53 research outputs found

    Parallelization of an Unsteady ALE Solver with Deforming Mesh Using OpenACC

    Get PDF

    Interactive 3D simulation for fluid–structure interactions using dual coupled GPUs

    Get PDF
    The scope of this work involves the integration of high-speed parallel computation with interactive, 3D visualization of the lattice-Boltzmann-based immersed boundary method for fluid–structure interaction. An NVIDIA Tesla K40c is used for the computations, while an NVIDIA Quadro K5000 is used for 3D vector field visualization. The simulation can be paused at any time step so that the vector field can be explored. The density and placement of streamlines and glyphs are adjustable by the user, while panning and zooming is controlled by the mouse. The simulation can then be resumed. Unlike most scientific applications in computational fluid dynamics where visualization is performed after the computations, our software allows for real-time visualizations of the flow fields while the computations take place. To the best of our knowledge, such a tool on GPUs for FSI does not exist. Our software can facilitate debugging, enable observation of detailed local fields of flow and deformation while computing, and expedite identification of ‘correct’ parameter combinations in parametric studies for new phenomenon. Therefore, our software is expected to shorten the ‘time to solution’ process and expedite the scientific discoveries via scientific computing

    A high-performance open-source framework for multiphysics simulation and adjoint-based shape and topology optimization

    Get PDF
    The first part of this thesis presents the advances made in the Open-Source software SU2, towards transforming it into a high-performance framework for design and optimization of multiphysics problems. Through this work, and in collaboration with other authors, a tenfold performance improvement was achieved for some problems. More importantly, problems that had previously been impossible to solve in SU2, can now be used in numerical optimization with shape or topology variables. Furthermore, it is now exponentially simpler to study new multiphysics applications, and to develop new numerical schemes taking advantage of modern high-performance-computing systems. In the second part of this thesis, these capabilities allowed the application of topology optimiza- tion to medium scale fluid-structure interaction problems, using high-fidelity models (nonlinear elasticity and Reynolds-averaged Navier-Stokes equations), which had not been done before in the literature. This showed that topology optimization can be used to target aerodynamic objectives, by tailoring the interaction between fluid and structure. However, it also made ev- ident the limitations of density-based methods for this type of problem, in particular, reliably converging to discrete solutions. This was overcome with new strategies to both guarantee and accelerate (i.e. reduce the overall computational cost) the convergence to discrete solutions in fluid-structure interaction problems.Open Acces

    Implementation of a general algorithm for incompressible and compressible flows within the multi-physics code Kratos and preparation of fluid-structure coupling

    Get PDF
    This diploma thesis deals with the implementation of a fluid solver for incompressible and compressible flows within the multi-physics framework Kratos. The presentation of this environment based on the finite element method (FEM) and an introduction to multidisciplinary problems in general are the starting point of this work and help understanding the following steps more easily. Originating from the basic conservation equations for mass, momentum and energy, the Euler equations for inviscid flow are derived. In this context some approximations are presented that avoid the solution of the energy equation and allow the use of a general approach for the simulation of incompressible, slightly compressible and barotropic flow. The implementation of the incompressible case is outlined step-by-step: Having discretized the continuous problem, a fractional step scheme is presented in order to uncouple pressure and velocity components by a split of the momentum equation. Emphasis is placed on the nodal implementation using an edge-based data structure. Moreover, the orthogonal subscale stabilization - necessary because of the finite element discretization - is explained very briefly. Subsequently, the solver is extended to compressible regime mentioning the respective modifications. For validation purposes numerical examples of incompressible and compressible flows in two and three dimensions round of this first part. In a second step, the implemented flow solver is prepared for the fluid-structure coupling. After presenting solving procedures for multi-disciplinary problems, the arbitrary Lagrangian Eulerian (ALE) formulation is introduced and the conservation equations are modified accordingly. Some preliminary tests are performed, particularly with regard to mesh motion and adjustment of the boundary conditions. Finally, expectations for the envisaged fluid-structure coupling are brought forward

    Implementation of a general algorithm for incompressible and compressible flows within the multi-physics code KRATOS and preparation of fluid-structure coupling

