
Research Article
Parallelization of an Unsteady ALE Solver with Deforming Mesh
Using OpenACC

WenpengMa,1 Zhonghua Lu,2 Wu Yuan,2 and Xiaodong Hu2

1College of Computer and Information Technology, Xinyang Normal University, Henan 464200, China
2Supercomputing Center of Chinese Academy of Sciences, Beijing 100190, China

Correspondence should be addressed to Wenpeng Ma; markwinpe@163.com

Received 28 November 2016; Revised 19 May 2017; Accepted 11 June 2017; Published 16 July 2017

Academic Editor: Can Özturan

Copyright © 2017 Wenpeng Ma et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

This paper presents a parallel, GPU-based, deforming mesh-enabled unsteady numerical solver for solving moving body problems
by using OpenACC. Both the 2D and 3D parallel algorithms based on spring-like deforming mesh methods are proposed and
then implemented through OpenACC programming model. Furthermore, these algorithms are coupled with an unstructured
mesh based, implicit time scheme integrated numerical solver, which makes the full GPU version of the solver capable of handling
unsteady calculations with deforming mesh. Experiments results show that the proposed parallel deforming mesh algorithm can
achieve over 2.5x speedup on K20 GPU card in comparison with 20 OpenMP threads on Intel E5-2658 V2 CPU cores. And both
2D and 3D cases are conducted to validate the efficiency, correctness, and accuracy of the present solver.

1. Introduction

Many unsteady fluid flow simulations, such as fluid-structure
interaction (FSI) [1–3] and wing-store separation [4], involve
slight deformation of wall boundaries or relative motion
between components in Computational Fluid Dynamics
(CFD). This kind of problems is termed as dynamic mesh
problems in unsteady calculations. So far various kinds of
dynamic mesh approaches [3, 5–8] have been proposed and
validated.

According to the present literatures, the dynamic mesh
approaches can be divided into two categories. The first
class refers to the overset grid technique [7, 9–12] in which
mesh movements can be modeled independently for the
involved boundary that is supposed to bemoved.Themeshes
of different moving parts overlap with each other to form
the complete overset grid system. This technique, applied in
both structured [10, 11] and unstructured [7] grids, alleviates
the complexity of mesh generation and improves the mesh
quality of local domains. However, it adds the difficulty
of the mesh preprocessing work [7, 9, 11, 13] in which the
interpolated information of each pair of overlapped mesh-
block needs to be determined from each one. An alternative

category, termed as deformingmesh technique, is about using
single, consistent mesh and deforming it to conform the
new geometric shape without changing the connectivity of
the whole computational mesh. In this category, the node
connectivity-based methods consider each two neighboring
mesh nodes and treat the whole mesh domain as a spring
network. The representative methods involve 2D spring-
analogy [14], 2D torsional spring [15], 3D ball-vertex [16],
and 3D torsional spring [17, 18] approaches. Contrary to
the node connectivity-based methods, the nonconnectivity
methods move the mesh nodes point-by-point by calculating
the relative position with respect to the given reference
position. RBF- (radial basis functions-) based algorithm [19]
and DGM (Delaunay grid mapping) [20] algorithm are two
popular approaches in nonconnectivity methods.

Parallel algorithm design and implementation (high
performance computing, HPC) for CFD applications have
become popular and necessary in recent decades due to
the ever-growing computational scale. And the flow fluid
simulations based on the traditional parallel techniques,
such as MPI (message passing interface) [21] and OpenMP
[22], have been studied in [3, 4, 6, 9, 11]. Since Nvidia’s
CUDA (Compute Unified Device Architecture) [23] was

Hindawi
Scientific Programming
Volume 2017, Article ID 4610138, 16 pages
https://doi.org/10.1155/2017/4610138

https://doi.org/10.1155/2017/4610138

2 Scientific Programming

published in 2007, GPU computing has attracted more and
more attention due to its high memory bandwidth and light-
weighted threads of parallelism. CUDA also provides both
hardware configurations and software supports for one to
develop programs in parallel by using C/C++ language. And
recent years have witnessed a lot of numerical solvers [24–30]
that involve various CFD areas on the GPU device.

