59 research outputs found

    Improving the scalability of parallel N-body applications with an event driven constraint based execution model

    Full text link
    The scalability and efficiency of graph applications are significantly constrained by conventional systems and their supporting programming models. Technology trends like multicore, manycore, and heterogeneous system architectures are introducing further challenges and possibilities for emerging application domains such as graph applications. This paper explores the space of effective parallel execution of ephemeral graphs that are dynamically generated using the Barnes-Hut algorithm to exemplify dynamic workloads. The workloads are expressed using the semantics of an Exascale computing execution model called ParalleX. For comparison, results using conventional execution model semantics are also presented. We find improved load balancing during runtime and automatic parallelism discovery improving efficiency using the advanced semantics for Exascale computing.Comment: 11 figure

    Extreme scale parallel NBody algorithm with event driven constraint based execution model

    Get PDF
    Traditional scientific applications such as Computational Fluid Dynamics, Partial Differential Equations based numerical methods (like Finite Difference Methods, Finite Element Methods) achieve sufficient efficiency on state of the art high performance computing systems and have been widely studied / implemented using conventional programming models. For emerging application domains such as Graph applications scalability and efficiency is significantly constrained by the conventional systems and their supporting programming models. Furthermore technology trends like multicore, manycore, heterogeneous system architectures are introducing new challenges and possibilities. Emerging technologies are requiring a rethinking of approaches to more effectively expose the underlying parallelism to the applications and the end-users. This thesis explores the space of effective parallel execution of ephemeral graphs that are dynamically generated. The standard particle based simulation, solved using the Barnes-Hut algorithm is chosen to exemplify the dynamic workloads. In this thesis the workloads are expressed using sequential execution semantics, a conventional parallel programming model - shared memory semantics and semantics of an innovative execution model designed for efficient scalable performance towards Exascale computing called ParalleX. The main outcomes of this research are parallel processing of dynamic ephemeral workloads, enabling dynamic load balancing during runtime, and using advanced semantics for exposing parallelism in scaling constrained applications

    Mining a Small Medical Data Set by Integrating the Decision Tree and t-test

    Get PDF
    [[abstract]]Although several researchers have used statistical methods to prove that aspiration followed by the injection of 95% ethanol left in situ (retention) is an effective treatment for ovarian endometriomas, very few discuss the different conditions that could generate different recovery rates for the patients. Therefore, this study adopts the statistical method and decision tree techniques together to analyze the postoperative status of ovarian endometriosis patients under different conditions. Since our collected data set is small, containing only 212 records, we use all of these data as the training data. Therefore, instead of using a resultant tree to generate rules directly, we use the value of each node as a cut point to generate all possible rules from the tree first. Then, using t-test, we verify the rules to discover some useful description rules after all possible rules from the tree have been generated. Experimental results show that our approach can find some new interesting knowledge about recurrent ovarian endometriomas under different conditions.[[journaltype]]國外[[incitationindex]]EI[[booktype]]紙本[[countrycodes]]FI

