOS transistor MP in Fig. 4.3(b).

Bias Resistor Rg

To reduce the loading effects of the gate capacitance of the PMOS transistor MP, we

add a resistor Rg in series with the gate as shown in Fig. 4.3(b). The resistor has the

added benefit of creating a low-pass filter with the gate capacitance, so in a typical PLL,

the resistor could help filter high-frequency noise from the charge pump. We select Rg ≈
0.159

fmaxosc (0.5CoxWL)p
(≈ 4kΩ in our case) so that at the maximum oscillation frequency the

resistor’s value is roughly equal to the (triode) gate-drain/source reactance. To visualize

the effect on loading from the resistor Rg, we apply the Wye-Delta transform as shown in

Fig. 7.6(a). Fig. 7.6(b) illustrates the equivalent “grounded” and “coupling” parasitics Zg

and Zc, respectively, which are given by

Zg = 2Rg

(
1 +

1

2RgCs

)
, Zc =

2

sC

(
1 +

1

2RgCs

)
(7.17)

where C ≡ 0.5 (CoxWL)p. Assuming the control node is grounded (e.g. large capacitor

from a PLL loop filter or low-impedance buffer), the impedance to ground is increased

(i.e. less loading) from 0.159/(foscC) to 2Rg for f > fvg ≡ 0.159/(2RgC) (see Fig.
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Figure 7.6.: Rg (of Fig. 4.3(b)) Parasitic Effects: (a) Wye-Delta Transform, (b) Zg,c
Frequency Response

7.6(b)), while there is some additional parasitic coupling on the order of (2 → 4)Rg for

f ∈ [1, 2]fvg. Because fvg ≈ fmaxosc /2 by design, and for large fosc, Rv is typically small

(< 1kΩ in our design), the additional coupling parasitics for Rg ≥ 4kΩ are negligible.

Though even larger Rg would in principle provide less loading, making Rg too large could

introduce parasitic capacitance from the resistor itself and could slow down the VCO’s

response to the tuning voltage.

Also, dummy transistors (not shown in Fig. 4.3) are placed at the edge of the PMOS

transistor to reduce variability among stages and to mitigate stresses due to shallow-trench-

isolation (STI) oxides [226]. We selected a larger number of fingers (8 strips) so the unit

finger is smaller, and hence the parasitics from the dummy transistors do not significantly

contribute to the response.
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7.5 Layout Considerations

To minimize phase imbalance and maintain symmetry, the layout of the multi-loop ring

oscillator should have identical routing parasitics for each delay stage [6]. Furthermore,

we want commensurate supply routing so that supply noise at frequencies near non-integer

multiples of Nstage × fosc is rejected [107]. To maintain this required symmetry in the

presence of complex multi-loop structures, we propose a layout technique based on the

generalized delay cell viewpoint discussed in Section 5.1. Given the unit delay cell of Fig.

4.3(b), we need only to connect the ports to the appropriate output bus line to maintain the

desired phase relationship. To cancel process gradients to the first order, we split each unit

delay cell in half and arrange them in a cross-coupled pattern with the output signal bus

in the center as shown in Fig. 7.7; Fig. 7.8 indicates the corresponding signal connection

scheme. The signal bus then feeds directly into a 4-matched-channel output open-drain

stage
  0

stage
  1

stage
  2

stage
  3

stage
  3

stage
  2

stage
  1

stage
  0

signal bus 4-matched-channel
   output buffer

    unit
"half cells"

(supply/gnd)

(supply/gnd)

effective resistance path examples:
KEY:

stage 0
stage 2

Figure 7.7.: Routing Floorplan Sketch

buffer whose layout follows a similar pattern to preserve I/Q channel matching. This

cross-coupled arrangement helps to cancel first-order process and stress gradients, and

moreover, the oscillator output nodes have no systematic error due to routing capacitance,

i.e. drawing an analogy to the single-loop case, we avoid the asymmetric “wrap-around”

wire connecting the Nth stage to the first. Fig. 7.9 displays the die micrograph of the

proposed oscillator demonstrating the proposed layout technique described above.
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unit half cells → 0 1 2 3
- B - L - O - B - L - O - B - L - O - B - L - O

I * * * * * *
signal IB * * * * * *

bus Q * * * * * *
QB * * * * * *

B - L - O - B - L - O - B - L - O - B - L - O -
unit half cells → 3 2 1 0

KEY
0-3 I IB Q QB B L O -

“stage” 0-3 VI VIB VQ VQB Vinbuf Vinlat Vout no connect

Figure 7.8.: Routing Connection Scheme
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Figure 7.9.: Die Micrograph of Proposed Quadrature Oscillator

Some residual systematic mismatch exists due to differing parasitic wire resistance

as indicated by the dark solid and dashed lines in Fig. 7.7. The effect is mitigated due

to the cross-coupled arrangement, and we use upper metal (7-8 of a 9-metal process) to

have lower sheet resistance. We also strap two adjacent metal layers together to reduce

resistance further. There is a tradeoff in speed to use this layout technique. We simulated

the layout parasitic extracted (LPE) output buffer for two cases: (1) laid out with separate

channels (standard technique) and (2) laid out with the proposed technique, and the 3-dB

frequency reduced from 10.1GHz to 9.0GHz. Minimum-width ground wires are placed

around the signal wires to isolate the different channels, and signals are ordered so that

to the extent possible, the next adjacent signal wire is 180 degrees out of phase to obtain

differential signalling, as indicated in Fig. 7.8. In LPE simulations of the output buffer, we

see channel-to-channel isolation between 32-40dB; for instance, LPE simulations show

that applying a 347mV step at one channel yields a parasitic glitch of roughly 3.5mV in

the adjacent channel. The proposed and conventional quadrature oscillators are both laid

out using this technique, and occupy roughly the same area: 103 × 79 and 88 × 69 µm2,

respectively.

