

INTERNATIONAL CENTER FOR NUMERICAL METHODS IN ENGINEERING

Implementation of a General

Algorithm for Incompressible and
Compressible Flows within the

Multi-Physics code KRATOS and
Preparation of Fluid-Structure

Coupling

M. May

R. Rossi
E. Oñate

Publication CIMNE Nº-327, November 2008

Implementation of a General
Algorithm for Incompressible and

Compressible Flows within the
Multi-Physics code KRATOS and

Preparation of Fluid-Structure
Coupling

M. May
R. Rossi

E. Oñate

Publication CIMNE Nº-327, November 2008

International Center for Numerical Methods in Engineering
Gran Capitán s/n, 08034 Barcelona, Spain

Statutory Declaration

I hereby formally declare that I myself have written the enclosed diploma thesis indepen-
dently. I did not use any sources or means without declaration in the text; any thoughts
from others or literal quotations are clearly marked.
To the best of my knowledge and belief, I con�rm that this thesis, either completely or in
parts, has not been previously submitted to achieve an academic grading elsewhere.

Munich, 16th May 2008

Markus May, Student-ID #2456241

Acknowledgements

This diploma thesis has been created in cooperation with the International Center for
Numerical Methods in Engineering (CIMNE) at the Universitat Politècnica de Catalunya
in Barcelona.

First of all, I would like to thank Prof. Eugenio Oñate, director of the CIMNE, for the
opportunity of doing my diploma thesis in Barcelona and for the very professional and
inspiring working environment at his institute. In this context I would like to express my
special gratitude to Dr. Riccardo Rossi for the neverending encouragement, the technical
advice and the interest in my work. Furthermore, I want to thank Dr. Enrique Ortega and
Dr. Mariano Vazquez for their explanations on the simulation of compressible �ows and
Dr. Pooyan Dadvand for his support regarding programming issues in Kratos. In addition,
Prof. Roberto Flores always o�ered a helping hand providing his knowledge on aerospace
engineering. I also found a very patient advisor in Prof. Ramon Codina who helped me
in answering di�cult mathematical questions and whose o�ce has always been open to
me.

At the Technische Universität München, Prof. Dr.-Ing. Wolfgang A. Wall, head of the Chair
of Computational Mechanics, and Dr.-Ing. Volker Gravemeier spontaneously assured their
support for the project and established the contact to their aforementioned Spanish col-
leagues, which I would like to sincerely thank them for. Especially I would like to mention
my advisor Dr.-Ing. Christiane Förster who guided the project at my home university and
whose advice helped a lot in �nishing this thesis.

Aparte de la asistencia profesional, quiero dar las más afectuosas gracias a mis colegas de
investigación como también a mis compañeros de piso por un tiempo agradable y divertido
en Cataluña así como por una integración que no hubiera podido ser mejor.

En outre, j'aimerais remercier à tout ceux qui m'ont accompagné pendant ma formation
et la connaissance desquels j'ai pu faire au cours de mes études. Soit à la Technische

vi

Universität München soit à l'École Centrale Paris dans le cadre du programme double-
diplôme TIME (Top Industrial Managers for Europe), merci beaucoup pour les moments
merveilleux passés ensemble ainsi que les expériences extrêmement enrichissantes.

Darüber hinaus fühle ich mich überglücklich, so viele gute Freunde zu Hause zu haben,
die den Kontakt auch in der Ferne nie haben abreiÿen lassen und mir die Rückkehr immer
wieder zu einem einzigartigen Erlebnis gemacht haben.

Der gröÿte Dank gilt jedoch mit Sicherheit meiner Familie � in ganz besonderem Maÿe
meinen Eltern und meinem Bruder, die mich während meines kompletten Studiums bedin-
gungslos unterstützt und mir stets den nötigen Rückhalt gegeben haben. Ohne sie wäre
vieles nicht in der Art möglich gewesen, so dass ich letztendlich auch nicht hier stünde.

Abstract

This diploma thesis deals with the implementation of a �uid solver for incompressible and
compressible �ows within the multi-physics framework Kratos. The presentation of this
environment based on the �nite element method (FEM) and an introduction to multi-
disciplinary problems in general are the starting point of this work and help understanding
the following steps more easily.

Originating from the basic conservation equations for mass, momentum and energy, the
Euler equations for inviscid �ow are derived. In this context some approximations are
presented that avoid the solution of the energy equation and allow the use of a general
approach for the simulation of incompressible, slightly compressible and barotropic �ow.
The implementation of the incompressible case is outlined step-by-step: Having discretized
the continuous problem, a fractional step scheme is presented in order to uncouple pres-
sure and velocity components by a split of the momentum equation. Emphasis is placed on
the nodal implementation using an edge-based data structure. Moreover, the orthogonal
subscale stabilization � necessary because of the �nite element discretization � is explained
very brie�y.
Subsequently, the solver is extended to compressible regime mentioning the respective mod-
i�cations. For validation purposes numerical examples of incompressible and compressible
�ows in two and three dimensions round o� this �rst part.

In a second step, the implemented �ow solver is prepared for the �uid-structure cou-
pling. After presenting solving procedures for multi-disciplinary problems, the arbitrary
Lagrangian Eulerian (ALE) formulation is introduced and the conservation equations are
modi�ed accordingly.
Some preliminary tests are performed, particularly with regard to mesh motion and adjust-
ment of the boundary conditions. Finally, expectations for the envisaged �uid-structure
coupling are brought forward.

Contents

1. Introduction 1

1.1. Multi-Physics in general... 1
1.2. ... and Fluid-Structure Interaction in particular 1
1.3. Organization of the Document . 2

2. KRATOS � Multi-Physics FEM Environment 3

2.1. Multi-Disciplinary Problems . 3
2.1.1. Weak and Strong Coupling . 4
2.1.2. Interaction over Boundary and Domain 5

2.2. General Structure of Kratos . 5
2.2.1. Object-Oriented Approach . 6
2.2.2. Multi-Layer Design . 7
2.2.3. Python Interface . 7

2.3. GiD Pre- and Postprocessor . 10
2.3.1. Preparation of the Model . 11

3. Fluid Solver � Implementation and Validation 13

3.1. Motivation . 13
3.2. Governing Equations in Fluid Dynamics . 14

3.2.1. Basic Conservation Equations . 14
3.2.2. Navier-Stokes Equations . 19
3.2.3. Euler Equations . 19

3.3. Edge-Based Data Structure . 21
3.3.1. Nodal Implementation . 21
3.3.2. Compressed-Sparse-Row Format . 23
3.3.3. Laplacian Operator . 25
3.3.4. Gradient and Transposed Gradient 25
3.3.5. Consistent and Lumped Mass Matrix 27

3.4. Implementation for Incompressible Flows . 28

x Contents

3.4.1. Problem Statement . 28
3.4.2. Discretization . 29
3.4.3. Fractional Step Algorithm . 32
3.4.4. Stabilization Techniques . 33
3.4.5. Solving Procedure and Boundary Conditions 35

3.5. Expansion for Compressible Flows . 37
3.5.1. Modi�cations . 37
3.5.2. Generalization of the Algorithm . 38
3.5.3. Modi�ed Fractional Step Scheme . 38
3.5.4. General Solving Procedure . 39

3.6. Numerical Examples . 41
3.6.1. Cube with Quiescent Water . 41
3.6.2. Air�ow around a Cylinder . 42
3.6.3. NACA 0012 Airfoil . 46
3.6.4. ONERA M6 Wing . 49

4. Preparation of Fluid-Structure Coupling 51

4.1. Solving Procedures for Coupled Problems 51
4.1.1. Sequential Solution . 51
4.1.2. Monolithic Approach . 52
4.1.3. Staggered Methods . 53

4.2. Arbitrary Lagrangian-Eulerian Description 55
4.2.1. Lagrangian vs. Eulerian Description 55
4.2.2. ALE � Generalization of both Approaches 56
4.2.3. ALE Form of Conservation Equations 60

4.3. Preliminary Tests . 63
4.3.1. Geometric Conservation Law . 63
4.3.2. Implementation of Boundary Conditions 65
4.3.3. Interface Variables . 66

4.4. Expectations . 67

5. Conclusion 69

5.1. Résumé of Results . 69
5.2. Future Prospects . 69

A. Python Script for ALE Simulation Run 71

B. C++ Source Code to Compute Edge Data 77

C. Kratos Arts 81

References 82

List of Figures

2.1. A general multi-disciplinary problem consisting of two subsystems 4
2.2. Example of a weakly coupled system . 4
2.3. Example of a strongly coupled system . 4
2.4. Boundary interaction in a �uid-structure problem 5
2.5. Domain interaction in a thermal-�uid problem 5
2.6. Main classes de�ned in Kratos . 6
2.7. Division of Kratos' structure into layers . 8
2.8. Geometry de�nition, mesh generation and visualization of results in GiD . . 10
2.9. De�nition of boundary conditions in GiD 11

3.1. Build-up of edge contributions from element data 22
3.2. Cube with quiescent water � geometry and problem de�nition 41
3.3. Pressure distribution of quiescent water under the in�uence of gravity . . . 41
3.4. Air�ow around a cylinder � geometry and problem de�nition 42
3.5. Validation of the gradient implementation 42
3.6. Incompressible air�ow around a cylinder . 43
3.7. Compressible air�ow around the cylinder - pressure at the stagnation point 44
3.8. Zoom on the boundary layer of the cylinder in compressible air�ow 45
3.9. NACA 0012 airfoil � geometry and problem de�nition 46
3.10. Fine mesh for the boundary layer of the airfoil 46
3.11. Pressure coe�cient on the airfoil contour at Ma = 0 47
3.12. Typical contour �ll of the pressure coe�cient Cp at Ma = 0 47
3.13. Streamlines on the NACA 0012 airfoil . 48
3.14. Pressure coe�cient on the airfoil contour at Ma = 0.3 48
3.15. ONERA M6 wing � a tridimensional test case 49

4.1. Sequential solution of a weakly coupled problem 52
4.2. Monolithic scheme for a strongly coupled problem 52
4.3. Techniques for staggered methods . 54

xii List of Figures

4.4. A typical staggered method for solving a two-way coupled system 55
4.5. Comparison of classical kinematical approaches 56
4.6. Lagrangian, Eulerian and ALE mesh and particle motion in one dimension . 57
4.7. Transformations between material, spatial and referential con�guration . . . 58
4.8. Geometric conservation law � tests on a moving grid 64
4.9. GCL � extreme positions of the moving mesh 65
4.10. Periodic cycle of mesh motion according to an arbitrary function 65
4.11. Slip condition in the case of a moving contour 66

1
Introduction

1.1. Multi-Physics in general...

A wide range of scienti�c and engineering tasks possess an interdisciplinary character.
This means multiple physical models are underlying and have to be considered simultane-
ously in order to simulate the temporal development of a certain phenomenon adequately.
Well-known examples are thermal stress, electromechanic interaction, �uid-structure in-
teraction, �uid �ow with heat transport and chemical reactions, electromagnetic �uids
(magnetohydrodynamics or plasma) and electromagnetically induced heating.

These multi-physics problems typically involve solving coupled systems of partial di�eren-
tial equations. Considering industrial applications with a considerable number of degrees
of freedom, one can imagine that there are very high requirements for cpu power as well as
for memory allocation. Although computer performance has been continuously increasing
during the last decade, the vision of real-time aircraft or Formula One race car simulations
is still far away. Tradeo�s have to be made between computational time and accuracy of
the obtained results. In this context parallelization and the use of reduced order models
play a decisive role to decrease the computational e�ort.

1.2. ... and Fluid-Structure Interaction in particular

A sigini�cant subcategory is the already mentioned �uid-structure interaction (FSI) that
will be partially focused on in this work. It occurs when a �uid interacts with a solid
structure, exerting pressure on it which may cause deformation in the structure and thus
alter the �ow of the �uid itself. Such interactions may be stable or oscillatory and are a
crucial consideration in the design of many engineering systems.
Failing to consider the e�ects of FSI can be catastrophic, especially in large scale structures
and those comprising materials susceptible to fatigue. The Tacoma Narrows suspension
bridge is probably one of the most infamous examples of large-scale failure, the aeroelastic
phenomenon of �utter on aircraft wings another one.

2 Chapter 1 Introduction

Aside from its destructive potential, FSI is responsible for countless useful e�ects in engi-
neering. It allows fans and propellers to function; sails on marine vehicles to provide thrust;
aerofoils on racecars to produce downforce, and our lungs to in�ate when we breathe.

In general, the program to simulate FSI problems involves a structural and a �uid solver
that are coupled by a certain interface in order to exchange variables and parameters. In
the case of Kratos � a multi-disciplinary framework based on the �nite element method
� very potent modules for static and dynamic analysis of structures have already been
implemented. Consequently, the aim of this work was the development of a �uid solver,
capable of handling incompressible and compressible �ows (as far as the sound barrier is
not exceeded), and the preparation of the application for �uid-structure coupling.

1.3. Organization of the Document

This diploma thesis describes the implementation of an algorithm for incompressible and
compressible �ows in subsonic regime within a multi-disciplinary FEM framework. After-
wards, this �uid solver is prepared for the coupling with existing structural applications.
Following this idea, the layout of the document is organized as follows:

Chapter 2 classi�es multi-disciplinary problems and gives an overview of Kratos as �nite
element framework for such a type of simulations.

Chapter 3 details the implementation of a general algorithm for incompressible and com-
pressible �ows within Kratos, focussing on the construction of an edge-based data
structure and de�ning a starting point on parallelization issues. Numerical examples
are given for validation purposes.

Chapter 4 describes modi�cations of the �uid solver due to the arbitrary Lagrangian Eu-
lerian formulation of the equations of motion, which are necessary for preparing the
�uid-structure coupling. Moreover, basic tests with moving meshes are performed.

Chapter 5 recapitulates the implementation of the algorithm as well as the obtained results
in order to draw conclusions and to hint at future spheres of action.

2
KRATOS � Multi-Physics FEM Environment

Based on the de�nition of multi-disciplinary problems and on their classi�cation, essential

background information on the structure of the �nite element framework Kratos is given.

This overview is necessary to understand the implementation of applications and the cou-

pling of �ow and structural solvers in the following chapters.

Beyond that, its interface with the pre- and post-processor GiD and the handling of simu-

lation runs by Python scripts are presented.

2.1. Multi-Disciplinary Problems

Since the objective of this work is the extension of Kratos, the purpose of this environment
shall be focused on �rst, that is to say the tackling multi-disciplinary problems. Di�erent
de�nitions exist for this term, but usually searching for a multi-disciplinary solution is
referred to as solving a coupled system of di�erent physical models together � a collection
of dependent problems put together building up a complex model. Nevertheless, a more
general de�nition shall be used here: solving a model which consists of components with
di�erent formulations and algorithms interacting together. It is important to mention that
this di�erence may come not only from the di�erent physical nature of the problems but
also from their type of mathematical modeling or discretization.
A �eld is a subsystem of a multi-disciplinary model characterized by certain mathematical
equations and conditions. More precisely a �uid �eld is considered in the following chapters,
building up the FSI problem together with a structure �eld. Accordingly a domain is the
part of the modeled space governed by the respective �eld equation.

The de�nition given above includes a variety of problems, each of them with its proper
characteristics. Di�erent classi�cations are possible to categorize them, re�ecting e.g. the
kind of interaction between subsystems or the type of domain interfaces.
As these aspects were important in the design of Kratos (Dadvand, 2007), they are illus-
trated in the following.

4 Chapter 2 KRATOS � Multi-Physics FEM Environment

2.1.1. Weak and Strong Coupling

Considering a simple multi-disciplinary problem with two interacting subsystems S1 and
S2 as shown in Figure 2.1. The calculation of the respective solutions u1(t) and u2(t) under
applied forces F (t) is up to the type of dependency between the subsystems.

Figure 2.1: A general multi-disciplinary problem consisting of two subsystems

Weak Coupling Only one domain depends on the other one, which can be solved indepen-
dently. That is why this type is also called one-way coupling. A thermal-structure
problem is a good example where the material's property of the structure depends
on the temperature while the thermal �eld can be solved independently, assuming
that the temperature change due to structural deformation is very small. Figure 2.2
shows this type of coupling.

Figure 2.2: Example of a weakly coupled system

Strong Coupling Each subsystem depends on the other one, ruling out the seperate so-
lution. Hence this type is also referred to as two-way coupling. The �uid-structure
interaction problems for structures with large deformations fall into this category.
The structural deformation is caused by the pressure resulting from the �uid �ow on
the one hand, whereas velocity and pressure of the �uid depend on the shape of the
deformed structure on the other hand. Figure 2.3 shows this type of coupling.

Figure 2.3: Example of a strongly coupled system

2.2 General Structure of Kratos 5

2.1.2. Interaction over Boundary and Domain

Apart from the type of dependency the classi�cation also may be done on where the
di�erent subsystems interact with each other.

Interaction over Boundary In this category the interaction occurs at the domain bound-
aries. In a �uid-structure interaction problem as shown in Figure 2.4 the coupling
of the two subsystems appears only on the boundary faces whereas interior points of
each subsystem are not a�ected directly.

Figure 2.4: Boundary interaction in a �uid-structure problem

Interaction over Domain This category includes problems where domains can overlap to-
tally or partially. Combustion processes or the thermal-�uid problem illustrated in
Figure 2.5 are good examples. In the heating pipe the thermal domain overlaps the
�uid domain.

Figure 2.5: Domain interaction in a thermal-�uid problem

2.2. General Structure of Kratos

Kratos is an open source C++ framework to perform multi-disciplinary simulations based
on the Finite Element Method (FEM). Therefore it provides several tools for easy imple-

6 Chapter 2 KRATOS � Multi-Physics FEM Environment

mentation of �nite element applications as well as a common platform for natural inter-
action of these modules in di�erent ways. Kratos has been set up at the International
Center for Numerical Methods in Engineering (CIMNE) in Barcelona and is currently
being enhanced further, this work representing one of the recent extensions.

In order to enable the implementation of di�erent sets of algorithms and formulations
within this context, a general approach has been followed during its design process pro-
viding the necessary �exibility and extensibility (Dadvand, 2007). As a result, Kratos
adresses itself to a variety of users ranging from developers (�nite element experts as well
as application developers) to engineers and designers using the package as a whole without
getting involved in the programming.

2.2.1. Object-Oriented Approach

The main goal of an object-oriented structure is to split the whole problem into several
objects and to de�ne their interfaces. With regard to the simulation of multi-disciplinary
problems using FEM, the objects de�ned in Kratos are based on a general �nite element
methodology. Figure 2.6 illustrates the main classes.

