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S U M M A RY

Embryonic development depends on the precise coordination of cell fate specification,
patterning and morphogenesis. Although great strides have been made in the molec-
ular understanding of each of these processes, how their interplay governs the forma-
tion of complex tissues remains poorly understood. New techniques for experimental
manipulation and image quantification enable the study of development in unprece-
dented detail, resulting in new hypotheses on the interactions between known compo-
nents. By expressing these hypotheses in terms of rules and equations, computational
modeling and simulation allows one to test their consistency against experimental
data. However, new computational methods are required to represent and integrate
the network of interactions between gene regulation, signaling and biomechanics that
extend over the molecular, cellular and tissue scales.

In this thesis, I present a framework that facilitates computational modeling of multi-
scale multicellular systems and apply it to investigate pancreatic development and the
formation of vascular networks. This framework is based on the integration of discrete
cell-based models with continuous models for intracellular regulation and intercel-
lular signaling. Specifically, gene regulatory networks are represented by differential
equations to analyze cell fate regulation; interactions and distributions of signaling
molecules are modeled by reaction-diffusion systems to study pattern formation; and
cell-cell interactions are represented in cell-based models to investigate morphogenetic
processes. A cell-centered approach is adopted that facilitates the integration of pro-
cesses across the scales and simultaneously constrains model complexity.

The computational methods that are required for this modeling framework have
been implemented in the software platform Morpheus. This modeling and simulation
environment enables the development, execution and analysis of multi-scale models of
multicellular systems. These models are represented in a new domain-specific markup
language that separates the biological model from the computational methods and fa-
cilitates model storage and exchange. Together with a user-friendly graphical interface,
Morpheus enables computational modeling of complex developmental processes with-
out programming and thereby widens its accessibility for biologists.

To demonstrate the applicability of the framework to problems in developmental bi-
ology, two case studies are presented that address different aspects of the interplay be-
tween cell fate specification, patterning and morphogenesis. In the first, I focus on the
interplay between cell fate stability and intercellular signaling. Specifically, two studies



are presented that investigate how mechanisms of cell-cell communication affect cell
fate regulation and spatial patterning in the pancreatic epithelium. Using bifurcation
analysis and simulations of spatially coupled differential equations, it is shown that
intercellular communication results in a multistability of gene expression states that
can explain the scattered spatial distribution and low cell type ratio of nascent islet
cells. Moreover, model analysis shows that disruption of intercellular communication
induces a transition between gene expression states that can explain observations of in
vitro transdifferentiation from adult acinar cells into new islet cells. These results em-
phasize the role of the multicellular context in cell fate regulation during development
and may be used to optimize protocols for cellular reprogramming.

The second case study focuses on the feedback between patterning and morpho-
genesis in the context of the formation of vascular networks. Integrating a cell-based
model of endothelial chemotaxis with a reaction-diffusion model representing signal-
ing molecules and extracellular matrix, it is shown that vascular network patterns with
realistic morphometry can arise when signaling factors are retained by cell-modified
matrix molecules. Through the validation of this model using in vitro assays, quanti-
tative estimates are obtained for kinetic parameters that, when used in quantitative
model simulations, confirm the formation of vascular networks under measured bio-
physical conditions. These results demonstrate the key role of the extracellular matrix
in providing spatial guidance cues, a fact that may be exploited to enhance vascular-
ization of engineered tissues.

Together, the modeling framework, software platform and case studies presented in
this thesis demonstrate how cell-centered computational modeling of multi-scale and
multicellular systems provide powerful tools to help disentangle the complex inter-
play between cell fate specification, patterning and morphogenesis during embryonic
development.

Supplementary online material containing videos, simulation models and software is available under
http://walter.deback.net/thesis.

http://walter.deback.net/thesis
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What I cannot create, I do not understand
Richard Feynman, 1988

1
I N T R O D U C T I O N

The adult human body consists of an estimated 3.72 · 1013 cells1 that can be grouped
in about 200 specialized cell types2 forming intricate tissue architectures that make
up 60 organs3. How such a complex multicellular organism can develop from a single
fertiziled egg cell has fascinated developmental biologists over centuries. With the rise
of molecular biology, many of the molecular components and mechanisms have been
revealed by which embryos are patterned, cells to acquire different fates and tissues
adopt their defined shapes. However, how these mechanisms interact with each other
to ensure the robust self-organization of tissues is still poorly understood. In addition
to careful experimentation and quantification, mathematical and computational mod-
eling is increasingly important to formulate assumptions and test hypotheses. How-
ever, a lack of suitable methods and tools to represent multiscale multicellular systems
hampers these studies. Here, a framework called ’multicellular systems biology’ is pro-
posed to explore the effects of the interplay between genetic, chemical and mechanical
interactions on tissue development.

Over the last decades, molecular approaches in developmental biology, from devel-
opmental genetics to tissue morphogenesis, have uncovered a plethora of molecular
components that regulate embryonic development. This has lead to the discovery of a
wide variety of regulatory mechanisms and the appreciation of the fact that develop-
mental processes are regulated at many levels. At the same time, it has become clear
that surprisingly few, well-conversed, pathways are involved. Intercellular signaling
involves only a handful of families of signaling factors using mostly linear pathways4;
morphogenetic movements are predominantly regulated by a single family of adhe-
sion molecules5,6; and tissue-specific gene expression is controlled by a small set of
master regulators.

Interestingly, the misexpression of a single regulator gene or signaling factor has
been shown to induce the ectopic formation of complex structures such as eyes on
wings7 or additional limbs8, showing that tissue formation can result from simple

1



2 introduction

local triggers. This is demonstrated even more elegantly in the ex vivo development
of organ-like structures such as intestinal crypts9 and optic cups10 from stem cell
cultures, in which external influences can be excluded. These results indicate that the
formation of complex tissues is, for an important part, driven by self-organization11.

Therefore, the question arises how the limited number of key developmental mech-
anisms are combined in space and time to robustly generate the diversity of cell types
and the variety of tissue architectures. Traditionally, development is seen as a sequence
of more or less independent processes where patterned signals specify cell fates and
the specified cells subsequently rearrange to acquire specific tissue shapes. Increas-
ingly, however, it is realized that these are concurrent processes that occur simulta-
neously and on similar timescales, opening the possibility of regulatory feedbacks
between cell fate specification, patterning and morphogenesis that go beyond the tra-
ditionally assumed sequence of causality12–14.

In gastrulation, for instance, many of the key signaling pathways are now known to
simultaneously affect both cell fates and cell movement13. Therefore, cell movements
may affect cell fate decisions by rearranging cells in order to expose them to subse-
quent sets of signals13. In stem cell biology, it is known that mechanical forces can con-
trol self-renewel and lineage specification15. The size of stem cell aggregates has been
shown to control the induction of spontaneous symmetry breaking and self-organized
axis formation16. In plant development, mechanical stresses generated by tissue gr-
owth were shown to affect the transport of gene-regulating growth hormones17. These
are only few examples of the accumulating evidence that important feedbacks exist
between morphogenesis, patterning and cell fate decisions. This imposes a new logic
that could dramatically change our understanding of the regulation and robustness of
developmental systems and change our interpretation of mutant phenotypes12. How-
ever, the biological mechanisms behind such interplay remain poorly understood.

On the one hand, new techniques are required to manipulate and visualize these
highly dynamic developmental processes. Upcoming technologies such as targeted
and conditional gene expression18,19, high-throughput genetic screens20, time-lapse
imaging of living embryos21 and quantitative image analysis22 are crucial to provide
high resolution quantitative data on these dynamics across spatiotemporal scales.

On the other hand, new methods for mathematical and computational modeling are
needed to explore the consequences of such feedbacks since, generally, the behavior
of complex dynamic systems goes far beyond human intuition. The large amounts
of quantitative data that are being acquired are prompting scientists to new hypothe-
ses explaining complex biological processes. Expressing these hypotheses in terms of
rules and equations that can be simulated by a computer allows the exploration of
non-intuitive consequences of complex interactions and feedback loops. Quantitative
comparison of simulation results with data enables one to narrow down the set of
possible hypotheses to a few plausible ones that can be tested experimentally (figure
1.1).
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Figure 1.1.: The role of computational modeling in quantitative biology.
(Caption on next page)
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Figure 1.2.: To answer specific biological questions, observations and quantification of wet lab
experiments are accompanied by the construction of mathematical and compu-
tational models that formally express hypotheses and assumptions. These models
are based on first principles and/or on hypotheses derived from new experimental
observations. When quantification of experimental data is used for model parame-
terization, simulations generate predictions that can be directly used for statistical
validation against experimental data. Validation may enforce model refinement or
suggest the acquisition of new experimental data. Through iteration between exper-
imentation, quantification and modeling, increasing confidence in the validity of
model assumptions eventually leads to the establishment of new biological theory.

To mathematically or computationally represent feedbacks between cell fate specifi-
cation, patterning and morphogenesis, we can take advantage of a variety of existing
modeling methods that are commonly used to represent distinct developmental mech-
anisms. Dynamic models, typically ordinary differential equations, of genetic regula-
tory networks allow us to understand the cell fate decisions of multipotent cells and
how their trajectories through gene expression space is constrained by interactions be-
tween genes23. Spatial models such as reaction-diffusion models enable us to reveal
how morphogen gradients influences these decisions and how the patterned gradi-
ents can spontaneously arise through interaction between diffusible morphogens24.
And cell-based models, in which cells are represented as discrete and motile agents,
allow us to grasp how specific tissue shapes emerge from the mechanical interactions
between cells25.

In this thesis, a framework is presented that facilitates the exploration of such in-
terplay. Conceptually, this framework is based on the integration of aforementioned
methods to address specific questions on the effects of interactions and feedbacks
between cell fate decisions, signaling and morphogenesis. Practically, a software plat-
form has been developed that implements these computational methods and enables
the flexible and user-friendly construction and simulation of multi-scale models of
multicellular systems (part I). Two case studies are presented that illustrate the appli-
cability of the approach to different types of problems in developmental biology. In
the first, the crosstalk between cell fate specification and tissue patterning is studied
in the context of development of the pancreas (part II). In the second case study, the in-
terplay between patterning and morphogenesis is studied in the formation of vascular
capillary networks (part III).

In the remainder of this introduction, I describe the background of the approach in
which the perspective from systems biology is adopted in order to highlight the focus
on dynamic interaction, integration and quantification. It is worth noting that similar
concepts have recently been proposed in the context of dynamic imaging of animal
development26, as ’computational morphodynamics’ in the context of plant develop-
ment27,28 and as ’cytosystems dynamics’ in the context of studies using organoids11.
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1.1 systems biology

Biological organisms are entities that maintain their existence through the mutual in-
teraction of its parts29, i.e. they are systems30. This view has become the driving force
for an approach to the study of complex biological systems, called systems biology.
Whereas the systems biological approach has had major influence on the fields of
molecular biology and physiology, its impact on developmental biology has so far
been much less pronounced. However, giving the current focus on quantification and
dynamic modeling in understanding developing systems, the role of the systems biol-
ogy is becoming increasingly important to developmental biology.

Systems biology is typically defined in contrast to the long dominant approach of
reductionism in biological research. Whereas reductionist approaches have lead to the
successful identification and characterization of a large number of biological compo-
nents, systems biology focuses on the integration of these components by looking at
the dynamics of their interaction. Systems biology heavily relies on the mathematics of
dynamical systems theory as well as computational simulations in order to understand
the dynamics and emergent properties that arise through nonlinear interactions31. In
addition, it emphasizes detailed quantification of experimental data in order to es-
tablish quantitative computational models that can provide testable predictions and
reliably validate these models against experimental data.

Systems biology is set of common principles rather than a discipline32 and has irre-
movable traces of its origins in two different fields, molecular cell biology and physio-
logy, each of which can contribute to a multicellular systems biology of development.

1.1.1 Molecular systems biology

Through the fast developments in molecular biology and the rapid scale-up and au-
tomation of experimental techniques in the various ’omics’, data on various levels of
molecular cell biology, from genes and proteins to metabolites, has rapidly accumu-
lated. To analyze these data, computational biological approaches, in particular bioin-
formatics and systems biology, have quickly been adopted. Bioinformatics provides
methods for data management, storage and analysis to extract information about e.g.
molecular interactions. Complementary to this, systems biology provides methods to
gain insight into the dynamics of networks of such interactions. It analyzes the static
topology of biochemical networks in order to identify control mechanisms such as
positive and negative feedback loops. In addition, it focuses of the analysis of the dy-
namical behavior that arises from interactions within large-scale biochemical networks.
As such, systems biology views the cell as a network of interacting molecular compo-
nents. This has been influential in replacing the classical thinking in terms of pathways
with the concepts imported from network science and dynamical systems theory33–36.
However, given the focus on temporal dynamics of large molecular systems, spatial
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dynamics and interactions with other spatiotemporal scales have largely been ignored
in molecular systems biology.

1.1.2 Physiological systems biology

This is not true for the other branch of systems biology, originating from physiology.
Here, the focus is on the regulation of biological functions and homeostasis through
the interplay between levels of organization in the human body. Under the assumption
that there is no privileged level of causation in biological systems, their regulation
can only be understood as an interaction between these levels37. Therefore, rather
than integration at the molecular scale, it concentrates on the integration of biological
processes over temporal as well as spatial scales to understand organ or even whole-
body physiology29,38,39. As a prominent example, the physiology of the heart has been
modeled by coupling of the activity of ion channels to cell membranes potentials and
to the spatial propagation of spiral waves over the ventricular tissue.

In order to integrate biological processes and computational models of a wide va-
riety of scales, a pragmatic ’middle-out’ approach is typically employed. In this ap-
proach, a certain level of biological organization is initially selected based on avail-
ability of data and represented in mathematical or computational terms. Additional
processes at lower and higher levels are subsequently included as deemed relevant to
the biological function under investigation40.

The discrepancy between these two branches of systems biology is perhaps best
illustrated by their longterm goals. Molecular systems biology attempts to establish
quantitative computational models that comprehensive describe the dynamics within
the cell. This is exemplified in the recent establishment of a computational ’whole-cell’
model of the life cycle of the bacterium Mycoplasma genitalium that, according to the
authors, include all of its molecular components and their interactions41. In contrast,
physiological systems biology aims to establish integrated computer models of the
mechanical, physical and biochemical functions of a living human body. The goal of
large-scale projects such as the Physiome project and the Virtual Physiological Human
is to develop a computational framework for the quantitative description of biologi-
cal processes in living systems across all relevant levels of structural and functional
integration, from molecule to organism29.

1.2 multicellular systems biology of development

The differences between the molecular and physiological systems biology may provide
a reason why systems biology has had less impact on developmental biology. Develop-
mental biology attempts to understand how the combination of genetic, biochemical
and mechanical interactions result in the patterning and shaping of embryonic tissues.
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These processes cannot be studied by focusing purely on the molecular interactions at
a single-cell level, nor do they require the inclusion of physiological processes at the
level of whole organs or organisms. Instead, the most relevant processes for the study
of developmental biology occur at the intermediate histological level. It is at this level
or organization that cells mediate the exchange of information from biochemical and
genetic regulation with intercellular signaling and tissue mechanics.

The branch of systems biology that focuses on the tissue level can be called ’multicel-
lular systems biology’. Concentrating on the level between molecular cell biology and
organismal physiology, it can adopt concepts and techniques from both the molecular
and physiological bran-ches of systems biology. On the one hand, it forms a natural
and necessary extension of molecular-oriented systems biology towards the inclusion
of spatial context and intercellular interactions. On the other hand, it adopts a multi-
scale and spatial modeling approach from physiology-oriented systems biology.

However, unlike modeling in physiology, multicellular systems biology can restrict
itself by using the cell as the central point of integration and the starting point of
the middle-out approach. This convention has a several advantages: (1) Compared to
the vast variety of functions at the genetic and protein level, the number of behaviors
that cells perform is more manageable and tractable. This allows the complex regu-
latory processes within tissues to be reduced, as a first approximation, to a small set
of cellular behaviors, i.e. growth, division, polarity, adhesion, shape changes, signal-
ing, differentiation, migration and death. (2) In line with the biological role of the cell
as central regulator, the cell-based approach enables the coupling of cellular behav-
iors to processes at intracellular and intercellular levels. That is, it allows the study of
the development and functioning of tissues by modeling the interactions of cells with
each other, with their internal regulatory biochemical networks and with the extracel-
lular microenvironment. (3) By establishing on a particular level of abstraction and
associated modeling approaches, it enhances the development, comparison and stan-
dardization of mathematical and computational methodologies and thereby enhances
scientific communication.

The use of mathematical models in developmental biology is, of course, not new. For
instance, Alan Turing’s seminal work on pattern formation by interacting morphogens,
which remains an active topic in developmental biology to this day42,43, was published
in 1952

44. It can even be traced even back to 1917 with the publication of the book On
Growth and Form in which D’Arcy Wentworth Thompson emphasized the role of me-
chanics and physics to explain morphogenesis45. A less well-known early example is
the robotic model developed in 1912 by John Hammond Jr. and Benjamin Miessner
whose control mechanism was explicitly based on the concept of heliotropism as pro-
posed by the embryologist Jacques Loeb. Later, in a book published in 1918, Loeb took
the heliotropic robot as providing important support for his mechanistic notions on
phototaxic plant development as well as animal behavior46.
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Even though the use of models in developmental biology is about a century old,
still, only a small fraction of research work done in the field uses mathematical and
computational modeling. Why is this expected to change now? To answer this, it is
instructive to draw a parallel with molecular systems biology. Although the important
mathematical models of molecular kinetics were developed by Michaelis and Menten
already in 1913

47, systems biology only became a major approach 90 years later. Molec-
ular systems biology emerged at a time when, apart from the mathematical tools, two
other constraints were satisfied: (1) High-throughput technologies had been developed
to a state that large amounts of quantitative data became available. (2) Computational
methods and tools were sufficiently sophisticated that these data could be integrated
in computational analysis and simulation. In developmental biology, these constraints
are now also being met.

The recent developments in upcoming technologies such as gene editing19, single-
cell transcriptomics48, 4D imaging of living specimen21 and automated quantitative
image analysis22 are providing a wealth of quantitative data on the developmental
regulation, at high spatial and temporal resolution. Furthermore, computational meth-
ods are now available to cope with these types of quantitative data, over different
spatiotemporal scales. Whereas mathematical biology has long been dominated by
first-principle studies, models can now be parameterized with measured biophysical
quantities such as reaction kinetics, diffusion coefficients, binding rates, geometrical
constraints from images, biophysical parameters of cell such as adhesion forces and
compressibility constants, as well as behavioral parameters such as cell cycle lengths,
migration speeds, apoptotic rates, etc. Based on such multiscale quantitative data, com-
putational models can generate predictions that, when experimentally validated, can
provide powerful evidence to demonstrate the consistency of a biological theory.

The dependency between quantitative data and computational modeling is bidirec-
tional. On the one hand, the interpretation of quantitative multiscale data requires
the construction of computational models to be able to link the activity of regula-
tory molecules to population- or tissue-level phenomena26. On the other hand, the
explanatory potential of mechanistic computational models is related to the level in
which they are able to provide quantitative predictions, allowing direct comparison to
data obtained experimentally.

Nevertheless, theoretical modeling studies that are based on first principles rather
than quantitative data remain important. In this respect, the novelty of multicellu-
lar systems biology are computational methods to couple theoretical models of cell
fate specification, pattern formation and morphogenesis. These methods allow the ex-
ploration of consequences of hypothesized feedbacks between these processes, even
before quantitative data is available. In fact, results from such qualitative studies can
be important to guide experimental design and instruct the acquisition of quantitative
data.
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The two case studies presented in this thesis illustrate the multicellular systems bi-
ological approach in applications to specific problems in developmental biology, rang-
ing from gene expression to tissue shape and from qualitative mathematical modeling
to quantitative computer simulation. Whereas the first study investigates the crosstalk
between cell fate regulation and pattern formation in the pancreas, the second explores
the interplay between signaling and morphogenesis in the context of vascular network
formation. And while the first study is a theoretical study based on qualitative infor-
mation, in the second case study, an initially qualitative study on is experimentally
validated and extended to obtain a quantitative computational model. Although these
case studies merely probe the range of possible interplays that are of interest, the in-
depth investigation of these disparate topics in developmental biology is intended to
highlight the wide variety of approaches and applicability of a multicellular systems
biology of development.

1.3 overview of thesis

Figure 1.3 depicts the rationale and structure of this thesis. Developmental processes
can roughly be categorized into three developmental mechanisms, cell-face specifica-
tion, pattern formation and morphogenesis (fig. 1.3A), for each of which well-established
modeling methods exist (fig. 1.3B). Interactions between genes can be represented in
terms of ordinary or stochastic differential equations to study dynamics of cell fate
specification. Interactions between signaling molecules that drive pattern formation
can be studied using reaction-diffusion systems. And morphogenetic mechanisms can
be captured in a range of cell-based modeling methods that specify the mechanical
and behavioral interactions between cells.

Understanding the interactions and feedbacks between these developmental mech-
anisms, however, necessitates the integration of these modeling methods into a single
multiscale modeling framework. In this thesis, such a framework is presented (figure
1.3C). Part I introduces computational methods in multicellular systems biology of
development and a new software environment that implements these methods. These
methods are applied to two case studies (figure 1.3C) that highlight the diversity of
approaches and applications in developmental biology. Part II describes a study on
the crosstalk between cell fate regulation and pattern formation in the pancreas and
part III describes the interplay between signaling and morphogenesis in the context
of vascular network formation. Each part contains a separate introduction describing
the biological background and introduces existing modeling approaches (chapters 2, 4

and 7) and are briefly summarized here.
In part I, methods and tools for multi-scale modeling of multicellular systems are

introduced that are used in the research work in the following parts. In particular, I
present the modeling and simulation environment Morpheus that facilitates the sim-
ulation and integration of cell-based models with model describing intra- and extra-
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Cell fate specification

Interactions between genes

Pattern formation  

Interactions between signals

Part II
Cell fate regulation and patterning in the pancreas

Part III
Morphogenesis of vascular networks 

Part I
Computational methods for multi-scale multicellular modeling

A

B

C

Morphogenesis

Interactions between cells

Differential equations Reaction-diffusionCell-based modeling

Figure 1.3.: Rationale and structure of thesis. (A) Development is driven by interplay be-
tween developmental mechanisms and requires the study of interactions at mul-
tiple scales. (B) Existing mathematical and computational modeling methods for
each of these developmental mechanisms must be integrated to investigate how
feedbacks between these developmental mechanisms drives tissue formation. (C)
This thesis is divided in three parts. Part I describes the computational methods
and software implementation that enables the computational study of interplay be-
tween development mechanisms. In Part II, these methods are applied to study cell
fate regulation and pattern formation in pancreatic development. Part III describes
two applications to the problem of the morphogenesis of vascular networks.
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cellular processes. This publicly available software has been designed with a strong
focus on usability to facilitate biological experts, even without computational exper-
tise, to use and apply the multicellular systems biological approaches to their own
problem domain.

Part II deals with theoretical approaches to understand the regulation of cell fates
and spatial patterning. Although both topics have been extensively studied separately,
the recent developments in the field of stem cell biology and cellular reprogramming
has sparked new interest in mathematical and computational modeling of gene regula-
tory networks and cell-cell communication and the interplay between these processes.
Specifically, I present two theoretical studies on cell fate decision, patterning and repro-
gramming of pancreatic cells. In the first, a mathematical model of crosstalk between
intercellular signaling mechanisms is developed that reproduces the establishment of
the scattered spatial distribution and cell type ratio of nascent exocrine and endocrine
observed during pancreatic organogenesis (chapter 5). In the second study, this model
is extended to provide a theoretical framework to understand experimental observa-
tions of in vitro acinar-to-islet cell reprogramming and transdifferentiation (chapter
6).

In part III, attention is turned to the interplay between intercellular signalling and
morphogenesis during the de novo formation of vascular networks. Although previous
theoretical work has shown that networks can arise in a variety of ways, including
autocrine chemotaxis, some of the assumptions are not substantiated by biological
evidence. Two studies are presented that argue that the formation of vascular net-
work formation occurs through paracrine signaling. In the first, it is shown through
mathematical and computational modeling that morphometrically realistic vascular
networks can arise by paracrine signaling, under the assumption of the retention of
the signaling factors by extracellular matrix molecules (chapter 8). In the second study,
the predictions generated by this model are experimentally validated in vitro. Biophys-
ical measurements obtained from this assay are then used for quantitative modeling
to confirm the establishment of network patterns under the paracrine signaling model
(chapter 9).

These case studies are not intended to exhaustively explore the range of possible
interplays between developmental mechanisms, but to illustrate the applicability of
the multicellular systems biological approach from gene expression to tissue shape
and from qualitative mathematical modeling to quantitative computer simulation.

1.4 supplementary online material

Videos and simulation models of discussed computational models discussed in this
thesis are available as supplementary online material. Videos are encoded in MP4

format and can be viewed online in a modern HTML5-enabled web browser. Simu-
lation models are encoded in XML-based modeling language MorpheusML (section
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3.4). Their simulation requires the Morpheus modeling and simulation environment
(chapter 3). Installers for this software are available for MS Windows, Mac OSX and
Linux. The supplementary material can be accessed under: http://walter.deback.
net/thesis.

http://walter.deback.net/thesis
http://walter.deback.net/thesis
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2
I N T R O D U C T I O N

After establishing all equations and constants for their Nobel Prize winning work on
modeling the action potentials in a squid giant axon, Alan Hodgkin and Andrew Hux-
ley used a Brunsviga 20 mechanical calculator to iterative solve the propagating action
potential. Back in 1951, calculating a few millisecond of the differential equations took
many weeks and many thousands of rotations49. Several years later, the action po-
tential and pacemaker rhythm in cardiac cells was computed on an early electronic
computer automatically, but this required providing instructions in endless gibberish
of machine code50. Now, highly detailed kinetic models of cellular signaling can be
computed on histo-anatomically detailed geometric models of the whole heart using
massively parallel high-performance computers. These computational models are pro-
viding new insights into basic cardiac function and arrhythmia51 and are already used
for drug development52.

This remarkable progress in cardiac modeling demonstrates that increases in compu-
tational modeling and advances in systems biology have gone hand in hand through-
out its history. Not only has the increased computing power facilitated the develop-
ment of large-scale simulations, it has also boosted the acquisition of reliable quantita-
tive data from high-throughput experiments and microscopy images that are required
for quantitative computational modeling.

Although computing power is necessary, it is not sufficient. At least as important
are the establishment of computational methods to represent relevant biological pro-
cesses and their implementation in reliable software tools. The construction and im-
plementation of simulation models poses considerable computational challenges, in
particular in cases where the biological system under investigation extends over differ-
ent levels of biological complexity, from genes, via cells to tissues, each of which are
associated with different modeling formalisms. The integration of discrete and con-
tinuous, spatial and nonspatial, deterministic and stochastic models is a numerically
complicated and error-prone process. While many scientists develop their own custom
software for specific research goals, the development of dedicated scientific software
based on established software engineering practices becomes increasingly important
and offers advantages concerning reproducibility, (re)usability, maintainability and ex-
tensibility53,54. Moreover, by making the numerical details of computational modeling

14
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transparent, such software also allows less computer-savvy biological experts to use
computational modeling to formulate and test hypotheses. It thereby contributes to
closing the gap between researchers with expertise in computational modeling and
biological experts with extensive domain knowledge.

In this chapter, I introduce the key computational approaches and methods used
in multicellular systems biology, I present the state-of-the-art in software tools that
implement these methods, and identify some major challenges in this field. The fol-
lowing chapter (3) then focuses on our own computational modeling environment,
Morpheus55, and describes how this software meets these challenges.

2.1 approach

The formation and maintenance of tissues involves genetic regulation, intercellular sig-
naling, external molecular gradients, biomechanical interactions between cells as well
as the interplay between these processes. To account for these processes and their inter-
play, modeling of multicellular systems requires a multitude of mathematical models
and computational methods describing biological processes at different spatiotempo-
ral scales. To study the interactions between processes at these various scales, these
models are coupled into socalled multiscale models.

Yet, the concept of multiscale modeling has been used in many different ways which
confuses the discussion of the challenges involved in the construction and implemen-
tation of such models. It is therefore useful to outline its meaning within the context
of multicellular systems biology and to describe an approach to avoid the inherent
complexities in constructing multiscale models.

2.1.1 Multiscale modeling

Biological organisms span an enormous range of spatial and temporal scales, span-
ning from the molecular length scale (10−9m) to the length of an organism (1m) and
from the time scale of molecular interactions (10−3s) to a human lifespan (109s). In
many cases, understanding the development or (dys)function of biological organisms
requires the integration of data and models across multiple temporal and spatial scales.
Yet, in practice, there are considerable differences in how multiscale models are real-
ized.

In molecular systems biology, with its focus on understanding the dynamics of bio-
chemical networks, multiscale modeling typically refers to the coupling of processes
at different timescales, since spatial relations are generally not represented explicitly
in these models. Coupled dynamics of fast and slow processes, possibly spanning
multiple orders of magnitude, can readily be represented in terms of differential equa-
tions. However, numerically solving such systems of differential equations is problem-
atic, as they often lead to so-called stiff systems, for which infinitesimally small time
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steps would need to be chosen to compute accurately using standard (explicit) solvers.
Therefore, to avoid inaccuracy and improve computational efficiency, the model should
either be reformulated to reduce stiffness, i.e. by quasi-steady state assumptions, or
specific (implicit) solvers must be used that can deal with stiff systems56. Apart from
these numerical issues, multiscale modeling in molecular systems biology also faces
the computational problem of coupling existing models representing dynamics at the
intracellular scale to dynamics at the whole-body scale, e.g. linking metabolic network
models to physiologically-based pharmacokinetic (PBPK) models. Here, the key chal-
lenges are to define relevant points of information exchange between pre-established
models, to efficiently compute large numbers of differential equations over long per-
oids of time, and to provide user interfaces aiding the construction of complex mod-
els57. Yet, multiscale models in this field are typically restricted to ordinary and sto-
chastic differential equation model and do not involve coupling of disparate modeling
formalisms.

The concept of multiscale modeling is quite different in the physiology-oriented
branch of systems biology. Here, it does not necessarily refer to the coupling of pro-
cesses at different time scales. Rather, it refers to the coupling of processes at different
levels of biological organization58: molecules, organelles, cells, tissues, organisms, etc.
Note that this explicitly includes processes at different spatial scales. From this per-
spective, a model is multiscale if and only if it includes submodels representing two
or more processes at different levels of organization. Because the processes at each
level typically represented using specific modeling formalisms, it follows that multi-
scale modeling involves the integration of different modeling methods. Therefore, the
issue of multiscale modeling becomes a problem of providing a reliable computational
infrastructure to couple radically different modeling methods, e.g. discrete and conti-
nuous, spatial and nonspatial, deterministic and stochastic models. The large diversity
of processes that need to be coupled to understand organ physiological and the num-
ber of available modeling methods to represent them aggravates this problem. As a
consequence, efforts to enable such multiscale modeling in this field are focused on
the establishment of new standard formats to flexibly represent spatial59 and mechan-
ical60 models as well as the development of software tools to simulate these models.

Middle-out modeling

Multiscale models can be constructed in various ways. One can start at the molecular
level and progressively include representations of spatial interactions at the cellular,
tissue level. Or one can start by describing functionality at tissue level and work down
towards its implementation at the cellular and molecular levels. However, both ap-
proaches, bottom-up and top-down, have their particular problems. Whereas bottom-
up approaches easily become computationally intractable due to the large number
of components even at the molecular level, top-down approaches often remain phe-
nomenological descriptions rather than mechanistic models. A pragmatic alternative
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to multiscale modeling is offered by the middle-out approach39,61,62. In this approach,
one particular level of organization is adopted as the main level of abstraction, depend-
ing on the relevance to the phenomenon as well as the available data. Subsequently,
processes at lower and higher levels are explicitly included and coupled to the ex-
isting model, if deemed relevant to the problem under investigation. This approach
avoids the pitfalls of (i) the sheer complexity of describing biological function from
the bottom-up and (ii) the mere phenomenological description of function in the top-
down approach. Moreover, the middle-out approach does not presuppose a certain
direction of causality in biological regulation and is therefore unbiased with respect to
the study of regulation through feedback between levels of biological organization.

Key questions in multicellular systems biology concern the interaction between dif-
ferent levels of biological organization. Therefore, models in this field often consist of
various submodels for processes at different biological levels. Hence, they fall under
the second interpretation of the term ’multiscale’. As a method to retain tractability in
the construction of such models, a middle-out modeling approach is adopted. Here,
the cellular level is taken as the main level of abstraction and the central point of
integration, whereas models of intracellular regulation and tissue-level extracellular
processes are included as deemed necessary.

2.2 computational methods

When applied to common problems in multicellular systems biology, the multiscale,
middle-out approach described above results in a conveniently small number of mod-
eling methods that can be re-used in various combinations. The most suitable com-
bination depends on the biological context as well as the research question. Figure
2.1 shows the most commonly used combination of formalisms. Intracellular dynam-
ics are described by ordinary differential equations (fig. 2.1C), the spatial distribution
of extracellular signaling molecules are described by reaction-diffusion equations (fig.
2.1A) and cellular behavior and intercellular mechanics are modeled in one of several
cell-based model formalisms (fig. 2.1B).

2.2.1 Dynamic modeling

Describing the dynamics of interaction between biochemical components is at the heart
of systems biology. The most frequently used tool to model these dynamics are cou-
pled sets of ordinary differential equations (ODEs). Hodgkin and Huxley, for instance,
used ODEs to describe the membrane current as an interaction between the potassium
and sodium ion channel activation63. ODEs are now ubiquitously used in systems
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Figure 2.1.: Computational methods in multicellular systems biology. Models consist of the
following components that can be coupled using a middle-out strategy starting at
the cellular level. (A) Reaction-diffusion equations are used to represent spatial dis-
tributions and interactions of signaling agents. (B) A variety of cell-based models
can be used to represent cellular biomechanics (see figure 2.2) and rules specifying
cell behavioral decisions. (C) These cellular aspects can be controlled by ordinary
or stochastic differential equations that represent intracellular regulatory dynam-
ics. (Figure adapted from W. de Back, T. Sütterlin, A. Deutsch and N. Grabe, in
preparation.)
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biology to describe the dynamics of biochemical networks, including metabolic net-
works64, signaling pathways65 and genetic regulatory networks66.

ODEs represent the behavior of biological systems in terms of continuous-time non-
linear dynamical systems. A large number of mathematical and computational tools
are available to simulate and analyze such systems, ranging from time course simu-
lation, stability and bifurcation analysis to parameter identifiability and optimization
techniques. Moreover, there are a number of well-established software tools available
for their simulation and analysis, such as COPASI67 and CellDesigner68.

Ordinary differential equations assume that the modeled system is composed of ho-
mogeneous, well-mixed populations of components that behave deterministically and
instantaneously. The assumption of homogeneity can be relaxed using compartmental-
ized models, while stochastic and delay differential equations (SDEs and DDEs) can
be used to relax the latter two assumptions, although at the expense of mathematical
tractability.

Dynamic models of intracellular regulation can be linked to cell-based models to
serve to control the cell’s mechanical properties or behavioral decisions (fig. 2.1). For
instance, intercellular adhesion may depend on dynamic models of cadherin expres-
sion, or the propensity for cell division may depend on a intracellular model describing
cell cycle progression.

2.2.2 Spatial modeling

While the behavior of molecular regulatory networks can often be faithfully studies in
non-spatial models, studying the causes and effects of spatial heterogeneity requires
models that explicitly account for spatial interactions. The emergence of patterns and
shapes is, of course, of particular interest to developmental biology. Gradient models
like Wolpert’s French flag model, for instance, presented a conceptual mechanism al-
lowing patterning of cells in a concentration-dependent manner when exposed to a
spatial gradient69. Even earlier, Alan Turing has shown that such gradients can arise
by self-organization, given the right interactions between diffusive morphogens forma-
tion44,70. Since then, partial differential equations, and in particular reaction-diffusion
equations, have been used to study many examples of pattern formation in biological
systems24 ranging from animal coats patterns71 to vascular network formation72 and
from somitogenesis73,74 to cell polarization75,76.

In the context of multicellular systems biology, reaction-diffusion equations and gra-
dient models are coupled to cell-based models to describe the the diffusion of signal-
ing agents through the tissue as well as (un)-binding to extracellular matrix compo-
nents (fig. 2.1). Although reaction-diffusion equations are also used to describe the
spatiotemporal behavior of populations of cells at a macroscopic level, this is typically
not appropriate to represent the heterogeneity of cellular behaviors at the level of the
single cell.
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2.2.3 Cell-based modeling

To model growth, motility and patterning in heterogeneous cellular populations, cells
are represented as discrete entities or agents. A range of computational methods have
been developed to describe the interactions between cells as discrete entities. These cell-
based models describe cells with respect to cell shape, motility, growth and mechanical
interactions in various levels of detail77. As shown in figure 2.2, they can be categorized
in on- and off-lattice models, depending on whether cells are spatially represented
in continuous space or discretized on a lattice. Alternatively, they can be classified
according to the way in which systems dynamics is calculated, either based on rules,
forces or free energy.