Finally, we note that this layout technique could be applied to more complex multi-

loop structures, and the routing area only scales with the number of output phases, not



115

with the number of loops. The complexity of the layout is hence no longer a function of

the complexity of the multi-loop-oscillator ring structures. This is important because a

unit delay cell with M ports can be designed to achieve either improved supply rejection

as shown in this paper or to obtain increased frequency [11], and the layout effort to

implement these structures remains quite straightforward and systematic.

7.6 Experimental Results

The proposed oscillator of Fig. 4.2 and the conventional CMOS-delay-cell quadrature

oscillator in Fig. 4.1 are fabricated on the same test chip for more meaningful comparison

at the same technology node, United Microelectronics Corporation (UMC) 90nm logic

CMOS with no analog features, as shown in Fig. 7.10(a) and 7.10(b). The conventional

L I
R

2 4
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2en

4

vddosc

vddbuf
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IF(I±Q±)
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bias &

TEST CHIP

open-drain wire-OR

Proposed VCO

Conventional VCO

output buffer

(a) (b)

Figure 7.10.: (a) Test Circuitry on Chip for Multiple Oscillators (b) Corresponding Die
Micrograph

oscillator serves as a control case to evaluate the supply-rejection performance. Each os-

cillator drives a 4-channel matched output buffer that can either output two differential
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oscillator waveforms at full rate, or can output all four quadrature signals through a down-

conversion mixer as shown in Fig. 7.10(a). The buffers and the dual I/Q mixers are laid

out using the same principles as the quadrature oscillator described in the previous section

to ensure that I/Q (+/-) channels are matched. Fig. 7.10(b) shows the die micrograph of

the test chip. The chip was encapsulated in a QFN24 package, and measurements were

performed on the two open-loop VCOs (proposed and conventional).

7.6.1 Supply Rejection

Fig. 7.11 compares the measured supply sensitivity of the proposed oscillator to that

of the conventional-CMOS-delay-cell quadrature oscillator fabricated alongside (cf. con-

ventional schematic in Fig. 4.1). At VDD=1V, the proposed oscillator achieves static sup-
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Figure 7.11.: Measured Supply Rejection: Comparison of Proposed and Conventional
Oscillator Delay Cells: fosc and Static Sensitivity ( ≡ VDD

fosc

∂fosc
∂VDD

) v. VDD

ply sensitivity of 0.019 [%-change fosc/%-change VDD] (-34 dB) compared to 1.176 %/%

(1 dB) for the conventional CMOS inverter-based delay cell. The proposed oscillator also
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attains a minimum measured sensitivity of 0.003 %/% (-50 dB) at VDD=1.02V. The sen-

sitivity curve is obtained by sweeping VDD with a step size of 10 mV. The slope of the

proposed oscillator’s frequency varies from -0.86 to 0.24 GHz/V when VDD varies from

900 to 1100 mV, while that of the conventional delay cell varies from 7.72 to 10.53 GHz/V

over the same range. The proposed multiloop ring oscillator topology is hence capable of

>20 dB improvement in supply rejection over conventional ring topologies. Furthermore,

as discussed in [98, 127], calibration of the supply level is also possible, so improved sup-

ply rejection could if desired be achieved by adjusting the supply voltage near the local

extremum shown in Fig. 7.11.

We also characterized the variation in supply sensitivity over the oscillator’s tuning

range and with respect to the common-mode level Vcm ≡ 1
2

(Vb + Vcp). Fig. 7.12 displays

the measured contour plot showing the supply sensitivity levels varying from -15dB to -40

dB in steps of 5 dB. The v-shaped curve illustrated on the figure indicates the required

common-mode bias to obtain supply sensitivity <-40dB. The common-mode-level bias

circuit is not included in this prototype for simplicity; however, by employing appropriate

common-mode bias, the measured data show that superior supply sensitivity below -40dB

can be achieved across the VCO tuning range without any voltage regulator.
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The proposed technique also displays improved dynamic supply rejection, or power-

supply ripple rejection (PSRR). To measure the oscillator PSRR, we drive the power sup-

ply with a unity-gain opamp, which is driven by a sinusoidal voltage source, as shown

in Fig. 7.13. We monitor the supply ripple reaching the device under test on a spectrum

DUT scope
BW=13 GHz
fs=40GS/s

50-Ω, 1-m
SMA coax

Agilent 91304AMiniCircuits
BLK-89-S+

−

+

vdd

pcb gnd

Agilent E4446A

+5V

-5V

AD8045
BW ~ 1GHz

  signal
generator

Agilent 33250A

hi-Z Active Probe Spectrum
Analyzer

Agilent 41800A

VDC+
Vmsin(2πfmt)