Figure 2.6: Main classes de�ned in Kratos

Vector, Matrix and Quadrature are designed by basic numerical concepts. Node, Element,
Condition and Dof are de�ned directly from �nite element concepts. Model, Mesh and
Properties are coming from practical methodology used in �nite element modeling com-
pleted by ModelPart and SpatialContainer for a better organization of all necessary
analysis data. IO, LinearSolver, Process and Strategy are representing the di�erent
steps of �nite element program �ow. Finally, Kernel and Application handle the library
management and de�ne Kratos' interface.

2.2 General Structure of Kratos 7

2.2.2. Multi-Layer Design

Kratos uses a multi-layer approach, in which each object only interfaces with other objects
in its layer or in layers below this one. Thereby dependencies inside the program get
reduced, helping in the maintenance of the code on the one hand and clarifying the tasks
for developers on the other hand. Figure 2.7 shows the multi-layer nature of Kratos being
geared to the various user groups. For a better understanding the individual layers are
presented hereafter using a bottom-up approach:

Basic Tools Layer holds all basic tools used in Kratos, that is mathematical de�nitions,
solving procedures and build-up of data structures. In order to maximize their per-
formance, advanced techniques in C++ are essential in this layer.

Base Finite Element Layer contains the ingredients that are necessary to implement a
�nite element formulation. The objects Element, Node, Properties, Condition and
Degrees of freedom are de�ned here and in a manner of speaking hidden from the
�nite element developers.

Finite Element Layer is restricted to the basic and average features of language and uses
the two layers below to optimize the performance without entering into details.

Data Structures Layer contains all objects organizing the data structure. This layer will
be a�ected by the nodal based implementation requiring an edge-based data structure
in compressed sparse row format.

Base Algorithms Layer provides the components building the extendible structure for al-
gorithms.

User's Algorithms Layer contains all classes implementing the di�erent algorithms in Kratos.
In this layer the general algorithm for compressible and incompressible �ows will be
placed.

Applications' Interface Layer holds all objects that manage Kratos and its relation with
other applications. Within this scope the new �uid application using the foremen-
tioned algorithm will be de�ned.

Applications Layer contains the interface of certain applications with Kratos.

Scripts Layer provides a set of input/output scripts that can be used to activate respec-
tively deactivate certain functionalities or to implement di�erent algorithms from
outside Kratos. As Python scripts have been used to handle our simulation runs, an
example is given in the following section.

2.2.3. Python Interface

The use of Python start scripts for simulations has proven to be very convenient as it
allows the user to adapt the program to his special needs, which is extremely useful during
debugging an application or problem solving. Furthermore, nearly any parameter (e.g.
tolerance values, initial and boundary conditions, etc.) can be changed �on the �y� without
having to recompile the whole C++ source code.

8 Chapter 2 KRATOS � Multi-Physics FEM Environment

Figure 2.7: Division of Kratos' structure into layers

2.2 General Structure of Kratos 9

Whereas a complete Python script for a �ow simulation on a moving mesh is appended
to this document (A), the most relevant sections are given below in order to illustrate the
mentioned advantages:

Listing 2.1: Easy access to simulation parameters by a Python start script

64 ###

65 # settings to be changed ...

66

67 #INITIALIZE FLUID DOMAIN

68 for node in model_part.Nodes:

69 #change properties and initial values

70 initial_velocity = 1.0

71 node.SetSolutionStepValue(VELOCITY_X ,0, initial_velocity)

72 node.SetSolutionStepValue(VELOCITY_Y ,0 ,0.0)

73 node.SetSolutionStepValue(VELOCITY_Z ,0 ,0.0)

74 pressure = 20 - (0.1 * node.X)

75 node.SetSolutionStepValue(PRESSURE ,0,pressure)

76

77 #CHANGE BOUNDARY CONDITIONS

78 #boundary flags:

79 #1 - Velocity Inlet (Dirichlet)

80 #2 - No -Slip Condition (Dirichlet)

81 #3 - Slip Condition (Dirichlet)

82 #4 - Pressure & Slip Node

83 #5 - Pressure Inlet/Outlet (Neumann)

84 for node in model_part.Nodes:

85 #change no-slip condition to slip boundary

86 if(node.GetSolutionStepValue(IS_BOUNDARY) == 2.0)

87 node.SetSolutionStepValue(IS_BOUNDARY) == 3.0

88 #set boundary values

89 if(node.GetSolutionStepValue(IS_BOUNDARY) == 1.0):

90 inlet_velocity = 10.0

91 node.SetSolutionStepValue(VELOCITY_X ,0, inlet_velocity)

92 if(node.GetSolutionStepValue(IS_BOUNDARY) == 4.0 or node.

GetSolutionStepValue(IS_BOUNDARY) == 5.0):

93 pressure_outlet = node.GetSolutionStepValue(PRESSURE)

94 node.SetSolutionStepValue(EXTERNAL_PRESSURE ,0, pressure_outlet)

95

96 #SET FURTHER VALUES

97 #time step size and output interval

98 dt = 0.01

99 n_steps= 1000

100 out = 1

101 output_step = 10

102 #stop criteria for iteration

103 tolerance = 1e-3

104 abs_tol = 1e-6

105 n_it_max = 100

106

107 # ...all settings defined

108 ###

10 Chapter 2 KRATOS � Multi-Physics FEM Environment

2.3. GiD Pre- and Postprocessor

To perform the above-named multi-disciplinary simulations, input data describing the con-
sidered model � its geometry, its material properties as well as basic conditions and pa-
rameters � have to be de�ned. For this purpose GiD, the universal pre- and postprocessor
developed and distributed by CIMNE, has been used. Providing the user with a graphical
interface, it has been designed as an adaptive tool for geometrical modelling, data input
and visualisation of results for all types of numerical simulation programs.

Figure 2.8: Geometry de�nition, mesh generation and visualization of results in GiD

Figure 2.8 illustrates the di�erent steps surrounding the proper simulation process:

Geometry description - Apart from de�ning the two- respectively three-dimensional ge-
ometry of the model manually by points, lines and surfaces, multiple data formats
from standard Computer Aided Design (CAD) software tools can be imported.

Mesh generation - Having assigned quality and spacing criteria of the mesh to geomet-
rical entities, the user can dispose of various options. He has the choice between
structured meshes for linear and quadratic elements, automatically generated un-
structered meshes and semi-structured volume meshes (structured in one direction),
including triangular, quadrilateral, hexahedral, prism and tetrahedral elements. Fur-
ther editing utilities like mesh re�nement by splitting elements, edge collapses and
smoothing are also available.

Visualization of results - Once the simulation has been run, results can be visualized by
all kinds of graphs: counter and vector plots, deformed geometry shapes, isosurfaces
and stream lines to name just the most popular ones. Moreover animated sequences
can be recorded and time relevant data can be extracted to perform further operations
like the fast Fourier transform (FFT). Once more, data exchange with common post-
processing tools like STL, NASTRAN and TECPLOT is possible.

2.3 GiD Pre- and Postprocessor 11

One of GiD's main objectives is its adaptive character willing to provide a compatible
interface to any kind of numerical simulation program, independant of the employed code
(�nite element, �nite volume, �nite di�erence, meshless). To successfully tackle this re-
quirement, a so-called problemtype has to be designed for each application, de�ning elective
properties and conditions as well as format conversion options. Up to now, such problem-
types exist for applications in solid and structural mechanics, �uid dynamics, heat transfer,
electromagnetics and geomechanics.

2.3.1. Preparation of the Model

First of all, the geometry of the model is de�ned by points, lines, surfaces and volumes.
Then a material is selected and the characteristics of domain and its boundaries have to be
de�ned. For the implemented �ow solver it is crucial to choose only the elements Fluid2D
and Fluid3D for the two- respectively three-dimensional domain under �Fluid Element
Type�. Forthermore the boundary conditions Condition2D and Condition3D under �Fluid
Boundary Condition� have to be set. As the boundary generally is divided into several
distinctive parts, the Kratos �ag variable IS_BOUNDARY is used to indicate

0 interior points,

1 a velocity inlet,

2 no-slip conditions,

3 slip conditions,

4 slip/pressure nodes and

5 a pressure outlet.

Figure 2.9 shows an example for the de�nition of the boundary �ag that will be used within
the algorithm to di�erentiate between the respective boundary types. Be careful with the
corners of the domain as it might be necessary to set the value for the respective corner
points separately.

Figure 2.9: De�nition of boundary conditions in GiD

Finally, the domain is meshed and the calculation �les necessary to start the simulation
run are written.

3
Fluid Solver � Implementation and Validation

In this chapter the implementation of a �ow solver within the multi-physics code KRATOS

is exposed step-by-step.

Starting with the derivation of the Euler equations for incompressible �ow, the �nite ele-

ment method is applied for spatial discretization. Using a fractional step scheme, pressure

and velocity components are uncoupled.

To avoid certain redundancies of information, many simple element-based �ow solvers are

su�ering from (due to the cost of indirect addressing operations), an edge-based data struc-

ture has been chosen. Thus, the attention of one section will be directed to the necessary

changes in storage and access of edge-based data as well as to the calculation of edge con-

tributions to the global system matrices.

Furthermore the algorithm is expanded to compressible �ow in subsonic regime. Finally,

for validation purpose, numerical �ow simulations of two- and three-dimensional test cases

are performed.

3.1. Motivation

Introduced in the late 1950s in the aircraft industry, the �nite element method has emerged
as one of the most powerful numerical methods so far devised. Its main assets, having led
to widespread acceptance and popularity, are

• the ease in modeling complex geometries,

• the consistent treatment of di�erential type boundary conditions and

• the possibility to be programmed in a �exible and general purpose format.

Standard �nite element approximations are based upon the Galerkin formulation of the
method of weighted residuals. This formulation has proven eminently successful in ap-
plication to problems in solid/structural mechanics and in other situations, such as heat
conduction, which is governed by a di�usion-type equation. This can be explained by the
fact that, when applied to problems governed by self-adjoint elliptic or parabolic partial

14 Chapter 3 Fluid Solver � Implementation and Validation

di�erential equations, the Galerkin �nite element method leads to symmetric sti�ness ma-
trices. In this case the di�erence between the �nite element solution and the exact solution
is minimized with respect to the energy norm.
However, in the case of �uid �ow problems based on kinematical descriptions other than
Lagrangian, non-symmetric convection operators appear in the formulation and thus the
best approximation property in the energy norm of the Galerkin method is lost when con-
vection dominates the transport process. In practice, Galerkin solutions to these problems
are often corrupted by spurious node-to-node oscillations. As severe mesh and time step
re�nement clearly would undermine the practical utility of the method, stabilization tech-
niques have to be applied. Moreover, in truly transient situations, space-time coupling
is particularly crucial due to the directional character of propagation of information in
hyperbolic problems (Donea and Huerta, 2003).

3.2. Governing Equations in Fluid Dynamics

The motion of �uid substances such as gases and liquids is determined by the Navier-
Stokes equations named after Claude-Louis Navier and George-Gabriel Stokes. They
represent a set of non-linear partial di�erential equations establishing a relation among the
rates of change of velocity and pressure. Strictly spoken they only state the conservation of
momentum so that, depending on the �ow properties, further conservation laws for mass
and energy are necessary to fully describe the motion.
In addition boundary and initial conditions have to be prescribed adequately in order to
close the initial boundary value problem. It can be distinguished between

1. Dirichlet, prescribing the value of the unknown function,

2. Neumann, imposing the normal gradient, and

3. Robin, prescribing a combination of the unknown function and its gradient why this
type is often refered to as mixed boundary condition.

3.2.1. Basic Conservation Equations

Mass Conservation

The conservation of mass contained in a material volume (a volume permanently containing
the same particles of the continuum under consideration) is a fundamental law of Newtonian
mechanics. According to Donea and Huerta (2003) it can be written as

dM

dt
=

d

dt

∫
Vm(t)

ρdV = 0, (3.1)

where the mass M is expressed by a volume integral of the �uid density ρ.
The material time derivative of the integral of a scalar function f(x, t) over the time-varying

3.2 Governing Equations in Fluid Dynamics 15

material volume Vm(t) is given by the Reynolds transport theorem:

d

dt

∫
Vm(t)

f(x, t)dV =
∫
Vc≡Vm(t)

∂f(x, t)
∂t

dV +
∫
Ac≡Am(t)

f(x, t)u · ndA, (3.2)

which holds for smooth functions f(x, t). The volume integral on the right-hand side
is de�ned over a control volume Vc (�xed in space) coinciding with the moving material
volume Vm(t) at the considered instant t in time. Similarly, the �xed control surface Ac
coincides at time t with the closed surface Am(t) bounding the material volume Vm(t).
In the surface integral, u denotes the material velocity of points on the boundary Am(t)
whereas n is the unit outward normal to the surface Am(t) at the considered instant.
Applied to the law of mass conservation, equation (3.1) can be rewritten in the following
form:

dM

dt
=
∫
Vm(t)

∂ρ

∂t
dV +

∫
Am(t)

ρu · ndA =
∫
Vm(t)

(
∂ρ

∂t
+ ∇ · (ρu)

)
dV = 0. (3.3)

Since this relation is independent of the choice of the volume Vm(t), the integrand must
be identically zero. Hence

∂ρ

∂t
+ ∇ · (ρu) = 0 (3.4a)

at all points in the �uid. A di�erent form of this equation is obtained by expanding the
divergence term and considering that two of the terms together make up the material
derivative of the density.

dρ

dt
+ ρ∇ · u = 0 (3.4b)

Apart frommass-conservation equation equation (3.4) is also termed continuity equation.

Momentum Conservation

The momentum equation can be derived from Newton's second law (Wikipedia � The Free
Encyclopedia):

�The alteration of motion is ever proportional to the motive force impressed,

and is made in the direction of the right line in which that force is impressed.�

Applied to �ows this statement reads that changes in momentum in a chosen volume of
�uid are equal to the sum of all forces F acting on this selected volume, including for
example dissipative viscous forces (similar to friction), changes in pressure, gravity and
other forces acting inside the �uid (Candel, 2005)

d

dt

∫
Vm(t)

ρudV = F . (3.5)

In general, a portion of �uid is acted upon by both volume and surface forces:

16 Chapter 3 Fluid Solver � Implementation and Validation

1. Denoting by g the volume force per unit mass of �uid, the total volume force on the
selected portion of �uid is ∫

Vm(t)
ρgdV. (3.6a)

2. The k-component of the surface force exerted across a surface element of area dA and
normal n is given by σklnldA � using the summation convention on repeated indices
� so that the total force exerted on the selected portion of �uid by the surrounding
matter can be expressed in terms of the Cauchy stress as∫

Am(t)
σklnldA =

∫
Vm(t)

∂σkl
∂xl

dV or
∫
Am(t)

σ · ndA =
∫
Vm(t)

∇ · σdV. (3.6b)

From a physical point of view, the symmetric stress tensor σ can be divided up into
two parts once more:

σkl = −pδkl + τkl or σ = −pI + τ

a) a mean hydrostatic stress tensor −pI, which tends to change the volume of the
�uid in an isotropic manner and only depends on its thermodynamic state, and

b) a deviatoric component called the stress deviator tensor τ , which tends to dis-
tort the �uid and is essentially linked to its state of deformation.

Introducing equations (3.6) into (3.5) yields

d

dt

∫
Vm(t)

ρudV =
∫
Vm(t)

(ρg + ∇ · σ) dV. (3.7)

Making use of the Reynolds transport theorem again (this time in vector form), the left-
hand side of equation (3.7), that is to say the momentum for the portion of �uid of volume
Vm(t) enclosed by the material surface Am(t), can be expressed as

d

dt

∫
Vm(t)

ρudV =
∫
Vm(t)

∂(ρu)
∂t

dV +
∫
Am(t)

(ρu⊗ u) · ndA

=
∫
Vm(t)

(
∂(ρu)
∂t

+ ∇ · (ρu⊗ u)
)
dV.

(3.8)

The symbol ⊗ denoting the tensor product, the term ρu⊗u leads to another second-rank
tensor T = ρ[uluk] with l, k = 1, ..., ndim, whose divergence can be calculated component-
wise

[∇ · T]l :=
ndim∑
k=1

∂Tlk
∂xk

for l = 1, ..., ndim.

In this work we will use the indices k and l to indicate space dimensions, whereas i and j
are reserved for nodal values and shape functions. Furthermore the summation convention
is applied whenever repeated indices appear.

3.2 Governing Equations in Fluid Dynamics 17

Equating the right-hand sides of equations (3.7) and (3.8) writes the momentum balance
for the selected material volume of �uid, which accounts for both previous actions:∫

Vm(t)

(
∂(ρu)
∂t

+ ∇ · (ρu⊗ u)
)
dV =

∫
Vm(t)

(ρg + ∇ · σ) dV. (3.9)

This integral relation holds for all choices of the material volume Vm(t) so that we �nally
obtain the so-called equation of motion:

∂(ρu)
∂t

+ ∇ · (ρu⊗ u− σ) = ρg (3.10a)

Analog to the continuity equation (3.4) a second form of the momentum-conservation

equation exists, this time incorporating the material time derivative of the velocity:

ρ
du

dt
−∇ · σ = ρg. (3.10b)

One can easily deduce the non-linear character of the momentum equation (3.10) due to
the convective acceleration term (u ·∇)u coming from linearization and describing the
time independent acceleration of the �uid with respect to space. This represents a more
than signi�cant feature given that it does not only complicate the solution but also requires
a special treatment applying the �nite element method, as will be shown later on.

Energy Conservation and Equation of State

We note that velocity components uk, pressure p and density ρ are the independant vari-
ables in equations (3.4) and (3.10). Obviously, there is one variable too many for this
equation system to be capable of solution. However, if the density is assumed constant
(as in incompressible �ow) or if a single relationship linking pressure and density can be
established (as in isothermal �ow with small compressibility) the system becomes complete
and is solvable.

More generally, the state variables pressure p, density ρ and absolute temperature T are
related by an equation of state in the form of

ρ = ρ(p, T) (3.11)

For a hypothetical ideal gas this takes the form

ρ =
p

RT
respectively p = ρRT (3.12)

where R is the speci�c gas constant of the medium. In such a general case, it is necessary
to supplement the governing equation system by the equation of energy conservation. This
equation is indeed of interest even if it is not coupled, as it provides additional information
about the behaviour of the system.