In lattice-based methods such as cellular automata78 and the cellular Potts model79,
cells are spatially represented as occupying one or more lattice sites. In classical cellu-
lar automata, cells are immotile and the state of cells depends on local interactions with
adjacent cells, although extensions such as lattice gas cellular automata also allows the
description of state-dependent cell motility78. The cellular Potts model describes cells
as connected domains of lattice sites were cell motility arises by local spin-copy events
minimizing a free energy function that describes mechanical cell properties such as
limited compressibility, contractility and cell-cell adhesion79.

Off-lattice models such as cell-center models80,83, vertex models81,84 and subcellu-
lar elements model82 describe cells as a single or collection of points in continuous
space. In cell-center models, point-like cells are connected by springs to model adhe-
sion forces that are balanced by a viscous drag term. Vertex models represent cells
as polygons whose vertices are shared by multiple cells. Cell rearrangements are the
result of movements of these vertices according to equations of motions that may be
based on a free energy function81. The subcellular element models provides a more
fine-grained model of cell shape by representing each cell as a network of connected
elements. Cell shape and motility evolves as a result of a balance between intra- and
intercellular potentials82.

Each of these computational modeling methods have their strengths and weaknesses.
To focus on the weaknesses, the cellular Potts model is essentially an equilibrium
rather than a dynamic model85, the centre-based model does not account for cell shape,
the vertex model is limited to represent confluent epithelial tissues in 2D and, due to
high computational costs, the subcellular element model is impractical to represent
large tissues. Therefore, none of these cell-based formalisms has been widely adopted
as a standard model representation for biological cells. And, unfortunately, studies
with critical analyses of cell-based model behavior and systematic comparisons be-
tween model formalisms are still rare85,86. The choice for a particular cell-based model
formalisms thus typically depends on the specific application domain and the avail-
ability of data on cell shape and biophysical parameters. Despite the lack of a standard
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representation of cells, cell-based modeling methods in general have been established
as a valuable tool for the investigation of the behavior of multicellular systems.

While all the aforementioned computational modeling methods are well-established
by themselves, their combination opens up new possibilities to understand the inter-
play between developmental mechanisms. Yet, their integration provides several com-
putational challenges. It demands the implementation of numerical solvers for all or
a subset of the above modeling methods as well as methods to integrate these into
reliable multiscale models. Consider a simple model in which the propensity for cell
division in a cell-based model depends on an intracellular model describing the cell
cycle. Even this simple example requires the coupling between discrete and continu-
ous models, deterministic and stochastic models, and spatial and non-spatial mod-
els. Mathematical and numerical methods to tightly integrate such models are not
yet well developed and the requirements differ between specific modeling formalism,
rendering the construction and implementation of multiscale multicellular models a
challenging task.

2.3 software environments

The computational requirements for multiscale multicellular modeling go well beyond
the capabilities of standard software for systems biology. Therefore, researchers are
forced to implement their own computational models by hand using a general-purpose
programming language or generic software such as MatLab. However, manual imple-
mentation has several drawbacks since (1) it requires considerable expertise on math-
ematics, biophysics and software design, (2) it transforms the task of biological mod-
eling into a programming problem that precludes most biologists and (3) it hampers
the reproducible of results by third parties.

Recently, a new generation of software environments has emerged that facilitate the
simulation of multiscale models of multicellular systems (see table 2.1). These software
tools all have similar functionality in the sense that they allow users to construct and
simulate multiscale models by linking cell-based models to models of intra- and ex-
tracellular dynamics. Despite the fact that all environments implement the common
components depicted in figure 2.1, there are significantly differences between them.

One of the key differences is the support for cell-based modeling paradigms (see ta-
ble 2.1). Most platforms are specialized on a particular cell-based model and are there-
fore subject to the specific strengths and weaknesses of that method. Only few support
the simulation of multiple cell-based formalisms. Apart from improving modeling flex-
ibility, this also enables the study of model behavior under various assumptions on
biomechanical and cell shape properties. Chaste, for instance, provides implementa-
tions for center-based, cellular Potts and vertex models, and is therefore well-suited
for comparative studies using these different methods86.
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Software Cell-based model(s) Modeling language

CA CPM CBM VM SEM

Biocellion87 • C++

CellSys88 • C++

Compucell3D89 • Python, XML, C++

Chaste90 • • • C++

EPISIM91 • • Process diagrams

GNOMO • Fortran

Morpheus55 • • MorpheusML

VirtualLeaf92 • C++

Table 2.1.: Software environments for multicellular systems biology. New generation of mod-
eling and simulation software that implements computational methods show in
figure 2.1. Cell-based models: CA=cellular automata, CPM=cellular Potts model,
CBM=center-based model, VM=vertex model, SEM=Subcellular element model.

Another major difference between the platforms lies in the languages and interfaces
that they provide to the user to construct their models. All software platforms hide the
numerical details of the implementation by exposing their functionality in terms of a
high-level language. Yet, these vary from application programming interfaces (API)
in general purpose languages such as C++ and scripting language such as Python to
domain-specific declarative languages or even graphical modeling interfaces. Whereas
modeling in general purpose programming languages offers maximum modeling flex-
ibility and computational performance, the use of biological and mathematical termi-
nology in domain-specific languages and graphical modeling tools typically provide
improved usability and may be more accessible to biological users without extensive
computational knowledge.

2.3.1 Challenges

The key functionality of these software environments is the flexible integration of mod-
eling formalisms. However, a major challenge for all environments is the optimization
of usability without sacrifising modeling flexibility. While flexibility and extensibility
are essential to facilitate innovative modeling studies, usability is crucial to widen the
target audience from computational experts to biological researchers with extensive
domain knowledge. Moreover, usability is important to allow integration of modeling
and simulation into the everyday workflow in biology, similar to e.g. image analysis
and statistical software.
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Another formidable challenge is the establishment of standardized formats for the
representation, storage and exchange of models of multicellular systems. Standard
modeling formats, such as the systems biology markup language (SBML)93, have
gained a prominent place in systems biology where they facilitate the open exchange
between users and software. Yet, no such standards exist that are able to represent
multiscale models of multicellular systems. On the one hand, this is complicated by
the fact that the establishment of standard requires a concerted community effort. On
the other hand, it is difficult to represent dynamic multiscale models encompassing
multiple modeling formalisms in a static declarative markup language94.



3
M O R P H E U S : A M O D E L I N G E N V I R O N M E N T F O R M U LT I S C A L E
A N D M U LT I C E L L U L A R S Y S T E M S B I O L O G Y *

3.1 introduction

Computational modeling crucially depends on software. In contrast to the modeling of
molecular reaction networks, for which a large and diverse collection of software tools
is available†, software that supports computational modeling of multiscale multicellu-
lar systems is scarce. Therefore, many researchers are forced to write their own custom-
made software, which often leads to computational models that are irreproducible, not
extensible, poorly documented and difficult to exchange between researchers.

Recently, a number of dedicated software platforms have come available55,88–92 that
provide reliable and reusable implementations of established cell-based models that
can be coupled to models of intracellular and extracellular dynamics, rendering them
suitable to investigate tissue dynamics over multiple spatiotemporal scales. However,
most of these platforms are targeted at computational experts and require in-depth
knowledge of programming, while the few software platforms that provide intuitive
graphical interfaces, lack the flexibility to be customized for innovative modeling stud-
ies.

We have designed a modeling and simulation environment for multiscale and mul-
ticellular systems, Morpheus, to provide reusable implementations of computational
methods that can be flexibly combined into complex multiscale simulations. Models
are constructed from within a user-friendly graphical user interface, that does not
require programming expertise. Morpheus facilitates the simulation of a range of com-
putational modeling formalisms including ordinary, stochastic and delay differential
equations, Boolean models, rule-based models, cellular automata, cellular Potts mod-
els, gradient-based models and reaction-diffusion models. These formalisms can be

* This chapter includes text and figures from the publication and supplementary material of: Jörn Starruss,
Walter de Back, Lutz Brusch and Andreas Deutsch, Bioinformatics, 30(9):1331-1332, 2014. Author contribu-
tions: Jörn Starruss and Walter de Back conceived, designed and implemented the software. Jörn Starruss
is core developer and Walter de Back is contributing developer. Walter de Back wrote the paper.

† The SBML software matrix (http://sbml.org/SBML_Software_Guide) mentions 274 software packages
that support the simulation and analysis of biochemical network models written in SBML.
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used in isolation or combined to represent multiscale and morphodynamic systems.
It is available as a ready-to-use application with graphical user interfaces (GUI) for
modeling and simulation55 and it provides a well-documented framework with a C++-
based plug-in architecture that allows customization and extensibility.

A key technology that enables Morpheus to combine modeling flexibility with us-
ability is a novel XML-based model description language for multiscale multicellular
models, MorpheusML. This language enables a separation of concern between model-
ing and implementation in which the model, created in the GUI, fully specifies what
should be simulated and the simulator determines how this is accomplished algorith-
mically. Similar to markup languages such as the systems biology markup language
(SBML)93, this language combines biological terminology with symbolic mathematical
expressions to represent model dynamics. However, it adds the possibility to represent
the dynamics of spatial and cell-based models.

Internally, models in MorpheusML format are interpreted by the simulator and ex-
ecuted as a series of plugins. Plugins can be added or customized to meet specific
modeling goals. The order and update frequencies of the various plugins are auto-
matically derived from the dependencies and spatiotemporal contexts of the symbols
specified in the model such that the correctness and efficiency of the simulation are
ensured. This scheduling automates the error-prone process of model integration be-
tween different model formalisms.

Together, the user-friendly user interface, the model description language and the
extensible simulation framework provide a powerful toolset that allows computational
modeling of multicellular system to be integrated in the common workflow in biology,
comparable to software for e.g. image processing or statistical analysis.

This chapter provide an overview of the versatility and usability of Morpheus. We
first describe the modeling formalisms that are available and show the versatility of
type of models that can be configured. We then show how to use construct, configure
and execute models using the graphical user interface. To understand how models are
stored, interpreted and executed, we describe the model description language Mor-
pheusML. Finally, it is shown how Morpheus performs automatic model integration
and how its plugin architecture supports extensibility.

3.2 modeling formalisms

Morpheus supports the simulation of a number of modeling formalisms based on
differential equations as well as several cell-based models. These core modeling for-
malisms can be used in isolation or combined into multiscale models. Moreover, the
use of mathematical expressions such as functions, rules and discrete events, allows
for a versatile array of modeling methods, as illustrated in table 3.1.
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Differential equations models

A1 A2 A3 A4

Reaction-diffusion models

B1 B2 B3 B4

Cellular Potts models

C1 C2 C3 C4

Multi-scale models

D1 D2 D3 D4

Miscellaneous

E1 E2 E3 E4

Table 3.1.: Use cases of different modeling formalisms in Morpheus. (Caption on next page)
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Figure 3.1.: (A1) Ordinary differential equation (ODE) model of MAPK cascade95, imported
from SBML format via BioModels. (A2) Stochastic differential equation (SDE) mo-
del of Xenopus cell cycle65. (A3) Delay differential equation model (DDE) of cell cy-
cle65. (A4) ODE population model of Nanog expression in mouse embryonic stem
cells96. (B1) Gierer-Meinhardt model with short-range activation and long-range
inhibition70. (B2) Gierer-Meinhardt model in arbitary domain, imported from im-
age70. (B3) Spatially varying parameters in Turing model97. (B4) 3D simulation of
Barkley model of excitable media98. (C1) Cellular Potts model (CPM) of cell sorting
based on differential adhesion79. (C2) CPM model of persistent motion in mono-
layers, adapted from99. (C3) CPM adaptation of vertex model of boundary forma-
tion, adapted from100. (C4) CPM model of clonal growth of stem cells in intestinal
crypt. (D1) Lattice of spatially coupled SDE representing cell fates in pancreas101.
(D2) Multiscale CPM / reaction-diffusion model of vascular network formation
with varying cell density102. (D3) Multiscale model of Dictyostelium aggregation
with cAMP wave propagation leading to aggregation of chemotactic cells, adapted
from103. (D4) Planar cell polarity model with reaction-diffusion model76 on mem-
branes, image of segmented cells imported from104. (E1) 1D cellular automata (CA)
model (rule 30) of patterning of sea shells105. (E2) Stochastic interacting particle sys-
tem (IPS) of aggregation. (E3) Wolpert’s French flag model of positional informa-
tion69. (E4) 3D cell shapes imported from TIFF images (image courtesy of Zerial lab,
MPI-CBG). Videos and simulation models in MorpheusML format are available in
the Supplementary Online Material under http://walter.deback.net/thesis.

3.2.1 Differential equations

Morpheus supports the simulation of ordinary, stochastic and delay differential equa-
tions as well as reaction-diffusion systems, see figure 3.2. Differential equations are
perhaps the most widely used formalism in systems biology and have been applied to
all kinds of biological networks, from signaling pathways and metabolic networks to
gene regulatory networks106. Systems of coupled sets of non-linear differential equa-
tions can be used to describe the rate of change of continuous variables. In systems
biology, this is typically used to describe the concentration of molecular species as a
function of time.

One can perform time-course simulations and predict responses to different stimuli,
if a fully detailed kinetic model can be constructured. Accurate simulation of system
dynamics, however, requires detailed knowledge of the involved reaction mechanisms
as well as kinetics parameters for which experimental measurements may be difficult
to obtain. But even incomplete knowledge of reaction kinetics, differential equations
form an attractive modeling formalism due to the fact that, at least small systems of or-
dinary differential equations (ODEs) can be analysed using well-established methods
such as phase diagrams (revealing qualitative changes in state space), linear stability
analysis (showing stability properties of equilibria) and bifurcation diagrams (relating
stability properties to changes in parameters).

http://walter.deback.net/thesis
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Figure 3.2.: Different types of differential equations available in Morpheus. (A) Determinis-
tic ordinary differentential equations are entered in conventional in-fix notation.
(B) Stochastic differential equations can be simulated by including a normally
distributed stochatistic term, rand_norm([mean], [stdev]). (C) Delay differential
equations are simulated by assigning to the special DelayProperty with a given
delay τ. (D) Partial differentential equations of the reaction-diffusion type can be
simulated by assigning to a Layer, defining a value field including a diffusion
coefficient.

Stochastic differential equations (SDEs), figure 3.2B, are differential equations that
include a stochastic term to represent randomness inherent in the thermal nature of
chemical reactions. Whereas deterministic ordinary differential equations, figure 3.2A,
are based on the assumption that random flctuations are averaged out in a large pop-
ulation, in small population, such as transcription factors binding to one or two pro-
moter regions, stochastic effects may persist. Stochastic effects can play a major role by
allowing the system to escapse unstable equilibria by random perturbation.

Delay differential equations (DDEs), figure 3.2C, are useful to represent lags in reac-
tions due to e.g. transport delays or to lump together complicated processes and only
account for the time required for these processes to occur. Delays can qualitative alter
dynamics. For instance, adding delays to systems with negative feedback, can result
in oscillatory behavior that is otherwise not observed65.

Whereas the differential equation systems above assume spatial homogeneity, par-
tial differential equations (PDEs), in particular reaction-diffusion (RD) systems, can
account for heterogeneous spatial distributions24. This can be used to model the es-
tablishment of morphogen gradients providing positional information or cues for cell
motility102,107 as well as the self-organization of spatial patterns by interaction between
diffusible species44,108.
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Numerical solvers

Morpheus implements solvers for initial value (Cauchy) problems for ODEs based on
the finite difference methods for different orders (Euler, Heun, Runge-Kutta) and fixed
time stepping. Finite difference methods are explicit numerical integration schemes to
solve differential equations given initial conditions and allow straight-forward imple-
mentation and circumvent the need to algebraically determine a Jacobian, as with
implicit methods. However, explicit numerical methods require user-specified time
steps to achieve sufficient accuracy of solution and guarantee numerical stability and
cannot be used to solve stiff systems that generally occur when dynamics of variables
vary over order of magnitude, requiring unacceptably small time steps to ensure nu-
meric stability. Although adaptive time-stepping methods may solve the first problem,
Morpheus uses fixed user-specified time steps to enable the simulation schedule and
time intervals to be determined at initialization in order to offer automated model
integration, as explained below.

For SDEs, the Maruyama method is used automatically whenever stochastic terms
are used in differential equations. This method ensures that the noise amplitude is
scaled with the user-specified numerical integration time step. Morpheus also sup-
ports the simulation of DDEs using a special variable that returns values at time t that
were assigned to it at time t− τ, where τ denotes a given delay. Note, however, that
the delay τ is fixed during simulation. Reaction-diffusion systems are solved using the
sequential operator splitting method in which the original problem is split into two
subproblems (the reaction and diffusion steps) that are solved sequentially, both for
the same time step. It uses the central difference method to solve the diffusion equa-
tion, based on the diffusion coefficient for each species and the spatial discretization
of the lattice. During initialization, the numerical time step for the reaction step is
adopted by the diffusion problem and automatically adjusted in order to satisfy the
Courant–Friedrichs–Lewy (CFL) condition ensuring numerical stability.

3.2.2 Cell-based models

Morpheus also supports the simulation of a number of discrete cell-based models in
which cells are spatially represented on a lattice. These include the cellular Potts model
and several derived formalisms such as coupled ODE lattices, cellular automata and
interacting particle systems.
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Figure 3.3.: Cellular Potts model. Cells are represented as connected domains on a lattice. The
area of a cell Aσ equals the number of lattice sites it occupies (colored boxes) and
the cell perimeter Pσ is the number of interfaces with other cells or medium (dotted
lines). For each interface, a characteristic binding energy J is defined (small arrows)
that may differ for cell-cell (white) and cell-medium (black) interfaces. Cell shape
changes and motility arise through spin-copy attempts (big arrow) along the cell
membrane mimicking protrusions and retractions. Acceptance of these attempts
depends on the associated change in the free energy ∆H.

Cellular Potts model*

The cellular Potts model (CPM), also known as the Glazier--Graner--Hogeweg mo-
del109, is a modeling framework in which cells are represented as discrete entities that
are spatially extended as domains on a lattice. It describes cell and tissue behavior
in terms of cell surface mechanics110, including volume conservation, adhesion and
cortical tension. It is applicable when the details of cellular behavior and intercellular
interactions are essentially determined by the shape and the size of the individual cells
as well as the length of the contact area between neighboring cells. This model class
has originally been developed by Glazier and Graner111 to study cell sorting, i.e. the
observed segregation of heterotypic cell aggregates into spatially confined homotypic
cell clusters. The CPM was introduced to explore the tissue-scale consequences of the
differential adhesion hypothesis that holds that cell-type-dependent disparities in the
expression of molecules that regulate intercellular adhesion are responsible for cell
sorting. Since then, this formalism has been elaborated and applied to study a wide
range of morphogenetic phenomena in developmental biology112.

* This subsection contains texts adapted from: Anja Voss-Böhme, Jörn Starruss and Walter de Back, Cellular
Potts model, In: Encyclopedia of Systems Biology, W. Dubitzky and O. Wolkenhauer and H. Yokota and K.-H.
Cho (Eds.) Springer, 2013.
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Configuration

In the CPM, a population of N cells are represented by a connected subdomains on a
regular lattice. Although square and hexagonal 2D lattices and cubic 3D lattices can be
used, for clarity the description is restricted to a 2D regular square lattice, as depicted
in figure 3.3. All lattice sites that a particular cell occupies are labeled by the same
index σ = {1, 2, ..,N}, while a special index σ = 0 labels the medium, i.e. all lattice
sites not occupied by cells. In this formalism a cell has finite volume and deformable
shape. The interfaces between two different lattice sites x and x ′ with different indexes
σx 6= σx ′ represent membrane boundaries between cells or between cells and the
medium. To each of these boundaries, a characteristic binding energy is assigned: Jcc
when the interface is between two different cells and Jcm when it lies between a cell
and the surrounding medium. An energy penalty increasing with the cell’s deviation
from a selected target area Aσ imposes an area constraint on the cells. Optionally, an
additional constraint on the perimeter of the cell is included by a penalty on deviation
from a particular target perimeter Pσ.

The corresponding Hamiltonian is defined as follows:

H =
∑

{x,x ′}n

Jτ(σx)τ(σx ′)(1− δσx,σx ′ ) + λA
∑
σ>0

(aσ −Aσ)
2 + λP

∑
σ>0

(pσ − Pσ)
2 (3.1)

where τ(σx) represents the type τ of a cell σ occupying a grid space x, which in this
case can only be either cell (c) or medium (m). The term (1− δσx,σx ′ ) with Kronecker
delta δ ensures that binding energies are only considered between non-identical cells.
The terms (aσ −Aσ) and (pσ − Pσ) represent the deviations of the current cell shape
from target values and λA and λP represent the cell’s resistance to such deformations.
While the first summation is taken for interfaces between the nth-order neighbors in
each lattice site, the other two sum all cells with the exception of the medium (σ > 0).

Dynamics

The CPM is a time-discrete Markov chain where the transition probabilities depend on
the Hamiltonian H. Dynamics are generated by a modified Metropolis algorithm. This
algorithm randomly chooses a lattice site xtarget and computes what the difference in
energy, ∆H, would be if a randomly selected neighboring site xsource would copy its
state into the target site, see figure 3.3. The probability of accepting the change, P(∆H),
depends on the difference in the energy costs:

P(∆H) =

1 if∆H > 0

e
−(∆H)
T otherwise,

(3.2)
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such that extensions or retractions of a cell that diminish the free energy H are
always accepted and those that increase H are accepted according to a Boltzmann dis-
tribution. In this way, the shape of cells are locally updated. Parameter T is a biological
analogue to the energy of thermal fluctuations in statistical physics and it is consid-
ered here as a measure of cell motility. The unit of time in CPM is usually defined by
the number of random update attempts equal to the number of lattice sites, defining
one Monte Carlo step.

Extensions and multiscale coupling

An important advantage of the cellular Potts model is that it can be readily extended
in various ways. For instance, one can include terms in the Hamiltonian to represent,
for instance, constraints on cell length113. Cell division can be modeled by assigning
a new cell index σ to half of the lattice sites occupied by a cell, and cell death or
apoptosis can be represented by changing a cell’s index to medium σ = 0 or setting
the target area to zero, Aσ = 0.

The CPM can also be coupled to other model formalisms. All cell-based parameters,
such as target area Aσ or cell adhesion affinities J but also e.g. probability for cell
division, may depend on submodels that represent intracellular dynamics. In this way,
ordinary differential equations modeling signaling pathways or gene regulation can
control cellular behavior and tissue morphogenesis in the CPM.

Additionally, cellular behavior may be linked to models of morphogens in the extra-
cellular environment, represented by static gradients or partial differential equations.
Non-Hamiltonian terms can be included that alter the probability of accepting updates
based, for instance, on the local concentrations of a morphogen gradient to represent
chemotaxis. A simple method to model chemotaxis, as used in chapters 8 and 9, is to
bias cellular extensions in the direction of higher concentrations by

∆Hchemotaxis = ∆H− µ(ctarget − csource) (3.3)

where the free energy is altered proportionally to the local difference in morphogen
concentration c at the target and source sites and the chemotactic response parameter
µ103.

Critics

Some have critized the CPM framework with respect to the fact that some parameters,
such as the temperature T , are difficult to relate to measurable biophysical quantities.
However, work by Hogeweg and colleagues have shown how CPM parameter can
be mapped to biological and physical properties of cells114 and, more recently, how
the CPM parameters can be re-scaled to other cell surface mechanics models such
as the vertex model (Stan Maree, personal communication). In work included in this
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thesis, CPM parameters involving chemotactic sensitity have been estimated using
experimental measurements of cellular motility in a microfluidic device (see chapter
9)115.

Others have pointed out that the CPM, due to its method of energy minimization,
is an equilibrium model and that observed dynamics during the process of energy
minimization do not reflect true dynamics in the mathematical sense but merely relies
on apparent similarity to biological phenomena85. Although this is true for CPM per
se (as well as for other formalisms based on Metropolis kinetics for energy minimiza-
tion), this problem can be ameliorated in case of strong dependency of the CPM on
continuous models, for which dynamics are well-defined, as shown in chapters 8 and
9.

3.2.3 Other cell-based models

The CPM framework is suitable to describe biological processes in which cell shape
and cell motility are important determinants. However, many multicellular systems
can be accurately described with cells as discrete interacting entities without explicitly
accounting for cell shape or cell motility. Morpheus supports this type of modeling
with a number of cell-based modeling formalisms.

Coupled ODE lattices, e.g. figure 3.1D1, are models in which each cell is spatially
represented as a point-like object in a regular lattice, while its intracellular dynamics
are governed by ODE models. These cells are coupled by the interactions between
variables in directly adjacent cells. In cellular automata, e.g. figure 3.1E1, cells are rep-
resented as discrete lattice sites, but also have a discrete state space. Transitions among
internal states are governed by rules that specify a cell’s new state as a function of the
current state and the state of the cells in the neighborhood. To coarsely represent cell
motility in such models, one can include the asynchronous exchange of cell positions,
upon some condition. In this way, it is possible to simulate interacting particle systems,
as shown in figure 3.1E3. Even when cell motility is excluded, cell shape can be explic-
itly modeled by importing cell shapes from external images. To simulate processes on
cellular geometries recorded from experimental data, Morpheus supports importing
2D and 3D TIFF images, e.g. figure 3.1D4 and E4.

3.2.4 Modularity and versatility

The basic components of the numerical simulation of the model formalisms described
above depend on the availability of computational concepts for e.g. regular lattices, cell
populations, diffusion solvers, cell motility and solvers for systems of tightly coupled
equations. By encapsulating these basic components separately into modules, these
modules can be combined in various ways. This allows a wide range of modeling



3.2 modeling formalisms 35

Figure 3.4.: Modularity of modeling components. Morpheus offers various modules: (1)
solvers for (differential) equations, (2) lattices to spatial models, (3) diffusion
solvers, and (4) cellular Potts models for cell motility. These modules can be com-
bines in various ways to construct a rich variety of model formalisms as shown by
the example in the bottom row.
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formalisms to be constructed, in addition to the core formalisms, as illustrated in
figure 3.4.

3.2.5 Computational efficiency

Parallelization

Morpheus uses multithreading to parallelize computations of differential equations
on multicore (shared-memory) computers. Since the dynamics of intracellular systems
of ordinary, stochastic or delay differential equations can be calculated independently
for each cell for the periods between the exchange information between cells, these
systems are computed in parallel, depending on the available number of cores. For
reaction-diffusion systems, the reaction step is parallelized by decomposing the lattice
along the y-axis and compute rows in parallel.

Although others have developed parallel implementations of the CPM using either
message passing interface (MPI)116 or graphical processing units (GPU)117, Morpheus
does not support such parallelization. Instead, the computational load in simulating
the CPM is reduced by avoiding calculation of updates that cannot change the config-
uration, i.e. updates where σxtarget = σxsource . This is done by tracking the boundaries
of cells, i.e. those lattice sites that can potentially change the configuration, and sam-
pling from this set of lattice sites, instead of sampling all lattice sites. In this way, a
large performance gain can be achieved (especially with large cell sizes) at the cost of
a small memory overhead.

Performance and scalability

The performance and scalability of Morpheus simulations heavily depend on the type
of (multi-scale) model that is being simulated. It is therefore difficult to make general
statements on the computational efficiency. However, we can test the performance on
a set of “benchmark” models that form the modules from which more complex model
can be constructed. To test performance, we measured the execution time, memory
usage and scalability for ODE lattices, reaction-diffusion (PDE) models, cellular Potts
models (CPM) and a multiscale model (CPM+PDE), using the example models in-
cluded in Morpheus. The results, presented in Appendix A.1 on page 159, show the
execution time and memory consumption for these models as well as their scalability
in terms of problem size and scalability in terms of efficiency of multi-threading.

3.3 graphical user interface

The growing complexity of computational models provide challenges to the manage-
ment of the modeling work flow. Therefore, Morpheus has been designed with a focus
on usability and work flow management. The graphical user interface (GUI), shown
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Figure 3.5.: The graphical user interface provides tools for model editing, simulation and
visualization. (Caption on next page.)
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Figure 3.5.: The graphical user interface provides tools for model editing, simulation and
visualization. (A) Model editor. (A1) Document view with main model elements.
(A2) Overview of selected CellTypes element. (A3) Attribute and expression editor.
(A4) Overview of available symbols. (A5) Context-sensitive documentation. (B) Job
queue and result browser. (B1) Toolbar to start/stop simulation. (B2) Upon starting
a job, simulations are added to the job queue. (B3) Standard output is displayed
and updated during simulation. (B4) Simulation results are saved to files. (B5) Text
and image files can be visualized using the preview panel. (B6) Output files can be
opened in external terminal or file browser for postprocessing, and movies can be
generated from images.

in figure3.5, is an important part of the usability, providing an intuitive interface to
construct models and execute simulations. In addition, it includes a number of tools
to browse and visualize simulation results and to perform parameter exploration. The
GUI is implemented in C++ using the platform-independent Qt application frame-
work.

The main functionality of the GUI is to construct and edit models in MorpheusML
format. Model elements and formalisms are added and removed by editing the tree-
like structure (fig. 3.5A2) whereas parameters and mathematical expressions are speci-
fied in the attributes panel (fig. 3.5A3). Multiple models can be opened simultaneously
to allow comparison of results as well as copy/pasting elements between models. Mod-
els, constructed in the GUI, are automatically written to file in MorpheusML format
upon saving or when executing a simulation. The GUI provides a scheduling system
that allows multiple simulations to be executed in sequentially or in parallel, depend-
ing on the available number of processors. In addition to a standard execution mode in
which output is written to file, the GUI also supports an interactive execution mode in
which all visual output is directed to an on-screen terminal. The job archive provides
an overview of the job status (i.e. pending, running, done, error) (fig. 3.5B2). Using an
SQL database backend, it enables the user to browse, sort and visualize simulation re-
sults as well as generating animations (fig. 3.5B4-6). It also restoring of (old) simulation
models and parameters sweep from the archive.

Batch processing for parameter exploration or sensitivity analysis is supported by
the ParamSweep tool. This allows all model parameters to be selected for batch pro-
cessing and given user-specific or generated sequences of values in linear or logarith-
mic intervals. Multiple parameters can be explored combinatorially or can be paired
to vary in synchrony. Remote execution enables users to transparently execute (batch)
simulations on high performance computing resources (HPC). In this case, models are
transferred to the HPC using secure file transfer (sftp) and submitted to a batch sys-
tem (LSF or SLURM) for job scheduling. Results can be transferred back to the local
computer after simulation or synchronized during its execution.
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The GUI drastically reduces the learning curve involved in computational modeling
and allows users to focus on the biological and mathematical aspects of modeling, in-
stead of the computational ones. Experience using Morpheus in education has shown
that students, with both mathematical and biological backgrounds, are able to con-
struct and execute simulation models within hours.

3.4 morpheusml

To facilitate the construction of a versatile array of modeling formalisms (table 3.1)
from within user-friendly graphical interfaces (figure 3.5), we have designed a novel
model description language, MorpheusML. Similar to a markup languages such as
SBML93, this is a declarative XML-based format to represent complex dynamical mod-
els using domain-specific biological and mathematical terminology. However, whereas
SBML limits itself to the representation of biochemical pathways, MorpheusML is
specifically designed to represent models of spatial and multicellular systems, includ-
ing multiscale models.

Models in MorpheusML format contain a complete specification of the simulation.
This includes the definition, configuration and and parameterization of (sub)models as
well as the specification how these (sub)models are interlinked. It also includes details
on the numerical simulations such as the simulation time, spatial discretization, initial
conditions and the configuration of visualization and data output. During simulation,
the complete state of a simulation can be stored in the same file format. The encap-
sulation of complete model description in a single XML file, render them suitable for
archiving as well as model exchange between users.

3.4.1 Declarative and domain-specific

The declarative nature of MorpheusML serves to separate modeling from implemen-
tation. That is, models in MorpheusML describe what processes are to be simulated
rather than how this should be accomplished. This distinguishes declarative languages
from imperative programming language such as C++ or Python that focus on the
description of algorithmic control flow. This also enables a separation of concern be-
tween modelers and programmers, where the former specify what process should be
simulated and the latter specify how this should be accomplished numerically.

Moreover, the use of biological and mathematical terminology, instead of program-
ming constructs, makes for a more natural descriptions of models of complex bio-
logical processes. MorpheusML is composed of human-readable tags to represent the
components of biological processes as well as mathematical constructs to define their
dynamics and relations.



40 morpheus modeling environment

Figure 3.6.: Two-tiered architecture of MorpheusML. Left: The XML hierarchy provides an
easily parsable format to represent the structure of simulation model and its sub-
models. Right: The usage of symbolic identifiers and mathematical expressions
allows the representation of coupling between submodels into networks of inter-
dependencies. The combination of these two tiers of description enables the repre-
sentation of arbitrarily complex multiscale models.

3.4.2 Two-tiered architecture

MorpheusML represent complex multiscale models of multicellular systems in a two-
tiered architecture, as depicted in figure 3.6. On the one hand, it represents models
uses a convenient hierarchical tree structure. On the other hand, symbolic references
between different parts of this structure enable the representation of complex network
of interactions.

Representation of data in eXtensible Markup Language (XML) has a number of
key advantages: (1) it stores information in a well-structured fashion that can be eas-
ily parsed and validated, (2) it allows human-readable domain-specific terminology
and (3) it can be extended in a straightforward fashion. The XML represents this in-
formation in a hierarchical tree-like structure that reflects the structure of the mod-
eled biological system. For instance, the main element CellPopulations can contain
a Population that contains multiple Cells, each of which may contain multiple lat-
tice Nodes. Similarly, intracellular dynamics are modeled using a Systems of DiffEqn
within a CellType, while the PDE describing extracellular dynamics is defined in its
own element outside of CellTypes. The XML structure is convenient to represent the
hierarchy between the components of a model.

However, the hierarchical structure of the XML format is ill-suited to describe the
network of interactions and feedbacks between these model components. To describe
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these interactions, MorpheusML uses symbolic identifiers. Symbolic identifiers and
references establish interactions and feedbacks between (sub)models to represent the
network-like complexity in biological processes. Symbolic identifiers, or symbols for
short, can be specified to represent user-defined model variables such as cell-bound
properties (Property) or concentrations of species in a reaction-diffusion model (Layer)
and can also be specified for simulation-related constants and variables such as lattice
size and current time of simulation.

Symbols can be used in mathematical constructs and expressions to define relations
between model components. Using a so-called “white-box approach” (as opposed to
black-box approach), all symbols of a modeling component are available as potential
coupling points with other components118. This provides a convenient way to integrate
different (sub)models by defining symbolic identifiers in one (sub)model and using
them in another (sub)model.

The combination of a hierarchical XML structure on one hand and networks of
symbolic identifiers on the other hand provides a powerful way to describe complex
multiscale models in a declarative fashion.

3.4.3 Mathematical constructs

MorpheusML includes a number of mathematical constructs to specify algebraic ex-
pressions and define relations among model components (table 3.2). Local and global
constants (Constant and Global) as well as cell-bound and PDE variables (Property
and Layer) associate user-specified symbolic identifiers with values. Additionally, spe-
cific containers are available for (x,y,z) vector variables (PropertyVector) and variables
for use in delay (differential) equations (DelayProperty). Mathematical expressions
can be specified as Functions, Equations, Rules or DiffEqns (differential equation) in
which the right-hand-side expression can be given in conventional infix notation.

Sets of tightly coupled (differential) equations can be defined in Systems which pro-
vides an environment for synchronously updated equations and are associated with
a user-specified integration timestep and numerical solver (e.g. Runge-Kutta). Simi-
larly, an Event provides an environment to trigger a set of synchronously updated ex-
pressions, based on a user-specified Condition, allowing time-continuous event-based
simulations.

With these mathematical constructs, MorpheusML offers a layer of flexibility to the
description of complex dynamic models within a fully declarative language. Moreover,
it enables the direct conversion of other model formats into MorpheusML. In particu-
lar, owing to the high degree of similarity, models of biochemical networks in Systems
Biology Markup Language (SBML) format can be translated into MorpheusML. The
graphical user interface provides a tool to automatically convert SBML models into
MorpheusML models.
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Annotation

Space and Time

CellType

ODE

Initialization

Visualization

<?xml version='1.0' encoding='UTF-8'?>
<MorpheusModel version="1">

<Description>
<Title>LateralSignaling</Title>
<Details>W de Back, JX Zhou, L Brusch

Roy. Soc. Interface 10(79): 20120766, 2012.
http://dx.doi.org/10.1098/rsif.2012.0766

</Details>
</Description>
<Space>

<Lattice class="hexagonal">
<Size value="20 20 0"/>
<BoundaryConditions>

<Condition boundary="x" type="periodic"/>
<Condition boundary="y" type="periodic"/>

</BoundaryConditions>
</Lattice>

</Space>
<Time>

<StartTime value="0"/>
<StopTime value="30"/>
<TimeSymbol symbol="t"/>

</Time>
<CellTypes>

<CellType class="biological" name="cells">
<Property symbol="X" value="0.0" name="Ngn3"/>
<Property symbol="Xn" value="0.0" name="Ngn3-Neighbors"/>
<Property symbol="Y" value="0" name="Ptf1a"/>
<Property symbol="Yn" value="0" name="Ptf1a-neighbors"/>
<NeighborsReporter mapping="average">

<Input symbol-ref="X"/>
<Output symbol-ref="Xn"/>

</NeighborsReporter>
<NeighborsReporter mapping="average">

<Input symbol-ref="Y"/>
<Output symbol-ref="Yn"/>

</NeighborsReporter>
<System solver="heun" time-step="0.02">

<Constant symbol="a" value="1"/>
<Constant symbol="b" value="21"/>
<Constant symbol="c" value="1"/>
<Constant symbol="n" value="4"/>
<Constant symbol="th" value="1e-4"/>
<Constant symbol="noise" value="1e-4"/>
<DiffEqn symbol-ref="X">

<Expression>((th / (th + a*Xn^n)) - X) 
+ rand_norm(0.0,noise)

</Expression>
</DiffEqn>
<DiffEqn symbol-ref="Y">

<Expression>(((th + b*(Y * Yn)^n) / (th + c*X^n + b*(Y * Yn)^n)) - Y ) 
+ rand_norm(0.0,noise)

</Expression>
</DiffEqn>

</System>
</CellType>

</CellTypes>
<CellPopulations>

<Population size="0" type="cells">
<InitCA/>

</Population>
</CellPopulations>
<Analysis>

<Gnuplotter clean="true" interval="2.5">
<Terminal name="png"/>
<Cells symbol-ref="Y" min="0" max="1.0"/>

</Gnuplotter>
</Analysis>

</MorpheusModel>

Figure 3.7.: Listing of lateral signaling model in MorpheusML format. (Caption on next
page.)
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Table 3.2.: Mathematical constructs in MorpheusML

Element Description

Containers

Constant Constant value of type double with local scope, i.e. valid within the

CellType or System it is defined in.