    Get PDF
    This diploma thesis deals with the implementation of a fluid solver for incompressible and compressible flows within the multi-physics framework Kratos. The presentation of this environment based on the finite element method (FEM) and an introduction to multidisciplinary problems in general are the starting point of this work and help understanding the following steps more easily. Originating from the basic conservation equations for mass, momentum and energy, the Euler equations for inviscid flow are derived. In this context some approximations are presented that avoid the solution of the energy equation and allow the use of a general approach for the simulation of incompressible, slightly compressible and barotropic flow. The implementation of the incompressible case is outlined step-by-step: Having discretized the continuous problem, a fractional step scheme is presented in order to uncouple pressure and velocity components by a split of the momentum equation. Emphasis is placed on the nodal implementation using an edge-based data structure. Moreover, the orthogonal subscale stabilization - necessary because of the finite element discretization - is explained very briefly. Subsequently, the solver is extended to compressible regime mentioning the respective modifications. For validation purposes numerical examples of incompressible and compressible flows in two and three dimensions round of this first part. In a second step, the implemented flow solver is prepared for the fluid-structure coupling. After presenting solving procedures for multi-disciplinary problems, the arbitrary Lagrangian Eulerian (ALE) formulation is introduced and the conservation equations are modified accordingly. Some preliminary tests are performed, particularly with regard to mesh motion and adjustment of the boundary conditions. Finally, expectations for the envisaged fluid-structure coupling are brought forward.Preprin

    Parallel Overlapping Schwarz Preconditioners for Incompressible Fluid Flow and Fluid-Structure Interaction Problems

    Get PDF
    Efficient methods for the approximation of solutions to incompressible fluid flow and fluid-structure interaction problems are presented. In particular, partial differential equations (PDEs) are derived from basic conservation principles. First, the incompressible Navier-Stokes equations for Newtonian fluids are introduced. This is followed by a consideration of solid mechanical problems. Both, the fluid equations and the equation for solid problems are then coupled and a fluid-structure interaction problem is constructed. Furthermore, a discretization by the finite element method for weak formulations of these problems is described. This spatial discretization of variables is followed by a discretization of the remaining time-dependent parts. An implementation of the discretizations and problems in a parallel C++ software environment is described. This implementation is based on the software package Trilinos. The parallel execution of a program is the essence of High Performance Computing (HPC). HPC clusters are, in general, machines with several tens of thousands of cores. The fastest current machine, as of the TOP500 list from November 2019, has over 2.4 million cores, while the largest machine possesses over 10 million cores. To achieve sufficient accuracy of the approximate solutions, a fine spatial discretization must be used. In particular, fine spatial discretizations lead to systems with large sparse matrices that have to be solved. Iterative preconditioned Krylov methods are among the most widely used and efficient solution strategies for these systems. Robust and efficient preconditioners which possess good scaling behavior for a parallel execution on several thousand cores are the main component. In this thesis, the focus is on parallel algebraic preconditioners for fluid and fluid-structure interaction problems. Therefore, monolithic overlapping Schwarz preconditioners for saddle point problems of Stokes and Navier-Stokes problems are presented. Monolithic preconditioners for incompressible fluid flow problems can significantly improve the convergence speed compared to preconditioners based on block factorizations. In order to obtain numerically scalable algorithms, coarse spaces obtained from the Generalized Dryja-Smith-Widlund (GDSW) and the Reduced dimension GDSW (RGDSW) approach are used. These coarse spaces can be constructed in an essentially algebraic way. Numerical results of the parallel implementation are presented for various incompressible fluid flow problems. Good scalability for up to 11 979 MPI ranks, which corresponds to the largest problem configuration fitting on the employed supercomputer, were achieved. A comparison of these monolithic approaches and commonly used block preconditioners with respect to time-to-solution is made. Similarly, the most efficient construction of two-level overlapping Schwarz preconditioners with GDSW and RGDSW coarse spaces for solid problems is reported. These techniques are then combined to efficiently solve fully coupled monolithic fluid-strucuture interaction problems
    • …
    corecore