90,113 research outputs found

    Differential effect of luminance contrast reduction and noise on motion induction

    Get PDF
    誘導運動におけるノイズと輝度コントラストの効果を検討した.ノイズを加えると誘導運動が運動対比から運動同化に変化するが,輝度コントラストが変化しても運動同化は見られず運動同化が見られることが分かった.この結果から,誘導運動はノイズのレベルには依存するが,視認性には必ずしも依存しないことが示された

    Planar Object Tracking in the Wild: A Benchmark

    Full text link
    Planar object tracking is an actively studied problem in vision-based robotic applications. While several benchmarks have been constructed for evaluating state-of-the-art algorithms, there is a lack of video sequences captured in the wild rather than in constrained laboratory environment. In this paper, we present a carefully designed planar object tracking benchmark containing 210 videos of 30 planar objects sampled in the natural environment. In particular, for each object, we shoot seven videos involving various challenging factors, namely scale change, rotation, perspective distortion, motion blur, occlusion, out-of-view, and unconstrained. The ground truth is carefully annotated semi-manually to ensure the quality. Moreover, eleven state-of-the-art algorithms are evaluated on the benchmark using two evaluation metrics, with detailed analysis provided for the evaluation results. We expect the proposed benchmark to benefit future studies on planar object tracking.Comment: Accepted by ICRA 201

    Orbital characterization of GJ1108A system, and comparison of dynamical mass with model-derived mass for resolved binaries

    Full text link
    We report an orbital characterization of GJ1108Aab that is a low-mass binary system in pre-main-sequence phase. Via the combination of astrometry using adaptive optics and radial velocity measurements, an eccentric orbital solution of ee=0.63 is obtained, which might be induced by the Kozai-Lidov mechanism with a widely separated GJ1108B system. Combined with several observed properties, we confirm the system is indeed young. Columba is the most probable moving group, to which the GJ1108A system belongs, although its membership to the group has not been established. If the age of Columba is assumed for GJ1108A, the dynamical masses of both GJ1108Aa and GJ1108Ab (Mdynamical,GJ1108Aa=0.72±0.04MM_{\rm dynamical,GJ1108Aa}=0.72\pm0.04 M_{\odot} and Mdynamical,GJ1108Ab=0.30±0.03MM_{\rm dynamical,GJ1108Ab}=0.30\pm0.03 M_{\odot}) are more massive than what an evolutionary model predicts based on the age and luminosities. We consider the discrepancy in mass comparison can attribute to an age uncertainty; the system is likely older than stars in Columba, and effects that are not implemented in classical models such as accretion history and magnetic activity are not preferred to explain the mass discrepancy. We also discuss the performance of the evolutionary model by compiling similar low-mass objects in evolutionary state based on the literature. Consequently, it is suggested that the current model on average reproduces the mass of resolved low-mass binaries without any significant offsets.Comment: Accepted in Ap

    The close circumstellar environment of the semi-regular S-type star Pi^1 Gruis

    Full text link
    We study the close circumstellar environment of the nearby S-type star Pi^1 Gruis using high spatial-resolution, mid-infrared observations from the ESO/VLTI. Spectra and visibilities were obtained with the MIDI interferometer on the VLT Auxiliary Telescopes. The cool M5III giant Beta Gruis was used as bright primary calibrator, and a dedicated spectro-interferometric study was undertaken to determine its angular diameter accurately. The MIDI measurements were fitted with the 1D numerical radiative transfer code DUSTY to determine the dust shell parameters of Pi^1 Gruis. Taking into account the low spatial extension of the model in the 8-9 μ\mum spectral band for the smallest projected baselines, we consider the possibility of a supplementary molecular shell. The MIDI visibility and phase data are mostly dominated by the spherical 21 mas (694 Rsol) central star, while the extended dusty environment is over-resolved even with the shortest baselines. No obvious departure from spherical symmetry is found on the milliarcsecond scale. The spectro-interferometric observations are well-fitted by an optically thin (tau(dust)<0.01 in the band) dust shell that is located at about 14 stellar radii with a typical temperature of 700 K and composed of 70% silicate and 30% of amorphous alumina grains. An optically thin (tau(mol)<0.1 in the N band) H2O+SiO molecular shell extending from the photosphere of the star up to 4.4 stellar radii with a typical temperature of 1000 K is added to the model to improve the fit in the 8-9 μ\mum spectral band. We discuss the probable binary origin of asymmetries as revealed by millimetric observations

    "Kludge" gravitational waveforms for a test-body orbiting a Kerr black hole

    Get PDF
    One of the most exciting potential sources of gravitational waves for low-frequency, space-based gravitational wave (GW) detectors such as the proposed Laser Interferometer Space Antenna (LISA) is the inspiral of compact objects into massive black holes in the centers of galaxies. The detection of waves from such "extreme mass ratio inspiral" systems (EMRIs) and extraction of information from those waves require template waveforms. The systems' extreme mass ratio means that their waveforms can be determined accurately using black hole perturbation theory. Such calculations are computationally very expensive. There is a pressing need for families of approximate waveforms that may be generated cheaply and quickly but which still capture the main features of true waveforms. In this paper, we introduce a family of such "kludge" waveforms and describe ways to generate them. We assess performance of the introduced approximations by comparing "kludge" waveforms to accurate waveforms obtained by solving the Teukolsky equation in the adiabatic limit (neglecting GW backreaction). We find that the kludge waveforms do extremely well at approximating the true gravitational waveform, having overlaps with the Teukolsky waveforms of 95% or higher over most of the parameter space for which comparisons can currently be made. Indeed, we find these kludges to be of such high quality (despite their ease of calculation) that it is possible they may play some role in the final search of LISA data for EMRIs.Comment: 29 pages, 11 figures, requires subeqnarray; v2 contains minor changes for consistency with published versio

    A Transiting Hot Jupiter Orbiting a Metal-Rich Star

    Full text link
    We announce the discovery of Kepler-6b, a transiting hot Jupiter orbiting a star with unusually high metallicity, [Fe/H] = +0.34 +/- 0.04. The planet's mass is about 2/3 that of Jupiter, Mp = 0.67 Mj, and the radius is thirty percent larger than that of Jupiter, Rp = 1.32 Rj, resulting in a density of 0.35 g/cc, a fairly typical value for such a planet. The orbital period is P = 3.235 days. The host star is both more massive than the Sun, Mstar = 1.21 Msun, and larger than the Sun, Rstar = 1.39 Rsun.Comment: 12 pages, 2 figures, submitted to the Astrophysical Journal Letter

    Observation of Superfluid Flow in a Bose-Einstein Condensed Gas

    Full text link
    We have studied the hydrodynamic flow in a Bose-Einstein condensate stirred by a macroscopic object, a blue detuned laser beam, using nondestructive {\em in situ} phase contrast imaging. A critical velocity for the onset of a pressure gradient has been observed, and shown to be density dependent. The technique has been compared to a calorimetric method used previously to measure the heating induced by the motion of the laser beam.Comment: 4 pages, 5 figure
    corecore