Figure 7.13.: Power-Supply-Ripple-Rejection Measurement Setup

analyzer through an active probe connected to the supply pin. We then measure the os-

cillator output voltage with a 40-GS/s oscilloscope and fast-Fourier-transform (FFT) the

result to obtain the modulated spectrum. Measured modulated spectra for both the pro-

posed and conventional CMOS oscillators are shown in Fig. 7.14(a) and Fig. 7.14(b),

respectively, where the proposed oscillator provides 20 dB reduction in the spur due to

supply modulation over the conventional oscillator. To compare the ripple rejection of the

proposed oscillator to the conventional CMOS-inverter-based ring oscillator, we tune both

to fosc=2.31 GHz and measure the sideband spur resulting from the supply-modulating

tone for several modulation frequencies fm
2. As shown in Fig. 7.15, the proposed oscilla-

tor achieves superior ripple rejection over the conventional CMOS delay cell by a factor of

more than 30 dB at fm=10 MHz and more than 20 dB for fm=1.25 to 80 MHz. While the

PSRR curve does degrade at higher oscillation frequencies, as shown in Fig. 7.16, in all

cases, the measured response of the proposed oscillator achieves improved ripple rejection

over that of the conventional oscillator.
2We apply an approximately -58dBm signal to the supply pin to avoid large-signal-nonlinear frequency-
modulation effects such as carrier nulling over as wide a range of modulation frequencies (fm) as possible
when comparing to the conventional ring oscillator, which is highly sensitive to supply variations.
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Figure 7.14.: Measured Modulated Spectrum of (a) Proposed Oscillator (-40 dB rejection
at fm=40MHz) and (b) Conventional CMOS Oscillator (-20 dB rejection at fm=40MHz)
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7.6.2 Frequency Tuning

Fig. 7.17(a) displays the 3-D contour plot of the measured tuning response fosc v. Vcp

v. Vb. Tuning the frequency with differential control signal Vtune = Vb − Vcp could be

employed to reject common-mode noise. Fig. 7.17(b) displays the equivalent family of

curves for the 3-D contour and also indicates the corresponding power curves. Higher Vb
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values yield increased power consumption because of the increased gate bias. Addition-

ally, high oscillation frequency (>5 GHz) is possible for P<10 mW at lower Vb values.

From these data, KV CO ≈ 8.57 GHz/V, and the overall tuning range is 0.63-8.1 GHz. The

conventional oscillator displays a similar frequency range (0.536 to 8.5 GHz for VDD=0.35
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to 1.0V), and consumes 0.3 to 59 mW over that range. Hence, the proposed oscillator

achieves comparable frequency-tuning range for about the same power consumption.

7.6.3 Quadrature Accuracy

Quadrature accuracy is required for CDRs employing either half-rate or frequency-

discriminator-based architectures. The quadrature error is measured by downconverting

the oscillator waveforms to roughly 125 MHz with the on-chip Gilbert-cell mixer, and

recording the waveforms in an oscilloscope; Fig. 7.18 displays the measured downcon-

verted quadrature waveforms. From these data, we compute the average difference in zero

Figure 7.18.: Measured Quadrature Imbalance (1.98◦)

crossing of the I/Q waveforms and normalize to the downconverted period (1/(125MHz)↔

360◦). Quadrature imbalance is measured to be less than 2 degrees without any trim at a

frequency of ≈ 1 GHz. Measured quadrature error includes effects of mismatch from

routing from oscillators to mixer and on PCB. The signal was downconverted on chip so

that these routing errors and packaging/PCB imbalance would be relatively small.
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7.6.4 Phase-Noise

To characterize the phase-noise/jitter performance of the proposed oscillator, we per-

form both direct spectrum phase-noise measurements with the Agilent E4446A spectrum

analyzer and perform time-interval-error (TIE) measurements with the Agilent DSA91304A

oscilloscope. We postprocess the TIE measurements to compute both the Allan Variance

[54] and an estimate of the absolute jitter [24]. Fig. 7.19(a)-(b) illustrate one such direct-

spectrum measurement for fosc=3.6 GHz and the corresponding post-processed TIE data

showing the Allan variance and absolute-jitter variance (normalized to the oscillation pe-

riod). The horizontal axis of the jitter plot represents the spacing between TIE measure-

(a)

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

t/T
osc

V
ar

ia
nc

e 
[u

ni
tle

ss
2 ]

 

 
Allan
Abs. Jitter

(b)

Figure 7.19.: Measured Phase-Noise Data: (a) Direct-Spectrum L v. fm (yields -
100dBc/Hz at 10MHz) (b) Corresponding TIE Measurements: Allan-Variance/Absolute-
Jitter Curves (yields -101 dBc/Hz at 10MHz)

ments normalized to the oscillation period. The diagonal lines correspond to best-fit κ2,

where L = κ2
(
fosc
fm

)2

. The phase-noise values across tuning range are obtained using

measured TIE/Allan-variance data because the free-running oscillator drift makes direct-

spectrum measurements less reliable at higher oscillation frequencies. Fig. 7.20 displays

the variation of phase noise across the tuning range. At around 650MHz, the proposed
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Figure 7.20.: Measured Phase Noise Variation across Tuning Range: L (10 MHz) v. fosc

oscillator has a measured phase noise of -106dBc/Hz at 10MHz offset, while the con-

ventional oscillator has a phase noise of -119dBc/Hz at 10MHz and the same oscillation

frequency. In this design, we did not optimize the proposed oscillator for phase noise due

to device noise, with the assumption that supply-noise-induced phase noise would be a

larger concern than device-noise-induced phase noise.