18 Chapter 3 Fluid Solver � Implementation and Validation

According to (Zienkiewicz and Taylor, 2000), the total energy equation in terms of partial
time derivative reads

∂(ρe)
∂t

+ ∇ ·
(
(ρe+ p)u

)
− λ∇2T − qH + ∇ · (τ · u) = u · ρg (3.13)

where e is the total energy per unit mass of �uid and can be calculated as the sum of
internal and kinetic energy. Apart from the classical mechanical energies, energy transfer
due to conduction and chemical reactions have been taken into account as well as energy
dissipation due to internal stresses. Accordingly λ is the isotropic thermal conductivity
and qH represents the heat source terms speci�ed per unit volume. By the way, radiation
generally is con�ned to boundaries.

Nevertheless, we will not immerse in the derivation of this equation as our main focus lies
on a general approach for incompressible and compressible �ows in subsonic regime where
some simpli�cations are possible. First, a subsonic �ow is characterized by

Ma < 1 (3.14)

where the dimensionless Mach number

Ma =
|u|
c

(3.15)

is de�ned as the ratio of the module of the �uid velocity u and the positive quantity

c =
√

dp
dρ , known as the speed of sound in the medium. The Mach number, which is de�ned

locally, gives an idea of compressibility of the �ow at any given point. When incompressible
�ows are considered, density gradients are not related to pressure ones. In fact, density
is taken as a constant. In this case, the speed of sound can be considered as a constant,
much larger than the local convective velocity. On the other hand, in compressible �ow it
is a quantity that varies in space following changes in thermodynamic properties.

In this context we will introduce two approximations we will make use of later on (Vázquez
et al., 1999). In the case of slightly compressible �ows we will use the relation

dρ

dp
=

1
c2

(3.16)

to link density and pressure gradients by de�ning a constant value for the speed of sound.
Note that the incompressible case is included implicitely by considering c→∞.
The second simpli�cation concerns compressible barotropic �ows, that is to say �uids for
which there is an equation of state that involves only density and pressure, and not the
temperature. In general we write this equation as p = p(ρ), but we will particularize it to
the case

p = Aργ (3.17)

where A and γ, the adiabatic exponent, are physical constants. This situation is found
for example in the case of isentropic �ow of perfect gases and leads to the following
relation

dρ

dp
= γAργ−1 =

γp

ρ
. (3.18)

3.2 Governing Equations in Fluid Dynamics 19

3.2.2. Navier-Stokes Equations

The governing equations derived in the preceding sections can be written in the general
conservative form

∂V

∂t
+
∂F k

∂xk
+
∂Gk

∂xk
+Q = 0 (3.19)

in which the conservation equations for mass, momentum and energy provide the particular
entries to the vectors that presented below, for the sake of clarity once in indicial notation:

• the independent variable vector V =


ρ
ρu1

ρu2

ρu3

ρe

 , (3.20a)

• the convective �ux vector F k =


ρuk

ρu1uk + δ1kp
ρu2uk + δ2kp
ρu3uk + δ3kp
uk(ρe+ p)

 , (3.20b)

• the di�usion �ux vector Gk =


0
−τ1k

−τ2k

−τ3k

−τklul − λ ∂T
∂xk

 (3.20c)

• and the source term vector Q =


0
−ρg1

−ρg2

−ρg3

−ρglul − qH

 . (3.20d)

3.2.3. Euler Equations

The e�ects of viscosity and heat conduction are important in the immediate vicinity of solid
surfaces situated in the �ow domain or at its boundaries. The region in which viscosity
and conduction have to be taken into account is called boundary layer and represents a
very thin layer around the respective contour. Outside of the boundary layer the �ow may
be considered as the one of an ideal �uid. An ideal �uid is de�ned as inviscid, the tensor
of viscous forces disappearing in the conservation equations of the momentum.

Introducing the assumption of an inviscid �uid in the complete set of equations presented
in Equation (3.19) and neglecting the in�uence of heat conduction, a particular case is
obtained (G = 0) � known as Euler equations:

∂V

∂t
+
∂F k

∂xk
+Q = 0 (3.21)

20 Chapter 3 Fluid Solver � Implementation and Validation

where the arrays V , F k and Q are de�ned as before. Table 3.1 rewrites explicitely the
Euler equations for compressible �ows assuming that no heat source is present (qH = 0).

∂ρ

∂t
+ ∇ · (ρu) = 0 (3.22a)

∂(ρu)
∂t

+ ∇ · (ρu⊗ u+ pI) = ρg (3.22b)

∂(ρe)
∂t

+ ∇ ·
(
(ρe+ p)u

)
= u · ρg (3.22c)

Table 3.1: Set of Euler equations for compressible �ows

The above set is convenient and physically meaningful, de�ning the conservation of im-
portant quantities. Nevertheless, many alternative forms of the above equations are given
in literature, obtained by combinations of the various equations. Doing so, one shall keep
in mind that equations written in non-conservative form may yield incorrect, physically
unmeaningful, results in problems where shock discontinuities are present.
It is correct that the main interest of this work is the study of subsonic �ow, where this
shortcoming could be accepted for the time being. However, in the prospect of future
extension of the solver to supersonic regime, the conservative form will be used in order to
avoid misunderstandings.

For the sake of simplicity, the implementation will start with a solver for incompressible
�ows. In continuum mechanics an incompressible �ow is a solid or �uid �ow in which the
divergence of velocity u is zero. This is more precisely termed isochoric �ow:

∇ · u = 0. (3.23)

Note that isochoric as well as incompressible describe the �ow and do not refer to material
properties. However, using the incompressibility assumption in the continuity equation
(3.4) claims that the mass density is constant following the material element.

dρ

dt
+ ρ∇ · u =

dρ

dt
= 0 (3.24)

In this case of constant mass density, pressure and temperature are directly linked by the
equation of state (3.12) so that no energy equation is needed (see Table 3.2).

∇ · u = 0 (3.25a)
∂u

∂t
+ (u ·∇)u+

1
ρ
∇p = g (3.25b)

Table 3.2: Set of Euler equations for incompressible �ows

3.3 Edge-Based Data Structure 21

3.3. Edge-Based Data Structure

The motivation for implementing the Euler equations presented above in an nodal based
manner is twice. On the one hand, well-known properties of and experience with the �nite
element method can be used to full capacity. On the other hand, the use of an edge-based
data structure does not only enforce global conservation and symmetry at discrete level,
it also facilitates the matrix-vector multiplication by pre-calculating certain integrals.

3.3.1. Nodal Implementation

Considering a �nite element approximation with shape-functions Ni, the typical formation
of the right-hand side (RHS) requires the evaluation of integrals given by

ri =
∫
Nir(u)dΩ =

∑
elem

∫
Nir(Njuj)dΩel. (3.26)

These integrals operate on two sets of data:

• point-data for ri and ui, and

• element-data for volumes, shape functions and its derivatives.

The �ow of information is as follows:

1. gather point information into the element (e.g. ui),

2. operate on element-data to evaluate the integral in equation (3.26) and

3. scatter-add element RHS data to point-data in order to obtain ri.

For many simple �ow solvers operating on vector-machines, the e�ort in step 2 is be
minor compared to the cost of indirect addressing operations in steps 1 and 3 (Löhner,
2001). This problem may be overcome for low-order elements by changing the element-
based data structure into an edge-based one, which eliminates certain redundancies of
information. These can be highly demanding in terms of cpu-time: a study in Soto et al.
(2004) revealed that the FLOPs (�oating point operations) overhead ratio between an
element-based implementation and an edge-based one is approximately 2.5.
Moreover, a standard shared-memory parallelization of the elemental loop is complicated
because the contributions to the matrix term ij come from more than one element. Hence,
a kind of coloring algorithm would be necessary to avoid the simultaneous access of edge
data ij by elements in di�erent processors. By contrast the parallelization in the presented
edge-based implementation is straight-forward: two nested loops are performed, the main
loop � which is the one to parallelize � over the mesh points i and the inner one over its
neighbours j, connected by the edges ij. The contributions of edge ij are computed only
when the nodal point i is accessed so that no coloring algorithm is required. It is possible,
particularly with regard to the symmetry of Laplacian-like terms, to bene�t from this by
storing only half of the values. Nevertheless, this has not been realized in this work. In
order to facilitate the envisaged parallelization, edge ji (accessed only for the nodal point
j) is considered di�erent from edge ij.

22 Chapter 3 Fluid Solver � Implementation and Validation

The idea of a nodal implementation (Codina and Folch, 2004) with an edge-based data
structure is to express all contributions in terms of∫

Ω
NiNjdΩ,

∫
Ω

∂Ni

∂xk

∂Nj

∂xl
dΩ,

∫
Ω
Ni
∂Nj

∂xk
dΩ and

∫
Ω

∂Ni

∂xk
NjdΩ. (3.27)

These expressions can be derived from the element integrals known from Galerkin weighted
residual approximations as illustrated in Figure 3.1 and will be referred to as the edge
contributions of the mass matrix M, the Laplacian operator L, the gradient G and the
transposed gradient GT with its components mij , lij,kl, gij,k and gji,k respectively. For

Figure 3.1: Build-up of edge contributions from element data

�xed domains, all the integrals in (3.27) can be computed a priori, that is to say at the
beginning of the simulation run, and are then stored in a standard compressed-sparse-row
format. Only if the domain is remeshed, the integrals will have to be re-computed.

Listing 3.1 shows the de�nition of the presented data structure within Kratos.

Listing 3.1: De�nition of an edge-based data structure

1 namespace Kratos

2 {

3 // structure definition for use in CSR format

4 template <unsigned int TDim >

5 struct EdgesStructureType {

6 // consistent mass of edge ij

7 //(M = Ni * Nj * dOmega)

8 double Mass;

9 // components kl of the laplacian operator of edge ij

10 //(L = dNi/dxk * dNj/dxl * dOmega)

11 boost :: numeric ::ublas:: bounded_matrix <double ,TDim ,TDim >

LaplacianIJ;

12 // components k of the gradient of edge ij

13 //(G = Ni * dNj/dxk * dOmega)

14 array_1d <double , TDim > GradientJ;

15 // components k of the transposed gradient of edge ij

16 //(GT = dNi/dxk * Nj * dOmega)

17 array_1d <double , TDim > GradientI;

3.3 Edge-Based Data Structure 23

18 };

19 }

3.3.2. Compressed-Sparse-Row Format

The de facto standard storage format for unstructured sparse matrices is the compressed-

sparse-row (CSR) format. The idea behind CSR is to pack each row by only storing the
non-zero elements (White and Sadayappan, 1997). Obviously this turns out to be quite
e�ective in an nodal based implementation since the contributions to the nodal term ri
are delivered only be the edges ij connection point i with its neighbours j.

A =


1 2 0 0
0 3 0 0
4 0 5 6
0 7 0 8


mRowStartIndex[i_node]

csr 0 2 3 6 8

mColumnIndex[csr_index]

j 0 1 1 0 2 3 1 3

mEdgeValue[csr_index]

aij 1 2 3 4 5 6 7 8

Table 3.3: Storage example for the compressed-sparse-row format

Considering the matrix A on the left-hand side of Table 3.3, one quickly will remark
that each row may have its own structure. That is the reason way the start index of
each row (mRowStartIndex[i_node]) as well as the column index of the non-zero entries
(mColumnIndex[csr_index]) have to be stored both. Finally, a third unidimensional array
is used to store the value aij (mEdgeValue[csr_index]). The right-hand side of Table 3.3
points out the CSR storage of matrix A, where the CSR index hints at the position of
column index and edge value in the two remaining one-dimensional arrays.

With a sparse matrix in CSR, matrix-vector multiplication can be implemented with a
simple nested pair of loops. Listing 3.2 illustrates the loop over all edges in the implemented
C++ source code. Whereas the outer loop is over the rows of matrix A, the inner loop
processes one non-zero row element after the other.

Listing 3.2: Loop over edge data in CSR storage

1 void DoEdgeLoop (ModelPart& rModelPart , MatrixContainer&

rMatrixContainer)

2 {

3 KRATOS_TRY

4

5 //get number of nodes

6 unsigned int n_nodes = rModelPart.Nodes().size();

7

8 //loop over all nodes

9 for (unsigned int i_node = 0; i_node < n_nodes; i_node ++)

10 {

11 //loop over neighbours j of node i

24 Chapter 3 Fluid Solver � Implementation and Validation

12 for (unsigned int csr_index=rMatrixContainer.GetRowStartIndex ()

[i_node]; csr_index != rMatrixContainer.GetRowStartIndex ()[

i_node +1]; csr_index ++)

13 {

14 //get global index of neighbouring node j

15 unsigned int j_neighbour = rMatrixContainer.GetColumnIndex ()[

csr_index];

16

17 // reference for mass component as an example of edge data

18 double& m_ij = rMatrixContainer.GetEdgeValues ()[csr_index].

Mass;

19 // reference for velocity as an example of point data

20 const array_1d <double , TDim >& u_j = mVelocity[j_neighbour];

21

22 // perform edge -based operations

23 [...]

24

25 }

26

27 // perform nodal based operations

28 [...]

29

30 }

31

32 KRATOS_CATCH("")

33 }

One of the core operations of iterative sparse solvers is sparse matrix-vector multiplica-
tion. A parallel implementation of this multiplication must maintain scalability in order to
achieve high performance. This scalability depends on the balanced mapping of matrices
and vectors among the distributed processors, on minimizing inter-processor communica-
tion and on a high single node performance.
A parallel implementation within Kratos, for instance by the bias of OpenMP, requires
that the rows of the edge-based sparse matrices are distributed among the processors, with
the rows local to a processor stored in CSR. Matrix-vector multiplication is then performed
using an �owner computes� strategy.

Before using the presented loop over edges, the CSR data has to be computed. This is
done by two functions ConstructCSRVector and BuildCSRData, whose important sections
are shown by Listings B.1 and B.2 in the appendix.
In the �rst case a loop over all nodes (i_node) of the mesh is performed in order to
determine their neighbours (j_neighbour). This step is necessary in order to de�ne the
structure of the CSR vector correctly. Besides, the nested loop over the neighbouring nodes
is used to initialize the edge contributions with zero.
This initialization is quite convenient as in the build-up of the edge data integrals have
to be summed up. Therefore a main loop over the elements has to be performed as
demonstrated in Listing B.2. Inside this loop two further loops over the nodes of the
considered element are nested in order to assign the element contribution to the respective
edges. Note that no �diagonal entries� are stored: on the one hand this would be weird as

3.3 Edge-Based Data Structure 25

no edge ii exists, and on the other hand they are calculated when necessary by enforcing
conservation properties.

In the following two subsections the geometrical expressions required while going from an
element-based data structure to an edge-based data structure will be derived according to
Löhner (2001).

3.3.3. Laplacian Operator

In the case of the Laplace operator, the RHS in the domain yields on the basis of equa-
tion (3.26)

ri = −
∫

Ω
∇Ni · ∇NjdΩuj = −

[∑
elem

∫
Ω
∇Ni · ∇NjdΩ

]
uj (3.28)

This integral can be split into those shape-functions that are the same as Ni and those
that are di�erent (j 6= i):

ri = −
∑
j 6=i

[∑
elem

∫
Ω
∇Ni · ∇NjdΩ

]
uj −

∑
elem

∫
Ω
∇Ni · ∇NidΩui (3.29)

Introducing the conservation property of the shape-function derivatives

∂Ni

∂xk
= −

∑
j 6=i

∂Nj

∂xk
(3.30)

the second term of the right-hand side may be rewritten di�erently

ri = −
∑
j 6=i

[∑
elem

∫
Ω
∇Ni · ∇NjdΩ

]
uj +

∑
elem

∫
Ω
∇Ni ·

∑
j 6=i
∇NjdΩ

ui (3.31)

or, after interchange of the double sums,

ri =
∑
j 6=i

lij(ui − uj) with lij =
∑
elem

∫
Ω
∇Ni · ∇NjdΩ. (3.32)

It can be observed that a change in indices (ij versus ji) leads to lij = lji, which is expected
from the symmetry of the Laplace operator.

3.3.4. Gradient and Transposed Gradient

We now proceed to �rst derivatives, the Euler �uxes being a typical example. The RHS is
given by an expression of the form

ri = −
∫

Ω
Ni
∂Nj

∂xk
dΩF j,k (3.33)

26 Chapter 3 Fluid Solver � Implementation and Validation

where F j,k denotes the �ux in the k-th dimension at node j. This integral is again separated
into shape-functions that are not equal to Ni and those that are equal

ri = −
∑
j 6=i

[∑
elem

∫
Ω
Ni
∂Nj

∂xk
dΩ

]
F j,k −

∑
elem

∫
Ω
Ni
∂Ni

∂xk
dΩF i,k (3.34)

Once more the conservation property (3.30) is used to obtain

ri = −
∑
j 6=i

[∑
elem

∫
Ω
Ni
∂Nj

∂xk
dΩ

]
F j,k +

∑
elem

∫
Ω
Ni

∑
j 6=i

∂Nj

∂xk
dΩ

F i,k (3.35)

This may be restated as

ri =
∑
j 6=i

gij,k(F i,k − F j,k) with gij,k =
∑
elem

∫
Ω
Ni
∂Nj

∂xk
dΩ, (3.36)

which turns out to be very convenient as the gradient gii does not appear in the equations
and thus no �diagonal entries� of the original element matrices have to be stored. This
means that the whole process of assembly (see Listing B.2) can be performed within one
loop over all the edges, whose contributions are stored one after another in the CSR
vector.

When the variational formulation of the problem imposes a weak gradient

ri = −
∫

Ω

∂Ni

∂xk
NjdΩF j,k, (3.37)

for instance due to partial integration in order to impose boundary values, a similar path
can be followed to derive the corresponding statement. After splitting up the integral
relative to the shape-functions

ri = −
∑
j 6=i

[∑
elem

∫
Ω

∂Ni

∂xk
NjdΩ

]
F j,k −

∑
elem

∫
Ω

∂Ni

∂xk
NidΩF i,k, (3.38)

the conservation property (3.30) of the shape-function derivatives is applied once more

ri = −
∑
j 6=i

[∑
elem

∫
Ω

∂Ni

∂xk
NjdΩ

]
F j,k +

∑
elem

∫
Ω

∑
j 6=i

∂Nj

∂xk
NidΩF i,k, (3.39)

so that we �nally obtain

ri =
∑
j 6=i

(gij,kF i,k − gji.kF j,k) with gij,k =
∑
elem

∫
Ω
Ni
∂Nj

∂xk
dΩ

and gji,k =
∑
elem

∫
Ω

∂Ni

∂xk
NjdΩ.

(3.40)

3.3 Edge-Based Data Structure 27

This is the reason why we initially calculated and stored both gradients. We can conclude
that a change in indices ij versus ji leads to the following relation

gji,k = −gij,k +
∫

Γ
NjNinkdΓ, (3.41)

obtained by partial integration. Certainly, this was expected because of the unsymmetric
operator. Using equation (3.41), the extra boundary integral would require a seperate loop
over boundary edges, adding (unsymmetrically) only to node j.