However, the GPU-based developed solvers are most of
the steady ones, which do not involve moving mesh. Even
in unsteady calculations [31–33] on GPU device, either no
mesh deformation or dynamic overset grid technique is
studied. Furthermore, the developed GPU-based solvers are
implemented by CUDA programming model in which the
core functions of the source code require the programmers
to redesign in CUDA-kernel subroutines. This code rewrit-
ing procedure is a time-consuming job that leads to low
efficiency of GPU code development. With this in mind,
the objective of this paper is to develop an accelerated,
unstructured mesh based, unsteady solver that is capable
of handling deforming mesh for moving body problems on
the GPU platform by employing the new directive-based
parallel programming interface-OpenACC. The proposed
solver requires minor code revision effort but can show well
parallel performance on the GPU device. The present paper
is organized as follows: Section 2 gives a brief introduction
of the OpenACC programming model; Section 3 states the
unsteady numerical algorithms of ALE formulation. Both 2D
and 3D parallel deforming mesh algorithms (PDMA) and
OpenACC implementation are proposed in Section 4. The
implementation of an unsteady solver that is coupled with the
proposed algorithm for moving body problems is presented
in Section 5; Section 6 reports the experiments result of
the ALE unsteady solver with deforming mesh; and the last
section is the summary of the work.

2. OpenACC Programming Model

The past several years have witnessed the development
of heterogeneous architectures, such as DSPs (digital sig-
nal processors), FPGA (Field-Programmable Gate Array),
and GPU (Graphics Processing Unit), capable of providing
great computational power as an auxiliary accelerator for
various applications in scientific areas. The programming
interfaces, meanwhile, including OpenCL [34], CUDA [23],
and C++AMP [35], emerge for developers to design the
corresponding algorithm on each architecture. However, in
order to explore the potential of computing of theses archi-
tectures thoroughly, the programming models require users
to understand the hardware-level framework well and put
large amount of effort on rewriting the codes, which makes
the code migration work with low efficiency. OpenACC
[36], published in late 2011, is designed as a programming
model that allows researchers to accelerate their scientific
codes on different processors and platforms by using high-
level compiler directives. The design concept of OpenACC
resembles OpenMP [22]: one needs to firstly identify the
areas that should be parallelized and then accelerate them
by declaring appropriate directives or calling runtime library
routines. This directive-based programming model not only

makes one parallelize application codes with minor effort but
also enable developers to run a single source code on different
accelerating platforms, such as many-core CPUs, graphics
processing units (GPU).TheOpenACC standard is currently
supported by four commercial compiler vendors, CAPS [37],
Cray [38], PGI [39], and Nvidia [40]. It is quickly becoming a
popular, effective, attractive programming model that offers
scientists and researchers an efficient way to develop platform
independent, portable and parallel scientific codes. Anyone
who is familiar with scientific language, such as C, C++, and
Fortran, is capable of porting the codes on an accelerator.
From the point of view of architecture, the OpenACC
provides an abstract model by defining host and accelerator
device with a hierarchy of memories [41]. The accelerator
device could be the same device as a CPU core, a GPU card,
or a future accelerator device. The interactions of different
devices, such as memory management, data transfers, and
asynchronous operations, can be achieved by compiler and
runtime library routines.

3. ALE Formulation for Unsteady Simulation

The numerical model for unsteady flows with moving or
deforming mesh employed in present paper is Arbitrary
Lagrangian Eulerian (ALE) formulation for Navier Stokes
equations, which can be written in integral form as𝜕𝜕𝑡 ∫ΩW𝑑Ω + ∮

𝜕Ω
(F𝑀𝑐 − FV) 𝑑𝑆 = 0, (1)

whereΩ is control volume, 𝑑𝑆 is the integral surface element,
W = [𝜌, 𝜌𝑢, 𝜌V, 𝜌𝑤, 𝜌𝐸]𝑇 denotes five conservative variables
in three dimensions, and F𝑀𝑐 = Finv𝑐 − FALE𝑐 , FV represent the
convective fluxes on moving or deforming mesh and viscous
fluxes, respectively. These two vectors are given by