7.6.5 Comparison

Table 7.2 compares the proposed oscillator supply-rejection performance to that of

the conventional CMOS-delay-cell quadrature oscillator along with that of state-of-the-art

ring-oscillator VCOs in the literature from the past 10 years. Our measured static-supply-

sensitivity performance is among the best reported, and we have used no voltage regulator

or PLL in the measured prototype. The table also indicates common supply-rejection im-

provement techniques employed by previous works, namely low-dropout-voltage (LDO)

voltage regulation, compensation by adjusting positive/negative supply dependence to can-

cel each other (“Compensation”), calibration, fully-differential delay cells with tail cur-

rent source, isolation of the VCO core with a high-impedance voltage-to-current converter

(“ICO”), and replica-bias delay cells. By employing our proposed multiloop delay cell

that intrinsically rejects the supply, the designer has the freedom either to use the oscilla-
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Table 7.2: Supply-Rejection Comparison (Last 10 yr)

Static Sensitivity
(≡ VDD

fosc

∂fosc
∂VDD

)
fosc VDD Tech.

L
D
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om

pe
ns

at
io

n

C
al

ib
ra

tio
n

D
iff

.D
el

ay

IC
O

R
ep

lic
a

B
ia

s

[%/%] [MHz] [V] [µm]

This Work 0.0030 5650 1 0.090 0 0 0 0 0 0
Conventional 1.579 5650 0.74 0.090 0 0 0 0 0 0

[22] 0.0200 1000 2.5 0.250 0 1 0 0 0 0
[20] 0.0077 5120 0.84 0.065 0 1 0 0 0 0
[98] -1.1 to 0.5∗ 1400 1 0.130 0 1 1 0 0 0

[127] 0.0260∗∗ 1500 1.8 0.180 0 1 1 0 0 0
[105] 0.1450 900 3.3 0.350 0 0 0 0 0 0
[121] 0.0220 500 3.3 0.350 1 0 0 1 1 1

∗ sens. after calibration not given; cal. range is -1.1 to 0.5 %/%, ∗∗ cal. step size is 0.026 %/%; cal. range is -0.4 to 0.4 %/%

tor alone without a regulator or to combine our approach with other techniques, such as

regulation or calibration, to yield extremely low supply sensitivity. Additionally, we note

that combining the proposed oscillator with a regulator would not entail placing the voltage

regulator in the tuning loop, as the proposed oscillator is tuned by a separate phase-shift

network. Hence, the voltage regulator could have low-frequency poles and hence consume

less power than would a voltage regulator that needed to buffer the charge-pump voltage.

Our technique hence supplements these existing methods. Finally, Table 7.3 summarizes

the performance of the proposed oscillator.

Table 7.3: Proposed-Oscillator Performance Summary

Technology 90nm CMOS
Area [µm2] 103× 79

Static Supply Sensitivity:
minimum measured [dB] -50

over ±10%VDD (0.9 to 1.1 V) [dB] -50 to -15
VDD [V] 1

Phase Noise @ fm=10 MHz [dBc/Hz] -106 to -88
Freq. Tuning Range [GHz] 0.63-8.1

Power [mW] 7-26
Quadrature Accuracy [deg.] <2
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8. CONCLUSION

This dissertation has discussed the theory, design, and measurement of multi-loop ring

oscillators. In short, this work provides the following:

1. a design/analysis case study of MROs in sub-micron CMOS achieving improved

supply rejection to combat the increasing levels of [switching] supply noise as well

as illustrating a generalized-delay-cell viewpoint that simplifies MRO design and

layout; and

2. a systematic, unified procedure for phase-noise analysis that furthermore catalogues

and organizes previous phase-noise-analysis techniques, indicating their limitations

and approximations, and illustrating their use with practical oscillator hand-calculation

and numerical examples.

The merit of this work lies in enhancing the design of ring oscillators, which provide

a central role in creating timing circuits for today’s mobile devices as well as desktop

computers.

We outlined the dichotomy of resonant and relaxation oscillators, describing the vari-

ous flavors of ring oscillators including fully/pseudo differential and single ended as well

as multi-loop/skewed-delay-based structures. This document also provided background on

the nature of oscillator frequency error/spectral purity, and itemized the sources of these

errors, especially supply noise.

Based on this discussion of previous MRO designs and the need for rejection of this

supply noise, we next proposed an MRO architecture based on source-follower delay cells

to improve supply-noise rejection. The appreciable switching activity in next-generation

microprocessors and digitally-intensive integrated circuits necessitates this oscillator re-

silience to power-supply fluctuations. The source-follower arrangement isolates the supply

through the output resistance of the transistor. Measurements have shown supply rejection
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improvements in excess of 20dB over a conventional CMOS-inverter-based quadrature-

oscillator delay-cell structure, and furthermore, a "sweet-spot" bias exists that allows even

further reduction of supply sensitivity–ideally to zero incremental sensitivity. The multi-

loop oscillator structure allows the source follower to oscillate by providing multiple paths:

a source-follower path to isolate the supply and an inverting-latch path to provide regener-

ative positive feedback to sustain oscillation as demonstrated in this work.