Observe that we take a di�erence on the edge level and then add contributions to both
the end points. This implies that the conservation law given for the �rst derivatives is not
re�ected at the edge level, although it is still maintained at the point level. For a second
form re�ecting the conservation property on the edge level please refer to Löhner (2001).

3.3.5. Consistent and Lumped Mass Matrix

For the shape-functions themselves, a conservation property similar to equation (3.30)
exists

Ni = 1−
∑
j 6=i

Nj . (3.42)

Nevertheless, it is completely worthless if we attempt to use it with the objective of sim-
plifying the implementation of mass terms. Due to the fact that we do not consider the
diagonal entries of the element matrices in the build-up process, the missing term mii in
fact is a problem for us.

To circumvent this inconvenience we decided to store the lumped mass matrix in the form of
a nodal parameter list mLumpedMassMatrix. This makes it possible to use either the lumped
version directly, which facilitates the programming but may not always be adequate, or to
calculate the missing diagonal elements �on the �y� by summing up edge-contributions in
a temporary variable and making use of

mii = mlumped
i −

∑
j 6=i

mij (3.43)

before switching over to the next row start index.

28 Chapter 3 Fluid Solver � Implementation and Validation

3.4. Implementation for Incompressible Flows

In the intent of developping a general approach for incompressible and compressible �ows,
the low Mach number setting is a critical situation for the compressible case. As the
Mach number approaches zero, compressible �ow solvers su�er severe de�ciencies, both in
e�ciency and accuracy. Principally there are two main approaches:

1. themodi�cation of a compressible solver (density-based) downward to low Mach
numbers or

2. the extension of an incompressible solver (pressure-based) towards this regime.

As already mentioned, this work focuses on the subsonic regime when the magnitude of
the �ow velocity is small compared with the acoustic wave-speed. In this case the dom-
inance of the convection terms within the time-dependent equations renders the system
sti� and causes density-based solvers to converge slowly. Time-marching procedures may
su�er severe stability and accuracy restrictions so that they become ine�cient for low Mach
number �ows. To capture solution convergence for these regimes two techniques � precon-
ditioning and asymptotic schemes � have been proposed and are detailled in Keshtiban
et al. (2004).

In contrast, pressure-based methods were originally conceived to solve incompressible �ows,
adopting pressure as a primary variable. Following this approach, pressure variation re-
mains �nite � irrespective of the Mach number �, which renders the computation tractable
throughout the entire spectrum of Mach numbers. This has been the main reason for
electing this path.

3.4.1. Problem Statement

Let Ω be the domain of Rn occupied by the �uid, where n = 2 or 3 is the number of
space dimensions, Γ = ∂Ω its boundary and [0, T] the time interval of analysis. The Euler
problem (Table 3.2) consists in �nding a velocity u and a kinematic pressure pkin = p/ρ
such that

∂u

∂t
+ (u ·∇)u+ ∇pkin = f in Ω, t ∈ [0, T]

∇ · u = 0 in Ω, t ∈ [0, T]
u = uD on ΓD, t ∈ [0, T] (3.44)

p = p∞ on ΓN , t ∈ [0, T]
u = u0 in Ω, t = 0

where f is the force vector (per unit mass as well) and u0 represents the initial velocity
�eld. The Dirichlet boundary condition states uD = 0 in the case of a no-slip boundary
and uD = u − u · n if a slip condition is applied, n being the outward unit normal. ΓD
and the Neumann boundary ΓN , on which the external pressuer p∞ is given, are disjoint
components of Γ.

3.4 Implementation for Incompressible Flows 29

To write the weak form of the problem (3.44) we need to introduce some notation (Co-
dina and Folch, 2004). We denote by H1(Ω) the Sobolev space of functions whose �rst
derivatives belong to L2(Ω), and by H1

0(Ω) the subspace of H1(Ω) of functions with zero
trace on Γ. A bold character is used for the vector counterpart of these spaces. The L2(Ω)
scalar product in a set ω is denoted by (·, ·)ω. The subscript ω is omitted when it coin-
cides with Ω. To pose the problem, we also need the functional spaces Vst = H1

0(Ω)n and
Qst = {q ∈ L2(Ω)|

∫
Ω q = 0} as well as V = L2(0, T ; Vst) and Q = L2(0, T ;Qst) for the

transient problem.
Assuming for simplicity the force vector to be square integrable, the weak form of (3.44)
consists in �nding (u, pkin) ∈ V ×Q such that

(∂tu,ν) + (u ·∇u,ν)− (pkin,∇ · ν) = (f ,ν) ∀ν ∈ Vst, (3.45a)

(q,∇ · u) = 0 ∀q ∈ Qst, (3.45b)

and satisfying the initial condition in a weak sense.

3.4.2. Discretization

Principally, any temporal discretization is possible. However, we shall concentrate on
the monolithic (solving for velocity and pressure at the same time) backward Euler scheme.
The time discretized version of (3.45) requires, from known un, to �nd un+1 ∈ Vh and
pn+1
kin ∈ Qh such that

(δtun,ν) + (un+1 ·∇un+1,ν)− (pn+1
kin ,∇ · ν) = (f̄n+1

,ν) ∀ν ∈ Vst, (3.46a)

(q,∇ · un+1) = 0 ∀q ∈ Qst. (3.46b)

The notation δtun := ∆un
∆t and ∆un = un+1 − un has been used. The term f̄

n+1
has to

be understood as the time average of the force in the interval [tn, tn+1]. The time step size
∆t = tn+1 − tn is computed using the Courant-Friedrichs-Lewy (CFL) condition, which is
commonly (Wikipedia � The Free Encyclopedia) represented as

u∆t
∆x

< C (3.47)

for one-dimensional pure advection (ignoring di�usion or reaction terms) schemes. u is
the velocity, ∆t the time step, ∆x the length interval and C a constant depending on
the particular equation to be solved and not on ∆t and ∆x. Using an edge-based data
structure we will introduce the nodal parameter

hi,min = min
j
lij (3.48)

as the minimum length lij of the edges ij surrounding the node i in order to approximate
∆x. Hence the time step is computed as

∆t = min
i

(
hi,min
|ui|

)
NCFL (3.49)

30 Chapter 3 Fluid Solver � Implementation and Validation

where the Courant number NCFL shall incorporate a certain security factor. It can be
de�ned in the Python start script of the simulation.

With regard to spatial discretization, let Vh be a �nite element space to approximate
V , and Qh a �nite element approximation to Q. Functions in Vh need to be continuous
piecewise polynomials, whereas continuity principally is not necessary for Qh. However,
for reasons explained below, we will consider only continuous pressure interpolations. It is
well known that for this discrete problem to be stable

(δtunh,νh) + (un+1
h ·∇un+1

h ,νh)− (pn+1
kin,h,∇ · νh) = (f̄n+1

,νh) ∀νh ∈ Vh, (3.50a)

(qh,∇ · un+1
h) = 0 ∀qh ∈ Qh. (3.50b)

the velocity and pressure spaces need to satisfy the classical inf-sup condition, which in
particular precludes the use of convenient equal velocity-pressure interpolations. However,
it can be demonstrated that this condition is not required when fractional step methods
using a pressure Poisson equation are employed (Codina, 2001).

Before introducing the fractional step scheme, the matrix form of the problem shall be
presented

M
un+1 − un

∆t
+ C(un+1)un+1 + Gpn+1 = fn+1 (3.51a)

Dun+1 = 0 (3.51b)

where u and p are the arrays of nodal velocities and kinematic pressures, respectively.
Keeping the index conventions introduced in Section 3.2.2 (indices k and l to indicate
space dimensions, whereas i and j are employed for nodal values and shape functions), the
components of the arrays envolved in the discrete problem (3.51) are

Mij,kl = (Ni, Nj)δkl,

C(un+1)ij,kl = (Ni,u
n+1
h ·∇Nj)δkl,

Gij,k = (Ni, ∂kNj) = −(∂kNi, Nj), (3.52)

fi,k = (Ni, fk),
Dij,l = (Ni, ∂lNj),

where δkl is the Kronecker Delta. Note the property G = −DT . Except f, which is a vector,
all the arrays are matrices whose components can be obtained by grouping together �rst
spatial and nodal index (k and possibly i) and doing the same for the second indices (l
and possibly j). Though, we do not really �construct� these matrices as we will use the
precalculated edge-data presented in Section 3.3 to perform the operations.

In this context the contributions of the convective Galerkin term have to be mentioned.
In an element-based implementation they are computed as

Cij,ll =
ndof∑
k=1

∫
Ω
Niak

∂Nj

∂xk
dΩ, (3.53)

3.4 Implementation for Incompressible Flows 31

where ak is the k-th component of the advective velocity (a = un+1
h in (3.50)). In order

to use the pre-computed gradient matrix G, the following approximation must be done at
this point according to Soto et al. (2004):

Cij,ll ≈
ndof∑
k=1

aij,k

∫
Ω
Ni
∂Nj

∂xk
dΩ, (3.54)

where aij,k is the k-th component of the advective velocity associated with the edge ij.
The �rst idea is to take aij as the average velocity of the nodal points i and j and to
enforce the conservation property

∑npts
j=1

(∑ndof
k=1 Cij,lk

)
= 0 by computing the diagonal

as the subtraction of the same-row non-diagonal terms. However, this procedure would
destroy the second-order Galerkin, or central-di�erence, approximation of the convective
term (assuming that linear elements are used). Such a second-order approximation is
re�ected at discrete level by the fact that Cii,ll = 0 for the interior nodal points, something
that naturally arises in a standard �nite element approximation using linear elements (or
in �nite di�erences using a central scheme).
The only way to ful�ll this condition and to maintain the consistency of the method � the
exact solution is still a solution of the discrete problem � is taking aij as a function of only
the nodal point i (aij = ai). In this case it is easy to verify for the interior points that

Cii,ll ≈
∑
jk 6=il

ai,k

∫
Ω
Ni
∂Nj

∂xk
dΩ = 0, (3.55)

implying that the approximation is of second-order and the conservation property for
stationary terms holds.

Concerning the computation of ai, the velocity at the nodal point i, ui, certainly is �rst
choice. Nevertheless, we used the following smoothing in this work

ai,k =
mijuj,k∑
j 6=imij

∀j 6= i for interior points (3.56a)

ai,k =
mijuj,k∑npts
j=1 mij

∀j for boundary points (3.56b)

where mij is the term ij of the consistent mass matrix and uj,k is the k-th component of
the velocity at nodal point j. Note that the computation is only done over the neighbours
j connected to point i � using the explained CSR-loop over edges � as otherwise the
contribution is zero.
Numerical experience indicates that equations (3.56) for the advective velocity associated
with the nodal point i produce a better convergence rate and more accurate results then
taking simply ai = ui (Soto et al., 2004). Moreover, it can be checked that, given a
discrete velocity �eld u, the convective RHS obtained employing a standard element-based
implementation

felementi,l =
npts∑
j=1

(ndof∑
k=1

∫
Ω
Niuk

∂Nj

∂xk
dΩuj,l

)
(3.57)

32 Chapter 3 Fluid Solver � Implementation and Validation

is much better approximated by using equations (3.56). Besides, they naturally arise from
a central di�erence (or central �nite volume) discretization of the convective Navier-Stokes
term.

Note that the same treatment will be applicable to the convective stabilization terms
introduced in Section 3.4.4.

3.4.3. Fractional Step Algorithm

The fully discrete problem (3.51) is exactly equivalent to

M
1

∆t
(ũn+1 − un) + C(un+1)un+1 + γGpn = fn+1 (3.58a)

M
1

∆t
(un+1 − ũn+1) + G(pn+1 − γpn) = 0 (3.58b)

Dun+1 = 0 (3.58c)

as the splitting of the momentum equation is purely algebraic. The array ũn+1 contains
nodal values of the auxiliary variable called fractional velocity, and γ is a numerical pa-
rameter whose values of interest are 0 (�rst-order splitting) and 1 (second-order splitting).
At this point we can make the essential approximation

C(un+1)un+1 ≈ C(ũn+1)ũn+1 (3.59)

which may be interpreted as an incomplete block LU factorization of the original problem
(3.58). The advantage of this discrete approach is that now there is no question about
the boundary conditions for the intermediate variable ũn+1: since boundary conditions are
incorporated in the discrete problem (3.58), the prescriptions for the fractional velocity are
exactly the same as for the end-of-step velocity un+1 (Codina, 2001).
By means of equation (3.58b), un+1 can be expressed in terms of ũn+1 and inserted into
equation (3.58c), which yields the following set of equations to be solved

M
1

∆t
(ũn+1 − un) + C(ũn+1)ũn+1 + γGpn = fn+1 (3.60a)

M
1

∆t
(un+1 − ũn+1) + G(pn+1 − γpn) = 0 (3.60b)

∆tDM−1G(pn+1 − γpn) = Dũn+1 (3.60c)

Even though the problem can be implemented as such, it is very convenient to make
a further approximation. In order to avoid dealing with the matrix DM−1G we shall
approximate it by the Laplacian operator

DM−1G ≈ L, with components Lij = −(∇Ni,∇Nj). (3.61)

It shall be stated here that this approximation is only possible when continuous pressure
interpolations are employed. Likewise, it introduces implicitly the same wrong pressure
boundary condition as when the splitting is performed at continuous level (see Codina
(2001) for a detailed discussion).

3.4 Implementation for Incompressible Flows 33

After having ordered according to the sequence of solution (�rst ũn+1, then pn+1 and �nally
un+1) the problem to be solved is

M
1

∆t
(ũn+1 − un) + C(ũn+1)ũn+1 + γGpn = fn+1 (3.62a)

∆tL(pn+1 − γpn) = Dũn+1 (3.62b)

M
1

∆t
(un+1 − ũn+1) + G(pn+1 − γpn) = 0. (3.62c)

3.4.4. Stabilization Techniques

Pressure and Convection Stabilization

The treatment of pressure in numerical approximations of incompressible �ow problems
is still an active subject of research, basically for two reasons: On the one hand its ap-
proximation needs to be di�erent from that of the velocity �eld in order to obtain a stable
numerical scheme. On the other hand its coupling with the velocity components makes
the solution of the linear system, arising from the discretization of the equations, highly
demanding from a computational point of view (Codina and Soto, 2004).

• Referring to the pressure approximation, the use of �nite element methods leads to
the well known inf-sup stability condition for the velocity and pressure �nite element
spaces if the standard Galerkin formulation is used. Either one uses velocity pressure
pairs ful�lling the inf-sup condition, or the discrete variational formulation of the
problem has to be modi�ed in order to circumvent it. Finite element formulations
of this kind may fall basically into two categories: techniques to stabilize simple
elements, such as the Q1/P0 pair (multilinear velocity, piecewise constant pressure)
and methods that allow the use of equal interpolations (and therefore continuous
pressures). We will apply the latter in this work.

• Concerning the velocity-pressure coupling, fractional step methods for the incom-
pressible Navier-Stokes equations enjoy widespread popularity because of their com-
putational e�ciency based on the uncoupling of of the pressure from the velocity
components. However, several issues related to these methods still deserve further
analysis, and perhaps the computed pressure near boundaries and the stability of the
pressure itself.

Apart from the pressure treatment, another important issue to be considered in the nu-
merical approximation of incompressible �ows is the numerical instability problem, found
when the viscous term is small compared to the convective one � which is evident in the
Euler problem (ν = 0). Both, the inf-sup condition as well as the convection instabilities,
can be overcome by resorting from the standard Galerkin method to a stabilized formula-
tion. The one adopted in this work is based on the subgrid scale concept. The basic idea
is to approximate the e�ect of the component of the continuous solution that cannot be
resolved by the �nite element mesh on the discrete �nite element solution. Hence an im-
portant feature of the formulation is that the unresolved component, hereafter referred to
as subgride scale or subscale, is assumed to be L2 orthogonal to the �nite element space.

34 Chapter 3 Fluid Solver � Implementation and Validation

Orthogonal Subscale Stabilization

Starting once more with the weak form of the problem, the discrete problem is obtained
by approximating u and pkin. If uh and pkin,h are the �nite element unknowns, we put
u ≈ uh+ û and pkin ≈ pkin,h. That is to say that the velocity is approximated by its �nite
element component plus an additional term whereas the pressure subscale will be taken as
zero for the sake of simplicity. un ≈ un∗ := unh+ûn and pnkin ≈ pnkin,h are called the velocity
and the (kinematic) pressure for time level n. Considering the spatial discretization, we
assume that unh and pnkin,h are constructed using the standard �nite element interpolation.
In particular, equal velocity-pressure interpolation is possible with the orthogonal subscale
stabilization. Concerning the behaviour of ûn, a bubble-like function is assumed so that
it vanishes on the interelement boundaries. However, contrary to what is commonly done,
no particular behaviour of the velocity subscale is assumed within the element domains.
Following closely the operations and modi�cations outlined in Codina and Soto (2004),
one �nally arrives at the discrete problem

(δtunh,νh) + (un+1
h ·∇un+1

h ,νh)− (pn+1
kin,h,∇ · νh)

+(τP⊥h (un+1
h ·∇un+1

h),un+1
h ·∇νh) = (f̄n+1

,νh) ∀νh ∈ Vh, (3.63a)

(qh,∇ · un+1
h) + (τP⊥h (∇pn+1

kin,h),∇qh) = 0 ∀qh ∈ Qh. (3.63b)

where the orthogonal projections can be expressed as P⊥h = I − Ph with Ph being the
L2-projection onto Vh:

P⊥h (un+1
h ·∇un+1

h) = un+1
h ·∇un+1

h − yn+1
h , (3.64a)

P⊥h (∇pn+1
h) = ∇pn+1

h − zn+1
h . (3.64b)

yn+1
h and zn+1

h are the solution of

(yn+1
h ,νh) = (un+1

h ·∇un+1
h ,νh) ∀νh ∈ Vh, (3.65a)

(zn+1
h ,νh) = (∇pn+1

kin,h,νh) ∀νh ∈ Vh. (3.65b)

The stability and convergence analysis for the Navier-Stokes problem dictates that the
intrinsic time τ , like it is called by Soto et al. (2004), must be computed as

τ =
h2

4ν + 2|u|h
(3.66)

where h and u are the typical element size and velocity respectively, and ν is the viscosity
of the �uid. Particularly with regard to our edge-based data structure and the envisaged
nodal implementation, we use once more the minimum edge-length hi,min calculated by
equation (3.48). The �inviscid version� of equation (3.66) states

τi =
hi

2|ui|+ ε
. (3.67)

By the choice of a relatively small parameter ε we guarantee that the denominator is
di�erent from zero. In the case of compressible Euler equations the in�uence of �reaction

3.4 Implementation for Incompressible Flows 35

terms� may be taken into account, which would render this last measure unnecessary.
Note that τ has been included within the inner product since, in principle, it changes from
point to point. The terms multiplied by this parameter are responsible for the enhancement
of stability with respect to the standrad Galerkin method, which is why we call them
stabilization terms.