Global Variable value of type double with global scope.

Property
PropertyVector

DelayProperty

Cell-bound variable. Property and DelayProperty are of type double.

DelayProperty has attribute delay to set the lag between assignment

and return of value. PropertyVector defines Euclidean vector in space

delimited format “x y z”.

Layer PDE model variable, i.e. species in reaction-diffusion system. Diffusivity

of a Layer is specified in attribute diffusion.

Expressions

Function Mathematical expression. Computes a value (double) for the output

symbol it defines, but does not assign it to a variable. Updated whenever

when output symbol is referenced. May not contain algebraic loop.

Equation Mathematical expression. Computes a value (double) and assigns it to

the variable it references. Updates are scheduled depending on its

symbol dependencies. May not contain algebraic loop.

Rule Mathematical expression that defines a (recurrence) equation for use in

environments such as System and Event. Scheduled according to

System/time-step. May contain algebraic loop and self-references.

DiffEqn Mathematical expression that defines a differential equation. Only

allowed in System environment. May contain algebraic loop and

self-references.

Reporters

Reporter
NeighborsReporter

PDEReporter

...

Explicit data mappings. Computes a statistic (average, mean, etc.) of the

input data and assigns this to the output symbol. Updates are scheduled

depending on its symbol dependencies.

Environments

System Environment for tightly coupled sets of differential equations and rules

that are synchronously updated. Scheduled according to user-specified

System time-step and time-scaling.

Event Environment for conditional or timed events. Events are triggered (1)

periodically (2) whenever Condition holds true or (3) whenever

Condition changes from false to true (for SBML compatibility). Updates

are scheduled according to time-step if specified or depending on its

symbol dependencies otherwise.
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Figure 3.7.: Listing of lateral signaling model in MorpheusML format. This model specifies a
coupled ODE lattice with lateral inhibition and lateral stabililization, as developed
in chapter 5. After annotation notes, the size and structure of the lattice are defined
as well as the simulation time. Then, the cell type is defined with cell properties,
neighborhood dependencies and the systems of differential equations. Finally, the
population is initialized and the visualization output is specified.

3.4.4 Encapsulation

Models in MorpheusML format provide a complete specification of a simulation mo-
del. Figures 3.7 and 3.8 show full listings of two models that are developed in re-
spectively chapters 5 and 9 of this thesis. Depite the fact that they provide a complete
model specification, models in this format are concise and, moreover, human readable.

Encapsulation of in a single XML file has various advantages, as compared to models
that are represented in programming code. For instance, it allows executed simulation
models to be archived together their results and be restored later. This enables users
to keep track of different variations of a model. It also facilitates the exchange of
models among users. MorpheusML model files (typically ≈3Kb) can be easily sent over
email and started by a collaborator by drag/drop, without need for configuration or
compilation. Thus, MorpheusML opens up the possibility for the creation of an online
public model repositories for multiscale multicellular simulation models analogous to
the BioModels repository* for models in SBML format.

3.4.5 Semantic model analysis

The markup language enables Morpheus to perform a semantic analysis of models to
identify logical errors that would not be identified by compilers. For instance, whereas
general-purpose compilers would not raise errors in case of a double assignment (in
which the second assignment overrides the first), these are detected Morpheus as er-
rors that invalidate a simulation model. Similarly, algebraic loops (in which e.g. a de-
pends on b, while b depends on a) are detected in Morpheus as unsolvable constructs
(unless they appear in a synchronously updated System).

3.5 automated model integration

Multi-scale modeling requires the integration of time-discrete cell-based models with
time-continuous models for intra- and extracellular dynamics. In Morpheus, cell-based
models can be linked to ordinary, stochastic or delay differential equations as well as

* http://www.ebi.ac.uk/biomodels-main
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Annotation

Space and Time

CellTypes

CPM

PDE

Initialization

<?xml version='1.0' encoding='UTF-8'?>
<MorpheusModel version="1">

<Description>A Köhn-Luque, W de Back, Y Yamaguchi, K Yoshimura, M A Herrero, T Miura
Physical Biology, 10(6):066007, 2013
doi:10.1088/1478-3975/10/6/066007</Details>

</Description>
<Space>

<Lattice class="square">
<Size value="200 200 0"/>
<BoundaryConditions>

<Condition boundary="x" type="periodic"/>
<Condition boundary="y" type="periodic"/>

</BoundaryConditions>
<NodeLength unit="micron" value="2"/>
<Neighborhood>

<Order>2</Order>
</Neighborhood>

</Lattice>
</Space>
<Time>

<StartTime value="0"/>
<StopTime value="4000"/>

</Time>
<CellTypes>

<CellType class="biological" name="Angioblasts">
<VolumeConstraint>

<Strength value="1"/>
<Target value="90"/>

</VolumeConstraint>
<Chemotaxis>

<Layer symbol-ref="w"/>
<Strength symbol-ref="s"/>

</Chemotaxis>
<Property symbol="s" value="3e7" name="chemotactic strength"/>
<Property symbol="cell" value="1.0" name="cell"/>

</CellType>
<CellType class="medium" name="medium">

<Property symbol="cell" value="0.0" name="cell"/>
</CellType>

</CellTypes>
<CPM>

<Interaction>
<Contact type1="medium" type2="Angioblasts" value="1.6"/>
<Contact type1="Angioblasts" type2="Angioblasts" value="3.2"/>

</Interaction>
<MetropolisKinetics temperature="1" stepper="edgelist" />
<MCSDuration value="1.0"/>

</CPM>
<PDE>

<Layer symbol="u" name="VEGF_s">
<Diffusion rate="58.7" unit="µm²/s"/>
<Initial>

<Expression>1.5e-6</Expression>
</Initial>

</Layer>
<Layer symbol="v" name="Free ECM">

<Diffusion rate="0.001" unit="µm²/s"/>
</Layer>
<Layer symbol="w" name="VEGF_b">

<Diffusion rate="0" unit="µm²/s"/>
</Layer>
<System solver="heun" time-step="1.0">

<Constant symbol="gamma" value="5e-3" name="Production ECM"/>
<Constant symbol="k_on" value="8.5e-4" name="Binding rate VEGF/ECM"/>
<Constant symbol="k_off" value="3.6e-3" name="Unbinding rate VEGF/ECM"/>
<Constant symbol="delta" value="2.6e-6" name="Decay VEGF"/>
<DiffEqn symbol-ref="u">

<Expression>- k_on*u*v+k_off*w-delta*u</Expression>
</DiffEqn>
<DiffEqn symbol-ref="v">

<Expression>gamma*cell - k_on*u*v+k_off*w</Expression>
</DiffEqn>
<DiffEqn symbol-ref="w">

<Expression>k_on*u*v-k_off*w</Expression>
</DiffEqn>

</System>
</PDE>
<CellPopulations>

<Population size="0" type="Angioblasts">
<InitRectangle cells="200" type="regular">

<Dimensions size="200 200 0" origin="0 0 0"/>
</InitRectangle>

</Population>
</CellPopulations

</
>

MorpheusModel>

Figure 3.8.: Listing of vascular morphogenesis model in MorpheusML format. (Caption on
next page.)
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Figure 3.8.: This model defines a cellular Potts model, coupled to a reaction diffusion system,
as developed in chapter 9. First, annotation notes and the definition of the lat-
tice and simulation duration are given. In CellTypes, the cell behavior is specified
including volume conservation and chemotactic behavior. The details of the CPM,
such as the interaction energies and temperature, are specified. In the PDE element,
the reaction-diffusion system is defined, including the measured kinetic parame-
ters. Finally, the initial configuration of the population is specified. For brevity, the
specification of analysis methods are not listed here.

to reaction--diffusion (PDE) models. MorpheusML facilitates this through the specifi-
cation of links between (sub)models with the help of symbolic identifiers.

For the user, a link between sub-models is established by defining a symbol in one
submodel and using it as an input in another sub-model, providing a convenient way
to construct and explore complex multiscale biological systems using integrative mod-
els. During simulation, Morpheus makes the data accessible between sub-models and,
if necessary, mapping or transforming it to make it suit- able for the target submodel.
Moreover, updates of the various submodels are appropriately scheduled, by deter-
mining the correct order and the frequency of updates, as to guarantee that up-to-date
data is used in all computations. Both tasks are handled automatically as far as possi-
ble, based on user-specified time-steps and symbolic interdependencies.

Integration of spatial models

Integration of spatial model formalisms, i.e. cell-based and reaction--diffusion models,
requires that the data from one submodel is accessible to the other sub-model. In
Morpheus, data is not copied between submodels, but is directly accessible through
symbolic identifiers. Yet, the data must be accessed in a way that is appropriate for
the model that uses the symbol. The model that uses a symbol determines the lattice
sites for which the symbol is resolved, whereas the model that defined it determines
the value of the symbol at those lattice sites.

Using the convention that spatial discretization is equal for all spatial models, the
mapping is often trivial enough to be handled automatically. In other cases, if a sum
or average over a lattice domain is required, this mapping must be made explicit by
the user using a Reporter.

Scheduling updates

Integration of time-continuous ODE and PDE models with time-discrete CPM models
and various auxiliary mathematical constructs requires a careful scheduling of numer-
ical updates. While the general simulation schedule is executed in fixed order, some
processes must be scheduled according to the symbolic interdependencies in order to
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guarantee correctness of simulation results. This affects both the order of executing
updates and the frequencies at which they are updated.

The order of execution is independent of the order in which model components
are specified in the model description file. Rather, updates of temporal processes (CPM,
System, Diffusion) are scheduled according to the fixed schedule and updates of se-
quential processes such as Equations and Reporters are scheduled according to their
symbolic interdependencies. These are ordered according to the dependencies in their
input and output symbol based on the rule:

• Before updating a process, all its input symbols must be updated.

This is achieved by scheduling all processes that have these symbols as an output prior.
Note that this is only possible if no algebraic loops or circular dependencies exist
between these processes. Therefore, such loops are only allowed within the System

environment.
The update intervals of sequenctial processes such as Equations,-Reporters and

Events are automatically determined by propagation of the intervals of their input
and output symbols, according to the following rules:

• The process is updated as often as its output symbol(s) are used.

• The process is not updated more often than its input symbol(s) can change.

The former ensures correctness in that up-to-date data is used in all processes, while
the latter optimizes computational performance by preventing redundant computa-
tions. Note, for instance, that this implies that a process is not scheduled and computed
if their output symbol is not used.

The full simulation schedule, including the order and intervals of all model elements,
is calculated at the end of initialization and displayed in the output text box of results
view (fig. 3.5B3) of the graphical user interface.

3.6 software architecture and extensibility

The software itself consists of two stand-alone applications, the graphical user interface
(GUI) and the simulator. These applications communicate through the exchange of
XML and XSD files. During compilation, an XML schema description (XSD) file is
constructed that describes the contents as well as the rules and constraints of valid
model description files in MorpheusML that the simulator expects as an input. This
information is used by the GUI to assist the user in the construction and editing of
valid models. Once a simulation is executed, the GUI generates a XML file, based on
the user input and starts the simulator with the XML file as an input argument.

This separation of GUI and simulator has several advantages. It allows Morpheus to
be used in a headless fashion without a graphical interface. Moreover, it implies that
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the GUI and simulator do not need to run on the same computer. Therefore, it is also
possible construct models with the GUI on a local desktop machine while executing
(parallel) simulations on a remote high performance computer by sending XML files
over a network connection.

It also enables Morpheus to be used at two different levels. Morpheus can be used as
an off-the-shelf application that is shipped as binary packages for all major operating
systems (Linux, Mac OSX and MS Windows). However, it is also software framework
that can be extended through its plugin architecture, although this requires building
the code from source code. As a binary application it is aimed to be easy-to-use and
without any requirements for experience with computational techniques such as com-
pilation of source code. Yet, as a software platform it provides the transparency and
customizability similar to a software library.

3.6.1 Extensibility

Morpheus’ plugin architecture allow customization and extensibility. Plugins are typi-
cally small pieces of code providing a specific feature. These are isolated from the core
application and can be built independently from each other. The plugin architecture
enable third-party users and developers to create custom features for modeling, initial-
ization or analysis. In fact, most standard features of Morpheus are implemented as
plugin themselves.

Morpheus defines interfaces for various types of plugins that differ in the order
and time they are executed. Each type has its custom interface with functions that
the derived class, the plugin, is required to implement. Initializer plugins set up
the initial spatial configuration of a population cells or the concentrations in reaction-
diffusion systems and are executed during initialization of the simulation. For instance,
InitRectangle is a plugin that initializes a population of cells in evenly spaced over a
rectangular (or cubic) area and TIFFReader initializes cells according to a 2D or 3D im-
age in TIFF format. CellType_MCS_Listener or TimeStepListener plugins are, on the
other hand, executed during simulation either at each Monte Carlo step or at the time
step set for the numerical solvers for continuous models. The Proliferation plugin,
for example, is executed every Monte Carlo step and models cell division depending
on a certain user-specified condition while the NeighborsReporter is executed at every
time step to calculate and report a weighted average of the values of a cell property of
adjancent cells. Plugins for run-time data analysis or visualization, such as the versa-
tile Gnuplotter, use the Analysis_Listener interface and are called at user-specified
intervals.

Plugins are written in C++ and consist of a header file (myplugin.h) and an imple-
mentation or source file (myplugin.cpp) (see figure 3.9). The header file provides a
forward declaration of a class and declares public and private variables and functions.
In addition, it defines the type of plugin interface it inherits. The source file contains
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Figure 3.9.: Components of a plugin. A header file declares the plugin class and inherited in-
terface functions (here from the Analysis_Listener interface). An implementation
file reads parameters from XML file, provides the methods of the plugin and over-
rides the interface functions. An XSD file defines the rules and constraints for valid
input XML to configure the plugin and provides documentation about the plugin.
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the implementation of the methods of the plugin and must implement the interface
functions. Plugins are configured and parameterized by XML and should therefore
implement a loadXML() function that reads the XML configuration for the plugin. The
structure and content of the XML that the plugin expects as input must be defined in
a XML description schema (XSD) file (myplugin.xsd) (see figure 3.9). This schema is
used by the graphical interface to ensure correct usage of the plugin and to provide
documentation on its functionality.

3.7 conclusions

Morpheus is a versatile modeling environment for the simulation of multiscale and
multicellular systems, designed with a focus on usability. It separates the tasks of mod-
eling from implementation and thereby enables a division of labor between biological
modelers, who describe what should be modeled, and computational biologists, who
implement how this should be accomplished numerically. For the former, Morpheus
provides intuitive graphical interfaces for model construction and execution. For the
latter, it provides a C++-based extensible framework with a plugin architecture.

Morpheus makes an important step towards making dry computational modeling
accessible to wet lab biologists. With its focus on usability, it provides a tool that can
integrate modeling into the common work flow of biologists, along with commonly
used software for statistical analysis or image analysis.

So far, the software has been used in a number of published research studies rang-
ing from cell fate decisions, spatial patterning119 and morphogenesis102,115 as well as
a number of unpublished work including studies on liver tissue architecture, regener-
ation in planaria and planar cell polarity. It has also been used in a number of courses
teaching computational modeling to biologists, including a course for the DIGS-BB
graduate programme and a workshop for the German Stem Cell Network.

Despite the versatility of modeling formalisms that can be constructed in Morpheus,
these are subjected to several important limitations. For instance, whereas irregular
lattices are known to be more robust against anisotropic lattice artefacts, only regular
lattices are currently supported. The use of finite difference solvers with fixed user-
defined time-steps can be numerically inefficient and precludes simulation of stiff
systems. Morpheus does not support the simulation of reaction-diffusion-advection
systems. And currently, cell motility can only be modeled using the (rather detailed)
cellular Potts model or the (rather coarse-grained) interacting particle systems. Im-
provements on all these levels remain for future development.

Perhaps the key novelty in Morpheus’ design is the establishment of MorpheusML
as a novel markup language for models of multicellular systems and the implemen-
tation of an interpreter for this language that facilitates model integration. Although
MorpheusML is designed for use within Morpheus alone, the concepts underlying the
structure of the language and its interpretation may prove valuable for the future estab-
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lishment of an SBML-like standard exchange format to share models of multicellular
systems between different software platforms94.

The continuation and further development of Morpheus, including MorpheusML,
crucially depend on the involvement of other researchers and contributions from ex-
ternal software developers. We therefore aim to transform Morpheus development
into an open source project. For the upcoming version, next to the binary applications,
all source code will be released under open source license.





Part II

C E L L FAT E R E G U L AT I O N A N D PAT T E R N I N G



4
I N T R O D U C T I O N

The computational methods described in Part I enable the investigation of the develop-
ment of multicellular systems as an interplay between cell fate specification, patterning
and morphogenesis. Here, a case study is presented in which these methods are used
to study how the pattern formation within the tissue can affect the fates of its con-
stituent cells. This is done by spatially coupling discrete cells in a tissue model to their
intracellular models of gene regulatory networks. Specifically, we investigate the dy-
namics of specification and spatial patterning of endocrine and exocrine cells in the
pancreas, during embryonic development as well as during reprogramming in vitro.

4.1 cellular plasticity and reprogramming

During embryonic development, pluripotent cells progressively become more differen-
tiated to obtain a final functional state. Conrad Hal Waddington compared this process
to a marble rolling down and slope becoming shunted into one of the several valleys
(figure 4.1)120. As the cell reaches a terminally differentiated state, the hills around the
valley are steep enough to irreversibly lock the cell in this state. This picture, inspired
by dynamical systems theory, remains one of the most powerful metaphors of cell fate
regulation23.

Yet, due to recent advances in stem cell biology and cellular reprogramming, we now
know that fully differentiated cells retain a level of plasticity. Given the right stimuli,
adult cells can be reverted back to a pluripotent state and even converted from one
cell type to another without passing through a state of pluripotency (figure 4.1)121.

These technologies hold their many promises for basic research and as well as for
regenerative medicine, since reprogrammed cells could replace dysfunctional or de-
pleted cells in degenerative diseases. For diabetes mellitus, for instance, cells that are
converted from other tissues could replacing the dysfunctional insulin-producing β-
cells of the pancreas122,123. Among the many attempts to convert cells from various
source tissues to newβ-cells124, in a recent landmark study, Douglas Melton and col-
leagues have demonstrated the possibility of in vivo reprogramming of acinar pancre-
atic cells to functionalβ-cells in mice by overexpression of only three key transcription
factors: Ngn3, Pdx1 and MafA125.

54
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Figure 4.1.: Cell fate changes on Waddington’s epigenetic landscape. Pluripotent stem cell
can be induced from adult differentiated cells (reprogramming) and differentiated
back to another cell lineage, mimicking normal development. Cells can also be
converted to another lineage without passing through a state of pluripotency (trans-
differentiation)121.

In these types of studies, the choice of source cell type and the combination of tran-
scription factors to overexpress is based on (1) knowledge of the genes that code for
key lineage-determining transcription factors that are activated during development
and (2) the piecemeal data on the regulatory network that these transcription factors
form. In most cases, viral vectors are constructed with different combinations of a se-
lection of these genes with which source cells are infected in vitro or in vivo. Although
the results of some of these studies are indeed impressive and promising, in a sense,
such trial-and-error experiments are picking low hanging fruit and many hurdles re-
main before these reprogramming techniques are efficient and safe enough for human
treatment.

Apart from many technical challenges, two pertinent problems remain. First, little
is understood about the transcriptional dynamics that is involved in the transition
from one cell state to the other. This is dangerous since it is plausible that cells may
get trapped in unnatural states, not normally visited during development, possibly
resulting in tumorigenesis126. Second, the commonly used technique of viral gene
transfer is based on random insertion of the transgenes within the genome and is as-
sociated with high risks of tumorigenesis that prevent any clinical use127. Therefore,
alternative approaches are actively being explored. These include the use of methods
that avoid interation into the host genome such as episomal vectors, small molecules,
RNA128, CRISPR/Cas9-based gene editing129. Additionally, there is increasing aware-
ness of the facilitating roles that cell-cell communication plays during reprogramming
and the maintenance of pluripotency, such as gap junctional communication130 and
cadherin-mediated signaling131. However, designing effective reprogramming proto-
cols ultimately depends on a deep understanding of the regulation of cell fate stability,
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for which tools from dynamical systems theory and computational modeling are in-
dispensable.

4.2 mathematical modeling of transcriptional regulation

This has sparked renewed interest in theoretical understanding of the regulation of
cell fate decisions23,132–139 building on the early works of Waddington’s epigenetic
landscape120, Delbrück’s notion of bistability140, Jacob and Monod’s discovery of tran-
scriptional regulation141 and Kauffman’s random genetic networks142. By adopting
the framework of dynamical systems theory, cellular characteristics such as cell types,
pluripotency and cell fate decisions can be understood as attractors, metastable states
and trajectories in a high-dimensional state space, constrained by the regulatory net-
work encoded in the genome. Moreover, it replaces the view of genetic circuits as
causal pathways by the concept of network dynamics which enables a new under-
standing of cell fate decisions in development and can be used to design cellular re-
programming protocols143.

As a simple example of mathematical modeling of a transcriptional network, con-
sider a small gene circuit of two mutually inhibiting genes x and y (see figure 4.2A).
This system, known as a genetic toggle switch144, has the possibility to settle in either
of two expression states. The change in expression of the genes can be represented
using two coupled ordinary differential equations in which the first term models syn-
thesis, repressed by the other gene, according to Hill kinetics and the second term
represents degradation using mass action kinetics (fig. 4.2B). From these equations,
the steady states and their stability can be calculated and the quasi-potential surface
can be constructed with hills and valleys (fig.4.2C,D), analogous to Waddington’s epi-
genetic landscape. In this case, three steady states can be observed, two of which are
stable, representing the decided differentiated fates, while the other is unstable, repre-
senting the undecided progenitor state. Assuming an initial condition in which both
genes are not expressed, this cross-inhibition between these genes results in a binary
cell fate decision.

This two-gene example may seem too simplistic in the context of the number of
genes involved in regulating embryonic development. Yet, there is in fact a growing
evidence that cross-inhibition between two key transcriptional factors governs binary
cell fate decisions. Mutual inhibition between Cdx2 and Oct4, for instance, controls
the decision between the trophoectoderm and the inner cell mass fates in pluripotent
embryonic cells and inhibition between GATA1 and PU.1 governs the decision between
the erythroid and myeloid lineages in haematopoesis145. Therefore, even such simple
mathematical models can give insight into the nature of cell types, as stable or unstable
attractors in the space of expression states, as well as the dynamics of regulation in
cell fate decisions that is usually inaccessible to experimental observation.
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Figure 4.2.: Modeling a genetic toggle switch. (A) Schema of two mutually inhibiting genes
x and y. (B) Mathematical model describing this interaction in terms of coupled
ordinary differential equations. (C) Quasi-potential surface reconstructed from dif-
ferential equations. Blue circles show (un)stable steady states, red line shows two
possible trajectories from zero initial condition. (D) One-dimensional cut-out (along
white line in (C)) depicting cell fate decision to either cell state expression either x
or y.

When sufficient information on the transcriptional network is available, such a mod-
eling approach can allow protocols for cellular reprogramming to be rationally de-
signed, rather than obtained through trial-and-error, to efficiently convert a source cell
type into a desired target cell type145. Using this strategy, Joseph Zhou and Lutz Br-
usch in our group, together with Sui Huang, constructed a hierarchical multi-attractor
model based on the, incompletely known, pancreatic transcriptional network146. They
showed this mathematical model was able to qualitatively reproduce the transcrip-
tional dynamics during development and all pancreatic cell types. Subsequently, they
used it to predict which genetic perturbations would result in the conversion into new
β-cells, including the combination of factors that the Melton group had used146. Their
finding showed that inhibition of certain transcription factors (Ptf1a), in combination
with the overexpression of the Melton’s cocktail, can improve reprogramming effi-
ciency. Moreover, the sequence of overexpression was found to be important, optimal
reprogramming was obtained with overexpression of MafA and Pdx1 first, and Ngn3

later146.
This proof-of-principle study showed that mathematical modeling of transcriptional

regulation can provide important information to rationally design reprogramming ex-
periments, despite the fact that little or no kinetic data is available on the regulation.
Yet, this study was unable to account for several key aspects of pancreatic develop-
ment. First, it was unable to reproduce the high acinar-to-islet cell ratio observed dur-
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ing normal development where nascent islet cells are found scattered amidst acinar
cells. On the one hand, this is due to the binary cell fate decisions resulting from the
cross-inhibition between Ptf1a and Ngn3 in the model. On the other hand, this is be-
cause such as single-cell model does not account for the known spatial interaction that
governs the acinar-to-islet ratio, mediated by Notch signaling147,148.

4.3 mathematical modeling of intercellular communication

So far, systems biological studies of cell fate regulation have mainly focused on regula-
tion within genetic networks and have largely ignored the role of intercellular commu-
nication, in part due to the availability and dominance of omics data and the scarcity
of spatiotemporal information. Yet, it is well-known that the prevalent mechanism of
cell fate regulation in multicellular organisms is not cell-autonomous specification, but
conditional specification that relies on tight coupling to signals from the microenviron-
ment. Accounting for the multicellular context in which cellular decisions take place
is therefore crucial to understand their regulation. By ignoring intercellular commu-
nication, such studies are unable to explain the spatiotemporal dynamics of cell fate
control and the spatial regulation of ratios between cell types. For the design of re-
programming protocols, it causes one to overlook possibilities of cell type conversion
strategies by manipulation of cell-cell communication rather than, more invasive and
risky, genetic manipulations.

How communication between initially equivalent cells in a developing tissue results
in the formation of complex patterns of distinct cell types has, of course, been exten-
sively studied in the field of biological pattern formation. Theoretical work has shown
that regional specification of cell fates can result from positional information69, typi-
cally consisting of a gradient of a diffusible signaling molecule, or from self-organized
pattern formation based on the interaction between a short-range activator and long-
range inhibitor species44,70. Fine-grained cellular patterns, on the other hand, typically
emerge from contact-mediated communication between adjacent cells such as medi-
ated by the Notch signaling pathway149–151.

The latter provides an instructive example. Consider a simple system of two cells in-
hibiting each others expression of a gene through a membrane-bound ligand-receptor
mechanism (see figure 4.3A). In this mechanism, known as lateral inhibition, each cell
has the possibility to be set in either of two expression states, depending on the state of
the other cell. Interestingly, modeling this interaction in terms of ordinary differential
equations for the two-cell system yields the identical system of equations as for the
toggle switch (fig. 4.3B). Consequently, the steady states and potential surface are also
identical. However, when solving this system of equations for a lattice of cells, we ob-
tain a spatial salt-and-pepper pattern in which highly expressing cells are surrounded
by low expressing cells (fig. 4.3C). If, however, the cell-cell communication is disrupted
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Figure 4.3.: Modeling lateral inhibition. (A) Schema of lateral inhibition between two cells
with genes x and y, where x and y denote the same gene in two spatial locations.
(B) Mathematical model describing the two-cell system (identical to figure 4.2B).
(C) Salt-and-pepper pattern in a multicellular system showing highly expressing
cells (black) inhibiting expression in neighboring cells (white). (D) After disruption
of cell-cell communication, all cells show high expression in response to a lack of
lateral inhibition.

through e.g. inhibition of signaling or tissue dissociation, all cells in the system will
uniformly show high expression through the lack of inhibitory activity (fig. 4.3D).

This simple example shows that inhibition of Notch-mediated cell-cell signaling
may be used to induce cell fate change and might, in some cases, offer alternatives
to genetic manipulations. As a matter of fact, experiments have shown that inhibition
of Notch signaling in the embryonic pancreatic epithelium results in an accelerated
differentiation of nascent islet cells and a near absence of acinar cells147. Moreover, in
vitro studies have shown that tissue dissociation induces spontaneous dedifferentiation
of acinar cells152,153 and inhibition of Notch signaling in these cells accelerates their
conversion from acinar to β-cells154.

In general, there is a growing awareness of the importance of cell-cell communi-
cation mechanisms, also including cadherin and connexins, in stem cell biology and
lineage conversion studies130,131,155–157. In addition to mathematical modeling of tran-
scriptional networks, there is, therefore, a growing need for mathematical modeling
approaches that take spatial cell-cell communication into account in order to under-
stand induction and maintenance of pluripotency as well as to understand and im-
prove methods of cellular reprogramming.
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4.4 cell fates , patterns and reprogramming in the pancreas

In the following chapters, cell fate regulation and pattern formation of exocrine (aci-
nar) versus endocrine (islet) cell fates in the nascent pancreatic epithelium is studied. A
novel mechanism of crosstalk between intercellular communication mechanisms is pro-
posed in which lateral inhibition, mutual repression between adjacent cells, interacts
with lateral stabilization, mutual induction between adjacent cells. Its consequences
are explored with respect to pattern formation during pancreatic development (chap-
ter 5) as well as to reprogramming strategies of converting pancreatic acinar cells into
new islet cells (chapter 6).

In these studies, the piecemeal data from published reports on loss-of-function
single-gene experiments is collected to construct a mathematical model based on
tightly coupled ordinary differential equations (ODE) that qualitatively describes the
expression of lineage-determining transcription factors through intracellular interac-
tions and intercellular interactions between discrete cells (coupled ODE lattice). Bifur-
cation analysis of a minimal tissue, consisting of two or three cells, is used to reveal the
different coexisting (multistable) patterning solutions by varying the relative strengths
of mechanisms of intercellular communication. This analysis is complemented by sim-
ulations of larger systems to explore the effects of intercellular communication and
noise on the control of spatial patterns, cell type ratios and efficiency of cell type
conversion strategies. The results demonstrate that the scattered distribution of pro-
endocrine cells in the developing pancreatic epithelium can arise through the pro-
posed coupling of lateral inhibition and lateral stabilization, and that this also allows
modulation of cell type ratios through the strength of lateral stabilization (chapter 5).
Furthermore, it is shown that adult acinar and islet cell fates are multistable, opening
the possibility of acinar-to-islet cell conversion without genetic manipulation, and that
such conversion either involves dedifferentiation towards a progenitor-like multipo-
tent state or proceeds by direct lineage switching, depending on the perturbation of
intercellular communication (chapter 6).

4.5 conclusions

The theoretical and qualitative results presented in these studies are in line with exper-
imental reports on the spatial and temporal expression of lineage-determining genes
such as Ngn3 and Ptf1a as well as with reported observations of “spontaneous” con-
version of acinar cells upon enzymatic tissue dissociation. Additionally, and perhaps
more importantly, these studies provide a formal framework to interpret and under-
stand these experimental results based on a synergy between theories from pattern
formation and cell fate regulation.

However, these studies have several shortcomings that are left for future investi-
gation. For instance, the presented models do not take cis-interactions of ligands and
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receptors into account, although the inhibiting effect of Delta ligands binding to Notch
receptors on the same cell can have important effects on spatial patterning at the mul-
ticellular level158. Also, recent theoretical results show that Notch signaling can give
rise to a third phenotype, with medium levels of ligand and receptors159,160. However,
this requires the inclusion of a second ligand, Jagged, which has been ommitted from
the models presented here. Moreover, the identity of the molecules that involved the
proposed lateral stabilization mechanism remain unclear. Despite indications that gap
junctional communication, mediated by connexins, and cadherin-mediated signaling
may be involved in this type of lateral signaling161,162, these suggestions are need to
be validated experimentally. Finally, the modeling approach adopted in the following
chapters ignores morphogenetic processes such as tissue growth and epithelial fold-
ing. However, since the specification of cell fates occurs simultaneously with these
morphogenetic processes, changes in tissue shape may affect cell fate specification
by some cells becoming more exposed to external signals. It has, for instance, been
proposed that paracrine signals from the endothelium affect patterning of the pan-
creatic epithelium163,164. Investigating the effects of such morphogenetic changes and
paracrine signals on spatial patterning and cell fate specification fits well within the
modeling framework described in Part I, but is left for future work.



5
O N T H E R O L E O F L AT E R A L S TA B I L I Z AT I O N D U R I N G E A R LY
PAT T E R N I N G I N T H E PA N C R E A S *

5.1 introduction

The pancreas is a complex organ consisting of two functionally distinct tissue compart-
ments165. Exocrine acinar cells make up approximately 95-99% of cells in the pancreas
and produce digestive enzymes that are released into the intestine. Cells organized in
islets of Langerhans are endocrine and are vital in the regulation of glucose homeosta-
sis throughout the body by releasing hormones such as insulin and glucagon into the
blood. Both cell types are known to arise from a common pool of multipotent pancre-
atic precursors166–168. However, despite the identification of key transcription factors
and intercellular signaling pathways, the mechanisms underlying the fate decision
between these lineages remain unclear. In particular, the low endocrine-to-exocrine
cell ratio and the scattered spatial distribution of early endocrine cells are poorly un-
derstood. Elucidation of these mechanisms may have important consequences for the
development of therapeutic cell reprogramming and cell replacement therapies122.

Over the last decade, great progress has been made in revealing the transcriptional
regulation of murine pancreatic development, and the endocrine compartment in par-
ticular169,170. Several transcription factors that are crucial for the cell fate decision
between the exocrine and endocrine lineages have been identified (see169–171 for re-
views). Transgenic studies have identified neurogenin-3 (Ngn3) as a pro-endocrine
factor which is required to induce endocrine cell fates, since its overexpression results
in massive conversion into endocrine cells at the expense of the exocrine compart-
ment147,172 and loss of Ngn3 causes depletion of endocrine cells173. Pancreas specific
transcription factor 1 subunit alpha (Ptf1a) has been shown to be crucial for exocrine

* This chapter is based on the publication: Walter de Back, Joseph Xu Zhou and Lutz Brusch, Journal of the
Royal Society Interface, 10(79): 20120766, 2012. Walter de Back conceived the study together with Joseph Xu
Zhou. Model construction, simulations and data analysis were performed by Walter de Back. Bifurcation
analysis was done together with Lutz Brusch. Walter de Back wrote the paper.
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specification, as mice deficient in this transcription factor form normal endocrine cells
but lack an exocrine pancreas174–176.

Endocrine cells appear as individual cells or in small clusters scattered over the
central pancreatic epithelium172,173,177,178with a low ratio of endocrine to exocrine
cells, up to 1:50 in the developing pancreas, depending on the specific developmen-
tal stage. Investigation of intercellular signaling during pancreatic development (re-
viewed in170,179) suggests that local cell-cell communication, rather than long-range
morphogen gradients, is important in lineage specification. In particular, it has been
convincingly demonstrated that Notch signaling regulates the cell fate decision be-
tween exocrine and endocrine lineages. A series of transgenic studies shows that loss
of genes in this pathway (Dll1, Rbp-jκ, Hes1) causes precocious endocrine differentia-
tion and loss of exocrine cells, similar to Ngn3 misexpression147,148,154,179–182. This sug-
gests that the exocrine-endocrine cell fate decision is controlled by contact-mediated
lateral inhibition in which pro-endocrine cells inhibit endocrine specification of their
neighboring cells, forcing them into an exocrine fate182.

Yet, the spatial distribution of endocrine cells within the early pancreatic epithelium
is not well-explained by models of lateral inhibition179. Lateral inhibition alone causes
the formation of fine-grained regular patterns, as observed in neural tissue and bristle
patterns151,183,184, instead of the irregular scattered distribution of endocrine cells in
the developing pancreas. Moreover, the predicted cell type ratio of 1:3 or 1:6 for lateral
inhibition149 does not agree with the observed endocrine to exocrine ratio in the pan-
creas. These inconsistencies suggest that additional mechanisms are involved in the
pancreatic cell fate control.