The more complex nature of MROs compared to their single-loop equivalents fur-

ther requires a systematic design and analysis approach, which we addressed with both

a generalized-delay-cell viewpoint of MROs to facilitate their overall analysis, as well as

a unified phase-noise analysis flow and organized comprehensive synopsis of techniques

to apply within that flow. With these analysis-framework contributions, designers can

systematically approach MRO analysis. We also presented a layout technique based on

viewing the MRO as a collection of these M-port generalized delay cells with the ports

connected to maintain a target phase relationship. This layout technique enables effec-

tive manufacturable production of ostensibly more complex oscillator configurations with

substantially simplified layout effort. Furthermore, first-order process gradients can be

partially compensated by splitting the unit delay cells into half-units and cross coupling.

Furthermore, the phase-noise-analysis-technique synopsis allows the designer to choose

a phase-noise analysis method most suitable to the particular MRO delay cell and type of

noise in question, providing both insight into how noise translates into oscillator phase

noise in non-cookie-cutter oscillator structures as well as methods to perform hand calcu-

lations with suitable simplifications based on this intuition of which noise sources will be

dominant.
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APPENDIX A: MATH NOTATION

Table A.1 summarizes the math notation used throughout the document.

Table A.1: Math Notation
Definition

~v nrows × 1 column vector
M nrows × ncols matrix
MT transpose of M
M † conjugate-transpose of M
∂~i
∂~v

derivative of vector w.r.t. vector yields matrix
diag(. . . ) diagonal matrix with (. . . ) along main diagonal
Fτ→f (x(τ)) Fourier Transform: X(f) ≡ Fτ→f [x(τ)] ≡

´∞
−∞ dτ

{
x(τ)e−2πjfτ

}
E [x(t)]

ensemble average of random process x(t): E [x(t)] ≡´∞
−∞ dx {xp(x, t)},

where p(x, t) is the probability distribution of the process x at time t.
N.B. average w.r.t. x, NOT t–i.e. ensemble average, NOT time average.

Rx(t, τ)
Autocorrelation of random process x(t): Rx(t, τ) ≡
E
[
x
(
t+ τ

2

)
x
(
t− τ

2

)]

Sx(f)

"power" spectral density of random process x; units =
[(units of x)2/Hz]:

Sx(f) ≡ limT→∞ E
[
|Fτ→f{x(τ)[u(τ+T

2 )−u(τ−T2 )]}|2
T

]
= Fτ→f

{
limT→∞

´ T/2
−T/2

dt
T
{Rx(t, τ)}

}
where T can be interpreted as the time over which the random process
is measured and the final equality (the generalization of the Wiener-
Khinchin-Einstein Theorem) holds so long as the process is approxi-
mately stationary.

u(t) Heaviside unit step function: u(t) ≡
{

1 , t ≥ 0
0 , else

δ(t) Dirac delta "function": ∀ε > 0,
´ ε
−ε dt {f(t)δ(t)} = f(0)

δ[k] Kroeneker delta function: δ[k] ≡
{

1 , k = 0
0 , else
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APPENDIX B: PHASE-NOISE-CALCULATION PROCEDURES FOR ARBITRARY

OSCILLATOR

The following sections trace through the methods to find the periodic steady-state so-

lution and the phase noise spectrum for an “arbitrary” oscillator, illustrated conceptually

in Fig. B.1. The polarized resistor/capacitor symbols represent n-terminal nonlinear tran-

sresistors and transcapacitors, i.e. the current/charge is nonlinearly related to n terminal

voltages:

ik(~v) = fnlnI,k (v1, . . . , vn), qj(~v) = fnlnQ,j (v1, . . . , vn) (B.1)

... n
v

ik(v)
qj(v)

v
n

+
vj
-

Figure B.1.: Conceptual Arbitrary Oscillator

B.1 PSS: Harmonic Balance

1. Write the node-voltage equations for an “arbitrary” oscillator such as Fig. B.1:

~i(~v(t), ~inoise(t)) +
d

dt
~q(~v(t)) = ~0 (B.2)

where ~i and ~q are n × 1 vectors denoting the device currents and charges at the n

nodes and~inoise is an m× 1 vector of noise currents. When~inoise = ~0, the oscillator

runs in periodic steady state, and ~v(t) = ~vss (t).
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2. Expand the oscillation waveform in a Fourier series ~vss (t) =
∑∞

k=−∞
~Vke

jk2πfosct.

ConsideringNH harmonics, represent the n state variables (capacitor voltages/inductor

currents) with the n(2NH + 1)× 1 vector ~V :

~V T ≡ ( V −NHc1 , . . . , V −NHcn︸ ︷︷ ︸
(neg.) NHth harmonic

, . . . ,

V −1
c1 , . . . , V −1

cn︸ ︷︷ ︸
(neg.) fund.

, V DC
c1 , . . . , V DC

cn︸ ︷︷ ︸
DC

, V +1
c1 , . . . , V +1

cn︸ ︷︷ ︸
(pos.) fund.