Considering these in the matrix form of the fractional step scheme yields

M
1

∆t
(ũn+1 − un) + C(ũn+1)ũn+1 + γGpn

+Su(τ̃n+1; ũn+1)ũn+1 − Sy(τ̃n+1; ũn+1)yn+1 = fn+1 (3.68a)

∆tL(pn+1 − γpn) + Sp(τ̃n+1)pn+1 − Sz(τ̃n+1)zn+1 = Dũn+1 (3.68b)

M
1

∆t
(un+1 − ũn+1) + G(pn+1 − γpn) = 0 (3.68c)

Myn+1 − C(ũn+1)ũn+1 = 0 (3.68d)

Mzn+1 − Gpn+1 = 0. (3.68e)

where the components of the stabilization arrays are

Su(τ̃n+1; ũn+1)ij,kl = (τ̃n+1
i ũn+1

h ·∇Ni, ũ
n+1
h ·∇Nj)δkl

Sy(τ̃n+1; ũn+1)ij,kl = (τ̃n+1
i ũn+1

h ·∇Ni, Nj)δkl
Sp(τ̃n+1)ij = (τ̃n+1

i ∇Ni,∇Nj)

Sz(τ̃n+1)ij,l = (τ̃n+1
i ∂lNi, Nj)

(3.69)

using the known convention for nodal indices i, j and spatial indices k, l. To avoid the
resolution of an equation system for the projection terms, the lumped mass matrix is used
so that equations (3.68d) and (3.68e) can be considered in an edge-based manner within
(3.68a) and (3.68b) respectively:

M
1

∆t
(ũn+1 − un) + C(ũn+1)ũn+1 + γGpn

+Su(τ̃n+1; ũn+1)ũn+1 − Sy(τ̃n+1; ũn+1)M−1C(ũn+1)ũn+1 = fn+1 (3.70a)

∆tL(pn+1 − γpn) + Sp(τ̃n+1)pn+1 − Sz(τ̃n+1)M−1Gpn+1 = Dũn+1 (3.70b)

M
1

∆t
(un+1 − ũn+1) + G(pn+1 − γpn) = 0 (3.70c)

3.4.5. Solving Procedure and Boundary Conditions

Table 3.4 gives an overview of the implemented algorithm for the simulation of incompress-
ible �ows and details each step.

36 Chapter 3 Fluid Solver � Implementation and Validation

1. Load Kratos kernel and application modules

2. Read model part de�ned by GiD → Section 2.3.1

• Change initial values and/or set ramp-up

• Change boundary conditions → Section 2.2.3

3. De�ne simulation parameters

• Set time interval and CFL number

• Set solver tolerance and stop criteria

4. Create matrix container

• Construct CSR vector → Listing B.1

• Compute and store edge-based data → Listing B.2

5. Initialize �ow solver

• Set free-�ow conditions

• Choose linear solver for pressure Poisson equation

6. Loop over time steps and perform calculations

a) Compute time step size

b) Step 1: compute fractional velocity ũn+1

◦ Solve equation (3.70a)
◦ Use Picard iteration to deal with non-linear terms

c) Step 2: compute pressure variation ∆pn or directly pn+1

◦ Solve linear equation system (3.70b)
◦ Penalize matrix entries for Neumann pressure nodes

d) Step 3: compute end-of-step velocity un+1

◦ Solve equation (3.70c)
◦ Apply Dirichlet conditions for velocity (inlet, slip, no-slip)

e) Output

◦ Calculate dimensionless coe�cients for post-processing
◦ Write nodal results

Table 3.4: Solving procedure for incompressible �ows

3.5 Expansion for Compressible Flows 37

3.5. Expansion for Compressible Flows

3.5.1. Modi�cations

Let us recall the continuous momentum equation for the Euler problem �rst:

∂(ρul)
∂t

+
∂(ρuluk)
∂xk

+
∂p

∂xl
= ρgl (3.71)

and introduce the momentum Ul = ρul as variable

∂Ul
∂t

+
∂(Uluk)
∂xk

+
∂p

∂xl
= Fl. (3.72)

Note that we are dealing with the real thermodynamic pressure p now and the force vector
is de�ned by F = ρg this time. It is obvious that we obtain a slightly di�erent convective
term compared to the incompressible case. That is why the convective matrix C∗ of the
discrete problem is marked with an asterisk in the following. It is advisible to implement the
term as a whole using the edge-based techniques for Euler �uxes mentioned in Section 3.3.4.
Nevertheless, a linearized form Ul

∂uk
∂xk

+ uk
∂Ul
∂xk

may be used as well.

With regard to the conservation of mass, a new term appears in the continuity equation,
namely the temporal derivative of the density

∂ρ

∂t
+
∂Uk
∂xk

= 0 (3.73)

In the case of incompressible �ows the continuity equation is formulated in terms of pressure
only. Now, however, we have the possibility of choosing either the density or the pressure
as unknown of the problem. As our aim is a general approach for incompressible and
compressible �ows we shall keep the pressure as variable. For formulations using the
density as variable, please refer to Vázquez et al. (1999).
In order to replace the density variation by the pressure variation we make use of the
relation

∆ρn = α∆pn (3.74)

where α is a function that will be de�ned according to the type of �ow being analyzed.
We will see that it is useful to introduce the matrix Mα, of components

Mα,ij =
∫

Ω
αNiNjdΩ, (3.75)

where Ni is the shape function associated to the i-th node of the �nite element mesh with
which we assume that all the variables are interpolated.

38 Chapter 3 Fluid Solver � Implementation and Validation

3.5.2. Generalization of the Algorithm

At this point we make use of the simpli�cations mentioned in Section 3.2.1 that allow
us the simulation of compressible �ows in subsonic regime without resolving the energy
equation. The following types of �ow are distinguished in this context:

Incompressible �ows are characterized by the equations in Table 3.2. Hence it is evident
that the time variation of the density has to disappear, which directly demands α = 0.

Slightly compressible �ows are approximated using equation (3.16) with a constant value
for the speed of sound, so that α = 1

c2
is chosen.

Barotropic �ows only involve density and pressure in the equation of state. Resorting
to relation (3.18), we use α = ρn

γpn where the superscript n indicates the time step.
Accordingly, the nodal function value α is calculated at the end of the previous time
step.

Perfect gases are not covered in this work as they require the solution of the energy
equation. In this case the equation of state is used to link pressure and density,
resulting in the choice α = 1

RT . Furthermore the RHS of the continuity equation
has to be modi�ed due to the variation in time of the temperature. For detailed
information please refer to Vázquez et al. (1999).

α =


0 for incompressible �ows
1
c2

for slightly compressible �ows
ρn

γpn for barotropic �ows (isentropic perfect gases)
(3.76)

3.5.3. Modi�ed Fractional Step Scheme

Taking into account the mentioned modi�cations in the equation system (3.62), the frac-
tional step algorithm for compressible �ows can be written in the following form:

M
1

∆t
(Ũ

n+1 − Un) + C∗(Ũ
n+1

)Ũ
n+1

+ γGPn = Fn+1 (3.77a)

Mα
∆Pn

∆t
+ ∆tL(Pn+1 − γPn) = Dũn+1 (3.77b)

M
1

∆t
(Un+1 − Ũ

n+1
) + G(Pn+1 − γPn) = 0. (3.77c)

This time we resolve for the fractional momentum Ũ
n+1

�rst, followed by the pressure
Pn+1 and the end-of-step momentum Un+1. Finally the density ρn+1 is calculated by
equation (3.74) and is used to extract the velocity un+1 from the end-of-step momentum.
Exactly the same stabilization terms as presented in Section 3.4.4 have been used, the
fractional momentum replacing the fractional velocity in the compressible case. Just for
the purpose of clarity they do not appear in the equations above.

3.5 Expansion for Compressible Flows 39

3.5.4. General Solving Procedure

Table 3.5 gives an overview of the resulting general algorithm that might be used for
incompressible �ow simulations as well, provided that the freestream conditions are set
accordingly.

40 Chapter 3 Fluid Solver � Implementation and Validation

1. Load Kratos kernel and application modules

2. Read model part de�ned by GiD → Section 2.3.1

• Change initial values and/or set ramp-up

• Change boundary conditions → Section 2.2.3

3. De�ne simulation parameters

• Set time interval and CFL number

• Set solver tolerance and stop criteria

4. Create matrix container

• Construct CSR vector → Listing B.1

• Compute and store edge-based data → Listing B.2

5. Initialize �ow solver

• Set free-�ow conditions

• Choose linear solver for pressure Poisson equation

6. Loop over time steps and perform calculations

a) Compute time step size

b) Step 1: compute fractional momentum Ũ
n+1

◦ Solve equation (3.77a)
◦ Use Picard iteration to deal with non-linear terms

c) Step 2: compute pressure variation ∆Pn or directly Pn+1

◦ Solve linear equation system (3.77b)
◦ Penalize matrix entries for Neumann pressure nodes
◦ Compute density variation ∆ρn (3.74) and �nally ρn+1

d) Step 3: compute end-of-step momentum Un+1

◦ Solve equation (3.77c)
◦ Extract velocity un+1 using ρn+1

◦ Apply Dirichlet conditions for velocity (inlet, slip, no-slip)

e) Step 4: prepare next time step

◦ Compute α using equation (3.76)

f) Output

◦ Calculate dimensionless coe�cients for post-processing
◦ Write nodal results

Table 3.5: Solving procedure for compressible and incompressible �ows

3.6 Numerical Examples 41

3.6. Numerical Examples

Before preparing the �ow solver for the �uid-structure coupling, the implementation shall
be validated by numerical results in two and three dimensions. In a �rst step the focus
will be on the veri�cation of the edge-based data structure. Subsequently the implemented
algorithm is going to be checked.

3.6.1. Cube with Quiescent Water

Figure 3.2: Cube with quiescent water � geometry and problem de�nition

As the velocity �eld has been initialized with zero and a no-slip condition is applied on
the whole boundary, convective terms do not account for in the �ow equations. The
consideration of gravity (gy = −10m

s2
) allows us to get a �rst impression of the pressure

gradients calculated by the Poisson equation whose correct implementation and whose
stability in the stationary regime are revealed by the pressure distribution in Figure 3.3.

Figure 3.3: Pressure distribution of quiescent water under the in�uence of gravity

42 Chapter 3 Fluid Solver � Implementation and Validation

3.6.2. Air�ow around a Cylinder

Figure 3.4: Air�ow around a cylinder � geometry and problem de�nition

Having checked pressure and gravity in a quiescent situation, we will now set the �uid
in motion. However, before doing so we will focus one last time on the edge-based data
structure that we used for the implementation of the algorithm. In Section 3.3.4 the
gradient and the transposed gradient were de�ned by equations (3.36) and (3.40). A
comparison of gij and gji revealed that they are linked by a boundary integral due to
partial integration (3.41)

gij,k + gij,k =
∫

Γ
NjNinkdΓ. (3.78)

Making use of this property and applying the sum of the two gradients to a constant
pressure �eld of the value 1 has to give the following result:

• zero in the interior of the domain and

• the outward area normal of the faces on the boundary.

We used this test to validate the implementation of the two gradients, which is illustrated
in Figure 3.5. Considering the dimensions of the domain, the nodal area normal was
calculated by hand, which proved to be congruent with the result of operation (3.78).

Figure 3.5: Validation of the gradient implementation

By the way, for further calculations area and unit normals have been computed using
geometry data of the �nite element mesh and not using the gradients.

3.6 Numerical Examples 43

Incompressible Flow

After a fairly short transitory period the stationary regime is reached in the incompress-
ible case. At this point the upwinding term (�rst part of the stabilization term) in equa-
tion (3.63) becomes important to stabilize the steady state solution.

For the following analysis it is convenient to introduce the pressure coe�cient Cp, a di-
mensionless number in �uid dynamics to describe the relative pressures throughout a �ow
�eld, that is de�ned as

Cp =
p− p∞
1
2ρ∞u

2
∞

(3.79)

where p is the pressure at the point of interest, p∞ the freestream pressure, ρ∞ the �uid
density and u∞ the freestream velocity of the �uid. In many situations in aerodynamics
and hydrodynamics the pressure coe�cient at a point near a body is independent of the
body size. Consequently, respecting geometric and �uid �ow similarities, an engineering
model can be tested in a wind or water tunnel, pressure coe�cients can be determined at
critical locations and used with con�dence to predict the �uid pressure around a full-size
aircraft or boat.

Figure 3.6 shows a contour �ll of the pressure coe�cient around the cylinder. We will
focus on the values of Cp on the boundary, where a slip condition was applied, as these are
known from the analytical solution of the problem. The stagnation point with a theoretical
value of Cp = 1 is met perfectly. On the top and at the bottom of the illustrated circle we
obtain a slight deviation from Cp = −3, as well as after the cylinder where the solution is
not exactly symmetric (Cp < 1). This indicates the numerical dissipation of the algorithm.
Nevertheless, the results can be considered as very satisfactory.

(a) Pressure coe�cient Cp and streamlines (b) Stagnation point in detail

Figure 3.6: Incompressible air�ow around a cylinder

It shall be remarked that the above results may be obtained either by choosing directly
α = 0 in the solver properties or by settingMa = 0.001 in the Python script for example.

44 Chapter 3 Fluid Solver � Implementation and Validation

Compressible Flow

The compressible case has been tested with the freestream Mach number Ma∞ = 0.3. In
general this value is considered as limit for a �ow to be treated still as incompressible.
However, in the air�ow around the cylinder higher Mach numbers appear locally.
This time the transitory period is much longer due to some oscillations caused by a prop-
agating pressure wave,

• either starting from the inlet if the velcoity is zero in the whole domain at t = 0,

• or emerging around the cylinder if the velocity �eld is initialized with the freestream
velocity u∞ and its normal component is cut o� by the slip condition.

Both possibilities have been tested; in the latter the relative velocity between wave prop-
agation speed and freestream velocity before the cylinder has been checked.
The re�ection of these waves at the boundaries shows that the conditions there are imple-
mented correctly, so that, in the end, it takes some time until the numerical dissipation
of the scheme copes with the mentioned oscillations of this test case. In a real simulation
this is generally overcome by enlarging the distance between the object of study and the
domain boundaries, characterized by a very �ne mesh for the points of interest and a rather
coarse grid at the distant boundary.

In compressible �ow, and particularly in high-speed �ow, the dynamic pressure 1
2ρu

2 is
no longer an accurate measure of the di�erence between stagnation pressure and static

pressure. Also the familiar relationship that stagnation pressure is equal to total pressure
does not always hold true. As a result, pressure coe�cients can be greater than one in
compressible �ow: Cp > 1 indicates that the freestream �ow is supersonic (Ma > 1)
implying the presence of shock waves (Wikipedia � The Free Encyclopedia). However, as
mentioned in Section 3.2.1, we focus on isentropic �ow of perfect gases in subsonic regime
where the mentioned relations are always true.

Figure 3.7: Compressible air�ow around the cylinder - pressure at the stagnation point

3.6 Numerical Examples 45

Figure 3.7 shows a mean pressure value at the stagnation point near the steady-state
solution. As there were still some oscillations the point evolution was averaged over a
couple of time steps. On the other hand, the theoretical value was calculated by the
relation

p0 = p∞

(
1 +

γ − 1
2

Ma2
∞

) γ
γ−1

, (3.80)

valid for the stagnation pressure p0 in isentropic �ow (Candel, 2005), and where the
freestream pressure

p∞ =
ρ∞
γ

(
u∞
Ma∞

)2

. (3.81)

is a function of the other freestream parameters � Mach number, velocity and density �
de�ned at the beginning of the simulation run. The adiabatic exponent or ratio of speci�c
heats γ = 1.4 for air. Thus, we �nally obtain p0 ≈ 1013, 7Pa which sounds quite good
compared with our numerical result 1012.8Pa. The freestream pressure for comparison
writes p∞ ≈ 952.4Pa.

In Section 3.4.4 we mentioned that several issues related to the uncoupling of velocity and
pressure in fractional step schemes still deserve further analysis. One of these was the
computed pressure near boundaries and the stability of the pressure itself. Even a slight
instability in the pressure values may in�uence the velocity components severely.
Figure 3.8 shows a comparison that has been made with two di�erent implementations of
the convective term, both in conservative form, which should actually yield the same result.
On the left-hand side (3.8(a)) the term has been implemented as a whole whereas on the
right-hand (3.8(b)) side two linearized terms have been used. Until now no explanation
has been found. Maybe this observation is related to the choice of the advective velocity
a and the respective approximations in view of the edge-based data structure that might
be critical when the linearization is done.

(a) Implementation of the conservative
convection term as a whole

(b) Implementation of the conservative
convective term in linearized form

Figure 3.8: Zoom on the boundary layer of the cylinder in compressible air�ow

46 Chapter 3 Fluid Solver � Implementation and Validation

3.6.3. NACA 0012 Airfoil

Figure 3.9: NACA 0012 airfoil � geometry and problem de�nition

The free�ow conditions known from the cylinder test case have been used on the NACA
0012 airfoil that has been inclined by the angle of attack α = 3°. This time as well, a slip
condition has been applied on the airfoil contour. As mentioned above, a very �ne mesh
has been created near the boundary layer whereas huge cells are employed far away from
the airfoil. The grid of approximately 11.500 elements is shown in Figure 3.10.

Figure 3.10: Fine mesh for the boundary layer of the airfoil

Incompressible Flow

As the pressure distribution on the contour is responsible for the lift force, the two corre-
sponding dimensionless coe�cients Cp and Cl are linked by an equation

Cl =
∫ TE

LE

(
Cpl(x)− Cpu(x)

)
dx (3.82)

where Cpl and Cpu are the pressure coe�cients on lower and upper surface respectively,
and the abbreviations LE and TE stand for leading and trailing edge of the airfoil.

3.6 Numerical Examples 47

For Ma = 0 the pressure coe�cient Cp has been computed on the contour of the airfoil,
using once more equation (3.79), and was plotted against the relative chord length. The
numerical results are compared in Figure 3.11 with theoretical ones resulting from the
potential theory. Apart from the peak in the pressure coe�cient on the upper surface Cpu,

Figure 3.11: Pressure coe�cient on the airfoil contour at Ma = 0

our results �t perfectly with the analytical solution. The slight discrepancy indicates that
the mesh is not �ne enough in this region. We can be quite sure of this as we will encounter
a similar behaviour in the compressible case where the same mesh has been used.