An important clue can be found in studies of acinar-to-islet cell transdifferentiation
in vitro, in which the endocrine-to-exocrine cell fate decision is recapitulated. In these
experiments, adult acinar cells spontaneously de-differentiate to pancreatic progenitor-
like cells upon dissociation of the tissue152,153,185,186. This suggests that maintenance of
acinar cell fate crucially depends on a continuous signal provided by contacts between
acinar cells187. Indeed, recent evidence shows that the dedifferentiation depends on
the disruption of cadherin-mediated cell adhesion162. Similarly, inhibition of Mist1
is reported to cause dedifferentiation due to disruption of gap junction intercellular
communication188. Thus, cells of the exocrine pancreas appear to mutually stabilize
their cell fate through physical contacts, in a mechanism that may be called lateral
stabilization.

In this study, we propose that lateral stabilization provides positive feedback be-
tween pro-exocrine factors in adjacent progenitor cells and acts together with lateral
inhibition in the regulation of lineage specification during early pancreas develop-
ment. A simple mathematical model is constructed to capture the feedback mecha-
nisms among pancreatic progenitor cells. Our analysis shows that the relative timing
of the two feedback loops regulates the cell fate decision and tissue patterning in the
central part of the developing pancreas. Specifically, our results show that the combi-
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nation of lateral inhibition and lateral stabilization can explain the particular scattered
spatial distribution of endocrine cells and provides means to regulate endocrine and
exocrine cell type ratios in the pancreas.

5.2 methods

Interactions between transcription factor genes control cell fates by constraining the
possible patterns of gene expression. Similarly, interactions between cells control pat-
terning of a tissue through cell-cell signaling. The dynamics of gene-gene and cell-cell
interactions can be modeled and analyzed in terms of differential equations. Whereas
analysis of models of gene regulatory networks can reveal the existence of stable at-
tractors that represent cellular phenotypes136,146,189, models of intercellular signaling,
mediated by diffusive or membrane-bound ligands, can reveal pattern formation abil-
ities in developing tissues70,149,150. In this study, the coupling between both modules,
gene-gene interactions and cell-cell interactions, is analyzed mathematically to reveal
the dynamics and attractors of gene expression and spatial patterning of endocrine
cells in the pancreas.

The state of a cell is specified by two variables, X and Y, that represent the expres-
sion levels of fate-determining transcription factors. X represents a pro-endocrine tran-
scription factor that is involved in lateral inhibition. Among the various pro-endocrine
factors that have been described (Nkx6.1, NeuroD, Ngn3)169, only Ngn3 is known to
be actively involved in Notch signaling. Ngn3 activates the expression of Delta-like1
(Dll1)147 and is suppressed by Hes1 upon Notch receptor activation148 (figure 5.1A).
Therefore, we interpret X as the expression level of the transcription factor Ngn3. Y
represents a factor that is expressed in both progenitor and exocrine cells, but inhib-
ited in cells that commit to the endocrine lineage. Therefore, Y is interpreted as the
transcription factor Ptf1a because this is the only factor with that specific expression
profile and known to be necessary and sufficient to induce the exocrine cell fate174,176.

We assume a weak external activation, θ, for both X and Y. This is based on evidence
that Ngn3 is activated by Hnf6190 and Ptf1a is activated by Hnf1β191 which is itself
regulated by Hfn6192. For the sake of simplicity, the external activation is assumed to
be constant during the developmental stage.

Cells in our model interact with adjacent cells through two cell-cell signaling mech-
anisms: lateral inhibition and lateral stabilization. The factor X in each cell mediates
lateral inhibition of surrounding cells: the rate of production of X is down-regulated
by expression of this factor in neighboring cells. This mechanistically captures the
well-established pathway that expression of Ngn3 upregulates the Notch ligand Dll1
which, when bound to Notch receptors on adjacent cells, activates the expression of
Hes1 which represses Ngn3 in these adjacent cells147,148,181,193.

Factor Y is involved in lateral stabilization which provides a positive feedback loop
between Y-expressing neighboring cells. The rate of production of Y is up-regulated by
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Figure 5.1.: Interactions between transcription factors and signaling pathways. (A) Known
regulatory interactions involved in the exocrine-endocrine cell fate decision in the
pancreas, including contact-mediated signaling (see main text for details and ref-
erences). Receptor-ligand binding in the Notch signaling pathway induces lateral
inhibition. Formation of gap junctions represents one possible pathway for lateral
stabilization (dashed arrow). (B) Interactions in the two-variable model in which
cells i and j are coupled by lateral inhibition and lateral stabilization (see main text
for details). Parameters a, b, and c represent the interaction strengths.

simultaneous expression of Y in neighboring cells. Although the molecular details of
a lateral stabilization pathway are unclear, such conditional activation is in principle
consistent with both cadherin/β-catenin signaling162 and gap junctional communica-
tion via expression of Mist1 and connexin, downstream targets of Ptf1a188. In both cases,
the expression of gene products in the form of homotypic transmembrane molecules is
required in all participating cells to allow intercellular signaling. Mathematically, this
is captured by a multiplication such that Y− (non-expressing) cells do not contribute
nor benefit from stabilization.

Despite many observations that endocrine markers (e.g. Isl1) and Ptf1a are mutu-
ally exclusive194, the underlying regulatory mechanisms remain unclear. One proposal
states that Nkx6.1, a pro-endocrine factor downstream of Ngn3195,196, antagonizes the
expression of Ptf1a197. Independent of the precise molecular pathway, we can assume
that pro-endocrine factors suppress the expression of Ptf1a leading to the restriction
of the latter factor to the exocrine compartment. Accordingly, X inhibits Y in a cell-
autonomous fashion in our model.

At a later stage during pancreas development,Hnf6 and Ngn3 become downregu-
lated and are not expressed in the adult pancreas. Because our primary interest lies in
the lineage specification prior to this stage, we can neglect this downregulation. This
considerably simplifies the model formulation and analysis, but implies that the com-
mon endocrine marker Ngn3 cannot be used to indicate commitment to the endocrine
lineage. Instead, the absence of Ptf1a (i.e. Y) expression will be used to mark endocrine
cells, as supported by single-cell transcript analysis194.
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In this fashion, the details of the molecular pathways (fig. 5.1A) have been reduced
to a core regulatory interaction network (fig. 5.1B) which has been formalized in terms
of stochastic ordinary differential equations using Hill kinetics as follows (see table
5.1):

dX

dt
=

θn

θn + aX̄n
−X+ ξX(t)

dY

dt
=

θn + b(YȲ)
n

θn + b(YȲ)
n
+ cXn

− Y + ξY(t). (5.1)

Both transcription factors X and Y are activated by θ, which is chosen small relative
to the parameters of cell-cell interaction. The parameter a represents the strength of
lateral inhibition by neighboring cells, b denotes the strength of lateral stabilization
and c models the strength of cell-autonomous inhibition of Y by X. To focus on the im-
pact of lateral stabilization, the model is scaled such that external activation θ is weak
compared to the interaction terms and the parameters a and c have been set to unity.
In this way, the strength of lateral stabilization b can be treated as a control parameter.
Both factors are subjected to non-regulated first order degradation, such that expres-
sion levels are between 0 (not expressed) and 1 (fully expressed). The terms X̄ and Ȳ
denote the average expression of X and Y in neighboring cells. The additive stochastic
terms ξ(t) are random variables with a Gaussian white noise distribution N(0,η) with
mean 0 and amplitude η. The Hill coefficient n is chosen to achieve non-linear step-like
behavior (n = 4). Production of X is inhibited by the expression of X in neighboring
cells, aX̄n , independent of its own activation. In contrast, cell-autonomous activity
of Y is required for an increase in production of Y by the lateral stabilization term,
b(YȲ)

n. Thus, this cell-cell interaction acts to stabilize a pre-existing expression.
Pattern formation abilities are determined by the topology of the network, rather

than the precise kinetic parameters146,198. Thus, for the purpose of this study, the
molecular details of the regulatory pathways can be lumped into activatory or in-
hibitory interactions without altering the qualitative behavior of the system.

This qualitative treatment allows us to work with a small enough number of vari-
ables and parameters to gain insight into the spatiotemporal dynamics by mathemat-
ical analysis. Although the various patterning solutions reported below are indepen-
dent of our particular choice of parameters (table 5.1), they do depend on the Hill
coefficient n > 2 to induce the required bistability in X.

Concerning initial conditions, it is known that expression of Ngn3 and Ptf1a are
initiated around the same time in the developing pancreas. Both factors are, directly
or indirectly, induced by the same upstream transcription factor Hnf6 and are both
first detected around E9 in mice175. Therefore, we consider the simultaneous initiation
of X and Y ((X, Y) = (0, 0) at t = 0) by external activation at rate θ. We assume a
symmetric activation of both factors (θX = θY) for reasons of clarity, but unequal acti-
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Table 5.1.: Variables, parameters and observables of the mathematical model (equation 5.1).

Symbol Description Value

Variables X Expression of pro-endocrine transcription

factor Ngn3

0 (initial)

Y Expression of transcription factor Ptf1a 0 (initial)

X̄ Average Ngn3 expression in neighboring

cells

0 (initial)

Ȳ Average Ptf1a expression in neighboring

cells

0 (initial)

Parameters a Strength of lateral inhibition 1

b Strength of lateral stabilization 20

c Strength of intracellular inhibition 1

θ External activation 0.1

n Hill coefficient 4

ηx Amplitude of Gaussian white noise on X 10−4

ηy Amplitude of Gaussian white noise on Y 0

Observables τx Time until symmetry break in X

τy Time until super-induction of Y

ε Ratio of endocrine cells
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vation (θX 6= θY) results in the same qualitative behavior. The numerical simulations
presented below use this zero initial condition.

Morphogenetic events such as proliferation, cell motility, branching are excluded
from the model. Lineage tracing experiments have shown that the majority of cells are
committed to the exocrine or endocrine compartments around E10, before the onset of
major morphogenetic events166,199. In the relevant developmental stage, the pancreatic
epithelium can thus roughly be approximated by a fixed two-dimensional lattice of
densely packed hexagonal cells.

Analysis and numerical simulation were performed using GRIND (phase plane anal-
ysis)200, XPPAUT (bifurcation analysis)201 and our modeling environment Morpheus
(lattice simulations)55 (see chapter 3). Numerical integration was performed using the
Runge-Kutta (RK4) method with time step size dt = 0.02. The deterministic model of
the cell couplet is available in SBML format is available in the Biomodels database*.
The full description of the simulation model is listed in MorpheusML in figure 3.7
and is available in MorpheusML format in the Supplementary Online Material under
http://walter.deback.net/thesis.

To explore the effects of different source of noise (see section 5.3.5 and fig. 5.5), sim-
ulations were conducted for different stochastic ODEs: dXdt = θn

θn+ξa(t)aX
− X+ ξx(t)

where the stochastic terms ξx(t) (gene expression) and ξa(t) (signaling) are random
variables with a Gaussian white noise distribution ξ(t) = N(0,η) with mean0 and am-
plitude ηx and ηa resp. In the prepattern model, deterministic equations are used
with non-homogeneous initial condition X(t = 0) = ξ0 where ξ0 is an exponen-
tial distribution ξo = E(η0) with amplitude η0. Initial conditions with irregular cell
shapes and contacts were set up as using the cellular Potts model (CPM)79 employ-
ing a modified Metropolis algorithm to model motility of cell boundaries (see equa-
tion 9.3) where T controls the amplitude of fluctuations under the Hamiltonian H =

I+
∑
σ>0(aσ −Aσ)

2 which constraints cells to retain an area A while reducing the
number of cell-cell interfaces I. CPM-specific parameters were chosen as A = 60,
Y = 0.01. The observable time τX represents the point at which X expression between
neighboring cells have diverged above a threshold value (‖ X(τx) − X(τx) ‖> 0.25),
and τY represent the point when Y expression exceeds a threshold value (Y(τY) > 0.75
or Y(τY) > 0.75).

5.3 results and discussion

To investigate the pattern formation properties, the model was computed on a lattice
under varying conditions of cell-cell signaling. The results in figure 5.2 demonstrate
that various spatial patterns can arise under different combinations of cell-cell interac-
tion parameters.

* http://www.ebi.ac.uk/biomodels, BioModels ID: MODEL1211010000

http://walter.deback.net/thesis
http://www.ebi.ac.uk/biomodels
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Figure 5.2.: Classification of different spatial pattern domains under varying strengths of
lateral inhibition a and lateral stabilization b. Color (dark/white) indicate (high-
/low) expression of Y. The Roman numerals (I . . . V) denote different patterning
domains. Solid lines indicate phase transitions with critical values ac, bc1 and bc2
that are found by means of bifurcation analysis. Parameters as in table 5.1, a and
b as indicated on axes.
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5.3.1 Precocious endocrine specification

Domain I in figure 5.2 shows the absence of exocrine cells under conditions of weak
or no lateral inhibition, a < ac where ac = θn, independent of the strength of lat-
eral stabilization b. This is in line with seminal loss-of-function studies showing that
deficiency in Notch signaling pathway members causes precocious endocrine differen-
tiation and absence of Ptf1a-expression147,148. In the context of the model, the reasons
behind this phenotype are straightforward. In absence of lateral inhibition, expres-
sion of X is uninhibited and exhibits simple saturated growth. Due to intracellular
antagonization of X on Y, the upregulation of the pro-exocrine factor is always slower,
independent of the strength of lateral stabilization. Therefore, the fast uninhibited ex-
pression of X results in (1) fast commitment to the endocrine lineages and (2) absence
of exocrine cells due to the inhibition of Y.

5.3.2 Checkerboard patterning

Over a wide range of parameters, the system organizes itself into a regular well-spaced,
checkerboard-like pattern (figure 5.2). This spatial distribution is expected for models
of lateral inhibition149,151 and known to arise as a result of Notch signaling during
neurogenesis in Drosophila as well as in vertebrates202,203. It is instructive to consider
the dynamics of X in a system of only two cells i and j for which the phase plane is
depicted in figure 5.3A,B. This shows the coexistence of an unstable steady state where
Xi = Xj and two stable steady states where Xi 6= Xj. From the zero initial condition,
the dynamics of expression displays a rapid initial evolution towards the unstable
equilibrium (arrowhead in figure 5.3C). This represents the expression of X in the
undecided progenitor state, the level of which inversely depends on the strength of
lateral inhibition a. Subsequently, perturbations around this symmetric unstable state
self-amplify and result in the divergence into opposite states of expression. The tim-
ing of the break of symmetry,τx (arrow in figure 5.3C), depends on the amplitude of
noise η, because, on average, critical perturbations arise earlier under increased levels
of stochasticity. In a two-dimensional array of cells, lateral inhibition causes the estab-
lishment of alternating expression states149 following the propagation of the breaking
of symmetry. Defects in regularity can occur at the boundary of those domains due
off-register initial symmetry breaks in distant cells.

In all domains where checkerboard patterning occurs (IIa, IIb and III), the expres-
sion of Y is “enslaved” through the antagonization by X. In domain II(a and b), the
strengthening effect of lateral stabilization is too weak to counteract intracellular inhi-
bition by X. The reasons for the same type of patterning in domain III are more subtle
and discussed below.
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Figure 5.3.: Analysis of cell-cell interaction mechanisms in a system of two cells i and j.
Phase plane analysis (A,B) and time plots of gene expression dynamics (C,D). (A)
Nullclines of X (where dX/dt = 0) under lateral inhibition. One symmetric unsta-
ble steady state (open box) and two asymmetric stable steady states (filled boxes)
coexist. (B) Nullclines of Xi (solid, blue) and Yi (dashed, red) under lateral stabi-
lization where Yj = 1. One unstable steady state (open box) and three stable steady
states (filled boxes) exist. Arrowhead indicates ’new’ steady state dependent on
lateral stabilization. (C) Symmetry breaking in X expression. After induction, a
transient of intermediate expression at the symmetric unstable steady state (arrow-
head) is followed by symmetry-breaking (arrow, at t = τX) into one X+ and one
X− cell. (D) Biphasic growth of Y in the deterministic system (η = 0 to exclude
symmetry breaking of X). After induction, expression of Y remains at a plateau
level (arrowhead) followed by super-induction (arrow, at t = τY) through lateral
stabilization. Parameter values as in table 5.1.
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5.3.3 Biphasic growth through lateral stabilization

A homogeneous pattern of cells expressing the pro-exocrine Y factor is observed in do-
main IV (figure 5.2). That is, when both intercellular signaling mechanisms are strong,
an absence of endocrine cells is observed. Under these conditions, the positive feed-
back between Y expressing cells is strong enough to escape antagonization by X. In-
deed, the phase portrait given in (figure 5.3B) shows the existence of stable attractors
where Y is highly expressed, independent of X.

Interestingly, the dynamics of Y towards this expression state show biphasic growth
in which phases of growth are separated by a transient plateau (arrowhead in figure
5.3D). Upon initial activation, there is initial growth up to a level where it is approxi-
mately balanced by suppression by X, which is itself expressed at intermediate levels.
At this stage, both cells have moderate expression of Y and mutually promote each
other’s expression of Y through positive feedback. If this feedback is strong enough, it
accelerates expression and initiates the second growth phase. The timing of the super-
induction at t = τy (figure 5.3D) and whether it occurs at all, depends on the strength
of the stabilizing coupling between cells (b).

Intriguingly, the prediction of biphasic growth is in line with the expression pattern
of Ptf1a during pancreatic development. While this factor is maintained at low expres-
sion levels at the progenitor stage, Ptf1a expression is superinduced in cells initiating
acinar cell differentiation204.

The fact that strong lateral inhibition is necessary for ubiquitous exocrine specifica-
tion seems counterintuitive, since lateral inhibition is responsible for the establishment
of a heterogeneous checkerboard patterning. However, as mentioned, the strength of
lateral inhibition a determines the level of intermediate expression in the uncommitted
progenitor state and thereby the inhibition of Y. Accordingly, weak lateral inhibition
leads to high expression levels of X in the progenitor state and therefore inactivates
the lateral stabilization mechanism of exocrine specification, resulting in a reduction
of exocrine cells (domain III).

5.3.4 Multi-stability of patterns

To investigate how the stability of different patterning solutions changes under the
influence of model parameters, we performed a bifurcation analysis on a reduced sys-
tem of two cells. Figure 5.4A shows a bifurcation diagram where the strength of lateral
stabilization b is varied, while keeping lateral inhibition strength constant, a = 1. Com-
paring with figure 5.2, we observe that the system passes through three qualitatively
different domains (Ia, III, IV) and two spatial patterning solutions: a checkerboard and
a ’homogeneous’ pattern. Whereas in the checkerboard pattern, the endocrine and exo-
crine cell fates are found in a alternating pattern, only exocrine Y+ cells exist in the
’homogeneous’ pattern, despite small differences in Y expression. Two critical values
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bc1 and bc2 are identified that determine the transition between domains. Below bc1 ,
the only stable pattern is the checkerboard solution (Yi + Yj = 1). Indeed, the checker-
board solution is stable for all b. Between the critical values bc1 < b < bc2 , a stable
homogeneous solution of high Y expression coexists, but this cannot be reached from
zero initial conditions. This is because the expression at the plateau is stable for Y but
not for X (in red in figure 5.4). Thus, expression of Y rests at an intermediate level
and ’waits’ until the symmetry in X expression is broken after which the dynamics
of Y become enslaved by X (τx < τy, figure 5.6A). Conversely, for b > bc2 , the sta-
ble state at plateau-level expression does not exist. Instead of resting at intermediate
levels, Y expression continually grows as a result of lateral stabilization. This causes
super-induction of Y before the symmetry of X is broken and thus, a homogeneous
exocrine pattern emerges (τx > τy, figure 5.6B).

These results demonstrate that (1) the model exhibits multi-stability of pattern-
ing solution for a wide range of parameters (b > bc1) and (2) under initial condi-
tions relevant for development, the deterministic model switches from a heteroge-
neous (checkerboard) to a homogeneously exocrine pattern when lateral stabilization
strength exceeds the critical value bc2 . This switch in spatial patterning is driven by
the relative timing between lateral inhibition and lateral stabilization mechanisms.

5.3.5 Noise controls timing of cell fate decision

Next, we studied the effect of noise on this transition. Because the timing of the cell
fate decision due to lateral inhibition, τx, depends on the amplitude of noise η, an
increase in stochastic fluctuations will trigger a faster emergence of X+ and X− cells.
In contrast, the mechanism of lateral stabilization is, by itself, insensitive to stochas-
ticity, and in fact acts to homogenize noisy expression150. Autonomously, the time τy
required for the lateral stabilization feedback loop to exceed a critical threshold value
depends only on its strength b. Yet, when coupled to the lateral inhibition module up-
stream, stochasticity will also affect lateral stabilization. When, for a particular noise
amplitude, the time to break symmetry in X decreases below the time required for
lateral stabilization, i.e. τx<τy, the dynamics of Y become enslaved to X. Consequently,
less exocrine and more endocrine cells arise, thus increasing the endocrine cell ratio
(see figure 5.5).

Under noisy conditions, a checkerboard pattern may arise, even in the case b > bc2 ,
if a fluctuation happens to lead to a fast symmetry break of X which enslaves the
dynamics of Y. Conversely, a homogeneous Y+ solution may emerge for bc1 < b < bc2
if, by chance, the divergence of X is delayed which allows the super-induction of Y by
stabilization. Thus, the discontinuous phase transition at bc2 becomes continuous in
the presence of noise due to its modulation of the timing in expression dynamics.

Many sources of cellular noise exist that may affect cell fate decisions. In addition to
noise in gene expression, e.g. due to transcriptional bursts, there are stochastic factors
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Figure 5.4.: Scattering and cell type ratio control by lateral stabilization. (Caption on next
page.)
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Figure 5.4.: Scattering and cell type ratio control by lateral stabilization. (A) Bifurcation dia-
gram showing the steady states of Y expression of a two-cell system. Two saddle-
node bifurcations are found at b = bc1 ,bc2 that explain the phase transitions in
figure 5.2. The four-variable system is projected onto a one-dimensional scale us-
ing the sum of Y expression in the couplet (Yi+ Yj). Dashed lines indicate unstable
states, solid lines are stable. Black lines represent globally stable states, thick (red)
lines represents states in which Y is stable but X is unstable. (B) Spatial patterns
of endocrine (black) and exocrine (white) cells in lattice simulation at different
strength of lateral stabilization b and under two conditions of noise η. Under higher
noise levels, scattering is observed at the phase transition (see domain V in figure
5.2). Arrowheads indicate small clusters of checkerboard pattern. (C) Cell type ra-
tio of endocrine cells ε as a function of lateral stabilization strength b. Grey/black
indicate noise levels. The simulation model is available in the Supplementary On-
line Material under http://walter.deback.net/thesis.

Figure 5.5.: Effect of different sources of noise on timing and endocrine cell ratio. Higher
noise amplitudes decrease time to decision and increase endocrine cell ratio for
different sources of noise (A, B, C). Small irregularities in local cell-cell contacts
(D) further increases the endocrine cell ratio by allowing faster breaking of sym-
metry between neighboring cells. However, when cell-cell contact irregularities are
large enough to include contact between non-local neighbors, the endocrine ra-
tio decreases (D), in line with observations of pattern refinement via filopodia in
Drosophila205. Simulations are performed as described in section 5.2. Parameters
are as in table 1, except that b = 21 such that the deterministic equations are in
domain IV. Points represent averages over 10 independent simulations.

http://walter.deback.net/thesis
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influencing signal transduction as well as fluctuations of local cell-cell contacts. To
investigate the effects of different sources of noise, we systematically explored different
noise terms in the ODE model. The results show that preexisting cell-to-cell variability
or noise on signaling have qualitatively identical effects as gene expression noise (cf.
fig. 5.5A-C). Interestingly, however, irregularities in local cell-cell contacts can have the
opposite effect if contacts between non-neighboring cells occur. In this case, slower
symmetry breaking and a reduction of the endocrine cell ratio is observed (fig. 5.5D),
in line with observations of pattern refinement via filopodia in Drosophila205. Thus,
both molecular and cell-level sources of variability are important in control of the
timing of cell fate decisions and the regulation of cell type ratios. Note that the same
does not hold for the phase transition at bc1 , which is independent of X and therefore
insensitive to noise.

5.3.6 Scattering of endocrine cells under noise

To investigate the effect of stochasticity on patterning, simulations were performed on
a lattice of cells. Figure 5.4B shows that under low noise levels (η = 10−4), as expected,
a checkerboard pattern of pro-endocrine cells is observed for b 6 bc2 , whereas a ho-
mogeneous exocrine pattern is established for b > bc2 . In contrast, under higher noise
amplitude (η = 10−2), a continuous transition appears for b > bc2 that is characterized
by the concomitant appearance of the two multi-stable patterns in the same tissue. In
other words, noise expands the region in parameter space where checkerboard and
homogeneous exocrine patterning may occur side by side (domain V in figure 5.2).

Above the critical value bc2 , we observe the emergence of a scattered distribution
of endocrine Y− cells amidst a majority of exocrine Y+ cells. The particular scattering
pattern predicted by our model is characterized by the presence of isolated or small
clusters of endocrine cells, consisting of local patches of a checkerboard pattern (arrow-
heads in figure 5.4B, b = 30). Although no detailed study on the spatial distribution of
endocrine cells during pancreas development has been conducted to our knowledge,
the observed pattern is in agreement with the numerous reports on a scattered distri-
bution in which endocrine cells were found as individual cells or small clusters in the
pancreatic epithelium147,148,172,173,177.

In the model, the formation of these clusters involves a competition between two
wave fronts. Once an early X+ cell arises by chance, it initiates the propagation of
the checkerboard pattern by inhibition of X in neighboring cells. While inhibiting X
in adjacent cells, these become Y+ and in turn initiate the propagation of a second
wave by stabilization of Y in their neighbors. When the wave of lateral stabilization
propagates faster than the wave of lateral inhibition, the checkerboard pattern halts at a
particular size. Thus, the model predicts the propagation of a inductive signals through
homeogenetic induction, in which a differentiated cell causes the differentiation of
nearby progenitor cells. To date, no evidence of homeogenetic signals exists for the
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developing pancreas. However, novel dynamic imaging studies may provide a more
detailed insight into the spatiotemporal progression of signals and the precise spatial
distribution of endocrine cells.

5.3.7 Lateral stabilization modulates cell type ratios

An interesting consequence of these dynamics is that it allows the regulation of cell
type ratios in the pancreas, even in absence of proliferation. Due to noise in expression,
endocrine-to-exocrine cell type ratios can be modulated between the ratios expected
for checkerboard patterning by lateral inhibition (1:3) and the homogeneous exocrine
solution (0:1) (see figure 5.4C). For a particular set of parameters, the locations where
clusters of endocrine cells appear are chosen randomly but the ratio of cells that com-
mit to the endocrine and exocrine lineage is determined by the parameters and can
thus be predicted. From this model, it follows that down-regulation of the strength of
lateral stabilization will dramatically increase the endocrine to exocrine cell type ratio.

Although proliferation is clearly important in the regulation of pancreatic cell type
ratios during development, several experimental studies are in agreement with this
finding. For instance, it was found that a conditional knock-out of β-catenin downreg-
ulates Ptf1a which results in a striking paucity of exocrine acinar cells, while preserv-
ing the endocrine compartment206,207. Conversely, overexpression of β-catenin around
E12.5 leads to an increased exocrine cell mass, with only minimal changes to the endo-
crine cell count208. Although β-catenin is a key player in Wnt signaling as well as in
cadherin-mediated cell-cell contact and it remains unclear which role is decisive in the
context of cell type ratio control207, it is tempting to assume its participation in lateral
stabilization of Ptf1a through cell-cell contacts takes part in the regulation of cell type
ratios in the pancreas.

5.3.8 Related mechanisms

It should be noted that the proposed coupling between lateral inhibition and lateral sta-
bilization is not the only mechanism that can produce scattering patterns. In particular,
models using an activator-inhibitor mechanism that include a long-range inhibitor pro-
duced by cells entering one lineage can generate scattered distributions, even without
Notch-mediated lateral inhibition74. However, although the mesenchyme surrounding
the early pancreas emits diffusive inhibitory signals209,210, no evidence exist to suggest
that such signals are produced within the primitive pancreatic epithelium itself. In
contrast, there is accumulating evidence that short-range contact-mediated signals are
crucial for lineage regulation in the pancreas154,162,188, and the role of Notch signaling
is already well-established147,148,211.

The mechanism of lateral stabilization proposed in this study is closely related to
other inductive mechanisms. Similar to lateral stabilization, the community effect is an
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Figure 5.6.: Relative timing of cell fate decisions depends on lateral stabilization (b) and
controls patterning. (A) For b 6 bc2 , symmetry-breaking of X precedes super-
induction of Y (τx < τy), resulting in checkerboard patterning (b = 15). (B) In
contrast, for b > bc2 , super-induction of Y precedes symmetry breaking of X (τy <
τx) and results in ubiquitous exocrine cell fates (b = 35).

inductive mechanism that results in the homogenization of cell fates150,212. However, it
is typically associated with diffusive signaling among large groups of cells213, whereas
the contact-mediated mechanism of lateral stabilization only requires small groups of
cells. Moreover, the community effect operates by receptor-ligand binding214, whereas
lateral stabilization assumes homodimerization of membrane-bound proteins. This im-
plies that for lateral stabilization to take place, all participating cells must already
be alike in their expression of this particular protein. In this sense, lateral stabiliza-
tion also bears similarity with the homeogenetic induction mechanism introduced by
Mangold and Spemann215 in which differentiated cells induce surrounding undiffer-
entiated cells to commit to the same lineage. Although the presence of differentiated
cells is not required for lateral stabilization because interaction between progenitor
cells themselves can lead to uniform induction (if b > bc2), their presence would set
out a wave of induction which eventually homogenizes cell fates in the tissue (even
if bc1 < b 6 bc2). In fact, this predicted wave propagation effect can be used to ex-
perimentally test the lateral stabilization mechanism using grafting of adult exocrine
(Ptf1a+) cells within a population of pancreatic progenitor cells.

5.4 conclusion

Despite indisputable evidence that Notch signaling is important in the regulation of
the cell fate decision between the endocrine and exocrine lineages147,148, it is still con-
troversial whether it acts through lateral inhibition or an alternative mechanism such
as suppressive maintenance211,216–218. Yet, none of the theories proposed to date is able
to explain the observed scattered distribution of endocrine cells in the pancreatic ep-
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ithelium179. Interestingly, recent evidence from transdifferentiation studies suggests
the existence of an additional mechanism that stabilizes pancreatic exocrine cells fate
by a positive feedback loop mediated by cell-cell contacts. In this study, we have shown
that the coupling between lateral inhibition and lateral stabilization may control early
lineage specification and patterning in the pancreas. We have constructed and ana-
lyzed a minimal mathematical model combining these contact-mediated signalling
mechanisms and showed that its behavior agrees with recent transgenic loss- and
gain-of-function experiments: Abrogation of lateral inhibition leads to precocious com-
mitment to the endocrine lineage; Lateral stabilization causes biphasic expression of
pro-exocrine factors; And cell type ratios can be modulated by up/downregulation of
the strength of lateral stabilization. Moreover, the coupling of the two feedback mech-
anisms causes a multi-stability of spatial patterning solutions that, in the presence of
noise, generates a scattered distribution of endocrine cells, as observed in the central
part of the pancreatic epithelium. Our analysis shows that the scattering pattern arises
as a side-effect of noise on the relative timing of the two feedback mechanisms. This
enables two qualitatively different patterns to appear concomitantly and persist side-
by-side. The scattering pattern predicted by our model is characterized by the pres-
ence of small clusters of endocrine cells in local checkerboard-like patches, rather than
a uniform random distribution. Although it remains unclear whether pro-endocrine
Ngn3+ cells actually appear as clusters within the primitive pancreatic epithelium, it
is known they rapidly aggregate after their delamination from the epithelium. It may
thus be speculated that the specification of endocrine cells in a clustered fashion serves
as a pre-pattern to expedite the formation of aggregates that eventually form the islets
of Langerhans.

Unlike for lateral inhibition, the molecular pathways underlying lateral stabiliza-
tion remain unknown. Yet, based on the mathematical conditions under which the
multistability occurs, receptor-ligand interactions can be excluded. Rather, our model
predicts that lateral stabilization depends on homotypic binding of membrane-bound
proteins. Recent studies offer several possible candidates. For instance, Minami et al.162

demonstrated that disruption of cadherin-mediated cell-cell adhesion is required for
the induction of dedifferentiation of adult acinar cells in vitro. This suggests that cad-
herins may be involved in stabilizing exocrine factors and maintaining acinar cell fate.
Another, potentially complementary, possibility is that gap junctional communication
mediates acinar cell fate stability. This is supported by experimental evidence that
inhibition of Mist1 activity, a key regulator of gap junctional communication in exo-
crine cells and downstream target of Ptf1a, also causes the dedifferentiation of acinar
cells161,188.

Independent of the precise molecular realization, the fact that the both inhibitory
and stabilizing mechanisms of contact-mediated induction have been reported for a
wide range of tissues suggest that the model and results presented here for the pan-
creas may also be applicable to other developing tissues.
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T R A N S D I F F E R E N T I AT I O N O F PA N C R E AT I C C E L L S B Y L O S S O F
C O N TA C T- M E D I AT E D S I G N A L I N G *

6.1 introduction

In the course of embryonic development, cells become progressively more specialized.
Yet, it is becoming increasingly clear that adult differentiated cells retain the ability
to change cell fate under certain conditions219,220. Novel approaches in regenerative
medicine aim at harnessing this cell type plasticity in order to replace diseased or
damaged tissue by targeted conversion of cells from other tissues221. Transdifferenti-
ation, also known as lineage conversion, from one cell type to another often involves
a dedifferentation step to reinstate multipotency, but it is also possible to force cells
to switch lineages directly222. Cells can be reprogrammed by ectopic expression of
specific transcription factors using viral transduction223,224. However, some cell types
can also be converted without genetic manipulation, by merely changing the cellular
microenvironment. For many purposes, microenvironment-induced conversion may
be preferable since it avoids the risks of random viral integration225. Contact-media-
ted signals from neighboring cells constitute a major part of the cellular microenvi-
ronment and recent studies have highlighted the importance of cell-cell contacts and
surface-bound signals for pluripotency and cell type stability131,162,188,226–229. Yet, little
is known about the regulatory effects of contact-mediated signals on cell fate stability
and cell type conversion. In this paper, we investigate the role of contact-mediated
signaling mechanisms in transdifferentiation by a theoretical study of cell fate control
in the pancreas.

The pancreas is an organ with dual exocrine/endocrine functions. Acinar cells pro-
duce digestive enzymes that enter into the gut, whereas α and β-cells, organized in
the islets of Langerhans, release hormones into the blood stream for glucose homeosta-

* This chapter is based on the publication: Walter de Back, Roland Zimm and Lutz Brusch, BMC Systems
Biology, 7:77, 2013. Author contribution: Walter de Back conceived the study and constructed the model.
Simulation, data analysis and bifurcation analysis were performed together with Roland Zimm. Walter
de Back wrote the paper.
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sis. Disruption of this homeostasis in diabetic patients is caused by a loss of functional
β-cells. Conversion of cells from other pancreatic tissues into new β-cells has been
proposed as a replacement therapy122. Acinar cells are interesting candidates as a
source for transdifferentiation because of the common developmental origin of exo-
crine and endocrine cells as well as the abundance of acinar cells in the pancreas187.
In fact, reprogramming of acinar cells into new β-cells has already been demon-
strated in vivo in mice using ectopic expression of key transcription factors using viral
transduction125. Intriguingly, such transdifferentiation has also been demonstrated in
in vitro cultures without genetic manipulation, using only microenvironmental chan-
ges152,230–232. These studies show that adult acinar cells spontaneously dedifferentiate
upon loss of cell-cell contacts by enzymatic tissue dissociation. Transcription factors
and signaling pathways such as Notch signaling are reactivated which normally are
only expressed during development. These progenitor-like cells can be converted into
β-cells, although the yield is typically very low152,231–233. Interestingly, it has been
found that the efficiency of lineage conversion can be improved dramatically by inac-
tivation of Notch signaling154.

These findings suggest that at least two contact-mediated or lateral signaling path-
ways are involved in acinar-to-β-cell conversion. First, dedifferentiation seems to be
controlled by the loss of a stabilizing signal that is mediated by contact with adja-
cent acinar cells and is required for the maintenance of the acinar identity187. Second,
redifferentiation into the endocrine lineage of islet cells seems to be hampered by
contact-mediated Notch signaling154 in a mechanism known as lateral inhibition, as
previously described for pancreas development147. Understanding how these lateral
signaling pathways act together in regulation of cell type stability and conversion dy-
namics can be an important step towards the development of non-genetic methods of
β-cell neogenesis.
In this study, we construct and analyze a mathematical model that combines gene
regulation with two contact-mediated signaling mechanisms: lateral inhibition and
lateral stabilization. Using a combination of bifurcation analysis and numerical simu-
lation, we find that multistability of gene expression states underlies the potential of
acinar-to-islet cell conversion. Whereas loss of lateral stabilization causes a step-wise
conversion through a multipotent progenitor-like state, additional loss of lateral in-
hibition induces the direct transdifferentiation from acinar to islet cells. In addition,
cell density as well as the size and structure of cellular aggregates are found to af-
fect the efficiency of conversion. Our results demonstrate that the combination of two
lateral signaling mechanisms suffices to reproduce observations of acinar-to-islet cell
conversion. By clarifying the role of lateral signals in lineage conversion, this new
theoretical framework may contribute to improving strategies of microenvironment-
induced transdifferentiation in general and to β-cell neogenesis in particular.
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6.2 methods

Gene regulatory networks can be mathematically modeled and analyzed in terms of
differential equations189. This can help to understand the complex feedback mecha-
nisms underlying cell fate control137. By means of model analysis, one can reveal the
existence of attractors that represent cellular phenotypes and understand the dynamics
between states136,234,235. Using such a systems biological approach, we have previously
shown that the results of genetic reprogramming experiments in the pancreas can be
predicted from the hierarchical topology of the underlying gene regulatory network146.
In the present study, we construct a minimal model of the gene regulatory network
and contact-mediated signaling pathways underlying endocrine/exocrine cell fate de-
cisions and maintenance in the pancreas and analyse this model using a combination
of bifurcation analysis and tissue-scale lattice simulation.