, . . . ,

V +NH
c1 , . . . , V +NH

cn︸ ︷︷ ︸
(pos.) NHth harmonic

)

(B.3)

where V m
ck = the mth harmonic of the kth capacitor voltage. Because the oscillator

is autonomous, one of the harmonic components’ phases can be chosen arbitrarily,

and the frequency of oscillation is solved for in its place.1

3. Hence, the frequency of oscillation and the harmonic components are obtained by

solving the following nonlinear algebraic equation:

~I(~V ) + 2πjfoscK ~Q(~V ) = ~0 (B.4)

which is the "frequency-domain" version of (B.2), and K generates harmonic multi-

ples of 2πfosc:

K ≡ diag(−NH , . . . , −1, . . . , −1︸ ︷︷ ︸
n elems

, 0, . . . , 0︸ ︷︷ ︸
n elems

, +1, . . . , +1︸ ︷︷ ︸
n elems

, . . . , +NH) (B.5)

where the vectors ~I , ~Q are vectors of current/charge harmonics corresponding to

nodal analysis and in general are nonlinear functions of the voltage harmonics ~V .

1Early treatments by Rizzoli [164] nulled the imaginary part of one harmonic. As discussed in Section
6.1.4 and 6.1.6, a better choice is to choose relative phases that would decouple the amplitude and phase
perturbations (Floquet decomposition) [48].
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B.2 Conversion Method

1. Perturbation Model: We model the perturbed oscillator capacitor voltages as

~vk(t) =
∑
k

(~vss,k + ∆~vk(t))e
jk2πfosct (B.6)

where ∆~vk(t) ≡(∆vkc1(t), . . . , ∆vkcn(t))T is again assumed to be slowly varying and

much less than the corresponding steady-state harmonic components. Perturbing HB

equation (B.4): ∂~I

∂~V

∣∣∣∣∣
ss︸ ︷︷ ︸

Geq

+2πj(foscK + fm1)
∂ ~Q

∂~V

∣∣∣∣∣
ss︸ ︷︷ ︸

Ceq

∆~V (fm) = ~Inoise (B.7)

where n(2NH +1)×1 vector ∆~V (fm) follows the same pattern as B.3 and contains

the time-limited fourier transforms of the perturbations to each harmonic component

of each state variable.

2. NTF: For the “arbitrary oscillator case, the noise is referred to “state variables” (ca-

pacitor voltages) based on (B.2):

NTFLTI,LPTV ≡
∂~i
(
~v, ~inoise

)
∂~inoise

∣∣∣∣∣∣
DC,PSS

(B.8)

where the LTI/LPTV NTF is evaluated at the DC/periodic-steady-state (PSS) oper-

ating point, respectively. Determine the fourier coefficients; denoting the derivative

of the kth state-variable [capacitor current] with respect to the lth noise current as

follows:
∂ik

(
~v, ~inoise

)
∂inoise,l

∣∣∣∣∣∣
~v=DC/PSS

≡ Tk,l (θ) =
∑
p

T pk,le
jpθ (B.9)
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where for LPTV analysis, the NTF is periodically varying, while for LTI analysis,

only the p = 0 coefficient remains. Arrange in matrix form:

NTF TCM ≡


−NHT 1 . . . −NHTm

... . . . ...
+NHT 1 . . . +NHTm

 ; kT j ≡


T k+NH

1,j . . . T k−NH1,j

... . . . ...

T k+NH
n,j . . . T k−NHn,j


(B.10)

where kT j matrix relates the jth noise source to the kth harmonic of the state vari-

ables. Note that for the LTI case, we only retain fundamental components, and there

is no conversion gain between frequencies.

3. NMF: For LPTV case (LTI cannot capture), compute the fourier coeffeicients for

each noise source’s NMF:

NMFk (θ) =
∑
n

Mn
k e

jnθ (B.11)

Arrange in Toeplitz matrices as follows:

NMF =



M1 0 . . . 0 0

0 M2

... . . . ...

0 Mm−1 0

0 0 . . . 0 Mm


(B.12)

Mk ≡



M+0
k M−1

k . . . M1−2NH
k M−2NH

k

M+1
k M+0

k M2−2NH
k M1−2NH

k

... . . . ...

M2NH−1
k M2NH−2

k M+0
k M−1

k

M2NH
k M2NH−1

k . . . M+1
k M+0

k


(B.13)
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where Mk denotes the TCM for the kth noise source.

4. K†ICO

≡ 2πjfm
Vosc

[0, . . . , 0,+1, 0, . . . , 0,−1, 0, . . .]×
[
Geq + 2πj (foscK + fm1)Ceq

]−1

(B.14)

where the ±1 components correspond to the ±1 harmonics of the chosen output

voltage, respectively.

5. Spectrum:

Sφ (fm) =

1
(2πfm)2

~K†ICO (fm) ×NTF ×NMF × S (fm) ×NMF †︸ ︷︷ ︸
Smod

×NTF † × ~KICO (fm)

(B.15)

where

S(f) = diag(S1(−NHfosc + f), . . . , S1(+NHfosc + f)︸ ︷︷ ︸
2NH+1 components

, . . . , Sm(+NHfosc + f))

(B.16)

and Sk(f) denotes the [maximum over periodic bias points] spectrum of the kth noise

source.

B.3 Modulation Method

1. Perturbation: The oscillator waveforms in the presence of nosie are modeled as

~v(t) =
∑
k

[~vk,ss + ∆~vk(t)] exp (jk [2πfosct+ φ(t)]) (B.17)

Note the difference in this decomposition with the conversion method is that here,

we explicitly include a phase perturbation φ(t).
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2. NTF/NMF: Obtain matrices exactly as in Section 6.1.1.