F𝑀𝑐 = (𝜌𝑉𝑟𝜌U𝑉𝑟 +N𝑝(𝜌𝐸 + 𝑝)𝑉𝑟 + 𝑉𝑡𝑝) ,

FV = (0
𝜏N
Θ ⋅ N),

(2)

where 𝜌, 𝑝 denote the density and pressure, respectively,
U = [𝑢, V, 𝑤]𝑇 represents the velocity components in each
direction,N = [𝑛𝑥, 𝑛𝑦, 𝑛𝑧]𝑇 stands for the unit normal vector
of the integral surface, and 𝜏 = (𝜏)𝑖𝑗 (𝑖, 𝑗 = 𝑥, 𝑦, 𝑧) denotes
the viscous stress tensor. Two velocity vectors, V𝑡 and V𝑟,
satisfy 𝑉𝑡 = U𝑡 ⋅ N and 𝑉𝑟 = U ⋅ N − 𝑉𝑡, where the vector
U𝑡 = [𝑢𝑡, V𝑡, 𝑤𝑡]𝑇 is the velocity of the mesh. The component
of Θ, denoted as Θ𝑖 = 𝑢𝜏𝑖𝑥 + V𝜏𝑖𝑦 + 𝑤𝜏𝑖𝑧 + 𝑘(𝜕𝑇/𝜕𝑖) (𝑖 =𝑥, 𝑦, 𝑧), stands for the work of viscous stresses and the heat
conduction. By introducing two additional equations, 𝑝 =𝜌𝑅𝑇 and 𝑝 = (𝛾−1)𝜌(𝐸−(𝑢2+V2+𝑤2)/2), the complete ALE
equations contain seven unknown variables to be solved.

In the case of unsteady simulations involving deforming
or moving mesh, Geometric Conservation Law (GCL) [42]

Scientific Programming 3

j
i

k

j�㰀

k�㰀

�휃i

C
ijk

k

C
ijk
i

C
ijk
j

Figure 1: Two-dimensional torsional spring model.

is generally satisfied to avoid errors induced by the deformed
control volumes. Written as integral form, GCL reads

𝜕𝜕𝑡 ∫Ω 𝑑Ω − ∮
𝜕Ω
𝑉𝑡𝑑𝑆 = 0. (3)

By moving the second term to the right side of (3) and
performing second-order time discretization on the left term
of (3), the variation of control volumes in different time levels
can be expressed as

Ω𝑛+1 = 43Ω𝑛 − 13Ω𝑛−1 + 23 △ 𝑡 𝑁𝑓∑
𝑚=1

(𝑉𝑡)𝑚 △ 𝑆𝑚. (4)

4. Deforming Mesh Algorithm on the
GPU Platform

4.1. Two-Dimensional Parallel Deforming Mesh Algorithm.
The spring-like deforming mesh algorithms [14, 15] have
been applied widely due to its robustness in very complex
configurations. The main idea of these approaches is to view
the unstructured grid of the computational domain as a
network of springs which are constructed by the connectivity
of nodes. The equilibrium equations of the spring network
are satisfied when the grid is static and the equations are
satisfied again after the grid movement by providing the dis-
placements of moving nodes as boundary conditions. Then
the displacements of inner nodes can be determined through
solving a linear system of equations. For the convenience
of the following statement, the classical two-dimensional
torsional spring deforming mesh approach [15] is reviewed
first.