The state of each cell is specified by four variables, A, X, Y, Z representing the
expression levels of key transcription factors. Whereas X and Y correspond to core
fate-determining genes and are involved in contact-mediated signaling, the factors A
and Z represent up- and downstream factors (see figure 6.1). More specifically, the
factor X represents the pro-endocrine transcription factor Ngn3 that is transiently ex-
pressed during early pancreas development and participates in Notch-mediated lateral
inhibition147,173. Ngn3 activates the expression of the membrane-bound Notch ligand
Delta-like1 (Dll1)147. Reversely, activated Notch signaling causes inhibition of Ngn3 by
the transcriptional repressor Hes1148. As a result, neighboring cells compete for endo-
crine commitment by mutual inhibition of Ngn3 expression, in a mechanism called
lateral inhibition149,151. The factor Z represents a terminal endocrine fate marker down-
stream of Ngn3 such as Isl1173,236 that, once induced, retains its expression by positive
auto-activation. As an islet cell maturation factor, it acts to repress the expression of
upstream factor A.

The factor Y is interpreted as Ptf1a, which is the only transcription factor known to
be necessary and sufficient to induce the exocrine cell fate174,176, but is expressed in all
pancreatic progenitor cells175. Based on experimental evidence that adult acinar cells
lose Ptf1a expression upon loss of physical cell-cell contact152,187,230–232, we assume
that factor Y is involved in lateral stabilization. Lateral stabilization provides a pos-
itive feedback loop between Y-expressing neighboring cells (see chapter 5). The rate
of Y production is up-regulated by its simultaneous expression in neighboring cells.
Mathematically, this is represented by a multiplication, such that non-Y-expressing
cells do not participate in lateral stabilization. Although the molecular details of a
lateral stabilization pathway are unclear, such conditional activation is, in principle,
consistent with both cadherin/β-catenin signaling162 as well as with Mist1-mediated
gap junctional communication188. In both cases, cells need to express monomeric pro-
teins that form homotypic transmembrane complexes in order to signal to adjacent
cells.
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Figure 6.1.: Gene regulation and lateral signaling network. In cell i, the common names of
the transcription factors are used. In cell j, these are replaced by the respective
model variables. Cells i and j are coupled by lateral inhibition of factors X, and by
lateral stabilization between factors Y. For each cell, the upstream factor A induces
expression of X and Y, while X also induces Z expression, which activates itself.
Both endocrine factors X and Z antagonize exocrine factor Y. Once differentiated,
the markers Y and Z down-regulate A. Parameters in small lower case represent
strengths of the interactions.

Although the endocrine and exocrine markers are mutually exclusive194, the un-
derlying regulatory mechanisms remain unresolved. One model holds that Nkx6.1, a
pro-endocrine factor downstream of Ngn3195,196, antagonizes the expression of Ptf1a197.
Independent of the precise molecular pathway, we assume that (pro-)endocrine factors
X and Z independently suppress the expression of Y leading to the restriction of the
latter factor to the exocrine compartment.

Both Ngn3 and Ptf1a are known to be induced by the upstream factor Hnf6, either
directly190 or indirectly191,192. To reflect this fact in the model, factor A induces the
expression of X and Y. Both Hnf6 and Ngn3 are down-regulated during late devel-
opmental stages and are not expressed in the adult pancreas under normal circum-
stances173. In the model, this is captured by negative feedback of the terminal islet
and acinar markers, Z and Y, on the inducing factor A. Indirectly, this also causes the
down-regulation of X.

These gene-gene and cell-cell interactions can be formulated in terms of the follow-
ing system of stochastic differential equations using Hill kinetics (parameters as in
table 6.1):
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Symbol Description Value

embryo adult

Variables A Expression of transcription factor Hnf6 1 0

X Expression of transcription factor Ngn3 0 0

Y Expression of transcription factor Ptf1a 0 1

Z Expression of transcription factor Isl1 0 0

X̄ Average Ngn3 expression in neighboring cells 0 0

Ȳ Average Ptf1a expression in neighboring cells 0 1

Parameters a Strength of lateral inhibition X `a X 1000

b Strength of lateral stabilization Y ↔ Y 2000

c Strength of inhibition X a Y and Z a Y 500

q Strength of induction A→ X and A→ Y 10−4

r Strength of inhibition Y a A and Z a A 100

s Strength of autoactivation Z→ Z 50

n Hill coefficient, nonlinearity of reactions 3

ηx Noise amplitude on X 10−3

ηy Noise amplitude on Y 10−3

Table 6.1.: Variable and parameter values of the mathematical model (equation 6.1-6.4). The
values of the variables refer to the embryonic and adult acinar initial condition.

dA

dt
=

1

1+ rYn + rZn
−A (6.1)

dX

dt
=

qAn

q+ aX̄n
−X+ ξx(t) (6.2)

dY

dt
=

qAn + b(YȲ)n

q+ b(YȲ)n + cXn + cZn
− Y + ξy(t) (6.3)

dZ

dt
=

Xn + sZn

1+ sZn
−Z (6.4)

The terms X̄ and Ȳ denote the average expression of X and Y in the directly adjacent
neighboring cells. To implement lateral inhibition, production of X is inhibited by the
expression of X in neighboring cells, aX̄n, independent of its own activation. In con-
trast, the multiplicative term representing lateral stabilization, b(YȲ)n, acts to stabilize
a pre-existing expression. This requires the cell-autonomous activity of Y in both cells.

The additive stochastic terms ξ(t), accounting for variability in gene expression or
signaling noise, are random variables with a Gaussian white noise distribution N(0,η)
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with mean 0 and amplitude η. The Hill coefficient n is chosen such that the system
exhibits non-linear step-like behavior (n = 3). The model variables are scaled in such a
way that the steady state expression of all factors is between 0 and 1. Parameter values
are chosen such that the acinar cell fate (cells with Y ≈ 1) and islet cell fate (Z ≈ 1) are
mutually exclusive. For brevity, in the presentation of the results below, Y+ cells are
acinar, X+ cells are islet progenitors, and Z+ cells are islet cells.

The states and (in)stabilities of the above model were studied using bifurcation anal-
ysis. Numerical simulation of a hexagonal lattice of cells was performed to study the
spatiotemporal dynamics at the tissue scale. Analysis and numerical simulation were
performed using GRIND (phase plane analysis)200, XPPAUT (bifurcation analysis)201

and our modeling environment Morpheus (lattice simulations)55 (see chapter 3). The
stochastic differential equations were solved using the 2nd order Heun-Maruyama
method with time step size dt = 0.02. The simulation model is available in the Supple-
mentary Online Material under http://walter.deback.net/thesis.

6.3 results

6.3.1 Multistability of acinar and islet cell fates

Cell fates are characterized by stable patterns of gene expression. Whether a set of
interacting genes is able to reach one or more stable states depends on their interaction
topology as well as on the strengths of interaction. To investigate the cell fates that can
appear in our model, we studied the existence of stable states and their dependence
on parameter values for lateral signaling by performing a bifurcation analysis.

Due to lateral signaling, the fates of individual cells depend on the states of neigh-
boring cells. Therefore, we analyzed a system of three cells representing a minimal
tissue that is able to show all possible configurations present in larger systems (the
mixed state does not occur for less than 3 cells). To study how the stability of cell
fates changes while varying the strength of the lateral stabilization mechanism b, we
recorded the summed expression level of exocrine factor Y. This reduces the high-
dimensional state space to a single dimension and provides information on cell fates
as well as their spatial pattern. The solid lines in the bifurcation diagram in figure 6.2A
show that Y expression has three stable states over a wide range of parameter values.
For these values of b, the three cells can have either acinar fates (Y = 3), islet cell fates
(Y = 0) or have mixed fates (Y = 2), depending on initial conditions or history of gene
expression.

This multistability of acinar and islet cell fates has several interesting consequences.
The key observation is that a critical value bc exists, below which the stable steady
state for the acinar fate disappears, while the islet cell fate remains stable. Thus, loss
of the stabilizing effect of lateral signaling effectively moves the system towards a re-
gion in parameter space where the acinar cell fate no longer exists. Therefore, upon

http://walter.deback.net/thesis
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Figure 6.2.: Bifurcation analysis of three-cell system. (Caption on next page)
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Figure 6.2.: Stability of cell fates change as a function of strength of lateral stabilization. Bifur-
cation diagram showing stable attractors (solid) and unstable states (dashed) for
a minimal tissue consisting of three-cells (hexagons). Arrows indicate trajectories
after loss of stabilization. (A) In presence of lateral inhibition, a > ac, loss of sta-
bilization, b < bc, causes dedifferentiation towards a progenitor-like multipotent
state. If lateral stabilization is recovered at this early stage, the developmental pro-
cess is recapitulated and a mixed pattern of both cell fates arises. In contrast, if
stabilization remains inhibited, cells redifferentiate into islet cells. (B) In absence of
lateral inhibition, a < ac, loss of stabilization results in direct lineage conversion,
due to the absence of a progenitor-like multipotent state. This unstable multipotent
state vanishes at ac in a saddle-node bifurcation with another solution branch of
similar Y-values but higher Z activity which is additionally unstable against per-
turbations in Z and therefore omitted in (A). Note that ΣY is a projection of a high
(12)-dimensional space, such that intersections do not imply bifurcations or chan-
ges in stability as these need not intersect in the actual state space. In the legend,
the stability of X or Y means (un)stable with respect to perturbations in variable X
and Y. With parameters as in table 1, ac ≈ 0.0017 and bc ≈ 0.012.

such a change in parameter values, acinar cells lose their exocrine markers and ded-
ifferentiate spontaneously. In the presence of lateral inhibition (fig. 6.2A) cells adopt
a multipotent progenitor-like fate. This state is stable against perturbations in Y, but
unstable against perturbations in X, which implies that noise on X can change this
state. If lateral stabilization is recovered at this multipotent stage, the system moves
towards a steady state with mixed acinar and islet cell fates, recapitulating the cell fate
decision and spatial pattern observed during pancreas development101 (see chapter 5).
If, however, disruption of lateral stabilization continues, cells differentiate into the islet
cell lineage. After completing the lineage conversion, the islet fate is stable in the sense
that recovery of lateral stabilization does not reverse conversion.

Interestingly, the bifurcation analysis shows a different behavior in the absence of
lateral inhibition (fig. 6.2B). In this case, multipotent progenitor-like steady state does
not exist. This implies that acinar cells cannot dedifferentiate towards a progenitor-like
state upon loss of lateral stabilization. Instead, cells undergo direct lineage conversion
from the acinar to the islet lineage, rather than passing through a state of multipotency.

In conclusion, bifurcation analysis reveals (1) that lateral stabilization accommodates
multistability of the acinar and islet cell states, (2) that transient loss of lateral sta-
bilization can cause the conversion of acinar to islet cells and (3) that concomitant
suppression of lateral inhibition leads to direct conversion, bypassing the multipotent
progenitor-like state. Yet, bifurcation analysis does not provide insight into the spa-
tiotemporal dynamics for which we next turn to numerical simulations.
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6.3.2 Cell fate decision and patterning during pancreas development

Cells undergoing acinar-to-islet cell conversion transiently express various factors and
activate signaling pathways normally only observed during development (Pdx1, Hnf6,
Ngn3, Notch, Dll1)154,232. This suggests that at least a part of the developmental regu-
latory network is reactivated187 and that cell fate decisions during organogenesis and
cell type conversion are governed by the same regulatory mechanisms. Under this
assumption, the model proposed here for acinar-to-islet cell conversion is expected
to reproduce the cell fate decision between the exocrine or endocrine lineage during
embryonic development.

To test whether the proposed model holds for the conditions during embryonic de-
velopment, we simulated the model using initial conditions that represent the gene
expression in early pancreatic progenitor cells. In the mouse, the inductive factors
Hnf6 and Hnf1β, that act upstream of lineage-associated factors Ngn3 and Ptf1a, are
first detected around E9

175. At this stage, Ngn3 and Ptf1a themselves are not yet ex-
pressed. Accordingly, the early embryonic state is accounted for in our model by the
homogeneous expression of A (table 1).

Figure 6.3B shows that during simulation, A activates the expression of both X and
Y. For a transient period, these factors are co-expressed in all cells at low or inter-
mediate levels of expression. The “promiscuous” co-expression is typical of multipo-
tent progenitor cells and is also observed in pancreatic progenitors194. During this
phase, mutual inhibition between cells maintains a low-level expression and thereby
suppresses differentiation into either lineage, similar to the role of Notch signaling
in pancreatic development known as “suppressive maintenance”210. After noise intro-
duces variation in X expression between cells, these differences become amplified by
lateral inhibition and result in a divergence of X expression. Factor X activates islet cell
differentiation by activating Z and is only transiently expressed itself, as is known for
Ngn3. Reversely, in the X− surrounding cells, Y is no longer inhibited and is upregu-
lated. Through lateral stabilization, Y+ cells induce the expression of Y in neighboring
progenitor cells (with low Y expression) which results in wave propagation, in a pro-
cess traditionally known as homeogenetic induction215. Maturation into either lineage
results in suppression of upstream factor A which leads to the downregulation of the
pro-endocrine factor X, while Y is maintained by lateral stabilization. In line with ex-
perimental observations, both factors (Hnf6 and Ngn3) are not expressed after the cell
fate decision and in the adult pancreas.

Interestingly, the spatial patterns generated by the model are also in line with reports
of the scattered distribution of nascent islet cells in the early pancreatic epithelium177.
The combination of lateral inhibition (creating an alternating pattern of acinar and islet
cells) with lateral stabilization (creating homogeneous fields of acinar cells) results in
the establishment of a scattered spatial distribution of endocrine cells in a mainly
exocrine tissue (see figure 6.3C)101.
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In short, under initial conditions representing early pancreas development, the key
features of gene expression and patterning in the developing pancreas are reproduced
by the model: (1) promiscuous expression of the lineage-associated factors Ngn3 and
Ptf1a, (2) the transient expression of the pro-endocrine factor Ngn3 and (3) the scattered
spatial patterning of committed islet cells.

6.3.3 Loss of lateral stabilization causes sequential conversion

To understand the dynamics of acinar-to-islet cell conversion upon loss of lateral sta-
bilization, simulated cells were initialized with an acinar-like gene expression profile
in which only the exocrine factor Y is expressed (see table 1). The system was initial-
ized with lateral stabilization strength b > bc to ensure the stability of the acinar-like
state under these conditions. After a given period, lateral stabilization was lost, b = 0,
marking t = 0.

As shown in figure 6.3B’, the acinar state is stable as long as lateral stabilization
strength b > bc, representing intact acinar tissue. However, immediately following the
loss of lateral stabilization, cells lose the expression of exocrine marker Y. The lack of
the maturation factor Y leads to the re-activation of the upstream factor A. Since A
induces low levels of both X and Y, at this stage, the expression pattern is identical to
the early embryonic situation. Thus, loss of lateral stabilization causes cells to return
towards the multipotent progenitor-like cell state. If the absence of lateral stabilization
continues, the subsequent dynamics differ from the embryonic cell fate decision dis-
cussed above. Specifically, nascent islet cells arise in an alternating spatial pattern as a
result of lateral inhibition between X+ cells (fig. 6.3C). Yet, this pattern is not stable. Af-
ter a cell has committed to the islet lineage by transactivating the endocrine marker Z,
it looses expression of X. Therefore, cells adjacent to endocrine Z+ cells are no longer
inhibited and will start to express X themselves. As a result, some of the neighboring
cells also commit to the endocrine lineage, after which the process is repeated. This
step-wise conversion of cells within the tissue results in a complex spatiotemporal
patterning process (fig. 6.3C’). Under these idealized conditions, eventually all cells
commit to the islet cell lineage. If, however, lateral stabilization is recovered before
cells have redifferentiated, the cell type conversion is arrested which significantly de-
creases the efficiency of conversion (data not shown). Recovery does not revert newly
committed islet cells back to acinar fate, since the islet cell state is stable, independent
of lateral stabilization.

These results are in line with in vitro experiments showing spontaneous dedifferen-
tiation upon enzymatic disassociation and disruption of cadherin-mediated cell-cell
adhesion152,162,232,233. Furthermore, these results suggest that acinar-to-islet cell con-
version ensuing loss of lateral stabilization is a relatively slow process due to the fact
that lateral inhibition prevents neighboring cells from completing transdifferentiation
simultaneously.
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Figure 6.3.: Dynamics of cell fate control. Dynamics of cell fate decisions during development
(left column) and lineage conversion (middle and right columns). (A) Sketch of cell-
cell signaling condition. (B) Expression of transcription factors over time. A: Hnf6,
X: Ngn3, Y: Ptf1a, Z: Isl1. Black lines in B’ depict population averages. (C) Emergent
spatial patterns, representing cell fates by colors. Color coding: Y+ acinar cells
are red, Z+ islet cells are blue, and Y−Z− cells are white. Initial condition for
development is A = 1,X = Y = Z = 0 and for conversion is Y = 1,A = X = Y = 0.
Parameters as in table 6.1. Videos and simulation models are all three conditions
are available in the Supplementary Online Material under http://walter.deback.
net/thesis.

http://walter.deback.net/thesis
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6.3.4 Loss of lateral inhibition accelerates conversion

In the embryo, disruption of the Notch signaling pathway is known to cause pre-
cocious endocrine commitment147. Moreover, its inhibition in adult acinar cells can
dramatically increase the efficiency of acinar-to-islet cell type conversion154. Since one
of the roles of Notch signaling in the developing pancreas is lateral inhibition, we ex-
amined the dynamics of the model after a sudden loss of lateral inhibition. As before,
we used the acinar-like initial conditions (table 1), but now both lateral stabilization
and lateral inhibition were lost, a = b = 0, after a given period.

Immediately ensuing this manipulation, Y expression rapidly decreases, causing the
reactivation of A expression, as described before. However, in this case, the dediffer-
entiated cells do not return to a multipotent state with “promiscuous” co-expression.
Instead, all cells simultaneously upregulate the pro-endocrine factor X since they are
not inhibited by their neighbors (see figure 6.3B”). Finally, after the transactivation of Z
by X, the factors A and X are suppressed again, leading to an adult islet fate in all cells.
Compared to the loss of stabilization, the additional loss of lateral inhibition results in
a much faster dynamical process of lineage conversion. In line with results obtained in
vitro154, our model shows that concomitant inhibition of lateral inhibition accelerates
acinar-to-islet conversion. Here, this observation is explained by the fact that, under
disruption of lateral inhibition, the unstable steady state representing the multipotent
progenitor state does not exist, as predicted by bifurcation analysis (figure 6.2B).

Note that disruption of lateral inhibition alone (a = 0, b > bc) does not affect
acinar cell stability, since the pro-endocrine factor X, which is involved in this feedback
between cells, is not expressed in adult acinar cells. Therefore, without loss of lateral
stabilization, cells maintain their acinar identity.

6.3.5 Cell density affects conversion efficiency

If the disruption of contact-mediated signaling influences the efficiency of acinar-to-
islet cell conversion, loss of physical contacts between cells could replace molecular
manipulation. To study the effect of cell-cell contacts, we performed simulations with
varying densities of acinar cells. As expected, it was found that conversion efficiency
increases with decreasing cell density (see figure 6.4). For extreme cases, the reason
behind this is evident. At high densities, most cells have many contacts with neigh-
boring acinar cells and the stabilizing positive feedback prevents their dedifferentia-
tion. Conversely, at low density, most cells are isolated and do not receive stabilizing
(or inhibiting) cell-cell signals. Consequently, these cells can complete transdifferenti-
ation. However, for more realistic intermediate cases in which cells are part of small
aggregates, the situation becomes nontrivial. Here, the probability of cell conversion
depends on both size and shape of the cellular aggregate. Although cells in larger clus-
ters are generally more stable, this stability also depends on the spatial arrangement
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Figure 6.4.: Cell density affects conversion efficiency (A) The fraction of acinar cells that con-
vert to islet cells increases with decreasing cell density, as shown for three values of
lateral stabilization strength, b = 1 (dotted), b = 0.1 (solid), b = 0.01 (dashed). (B)
Examples of the steady-state situation (acinar cells in red and islet cells in blue) for
three different cell densities as indicated on the dashed curve (b = 0.01, densities
0.25, 0.50 and 0.75). Note the presence of compact clusters of stable acinar cells
in the middle panel. (C) Shape of cellular aggregates determines the efficiency of
conversion. A decrease in compactness, measured as average neighbors per cell,
increases the islet cell yield. Parameters as in table 6.1, b as indicated.

of cells in the aggregate (fig. 6.4C). Because the dedifferentiation of one cell weakens
the stability of its neighboring cells, waves of dedifferentiation and conversion can
propagate through the aggregate, depending on the average number of neighboring
cells that reflects both density and configuration of a cell cluster.

These results show that, in the context of our model, the size and the structure
of cellular aggregates affects the efficiency of lineage conversion. This implies that
the degree of dissociation of acini by enzymatic digestion is predicted to have large
impact on islet cell yield. More generally, the use of low cell densities or, alternatively,
inhibition of reaggregation of cells, is predicted to increase the efficiency of acinar-to-
islet cell conversion in vitro.

6.4 discussion and conclusion

Forcing adult cells to change lineage by altering the microenvironment offers an al-
ternative to the more risky method of virus-mediated nuclear reprogramming224,225.
Apart from identifying of specific growth factors and small molecules that induce a
particular lineage conversion in vitro, recent work in this direction also demonstrates
that contact-mediated lateral signals are key regulators of cell fate maintenance and
multipotency131,162,188,226–229. For instance, it was found that loss of cell-cell adhesion
between adult acinar cells of the pancreas causes dedifferentiation and enables their
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conversion into islet cells152,162. Together with more recent data showing that inhibi-
tion of contact-mediated Notch signaling between these cells significantly improves
conversion efficiency154, this demonstrates that lateral signals are important regula-
tors of cell fate control in the pancreas. However, despite the identification of a myriad
of transcription factors and signaling molecules involved in lineage conversion, a co-
herent understanding of the roles of contact-mediated lateral signals in this process is
lacking.

A systems biological approach can help to make sense of complex dynamic regu-
latory networks through the use of mathematical models and dynamical system the-
ory137,189. In previous work, we have adopted this approach to construct a hierarchi-
cal multi-attractor model of the pancreatic transcriptional network to understand and
propose nuclear reprogramming strategies146. In the present study, instead, we have
focused on the role of contact-mediated signals on conversion dynamics to predict the
outcomes of microenvironment-induced strategies for transdifferentiation.

We have presented a mathematical model that combines gene regulation and lateral
signaling in pancreatic cells. We have demonstrated that the crosstalk of two contact-
mediated signaling mechanisms (lateral inhibition and lateral stabilization) causes
multistability in which both acinar and islet cell fates are stable. Our discovery of
the multistable state explains why conversion of acinar to islet cells is possible, even
without genetic manipulation. Inhibition of lateral stabilization destabilizes of acinar
cells and causes the dedifferentiation of acinar cells towards a progenitor-like mul-
tipotent state and invokes the subsequent step-wise conversion towards an islet cell
fate. Moreover, we have shown that additional loss of lateral inhibition accelerates the
conversion dynamics because, under these conditions, cells undergo a direct lineage
switching, without passing through a multipotent state.

Altogether, our results provide a theoretical background to understand studies of
acinar-to-islet cell conversion in vitro152,154,162,230,231. Moreover, this study offers several
testable predictions, such as the impact of cell density, that may be used to improve the
efficiency of micro-environment-induced conversion strategies. More generally, our
results demonstrate that the crosstalk of multiple lateral signaling mechanisms can
generate counterintuitive effects controlling cell fate stability as well as spatial pattern-
ing, which deserve further investigation. Furthermore, this study underscores that the
identity of cells depends on the multicellular context of the tissue. Therefore, consid-
ering the feedback from the tissue level to the genetic level is important in order to
understand how cell fate stability and plasticity are controlled.
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I N T R O D U C T I O N

The processes that determine the shapes of the tissues of the organism are collectively
called morphogenesis. In Part II, where we focused on the coupling of cell fate speci-
fication and spatial patterning, morphogenetic processes have been largely neglected.
Here, as a second case study, the computational methods outlined in Part I are em-
ployed to investigate the establishment of tissue shape. Specifically, we study the for-
mation of blood vessel networks by coupling cell-based models of motile chemotactic
cells to reaction-diffusion systems representing signaling molecules and extracellular
matrix components.

7.1 the vascular system

Some small and simple multicellular organisms, such as hydra and planaria, depend
on diffusion for the exchange of oxygen, nutrients and metabolites with the environ-
ment. However, in larger metazoan, the decreased surface to volume ratio causes diffu-
sion to be an inefficient means of transport, since most cells do not have direct contact
with the external environment. Circulatory systems, such as vascular networks, re-
duces the functional diffusion distance that nutrients, gases, and metabolic waste prod-
ucts must traverse through the transport of fluids237. The evolution of these systems
have removed constraints on body size and geometry and is central to the emergence
of larger multicellular organisms with complex body plans237.

The vascular system of vertebrates consists of three types of blood vessels: (1) arter-
ies that carry blood away from the heart, (2) veins that transport blood back toward
the heart and (3) capillaries. The capillaries are the smallest vessels of the body and
are the ones that enable the actual exchange of material between the blood and the
tissues. Capillary blood vessels are small tubes with a diameter of about 5-10 microns
with walls composed of a single layer of endothelial cells. Diffusion and transcytosis
through the endothelial cells that line the capillaries allows material exchange. To al-
low this exchange to cells and tissue throughout the body, capillaries form an extensive
network. The total length of this network has been estimated to be around 100.000 km
in a single adult human body238.

96
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7.2 vasculogenesis

Different cellular mechanisms are responsible for the formation and growth of blood
vessels in the vertebrate embryo. The earliest vascular networks appear at an early
stage during development after a morphogenetic process called vasculogenesis. Vas-
culogenesis takes place before the onset of blood flow and involves the differentiation
and coalescence of isolated endothelial cell progenitors, angioblasts, from the meso-
derm239. Vasculogenesis is the predominant mode of vascular development in the early
embryo. Primitive embryonic vascular networks continue to grow by angiogenesis, an
alternative mechanism of vessel growth based on invasive sprouting or division of pre-
existing vessels. This is the main form of physiological and pathological mechanism
of blood vessel growth and remodeling throughout adulthood, but naturally depends
on the primitive vasculature assembled during embryonic vasculogenesis. Apart from
the crucial role in the formation of blood vessels for the metabolic sustenance of devel-
oping organs, blood vessels are also a source for inductive signals for the development
of organs such as the liver and the pancreas, even before the onset of blood flow163,240.

The first steps in the process of vasculogenesis involve the specification of endothe-
lial cell progenitors from the mesenchymal cells of the mesoderm that, once formed,
undergo a morphogenetic process in which they assemble into a network. During this
process that takes place in a thin planar surface of the mesoderm, primary unicellular
units associate into secondary multicellular vascular units that in turn fuse to give
rise to a planar blood vessel network, called the primary capillary plexus. During the
assembly, angioblasts differentiate into endothelial cells and form vascular lumen to
allow blood flow.

Even before lumenization, the primary capillary plexus shows a striking character-
istic pattern of a polygonal network. The signals and mechanisms that regulate the
appearance of this network pattern remain unclear. Various possibilities have been
proposed241,242. Possibly, the endodermal tissues provide a pre-pattern for the spatial
organization of the vascular network, under strict genetic determination. This would
require precise spatio-temporal control of the expression of provascular growth factors.
Yet, this seems to be at odds with the substantial differences observed at the cellular
scale between network in embryos of the same species. Transplantation experiments
have also shown that early vascular network are adaptive and tissue grafts get rapidly
integrated in their new host environment. Moreover, polygonal networks can also be
formed by endothelial cells in vitro, where the presence of a pre-pattern can be ruled
out. Rather than a genetic pre-pattern, this suggest that vascular pattern formation
depends on a dynamic self-organized mechanism in which angioblasts coalesce into
networks in response to cues from their local microenvironment.
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7.3 mathematical models of vascular network formation

Various mathematical models have been proposed that explore different mechanisms
of self-organization that might underlie the formation of vascular network, in most
cases supported by data on early stages of network formation in in vitro assays of
Human Umbilical Vascular Endothelial Cells (HUVECs) in Matrigel. This work has re-
sulted in a surprisingly large number of different mechanisms and mathematical mod-
els that allow for network formation (see241–244 for reviews). Three types of models can
be distinguished on the basis of their main biological assumptions: activator-inhibitor
models72,245, mechanical models246–249 and chemotactic models102,113,115,250–253.

7.3.1 Activator-inhibitor models

Activator-inhibitor models are reaction-diffusion models in which the interaction be-
tween at least two substances, an autocatalytic activator species and an antagonistic
inhibitor species, can result in spontaneous pattern formation provided that the dif-
fusion of the inhibitor is fast compared to the diffusion of the activator44,70. In re-
lated models known as substrate-depletion models, the inhibitor species is replaced
by the depletion of a substrate that is required for synthesis of the activator. Koch and
Meinhardt showed that hierarchically coupling of a substrate-depletion model with
an activator-inhibitor model is sufficient to obtain reticular network patterns245. While
the primary substrate-depletion system generates a pattern of isolated peaks (lacu-
nae), the secondary activator-inhibitor system produces stripes (vessels) around these
peaks. This mechanism results in polygonal structures with a striking resemblance to
primitive vascular networks (see figure 7.1A). Moreover, this mechanism shows size
regulating properties keeping a constant characteristic polygons size, even in a grow-
ing domain such as the embryo245. Nevertheless, the molecular identities of the four
interacting substances remain elusive.

7.3.2 Mechanical models

An alternative hypothesis is that the formation of the vascular network is driven by the
mechanical pulling activity of cells on the extracellular matrix (ECM)246–249. Mathemat-
ical models of the Murray-Oster-Harris type246 can describe changes in cell density as
a result of (1) passive motion due to the attachment of cells on a moving matrix and (2)
a strain-biased random motion along regions of aligned matrix fibers. Analysis of the
pattern-forming capabilities of such models show that network formation is possible
by purely mechanical cell-matrix interactions (fig. 7.1B). Moreover, it demonstrates that
network formation crucially depends on cell mechanical aspects such as the ability to
create traction forces as well as the mechanical properties of the matrix such as its stiff-
ness, in line with experimental observations246–249. Although in those studies, random
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Figure 7.1.: Previous mathematical models of vascular network formation. (Caption on next
page.)
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Figure 7.1.: Previous mathematical models of vascular network formation. Three simulation
time points of each model are shown. (A) Activator-inhibitor model. The pri-
mary substrate-depletion model creates spots (blue), while the secondary activator-
inhibitor model creates polygonal networks (red)245. (B) Mechanical model. Trac-
tion forces exerted by cells on the extracellular matrix cause cellular networks of
increased cell densities (greyscale intensity shows cell densities)248. (C) Contin-
uum model of autocrine chemotaxis model. Networks arise through chemotaxis
towards a chemoattractant produced by endothelial cells (black dots show cell cen-
troids using a threshold on cell densities)250. (D) Hybrid continuum/discrete mo-
del of autocrine chemotaxis. Steep gradients of the chemoattractant, modeled in a
continuous diffusion model causes cells, modeled by the cellular Potts model, to
assemble into network patterns113,254.

cell motility was found to have little influence on network formation, a recent study
found the opposite effect. Using a cellular Potts model coupled to a finite element
model to model mechanical cell-matrix interactions, Merks and colleagues found that
strain-biased cell motility was the driving force behind network formation249. These
studies, and accumulating experimental data, show that mechanical tensions between
cells and extracellular matrix are important in the vascular networks. However, me-
chanical interactions alone cannot explain the crucial role of chemical factors such as
VEGF (vascular endothelial growth factors) known to be essential for vascular network
formation in the embryo as well as in vitro.

7.3.3 Chemotaxis models

Chemotaxis models, the third type of models, attempt to explain network formation
as a result of cell motility in the direction of a gradient of a diffusive substance, a
chemoattractant. Most mathematical models of chemotaxis assume the release of a
diffusive chemoattractant, identified as VEGF, by endothelial cells113,250–253. Using a
continuum approach describing changes in cell density and spatial distribution, these
models250,251 demonstrate the possibility of network formation through the aggrega-
tion of cell densities along polygonal structures, given directional persistence of cells
and sufficiently steep gradients of the chemoattractant (fig. 7.1C). These morphologies
are, however, transient and eventually stabilize into disconnected structures and, more-
over, fail to reproduce temporally correct network coarsening. In an approach to cor-
rect for these observations, the chemotaxis models was reformulated using a cellular
Potts model model that allows explicitly accounting for cell shape, while maintaining
the biological assumptions underlying the chemotaxis model113,252,253,255. With those
models, it was shown that a number of additional mechanisms at the cellular level,
including cell adhesion255, active elongation253 and contact-inhibition113 can, in con-
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junction with autocrine secretion of a chemoattractant, suffice to reproduce vascular
network and subsequent remodeling (fig. 7.1D).

7.4 paracrine model of vascular network formation

In the following chapters, two studies are described in which an alternative mathemat-
ical model based on paracrine chemotaxis is proposed.

7.4.1 Paracrine chemotaxis model with extracellular matrix retention

The chemotaxis models describe above show a robust ability to form network patterns
under varying conditions. However, they are based on some hypothesis that are not
fully substantiated by biological evidence. For instance, the diffusivity of the chemoat-
tractant is required to be orders of magnitude lower than that of VEGF, in order to
establish the steep gradients that are needed for network formation. More importantly,
they rely on the assumption that endothelial cells release VEGF, acting as an autocrine
chemoattractant (see figure 7.2A). Despite the fact that endothelial cells, including
angioblasts and HUVECs, express VEGF receptors (VEGFR2, also known as Flk1), it
is unclear whether endothelial cells produce and release their ligand. Instead, there
are several indications that suggest an alternative source of VEGF. It is known that,
in the embryo, the endodermal tissues near the nascent vascular plexus are a potent
source of proangiogenic signals, including VEGF256,257. Moreover, in the commonly
used HUVECs in vitro assays, the administration of external VEGF is required for net-
work formation and usually provided as part of the cell growth medium (EGM2)258,
indicating that the VEGF produced by cells, if any, is not sufficient. It is therefore likely
that endothelial cells themselves are not the source of VEGF. By consequence, VEGF
does not act as an autocrine, but rather as a paracrine chemoattractant.

This, however, raises an important new question: if VEGF arrives to the nascent vas-
cular plexus by diffusion from an external source, how can it encode for fine-grained
reticular networks? As mentioned, chemotaxis models depend on the existence of
steep chemotactic gradients to avoid the formation of clusters rather than networks.
How, if not by autocrine release, can such steep gradients be established?

The answer may come from the extracellular matrix. Apart from the mechanical
role of the matrix discussed above, it can has a role in mediating and retaining sig-
naling factors259–261. Interestingly, matrix molecules such as fibronectin and heparan
sulphates are rich in VEGF binding domains. Moreover, it is plausible that these ma-
trix molecules are either produced or modified by endothelial cells or are accumulated
around endothelial cells through mechanical pulling. It could therefore be possible to
the generate the steep gradients required for network formation under these assump-
tions that paracrine VEGF binds to matrix molecules in pericellular regions (see figure
7.2B).
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Figure 7.2.: Autocrine and paracrine models of vascular network formations. The key dif-
ference is in the assumed source of VEGF. (A)In the autocrine models, endothe-
lial cells (EC) produce their own chemoattractant. (B) In the paracrine models,
the chemoattractant is produce in nearby endodermal tissues. Spatially restricted
guidance cues in pericellular regions can arise by binding of VEGF to extracellular
matrix (ECM).

To investigate the possibility of pattern formation in this paracrine chemotaxis mod-
els, I collaborated with Alvaro Köhn-Luque to construct a computational model based
on previous work by Merks and colleagues113,253,254, described in chapter 8. This model
is an adaptation of the previous models in which we excluded the additional cellular
mechanisms such as adhesion and contact-inhibition and included reaction-diffusion
equations describing the key components of the paracrine chemotaxis model: (1) ex-
ternal homogeneous production of VEGF, (2) production or modification of ECM by
endothelial cells, (3) binding of VEGF to matrix components, and (4) chemotaxis of
cells towards bound rather than diffusive VEGF. As the results of this study show,
this model is able to produce vascular network formation with similar morphogenetic
characteristics as compared to microscopy images taken from vascular plexus in quail
embryos. Moreover, we showed that, in this model, cell elongation arises as an emer-
gent consequence rather than a driving force and that pattern formation is possible for
realistic values for the VEGF diffusion coefficient.