    Multicellular Systems Biology of Development

    Get PDF
    Embryonic development depends on the precise coordination of cell fate specification, patterning and morphogenesis. Although great strides have been made in the molecular understanding of each of these processes, how their interplay governs the formation of complex tissues remains poorly understood. New techniques for experimental manipulation and image quantification enable the study of development in unprecedented detail, resulting in new hypotheses on the interactions between known components. By expressing these hypotheses in terms of rules and equations, computational modeling and simulation allows one to test their consistency against experimental data. However, new computational methods are required to represent and integrate the network of interactions between gene regulation, signaling and biomechanics that extend over the molecular, cellular and tissue scales. In this thesis, I present a framework that facilitates computational modeling of multiscale multicellular systems and apply it to investigate pancreatic development and the formation of vascular networks. This framework is based on the integration of discrete cell-based models with continuous models for intracellular regulation and intercellular signaling. Specifically, gene regulatory networks are represented by differential equations to analyze cell fate regulation; interactions and distributions of signaling molecules are modeled by reaction-diffusion systems to study pattern formation; and cell-cell interactions are represented in cell-based models to investigate morphogenetic processes. A cell-centered approach is adopted that facilitates the integration of processes across the scales and simultaneously constrains model complexity. The computational methods that are required for this modeling framework have been implemented in the software platform Morpheus. This modeling and simulation environment enables the development, execution and analysis of multi-scale models of multicellular systems. These models are represented in a new domain-specific markup language that separates the biological model from the computational methods and facilitates model storage and exchange. Together with a user-friendly graphical interface, Morpheus enables computational modeling of complex developmental processes without programming and thereby widens its accessibility for biologists. To demonstrate the applicability of the framework to problems in developmental biology, two case studies are presented that address different aspects of the interplay between cell fate specification, patterning and morphogenesis. In the first, I focus on the interplay between cell fate stability and intercellular signaling. Specifically, two studies are presented that investigate how mechanisms of cell-cell communication affect cell fate regulation and spatial patterning in the pancreatic epithelium. Using bifurcation analysis and simulations of spatially coupled differential equations, it is shown that intercellular communication results in a multistability of gene expression states that can explain the scattered spatial distribution and low cell type ratio of nascent islet cells. Moreover, model analysis shows that disruption of intercellular communication induces a transition between gene expression states that can explain observations of in vitro transdifferentiation from adult acinar cells into new islet cells. These results emphasize the role of the multicellular context in cell fate regulation during development and may be used to optimize protocols for cellular reprogramming. The second case study focuses on the feedback between patterning and morphogenesis in the context of the formation of vascular networks. Integrating a cell-based model of endothelial chemotaxis with a reaction-diffusion model representing signaling molecules and extracellular matrix, it is shown that vascular network patterns with realistic morphometry can arise when signaling factors are retained by cell-modified matrix molecules. Through the validation of this model using in vitro assays, quantitative estimates are obtained for kinetic parameters that, when used in quantitative model simulations, confirm the formation of vascular networks under measured biophysical conditions. These results demonstrate the key role of the extracellular matrix in providing spatial guidance cues, a fact that may be exploited to enhance vascularization of engineered tissues. Together, the modeling framework, software platform and case studies presented in this thesis demonstrate how cell-centered computational modeling of multi-scale and multicellular systems provide powerful tools to help disentangle the complex interplay between cell fate specification, patterning and morphogenesis during embryonic development