As illustrated in Figure 1, the torsional stiffness 𝐶𝑖𝑗𝑘𝑚
is defined as 1/sin2𝜃𝑖𝑗𝑘𝑖 , which is used as collapse control
parameters to avoid grid crossover problems during the grid
movement. Then the moments, expressed as a vector Mijk,
can be written as Mijk = CijkΔ𝜃ijk, where Cijk is a 3 × 3
diagonal matrix with 𝐶𝑖𝑗𝑘𝑖 , 𝐶𝑖𝑗𝑘𝑗 , 𝐶𝑖𝑗𝑘𝑘 in diagonal positions,
respectively, and Δ𝜃𝑖𝑗𝑘 = [Δ𝜃𝑖, Δ𝜃𝑗, Δ𝜃𝑘]𝑇 = R𝑖𝑗𝑘q𝑖𝑗𝑘 repre-
sents the rotation increment vectorwith a 3×6matrixR𝑖𝑗𝑘 and
the displacements of 𝑖, 𝑗, 𝑘 nodes in horizontal and vertical

directions. Finally, the effect of torsional springs in triangle𝑇𝑖𝑗𝑘 can be calculated by using discrete forces as

F𝑖𝑗𝑘torsional = R𝑖𝑗𝑘
𝑇

C𝑖𝑗𝑘R𝑖𝑗𝑘q𝑖𝑗𝑘 = K𝑖𝑗𝑘torsionalq
𝑖𝑗𝑘, (5)

where

R𝑖𝑗𝑘

= [[[[
𝑏𝑖𝑘 − 𝑏𝑖𝑗 𝑎𝑖𝑗 − 𝑎𝑖𝑘 𝑏𝑖𝑗 −𝑎𝑖𝑗 −𝑏𝑖𝑘 𝑎𝑖𝑘−𝑏𝑗𝑖 𝑎𝑗𝑖 𝑏𝑗𝑖 − 𝑏𝑗𝑘 𝑎𝑗𝑘 − 𝑎𝑗𝑖 𝑏𝑗𝑘 −𝑎𝑗𝑘𝑏𝑘𝑖 −𝑎𝑘𝑖 −𝑏𝑘𝑗 𝑎𝑘𝑗 𝑏𝑘𝑗 − 𝑏𝑘𝑖 𝑎𝑘𝑖 − 𝑎𝑘𝑗

]]]]
(6)

𝑎𝑠𝑡 = (𝑥𝑡 − 𝑥𝑠)/((𝑥𝑡 − 𝑥𝑠)2 + (𝑦𝑡 − 𝑦𝑠)2), 𝑏𝑠𝑡 = (𝑦𝑡 − 𝑦𝑠)/((𝑥𝑡 −𝑥𝑠)2 + (𝑦𝑡 − 𝑦𝑠)2) (𝑠 ̸= 𝑡, 𝑠, 𝑡 = 𝑖, 𝑗, 𝑘).
The above linear system of equations is generally solved

by employing traditional iterative methods, such as Jacobi,
Gauss-Seidel, SOR, and SSOR.These methods do not require
explicit matrix format and work with lower memory cost.
However, they generally require a lot of iterations to conver-
gence.The spring-likemesh deformation algorithms produce
symmetric torsional stiffness matrices, but the matrices are
not always positive definite. Therefore, a fast Krylov sub-
space based preconditioned BiCGSTAB [43] (P-BiCGSTAB)
method is employed in this paper. And a parallel coefficient
matrix assembly (PCMA) algorithm is proposed to generate
explicit format of the sparse matrix required by P-BiCGSTAB
method.

As listed in Algorithm 1, 2DPCMA process fills the CSR
(Compressed Sparse Row) format of the spring coefficient
matrix which is constructed by a row array 𝑟𝑜𝑤_𝑎𝑟𝑟, a
column array 𝑐𝑜𝑙_𝑎𝑟𝑟, and a value array V𝑎𝑙_𝑎𝑟𝑟 through
launching many threads concurrently. Each thread calculates
two rows of the sparsematrix independently by accumulating
the corresponding values in torsional coefficient matrix.
Specifically, given an inner node 𝑖, each triangle that contains𝑖 contributes to V2𝑖,2𝑖 (value at 2𝑖th row, 2𝑖th column of the
torsional coefficient matrix with nonsparse format), V2𝑖,2𝑖+1,
V2𝑖+1,2𝑖, V2𝑖+1,2𝑖+1. This step is accomplished by calculating
each torsional coefficient 𝐾𝑖𝑗𝑘𝑡 of 𝑇𝑖𝑗𝑘 and accumulating four
values of the top left corner of 𝐾𝑖𝑗𝑘𝑡 . To avoid redundant
computing, the values in𝐾𝑖𝑗𝑘𝑡 except the four values of the top
left corner do not have to be computed because this step does
not involve these values. While calculating these values, (5)
and (6) provide explicit form of each part of 𝐾𝑖𝑗𝑘𝑡 that relates
to the vertical and horizontal coordinates of 𝑖, 𝑗, 𝑘. And the
four values of𝐾𝑖𝑗𝑘𝑡 used to fill V𝑎𝑙_𝑎𝑟𝑟 are explicitly expressed
as