A typical contour �ll for the pressure coe�cient is presented in Figure 3.12.

Figure 3.12: Typical contour �ll of the pressure coe�cient Cp at Ma = 0

48 Chapter 3 Fluid Solver � Implementation and Validation

Having a closer look on the leading edge of the airfoil (Figure 3.13(a)), we can state that
the position of the stagnation point is correct as well as its value of the pressure coe�cient
(Cp = 1). Also the trailing edge looks great, especially because we are treating the node as
an interior point (the normal de�ned there by the two adjacent faces is physically without
any meaning so that an applied slip condition would probably distort the �ow).

(a) Leading edge (b) Trailing edge

Figure 3.13: Streamlines on the NACA 0012 airfoil

Compressible Flow

For Ma = 0.3 the same analysis as in the incompressible case has been made. Analog to
the result before, we suspect that the mesh is not �ne enough near the pressure peak and
therefore responsible for the slight discrepancy illustrated in Figure 3.14.

Figure 3.14: Pressure coe�cient on the airfoil contour at Ma = 0.3

3.6 Numerical Examples 49

3.6.4. ONERA M6 Wing

As we only have treated two-dimensional examples so far, we will demonstrate with the
ONERAM6 wing that our algorithm also works in three dimensions. Evidently, this section
is characterized by a strong qualitative approach. We mainly wanted to know whether the
implemented code is capable of tackling 3D cases. Figure 3.15 shows a contour �ll of the
pressure coe�cient in the transitory period. We already can recognize the similarity to
Figure 3.12 of the airfoil. The numerical artifacts in the picture can be traced back to a
bug in GiD, which has already been corrected in the newest beta version of the software.

Figure 3.15: ONERA M6 wing � a tridimensional test case

We have seen before that a �ne mesh is necessary in order to resolve the boundary layer
correctly. This means that an adequate simulation of the ONERA wing becomes expensive
in terms of computational e�ort, even for an edge-based implementation. That is why we
scheduled the run and the comparison with experimental data of certain cut planes for the
summer months, when the code will be completely parallelized and the CIMNE cluster
will be working hopefully.

4
Preparation of Fluid-Structure Coupling

Having implemented and validated the general �ow solver so far, this chapter will focus on

the preparation of �uid-structure coupling and explain the necessary modi�cations in order

to perform FSI simulations in the end.

First the principal solving procedures for coupled problems are elucidated.

Subsequently, the arbitrary Lagrangian-Eulerian description is derived from the classical

kinematical viewpoints and its e�ect on the conservation equations of mass, momentum

and energy is shown.

After some preliminary tests with moving meshes and the respective calculation of interface

displacements and forces, expectations for the real �uid-structure coupling are presented.

4.1. Solving Procedures for Coupled Problems

There are several techniques for solving multi-disciplinary problems. Finding a suitable
approach for each case highly depends on the category of the problem and the details
of each �eld, especially for time-dependant problems. Concerning FSI this means that,
depending on the nature of the �uid as well as on the properties of the structure, the
characteristics of the coupling can be quite di�erent. In this section an overview of Kratos'
solving methodologies is given according to Dadvand (2007).

4.1.1. Sequential Solution

Considering the one-way coupled problem of Figure 2.2, the solving procedure is trivial.
Since only the subsystem S2 depends on u1 (the solution of S1), the problem can be solved
easily by tackling the subsystem S1 �rst to determine its solution u1, which is used in turn
to solve S2. The in Figure 4.1 represented course of action is evaluated at each time step
for transient problems.

52 Chapter 4 Preparation of Fluid-Structure Coupling

Figure 4.1: Sequential solution of a weakly coupled problem

Being Li the operator applied over the domain of the respective subsystem Si, the governing
equations for the illustrated one-way coupled system can be written as

L1(u1, t) = f1(t),
L2(u1, u2, t) = f2(t).

(4.1)

Having applied temporal and spatial discretization within the scope of the �nite element
method, the following matrix system has to be solved at each time step:[

K11 0
K21 K22

]{
U1

U2

}
=
{

f1(t)
f2(t)

}
. (4.2)

where K11 and K22 are the system matrices corresponding to the �eld variables of subsys-
tems S1 and S2 respectively, and K21 represents the �eld system matrix corresponding to
the interaction variables.

However, this rather easy approach called sequential solution is not possible for strongly
coupled problems as shown in Figure 2.3. In this case either a monolithic approach or a
staggered method has to be applied.

4.1.2. Monolithic Approach

By contrast, the monolithic approach treats the multi-disciplinary problem as a whole. The
interacting �elds are modeled together resulting in a coupled continuous model, which is
solved directly in one step. Figure 4.2 illustrates this procedure assuming that there are
only two subsystems.

Figure 4.2: Monolithic scheme for a strongly coupled problem

Using the same notation as above, the governing equations for the now considered two-way
coupled system can be written as

L1(u1, u2, t) = f1(t),
L2(u1, u2, t) = f2(t).

(4.3)

4.1 Solving Procedures for Coupled Problems 53

After temporal and spatial discretization the following matrix system is obtained not al-
lowing a sequential solution any more:[

K11 K12

K21 K22

]{
U1

U2

}
=
{

f1(t)
f2(t)

}
. (4.4)

This time the interaction matrices K12 and K21 couple the �eld variables of the two sub-
systems in a manner that demands the problem to be solved at once.

Though this approach seems to be very easy and natural, several di�culties are encountered
in practice:

• di�culty of the formulation: The multi-disciplinary continuous models are usually
complex by nature making the discretization process a tedious task.

• size and bandwidth of the problem: The obligation of solving all �elds simultaneously
renders the monolithic approach expensive in terms of memory and cpu performance.

• implementation cost : The interaction between di�erent �elds requires the interface
matrices to be customized to re�ect the new variables. As generally severe modi�ca-
tions are part of this adaptation, a re-use of these matrices is nearly impossible.

Despite all mentioned disadvantages, one should not forget that a monolithic approach
perfectly models the interaction between the di�erent �elds and results in a more robust
and more stable formulation for solving coupled problems.

4.1.3. Staggered Methods

The intention of staggered methods is to solve each �eld separately and thus use less re-
sources than the monolithic approach. In each step only one part of the problem is solved,
which is a great advantage in the solution of large problems. The interaction is assured by
applying certain techniques for transforming variables from one �eld to another. Some of
these techniques are outlined here:

Predicition consists of predicting the value of the dependent variables in the next time
step. As shown in Figure 4.3(a) the predicted variable un+1

2P is used to solve the
subsystem S1 separately, which decouples di�erent �elds in problems with strong
coupling. Common choices are:

• the last-solution predictor: un+1
p = un

• or prediction by solution gradient: un+1
p = un + ∆t · u̇n

where ∆t = tn+1 − tn and u̇n =
(
∂u
∂t

)n
.

Advancing means calculating the next time step of a subsystem using the calculated or
predicted solution of other subsystems. This technique is illustrated in Figure 4.3(b).

Substitution is a trivial technique shown in Figure 4.3(c) that uses the calculated value
of one �eld in another �eld to solve it separately.

54 Chapter 4 Preparation of Fluid-Structure Coupling

Correction substitutes un+1
2 in place of the predicted value un+1

2p and solves again the
subsystem S1 to obtain a better result. This implies that the subsystem S1 has been
solved introducing the predicted value un+1

2p and that the here obtained result un+1
2

has been used to advance in turn subsystem S2 in order to calculate un+1
2 . Obviously

this procedure shown in Figure 4.3(d) can be repeated more than once.

(a) Prediction (b) Advancing

(c) Substitution (d) Correction

Figure 4.3: Techniques for staggered methods

A staggered method can be planned using the techniques presented above. Returning to
the problem of Figure 2.3, the following course of action, illustrated in Figure 4.4, would
be possible:

1. Predicition: un+1
p = un2 + ∆t · u̇n2

2. Advancing: Sn+1
1

(
un+1
p

)
→ un+1

1

3. Substitution: un+1
1 = un+1

1 for S2

4. Advancing: Sn+1
2

(
un+1

1

)
→ un+1

2

As one may guess, staggered methods require a careful formulation to avoid instabilities
and to obtain an accurate solution, thus increasing the attention concerning modeling.
Nevertheless there are some important advantages:

• The de�nition of di�erent discretizations for each �eld is possible, with varying mesh
characteristics if necessary.

4.2 Arbitrary Lagrangian-Eulerian Description 55

Figure 4.4: A typical staggered method for solving a two-way coupled system

• Existing single �eld codes may be re-used for solving multi-disciplinary problems
almost without modi�cation.

• Solving only one part of the problem does not only use less resources compared
to monolithic schemes; it also comes up with the idea of segmenting the solving
procedure for large single �eld problems and scheduling the algorithm in parallel.

4.2. Arbitrary Lagrangian-Eulerian Description

The numerical simulation of multi-dimensional problems in �uid dynamics and nonlinear
solid mechanics often requires coping with strong distortions of the continuum under con-
sideration while simultaneously assuring a clear delineation of free surfaces and �uid-�uid,
solid-solid or �uid-structure interfaces. To deal with large distortions and to provide an
accurate resolution of material interfaces and mobile boundaries, an appropriate kinemat-
ical description is fundamental.
The arbitrary Lagrangian-Eulerian (ALE) description was developed in an attempt to
combine the advantages of the classical kinematical descriptions while minimizing their
respective drawbacks as far as possible. This is the reason why this chapter starts with a
brief reminder of the classical approaches: the Lagrangian and the Eulerian point of view
(Donea et al., 2004; Adams, 2007).

4.2.1. Lagrangian vs. Eulerian Description

Describing a continuum in motion, there are two primary ways of doing so. The �rst one
is to pick a speci�c particle, denoted as �uid element FE in Figure 4.5, and to follow
its movement ξ(t, ξ0) in the course of time. Observer A in Figure 4.5(a) represents this
Lagrangian viewpoint. Observer B however is situated in a �xed position x of the spatial
domain. From his Eulerian point of view he monitors the di�erent �uid elements passing
by, ξ0 and ξ′0 in Figure 4.5(b).

56 Chapter 4 Preparation of Fluid-Structure Coupling

(a) Lagrangian viewpoint (b) Eulerian viewpoint

Figure 4.5: Comparison of classical kinematical approaches

In Lagrangian algorithms � mainly used in structural mechanics � each individual node of
the computational mesh follows the associated material particle during motion as shown in
the upper part of Figure 4.6. Obviously, this facilitates the tracking of free surfaces and of
interfaces between di�erent materials. Moreover, materials with history-dependent consti-
tutive relations can be treated easily since each �nite element of a Lagrangian mesh always
contains the same material particles. Its weakness is its inability to follow large distortions
of the computational domain without recourse to frequent remeshing operations.

In Eulerian algorithms � widely used in �uid dynamics � the computational mesh is �xed
and the continuum moves with respect to the grid. As time evolves, the physical quan-
tities associated with the �uid particles passing through the �xed region of space, are
examined. This implies a relatively easy handling of large distortions in the continuum
motion. However, interface de�nitions and the resolution of �ow details are generally less
precise.

4.2.2. ALE � Generalization of both Approaches

Since the ALE description of motion is a generalization of the Lagrangian and Eulerian
descriptions, the nodes of the computational mesh may be

• moved with the continuum in normal Lagrangian fashion,

• held �xed in Eulerian manner or

• moved in some arbitrarily speci�ed way as shown in Figure 4.6

to give a continuous rezoning capability.

In the ALE description of motion that will be derived now according to Donea et al.
(2004), neither the material domain RX made up of material particles X nor the spatial
domain Rx consisting of spatial points x is taken as a reference. Instead a third domain is
introduced: the referential con�guration Rχ with reference coordinates χ identifying the
grid points. Figure 4.7 shows these domains and the one-to-one transformations relating
the con�gurations. The referential domain Rχ is mapped into the material and spatial

4.2 Arbitrary Lagrangian-Eulerian Description 57

Figure 4.6: Lagrangian, Eulerian and ALE mesh and particle motion in one dimension

domains by Φ and Ψ respectively. The particle motion ϕ may then be expressed as
ϕ = Φ ◦Ψ−1, clearly showing the dependency of the three mappings:

• The application ϕ represents the mapping from the material domain RX to the spatial
domain Rx, relating the motion of the material points X to the spatial coordinates
x. It is de�ned such that

ϕ : RX × [t0, tend[−→ Rx × [t0, tend[
(X, t) 7−→ ϕ(X, t) = (x, t)

(4.5)

which allows us to link X and x in time by the law of motion, namely

x = x(X, t). (4.6)

The physical time is measured by the same variable t in both domains so that for
every �xed instant t, the mapping ϕ de�nes a con�guration in the spatial domain.
It is convenient to employ a matrix representation for its gradient

∂ϕ

∂(X, t)
=

 ∂x

∂X
u

0T 1

 (4.7)

58 Chapter 4 Preparation of Fluid-Structure Coupling

Figure 4.7: Transformations between material, spatial and referential con�guration

where 0T is a null row-vector and the material velocity u is

u(X, t) =
∂x

∂t

∣∣∣∣
X

(4.8)

with
∣∣∣
X

indicating that the respective coordinate, material in this case, is hold �xed.

• The mapping of Φ from the referential domain Rχ to the spatial domain Rx can be
understood as the motion of the grid points in the spatial domain. It is represented
by

Φ : RΨ × [t0, tend[−→ Rx × [t0, tend[
(χ, t) 7−→ Φ(χ, t) = (x, t)

(4.9)

and its gradient is

∂Φ
∂(χ, t)

=

 ∂x

∂χ
umesh

0T 1

 (4.10)

where now, the mesh velocity

umesh(χ, t) =
∂x

∂t

∣∣∣∣
χ

(4.11)

is involved. Note that both the material and the mesh move with respect to the
laboratory. Thus, the corresponding material and mesh velocities have been de�ned

4.2 Arbitrary Lagrangian-Eulerian Description 59

by deriving the equations of material motion and mesh motion in each case with
respect to time.

• Finally, regarding the mapping of Ψ from the referential domain Rχ to the material
domain RX , it is more convenient to represent directly its inverse Ψ−1

Ψ−1 : RX × [t0, tend[−→ Rχ × [t0, tend[

(X, t) 7−→ Ψ−1(X, t) = (χ, t)
(4.12)

and its gradient is

∂Ψ−1

∂(X, t)
=

 ∂χ

∂X
uref

0T 1

 (4.13)

where the velocity uref is de�ned as

uref =
∂χ

∂t

∣∣∣∣
X
. (4.14)

It can be interpreted as the particle velocity in the referential domain since it measures
the time variation of the referential coordinate χ holding the material particle X
�xed.

The relation between the velocities u, umesh and uref can be obtained by di�erentiating
the relation ϕ = Φ ◦Ψ−1:

∂ϕ

∂(X, t)
(X, t) =

∂Φ
∂(Rχ, t)

(
Ψ−1(X, t)

) ∂Ψ−1

∂(X, t)
(X, t)

=
∂Φ

∂(Rχ, t)
(χ, t)

∂Ψ−1

∂(X, t)
(X, t) (4.15a)

or, in matrix format, ∂x

∂X
u

0T 1

 =

 ∂x

∂χ
umesh

0T 1

 ∂χ

∂X
uref

0T 1

 (4.15b)

which yields, after block multiplication, u = umesh+ ∂x
∂χ ·uref . Introducing the convective

velocity uconv as the relative velocity between material and mesh, this equation can be
rewritten as

uconv := u− umesh =
∂x

∂χ
· uref . (4.16)

The convective velocity can be interpreted as the particle velocity relative to the mesh as
seen from the spatial domain Rx.

Note that both Lagrangian and Eulerian formulations may be obtained as particular cases
of this generalized approach:

60 Chapter 4 Preparation of Fluid-Structure Coupling

• Choosing Ψ = I (where I is the identity application), referential domain Rχ and
material domain RX coincide (χ ≡X) resulting in a Lagrangian description. Mate-
rial and mesh velocity, equations (4.8) and (4.11), are equal leading to a convective
velocity of zero (see equation (4.16)) and thus preventing the presence of convective
terms in the conservation laws.

• With the choice of Φ = I on the other hand, referential domain Rχ and spatial
domain Rx coincide (χ ≡ x) conducting to an Eulerian description. The mesh
velocity umesh obtained from equation (4.11) is zero whereas the convective velocity
uconv is identical to the material velocity u.

4.2.3. ALE Form of Conservation Equations

In order to express the conservation laws for mass, momentum and energy in an ALE
framework, a relation between the material (or total) time derivative, which is inherent in
conservation laws, and the referential time derivative is needed.

Fundamental ALE Relation

Therefore a scalar physical quantity, denoted by f(x, t), f∗(χ, t) and f∗∗(X, t) in the
spatial, referential and material domain respetively, is considered in the following. Using
the mapping properties of Ψ, the transformation from the referential description f∗(χ, t)
of the scalar physical quantity to its material description f∗∗(X, t) is cast as

f∗∗ = f∗ ◦Ψ−1 (4.17a)

or
f∗∗(X, t) = f(Ψ−1(X, t), t). (4.17b)

The gradient of this expression can be computed as

∂f∗∗

∂(X, t)
(X, t) =

∂f∗

∂(χ, t)
(χ, t)

∂Ψ−1

∂(X, t)
(X, t) (4.18a)

which is amenable to the matrix form(
∂f∗∗

∂X

∂f∗∗

∂t

)
=
(
∂f∗

∂χ

∂f∗

∂t

) ∂χ

∂X
uref

0T 1

 (4.18b)

Apart from the obvious statement ∂f∗∗

∂X = ∂f∗

∂χ
∂χ
∂X , block multiplication also arouses the

desired relation between material and spatial time derivatives:

∂f∗∗

∂t
=
∂f∗

∂t
+
∂f∗

∂χ
· uref (4.19)

Taking into account that, in �uids, constitutive relations are naturally expressed in the
spatial con�guration and the Cauchy stress tensor is the natural measure for stresses, it is

4.2 Arbitrary Lagrangian-Eulerian Description 61

more convenient to rearrange the previous equation. Using equation (4.16) the gradient of
the considered quantity is evaluated in the spatial domain instead of the referential one:

∂f∗∗

∂t
=
∂f∗

∂t
+
∂f

∂x
· uconv (4.20)

Dropping the stars, reveals the fundamental ALE relation in the end:

∂f

∂t

∣∣∣∣
X

=
∂f

∂t

∣∣∣∣
χ

+
∂f

∂x
· uconv

=
∂f

∂t

∣∣∣∣
χ

+ uconv ·∇f (4.21)

It shows that the time derivative of the physical quantity f for a given particle X, its
material derivative, can be expressed as the sum of its local derivative (with the reference
coordinate χ held �xed) and a convective term considering the relative velocity uconv
between the material and the reference system.