7.4.2 Experimental validation and quantitative modeling

The described paracrine chemotaxis model poses several predictions that can be tested
experimentally. First, network formation is predicted to be abrogated in the absence of
paracrine or externally attributed VEGF. Second, external VEGF is predicted to accu-
mulate in the regions surrounding endothelial cells, and to colocalize with extracellu-
lar matrix molecules such as fibronectin and heparan sulphates. Third, the dynamics
of VEGF in the pericellular regions are predicted to be dominated by binding and
unbinding rather than diffusion.
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In collaboration with Takashi Miura and colleagues, we carried out experiments
to validate these predictions in an in vitro assay of HUVECs in Matrigel, presented in
chapter 9. The first prediction was tested using a Endothelial Growth Medium (EGM-2)
lacking a VEGF supplement, resulting in a severely reduced ability for network forma-
tion. Although this result does not exclude a role of VEGF as required for survival
or stimulating chemokinesis, it is in line with its predicted effect under the paracrine
chemotaxis model. The pericellular localization of external VEGF was confirmed by
application of fluorescently labelled VEGF to an established network assay of HU-
VECs, which allowed us to visualize the spatial distribution of external VEGF using
fluorescence microscopy, leaving endogenous VEGF, if any, invisible. Additionally, im-
munohistochemistry for the two extracellular matrix molecules showed localization of
these molecules in the pericellular areas. To investigate the dynamics of VEGF, a flu-
orescence recovery after photobleaching (FRAP) was used to compare the dynamics
in cell-free Matrigel and in the vicinity of cells. Analysis of these recovery curves not
only confirmed the reaction-dominated VEGF dynamics near cells, it also provided
quantitative estimates for the VEGF diffusivity in Matrigel as well as the binding and
unbinding rate of VEGF to matrix molecules. These estimates were combined with
data about the molecular degradation obtained by performing an ELISA assay in cell-
free conditions.

After validation of the prediction of the paracrine chemotaxis model, we used the
quantitative estimates about VEGF kinetics that we obtained from the above experi-
ments to verify whether network formation was possible in our mathematical model
for these biophysically realistic parameters. After calibration of the chemotactic sen-
sitivity parameter using published data on HUVECs in a microfluidic device262, we
were able to show network formation in this quantitative version of the paracrine
chemotaxis model.

7.5 conclusions

Vascular network formation in the embryo is a prime example of biological morpho-
genesis. The de novo establishment of reticular network of blood vessels is crucial to
organogenesis. It is well-studied experimentally and can be mimicked in vitro cultures
allowing easy manipulation. For these reasons, it has been the topic of a range of
mathematical modeling studied. These studies have shown that cellular networks can
be established by a remarkably large number of different mechanisms. In addition
to the models described above, it has been shown that networks can also arise by
e.g. preferential attraction to elongated cell structures263 or even by adhesion between
elongated cells264.

When multiple, a priori equally plausible, models are able to reproduce the phe-
nomenon under investigation, experimental validation of model predictions and the
establishment of quantitative computational models, becomes indispensable. In this
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sense, the work presented in chapters 8 and 9, provide a classic example of the itera-
tion between model and experiment in multicellular systems systems biology: First, a
new mechanism is proposed based on literature on vasculogenesis in vivo and formu-
lated in terms of multi-scale computational model that is shown to be able to produce
morphometrically realistic networks in silico. The predictions generated by this model
are subsequently validated in vitro using quantitative methods which, in turn, provide
the measurements to be used in the establishment of a quantitative in silico model.

Nevertheless, these studies have several shortcomings that are left for future in-
vestigation. (1) It is assumed, for instance, that endothelial cells are responsible for
the accumulation of available VEGF binding sites on ECM molecules in pericellular
regions. However, it is not clear whether this is the result of secretion of matrix compo-
nents by endothelial cells (e.g. fibronectin expression has been detected in endothelial
cells265), or their biochemical modification (e.g. through RGD-integrin interaction266)
or by mechanical traction forces generated by endothelial cells (e.g. as detected by
traction force microscopy267). (2) Since the paracrine chemotaxis model has only been
implemented in the cellular Potts model and no comparison with other cell-based mod-
els (e.g. subcellular elements models) has been conducted, it remains unclear to what
extent the results depend on the particularities of this model implementation, such as
the underlying regular lattice. (3) Although the HUVEC in Matrigel assay is a widely
used model system for vasculogenesis and angiogenesis, the relevance of this culture
system to vascular development in vivo is not clear, in particular with respect to the
properties of the extracellular matrix and physiological doses of relevant growth fac-
tors. (4) Recent time-lapse imaging of vasculogenesis and angiogenesis have revealed
a high level of dynamic cell movements within nascent blood vessels268–270 that is not
captured in any of the described mathematical models of vascular network formation.
Determining whether or not the proposed mechanisms are compatible with this new
dynamic view on blood vessel formation, remains for future work.



8
E A R LY E M B RY O N I C VA S C U L A R PAT T E R N I N G B Y
M AT R I X - M E D I AT E D PA R A C R I N E S I G N A L L I N G *

8.1 introduction

During embryonic vasculogenesis, the earliest phase of blood vessel morphogenesis,
isolated vascular cell progenitors called angioblasts coalesce and assemble into a retic-
ular pattern256. Vasculogenesis is the predominant blood vessel growth mode during
early embryonic development, forming a protovascular bed known as the primary
vascular plexus. Later, including postnatal and adult stages, this is remodeled by an-
giogenesis into a complex hierarchical and highly efficient transport system composed
of arteries, arterioles, veins, venules and capillaries256,271.

The primary vascular plexus is characterized by cells forming a polygon-like pattern.
This reticular network structure is ubiquitous among vertebrates which suggest that
it holds intrinsic developmental properties likely related to morphogenetic plasticity
and that the patterning process is tightly regulated both from a molecular point of
view as well as in space and time. Although a large number of endothelium-specific
markers and growth factors have been identified as crucial for normal vascular de-
velopment, the mechanisms underlying the patterning and coalescence of angioblasts
remain unclear271,272.

In recent years, different hypotheses have been proposed to explain vasculogene-
sis and formalized into mathematical and computational models; these are reviewed
elsewhere241,243. Of particular interest here is a number of studies where chemotaxis
is considered as a plausible mechanism for in vitro vascular aggregation and pattern-

* This chapter is based on the publication: Alvaro Köhn-Luque, Walter de Back, Jörn Starruss, Andrea Mat-
tiotti, Andreas Deutsch, José Maria Pérez-Pomares and Miguel A. Herrero, PLoS ONE, 6(9): e24175, 2011.
Author contribution: Walter de Back conceived and designed the study together with Alvaro Köhn-Luque,
José Maria Pérez-Pomares and Miguel A. Herrero. Model construction, simulation and data analysis were
performed by Walter de Back and Alvaro Köhn-Luque. Walter de Back and Alvaro Köhn-Luque wrote
the paper.

105



106 vascular patterning by paracrine signalling

ing113,250–252,255. These studies assume that mature endothelial cells seeded in gels pro-
duce a chemoattractant, typically identified as VEGF, that provides these cells the
spatial cues driving their migration. This autocrine model may provide insight on
the in vitro setting described above, but does not fit well with reported data on early
embryonic vascular formation.

Chemotactic mechanisms are indeed compatible with biological data on the migra-
tion of angioblasts and their coalescence to form early blood vessels, as well as with
some theoretical principles on the role of molecular signalling gradients273. However,
the autocrine regulation mechanism, in which endothelial cells stimulate themselves
by both producing and responding to growth factors, does not seem to be fully sup-
ported by the biological evidence so far reported in the literature. As a matter of fact,
angioblasts are known to express receptors for chemoattractants (VEGFR-2 and CXCR-
4,274,275), but there is no evidence that, in the embryo, they produce biologically signifi-
cant amounts of their ligands as well (VEGF and SDF-1, respectively)256,276,277. Instead,
it is known that most relevant pro-vascular signals, including VEGF, are expressed
by the adjacent endoderm256,257. A further problem concerns an assumption related
to the diffusivity of the signalling molecule. Some autocrine models require a slowly
diffusing, quickly inactivating chemoattractant in order to produce stable cellular net-
works113. The assumed rate of diffusion in these mathematical models is typically
orders of magnitude lower than that reported for most common VEGF isoforms113,278.
Thus, both the source of VEGF and its biophysical properties assumed in models of
autocrine regulation do not fit the reported data on early vascular development.

In view of these problems, we propose an alternative mechanism for vascular pat-
terning in the embryo. We assume VEGF to be a paracrine signalling agent, in accor-
dance with its reported endodermal origin in vivo256,257. Yet, paracrine signalling seems
at odds with tight regulation of fine-grained network patterns. In the absence of addi-
tional regulatory mechanisms, diffusive signals from nearby tissues lack the ability to
create precise spatially restricted cues. Interestingly, however, angioblasts are known
to produce extra-cellular matrix (ECM) molecules that are able to bind pro-vascular
growth factors, including VEGF261,279–281. These can immobilize diffusive signalling
molecules and thereby provide fine-grained spatial motility cues. For this reason, we
assume angioblasts produce ECM molecules with VEGF binding domains.

In this paper, we present a mathematical model based on the assumption that bind-
ing of pararine signals to angioblast produced ECM regulates early vascular patterning
in the embryo by creating spatially-restricted guidance cues required for directed cell
migration and coalescence (see figure 8.1). In the rest of this section, we provide a
concise overview of the key biological evidence on the interaction of VEGF and the
extracellular matrix that supports these assumptions. To study whether, and under
which conditions, network pattern formation is possible under paracrine regulation
we introduce a hybrid cellular Potts / reaction-diffusion model. Simulations show
that the model accurately reproduces the morphometrics of early in vivo vascular net-
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Figure 8.1.: Paracrine chemotaxis model for vasculogenesis. Angioblasts (endothelial progeni-
tor cells) are derived from mesodermal cells and assemble into polygonal networks
under instructive paracrine signalling provided by the endoderm. Endodermal
cells express pro-vascular growth factors such as VEGF. Angioblasts are located
in the space between endoderm and mesoderm, surrounded by extracellular ma-
trix (ECM). Angioblasts produce ECM molecules (such as heparan sulphates and
fibronectin) with VEGF binding domains (depicted in yellow). This matrix thus acts
to store chemotactic growth factors, which provides spatial cues for cell migration.

works in quail embyros. We also check the robustness of that mathematical model by
performing a sensitivity analysis with respect to the parameters involved, and explore
the dynamics of network formation as well as the role of cell shape and cell density in
this process.

VEGF and the ECM

Angioblasts express a number of endothelium-specific markers like VEGFR-2/FLK-
1/KDR; SCL/TAL-1; PECAM/CD31, VE-cadherin or Tie2/Tek274,282,283. Some of these
molecules are receptors for growth factors essential to vascular morphogenesis, VEGF-
A being the most relevant example of a pro-vascular secreted factor considered in the
literature. VEGF-A is a glycoprotein with several isoforms arising from the alterna-
tive splicing of a unique gene. Splice variants differ in their ability to bind the ECM.
Smaller forms are able to diffuse through the ECM, while larger forms bind to heparan
sulphate and other characteristic ECM domains with high affinity, thus modulating the
distribution of the growth factor in the tissues261,284–286.

VEGF signalling is believed to be at the core of the vascular patterning process
as suggested by multiple studies277,287,288. VEGF expression has been detected in the
whole endoderm and some other mesodermal cells, but has not been unambiguously
reported in angioblasts257,289. As a matter of fact, angioblasts express a variety of VEGF
receptors, of which VEGFR-2 is the most relevant one for vascular development290.
Although different routes can be identified in the transduction of the signal by an-
gioblasts, that one including p38MAPK-MAPKAPK2/3-HSP27 is key in mediating
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patterning, as it regulates angioblast protrusive activity towards the signal, thereby
modulating cell shape and motility291. It has been argued that heparin-binding VEGF
isoforms provide spatially restricted cues that polarize and thereby guide sprouting en-
dothelial cells292. This suggests a more active role of the ECM in vascular development
than previously thought. Indeed several recent reports indicate that the ECM is piv-
otal to a variety of morphogenetic events including blood vessel formation125,293. The
specific mechanisms through which the ECM influences angioblast and endothelial
cell functions are complex and involve both external structural support and regulation
of multiple signalling pathways. Such mechanisms include modulation of growth, dif-
ferentiation, migration, determination of cell shape and survival, as well as providing
storage of growth factors259–261.

From the above, it is clear that the ECM can provide crucial cues for early vascular
developmental events, but its involvement in such processes tends to be overlooked.
This is surprising since it is known that vascular abnormal patterning is characteristic
of many animal models where expression/function of a variety of ECM molecules is
deficient294. A highly relevant finding obtained in knock-out screens is that fibronec-
tin, an ECM glycoprotein essential to the migration of multiple cell types, was found
to be the most relevant molecule in early vascular development, closely followed by
elements of the VEGF and retinoid signalling pathways and some cell-matrix adhe-
sion molecules294. Interestingly, VEGF can bind fibronectin and other ECM molecules
and this may affect its downstream effect on cells227,281,295. All these findings motivate
our study to investigate mechanisms in which the ECM, and matrix-binding VEGF
isoforms can lead to coalescence of angioblasts into a polygonal vascular network.

8.2 methods

Mathematical model

Before turning to the mathematical formulation of our model, we summarize our as-
sumptions and present the published biological data on which these are based.

(1) A significant number of early embryonic blood vessels develop from isolated an-
gioblasts distributed in the thin, planar surface of the lateral splanchnic mesoderm256.
Therefore, we can reduce the modeling problem to a 2D domain. We neglect previous
developmental events related to the origin of angioblasts, like the specification and
commitment of mesodermal cells to the endothelial lineage.

(2) VEGF is known to be produced mostly in the endoderm257, and binds to various
ECM molecules such as fibronectin and heparan sulphates261,281. We model growth fac-
tors as diffusible molecules that become non-diffusive when bound to ECM molecules
following the mass action law.

(3) Early vascular cells are known to migrate in an ECM rich in fibronectin and hep-
aran sulphates, that can be deposited by endothelial cell precursors themselves261,279,280.
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Likewise, in our model, we assume angioblasts to produce directly or indirectly non-
diffusive ECM components able to bind VEGF.

(4) ECM-bound VEGF provides stronger signalling cues for cell motility or shape
remodeling than the freely diffusive forms227,292. Consequently, in our model motility
is strongly biased towards upward gradients of anchored growth factors rather than
to gradients of the freely diffusive forms.

(5) Binding of VEGF to heparan sulphates in ECM molecules offers protection to gr-
owth factors against enzymatic degradation284,296. Therefore, we neglect degradation
or removal of bound growth factors in the model.

(6) Although it is commonly accepted that endothelial cells have a low proliferation
rate in the adult and a high one in the embryo, the reported proliferation rates for
angioblasts in vivo are not high297–299. Moreover, administration of exogenous VEGF
in the embryo results in dysmorphogenesis by hyperfusion, rather than increased cell
numbers300. Here we assume proliferation not to be a major limiting factor during
the first steps of early vascular formation, and do not include cell proliferation or cell
death in our model.

Once particular hypotheses have been established, a mathematical formalism which
unambiguously describes them has to be chosen. Previous studies have used different
mathematical methods to model vasculogenesis. Most prominently, continuous meth-
ods such as differential equations248,251,263,301, and discrete approaches with spatially
extended cells113,252,302 have been suggested. While continuous models are appropriate
to account for spatio-temporal dynamics of large systems, discrete cell-based methods
appear as a useful choice to describe the dynamics of small populations, or to link
local microscopic behaviors with macroscopic, collective ones.

In this study, we adopt and modify a hybrid cell-based/continuous model from
previous work by Merks and coauthors252 which represents the multi-scale nature of
the problem under consideration and explicitly accounts for cell shape. This model
consists of two interconnected modules. On the first one, angioblasts are represented
as discrete and geometrically extended objects using a cellular Potts model (CPM)111.
On the other one, growth factors and ECM molecules are modeled as continuous fields
whose distribution is governed by partial differential equations (PDEs).

Let us consider this second module first. Bearing in mind the diffusivity and binding
reactions of growth factors and ECM molecules, we propose the following system of
differential equations:

∂u

∂t
= D4u+ γ1 − f(u, v) − δu

∂v

∂t
= γ2δσx,0 − f(u, v)

∂w

∂t
= f(u, v) (8.1)
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where u, v andw denote the concentrations of soluble VEGF, ECM molecules with free
heparan binding domains and bound VEGF, respectively. Parameter D is the diffusion
coefficient of VEGF, γ1 is the constant rate of VEGF production, γ2 is the production
rate of ECM molecules by cells (δσx,0 = 1 inside cells and δσx,0 = 0 outside cells). We
assume VEGF-heparan sulfate interaction takes place according to mass action with
second order kinetics, so that f(u, v) = αuv with effective kinetic rate α. Note that this
simple reaction-diffusion model does not include terms for saturated production, enzy-
matic kinetics or cooperative binding. We thus focus on the feedback mechanisms be-
tween the molecular and cellular levels, coupled through ECM-mediated chemotaxis,
and reduce to a minimum the assumptions on the underlying biochemical kinetics,
about which little is known.

Cells are modeled using a CPM in which each of the N cells to be tracked is repre-
sented by a connected subdomain of a 2D square lattice. The same index σ = {1, 2, ...,N}

labels all the lattice sites of a particular cell while the special index σ = 0 labels the
medium, i.e. all lattice sites not occupied by cells. In this formalism a cell has finite
volume and deformable shape. The interfaces between two different lattice sites x and
x ′ with different indexes σx 6= σx ′ represent membrane boundaries between cells or
between cells and the ECM. To each of these boundaries, a characteristic binding en-
ergy is assigned: Jcc, when the interface is between two different cells and Jcm, when
it lies between a cell and the surrounding ECM. An energy penalty increasing with
the cell’s deviation from a selected target area Aσ imposes an area constraint on the
cells.

The corresponding Hamiltonian is defined as follows:

H =
∑

{x,x ′}n

Jτ(σx)τ(σx ′)(1− δσx,σx ′ ) + λ
∑
σ>0

(aσ −Aσ)
2 (8.2)

where τ(σ) represents the type of object occupying a grid space σ, which in this case
can only be angioblast (c) or medium (m). The term (1 − δσx,σx ′ ) ensures binding
energies are only considered between different cells. The term (aσ −Aσ) represents
a cell’s deviation from its target area and λ represents the cell’s resistance to such
deformations. The first summation is taken for the nth-order neighbors in each lattice
site. The second summation goes for all cells with the exception of the medium.

Cell dynamics are generated in the CPM by a modified Metropolis algorithm. The
latter randomly chooses a lattice site, xtarget, and computes what the difference in
energy, ∆H, would be if a randomly selected neighboring site, xsource, would copy
its state into this site. The probability of accepting the change, P, depends on the
difference in the energy costs:

P(∆H) =

1 if∆H < 0

e
−(∆H)
T otherwise,

(8.3)
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so that cell extensions that diminish H are given priority. In this way, the cell shape
is updated locally. Parameter T, henceforth referred to as fluctuation energy, is a bio-
logical analogue to the energy of thermal fluctuations in statistical physics303 and it is
considered here as a measure of cell motility. Chemotaxis is modeled as a bias in the
direction of higher VEGF concentrations. More precisely, in our case P is considered
to depend on:

∆Hchemotaxis = ∆H− µb(w(xtarget) −w(xsource))

−µs(u(xtarget) − u(xsource)), (8.4)

where a distinction is made between bound and soluble VEGF. The strength of sig-
nalling provided by the bound and soluble forms can be varied by setting the param-
eter µb and µs while preserving their total value µt = µs + µb. Stronger chemotaxis
towards bound VEGF is accounted for by setting µb > µs. Finally, the unit of time in
the simulation is defined as one Monte Carlo step (MCS). One MCS corresponds to
the number of random update attempts equal to the number of lattice sites.

Experimental images

Blood vessels of quail embryos are labeled with the QH1 antibody (endothelial mem-
brane) using DAPI for nuclear counterstain, at 36-40 hours after incubation. Confocal
microscopy allows us to clearly visualize the developing vasculature and all the nuclei
in the tissue. Images are then taken of wide areas of the embryo where angioblasts have
just assembled into networks (see figure 8.2). QH1 labeling of the cellular structures
is achieved by segmentation of the appropriate fluorescence channel. This results in a
binary image where vascular zones are labelled with one and avascular zones or lacu-
nae are labelled with zero. Segmentation of DAPI fluorescent stain, marking all nuclei
in the confocal plane, is used to estimate the angioblast cell density by co-localization
of identified nuclei with the QH1 membrane label using the segmented binary image.

Our simulation software produces binary images in which cells and lacunae are
labelled as described before so that both series can be examined and compared by
means of the same morphometric techniques.

Morphometric methods

Experimental and simulated networks represented in binary images are characterized
by quantifying the lacunae (number, size and roundness of avascular zones), the vascu-
lar structures (number of connected components, coverage and widths), network prop-
erties (number of nodes, degree distribution, percolation and spanning length) and
fractal properties (fractal dimension and lacunarity). Image processing and statistical
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Figure 8.2.: In vivo vascular network in the quail embyro. Laser confocal microscope recon-
struction of the extra-embryonic (A) and intra-embryonic (B) vasculature of early
quail embryos (36-40 hours of incubation). Embryonic blood vessels are identified
by the QH1 antibody (red). Cell nuclei have been counterstained with DAPI (blue).
The inserts depict extra-embryonic (1) and intra-embryonic (2) vascular networks
in more detail; the former are used in analysis and validation of the mathematical
model.
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analysis have been performed in Matlab 2009b using morphological functions supplied
by the Image Processing Toolbox (version 6.4) supplemented by custom-made routines.
Together, the set of morphometric features provides us with detailed quantification of
vascular patterns obtained in vivo and in silico.

The number of connected vascular zones and lacunae are two key network charac-
teristics and correspond to the 0th and 1st Betti number used in algebraic topology
(see304 and references therein). These are identified by tracing the exterior boundaries
of objects in the binary image. The sizes of lacunae and vascular structures equal
the number of pixels they occupy, while the roundness of lacunae is measured using
the isoperimetric quotient, defined as the ratio of the measured area to that of a cir-
cle having the same perimeter, R = 4πAl/P

2
l , where Al and Pl are the lacuna area

and perimeter, respectively. The coverage of angioblasts is recorded as the ratio of the
number of nonzero pixels to the size of the binary image. The network is said to be
percolative when a vascular structure exists that spans the image both horizontally
and vertically.

Assessing some of the morphometric features requires computation of a skeletoniza-
tion of the network, using a morphological operation known as thinning. Thinning
reduces the network structures to a skeletal remnant that largely preserves the extent
and connectivity of the original one while pruning away redundant foreground pixels.
The spanning length of the network is then measured as the sum of nonzero elements.
The widths of cellular cords are assessed by measuring the Euclidean distance from
each nonzero pixel on the thinned structure to its closest lacuna. Nodes in the thinned
structure are usually identified as nonzero points with 3 or more nonzero pixels among
the 8 adjacent sites, indicating a point at which the structure branches. Although this
method is often used252,305, it actually overestimates the number of nodes when no
further processing is applied. Therefore, we corrected the measurement by merging
proximate nodes whenever the distance between them is smaller than the distance
from the node to the nearest lacuna. This procedure reduces the number of nodes on
the thick vascular segments while preserving them on thin cords. Moreover, using this
method we gain information on the degree distribution, i.e. on the distribution of con-
nections or edges a node has to other nodes. Finally, we performed fractal analysis to
quantify the complexity and space filling properties of network patterns. Informally,
the fractal dimension Df measures how a fractal-like structure fills the space for de-
creasing scales, while the lacunarity Lf assesses its ’gappiness’, i.e. the distribution and
size of the empty domains306. This has previously been applied to characterize vas-
cular growth in e.g. chick chorioallantoic membrane (CAM) angiogenesis305,307. The
fractal properties of the the thinned network structure were estimated by applying
the box counting methods and gliding box method308,309, using the FracLac plugin for
ImageJ310.
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Parameter Symbol Value Unit Source

PDE

Diffusion coefficient VEGFs D 10 µm2/s 278

Production rate VEGFs γ1 10−3 a.u./µm2/s est.

Production rate ECM γ2 10−3 a.u./µm2/s est.

Binding rate VEGFs+ECM α 10−1 a.u./µm2/s est.

Degradation rate VEGFs δ 10−2 s−1 est.

CPM

Fluctuation energy T 50 252,254,255

Target area Aσ 95 pixels emp.

Cell rigidity λ 25 113,252

Cell-cell binding energy Jcc 20 252

Cell-medium binding energy Jcm 10 252

Chemotaxis strength µt = µs + µb 2000 252,255

Signalling strength VEGFb µb/µt 0.75 227,292

Signalling strength VEGFs µs/µt 0.25 227,292

Table 8.1.: Model parameters for equations 8.1, 8.2, 8.3, 8.4. “est.” refers to estimated parame-
ters, “emp.” means emperically measured.

Simulation set-up

When selecting simulation scenarios, several choices are determined by the experi-
mental setup. For instance, the size of the lattice where CPM and PDE are simulated
is adjusted to resemble 775x775 mm2 experimental images. Specifically, we consider a
square lattice of 400x400 pixels, where each lattice node represents 2 mm2, thus giv-
ing a total simulated tissue of 800x800 mm2 or 0.64 mm2. Cell densities are estimated
from experimental images by co-localization of nuclei with the vascular structure, re-
sulting in an average density of ≈1750 cell mm2 (results not shown), which is used as
a reference in the simulations (1100 cells over 800x800 mm2). As initial condition, cells
are distributed over the lattice in either a regular or a semi-random mesh. The latter is
constructed by randomly displacing cells from the regular mesh, where displacements
are smaller than one cell diameter.

Parameter choices in the CPM module have been made as in previous works113,252,254,
see table 8.1. In particular, we neglect surface tension between cells and the ECM for
sake of simplicity, by setting γcm = Jcm − Jcc/2 = 0.

The criteria for selecting PDE module parameters are different. A value for the dif-
fusion coefficient of VEGF has been taken similar to those reported in the literature278,
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although we shall see later that our results are largely insensitive with respect to this
coefficient. The rest of the parameters has been chosen on the basis of estimated time
scales of processes. For instance, binding is fast relative to VEGF and ECM production,
and the corresponding parameters are selected so as to fit experimental data (see table
8.1). Then, a sensitivity analysis on these parameters is performed to give us an idea of
the expected variability in terms of some of the quantified morphometric properties.

Each MCS in simulation corresponds to one second. For this choice, the total simu-
lated time is about one hour, agreeing well with the estimated time scale in which the
process takes place in vivo (from minutes to a few hours).

Simulations have been implemented using our own C++ based modeling environ-
ment Morpheus. Multiple simulation repetitions are performed (n = 10, unless stated
otherwise) with different random seeds, of which the mean and standard deviation
are shown. Figure 3.8 lists the full model description of the simulation model in Mor-
pheusML. This model is also available in the Supplementary Online Material under
http://walter.deback.net/thesis.

8.3 results

8.3.1 Model simulations yield vascular-like reticular patterns

We compared vascular networks obtained from quail embryos in vivo to those result-
ing from model simulations along a series of morphometric properties, summarized
in figure 8.3. Examples of binary images used in this comparison are shown with their
thinned skeleton (red pixels) and detected nodes (blue circles) in panel a. We found
that the morphometrics of simulated networks correspond well to experimental obser-
vations, as shown in the statistical comparison in figure 8.3B. Despite small deviations,
the number of nodes and edges, network length and interface length, as well as fractal
properties and coverage measured in the simulated networks are remarkably similar
to the corresponding values obtained from experimental images. Lacunarity, a mea-
sure for lack of translation and rotational invariance, is observed to be slightly higher
in the in vivo situation. This may be due to the spatial heterogeneity in tissue density
along the mediolateral axis, which is not reflected in our model. Although the number
of cells used in simulation has been estimated from experimental images, the observed
coverage (the relative size of the area covered by angioblasts) is also seen to be slightly
higher in vivo. The differences in network and interface length are related to the pre-
vious feature, since denser vascular structures have more and longer edges at the cost
of cell-lacuna interface length.

In order to further characterize the vascular network, we quantified distributions of
several measured morphometric properties, shown in figure 8.3C. As a result of our
procedure to merge proximate nodes, we recovered the number of connections per
node, known as the node degree (indicated as size of blue circles in figure 8.3A). Al-

http://walter.deback.net/thesis
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Figure 8.3.: Morphometric comparison. (Caption on next page.)
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Figure 8.4.: Comparison between experimental (in blue) and simulated (in red) vascular net-
works (after 3000 MCS). (A) Binary images over cellular structures (green) over-
layed with skeletonized network (red), detected branching points (blue points) and
corrected nodes (blue circles). (B) Morphometric statistics. Boxes show average val-
ues (n=2 for experiments; n=10 for simulation) and error bars indicate standard
deviation. (C) Distributions of morphometric properties. Lines show average val-
ues; filled areas indicate standard deviations.

though the range of observed node degrees is rather small, an exponential decay can
be recognized in their distribution, with high frequency of small degree and rare high-
degree nodes. Using both the skeletonized structure and the underlying binary image,
we assessed the distribution of cord widths by measuring the shortest distance of each
pixel on the skeletonized image to an avascular region. The distribution thus obtained
reveals a right-skewed distribution of cellular cord widths with thin cords forming the
highest frequency, while thick cords are relatively rare. Simulated networks display
less right-skewness, which may again be related to the mediolateral heterogeneity in
the experimental images. Nevertheless, the modes of both distributions coincide and
both show a distinct pattern of high and low frequencies around the mode. These
peaks are caused by the discreteness of the number of cells involved in a cord, a fact
that is captured by the discrete cell-based submodel. Interestingly, the mode of the
distribution (10µm) is well below the diameter expected for isotropic cells which indi-
cates a strong contribution of elongated cells (discussed in more detail below). Finally,
we compared the size and shape distribution of lacunae. In both experiment and sim-
ulation, a wide lognormal distribution can be discerned in lacuna size distribution,
spanning almost two orders of magnitude around the most frequent size at approx.
1000µm2. The distribution of roundness of lacunae is left-skewed with most holes
being nearly circular. Note that these two quantities are related to each other by the
fact that larger holes tend to have a less circular shape. Lacunae size and roundness
are thus negatively correlated, although this effect is more clearly seen in simulations
(Pearson correlation r = −0.81) than in the segmented experimental image (r = −0.27).

In summary, our detailed morphometric analysis shows that a model based on
chemotaxis towards growth factors bound to ECM secreted by angioblasts is able to
produce reticular patterns as those observed in vascular networks in quail embryos.
We chose to describe and compare the vascular networks using a broad spectrum of
morphometric properties for two reasons. First, detailed quantitative morphological
characterization of early vascular networks is needed to characterize normal vascular
development. It can also prove helpful to detect defects in experiments in which spe-
cific processes are perturbed. On the other hand, a fact relevant for our study here
is that, in order to ascertain geometrical and functional similarities, multiple shape
descriptors are required to compare vascular shapes. In principle, this represents a dif-
ficulty since an accurate fit with respect to one shape parameter (e.g. number of nodes)
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needs not be compatible with a similar fit with respect to another such parameter (e.g.
distribution of cord widths). A remarkable fact that results from our simulations below
is that a good fitting can be obtained simultaneously with respect to a large number
of morphometric parameters.

8.3.2 Sensitivity analysis

In order to check the robustness of the model, we investigated the sensitivity of the
simulation results with respect to their parameters. First, a sensitivity analysis was
performed on the coefficients specifying the rates of production (γ1 and γ2), binding
(α) and degradation (δ) of VEGF and ECM, respectively. Simulations were performed
in which these parameters are varied independently over two orders of magnitude
from their reference values (see table 8.1). We measured the change in morphometric
properties with respect to the reference simulation described above, shown in figure
8.5A. We find that a 10-fold decrease and increase of the VEGF-ECM binding rate
α and VEGF decay rate has only moderate or negligible effects on the network mor-
phology. However, variation of the VEGF and ECM production rates (γ1 and γ2) does
have large impact on the structure of the network. Upon decrease of these production
rates a marked decline in the number of lacunae is observed, indicative of vascular
dysmorphogenesis. This is readily understood under our model assumptions, since ef-
fective removal of either VEGF or ECM disrupts binding of growth factor to the matrix,
which normally provides the spatial cues for cellular patterning. The analysis further
shows that a 10-fold increase in VEGF production (γ1) has little impact on network
formation. Interestingly, however, a similar increase in matrix production (γ2) does
disturb proper morphogenesis. This happens because overproduction of ECM allows
fast accumulation of the bound VEGF. Due to chemotaxis towards bound VEGF, this
causes premature immobilization of cells and hampers the coalescence of cells and
their assembly into a polygonal pattern.

We further explored the sensitivity of the results with respect to VEGF diffusivity.
Previous model of vasculogenesis were dependent on unrealistically slow diffusion of
VEGF, for instance in252. To understand the role of VEGF diffusion in our model, we
performed simulations with different scenarios concerning VEGF diffusion: no diffu-
sion (D = 0), normal diffusion (D = 10µm2/s) and a well-mixed system (D = ∞).
The latter is modeled by redistributing the total amount of VEGF homogeneously over
the lattice after every reaction step. Remarkably, the results in figure 8.5B show that
our model is extremely robust against variation in that parameter. We explain this
virtual independence on VEGF diffusivity by reference to the assumed homogeneous
production of growth factor over the modeled area. Therefore, even in the absence of
diffusion, binding of VEGF to ECM will occur throughout the tissue and guide motil-
ity. On the other hand, under high diffusivity, VEGF is not only produced but also



8.3 results 119

-1

-0.5

0

0.5

1

Lacunae

-1

-0.5

0

0.5

1

Nodes

-1

-0.5

0

0.5

1

Length

-1

-0.5

0

0.5

1

α γ1 γ2 δ

Interfaces

A

B

0

100

200

300

400

D=0 D=10 D=∞

Lacunae Nodes

0

0.04

0.08

0.12

D=0 D=10 D=∞

Interface Length

VEGF diffusion rate (µm2/s)

Figure 8.5.: Sensitivity analysis of PDE parameters. (A) Sensitivity to rates of binding (α),
VEGF and ECM production (γ1 and γ2), and degradation of soluble VEGF (δ).
Changes in various morphometric properties were measured for simulations (n=3)
in which each parameter was independently varied by a 10-fold decrease (blue)
and a 10-fold increase (red). (B) Sensitivity to VEGF diffusivity. Morphometric
quantities are shown for simulations (n=3) with non-diffusive VEGF (D = 0), with
normal VEGF diffusion (D = 10), and with well-mixed VEGF (D = ∞).
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Figure 8.6.: Sensitivity analysis of chemotactic signal strength. Sensitivity of morphometric
parameters to relative strength of bound (µb) and soluble (µs) VEGF. Red points
(lacunae) and blue points (nodes) show averages of measured quantities in simu-
lations (n = 3), half-transparent regions represent standard deviations. Insets show
portions of networks (200×200 µm2) where the relative signalling strength (µb/µt)
is set to soluble-VEGF-only (µb = 0, left), bound-VEGF-only (µs = µt, right) and
equal strengths (µb = µs, center). Arrowhead indicates the reference value.

redistributed in instantaneously homogeneous manner, leaving matrix binding and
motility relatively unaffected.

Additionally, we investigated the dependency of the resulting network pattern on
chemotaxis. Based on experimental evidence227,292, we assume that the ECM-bound
VEGF provides a stronger signalling cue than soluble VEGF. Accordingly, cells in our
model have a stronger chemotactic response to bound VEGF (µb) than to soluble VEGF
(µs) in a 3 : 1 ratio. To ensure that network pattern formation is not dependent on our
particular choice of these parameters, we varied the relative strengths of chemotaxis
towards bound and soluble VEGF. Effectively, this alters the relative strength of the
signalling cues on cells. Figure 8.6 shows that network formation is perturbed when
soluble VEGF is the major signalling agent (µs > µb), which is due to a lack of spa-
tially restricted cues. On the other hand, when cells react more strongly to ECM-bound
VEGF (µb = µs), network formation is relatively stable in a broad domain. Our ref-
erence values of these parameters (arrowhead in figure 8.6; table 8.1) are within this
region.

8.3.3 Model dynamics display fast coalescence and slow remodelling

Experimental images are obtained by fluorescent staining which requires fixation of
the embryo. Therefore, no temporally resolved data are available that would enable
us to track the development of a vascular bed in vivo. Using the simulation model,
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however, it is possible to look into the dynamics of vasculogenetic development. Al-
though proliferation is known to occur during the assembly of the vascular bed, this
is omitted from the model for simplicity. Instead, we assumed a constant population
size of 800 cells (1250 cells/mm2), a figure that lies between a rough estimate of newly
differentiated angioblasts and the cell density measured in our experimental images.
The influence of cell density on the network morphology is explored below.