𝐾 [0] [0] = 𝐶𝑖𝑗𝑘𝑖 (𝑏𝑖𝑘 − 𝑏𝑖𝑗)2 + 𝐶𝑖𝑗𝑘𝑗 𝑏2𝑗𝑖 + 𝐶𝑖𝑗𝑘𝑘 𝑏2𝑘𝑖,
𝐾 [0] [1] = 𝐶𝑖𝑗𝑘𝑖 (𝑏𝑖𝑘 − 𝑏𝑖𝑗) (𝑎𝑖𝑗 − 𝑎𝑖𝑘) + 𝐶𝑖𝑗𝑘𝑗 𝑏𝑖𝑗𝑎𝑗𝑖

+ 𝐶𝑖𝑗𝑘
𝑘
𝑏𝑖𝑘𝑎𝑘𝑖,

4 Scientific Programming

Input: (1) Unstructured grid metrics (UGM) including the coordinates of the mesh nodes (X,Y)
and the indices of the nodes that form the elements; adjacent data structure of grid

(2) Row array, 𝑟𝑜𝑤_𝑎𝑟𝑟, which stores the starting positions of rows.
(3) Inner node identifier 𝑖 and the GPU thread identifier 𝑡𝑖𝑑.

Output:
(1) Column array, 𝑐𝑜𝑙_𝑎𝑟𝑟, which stores the positions of the no-zero values in each row.
(2) Value array, V𝑎𝑙_𝑎𝑟𝑟, which stores the no-zero values in each row.
(3) Right hand vector of the linear system of equations, b.

Procedure:Thread 𝑡𝑖𝑑 is responsible for the following tasks
(1) initialize an integer counter: 𝑛𝑛 = 0;
(2) initialize the elements of vector b that 𝑡𝑖𝑑 is to calculate: b[2𝑖] = b[2𝑖 + 1] = 0;
(3) For each triangle 𝑇𝑖𝑗𝑘 that contains 𝑖Do
(4) Calculate torsional coefficients of𝐾𝑖𝑗𝑘𝑡 [0 : 1][0 : 1] = 𝑓(X𝑖𝑗𝑘,Y𝑖𝑗𝑘);
(5) V𝑎𝑙_𝑎𝑟𝑟[𝑟𝑜𝑤_𝑎𝑟𝑟[2𝑖] + 𝑠]+ = 𝐾𝑖𝑗𝑘𝑡 [0][𝑠]; (𝑠 ∈ {0, 1});
(6) V𝑎𝑙_𝑎𝑟𝑟[𝑟𝑜𝑤_𝑎𝑟𝑟[2𝑖 + 1] + 𝑠]+ = 𝐾𝑖𝑗𝑘𝑡 [1][𝑠]; (𝑠 ∈ {0, 1});
(7) End For
(8) For each neighbor 𝑗 of node 𝑖Do
(9) IF𝑗 is a moving boundary nodeThen
(10) For each triangle 𝑇𝑖𝑗𝑚 that contains 𝑖𝑗 edgeDo
(11) b[2𝑖 + 𝑟]− = 𝐾𝑖𝑗𝑚𝑡 [𝑟][2]𝑝𝑥𝑗 + 𝐾𝑖𝑗𝑚𝑡 [𝑟][3]𝑝𝑦𝑗 (𝑟 ∈ {0, 1});
(12) End For
(13) Else
(14) 𝑛𝑛 + +;
(15) 𝑐𝑜𝑙_𝑎𝑟𝑟[𝑟𝑜𝑤_𝑎𝑟𝑟[2𝑖] + 2𝑛𝑛] = 𝑐𝑜𝑙_𝑎𝑟𝑟[𝑟𝑜𝑤_𝑎𝑟𝑟[2𝑖 + 1] + 2𝑛𝑛] = 2𝑗;
(16) 𝑐𝑜𝑙_𝑎𝑟𝑟[𝑟𝑜𝑤_𝑎𝑟𝑟[2𝑖] + 2𝑛𝑛 + 1] = 𝑐𝑜𝑙_𝑎𝑟𝑟[𝑟𝑜𝑤_𝑎𝑟𝑟[2𝑖 + 1] + 2𝑛𝑛 + 1] = 2𝑗 + 1;
(17) For each triangle 𝑇𝑖𝑗𝑚 that contains 𝑖𝑗 edgeDo
(18) V𝑎𝑙_𝑎𝑟𝑟[𝑟𝑜𝑤_𝑎𝑟𝑟[2𝑖 + 𝑟] + 2𝑛𝑛]+ = 𝐾𝑖𝑗𝑚𝑡 [𝑟][2] (𝑟 ∈ {0, 1});
(19) V𝑎𝑙_𝑎𝑟𝑟[𝑟𝑜𝑤_𝑎𝑟𝑟[2𝑖 + 𝑟] + 2𝑛𝑛 + 1]+ = 𝐾𝑖𝑗𝑚𝑡 [𝑟][3] (𝑟 ∈ {0, 1});
(20) End For
(21) End IF
(22) End For