3. KICO: Generalizing the derivation outlined Section 6.1.2,

[Geq + j(2πfoscK +
d

dt
)Ceq]∆~V (t) + j

dφ(t)

dt
K ~Qss = −NTF ~Inoise(t)e−jKφ(t)

(B.18)

where Geq and Ceq are the same as those in Section 6.1.1. Choose ~KT
ico to satisfy the

following three conditions:

(a) ~KT
ico × (Geq + 2πjfoscK × Ceq) = ~0

(b) ~KT
icojK ~Qss = 1

(c) ~KT
ico

d
dt

∆~V (t) = 0; this condition is analogous to choosing the amplitude noise to

be orthogonal to the Floquet vector ~KT
ico(t), as discussed in Section 6.1.6. Also,

because HB implicitly accounts for multiple harmonics, this Kico can capture

higher-frequency noise effects as well because it includes components corre-

sponding to conversion gains from multiple frequencies.

4. Spectrum: The phase-noise spectrum is obtained with

Sφ (fm) = [2πfm]−2 ~K†vcoSmod (fm) ~Kvco, where Smod is defined in (B.15).

B.4 Jitter Method

The analysis does not have a perfectly general form, as it is geared towards single-loop

ring oscillators; however, the following expresses the general flow for single loop ofNstage

delay stages.

1. Perturbation: Given unperturbed oscillator waveforms ~v(t), the perturbed wave-

forms are ~vperturb(t) = ~v(t+ tjitter(t)), φ(t) = 2πfosctjitter(t) = 2π
´
finstant(t)dt.

2. NMF/NTF/KICO:
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(a) Break up the oscillation period into segments based on the ideal switching ap-

proximation. During each segment k, construct an equivalent model for the

switched-on part of the circuit:

i. Identify the “timing node voltage” vtiming(t) i.e. the voltage that will trigger

the next switching instant. For instance, in the ring oscillator of Fig. 2.6(a),

the vtiming = vk(t) until the inverter trip point is reached, at which point,

vtiming(t) becomes vk+1(t).

ii. Compute the convolution vtiming(t) = hk(t) ~ ik(t), where hk(t) is the

impulse response of the timing voltage to the [white] noise source ik. The

impulse response hk is the combination of the NTF and the KICO gain.

iii. To account for noise modulation, compute an effective PSD intensity by

performing a time average over the switching interval.

iv. To account for switch noise, average over the whole period (their contribu-

tions will mostly be during transitions) [24, 170, 174].

(b) Compute the variance (squared RMS voltage): σ2
vk

(tr/f [k]) = E
[
v2
k(tr/f [k])

]
,

i.e. evaluate the variance just before the trigger point2. The variance depends

on time (nonstationary) because the system may not reach steady state within

a switching interval. (For simplicity, often assume zero initial conditions at

beginning of switching interval, e.g. v(0) = 0).

(c) Jitter Slew-Rate Equation:

σ2
j (tr/f [k]) =

σ2
v(tr/f [k])

SR2(tr/f [k])
(B.19)

2Note that the rise/fall delay themselves are random variables (because of jitter!); however, because the
instantaneous jitter accumulated within a single delay td is typically much less than that delay td, the ap-
proximation incurs small error. An alternate approach using the “last passage of time” provides a first-order
correction [208].
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(d) Normalize w.r.t. delay:

κ2
r/f [k] ≡

σ2
j (t)

t
=

σ2
v(tr/f [k])

SR2(tr/f [k])tr/f [k]
(B.20)

(e) Repeat for other noise sources, and take weighted average:

κ2
tot = fosc

∑Nstage
k=1 (κ2

r[k]tr[k] + κ2
f [k]tf [k]).

3. Spectrum: Sφ (fm) = κ2
tot

(
fosc
fm

)2

B.5 Direct KICO Method

1. Perturbation Model: The oscillator output waveforms are assumed to take the form

~v(t) = ~vss

(
t+

1

2πfosc

ˆ t

0

KICOinoise,LF (t)dt

)
(B.21)

where ~vss denotes the steady-state waveform for the “arbitrary” oscillator of Fig. B.1,

and fosc denotes the nominal oscillation frequency

2. NMF: The noise-modulation function is not explicitly included in this technique.

However, applying the results of the Phase-Sensitivity Method (see Section 6.1.5),

we could obtain an effective noise spectrum at the parasitic frequency-control input

by substituting the steady-state oscillation waveforms into the expression in (5.2) and

averaging over one cycle.

3. KICO and NTF: For the Direct KICO method, the “KICO” quantity captures the

noise transfer function for the low-frequency noise explicitly because the expression

for the frequency is already written in terms of the noise quantity in question:

Kdirect
ICO ≡

∂fosc
∂inoise

∣∣∣∣
inoise=E[inoise]=0

(B.22)
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4. Spectrum:Sφ (fm) =
(Kdirect

ico )2

f2m
Sinoise (fm) , where Sinoise (fm) indicates the aver-

aged noise spectrum from the previous step.