Although the initial population of cells is distributed in a regular mesh, a network
pattern forms rapidly during simulation, as shown in figure 8.7. The top panel (figure
8.7A) displays a typical simulation showing the shapes and positions of simulated
angioblasts, and the relative concentrations of matrix-bound VEGF. The evolution of
the number of connected cellular structures and that of the number of holes in figure
8.7B shows that these quantities move towards a steady state, indicating the dynamic
stability of the reticular structure. This stabilization property is in contrast with some
models based on autocrine chemotaxis hypothesis311.

Further, the dynamics considered in figure 8.7B seem to operate on separate timescales.
On the one hand, cells rapidly coalesce from a mostly isolated configuration to form a
percolative and closed network consisting of a single connected component (between 0

and 1000 MCS). On the other hand, the number of lacunae changes over a longer time
scale, and keeps increasing after all cells have assembled into a single network (be-
tween 1000 and 3000 MCS). In other words, subsequently to the assembly of a closed
network, cells continue to rearrange and remodel the network and thereby increase the
number of lacunae. Substantial remodeling is performed by cells creating new connec-
tions across lacunae, resulting in cords with a single cell width (indicated by arrows).
Figure 8.7C depicts a close-up of remodeling occurring in the period (1000-2000 MCS)
after a percolative network has formed. In addition to increasing the number of lacu-
nae in this way, the resulting holes are smaller and have a more regular and round
shape. This remodeling is driven by cell motility over tracks of previously secreted
ECM that are subsequently primed by VEGF binding.

8.3.4 Cell elongation results from chemotaxis towards matrix-bound VEGF

Using the same data, we tracked the shape of cells during simulation and quantified
their lengths by computing the inertia tensor of an elliptic shape approximation252,312.
Taking the length of isotropic cells as a reference, we compared the distribution of cell
shapes before and after tissue remodeling, as shown in figure 8.9. Before remodeling,
cell lengths are skewed towards isotropic length, indicating roundish cells. Afterwards,
the position of the mode of the distribution (i.e. the most frequent cell length) has
remained unchanged. However, the tail of the distribution has grown, showing that the
contribution of elongated cells has markedly increased. Some cells extend up to almost
three times the default isotropic length. Importantly, this is not caused by constraining
cell shape in our model (as in was done in252). Instead, the observed cell elongation
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Figure 8.7.: Dynamics of vascular network formation.
(Caption on next page.)
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Figure 8.8.: (A) Detail of simulated tissue at various time points, showing the cells (top) and
relative concentrations of bound VEGF with isolines (bottom). (B) Dynamics of
number of isolated cellular structures (blue) and number of lacunae (red), half-
transparent regions indicates standard deviation (n=10). (C) Inset depicts remodel-
ing in a small region. This occupancy map is constructed by averaging over binary
images in the interval between 1000 and 2000 MCS; lines show cell boundaries at
2000 MCS. Grey/white pixels are cells/lacuna which remained unchanged over
this period; colored pixels indicates how long a pixel has been occupied by cells. It
shows the creation of new connections (arrows) increasing the number of lacunae.
The simulation model is available in the Supplementary Online Material under
http://walter.deback.net/thesis.

follows as a natural consequence of chemotaxis towards matrix-bound VEGF. Thus, in
our model elongation is an effect rather than a cause for the formation of a reticular
pattern in the vascular bed.

8.3.5 Morphological dependence on cell density

To explore the influence of cell density on the morphology of the vascular network, we
performed a set of simulations in which the number of cells is varied, while keeping
the simulated tissue size constant, and analyzed the morphometric properties. The
results, shown in figure 6.4, point out the presence of various thresholds or maxima at
increasing cell densities.

The first threshold appears at a density of ≈900 cells/mm2, where the network
exhibits percolation. This percolative threshold is the critical density above which a
network first exhibits long-range connectivity. Related to this, the point at which the
vascular structure forms a single connected component (so that all cells lie within
a single network structure) is found at only slightly higher densities. Both aspects
are important for blood transport through the tissue and are established at low cell
densities.

At medium cell densities (≈1500 cells/mm2), we observed a maximum in the num-
ber of nodes and the length of cell-lacunae interfaces. A high number of nodes indi-
cates a complex branched network structure. Unsurprisingly, such networks show a
maximum in the interface length between vascular and avascular regions. Biologically,
it is this surface area between endothelium and surrounding tissue which is crucial to
the supply of oxygen and nutrients to that tissue.

When density is further increased (≈2000 cells/mm2), interface length decreases
as the size of the avascular region decreases. Instead, we observe that the number of
lacunae and total network length are maximized. This cell density corresponds to that
measured in in vivo vascular networks in quail embryos at 36-40 hours after incubation.

http://walter.deback.net/thesis
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Figure 8.9.: Cell elongation. Distribution of cell lengths at different time points during the sim-
ulation. Red line and inset depict early, blue depicts late in development. Lengths
are normalized to isotropic cells given the target area (

√
s4Aσ/π ≈ 22µm, where

s = 4µm2 is the scaling factor per pixel). Cells become increasingly anisotropic and
elongated during vascular patterning. Filled regions represent standard deviation.

8.4 discussion

We have presented a new mathematical model to describe vascular patterning during
early stages of embryonic vasculogenesis. The prevalent view that the formation of
vascular network patterns is regulated by autocrine chemotaxis has been formulated
largely based on in vitro studies. In developing our model, we have instead made use
of the current biological knowledge on early vasculogenesis in the embryo. In accor-
dance to the hypotheses made by other authors256,276, we have explored the role of
paracrine signalling in embryonic vascular development. In particular we have math-
ematically simulated the role of the extracellular matrix (ECM) in providing spatial
cues for angioblasts by storing and/or activating chemoattractive growth factors. Ac-
tually, the significance of the ECM during vasculogenesis has long been known279

and continues to be an active research field both in vasculogenesis and angiogene-
sis125,227,261,281,292, although its capacity for pattern formation by providing signalling
cues has not received much attention (see however227,292).

Specifically, we combined a 2D discrete cellular Potts model (eq. 9.2 and 8.3) with
a continuous reaction-diffusion model (eq. 9.1) under the assumptions that angioblasts
are chemotactically attracted towards paracrine VEGF that binds to angioblast-produced
ECM. As demonstrated by morphometric analysis, this model is able to produce polyg-
onal cellular patterns that accurately resemble the in vivo early vascular bed in quail
embryos, recorded by confocal microscopy. The simulated networks show high degree
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Figure 8.10.: Morphometric dependence on cell density. A number of morphometric proper-
ties of simulated networks are presented as a function of both cell density (num-
ber of cells per area) and coverage (the ratio of angioblasts-covered pixels to the
total number of pixels). Averaged over 10 simulation runs, transparency indicates
standard deviation. Three optima are shown from top to bottom, at increasing cell
densities. Parameters as in table 8.1.
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of similarity with respect to a broad spectrum of morphological descriptors, including
lacunae number/sizes/shapes, network and interface lengths, cord widths, degree dis-
tribution and fractal properties.

At the same time, our model circumvents certain drawbacks of autocrine mathemat-
ical models in the context of early embryonic vascular patterning. Indeed, a key prob-
lem of the autocrine regulation hypothesis is that no experimental evidence exists that
angioblasts produce significant amounts of VEGF, while it is known that the adjacent
endodermal tissue produces many pro-vascular growth factors, including VEGF256,257.
Thus, for the autocrine model to account for early embryonic vasculogenesis, it re-
mains to be explained how embryonic angioblasts could respond more efficiently to
low mesodermal VEGF levels rather than to the high amounts of the same growth fac-
tor produced by the adjacent endoderm. The mathematical model proposed here does
not consider VEGF production by angioblasts, and assumes instead an external source
of VEGF. Angioblast-secreted or modified ECM molecules bind and immobilize the
paracrine signalling agent in close proximity of cells. Thus, fine-grained spatial cues
for chemotactic cell migration can be generated without postulating unrealistically
low VEGF diffusion rates113,252. Furthermore, the stability of the network structures
increases over time, instead of collapsing after a transient time, as in previous mod-
els113,251,311. Another interesting observation is that cell elongation, a fact which is ex-
perimentally observed, needs not be postulated a priori as in252. Instead, cells elongate
in our model as a natural consequence of chemotaxis towards matrix-bound VEGF.

Simulations of our paracrine model yields several results that are coherent with
most of the biological data on embryonic vasculogenesis published up to date. In
general, downregulation of VEGF or the ECM molecules where VEGF can bind, as
fibronectin or heparan sulphates, is known to severely impair early vascular pattern-
ing261,286,313. In particular, administration of exogenous soluble VEGF receptors during
vasculogenesis, which decreases the level of endogenous VEGF, results in a lack of net-
work formation287. The relevance of VEGF matrix binding in providing precise spatial
cues has also been addressed in several studies. For instance, embryos that expressed
only VEGF isoforms lacking ECM interaction domains lead to greatly reduced vessel
branching and network complexity292. However, to unravel the interaction between
ECM molecules with heparin domains and VEGF matrix-binding isoforms as well as
their influence in angioblasts responses, further experimental work is needed.

On the other hand, simulations of the mathematical model here considered, reveals
some interesting features of networks formation, which however remain to be experi-
mentally validated. For instance, for a fixed number of cells, pattern formation dynam-
ics on two time scales are observed. First, a fully connected network is formed, so that
percolation is attained and middle-long range connectivity is achieved. This can be in-
terpreted as a basic requirement for any functional blood vessel network. On a longer
timescale, tissue remodeling takes place, whereby the number of lacunae continues
to increase so that the surface area keeps increasing too, thus ensuring an efficient
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distribution of nutrients and waste removal. On the other hand, when cell densities
are varied, three maxima in the morphometric quantities can be distinguished. At in-
creasing cell densities, these mark the onset of percolation, the attainment of optimal
interface length, and that of a maximal number of lacunae, a fact related to the to-
tal spanning length. Interestingly, the densities measured in in vivo vascular networks
correspond to the latter maximum.

In summary, we have proposed and studied a mathematical model based on the
assumption that matrix-binding of paracrine signals mediates early stages in in vivo
vascular patterning. Simulation of the model suggests that the assumptions made are
sufficient to generate vascular networks comparable to those observed during quail
embryonic vascular development.
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D Y N A M I C S O F V E G F M AT R I X - R E T E N T I O N I N VA S C U L A R
N E T W O R K PAT T E R N I N G *

9.1 introduction

The assembly and patterning of new blood vessels plays a critical role in many pro-
cesses, ranging from embryonic development to a variety of pathologies and successful
tissue engineering256,314,315. Vascular endothelial growth factor (VEGF) is a major regu-
lator of vascular morphogenesis that controls proliferation, survival, shape and migra-
tion of endothelial cells277,316–318. Yet, its activities are complex and context dependent
and the role of VEGF in vascular network pattern formation is not fully understood.

The chemotactic response of endothelial cells to VEGF has been extensively stud-
ied. VEGF binding to cell surface tyrosine kinase VEGF receptor-2 (VEGFR2) acti-
vates, among others, multiple downstream pathways related to actin reorganisation,
filopodia extension and invasive, protrusive behaviour316,317. In some cases, VEGF can
induce cell migration to distant locations by acting as a long-range signal319–321. How-
ever, VEGF also functions as a short-range signal that controls branching and local
network patterning281,292,322–324. Such a short-range signalling activity only takes place
when VEGF splice variants are present that are able to bind to specific extracellular
matrix components. Interestingly, matrix-bound VEGF has been shown to stimulate
sustained signalling through VEGFR-2 with altered patterns of tyrosine activation and
it seems to be a more effective initiator of migration in endothelial cells than soluble
forms of VEGF227.

* This chapter is based on the publication: Alvaro Köhn-Luque, Walter de Back, Yoshimi Yamaguchi, Kenji
Yoshimura, Miguel A. Herrero and Takashi Miura, Physical Biology, 10:066007, 2013. Author contribution:
Walter de Back conceived and designed the study together with Alvaro Köhn-Luque, Miguel A. Herrero
and Takashi Miura. Walter de Back, Alvaro Köhn-Luque and Takashi Miura analyzed the experimental
data. Model construction, simulation and data analysis performed by Walter de Back and Alvaro Köhn-
Luque. Walter de Back and Alvaro Köhn-Luque wrote the paper.
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It has been proposed that vascular network patterning is driven by the retention of
VEGF by matrix molecules102,227,292,324. Moreover, it has been shown theoretically that
binding of signalling molecules to extracellular matrix molecules can, in principle, gen-
erate fine-grained spatially restricted cues that may guide endothelial cell migration
into network patterns102. Yet, surprisingly little is known about the spatial distribu-
tion of VEGF in the vascular microenvironment or the dynamics that establishes it.
Moreover, it remains unclear how the VEGF distribution contributes to the formation
of reticular vascular networks.

In this study, we shed light on these questions by performing a detailed investi-
gation of VEGF dynamics in a simplified, controlled in vitro situation. We employed
Human Umbilical Vascular Endothelial Cells (HUVECs) assay in Matrigel with exoge-
nous administration of fluorescent-labelled VEGF165, an isoform with known affin-
ity for matrix molecules. Spatial localization of VEGF and identification of VEGF re-
tention molecules was performed using immunohistochemistry, confocal microscopy
and RT-PCR. Biophysical characterisation of diffusion coefficients, binding/unbind-
ing rates and decay kinetics was carried out by a combination of ELISA assays and
Fluorescence Recovery After Photobleaching (FRAP) analysis.

We found that the initially homogeneously distributed VEGF accumulates in the
extracellular space around cultured HUVECs within 60 minutes. FRAP analysis in the
proximity of HUVECs shows that binding is a key mechanism of growth factor accu-
mulation in those areas. Colocalization of VEGF with Heparan Sulphate Proteoglycans
(HSPG) and fibronectin molecules suggests these matrix components as major candi-
dates for VEGF retention. In line with the idea that cells play a role in VEGF retention,
VEGF decay was found to decrease in a cell density-dependent manner.

Together, these findings provide support for the hypothesis that absorption of VEGF
to the extracellular matrix occurs in a cell-dependent manner leading to the spatially
restricted cues that guide endothelial cells into network patterns.

To investigate whether the observed VEGF retention dynamics can drive HUVECs
into network patterns, a hybrid reaction-diffusion and cell-based mathematical model
was constructed. Using measured concentrations and biophysical parameters, simu-
lations results show the establishment of fine-grained distribution of bound VEGF
and coalescence of cells into network patterns at realistic timescales, for different cell
densities.

Taken together, our results suggest that cell-dependent retention of exogenous VEGF
by matrix molecules around HUVECs can guide vascular assembly and patterning.
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9.2 materials and methods

9.2.1 Cells

HUVECs were purchased from Lonza Inc. and maintained in EGM-2 culture medium,
also from Lonza Inc. Culture medium was changed every 2 days. Cells with less than
10 passages were used for experimentation.

9.2.2 Network formation assay

Matrigel solution (BD Biosciences) was prepared on ice. 50 µl of Matrigel was spread
in the center well of 35 mm glass-bottom dish (Matsunami Glass inc.). The dish was
kept at room temperature for 10 minutes to allow the Matrigel to solidify. HUVECs
in a different chamber was detached from dish using 0.1% Trypsin-EDTA solution
(Nacalai Tesque inc). The cells were centrifuged, trypsin solution was removed and
resuspended in 2ml of EGM-2 culture medium, containing several growth factors sup-
plements, including VEGF165. Cells were seeded on Matrigel-covered dish in various
cell densities. The dish was cultivated 18 hours, and pattern formation was observed
using inverted microscope (Nikon TMD or Nikon Eclipse). For VEGF-free condition,
we prepared EGM-2 culture medium without VEGF supplement and use it for the
experiment.

9.2.3 Preparation of fluorescent-labelled VEGF

Recombinant Human VEGF165 protein was purchased from Peprotech Inc. 100 µg

of the protein were covalently conjugated with Alexa-488 fluorescent dye using mi-
croscale protein labeling kit according to the manufacturerï¿½s protocol (Molecular
Probes Inc.). We use 4.7 µl dye solution for labeling 100 µg VEGF protein, and fluorescentl-
labelled protein was purified from unbound dye using gel filtration column according
to the manufacturers protocol. The labelled protein has a biological acitivity monitored
by induction of dpERK in HUVECs (data not shown).

9.2.4 Absorption of fluorescent-labelled VEGF around HUVECs

HUVECs were seeded on thin layer of Matrigel on 35 mm glass-bottom dish as de-
scribed above. The cells were cultivated for additional 10 hours at 37

◦C in a hu-
midified atomosphere. Then the dish was moved to stagetop incubator on Nikon C1

confocal microscope. 1 µg/ml of fluorescent-labelled VEGF was prepared by mixing
the EGM-2 culture medium with 1 µg/µl stock solution. The working solution was
prewarmed in the stagetop incubator. The culture medium in the culture dish was
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completely removed, and fluorescent VEGF-containing culture medium was added to
the culture dish. Then the absorption of fluorescent-labelled VEGF was observed at
x60 magnification using Nikon C1 confocal microscope. Brightfield and fluorescence
images were captured every minute.

9.2.5 Fluorescence Recovery After Photobleaching (FRAP)

FRAP experiments in the Matrigel region were done using thin layer of Matrigel. First
we mixed 1 µg of fluorescent-labelled VEGF to 100 µl of phenol-red free Matrigel (BD
Biosciences) on ice. 3 µl of labelled VEGF containing Matrigel solution was put on a
slideglass, and covered by a coverglass of 18x18 mm size (Matsunami Glass Inc.). The
Matrigel on the slide was allowed to solidify for 10 minutes at room temperature in a
moisture chamber. Then the slide was put in the stagetop incubator, and the sample
was photobleached at x20 lens. The bleach spot size was approximately 4000 µm2, and
the recovery time is 60 frames with 10 second interval.

FRAP experiments in the proximity of cells were done using the HUVEC sample
after absoption of fluorescent-labelled VEGF has reached equilibrium, which occurs
in 60-90 minutes. The spot size was kept approximately 10 µm2 and the recovery was
observed for every 3 seconds for 200 frames.

9.2.6 Immunohistochemistry

HUVECs were cultivated for 18 hours on a thin layer of Matrigel as described above.
The cells were fixed in 100% Methanol for 10 minutes. The nonspecific binding was
blocked using 1.5% NGS, and primary antibody against HSPG (Seikagaku Kogyo Inc.
10E4) or fibronectin (SC-69682 Santa Cruz biotechnology inc.) was added overnight
at 4

◦C. For HSPG, the culture dish was washed three times with PBS to remove un-
bound primary antibody. Then the biotin-conjugated secondary antibody was added
to the dish, incubated for 30min at room temperature, and FITC-avidin was used to
visualize the distribution. For fibronectin immunohistochemistry, we washed the dish,
incubate in Alexa 488-labelled secondary antibody. In both cases, nuclei were stained
with Hoechst 33342 to clarify the location of cells.

9.2.7 RT-PCR

Total RNA of the HUVECs on the Matrigel was collected using Sepasol (Nacalai Tesque
Inc.) The collected RNA was amplified by RT-PCR using RT-PCR High Plus (Toyobo
Inc.) The primer pairs used were:
hFibronectin-F: AGAGAAGTGGTCCCTCGGCC
hFibronectin-R: TGGATTGAGCCCCGGACCGT
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hGlypican-F: TTCAGCCTGAGCGACGTGGT
hGlypican-R: TGCCCAGGCAGTCCAGGTAG
hPerlecan-F: CCTGGAGTGTGTCAGTGCCG
hPerlcan-R: CGAAGCGTGCTCTGGGACCG

9.2.8 Sandwich ELISA

100 µl of capture antibody were applied to each well of the 96-well plate and incu-
bated overnight. Then each well were washed with wash buffer. Nonspecific binding
was blocked by blocking buffer. After these preparations, dilutions of unknowns and
standards were applied to the wells, and incubated for two hours at room tempera-
ture. Then the wells were washed with wash buffer. Biotynilated detection antibody
was applied to the well and incubated for 2 hours at room temperature. After wash,
100 µl of Streptavidin-HRP was added to each well and incubated for 20 minutes at
room temperature. Then the substrate was washed away, 100 µl of substrate solution
(R&D systems) was added to each well and incubated for 20-30 minutes at room tem-
perature to develop colour. Then 50 µl of stop solution was added to each well. The
optical density of each well was determined within 30 minutes with microplate reader
(Thermo Fisher Multiskan FC).

9.2.9 Mathematical model

A hybrid reaction-diffusion and cell-based model was constructed that accounts for
key molecular and cellular mechanisms. The model structure, which is based on previ-
ous studies102,252, has been adapted to our particular in vitro experimental conditions.
The model consists of two coupled modules. In the first one, HUVEC cells are rep-
resented as discrete and geometrically extended objects using a cellular Potts model
(CPM)79. In the second one, growth factor and extracellular matrix molecules are mod-
eled as continuous fields whose distribution is governed by partial differential equa-
tions (PDEs). Below, the main assumptions made for the formulation of the model are
summarized:

1. HUVECs are seeded on top of a planar Matrigel surface and once they lie on it,
their vertical displacement is small. Therefore, we reduce the problem to a 2D
configuration.

2. Initially, the culture medium contains a homogeneous concentration of soluble,
unbound VEGF. VEGF diffuses through the medium and the Matrigel and it
can bind (and unbind) to various ECM molecules such as heparan sulphates
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or fibronectin. For simplicity, we assume that such a reversible binding reaction
follows the mass action law with second order kinetics.

3. The presence of HUVECs causes local accumulation of available VEGF binding
sites of the surrounding extracellular matrix molecules such as fibronectin and
heparan sulphates. This may be either through secretion of ECM molecules con-
taining them, reallocation of existing ones, or opening of existing VEGF binding
sites261,281,325–328. Accordingly, we assume accumulation of free VEGF binding
sites to be cell-dependent.

4. The effective diffusivity of matrix molecules, with or without bound VEGF, are
assumed to be very small compared to diffusivity of soluble VEGF, and are there-
fore neglected in the mathematical model.

5. Bound forms of VEGF provide stronger signalling cues for cell motility than
freely diffusive forms227,281,292. Consequently, in the model motility is biased to-
wards upward gradients of anchored growth factors, while chemotaxis towards
freely diffusive forms is neglected.

6. Binding of VEGF to ECM molecules offers protection to growth factors against
enzymatic degradation284,296. Therefore, we neglect degradation or removal of
bound growth factors in the model.

7. No proliferation or cell death is taken into account during the modelled time
window.

These assumptions lead to the following formulation of the PDE model. Let u, s and b
be the concentrations of unbound VEGF ([VEGFu]), specific VEGF binding sites of the
ECM ([ECMs]) and bound VEGF ([VEGFb]) respectively. Bearing in mind assumptions
(2), (3) and (5) above, we propose the following reaction-diffusion system:

∂u

∂t
= Du∆u− konus+ koffb− τu

∂s

∂t
= Γ(σx) − konus+ koffb

∂b

∂t
= konus− koffb, (9.1)

where Du, kon, koff and τ represent the diffusion coefficient, binding, unbinding
and decay rates of VEGFu, respectively. The function Γ(σx) represents the rate of cell-
dependent accumulation of free VEGF binding sites (Γ(σx) = 0 in sites, x, that are not
occupied by cells, while Γ(σx) = γ in sites, x, occupied by cells - see below).

Cells are represented on a discrete square lattice. The same index σx = 1, 2, ...,N
labels all the lattice sites, x, occupied by a particular cell, while the special index σx = 0
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labels all lattice sites, x, occupied by the extracellular medium. The interfaces between
two different lattice sites, x and x ′ with different indexes σx and σx ′ represents the
membrane boundaries between two cells or between a cell and the medium. Cell shape
and position of cells are determined by volume and perimeter constraints plus a biased
(chemotactic) movement towards bound VEGF. More precisely, we define the state of
the system by means of the following Hamiltonian:

H =
∑
σ>0

(λa(aσ −A)
2 + λppσ), (9.2)

where the term (aσ −A) represents the deviation of a cell labelled with the index σ
from a target area A and pσ is the total perimeter of cell σ. The parameters λa and λp
represent the strength of the area and perimeter constraints respectively.

Dynamics in the discrete lattice are generated by a modified Metropolis algorithm
that randomly chooses a lattice site, x, and computes what the difference in energy,
∆H, will be if a randomly selected neighboring site, x ′, would copy its state into this
site. The probability of accepting the change, P, depends on the difference in the en-
ergy plus a chemotactic term ∆Hc = ∆H + µ(bx − bx ′) measuring the difference in
concentration b in the two lattice sites:

P(∆Hc) =

1 ∆Hc 6 0

e−∆Hc otherwise
(9.3)

In this way, the shape and position of the cell are updated locally such that cell
shape is biased towards a target area and minimum perimeter while their movement
is biased up the gradients of VEGFb. Note that cell adhesion has not been explicitly
modelled.

The PDE and CPM modules are coupled by a feedback mechanism in which accumu-
lation of free VEGF binding sites depends on the location of cells while cell shape and
motility depends on local gradients of matrix-bound VEGF. While the PDE module
has been parametrized with measurements of biophysical parameters and concentra-
tions obtained in this study, the strength of the chemotactic response by CPM cells
to VEGF gradients has been calibrated to reported chemotactic migration of HUVECs
using published data.

9.2.10 Parameterization and calibration

The parametrization and calibration of the mathematical model described in section
9.2.9 are summarized in Table 9.1.

Parameters of VEGF dynamics in the PDE module are based on our experimental
estimates. Specifically, the diffusion coefficient, D, binding and unbinding rates, kon
and koff respectively, were estimated by means of FRAP as described in the main text.
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Parameter Estimate Method

PDE

D 5.87 · 10 µm2s−1 FRAP

kon 8.57 · 10−7 ng ml−1s−1 FRAP

koff 3.6 · 10−3 s−1 FRAP

ε 2.67 · 10−6 s−1 ELISA

γ 0.5− 2.0 ng ml−1s−1 Estimated in this study

CPM

A 300 µm2 Measured in this study

λa 0.5 a.u. µm−2 102,252 rescaled

λp 1.6 a.u. µm−1 102,252 rescaled

µ 40− 140 a.u. ng−1ml Calibration using data from262

Initial condition

u0 1.5 ng ml−1 ELISA

s0 0.0 ng ml−1 Assumed in this study

b0 0.0 ng ml−1 Assumed in this study

Table 9.1.: Model parameters for equations 9.1, 9.2, and 9.3.
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VEGF decay, ε was measured using ELISA. As initial condition for VEGF, u0, we use
the actual concentration of VEGF present in the culture medium, while we assume
there are initially no binding sites and no bound VEGF, i.e., s0 = b0 = 0.

Cells are modeled phenomenologically as chemotactic objects with explicit shape
using the cellular Potts model (CPM). In this formalism, cell shape as well as chemo-
tactic motility arises from an abstract principle of energy minimization. The parameter
values controlling cell shape elasticity, λa and λp, were adopted from previous studies
on vascular patterning102,252, while the target area A is based on our own estimates on
mean HUVEC cell size.

The key parameter coupling the CPM module to the PDE module is the chemotactic
sensitivity µ. This parameter relates the velocity of chemotactic migration of modeled
cells to external gradients of VEGF. Fortunately, the chemotactic migration of HUVECs
under influence of VEGF gradients has been studied in detail262. This allows us to
calibrate the chemotactic response of our modeled cells to that observed in HUVECs
under identical gradients of VEGF. Given choices of parameters for cell shape and
area, the migration velocity is tuned to data on HUVEC migration by adjusting the
chemotactic sensitivity µ to obtain a chemotactic response that is similar to that of
HUVECs.

Shamloo et al.262 exposed a population of HUVECs seeded on fibronectin to a stable
gradient of VEGF using a microfluidic device. They quantified the chemotactic sensi-
tivity of HUVECs by measuring their migration under different gradients of VEGF.
Migration was estimated by dividing the chamber into four equal zones of 250 µm

and measuring the net change in cell density before and after 6 hours of exposure to a
gradient of VEGF. For a gradient of 14 ng ml−1mm−1 (with average absolute concen-
tration 25 ng ml−1), an average net change between 7% and 11% (+/- 3) in/out flux
was reported for the two zones having the highest/lowest VEGF concentrations.

We replicated these experiments in silico by exposing the simulated cells to a static
gradient of the chemoattractant of 14 ng ml−1 mm−1 (replacing the PDE module)
and measuring the change of cell density in four zones. By fitting the changes in cell
densities in this model to the migration reported by Shamloo et al., we obtained an
estimate for the chemotactic sensitivity parameter µ ≈ 3. Using this value for µ in our
model, cellular network can be obtained, but only by assuming a high production rate
of VEGF binding sites (in the order of ≈ 103 ng ml−1 s−1). Under these conditions,
the network structure, quantified by the number of lacunae, is established within 10

min, after which cells become prematurely immobilized due to the relatively weak
chemotactic sensitivity (data not shown).

If, however, the chemotactic sensitivity is calibrated to a gradient of VEGF that takes
matrix binding into account, different values for µ are obtained. Although the gradient
reported by Shamloo et al. accounts for the soluble VEGF in the microfluidic device,
HUVECs migration is, we propose, controlled by the matrix-bound VEGF. Therefore,
the gradient of matrix-bound VEGF is more suitable for the calibrating the chemotactic
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sensitivity. Fortunately, the gradient of matrix-bound VEGF in the experiments by
Shamloo et al. can be estimated. Given the quantified gradient of soluble VEGF and
our measurements for binding/unbinding rates, the concentrations of bound VEGF
can be calculated as the equilibrium of the following equations:

ds

dt
= −kon(14(x/L) + 18)s+ koffb (9.4)

db

dt
= kon(14(x/L) + 18)s− koffb, (9.5)

where L is the length of the domain (L = 1000µm). Here, the concentration of soluble
VEGF, u, is assumed to be stable in the microfluidic device, and can therefore be
replaced by the gradient.

Although we can assume the absence of bound VEGF before the onset of the VEGF
gradient b(0) = 0, the initial condition is VEGF binding sites, s(0), is not directly
known. The authors used a concentration of fibronectin of 10 mg ml−1 in a hydropho-
bic PDMS situation under physiological pH (5% CO2 at 37

◦ C). Under these conditions,
the number of binding sites per fibronectin molecule that VEGF can bind to, is reported
to be approximately 0.1 - 0.5327. This corresponds to a concentration of available VEGF
binding sites of approx. 75 - 375 ng ml−1. Using this range as initial conditions s(0),
simulations show the establishment of a gradient of 0.25 -1.25 ng ml−1s−1.

Using this gradient 0.25 - 1.25 ng ml−1s−1 of matrix-bound VEGF instead of the
gradient of soluble VEGF to calibrate the chemotactic sensitivity of CPM cells, the sen-
sitivity corresponding to the reported HUVEC migration rates becomes much higher,
µ = 40 - 140, see Figure9.1 and the Supplementary Online Material. Using these val-
ues for chemotactic sensitivity parameter µ in our model, a cellular network can be
obtained under more reasonable values for production rate γ. Moreover, cells do not
become prematurely immobilized.

9.2.11 Simulations

Numerical simulations were performed using our modelling software Morpheus. The
modified Metropolis algorithm governing cell motility in the cellular Potts module
(CPM) was specified with temperature T=1 and a 8-pixel neighborhood. Random
numbers were generated using Mersenne Twister algorithm (mt19937) available in
C++ TR1 library extensions. Reactions in the PDE module were solved using the
4th order Runge-Kutta method with time step dt=1.0, i.e. once every Monte Carlo
step. Space discretization was chosen equal for the CPM and PDE models, with each
lattice sites corresponding to 4 µm2, and periodic boundary conditions were used.
Diffusion was solved using Euler forward diffusion using time steps satisfying the
Courant-Friedrichs-Lewy condition for the given length interval and diffusion coeffi-
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Figure 9.1.: Calibration of chemotactic strength parameter. (A) HUVECs migration in mi-
crofluidic device under stable VEGF gradient262. Migration was quantified by
recording the change of occupancy in the indicated regions over 6 hours. (B) Com-
puter simulation of chemotactic CPM cells under VEGF gradient, quantified in
the same way. Cell colour indicates region, background colour shows gradient of
bound VEGF. (C) Quantification of CPM cell migration under varying values for
chemotactic sensitivity µ by measured net change in regions 1 (red) and 4 (blue)
(negligible in other regions). Filled areas show net change between the upper and
lower bound for the estimated binding sites (375 6 b 6 75). Dashed line and
surrounding area shows average and standard deviation for the net change as
reported in262. The model used for calibration is available in the Supplementary
Online Material under http://walter.deback.net/thesis.

http://walter.deback.net/thesis
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cient. The simulation model is available in the Supplementary Online Material under
http://walter.deback.net/thesis.

9.3 results and discussion

9.3.1 Exogenous VEGF is required for network patterning

Network formation in our HUVEC cultures requires the administration of exogenous
VEGF to the culture medium. We compared HUVEC cultures containing exogenous
VEGF (control) with cultures with a VEGF-free medium. Quantification of number
and total length of cell protrusions showed a marked decrease in the case of VEGF-
free medium. Moreover, a dramatically reduced ability for network formation was
observed in the VEGF-free case as compared with the network formed in the presence
of VEGF. This indicates that other sources of the growth factor, such as the one present
in Matrigel or that possibly produced by cells are not sufficient for network patterning.

9.3.2 Exogenous VEGF is absorbed around cultivated HUVECs

In order to observe the spatio-temporal distribution of VEGF, rather than network
pattern formation, we used an experimental setup with sufficient concentration of
fluorescent-labelled VEGF165. More precisely, we cultivated HUVECs on a thin layer
of Matrigel for 10 hours and applied 1 µg/ml solution of fluorescent-labelled VEGF
on the culture dish. Surprisingly, accumulation of fluoresecent-labelled VEGF around
cells was observed within 5-10 minutes with fluorescence resulting in equilibrium after
60-90 minutes. Comparison of fluorescent and brightfield images shows that absorp-
tion is not only confined to the cell membrane, resulting from receptor binding, but
also occurs at the extracellular region near the cells (figure 9.2).

9.3.3 VEGF binding molecules colocalize with VEGF absorption areas

To investigate the biochemical reason behind the accumulation of fluorescent-labelled
VEGF in the proximity of HUVECs, we labelled known VEGF binding molecules in
our cultures by means of immunohistochemistry. We found that fibronectin and hep-
aran sulfate proteoglycans (HSPG), two types of ECM molecules that strongly bind to
VEGF, colocalize with VEGF absorption areas in the vicinity of HUVECs. It remains
unclear to what extent the localization of ECM molecules is the result of secretion or
redistribution of existing molecules by HUVECs. Although expression of both fibro-
nectin and HSPG in HUVECs lying on a plastic dish was detected (data not shown),
an active reorganisation of the existing VEGF binding molecules in Matrigel by cells
cannot be excluded.

http://walter.deback.net/thesis
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Figure 9.2.: Absorption of VEGF around endothelial cells. Time-lapse of fluorescent and
brightfield images showing typical observed accumulation of fluorescently-
labelled VEGF around HUVECs (Brightfield). A superposition of both image types
is shown in the top line (Merge).
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Nevertheless, the colocalization of the two ECM molecules, fibronectin and HSPG,
and VEGF absorption areas together with their high affinity to VEGF render these
molecules candidates for retention of VEGF in the proximity of HUVECs.

9.3.4 Characterisation of VEGF165 kinetics: FRAP analysis

To characterise the mechanisms of accumulation of VEGF165 in pericellular regions,
Fluorescence Recovery After Photobleaching (FRAP) analysis was performed. This al-
lows us to distinguish between alternative mechanisms of growth factor accumulation
and to estimate kinetic rates for transport and molecular interaction.

FRAP is a widely used technique to investigate transport and interactions of molecules329–332.
In FRAP experiments, fluorescence tagged molecules are irreversibly photobleached in
a small region of interest (ROI) by a high-powered focused laser beam. Subsequent dis-
placement of surrounding non-bleached fluorescent molecules into the bleached area
leads to a recovery of fluorescence, which is recorded at low laser power. By fitting
experimental recovery curves to suitable theoretical models of VEGF dynamics, we
can estimate the kinetic rates for the diffusion coefficient or binding/unbinding rates
of fluorescent-labelled VEGF molecules present in Matrigel cultures.