Algorithm 1: Two-dimensional parallel coefficient matrix assembly (2DPCMA) algorithm.

𝐾 [1] [0] = 𝐶𝑖𝑗𝑘𝑖 (𝑏𝑖𝑘 − 𝑏𝑖𝑗) (𝑎𝑖𝑗 − 𝑎𝑖𝑘) + 𝐶𝑖𝑗𝑘𝑗 𝑏𝑖𝑗𝑎𝑗𝑖
+ 𝐶𝑖𝑗𝑘
𝑘
𝑏𝑖𝑘𝑎𝑘𝑖,

𝐾 [1] [1] = 𝐶𝑖𝑗𝑘𝑖 (𝑎𝑖𝑗 − 𝑎𝑖𝑘)2 + 𝐶𝑖𝑗𝑘𝑗 𝑎2𝑗𝑖 + 𝐶𝑖𝑗𝑘𝑘 𝑎2𝑘𝑖.
(7)

The subsequent lines in Algorithm 1 fill the remaining
positions of the 2𝑖th and 2𝑖 + 1th rows of the torsional
coefficient matrix and the nonzero positions of vector b. This
filling process is accomplished by looping all neighbors of
node 𝑖. When node 𝑖 encounters a boundary node 𝑗 that is
tagged as a moving point, then the torsional coefficients of
the triangles which contain 𝑖𝑗 edge contribute to 2𝑖th position
of vector b; otherwise, they are accumulated to V2𝑖,2𝑗, V2𝑖,2𝑗+1,
V2𝑖+1,2𝑗, V2𝑖+1,2𝑗+1. To explain this, Figure 2 shows an example
of unstructured mesh that contains 7 nodes, 6 triangles, and
two boundary nodes. Figures 3 and 4 explain how to fill data
for an inner neighbor (𝑑) and a boundary neighbor (𝑐) of a
given inner node 𝑎 in Figure 2. Both 𝑇𝑎𝑑𝑐 and 𝑇𝑎𝑑𝑒 contribute
to four nonzero columns regarding the inner node (𝑑); this

is accomplished by computing the corresponding element-
based torsional matrix of 𝐾𝑎𝑑𝑐𝑡 and 𝐾𝑎𝑑𝑒𝑡 and accumulating
the values that are associated with edge 𝑎𝑑, that is, 𝐾𝑎𝑑[𝑐,𝑒]𝑡 02,𝐾a𝑑[𝑐,𝑒]
𝑡 03,𝐾𝑎𝑑[𝑐,𝑒]𝑡 12,𝐾𝑎𝑑[𝑐,𝑒]𝑡 13, to the global CSR (or non-CSR

