1,680 research outputs found

    Design and implementation of robust embedded processor for cryptographic applications

    Get PDF
    Practical implementations of cryptographic algorithms are vulnerable to side-channel analysis and fault attacks. Thus, some masking and fault detection algorithms must be incorporated into these implementations. These additions further increase the complexity of the cryptographic devices which already need to perform computationally-intensive operations. Therefore, the general-purpose processors are usually supported by coprocessors/hardware accelerators to protect as well as to accelerate cryptographic applications. Using a configurable processor is just another solution. This work designs and implements robust execution units as an extension to a configurable processor, which detect the data faults (adversarial or otherwise) while performing the arithmetic operations. Assuming a capable adversary who can injects faults to the cryptographic computation with high precision, a nonlinear error detection code with high error detection capability is used. The designed units are tightly integrated to the datapath of the configurable processor using its tool chain. For different configurations, we report the increase in the space and time complexities of the configurable processor. Also, we present performance evaluations of the software implementations using the robust execution units. Implementation results show that it is feasible to implement robust arithmetic units with relatively low overhead in an embedded processor

    Fault Detection in Crypto-Devices

    Get PDF

    Relationship between problem-based learning experience and self-directed learning readiness

    Get PDF
    Tun Hussein Onn University of Malaysia (UTHM) has been implementing Problem-Based Learning (PBL) to some degree in various subjects. However, to this day no empirical data has been gathered on the effectiveness of PBL as a methodology to develop self-directed learning (SDL) skills. The purpose of this \ud study is to investigate self-directed learning readiness (SDLR) among UTHM students exposed to vaiying PBL exposure intensity. SDLR was measured using the modified version of Self-Directed Learning Readiness (SDLRS). Participants in this study were first-year undergraduate students at UTHM. The instrument was administrated to students in Electrical and Electronics Engineering, Civil and Environmental Engineering, and Technical Education (N=260). Data were analyzed using descriptive and inferential statistical techniques with analysis of variance (ANOVA) and the independent /'-test for equal variance for hypotheses testing. The results of this study indicate that overall SDLR level increase with PBL exposure up to exposure intensity twice, beyond which no increase in SDLR was observed with increase in PBL exposure. Within the same academic programme, results did not show a statistically significant difference of SDLR level between groups exposed to varying PBL exposure intensity. However, significant difference was found in some dimensions of the SDLR for the Technical Education students. Within the same education background, results did not show a statistically significant difference of SDLR level between groups exposed to varying PBL intensity. However, significant difference was found in some dimensions of the SDLR for students with both Matriculations and STPM background. A statistically significant difference of SDLR level was found between Electrical Engineering and Technical Education students for exposure once and in some SDLR dimensions. No statistically significant difference was found between students from different academic programme for exposure twice or thrice. The data supports the conclusion that SDLR level increases with increase in PBL exposure intensity up to a certain extent only, beyond which no increase of SDLR can be observed. The data also suggest that only certain dimensions of the SDLR improve with increased exposure to PBL

    Secure Cryptographic Algorithm for a Fault Tolerant model in Unmanned Aerial Vehicles

    Get PDF
    AES (Advanced Encryption Standard), provides the highest level of security by utilizing the strongest 128 bit Al-gorithm to encrypt and authenticate the data. AES commercial security algorithm has proved to be effective in Unmanned Aerial vehicles which is used for military purpose such as enemy tracking , environmental monitoring meteorology, map making etc .The demand to protect the sensitive and valuable data transmitted from UAV ( Unmanned Aerial Vehicles ) to ground has increased in Defense and hence the need to use onboard encryption . In order to avoid data corruption due to single even upsets (SEU’s) a novel fault tolerant model of AES is presented which is based on the Hamming error cor-rection code. For this work a problem was chosen that first addresses the encryption of UAV imaging data using the effi-cient AES CBC mode .A detailed analysis of the effect of single even upsets (SEUs) on imaging data during on-board encryption is carried out. The impact of faults in the data oc-curring during transmission to ground due to noisy channels is analyzed .The performance for the above fault tolerant model is measured using power and throughput

    A Multiple Bit Parity Fault Detection Scheme for The Advanced Encryption Standard Galois/Counter Mode

    Get PDF
    The Advanced Encryption Standard (AES) is a symmetric-key block cipher for electronic data announced by the U.S. National Institute of Standards and Technology (NIST) in 2001. The encryption process is based on symmetric key (using the same key for both encryption and decryption) for block encryption of 128, 192, and 256 bits in size. AES and its standardized authentication Galois/Counter Mode (GCM) have been adopted in numerous security-based applications. GCM is a mode of operation for AES symmetric key cryptographic block ciphers, which has been selected for its high throughput rates in high speed communication channels. The GCM is an algorithm for authenticated encryption to provide both data authenticity and confidentiality that can be achieved with reasonable hardware resources. The hardware implementation of the AES-GCM demands tremendous amount of logic blocks and gates. Due to natural faults or intrusion attacks, faulty outputs in different logic blocks of the AES-GCM module results in erroneous output. There exist plenty of specific literature on methods of fault detection in the AES section of the AES-GCM. In this thesis, we consider a novel fault detection of the GCM section using parity prediction. For the purpose of fault detection in GCM, two independent methods are proposed. First, a new technique of fault detection using parity prediction for the entire GCM loop is presented. Then, matrix based CRC multiple-bit parity prediction schemes are developed and implemented. As a result, we achieve the fault coverage of about 99% with the longest path delay and area overhead of 23% and 10.9% respectively. The false alarm is 0.12% which can be ignored based on the number of injected faults