B.6 Phase-Sensitivity Method

1. Perturbation: Given the “arbitrary oscillator’s” steady-state waveforms ~vss(t), with

noise, the phase perturbations shift the waveforms to become ~vss (t+ φ(t)/[2πfosc]),

where

φ(t) =
∑
k

ˆ t

0

Γk(2πfoscτ)

qmax
NMFk(2πfoscτ)iunmodk (τ)dτ (B.23)

where NMFk(2πfoscτ) accounts for cyclostationary noise modulation as discussed

in Section 6.1.1.

2. Γeff and KICO: for each noise source k,

Γeffk (x) = ΓCo(x)NTF (x)︸ ︷︷ ︸
Γk(x)

NMFk(x) (B.24)

where NTF (x) refers the noise source to the capacitor voltage VCo , and fitting this

technique into the general paradigm,

KICO(x) =
ΓCo(x)

qmax
(B.25)

3. NMF: substitute the steady-state device voltages into the device’s spectrum equation

as discussed in Section 6.1.1.

4. Γk (NTF and KICO):

(a) METHOD1 (Numerical Simulation):

i. Simulate the unperturbed oscillator and save the “reference” waveform.

ii. Resimulate the oscillator with an impulse current source located where the

noise current would be. Have the source inject a short pulse of current i(t) ≈
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qinjδ(t− tss− τ) as illustrated in Fig. 6.8, where tss is large enough that the

oscillator has reached steady state by the time of injection, and τ ∈ [0, Tosc].

iii. Measure the zero-crossing time-interval error:

TIE(τ, qinj) = trefN − t
perturbed
N (τ, qinj) (B.26)

where tN denotes the time of the Nth rising-edge zero crossing after tss (N

should be sufficiently large, say 20 cycles, to allow the oscillator to settle

back into periodic steady state). Fig. 6.8 illustrates the concept for N=1.

iv. Normalize to obtain the sensitivity function:

Γk(2πfoscτ) =
qmax
qinj

2πfoscTIE(τ, qinj) (B.27)

v. Repeat for other values of τ ∈ [0, Tosc]
3.

(b) METHOD 2 (Slope/NTF):

i. Approximate [72, 107]:

ΓCo(x) ≈ qmax
Co

dVCo (t)

d(2πfosct)∑
k

(
dVCk (t)

d(2πfosct)

)2 ≈
qmax
Co

dVCo (t)

d(2πfosct)∑
k max

(
dVCk (t)

d(2πfosct)

)2 (B.28)

The approximation works best when state variables are properly normalized–

e.g. for tank inductors, use VLeff =
√

L
C
iL [44]. For nearly sinusoidal

oscillators and VCo ≈ Vosc cos (θ) , ΓCo(x) ≈ − sin(x+ξ)
NR

, where NR = #

resonators and ξ ≈ 0, except for quadrature coupled oscillators [193].

ii. To determine the NTF from noise source k to VCo , linearize the circuit

about the periodic operating point and perform time-domain analysis. (An-

dreani/Mazzanti/et al. have several illustrative examples [44, 192, 193, 196,

3N.B. With the numerically obtained function, one can also perform a fit to obtain an approximate closed-
form solution, e.g. see [107].
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197]; N.B. Andreani’s “noise-modulation function” often corresponds to

NTFk(t)NMFk(t) in our notation).

iii. Therefore, Γ2
eff,k(x) = Γ2

Co(x)NTF 2
k (x)︸ ︷︷ ︸

Γ2
k(x)

NMF 2
k (x)

5. Spectrum: Compute the RMS, DC values of Γeffk (x) and substitute into (6.43).

B.7 Fokker-Planck Method

1. Perturbation/Phase Definition: The nonlinear equation for phase perturbations is

dφ(t) = ~KT
ico

(
t̃
)
NTF

[
~vss
(
t̃
)]
NMF

[
~vss
(
t̃
)]√

Sinoise,max︸ ︷︷ ︸
~pT (t̃ )

d ~W (t) (B.29)

where t̃ ≡ t+ φ(t)
2πfosc

, and ~pT is periodic (Tosc) and has units [1/
√
sec].

2. NMF/NTF: Obtain using equations (5.2) and (6.51).

3. KICO:

(a) Solve (typ. numerically) for the periodic solution to the adjoint linear compan-

ion equation:
d

dt̃
~KT
ico

(
t̃
)

= − ~KT
ico

(
t̃
)

Ω(~vss
(
t̃
)
) (B.30)

and normalize ~KT
ico

(
t̃
)

1
2πfosc

d
dt̃
~qss
(
t̃
)

= 1.

(b) Obtain the parameters for the Gaussian distribution:

(a) white noise:

[2πfoscκwhite]
2 = RMS2 =

ˆ
Tosc

~pT (t)~p(t)
dt

Tosc
(B.31)
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(b) flicker noise 4:

[2πfoscκf,k]
2 = DC2 =

[ˆ
Tosc

pk(t)
dt

Tosc

]2

(B.32)

where pk(t) = ~KT
ico(t)C

−1(~vss (t))NTF k [~vss (t)]NMF k [~vss (t)] and NTF k

denotes the noise-transfer fucntion for the kth flicker noise source (assumed to

be independent of all white noise sources and of all other flicker noise sources).

4. Spectrum:

Sφ (fm) =

 κ2
(
fosc
fm

)2

, white

κ2
f,k

(
fosc
fm

)2

Sk (fm) , flicker
(B.33)

4 [227, 228] discuss second-order corrections for non-power-law colored noise.
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