    SoS: self-organizing substrates

    Get PDF
    Large-scale networked systems often, both by design or chance exhibit self-organizing properties. Understanding self-organization using tools from cybernetics, particularly modeling them as Markov processes is a first step towards a formal framework which can be used in (decentralized) systems research and design.Interesting aspects to look for include the time evolution of a system and to investigate if and when a system converges to some absorbing states or stabilizes into a dynamic (and stable) equilibrium and how it performs under such an equilibrium state. Such a formal framework brings in objectivity in systems research, helping discern facts from artefacts as well as providing tools for quantitative evaluation of such systems. This thesis introduces such formalism in analyzing and evaluating peer-to-peer (P2P) systems in order to better understand the dynamics of such systems which in turn helps in better designs. In particular this thesis develops and studies the fundamental building blocks for a P2P storage system. In the process the design and evaluation methodology we pursue illustrate the typical methodological approaches in studying and designing self-organizing systems, and how the analysis methodology influences the design of the algorithms themselves to meet system design goals (preferably with quantifiable guarantees). These goals include efficiency, availability and durability, load-balance, high fault-tolerance and self-maintenance even in adversarial conditions like arbitrarily skewed and dynamic load and high membership dynamics (churn), apart of-course the specific functionalities that the system is supposed to provide. The functionalities we study here are some of the fundamental building blocks for various P2P applications and systems including P2P storage systems, and hence we call them substrates or base infrastructure. These elemental functionalities include: (i) Reliable and efficient discovery of resources distributed over the network in a decentralized manner; (ii) Communication among participants in an address independent manner, i.e., even when peers change their physical addresses; (iii) Availability and persistence of stored objects in the network, irrespective of availability or departure of individual participants from the system at any time; and (iv) Freshness of the objects/resources' (up-to-date replicas). Internet-scale distributed index structures (often termed as structured overlays) are used for discovery and access of resources in a decentralized setting. We propose a rapid construction from scratch and maintenance of the P-Grid overlay network in a self-organized manner so as to provide efficient search of both individual keys as well as a whole range of keys, doing so providing good load-balancing characteristics for diverse kind of arbitrarily skewed loads - storage and replication, query forwarding and query answering loads. For fast overlay construction we employ recursive partitioning of the key-space so that the resulting partitions are balanced with respect to storage load and replication. The proper algorithmic parameters for such partitioning is derived from a transient analysis of the partitioning process which has Markov property. Preservation of ordering information in P-Grid such that queries other than exact queries, like range queries can be efficiently and rather trivially handled makes P-Grid suitable for data-oriented applications. Fast overlay construction is analogous to building an index on a new set of keys making P-Grid suitable as the underlying indexing mechanism for peer-to-peer information retrieval applications among other potential applications which may require frequent indexing of new attributes apart regular updates to an existing index. In order to deal with membership dynamics, in particular changing physical address of peers across sessions, the overlay itself is used as a (self-referential) directory service for maintaining the participating peers' physical addresses across sessions. Exploiting this self-referential directory, a family of overlay maintenance scheme has been designed with lower communication overhead than other overlay maintenance strategies. The notion of dynamic equilibrium study for overlays under continuous churn and repairs, modeled as a Markov process, was introduced in order to evaluate and compare the overlay maintenance schemes. While the self-referential directory was originally invented to realize overlay maintenance schemes with lower overheads than existing overlay maintenance schemes, the self-referential directory is generic in nature and can be used for various other purposes, e.g., as a decentralized public key infrastructure. Persistence of peer identity across sessions, in spite of changes in physical address, provides a logical independence of the overlay network from the underlying physical network. This has many other potential usages, for example, efficient maintenance mechanisms for P2P storage systems and P2P trust and reputation management. We specifically look into the dynamics of maintaining redundancy for storage systems and design a novel lazy maintenance strategy. This strategy is algorithmically a simple variant of existing maintenance strategies which adapts to the system dynamics. This randomized lazy maintenance strategy thus explores the cost-performance trade-offs of the storage maintenance operations in a self-organizing manner. We model the storage system (redundancy), under churn and maintenance, as a Markov process. We perform an equilibrium study to show that the system operates in a more stable dynamic equilibrium with our strategy than for the existing maintenance scheme for comparable overheads. Particularly, we show that our maintenance scheme provides substantial performance gains in terms of maintenance overhead and system's resilience in presence of churn and correlated failures. Finally, we propose a gossip mechanism which works with lower communication overhead than existing approaches for communication among a relatively large set of unreliable peers without assuming any specific structure for their mutual connectivity. We use such a communication primitive for propagating replica updates in P2P systems, facilitating management of mutable content in P2P systems. The peer population affected by a gossip can be modeled as a Markov process. Studying the transient spread of gossips help in choosing proper algorithm parameters to reduce communication overhead while guaranteeing coverage of online peers. Each of these substrates in themselves were developed to find practical solutions for real problems. Put together, these can be used in other applications, including a P2P storage system with support for efficient lookup and inserts, membership dynamics, content mutation and updates, persistence and availability. Many of the ideas have already been implemented in real systems and several others are in the way to be integrated into the implementations. There are two principal contributions of this dissertation. It provides design of the P2P systems which are useful for end-users as well as other application developers who can build upon these existing systems. Secondly, it adapts and introduces the methodology of analysis of a system's time-evolution (tools typically used in diverse domains including physics and cybernetics) to study the long run behavior of P2P systems, and uses this methodology to (re-)design appropriate algorithms and evaluate them. We observed that studying P2P systems from the perspective of complex systems reveals their inner dynamics and hence ways to exploit such dynamics for suitable or better algorithms. In other words, the analysis methodology in itself strongly influences and inspires the way we design such systems. We believe that such an approach of orchestrating self-organization in internet-scale systems, where the algorithms and the analysis methodology have strong mutual influence will significantly change the way future such systems are developed and evaluated. We envision that such an approach will particularly serve as an important tool for the nascent but fast moving P2P systems research and development community

    Analysis of tumour angio-architecture and blood flow using microcomputed tomography and lattice Boltzmann simulations.