    Design and evaluation of countermeasures against fault injection attacks and power side-channel leakage exploration for AES block cipher

    Get PDF
    Differential Fault Analysis (DFA) and Power Analysis (PA) attacks, have become the main methods for exploiting the vulnerabilities of physical implementations of block ciphers, currently used in a multitude of applications, such as the Advanced Encryption Standard (AES). In order to minimize these types of vulnerabilities, several mechanisms have been proposed to detect fault attacks. However, these mechanisms can have a signi cant cost, not fully covering the implementations against fault attacks or not taking into account the leakage of the information exploitable by the power analysis attacks. In this paper, four different approaches are proposed with the aim of protecting the AES block cipher against DFA. The proposed solutions are based on Hamming code and parity bits as signature generators for the internal state of the AES cipher. These allow to detect DFA exploitable faults, from bit to byte level. The proposed solutions have been applied to a T-box based AES block cipher implemented on Field Programmable Gate Array (FPGA). Experimental results suggest a fault coverage of 98.5% and 99.99% with an area penalty of 9% and 36% respectively, for the parity bit signature generators and a fault coverage of 100% with an area penalty of 18% and 42% respectively when Hamming code signature generator is used. In addition, none of the proposed countermeasures impose a frequency degradation, in respect to the unprotected cipher. The proposed work goes further in the evaluation of the proposed DFA countermeasures by evaluating the impact of these structures in terms of power side-channel. The obtained results suggest that no extra information leakage is produced that can be exploited by PA. Overall, the proposed DFA countermeasures provide a high fault coverage protection with a low cost in terms of area and power consumption and no PA security degradation

    ASSESSING AND IMPROVING THE RELIABILITY AND SECURITY OF CIRCUITS AFFECTED BY NATURAL AND INTENTIONAL FAULTS

    Get PDF
    The reliability and security vulnerability of modern electronic systems have emerged as concerns due to the increasing natural and intentional interferences. Radiation of high-energy charged particles generated from space environment or packaging materials on the substrate of integrated circuits results in natural faults. As the technology scales down, factors such as critical charge, voltage supply, and frequency change tremendously that increase the sensitivity of integrated circuits to natural faults even for systems operating at sea level. An attacker is able to simulate the impact of natural faults and compromise the circuit or cause denial of service. Therefore, instead of utilizing different approaches to counteract the effect of natural and intentional faults, a unified countermeasure is introduced. The unified countermeasure thwarts the impact of both reliability and security threats without paying the price of more area overhead, power consumption, and required time. This thesis first proposes a systematic analysis method to assess the probability of natural faults propagating the circuit and eventually being latched. The second part of this work focuses on the methods to thwart the impact of intentional faults in cryptosystems. We exploit a power-based side-channel analysis method to analyze the effect of the existing fault detection methods for natural faults on fault attack. Countermeasures for different security threats on cryptosystems are investigated separately. Furthermore, a new micro-architecture is proposed to thwart the combination of fault attacks and side-channel attacks, reducing the fault bypass rate and slowing down the key retrieval speed. The third contribution of this thesis is a unified countermeasure to thwart the impact of both natural faults and attacks. The unified countermeasure utilizes dynamically alternated multiple generator polynomials for the cyclic redundancy check (CRC) codec to resist the reverse engineering attack

    Fault-Resilient Lightweight Cryptographic Block Ciphers for Secure Embedded Systems

    Get PDF
    The development of extremely-constrained environments having sensitive nodes such as RFID tags and nano-sensors necessitates the use of lightweight block ciphers. Indeed, lightweight block ciphers are essential for providing low-cost confidentiality to such applications. Nevertheless, providing the required security properties does not guarantee their reliability and hardware assurance when the architectures are prone to natural and malicious faults. In this thesis, considering false-alarm resistivity, error detection schemes for the lightweight block ciphers are proposed with the case study of XTEA (eXtended TEA). We note that lightweight block ciphers might be better suited for low-resource environments compared to the Advanced Encryption Standard, providing low complexity and power consumption. To the best of the author\u27s knowledge, there has been no error detection scheme presented in the literature for the XTEA to date. Three different error detection approaches are presented and according to our fault-injection simulations for benchmarking the effectiveness of the proposed schemes, high error coverage is derived. Finally, field-programmable gate array (FPGA) implementations of these proposed error detection structures are presented to assess their efficiency and overhead. The proposed error detection architectures are capable of increasing the reliability of the implementations of this lightweight block cipher. The schemes presented can also be applied to lightweight hash functions with similar structures, making the presented schemes suitable for providing reliability to their lightweight security-constrained hardware implementations
    • …
    corecore