First, we study VEGF diffusion in Matrigel in the absence of cells. A thin layer of
Matrigel containing fluorescently-labelled VEGF is prepared. After the gel has solidi-
fied, a circular area of it is bleached and the recovery of the fluorescence in it is tracked
until recovery saturates (figure 9.3A). If the increase in fluorescence is interpreted on
the basis of a linear diffusion model, a formula for the recovery of the fluorescence can
be derived333:

frap(t) = F∞exp
(
−

2

1+ 8Dt/a2

)
, (9.6)

where F∞ is the fluorescence after the recovery is complete, t is time and a is the radius
of the bleached ROI. The unknown parameter D, the diffusion coefficient of VEGF, can
be estimated by fitting eq. 9.6 to the observed recovery (figure 9.3, a4). Applying this
procedure for three different recovery data, we obtained:

D ≈ 5.87× 10−7cm2/s ± 2.1× 10−7, (9.7)

which is consistent with previous estimates278,334,335.
Next, we analysed the dynamics of exogenous VEGF in the areas around HUVECs

where VEGF accumulation was observed. More precisely, we photobleached a small
circular region around a cell (figure 9.3B), observed recovery of fluorescence and used
models to fit it. In contrast to the cell free case, the linear diffusion model does not
fit well to the recovery data obtained in the pericellular region. Further mathematical
analysis shows that the observed diffusion of VEGF in the absence of cells (eq. 9.7)



142 dynamics of vegf in vascular patterning
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Figure 9.3.: FRAP analysis. Two different FRAP experiments are shown in top and bottom
lines. (A) FRAP experiment in Matrigel in the absence of endothelial cells. Panels
(a1), (a2) and (a3) show the observed VEGF fluorescence in three different time
points, while (a4) shows a fitting of the linear diffusion model to the observed
fluorescent intensity (F.I.), where the coefficient of determination corresponds to
r2 = 0.9328. (B) FRAP experiment in a culture of HUVECs in Matrigel. In this
case the photobleached region is a small circumference in the proximity of an
endothelial cell. Panels (b1), (b2), (b3) and (b4) are as in the previous case. The
theoretical model used in this case to fit the obtained experimental recovery is the
reaction-dominant model and the coefficient of determination is r2 = 0.9999. Note
that the spatial and temporal scales in both cases are different.
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cannot be detected given the small size of the ROI and the time scale of the fluores-
cence measurements that are used in this experiment (see Appendix A.2 on page 161

for details).
Instead, based on the observation that the regions where VEGF is accumulated

match the distribution of VEGF binding molecules of the ECM, we use a model that ac-
counts for binding processes. A realistic case of binding that can be analysed by FRAP
consist of a single binding interaction, described by the following chemical equation:

VEGFu + ECMs � VEGFb, (9.8)

where VEGFu and ECMs denote unbound VEGF molecules and specific VEGF bind-
ing sites of the ECM, respectively. VEGFb represents bound VEGF and kon, koff are
the binding and unbinding rates. In general, the equations describing the preceding
binding reaction also incorporate diffusion (see Appendix A.3). However, we use here
a particular case of the general model that adequately describes the recovery of the
fluorescence in a tiny bleached area near a HUVEC cell. This particular case is com-
monly known in this context as reaction-dominant model and describes a scenario
where VEGF diffusion is very fast compared both to binding and to the timescale of
FRAP measurements331. In the reaction-dominant case, a formula for the fluorescence
recovery can be obtained (see Appendix A.3 on page 165 for details):

frap(t) = u(t) + b(t) = 1−
k∗on

k∗on + koff
e−kofft, (9.9)

where k∗on = konSeq and Seq is an assumed equilibrium concentration of binding sites
during the photobleaching recovery. Fitting eq. 9.9 to the FRAP recovery yields esti-
mates for k∗on and koff (figure 9.3, b4). Applying this procedure for four independent
recovery data sets, we obtained the following figures:

k∗on ≈ 1.5× 10−3s−1 ± 3.07× 10−4 (9.10)

koff ≈ 3.6× 10−3s−1 ± 3.85× 10−4 (9.11)

Obtaining kon from k∗on requires the equilibrium concentration of binding sites, Seq,
which is unknown. However, we can use estimated dissociation constants of VEGF to
matrix molecules as fibronectin or HSPG, defined as Kd = koff/kon, that are available
in the literature327. In that study, Kd has been shown to depend on pH and heparin
concentration, but a suitable estimate for such parameter would be around 100nM =

10−7M. Therefore,

kon =
koff
Kd

= 3.6× 104M−1s−1 (9.12)

In summary, FRAP analysis shows that binding is a dominating mechanism behind
the VEGF accumulation near HUVECs. Moreover, it provides quantitative estimates
for kinetic parameters of VEGF165 diffusion as well as the binding and unbinding
rates to ECM molecules.
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9.3.5 VEGF is decreased in a cell density-dependent manner

ELISA assay was used to measure the evolution of VEGF concentration in culture
medium alone (without Matrigel or cells) and in media extracted from cell cultures
containing different cell densities. In the first case, VEGF decay is mainly due to molec-
ular degradation. According to ELISA results, an estimate of VEGF half-life is above
72 hours. In the presence of cells, it was found that VEGF concentration in the cul-
ture medium is reduced in a cell density-dependent manner. Specifically, the VEGF
concentration in the culture medium before and after 18 hours of HUVEC culture was
measured. A significant reduction of VEGF was detected after culturing. The reduc-
tion was increased with higher cell density, indicating that HUVECs play an active
role in the decrease of the concentration of soluble VEGF, possibly by uptake by cells
or adsorption of VEGF to matrix components.

9.3.6 Model simulations mimic early stages of in vitro HUVEC cultures

To investigate the role of the observed VEGF retention dynamics in cell coalescence
and network patterning, we performed computational simulations based on the mea-
surements of kinetic rates and concentrations obtained in this study. Specifically, we
modelled the early stages of the Matrigel cultures (approximately 0-2 hours), during
which initially isolated cells coalesce and form network patterns.

Our hybrid mathematical model represents individual chemotactic cells as well
as concentrations of VEGF and available VEGF binding sites. We assume the cell-
dependent accumulation of VEGF binding sites and the binding of VEGF to those
binding sites. In addition, we assume that bound forms of VEGF provide the spatial
cues for HUVECs chemotactic migration. Model simulations were performed using
our experimental measurements for kinetic parameters and concentrations of VEGF
and the chemotatic response of simulated cells was calibrated to the chemotatic be-
haviour of HUVECs. See section 9.2.9 for a detailed description of model assumptions
and formalization.

For these parameters, model simulations show the accumulation of VEGF in peri-
cellular regions and the coalescence of initially isolated cells into reticular network
patterns (figure 9.4), for a range of cell densities. Simulated networks are formed by
cellular structures enclosing lacunae which occurs within two hours after administra-
tion of VEGF. During that period, the total number of lacunae rises and simulated cells
increase their length up to three fold the initial one, correctly mimicking key features
during early stages of our in vitro HUVEC cultures. Note that the coalescence and
elongation of cells arises without explicitly modelling cellular adhesion and cell shape
constraints. Rather, cells adjoin and elongate as a result of their chemotactic response
to bound VEGF in the pericellular regions.
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Figure 9.4.: Network patterning in model simulations. (A) Simulated cellular patterns (grey)
and distribution of bound VEGF (colours) at t = 0,15,30,60. (B) Redistribution of
total VEGF concentration at the same time points, measured at the cross section
indicated with dashed line in first panel A. (C) Distribution of cell length at t = 0

(red), t = 30 (green) and t = 120 (blue) for simulation shown in A. (D) Evolution
of number of lacunae, averaged over 10 simulations (average in red, standard devi-
ation in light red region). The simulation model is available in the Supplementary
Online Material under http://walter.deback.net/thesis.

These results show that vascular network formation is possible under the assump-
tion of cell-dependent retention of exogenous VEGF, and occurs with the kinetics pa-
rameters obtained by FRAP and ELISA experiments.

9.4 conclusions

Over the last decades, several hypotheses have been proposed to explain the formation
of primitive vascular networks from isolated endothelial cells (see references241–244,336

for recent reviews). Before the significance of VEGF in vascular patterning was recog-
nised, theoretical work by Murray and collaborators showed that network patterns can
arise solely due to matrix deformations caused by the traction that endothelial cells
exert on the extracellular matrix248,337. This theory may explain why a number of cell
types organise into network patterns when cultured in different extracellular matrices,
including Matrigel338,339, but it does not elucidate the essential role of VEGF in vascu-
lar patterning. It might be that VEGF is merely required for cell survival and/or keep-
ing endothelial cells in a patterning state. On the other hand, VEGF may be needed to
spatially guide initial cell coalescence while mechanical forces become relevant only
in a second stage, once sufficiently large cell densities are locally obtained311.

Related to this, alternative hypotheses for vascular patterning have focused in the
role of VEGF as a chemoattractant for endothelial cells102,250,251,253,340. One such mecha-

http://walter.deback.net/thesis
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nism holds that network patterning is based on the production of VEGF by endothelial
cells themselves. Although such autocrine chemotaxis would typically lead to the for-
mation of cellular clusters, several theoretical studies have shown that it can also lead
to network patterning under certain conditions113,250,251,253,341. Yet, our result that the
administration of exogenous VEGF is required for the formation of networks of HU-
VECs in Matrigel seems to be at odds with the autocrine mechanism. Indeed, studies
have shown that during vasculogenesis in chick embryos, VEGF is expressed by im-
mediately adjacent endodermal cells, whereas endothelial cells only express its recep-
tor257. This strongly suggests a paracrine, rather than autocrine, activity of VEGF297.

Yet, the presence of a homogeneously distributed paracrine growth factor obscures,
rather than explains, the formation of reticular network patterns. However, studies on
mouse embryos that solely express a VEGF isoform without heparin-binding domains
show an altered extracellular localization of VEGF and impaired vascular network
formation292. This suggests that, under normal circumstances, VEGF binds to extracel-
lular matrix components and thereby provides spatially restricted cues for endothelial
cell migration292. Moreover, it was found that matrix-bound forms of VEGF elicit a dis-
tinct and prolonged signalling response in HUVECs in comparison to soluble VEGF227.
Although these studies strongly suggest a role of matrix binding of paracrine VEGF,
it has remained unclear how the spatial distribution of VEGF is established and how
this affects the formation of cellular networks.

In the present study, we have shown that exogenous administrated VEGF quickly
accumulates in pericellular regions, where we also found fibronectin and HSPG, two
types of ECM molecules that bind strongly to VEGF. Moreover, a quantitative anal-
ysis by means of FRAP supports the idea that binding/unbinding is a dominating
mechanism underlying VEGF pericellular accumulation. Although this process was
recently hypothesized102, to the best of our knowlegde it was not shown before. We
have also provided estimates for binding/unbinding rates, diffusion coefficient and
half-life of VEGF. Based on the previous knowledge, we have formulated a simple
reaction-diffusion model for VEGF dynamics in the vascular microenviroment. In or-
der to explore the role of bound VEGF in guiding endothelial cells independently
of other factors or mechanisms, we couple the continuous model for VEGF dynamics
with a cell-based model that accounts for chemotaxis towards bound VEGF of spatially
extended simulated cells. The use of measured VEGF concentrations and experimen-
tally derived parameters in the mathematical model enable us to interpret the simula-
tion results in the correct spatial and temporal scales. In this way, we are able to con-
clude from our numerical simulations that the feedback between matrix retention of
exogenous VEGF and chemotaxis alone can guide cellular coalescence and patterning
in the early phases of vascular network formation. Our approach allows us to isolate
the causal relations between matrix bound signals and network morphogenesis from
a complex biological process influenced by many factors and difficult to manipulate.
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Nevertheless, we do not underestimate additional factors others than VEGF such as,
for instance, the juxtacrine signals that regulate multicellular sprouting263,269,302,342–344.

The combination of quantitative experiments and mathematical modelling employed
in this work allows us to elucidate VEGF dynamics and its role in guiding vascular
network formation. Apart from offering hypotheses to explain vasculogenesis in the
embryo, we believe that this approach has promising applications in the design of
engineered extracellular matrices for vascular development in tissue engineering and
regenerative therapies345–348.





All models are wrong, but some are useful
G. Box, 1979
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10
C O N C L U S I O N S

Mathematical and computational methods are now available to study and analyze de-
velopmental systems in a formal, quantitative fashion. The interactions among genes,
signals and cells can be represented in well-established modeling methods to study the
regulation of cell fates, pattern formation and morphogenesis. The integration of these
modeling methods into multiscale models facilitates the representation and analysis
of regulatory feedbacks between these developmental mechanisms. These methods
are important tools for the integration of quantitative biological information across
temporal and spatial scales. It allows one to link the activity of regulatory molecules
with the morphological development of organisms and enables the exploration and
identification of self-organizing principles underlying a broad range of developmental
phenomena.

In this thesis, I have described a modeling framework that adopts the cell as a ba-
sic level of abstraction to represent that the behavioral and mechanical interactions
between cells within embryonic tissues. Taking a middle-out approach, the associated
cell-based models can be readily integrated with models of intracellular regulatory
dynamics and extracellular reaction-diffusion dynamics. The computational methods
required for multicellular and multiscale modeling and simulation are available in
number of recently released dedicated software platforms, including our modeling
environment Morpheus. Morpheus is specifically designed for multicellular systems
biology and is unique in its user-friendly design that allows researchers, even without
computational expertise, to develop multiscale simulation models to test specific hy-
potheses about multicellular and developmental systems.

Two case studies have been presented that illustrate the application of this approach
to various developmental systems. In the first, the regulation of cell fates and the
emergence of fine-grained spatial patterns in the pancreas was investigated. A model
was constructed that combines reported interactions between transcription factors with
two contact-mediated mechanisms of cell-cell communication: lateral inhibition and
lateral stabilization. Using bifurcation analysis, bistability of two spatial patterning

149
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solutions is shown. Stochastic lattice simulations were used to demonstrate that this
bistability can result in the scattered distributions of cell with the primary cell fate
and that this allows for the modulation of cell type ratios. The results from chapter 5

shows that tissue-level phenomena such as the propagation of inductive waves provide
a level of control over cell fates, spatial patterns and cell type ratios that cannot be
understood from a single-cell perspective. These mechanisms can be exploited for
cellular reprogramming, as shown in chapter 6. In cases where multistability depends
on contact-mediated signals, selective perturbation of intercellular communication can
be used to induce lineage conversion, without the need for genetic overexpression.

This case study demonstrates that the coupling between dynamic models of gene
regulatory networks with cell-based models of cell-cell interactions provides useful
tools to understand cell fate decisions as well as their spatial distribution. Moreover,
it shows that spatial coupling between cells is an important determinant of cell fates
and can be used to direct cell fates.

These results have already been used in a review on the role of models to understand
the molecular regulation of pancreatic β-cell mass350 and within a wider theoretical
analysis of cell-cell communication through Notch-Delta-Jagged signaling159,160. In ad-
dition, these results can have various practical applications for stem cell biology and
cellular reprogramming and recent reports in stem cell biology show exciting new
results in this direction. For instance, it was shown that the initial seeding density in-
fluences the cell fate specification of human embryonic stem (ES) cells351; that control-
ling spatial structure of mouse ES cell colonies by micropatterning suffices to trigger
self-organized patterning into three germ lines352; and that mouse ES cells colonies,
depending on the correct size of the initial aggregate, can undergo spontaneous sym-
metry breaking and self-organize an axial organization and germ layers16. These recent
observations are still poorly understood and more experimental and theoretical work
is required. However, their explanation will most likely involve a combination of ge-
netic regulation and cell-cell communication. Therefore, the methods described in this
thesis provide a suitable theoretical framework to understand these phenomena. In a
recent proof-of-principle study, we have already begun to apply these tools to investi-
gate spatial expression patterns in mouse ES cells119.

The second case study focused on the morphogenesis of isolated endothelial cells
into connected vascular capillary networks. This was modeled by combining a cell-
based model of chemotactic cell migration with a reaction-diffusion system represent-
ing the diffusion and binding of a chemoattractant, VEGF, to the extracellular matrix.
Even though the chemoattractant was assumed to be produced homogeneously in
nearby tissues, computational simulation in chapter 8 showed that fine-grained net-
work patterns arise for a wide range of parameters, when binding to cell-modified
extracellular matrix molecules was assumed. The simulated networks show a striking
similarity to in vivo images of extraembryonic vascular plexus in quail embryos, as
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shows by quantitative morphometric analysis. Additionally, analysis of the dynamics
of network formation in our model showed that after initial coalescence, substantial
network remodeling occurs and that cell elongation is an emergent effect rather than
a driving force of network formation, both contrasting results in previous models. In
chapter 9, the paracrine model of vascular network formation was validated using a
quantitative analysis of the dynamics of VEGF binding in an in vitro assay of HUVEC in
Matrigel. As predicted, accumulation of fluorescent VEGF was observed in pericellular
regions. Moreover, FRAP analysis showed that VEGF dynamics in those areas cannot
be explained by diffusion, but fit well with a reaction-dominant that was derived from
the model. Quantitative measurements on VEGF diffusivity, decay, matrix binding and
unbinding were obtained experimentally and used for computational modeling. Sim-
ulation of the quantitative model confirmed the ability of network formation in the
paracrine model, under biophysically realistic parameters.

In this study, the model demonstrated that a spatially homogeneous signal can re-
sult in the establishment of complex tissue architectures. It highlights the role of the
extracellular matrix in this process as a storage for biochemical signaling factors apart
from its function to generate and direct biomechanical forces353, for which there is
more attention recently. The results of this case study have been recognized in a
number of subsequent computational studies and reviews on blood vessel develop-
ment242,244,249,264,336,340,354–358. Moreover, the result that matrix-retention of paracrine
chemotactic signals is a key regulator of vascular network formation can be relevant
for tissue engineering. The design of functional tissues and organs in vitro has so far
been limited to thin tissues, because vascularization remains the main obstacle to ob-
tain more complex functional tissues315,359,360. One of the key approaches to promote
vascularization of engineered tissue is through the design of functionalized bioma-
terials that mimic biochemical properties of the extracellular matrix359,361. Instead of
functionalization with VEGF directly, our modeling work rather suggests enrichment
of VEGF binding sites, together with means for cells to induce VEGF signaling from
the matrix-stored VEGF such as addition of RGD peptides that are known to stimulate
VEGF signaling through interaction with integrins266,362. More specific suggestions,
however, would require detailed data-driven modeling of the molecular interactions
at the membrane-matrix interface, which is still outstanding.

The models used in these case studies are deliberately kept simple. In both stud-
ies, the system was reduced to two spatial dimensions, involved only two levels of
organization, ignored important aspects such as tissue growth and proliferation and
conveniently neglected possible interactions between induction and morphogenesis.
Nevertheless, these modeling studies embody the key modeling methodologies of
multicellular systems biology of development: (1) Integration of processes and mod-
eling formalisms at multiple levels of biological organization, using the cell as the
fundamental unit of abstraction. (2) Establishment of dynamic multiscale models from
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piecemeal and descriptive experimental data. (3) Progression from theoretical first-
principle studies towards quantitative modeling of developmental systems. (4) Itera-
tion of computational modeling and experimental validation to establish quantitative
models. Moreover, they have demonstrated novel uses of several key techniques in
addition to multiscale model simulation: (1) Bifurcation analysis to examine the stabil-
ity of tissue-level patterns and thereby to investigate how cell fate stability depends
on cell-cell communication. (2) In silico experimentation to explore systems behavior
and generate predictions. (3) Quantification of computational models by in vitro mea-
surements and calibration of unknown model parameters by replicating published
quantitative experimental studies. (4) Image-based morphometric analysis of network
morphologies to assess the similarity of simulation results and in vivo observations.

Importantly, model simplicity is not a weakness, but an asset. Although the new
methodological and technological tools in multicellular systems biology enable the
construction of large-scale integrative quantitative models, whether such inclusive
models generate new biological insights is doubtful. The power of modeling lies in
exclusion and abstraction rather than inclusion and realism. The aim of modeling is
to find the minimal set of mechanisms at the relevant levels of organization to ex-
plain a particular phenomenon. Thus, paradoxically, reduction is of key importance in
integrative modeling.

The middle-out modeling strategy, combined with the cell-centered perspective, pro-
vide the guidelines for this reduction. Even at the cellular level, aspects such as cell
shape, motility and intercellular communication are only explicitly modeled when re-
quired for the mechanism under investigation, or to explore their possible effects on
the biological phenomenon. Models of processes at lower and higher levels, e.g. intra-
cellular regulatory dynamics or extracellular morphogens, are coupled to the cellular
level insofar as they are hypothesized to affect the behavioral or mechanical properties
of the cell. Whether or not to include an additional process or submodel should not
be motivated by presumed improvements in realism. Instead, the criterion is whether
the extended model increases its ability to be used to explore the consequences of
new interactions. Thus, the quality of a model is not related to its realism, but to its
usefulness, as aptly phrased by George Box above349.

future perspectives

Multicellular systems biology of development is an emerging field and its methodolo-
gies and techniques, as presented in this thesis, offer ample room for consolidation
and improvement. Here, I highlight three directions and challenges for future research
that I deem important to foster the maturation of this field of study.
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Open standards in multicellular systems biology

With the increasing complexity of computational models, the transparency, repro-
ducibility and exchange of simulation models is a growing concern. In molecular
systems biology, the definition of free and open standard exchange formats to rep-
resent biochemical networks such as SBML (Systems Biology Markup Language93)
have boosted research over the last decade. It has facilitated model exchange between
software as well as users, and the establishment of repositories of such standardized
models (i.e. EBI Biomodels database) have provided a platform for knowledge transfer
and promoted incremental progress in modeling biochemical networks.

Unfortunately, no standard exchange format exists for multicellular systems biology.
Therefore, current models of multicellular systems are limited to the specific software
platform in which they are developed. This obstructs reproducibility of published re-
sults, comparison of results obtained in different formalisms and software, and the
free exchange of models and knowledge between researchers. The recent publication
of a Cell Behavior Ontology363 takes a first step by defining a structured language
to describe cellular behaviors. However, it does not provide a way to translate these
behaviors into computational models, let alone a conversion between different com-
putational models and software platforms. And so far, none of the software platforms
discussed in chapter 2 supports this ontology.

In a recent paper94, we identified that one of the key challenges in the standardiza-
tion of multicellular models is the fact that, in most software platforms, computational
models are implemented using one of several procedural programming languages (e.g.
C++, Java, Fortran, Python) rather than described in a declarative markup language
(e.g. XML). Yet, such a separation of a model from its implementation, i.e. abstrac-
tion of what a model does from how it is simulated, is a necessary condition to define
exchangeable and platform-independent model descriptions118.

With the formulation of MorpheusML, the model description language used in
Morpheus (see section 1), we have shown that it is possible to define a declarative
domain-specific language specifically designed to flexibly describe multiscale multi-
cellular models. Within Morpheus, this declarative language provides the additional
benefits of enabling model editing in a graphical user interface without programming,
facilitating model sharing between users, allowing automatic validation of model con-
sistency and enabling semantic model integration. Structurally, MorpheusML is simi-
lar to SBML, as indicated by the fact that SBML models can be converted automatically.
Therefore, MorpheusML can provide a prime example for the future development of
a standard exchange format for multicellular systems biology.



154 conclusions

Image-based modeling

Microscopy images are the predominant source of data for multicellular systems biol-
ogy and provide both the needs and the means for computational modeling. Recent
advances in multichannel, 3D time-lapse imaging and automated, quantitative image
analysis are rapidly delivering high-quality quantitative data on multiple levels of or-
ganization. There are a number of key challenges for the effectively use of image data
to provide new insight into developmental processes.

Multicellular modeling increasingly depends on quantitative imaging in several
ways. Quantitative image analysis is used to constrain model parameters to realistic
values, i.e. cell division rates can be computed from BrdU labeling and, as in chapter
9, reaction-diffusion parameters may be obtained from FRAP analysis. Segmented im-
age data can also be used directly to define initial or boundary conditions of objects
in a computational models. And, importantly, validation of computation models often
relies on quantitative image analysis, such as the direct morphometric comparison of
simulation results with experimental observations, as in chapter 8.

Despite the increasing reliance of multicellular models on images and image-based
quantitative data, there is a lack of methods and software tools that facilitate this
pipeline. Therefore, establishing new tools for image-based modeling is a key topic
for future development. As an initial step towards the integration with image analy-
sis software, we have enabled the import of segmented TIFF images in Morpheus to
define boundary conditions or initial cell configurations. Additionally, the export of
simulation results in the form of TIFF image stacks for post hoc analysis enables the
direct comparison of images obtain in vitro and in silico using the same pipeline for
quantitative image analysis, as we have recently demonstrated in a study on spatial
heterogeneity of embryonic stem cells119.

Although common data formats are important, a tighter integration scheme in which
image analysis can be conducted during model simulation will open up various new
opportunities such as efficient optimization of model parameters for ’fitting’ model
behavior to still or time-lapse images.

A less conventional but interesting combination of image analysis and modeling lies
in the in silico generation of ground truth data sets to assess the quality of image anal-
ysis methods. Given the growing complexity of image processing algorithms, the need
to measure and compare their performance on complex image data become increas-
ingly dominant. Although a number of benchmark problems have been recently estab-
lished364, these are mostly 2D problems and largely based on manual segmentation
and tracking. This approach is insufficient to measure the performance of algorithms
of 3D imaging of large specimen21,365,366, for which researchers are now resorting to
computer-generated volume renderings to act as ground truth data sets366. While this
works well for static 3D images, it cannot be used to generate artificial time-lapse
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data sets that require a model for cellular behavior. Computational modeling of mul-
ticellular systems can provide helpful tools to generate articial image data of tissue
development through time for which the underlying mechanisms and parameter are
completely known. These can then be used as ground truth data to assess the quality,
in terms of sensitivity and accuracy, of the image analysis algorithms and statistical
analysis.

Morphodynamics

As outlined in the introduction (chapter 1), one of the major current challenges in
developmental biology is understand how cell fate specification, patterning and mor-
phogenesis interact to give rise to the self-organization of tissues. As this involves si-
multaneously taking into account the dynamic interactions between genetic, chemical
and mechanical signals, multiscale computational modeling is an invaluable method
to formulate hypotheses and provide testable predictions on such interactions.

In the case studies presented in this thesis, these interactions have been investigated
only in part. For reasons of simplicity and tractability, cell motility was largely ignored
in the study on pancreatic cell fate decisions (with the exception of section 5.3.5), and
the effects of cell fate differentiation and maturation were neglected in the study on
vascular morphogenesis. However, the modeling framework as presented in chapter
2 as well as its implementation in the modeling environment Morpheus (chapter 3)
readily support such computational studies in so-called morphodynamics12,27,28.

Indeed, there is a growing number of studies that use computational simulation
to investigate complex developmental processes by explicitly accounting for dynami-
cal interactions between genetic, chemical and mechanical processes at the molecular,
cellular and tissue level. These work already covers a wide range of problems in de-
velopmental biology, such as the effects of cell packing and mechanical deformations
on planar cell polarity104,367; the effect of cell motility on phase synchronization dur-
ing segmentation14,368; the interactions between lateral inhibition, apoptosis and ad-
hesion during mosaic patterning369; the role of cell rearrangements on sprouting an-
giogenesis370; the interaction between gene regulation and tissue mechanics in tooth
development371; the feedback between hormone transport and tissue growth during
phyllotactic patterning in plants372; and the interplay between mechanics, directed cell
migration, cell lineage decisions and clonal competition in the formation of intestinal
crypt organoids373,374.

Undoubtedly, the coming years will show a fast increase in the use of this type of
multiscale computational modeling now that enabling technologies such as dynamic
imaging, quantitative image analysis and multiscale simulation are becoming widely
available. Regardless whether it will proceed under the name of quantitative devel-
opmental biology26, computational morphodynamics27,28, cytosystems dynamics11 or
multicellular systems biology of development, these studies will help to elucidate how
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the network of interactions between genes, signals and cells gives rise to the self-
organizing regulation of tissue development. It is my hope that the studies, methods
and software presented in this thesis will contribute to this endeavor.
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A
A P P E N D I C E S

a.1 computational performance and scalability

The performance and scalability of simulations in Morpheus heavily depend on the
type of (multi-scale) model that is being simulated. It is therefore difficult to make gen-
eral statements on the computational efficiency. However, we can test the performance
on a set of “benchmark” models that form the modules from which more complex
model can be constructed.

We have tested the performance of ODE lattices, reaction-diffusion (PDE) models,
cellular Potts models (CPM) and a multiscale model (CPM + PDE), using the available
Example models. The results show the execution time and memory consumption for
these models as well as their scalability in terms of problem size and scalability in
terms of efficiency of multi-threading.

Methods

Measurements

To quantify performance, we measured the following aspects for each simulation. Ex-
ecution time in terms of the wall time, using the C++ function gettimeofday() avail-
able in <sys/time.h>. The execution time does not include the time needed for ini-
tialization, analysis and visualization. Memory usage in terms of the physical memory
(RAM) used by the simulation, using the resident set size (RSS) from the /proc/self/stat
pseudo-file.

Simulations

The models and the variation of problem sizes are shown in table A.1. For ODE models,
not the number of variables, but the domain size (=number of cells) is varied. For PDE
models, the domain sizes is increased. For CPM simulations, the number of cells is
varied, keeping a constant domain size. Note that edgelist tracking is used, such that
the number of updates scales with total size of cell boundary instead of lattice size. For
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Table A.1.: Simulations used for performance and scalability tests.

ODE

Cells 25 100 400 2500 10000 40000

PDE

Lattice 202 502 1002 2002 5002 10002

CPM

Cells 100 200 400 1000 2000 4000

CPM+PDE

Lattice 402 1002 2002 4002 10002

Cells 8 50 200 800 5000

CPM+PDE models, both domain size and cell number are increased proportionally,
such that the cell density remains constant.

All models are simulated without analysis and visualization tools and execution
time is measured from StartTime to StopTime. The time for initialization is excluded
because this vanishes for large jobs. All simulations were performed on a Intel Core
i7-860 vPro with 4 cores, 8 threads with (hyperthreading), 2.8 GHz clock speed, 8 MB
cache and 20 GB RAM memory.

Results

Scalability with problem size

We investigated the scalability with respect to problem size to see how performance
in terms of the execution time and memory usage (RAM) scales with increasing pop-
ulation size or lattice size. We calculate both the execution time and memory usage
in absolute and relative terms. In absolute terms, the time is recorded in seconds (sec)
and memory in megabytes (MB). In relative terms, the time and memory is divided by
the number of cells or lattice site in millisecond (msec) / kilobyte (kB). Performance
in absolute sense gives a sense of the problems sizes that are practically manageable
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within certain time and memory constraints. Performance in relative sense shows the
scalability of the simulation for problem sizes. Ideally, the performance per cell or
lattice site stays constant or decreases with increasing problem sizes.

The results are shown in table A.2. The left column shows that absolute execution
time scales approximately linearly with problem size, as expected. Moreover, the abso-
lute memory usage is not a limiting factor in any of the tested simulations. Even the
maximum total memory usage, found for the largest CPM+PDE simulation (5000 cells,
1 · 106lattice sizes), is well below the200 Mb. The right column with results, relative to
the domain size or cell number, shows that for the ODE and PDE simulations, the
execution time per cell or lattice site does not increase with problem size, thus demon-
strating perfect scalability. The CPM and CPM+PDE simulations, however, show a
small increase in execution time per cell or lattice size for large simulations, suggest-
ing a poorer scalability for large simulations. This can be explained by an more than
proportional increase in cell-cell interface length in larger simulations, requiring more
computations.

Efficiency of parallel processing

We have also measured the scalability with respect to the number of openMP threads
to see how the performance scale with the number of concurrent threads. We measured
the execution time for each of the simulation run on in 1, 2, 4, 6 threads. Comparison of
these execution times shows the speed-ups that can be achieved by adding concurrent
threads.

The results, in table A.3, show that PDE simulation are the most efficiently paral-
lelized. For 2 threads, simulations are almost twice as fast. However, using 6 threads,
simulations are only 3.5 times faster. This may be related to the fact that only the reac-
tion step is parallelized, whereas the diffusion step is not. ODE simulations have only
moderate benefit from multithreading. This is related to the fact that exchanging val-
ues from/to neighboring cells, rather than the computation of the intracellular ODEs,
is a bottleneck in these simulations. The CPM simulations show no speed-up at all,
because CPM simulations are not parallelized. In fact, a small slow-down is shows,
due to the overhead of multithreading. Finally, the CPM+PDE simulations show only
moderate speed-up, which combines the presence resp. absence of benefits of parallel
computing in PDE and CPM simulations.

a.2 observation limit for a frap experiment

An initial homogenous distribution of exogenous VEGF was observed to accumulate
around HUVECs. To investigate the dynamics of exogenous VEGF in those areas close
to the cell membrane, a small circular ROI (approximately 10 µm2) was photobleached
and the recovery of the fluorescence was observed every 3 seconds. This Appendix
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Table A.2.: Performance results for varying problem sizes.
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Multithreading

Execution time (red) and speed-up (blue) as a

function of number of openMP threads
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Table A.3.: Scalability with varying number of threads.
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Figure A.1.: Diffusion in a circular region after photobleaching. The evolution in time of the
concentration of fluorescent VEGF is shown with respect to the radial distance
from the optical axis. After photobleaching, the concentration profile inside the
circular region (r < a) increases from zero to c0 in 3 seconds.

shows that under these experimental conditions, the estimated diffusion of VEGF in
Matrigel, (eq. 9.7), is too fast to be detected. To do that, one can use an analytical
formula for the concentration of the fluorescent molecule after photobleaching. Then,
one can substitute therein the particular size and the estimated diffusion coefficient
of VEGF and look at the time evolution of the concentration in the time scale of the
experiment. More precisely, the concentration, u, of the fluorescent molecule is given
by Jacobson’s formula333:

u(r, t) = u0

(
1−

exp(−r2/4Dt)

2Dt

ˆ a
0

exp(−r ′2/4Dt)I0

(
rr ′

2Dt

)
r ′dr ′

)
, (A.1)

where D is the diffusion of the molecule, r is the distance from the optical axis, t is
time, a is the radius of the bleached ROI, u0 is the initial concentration for all r > a,
and I0 is the modified Bessel function of the first kind of order zero. Figure A.1 shows
the time evolution of the concentration u in eq. A.1 using the estimated diffusion
coefficient shown in eq. 9.7, and the size of the ROI, a, used in figure 9.3B. Note
that already after 3 seconds, the time interval between measurements in this FRAP
experiment, the concentration is almost uniform and very close to the concentration of
the fluorescence outside the ROI, u0. Therefore, the recovery due to diffusion of free
VEGF is not captured in this experiment.
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a.3 derivation of the frap recovery curve

In general, the equations describing the binding reaction (eq. 9.1) also incorporate
diffusion:

∂u

∂t
= Du∆u− konus+ koffb (A.2)

∂s

∂t
= Ds∆s− konus+ koffb (A.3)

∂b

∂t
= Db∆b+ konus− koffb (A.4)

where u = [VEGFu], s = [ECMs] and b = [VEGFb] denote the corresponding con-
centrations. These equations can be simplified by a number of assumptions that are
applicable in the situation under consideration331. A first simplifying assumption is
that binding sites are part of a large, relatively immobile complex, at least on the
time- and lenght-scale of the FRAP measurement. Then, diffusion of binding sites and
bound complexes can be ignored, i.e, Ds = Db = 0. Another simplifying assumption
is based on the fact that fluorescence molecules and binding sites are typically at a
constant level within the time window in which the FRAP experiment is performed
(from seconds to several minutes). Accordingly, we can assume that the system has
reached equilibrium before photobleaching. We denote the corresponding equilibrium
concentrations of VEGFu,ECMs and VEGFb by Ueq,Seq and Beq. Althought the act
of bleaching changes the number of visible free and complexed molecules VEGFu or
VEGFb, it does not change the number of free binding sites. Therefore s = Seq is a
constant throughout the photobleaching recovery. This allows us to eliminate equation
A.3 and also replace the variable s in eq. A.2 and A.4 with the constant Seq. As a result,
we can define a pseudo-first-order rate constant as k∗on = konSeq. Then, equations A.2,
A.3, A.4 reduce to:

∂u

∂t
= Du∆u− k∗onu+ koffb (A.5)

∂b

∂t
= k∗onu− koffb (A.6)

While an analytical solution for A.5 and A.6 can be obtained331, here a particular
case of that model is used that adequately describes the recovery of the fluorescence
in a tiny bleached area near a HUVEC cell. This particular case is commonly known in
this context as a reaction-dominant model and describes a scenario where diffusion is
very fast compared both to binding and to the timescale of FRAP measurements331. In
other words, diffusion is not detected in the FRAP recovery, as discussed in Appendix
A.2. As a consequence, one can assume that the concentration of free molecules in-
stantly equilibrate after the bleach, i.e., u = Ueq. Thus, equation A.5 disappears and
equation A.6 becomes:
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∂b

∂t
= −koffb+ k

∗
onUeq (A.7)

Note that the second term on the right hand side in this equation is constant. The
solution for this first-order linear equation is given by:

b(t) = (k∗onUeq/koff) +Ae
−kofft (A.8)

In order to evaluate the constant A in eq. A.8 recovery data can be normalize to lie
between 0 and 1. More precisely, we assume that after normalization the concentration
of fluorescence in the bleached zone is zero, i.e., b(0) = 0. Then, A = −k∗onUeq/koff,
which leads to:

b(t) = k∗onUeq/koff
(
1− e−kofft

)
(A.9)

Due to normalization, we also assume:

Ueq +Beq = 1 (A.10)

Equation A.9 yields the behaviour only for the bound complex of the fluorescent pro-
tein. Total fluorescence, instead, is given by:

frap(t) = b(t) + u(t) = Ueq + k
∗
onUeq/koff

(
1− e−kofft

)
(A.11)

Before the bleach, as noted above, the system is at equilibrium, and U and B have
achieved steady-state values, Ueq and Beq, then:

∂u

∂t
=
∂b

∂t
= 0 ⇒ k∗onUeq = koffBeq ⇒ k∗onUeq/koff = Beq (A.12)

Finally, using equations A.10, A.11 and A.12, we obtain:

frap(t) = u(t) + b(t) = 1−
k∗on

k∗on + koff
e−kofft (A.13)

This last equation A.13 is the reaction-dominant model used to fit the FRAP recovery
data in the ROI in proximity of HUVECs as shown in figure 9.3, b4.
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