Basic Conservation Equations

In order to obtain the ALE form of the conservation equations presented in Chapter 3, the
material velocity u has to be replaced by exactly this convective velocity uconv � de�ned
by equation (4.16) � in the various convective terms. For convenience and to establish the
link to the notation chosen in Section 3.2, the material time derivative is further denoted
as

d

dt
:=

∂

∂t

∣∣∣∣
X

(4.22a)

and the spatial time derivative as
∂

∂t
:=

∂

∂t

∣∣∣∣
x
. (4.22b)

Recalling the conservation equations for mass (3.4b) and momentum (3.10b) in terms of
the total time derivative

dρ

dt
=
∂ρ

∂t

∣∣∣∣
x

+ u ·∇ρ = −ρ∇ · u (mass) (4.23a)

ρ
du

dt
= ρ

(
∂u

∂t

∣∣∣∣
x

+ (u ·∇)u
)

= ∇ · σ + ρg (momentum) (4.23b)

and introducing the convective velocity uconv leads to the ALE di�erential forms:

dρ

dt
=
∂ρ

∂t

∣∣∣∣
χ

+ uconv ·∇ρ = −ρ∇ · u (mass) (4.24a)

ρ
du

dt
= ρ

(
∂u

∂t

∣∣∣∣
χ

+ (uconv ·∇)u

)
= ∇ · σ + ρg (momentum) (4.24b)

62 Chapter 4 Preparation of Fluid-Structure Coupling

It is important to note that the right-hand side of equations (4.24) is written in classical
spatial form, so to speak Eulerian, whereas the arbitrary motion of the computational mesh
is only re�ected on the left-hand side. For our implementation in particular, this means
that the advective velocity has to be set to aALE := a− umesh.
For the ALE form of the conservation equations for energy (total respectively internal),
please refer to Donea et al. (2004).

Furthermore, one has to bear in mind that the mesh motion may increase or decrease the
convection e�ects. Due to the already mentioned lack of stability of the standard Galerkin
formulation in convection-dominated situations, these might in�uence the employed stabi-
lization technique described in Section 3.4.4.

Boundary Conditions

In fact, boundary conditions are related to the problem, not to the description employed.
Thus, the same boundary conditions as in Eulerian and Lagrangian descriptions are used.
As the ALE formulation allows an accurate treatment of material surfaces, the following
two conditions are required on a material surface:

• no particles can cross it and

• stresses must be continuous across the surface (if a net force is applied to a surface
of zero mass, the acceleration is in�nite).

In the case of �uid-structure interaction the particle velocity along solid-wall boundaries
is coupled to the rigid or �exible structure. The enforcement of the kinematic requirement
that no particle can cross the interface writes

uref · n = 0 or u · n = umesh · n (4.25)

where n indicates once more the outward unit normal.

However, due to the coupling between �uid and structure, extra conditions are needed to
ensure that the �uid and structural domains will not detach or overlap during the motion.
These coupling conditions depend on the �uid. An inviscid �uid, as no shear e�ects
are considered, is free to slip along the structural interface. That is why only normal
components are taken into account for the coupling:

d · n = dstruct · n (continuity of normal displacements) (4.26a)

u · n = ustruct · n (continuity of normal velocities) (4.26b)

Apart from these kinematical conditions, the dynamic condition claiming stresses in the
�uid and stresses in the structure to be equal has to be veri�ed:

− pn = σstruct · n (equality of stresses) (4.26c)

For the respective interface conditions of viscous �uids, e.g. in the aim of facilitating a
future expansion of the implemented application, please refer to Donea et al. (2004) where
they are outlined as well.

4.3 Preliminary Tests 63

4.3. Preliminary Tests

In this section we will perform some �quasi� FSI simulations. This means that we perform
tests on moving meshes whose motion is de�ned by algebraic functions and not by the
coupling with a structural application.
As we prescribe the motion of the grid points by an algebraic function, it seems logical to
calculate the mesh velocity umesh by

u
n+ 1

2
mesh =

xn+1 − xn

tn+1 − tn
(4.27a)

where xn and xn+1 are the nodal position vectors at time level n and n + 1 respectively.
Nevertheless, we calculate umesh by the bias of the nodal displacements

u
n+ 1

2
mesh =

dn+1 − dn

tn+1 − tn
(4.27b)

where dn = xn − x0 refers to the initial geometry, because this is the way we will have to
do it once the �ow solver is coupled with a structural application.

Moreover, a moving mesh implies changes of the geometry data of its elements. This means
that the edge data has to be recomputed by the function MatrixContainer.BuildCSRData

whenever the grid points change their position. Certainly, this causes the edge-based
implementation to lose its advantage of pre-computing integral data in weakly coupled
problems where one iteration between �ow and structural solver is su�cient. In problems
with strong coupling however, it absolutely makes sense as many iterations between the
two solvers will be necessary until the convergence of the solution within a speci�c time
step is reached.

4.3.1. Geometric Conservation Law

A very common test in this context is the geometric conservation law for unsteady �ow
computations on moving and deforming �nite element or �nite volume grids.
The basic requirement is that any ALE computational method should be able to predict
exactly the trivial solution of a uniform �ow. The ALE equation of mass balance (4.24a)
is usually taken as the starting point for the derivation of the geoemtric conservation law.
The Reynolds transport theorem is used once again, this time applied to an arbitrary
volume Vm(t) whose boundary Am(t) = ∂Vm(t) moves with the mesh velocity umesh:

∂

∂t

∣∣∣∣
χ

∫
Vm(t)

f(x, t)dV =
∫
Vm(t)

∂f(x, t)
∂t

∣∣∣∣
x
dV +

∫
Am(t)

f(x, t)umesh · ndA (4.28)

where, in this case, we have explicitly indicated that the time derivative in the �rst term
of the right-hand side is a spatial time derivative, as in expression (3.2). Replacing the

64 Chapter 4 Preparation of Fluid-Structure Coupling

scalar f(x, t) by the �uid density ρ and substituting the spatial time derivative ∂f/∂t with
expression (4.24a) leads to the ALE integral form of the mass conservation equation:

∂

∂t

∣∣∣∣
χ

∫
Vm(t)

ρdV +
∫
Am(t)

ρuconv · ndA = 0. (4.29)

Assuming uniform �elds of density ρ and material velocity u, it reduces to the continuous
geometric conservation law (CGL)

∂

∂t

∣∣∣∣
χ

∫
Vm(t)

dV +
∫
Am(t)

umesh · ndA = 0 (4.30)

that can also be derived from the ALE integral conservation law for momentum and en-
ergy.

The mock-up illustarted in Figure 4.8 has been choosen to check the GCL stated by
equation (4.30). In both cases, either with an initialized velocity �eld or starting from

Figure 4.8: Geometric conservation law � tests on a moving grid

zero, the trivial solution of a uniform �ow results. Figure 4.9 shows the two extreme
positions of the mesh.

Integrating equation (4.30) in time from tn to tn+1 renders the discrete geometric conser-
vation law (DCGL)

∣∣Ωn+1
elem

∣∣− |Ωn
elem| =

∫ tn+1

tn

(∫
Am(t)

umesh · ndA

)
dt, (4.31)

which states that the change in volume (or area in 2D) of each element from tn to tn+1

must be equal to the volume (area respectively) swept by the element boundary during the
time interval. Assuming that the volumes Ωelem on the left-hand side of equation (4.31)
can be computed exactly, this amounts to requiring the exact computation of the �ux
on the right-hand side as well. This poses some restrictions on the update procedure for
grid position and velocity. Especially in the case of FSI problems, where mesh motion is

4.3 Preliminary Tests 65

Figure 4.9: GCL � extreme positions of the moving mesh

coupled with structural deformation, the intuitive formula for the computation of the mesh
velocity (4.27a) is violated in some instances.
It shall be stated here that the practical signi�cance of DGCLs is a debated issue in
literature and even in current research the link between DGCLs and the stability (and
accuracy) of ALE schemes is still a controversial topic (Donea et al., 2004).

4.3.2. Implementation of Boundary Conditions

For the GCL test case above the implementation of slip respectively no-slip condtions was
not a�ected as the movement of the walls was in a direction orthogonal to the �uid velocity.
In the next example we will break up this orthogonality by prescribing the function

y(x, t) =
(

1 +
1
4

sin
(

2πt
T

)
cos

(
2πx
L

))
y0 (4.32)

for the nodal positions of the grid points instead. x and y are the nodal coordinates, L is
the constant length of the domain and t and T are the simulation time and the duration
of one period respectively. Figure 4.10 demonstrates the periodic e�ect of equation (4.32)
on the mesh.

(a) t = 0, t = T (b) t = 1
4
T (c) t = 1

2
T (d) t = 3

4
T

Figure 4.10: Periodic cycle of mesh motion according to an arbitrary function

66 Chapter 4 Preparation of Fluid-Structure Coupling

This time we have to modify the boundary conditions according to the kinematic require-
ment (4.25):

uD =
{
umesh for no-slip conditions
(u− umesh)− (u− umesh) · n for slip conditions

(4.33)

Figure 4.11 shows the velocity vectors for the two extreme situations of the periodic cy-
cle 4.10 when equation (4.33) is taken into consideration. Whereas the orientation of the
velocity vectors follows the boundary movement, their length � indicating the module of
the nodal velocities � re�ect the equation of continuity, that is to say the conservation of
mass.

(a) t ≈ 1
4
T (b) t ≈ 3

4
T

Figure 4.11: Slip condition in the case of a moving contour

4.3.3. Interface Variables

So far we only considered the consequences of a moving mesh in terms of nodal displace-
ment (we already mentioned how to calculate MESH_VELOCITY from the Kratos variables
DISPLACEMENT), that is to say the result of a structural deformation on the �uid �ow.
However, to perform a correct �uid-structure coupling, the reverse has to be taken into
account as well. Hence, the force by the �uid �ow acting upon the boundary has to be
computed and transmitted to the structural application.

In this context, we can re-use a function de�ned in step 1 of the implemented algorithm:
CalculateRHS sums up the right-hand side contributions of equation (3.77a) and may be
employed, now with the end-of-step values for velocity u, density ρ and pressure p, to
compute the resulting force on the structure. This one is stored in the Kratos variable
FORCE so that the structural application can use it in turn.

In addition, the interface has to be marked as such during the pre-processing. This is
e�ectuated by the Kratos variable IS_INTERFACE which is delivered to the compressible

4.4 Expectations 67

�uid application by the respective problemtype. It takes the �ag value 1 for �uid-structure
interfaces and 0 elsewhere.

4.4. Expectations

Now that the interface variables between structural and �ow applications have been de-
�ned, everything should be ready for the coupling process. Unfortunately, no coupled FSI
simulations could be performed up to now owing to temporal restrictions. Yet we will
make up for this in the following weeks and months.

Concerning the compressible case, the �uid-structure coupling should be unproblematic and
converge within few iterations so that for example aeroelastic simulations on an aircraft
wing should work well.
However, in the incompressible case we expect some trouble. The balanced mass ratio
in water or blood �ow simulations will probably lead to situations where the coupling
algorithm does not converge.

5
Conclusion

5.1. Résumé of Results

The general algorithm for incompressible and compressible �ows proved to deliver sat-
isfactory results for two- and three-dimensional simulations in subsonic regime. From a
qualitative point of view the edge-based implementation revealed its advantaged over the
element-based one in terms of computational e�ciency. A quantitative comparison still
has to be done.

Concerning the simulation of FSI problems, the implemented solver has been prepared by
modi�cations due to the ALE formulation of the conservation equations. Some preliminary
tests led to positive results so that the coupling within the Kratos environment should work
�ne.

5.2. Future Prospects

Certainly, performing simulations of real �uid-structure interaction problems is the next
important step. A comparison between aeroelastic and hydroelastic phenomena is en-
visaged, in order to use the �ow solver on its whole bandwidth on the one hand and to
prove the expected di�erences between the FSI coupling of compressible and incompressible
�ows.

With regard to the �uid solver, the consideration of the viscous terms in order to obtain
the Navier-Stokes equations seems to be obvious. Nevertheless, a further generalization of
the algorithm for perfect gases, so to speak the expansion to the fully compressible regime,
appeals far more interesting. This requires the implementation of the energy equation as
a further step in the algorithm and some little modi�cations of the current step 2. In this
context shock capturing techniques will be necessary as well to determine the exact shock
position in supersonic regime.

A
Python Script for ALE Simulation Run

Listing A.1: Start script for a "quasi" FSI simulation

1 ##

2 ## setting the domain size for the problem to be solved

3 domain_size = 2

4

5 ##

6 ## ATTENTION: here the order is important

7

8 #including kratos path

9 kratos_libs_path = '/usr/local/kratos/kratosR1/libs' ##kratos_root/

libs

10 #kratos_libs_path = 'C:/ kratosR1/libs' ## kratos_root/libs

11 kratos_applications_path = '/usr/local/kratos/kratosR1/applications

/' ##kratos_root/applications

12 import sys

13 sys.path.append(kratos_libs_path)

14 sys.path.append(kratos_applications_path)

15

16 #importing Kratos main library

17 from Kratos import *

18 kernel = Kernel () #defining kernel

19

20 #importing applications

21 import applications_interface

22 applications_interface.Import_IncompressibleFluidApplication = True

23 applications_interface.Import_ExternalSolversApplication = False

24 applications_interface.ImportApplications(kernel ,

kratos_applications_path)

25

26 ##

27 ## from now on the order is not crucial anymore

28

29 from KratosR1IncompressibleFluidApplication import *

72 Appendix A Python Script for ALE Simulation Run

30 ##from KratosR1ExternalSolversApplication import *

31

32 ## defining a model part

33 model_part = ModelPart("FluidPart");

34

35 ## importing the solver files and adding the variables

36 import compressible_fluid_solver

37 compressible_fluid_solver.AddVariables(model_part)

38 model_part.AddNodalSolutionStepVariable(IS_BOUNDARY)

39 model_part.AddNodalSolutionStepVariable(NORMAL)

40 model_part.AddNodalSolutionStepVariable(AUX_INDEX)

41 model_part.AddNodalSolutionStepVariable(EXTERNAL_PRESSURE)

42 model_part.AddNodalSolutionStepVariable(BODY_FORCE)

43 model_part.AddNodalSolutionStepVariable(FRACT_VEL)

44 model_part.AddNodalSolutionStepVariable(MACH_NUMBER)

45 model_part.AddNodalSolutionStepVariable(PRESSURE_COEFFICIENT)

46 model_part.AddNodalSolutionStepVariable(IS_INTERFACE)

47 model_part.AddNodalSolutionStepVariable(DISPLACEMENT)

48 model_part.AddNodalSolutionStepVariable(MESH_VELOCITY)

49 model_part.AddNodalSolutionStepVariable(FORCE)

50

51 ## reading a model

52 gid_io = GidIO("GeomConsLaw",GiDPostMode.GiD_PostBinary)

53 ##gid_io.ReadMesh(model_part.GetMesh ())

54 gid_io.ReadModelPart(model_part)

55 gid_io.WriteMesh ((model_part).GetMesh (),domain_size ,GiDPostMode.

GiD_PostBinary);

56 print model_part

57

58 ## the buffer size should be set up here after the mesh is read for

the first time

59 model_part.SetBufferSize (3)

60

61 ## adding degrees of freedom to all of the nodes

62 compressible_fluid_solver.AddDofs(model_part)

63

64 ##

65 ## settings to be changed

66

67 ## SETTING FREESTREAM CONDITIONS

68 gamma = 1.4

69 Mach = 0.3

70 inlet = Array3 ()

71 inlet [0] = 10.0

72 inlet [1] = 0.0

73 inlet [2] = 0.0

74 inlet_list = []

75 density = 1.2

76 ext_press = pow(inlet [0]/Mach ,2.0) * density/gamma

77 print ext_press

78

73

79 ## INITIALIZING FLUID

80 velocity = inlet [0]

81 pressure = ext_press

82 for node in model_part.Nodes:

83 node.SetSolutionStepValue(DENSITY ,0,density)

84 node.SetSolutionStepValue(VELOCITY_X ,0,velocity)

85 node.SetSolutionStepValue(VELOCITY_Y ,0 ,0.0)

86 node.SetSolutionStepValue(VELOCITY_Z ,0 ,0.0)

87 node.SetSolutionStepValue(PRESSURE ,0,pressure)

88

89 ## SETTING BOUNDARY FLAGS

90 #1 - velocity inlet (Dirichlet)

91 #2 - no -slip condition (Dirichlet)

92 #3 - slip condition (Dirichlet)

93 #4 - pressure & slip node

94 #5 - pressure outlet (Neumann)

95

96 ## SETTING BOUNDARY VALUES

97 for node in model_part.Nodes:

98 if(node.GetSolutionStepValue(IS_BOUNDARY) == 1.0):

99 node.SetSolutionStepValue(VELOCITY_X ,0,inlet [0])

100 inlet_list.append(node)

101 if(node.GetSolutionStepValue(IS_BOUNDARY) == 4.0 or node.