    Get PDF
    The precise architecture of the vascular system is critical to its many specialised functions. In sharp contrast tumour vascular architecture is highly disorganised and dysfunctional. The reason for this is the grossly abnormal angiogenic signalling prevalent in the tumour microenvironment. Aberrant tumour vasculature is a key determinant of spatial and temporal heterogeneities of blood flows. Additionally, irregularities in the tumour vascular wall, a lack of functional lymphatics and a severely retarded trans-mural hydrostatic pressure gradient also diminish convective transport out of the vessels. Diffusion therefore remains the dominant transport mode in tumours and presents a considerable barrier to macromolecular therapy (e.g. Antibody-directed enzyme prodrug therapy (ADEPT)). A number of recent studies of vascular morphology in both clinical and xenograft tumours have demonstrated the existence of type-specific architectures. Precisely how these type-specific architectures translate to blood flow through the vascular system had not been determined. To address this we have developed a method for studying the 3D architecture of the tumour and simulating flows through it. This technique uses corrosion casts to capture the 3D tumour vascular system. 3D morphometry was determined by stereoimaging and X-ray micro-computed tomography. A computational fluid dynamics model was then used to study the hydrodynamics of the vascular networks. My results show that vessel structure and architecture varies in clinical colon cancers, but these differences were substantially smaller than those of two human colorectal xenografts (LS147T and SW1222) commonly used in pre-clinical studies. The results also provide evidence that LS147T is, in general, a closer model to most clinical colorectal tumours than SW1222. To our knowledge this is the first attempt to utilise X-ray micro-computed tomography to study vascular corrosion casts of tumours, and using this data, produce 3D flow profiles

    A wireless sensor network system for border security and crossing detection

    Get PDF
    The protection of long stretches of countries’ borders has posed a number of challenges. Effective and continuous monitoring of a border requires the implementation of multi-surveillance technologies, such as Wireless Sensor Networks (WSN), that work as an integrated unit to meet the desired goals. The research presented in this thesis investigates the application of topologically Linear WSN (LWSNs) to international border monitoring and surveillance. The main research questions studied here are: What is the best form of node deployment and hierarchy? What is the minimum number of sensor nodes to achieve k− barrier coverage in a given belt region? iven an appropriate network density, how do we determine if a region is indeed k−barrier covered? What are the factors that affect barrier coverage? How to organise nodes into logical segments to perform in-network processing of data? How to transfer information from the networks to the end users while maintaining critical QoS measures such as timeliness and accuracy. To address these questions, we propose an architecture that specifies a mechanism to assign nodes to various network levels depending on their location. These levels are used by a cross-layer communication protocol to achieve data delivery at the lowest possible cost and minimal delivery delay. Building on this levelled architecture, we study the formation of weak and strong barriers and how they determine border crossing detection probability. We propose new method to calculate the required node density to provide higher intruder detection rate. Then, we study the effect of people movement models on the border crossing detection probability. At the data link layer, new energy balancing along with shifted MAC protocol are introduced to further increase the network lifetime and delivery speed. In addition, at network layer, a routing protocol called Level Division raph (LD ) is developed. LD utilises a complex link cost measurement to insure best QoS data delivery to the sink node at the lowest possible cost. The proposed system has the ability to work independently or cooperatively with other monitoring technologies, such as drowns and mobile monitoring stations. The performance of the proposed work is extensively evaluated analytically and in simulation using real-life conditions and parameters. The simulation results show significant performance gains when comparing LD to its best rivals in the literature Dynamic Source Routing. Compared to DSR, LD achieves higher performance in terms of average end-to-end delays by up to 95%, packet delivery ratio by up to 20%, and throughput by up to 60%, while maintaining similar performance in terms of normalised routing load and energy consumption

    High-Performance Modelling and Simulation for Big Data Applications

    Get PDF
    This open access book was prepared as a Final Publication of the COST Action IC1406 “High-Performance Modelling and Simulation for Big Data Applications (cHiPSet)“ project. Long considered important pillars of the scientific method, Modelling and Simulation have evolved from traditional discrete numerical methods to complex data-intensive continuous analytical optimisations. Resolution, scale, and accuracy have become essential to predict and analyse natural and complex systems in science and engineering. When their level of abstraction raises to have a better discernment of the domain at hand, their representation gets increasingly demanding for computational and data resources. On the other hand, High Performance Computing typically entails the effective use of parallel and distributed processing units coupled with efficient storage, communication and visualisation systems to underpin complex data-intensive applications in distinct scientific and technical domains. It is then arguably required to have a seamless interaction of High Performance Computing with Modelling and Simulation in order to store, compute, analyse, and visualise large data sets in science and engineering. Funded by the European Commission, cHiPSet has provided a dynamic trans-European forum for their members and distinguished guests to openly discuss novel perspectives and topics of interests for these two communities. This cHiPSet compendium presents a set of selected case studies related to healthcare, biological data, computational advertising, multimedia, finance, bioinformatics, and telecommunications

    Grid-enabled adaptive surrugate modeling for computer aided engineering

    Get PDF
    • …
    corecore