(Figure 4)) format coefficient matrix, respectively. Similarly,
two associated local torsional matrices are calculated for a
boundary neighbor (𝑐) of (𝑎), but the column number is not
recorded in 𝑐𝑜𝑙_𝑎𝑟𝑟 since the movement displacements of
node (𝑐) are provided by the motion equation of boundaries
at each motion step. Therefore, the known displacements of
node (𝑐) (i.e., 𝑝𝑥𝑐 , 𝑝𝑦𝑐) can be excluded from vector p and this
part can be transferred to the right hand side of the linear
equations bymultiplying the corresponding two group values
(i.e., 𝐾𝑎𝑐[𝑏,𝑑]𝑡 02, 𝐾𝑎𝑐[𝑏,𝑑]𝑡 03 and 𝐾𝑎𝑐[𝑏,𝑑]𝑡 12, 𝐾𝑎𝑐[𝑏,𝑑]𝑡 13). Same step
is performed for the following boundary neighbors of (𝑎)
during the neighbor loop and all the transferred values are
accumulated to 𝑏2𝑎 and 𝑏2𝑎+1. During the process, the variable
of 𝑛𝑛 is to record the current number of inner nodes of (𝑎)
and use the number to make 𝑐𝑜𝑙_𝑎𝑟𝑟 and V𝑎𝑙_𝑎𝑟𝑟 record the
column and the value of nonzero position one by one. It is
shown in Algorithm 1 that 𝑐𝑜𝑙_𝑎𝑟𝑟 and V𝑎𝑙_𝑎𝑟𝑟 are updated
synchronously, which indicates that value in 𝑐𝑜𝑙_𝑎𝑟𝑟 and

Scientific Programming 5

e

c

d

a

f

b

g

Wall boundary

Figure 2: Data arrangement for 2DPCMA algorithm.

val_arr

col_arr

row2a row2a+1

�2a,2a· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

�2a,2a+1 �2a,2d �2a,2d+1 �2a,2e �2a,2e+1

2a 2a + 1 2d 2d + 1 2e 2e + 1

b b2a b2a+1

�2a+1,2a �2a+1,2a+1 �2a+1,2d �2a+1,2d+1 �2a+1,2e �2a+1,2e+1

2a 2a + 1 2d 2d + 1 2e 2e + 1

Figure 3: Fill the corresponding segments of V𝑎𝑙_𝑎𝑟𝑟, 𝑐𝑜𝑙_𝑎𝑟𝑟, and 𝑏, respectively, for the 𝑎th inner node.

row2a
row2a+1

�2a,2a

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

�2a,2a+1 �2a,2d �2a,2d+1�2a,2e �2a,2e+1 b2a
b2a+1�2a+1,2a �2a+1,2a+1 �2a+1,2d �2a+1,2d+1�2a+1,2e �2a+1,2e+1

...
...

...
...

...
...

...
...

...
...

...
...

column2a column2a+1 column2e column2e+1 column2d column2d+1

p =

b

[
[

]
]

Kade
t 02

Kade
t 03

Kade
t 12 Kade

t 13

[
[

]
]

Kadc
t 02

Kadc
t 03

Kadc
t 12 Kadc

t 13

−[
[

]
]

Kacb
t 02

Kacb
t 03

Kacb
t 12 Kacb

t 13

px
c

p
y
c

[
[
]
]

px
c

p
y
c

[
[
]
]

− [
[

]
]

Kacd
t 02

Kacd
t 03

Kacd
t 12 Kacd

t 13

Figure 4: The process of filling data for an inner neighbor (𝑑) and a boundary neighbor (𝑐) of 𝑎, respectively.
V𝑎𝑙_𝑎𝑟𝑟 is one-to-one mapped and the sequence of neighbor
looping has no impact on the content of CSR format matrix.