GetSolutionStepValue(IS_BOUNDARY) == 5.0):

102 node.SetSolutionStepValue(EXTERNAL_PRESSURE ,0, ext_press)

103

104 ## SETTING VELOCITY RAMP -UP

105 ramp_up_steps = 0

106 ramp_up_vel = 10.0

107 initial_dt = 0.001

108

109 ## SETTING SOLVER PARAMETERS

110 CFL_number = 0.5

111 time = 0.0

112 Time = 20.0

113 step = 0

114 tolerance = 1e-3

115 abs_tol = 1e-6

116 n_it_max = 10

117

118 ## SETTING OUTPUT STEPS

119 output_step = 10

120 out = output_step

121

122 ##

123 ## begin of the simulation run

124

125 matrix_container = MatrixContainer2D ()

126 fluid_solver = FluidSolver2D ()

127

128 ## finding the neighbours

74 Appendix A Python Script for ALE Simulation Run

129 neighbour_finder = FindNodalNeighboursProcess(model_part ,10 ,10);

130 neighbour_finder.Execute (); ##at wish ... when it is needed

131

132 ## pre -computing edge -data

133 matrix_container.ConstructCSRVector(model_part)

134 matrix_container.BuildCSRData(model_part)

135

136 ## initializing flow solver

137 fluid_solver.Initialize(model_part ,matrix_container)

138 fluid_solver.SetFreeFlowConditions(inlet ,ext_press ,density ,gamma)

139 ##fluid_solver.SetAlpha (0.0, model_part.Nodes)

140 pPrecond = DiagonalPreconditioner ()

141 ##pPrecond = ILU0Preconditioner ()

142 linear_solver = BICGSTABSolver (1e-6,5000, pPrecond)

143 ##linear_solver = CGSolver (1e-6,5000, pPrecond)

144

145 ## time loop

146 while time < Time:

147 ## determining time -step size

148 if(step < ramp_up_steps):

149 delta_t = initial_dt

150 model_part.ProcessInfo[DELTA_TIME] = delta_t

151 else:

152 fluid_solver.ComputeTimeStep(model_part , CFL_number)

153 delta_t = model_part.ProcessInfo[DELTA_TIME]

154

155 ## creating time -step data

156 time = time + delta_t

157 step = step + 1

158 print time

159 model_part.CloneTimeStep(time)

160

161 ## considering velocity ramp -up

162 if(step < ramp_up_steps):

163 inlet [0] = ramp_up_vel * step/ramp_up_steps

164 else:

165 inlet [0] = ramp_up_vel

166 fluid_solver.SetFreeFlowConditions(inlet ,ext_press ,density ,

gamma)

167

168 ## moving mesh

169 fluid_solver.MoveMesh(model_part)

170 fluid_solver.ComputeMeshVelocity(model_part)

171 matrix_container.BuildCSRData(model_part)

172 fluid_solver.ComputeNormals(model_part)

173

174 ## solving fluid problem

175 if(step > 3):

176 ## STEP 1

177 ratio = 1.0 + tolerance

178 abs_norm = 1.0 + abs_tol

75

179 n_it = 0

180 while(ratio > tolerance and abs_norm > abs_tol and n_it <

n_it_max):

181 norms = fluid_solver.SolveStep1(model_part ,

matrix_container)

182 if (norms [1] == 0.0):

183 abs_norm = norms [0]

184 else:

185 ratio = norms [0]/ norms [1]

186 abs_norm = norms [0]

187 n_it = n_it + 1

188 print "Step 1 cleared"

189 print " Number of iterations: " + str(n_it)

190 print " Ratio = " + str(ratio)

191 print " Absolute difference = " + str(abs_norm)

192

193 ## STEP 2

194 fluid_solver.SolveStep2(model_part ,matrix_container ,

linear_solver)

195 print "Step 2 cleared"

196

197 ## STEP 3

198 fluid_solver.SolveStep3(model_part ,matrix_container)

199 print "Step 3 cleared"

200

201 ## STEP 4

202 fluid_solver.SolveStep4(model_part.Nodes)

203 print "Step 4 cleared"

204

205 ## print results

206 if(out == output_step):

207 print "Output"

208 gid_io.WriteNodalResults(AUX_INDEX ,model_part.Nodes ,time ,0)

209 gid_io.WriteNodalResults(IS_BOUNDARY ,model_part.Nodes ,time

,0)

210 gid_io.WriteNodalResults(AUX_INDEX ,model_part.Nodes ,time ,0)

211

212 gid_io.WriteNodalResults(PRESSURE ,model_part.Nodes ,time ,0)

213 gid_io.WriteNodalResults(VELOCITY ,model_part.Nodes ,time ,0)

214 gid_io.WriteNodalResults(DENSITY ,model_part.Nodes ,time ,0)

215

216 gid_io.WriteNodalResults(FRACT_VEL ,model_part.Nodes ,time ,0)

217 fluid_solver.CalculateCoefficients(model_part.Nodes)

218 gid_io.WriteNodalResults(PRESSURE_COEFFICIENT ,model_part.

Nodes ,time ,0)

219 gid_io.WriteNodalResults(MACH_NUMBER ,model_part.Nodes ,time

,0)

220

221 gid_io.WriteNodalResults(IS_INTERFACE ,model_part.Nodes ,time

,0)

222 gid_io.WriteNodalResults(MESH_VELOCITY ,model_part.Nodes ,

76 Appendix A Python Script for ALE Simulation Run

time ,0)

223 gid_io.WriteNodalResults(DISPLACEMENT ,model_part.Nodes ,time

,0)

224 gid_io.WriteNodalResults(FORCE ,model_part.Nodes ,time ,0)

225

226 gid_io.Flush()

227 out = 0

228 out = out + 1

229 print "Simulation run terminated correctly"

B
C++ Source Code to Compute Edge Data

Listing B.1: Construction of the CSR data vector

1 // allocate dynamic memory for the block of CSR data

2 mNonzeroEdgeValues.resize(n_edges);

3 mColumnIndex.resize(n_edges);

4 mRowStartIndex.resize(n_nodes +1);

5

6 // temporary variable as the row start index of a node depends on

the number of neighbours of the previous one

7 unsigned int row_start_temp = 0;

8

9 //main loop over all nodes

10 for (typename ModelPart :: NodesContainerType :: iterator node_it=

model_part.NodesBegin (); node_it != model_part.NodesEnd (); node_it

++)

11 {

12 //get the global index of the node

13 unsigned int i_node = node_it ->FastGetSolutionStepValue(AUX_INDEX

);

14 // determine its neighbours

15 WeakPointerVector < Node <3> >& neighb_nodes = node_it ->GetValue(

NEIGHBOUR_NODES);

16 // number of neighbours determines row start index for the

following node

17 unsigned int n_neighbours = neighb_nodes.size();

18

19 // reserve memory for work array

20 std::vector <unsigned int > work_array;

21 work_array.reserve(n_neighbours);

22

23 // nested loop over the neighbouring nodes

24 for (WeakPointerVector < Node <3> >::iterator neighb_it=

neighb_nodes.begin (); neighb_it != neighb_nodes.end(); neighb_it

++)

78 Appendix B C++ Source Code to Compute Edge Data

25 {

26 //read global index of the neighbouring node

27 work_array.push_back(neighb_it ->FastGetSolutionStepValue(

AUX_INDEX));

28 }

29 // reorder neighbours following their global indices

30 std::sort(work_array.begin(),work_array.end());

31

32 //set current row start index

33 mRowStartIndex[i_node] = row_start_temp;

34 // nested loop over the by now ordered neighbours

35 for (unsigned int counter = 0; counter < n_neighbours; counter ++)

36 {

37 //get global index of the neighbouring node

38 unsigned int j_neighbour = work_array[counter];

39 //save column index j of the original matrix

40 mColumnIndex[csr_index] = j_neighbour;

41

42 // calculate CSR index

43 unsigned int csr_index = mRowStartIndex[i_node]+ counter;

44 // initialize the CSR vector entries with zero

45 mNonzeroEdgeValues[csr_index].Mass = 0.0;

46 noalias(mNonzeroEdgeValues[csr_index]. LaplacianIJ) = ZeroMatrix

(TDim ,TDim);

47 noalias(mNonzeroEdgeValues[csr_index]. GradientJ) = ZeroVector(

TDim);

48 noalias(mNonzeroEdgeValues[csr_index]. GradientI) = ZeroVector(

TDim);

49 }

50 // prepare row start index for next node

51 row_start_temp += n_neighbours;

52 }

53 //add last entry (necessary for abort criterion of the edge loop)

54 mRowStartIndex[n_nodes] = n_edges;

79

Listing B.2: Precompute and assemble edge-based data structure

1 //loop over all elements

2 for (typename ModelPart :: ElementsContainerType :: iterator elem_it=

model_part.ElementsBegin (); elem_it != model_part.ElementsEnd ();

elem_it ++)

3 {

4 //get geometry data of the element

5 GeometryUtils :: CalculateGeometryData(elem_it ->GetGeometry (),

dN_dx , N, volume);

6

7 //set up elemental mass matrices

8 CalculateMassMatrix(mass_consistent , volume);

9 // compute weighting factor

10 //(corresponding to Ni * dOmega respectively Nj * dOmega)

11 double weighted_volume = volume / static_cast <double >(TDim +1);

12

13 //loop over the nodes of the element to determine their global

indices

14 for (unsigned int ie_node =0; ie_node <=TDim; ie_node ++)

15 nodal_indices[ie_node] = elem_it ->GetGeometry ()[ie_node].

FastGetSolutionStepValue(AUX_INDEX);

16

17 // assemble global "edge matrices" by adding local contributions

18 for (unsigned int ie_node =0; ie_node <=TDim; ie_node ++)

19 for (unsigned int je_node =0; je_node <=TDim; je_node ++)

20 {

21 // remark: there is no edge linking node i with itself!

22 if (ie_node != je_node)

23 {

24 // calculate CSR index from global index

25 unsigned int csr_index = GetCSRIndex(nodal_indices[ie_node

], nodal_indices[je_node]);

26

27 // assign precalculated element data to the referring edges

28 // contribution to edge mass

29 mNonzeroEdgeValues[csr_index].Mass += mass_consistent(

ie_node ,je_node);

30 // contribution to edge laplacian

31 boost :: numeric ::ublas:: bounded_matrix <double ,TDim ,TDim >&

laplacian = mNonzeroEdgeValues[csr_index]. LaplacianIJ;

32 for (unsigned int k_comp =0; k_comp <TDim; k_comp ++)

33 for (unsigned int l_comp =0; l_comp <TDim; l_comp ++)

34 laplacian(k_comp ,l_comp) += dN_dx(ie_node ,k_comp) *

dN_dx(je_node ,l_comp) * volume;

35 // contribution to edge gradient

36 array_1d <double , TDim >& gradient = mNonzeroEdgeValues[

csr_index]. GradientJ;

37 for (unsigned int k_comp =0; k_comp <TDim; k_comp ++)

38 gradient[k_comp] += dN_dx(je_node ,k_comp) *

weighted_volume;

39 // contribution to transposed edge gradient

80 Appendix B C++ Source Code to Compute Edge Data

40 array_1d <double , TDim >& transp_gradient =

mNonzeroEdgeValues[csr_index]. GradientI;

41 for (unsigned int k_comp =0; k_comp <TDim; k_comp ++)

42 transp_gradient[k_comp] += dN_dx(ie_node ,k_comp) *

weighted_volume;

43 }

44 }

45 }

C
Kratos Arts

Jet-Boost

The Swirl

Bibliography

N.A. Adams. Fluidmechanik I � Einführung in die Dynamik der Fluide. Technical report,
Lehrstuhl für Aerodynamik, Technische Universität München, 2007.

T. Belytschko, W. K. Liu, and B. Moran. Nonlinear Finite Elements for Continua and

Structures. John Wiley & Sons, 2000.

S. Candel. Enseignement de Sciences des Transferts: Mécanique des Fluides. Technical
report, Laboratoire E.M2.C, Ecole Centrale Paris, 2005.

CIMNE � International Center for Numerical Methods in Engineering. URL http://www.

cimne.com.

R. Codina. Pressure stability in fractional step �nite element methods for incompressible
�ows. Journal of Computational Physics, volume 170: pp. 112�140, 2001.

R. Codina and A. Folch. A stabilized �nite element predictor-corrector scheme for the in-
compressible Navier-Stokes equations using a nodal-based implementation. International
Journal for Numerical Methods in Fluids, volume 44: pp. 483�503, 2004.

R. Codina and O. Soto. Approximation of the incompressible Navier-Stokes equations
using orthogonal subscale stabilization and pressure segregation on anisotropic �nite
element meshes. Computer Methods in Applied Mechanics and Engineering, volume 193:
pp. 1403�1419, 2004.

R. Codina, M. Vázquez, and O.C. Zienkiewicz. A general algorithm for compressible
and incompressible �ows. Part III: The semi-implicit form. International Journal for

Numerical Methods in Fluids, volume 27: pp. 13�32, 1998.

P. Dadvand. A framework for developing �nite element codes for multi-disciplinary appli-

cations. PhD thesis, Universitat Politècnica de Catalunya, 2007.

W. Dettmer and D. Peri¢. A computational framework for �uid-structure interaction:
Finite element formulation and applications. Computer Methods in Applied Mechanics

and Engineering, volume 195: pp. 5754�5779, 2006.

http://www.cimne.com
http://www.cimne.com

84 Bibliography

J. Donea and A. Huerta. Finite Element Methods for Flow Problems. John Wiley & Sons,
2003.

J. Donea, A. Huerta, J.-Ph. Ponthot, and A. Rodríguez-Ferran. Encyclopedia of Computa-

tional Mechanics, volume 1: Fundamentals, chapter 14: Arbitrary Lagrangian-Eulerian
Methods. John Wiley & Sons, 2004.

GiD � The personal pre- and postprocessor. URL http://www.gidhome.com.

I.J. Keshtiban, F. Belblidia, and M.F. Webster. Compressible �ow solvers for low Mach
number �ows � a review. Technical report, Department of Computer Science, University
of Wales, Swansea, 2004.

M. Kohm and J.U. Morawski. KOMA-Script � ein wandelbares LaTeX2ε -Paket, December
2007.

Kratos Trac � Wiki and User Documentation. URL http://kratos.cimne.upc.es/trac/.

R. Löhner. Applied CFD Techniques - An Introduction based on Finite Element Methods.
John Wiley & Sons, 2001.

R. Löhner. Multistage explicit advective prediction for projection-type incompressible �ow
solvers. Journal of Computational Physics, volume 195: pp. 143�152, 2004.

D.J. Mavriplis and Z. Yang. Construction of the discrete geometric conservation law for
high-order time-accurate simulations on dynamic meshes. Journal of Computational

Physics, volume 213: pp. 557�573, 2006.

D.P. Mok. Partitionierte Lösungsansätze in der Strukturdynamik und der Fluid-Struktur-

Interaktion. PhD thesis, Universität Stuttgart, 2001.

E. Ortega. A �nite point method for three-dimensional compressible �ow. PhD thesis,
Universitat Politècnica de Catalunya, 2007.

E. Ortega, R. Flores, and E. Oñate. An edge-based solver for compressible �ows. Technical
report, CIMNE, 2005.

R. Rossi. Light-weight Structures � Numerical Analysis and Coupling Issues. PhD thesis,
Università degli Studi di Padova, 2006.

R. Rossi, S. Idelsohn, and E. Oñate. A new �stabilized� scheme for FSI. 2008.

O. Soto, R. Löhner, J. Cebral, and F. Camelli. A stabilized edge-based implicit incom-
pressible �ow formulation. Computer Methods in Applied Mechanics and Engineering,
volume 193: pp. 2139�2154, 2004.

C++ Language Tutorial, a. URL http://www.cplusplus.com/doc/tutorial/.

Python Tutorial, b. URL http://docs.python.org/tut/.

J. Vierendeels. Implicit Coupling of Partitioned Fluid-Structure Interaction Solvers using
Reduced-Order Models. In Fluid-Structure Interaction: Modelling, Simulation, Optimi-

sation, volume 53. Springer, 2006.

H. Voÿ. Math mode. CTAN � the Comprehensive TeX Archive Network, February 2008.
Version 2.32.

M. Vázquez, R. Codina, and O.C. Zienkiewicz. Numerical modelling of compressible lam-

inar and turbulent �ow: The CBS algorithm. CIMNE Monography, 1999.

http://www.gidhome.com
http://kratos.cimne.upc.es/trac/
http://www.cplusplus.com/doc/tutorial/
http://docs.python.org/tut/

Bibliography 85

W.A. Wall. Fluid-Struktur-Interaktion mit stabilisierten Finiten Elementen. PhD thesis,
Universität Stuttgart, 1999.

J.B. White and P. Sadayappan. On Improving the Performance of Sparse Matrix-
Vector Multiplication. In Proceedings of the Fourth International Conference on High-

Performance Computing, pages pp. 66�71, 1997.

Wikibooks � LaTeX. URL http://en.wikibooks.org/wiki/LaTeX.

Wikipedia � The Free Encyclopedia. URL http://www.wikipedia.org.

O.C. Zienkiewicz and R.L. Taylor. The Finite Element Method, volume 3: Fluid Dynamics.
Butterworth-Heinemann, 5th edition, 2000.

http://en.wikibooks.org/wiki/LaTeX
http://www.wikipedia.org

	Title Page
	Acknowledgements
	Abstract
	Table of Contents
	1 Introduction
	1.1 Multi-Physics in general...
	1.2 ... and Fluid-Structure Interaction in particular
	1.3 Organization of the Document

	2 KRATOS -- Multi-Physics FEM Environment
	2.1 Multi-Disciplinary Problems
	2.1.1 Weak and Strong Coupling
	2.1.2 Interaction over Boundary and Domain

	2.2 General Structure of Kratos
	2.2.1 Object-Oriented Approach
	2.2.2 Multi-Layer Design
	2.2.3 Python Interface

	2.3 GiD Pre- and Postprocessor
	2.3.1 Preparation of the Model

	3 Fluid Solver -- Implementation and Validation
	3.1 Motivation
	3.2 Governing Equations in Fluid Dynamics
	3.2.1 Basic Conservation Equations
	3.2.2 Navier-Stokes Equations
	3.2.3 Euler Equations

	3.3 Edge-Based Data Structure
	3.3.1 Nodal Implementation
	3.3.2 Compressed-Sparse-Row Format
	3.3.3 Laplacian Operator
	3.3.4 Gradient and Transposed Gradient
	3.3.5 Consistent and Lumped Mass Matrix

	3.4 Implementation for Incompressible Flows
	3.4.1 Problem Statement
	3.4.2 Discretization
	3.4.3 Fractional Step Algorithm
	3.4.4 Stabilization Techniques
	3.4.5 Solving Procedure and Boundary Conditions

	3.5 Expansion for Compressible Flows
	3.5.1 Modifications
	3.5.2 Generalization of the Algorithm
	3.5.3 Modified Fractional Step Scheme
	3.5.4 General Solving Procedure

	3.6 Numerical Examples
	3.6.1 Cube with Quiescent Water
	3.6.2 Airflow around a Cylinder
	3.6.3 NACA 0012 Airfoil
	3.6.4 ONERA M6 Wing

	4 Preparation of Fluid-Structure Coupling
	4.1 Solving Procedures for Coupled Problems
	4.1.1 Sequential Solution
	4.1.2 Monolithic Approach
	4.1.3 Staggered Methods

	4.2 Arbitrary Lagrangian-Eulerian Description
	4.2.1 Lagrangian vs. Eulerian Description
	4.2.2 ALE -- Generalization of both Approaches
	4.2.3 ALE Form of Conservation Equations

	4.3 Preliminary Tests
	4.3.1 Geometric Conservation Law
	4.3.2 Implementation of Boundary Conditions
	4.3.3 Interface Variables

	4.4 Expectations

	5 Conclusion
	5.1 Résumé of Results
	5.2 Future Prospects

	A Python Script for ALE Simulation Run
	B C++ Source Code to Compute Edge Data
	C Kratos Arts
	References