To implement the 2DPCMA algorithm efficiently, basic
grid data structure has to be arranged optimally. Figure 2
shows the anticlockwise neighbor storage strategy in the
implementation that is capable of containing all neighboring
information implicitly. As depicted in Figure 2, for example,
the storing of the neighbors of node (𝑎) starts with node (𝑏)
and ends with node (𝑔); then it is easy to visit the previous
and subsequent nodes of (𝑑) (𝑐 and 𝑒, resp.) when the data
information of triangles that contain edge 𝑎𝑑 is required in
line (10) of Algorithm 1.

The implementation of 2DPCMA by using OpenACC
directives on the GPU accelerator is shown as Listing 1. This
implementation consists of two core sections. One part is
responsible for arranging memory on GPU via employing

#pragma acc data clause. The first three lines list two groups
of variables with different data attributes. The memories of
V𝑎𝑙_𝑎𝑟𝑟 and 𝑐𝑜𝑙_𝑎𝑟𝑟 variables are created by using creat
clausewhile thememories of the remaining variables are both
created and initializedwith the corresponding values onCPU
through copyin clause. Another segment of Listing 1 is a func-
tion in which the workload can be distributed automatically
to independent thread launched through #pragma acc parallel
loop directive. The data used in this function is allocated
and initialized in previous step; thus the present keyword is
used to indicate that the variables declared in the following
brackets are already created on the GPU accelerator. During
the OpenAcc_2DPCMA procedure, the workload which is
related to an inner node 𝑖 is implicitly distributed to a specific
GPU thread 𝑡𝑖𝑑 to execute and these two variables are treated
as input parameters in 2DPCMA listed in Algorithm 1.

6 Scientific Programming

//Allocates memory on GPU or copy data from CPU to allocated GPU memory
(1) #pragma acc data create(V𝑎𝑙_𝑎𝑟𝑟[0 : 𝑙𝑒𝑛], 𝑐𝑜𝑙_𝑎𝑟𝑟[0 : 𝑙𝑒𝑛])
(2) #pragma acc data copyin(𝑟𝑜𝑤_𝑎𝑟𝑟[0 : 𝑟𝑜𝑤𝑙𝑒𝑛])
(3) #pragma acc data copyin(𝑥𝑐𝑜𝑟[0 : 𝑛𝑛𝑜𝑑𝑒𝑠], 𝑦𝑐𝑜𝑟[0 : 𝑛𝑛𝑜𝑑𝑒𝑠], 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠[0 : 𝑛𝑒𝑖𝑙𝑒𝑛])
Void OpenACC_2DPCMA(𝑙𝑒𝑛, 𝑟𝑜𝑤𝑙𝑒𝑛, 𝑛𝑛𝑜𝑑𝑒𝑠, 𝑛𝑖𝑁𝑜𝑑𝑒𝑠, 𝑛𝑒𝑖𝑙𝑒𝑛, V𝑎𝑙_𝑎𝑟𝑟, 𝑐𝑜𝑙_𝑎𝑟𝑟,𝑥𝑐𝑜𝑟, 𝑦𝑐𝑜𝑟, 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠)//Distribute workload to each thread by using “parallel loop” directive
(1) #pragma acc parallel loop present(V𝑎𝑙_𝑎𝑟𝑟[0 : 𝑙𝑒𝑛], 𝑐𝑜𝑙_𝑎𝑟𝑟[0 : 𝑙𝑒𝑛], 𝑟𝑜𝑤_𝑎𝑟𝑟[0 : 𝑟𝑜𝑤𝑙𝑒𝑛],𝑥𝑐𝑜𝑟[0 : 𝑛𝑛𝑜𝑑𝑒𝑠], 𝑦𝑐𝑜𝑟[0 : 𝑛𝑛𝑜𝑑𝑒𝑠], 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠[0 : 𝑛𝑒𝑖𝑙𝑒𝑛])
(2) for(𝑖𝑛𝑜𝑑𝑒 = 0; 𝑖𝑛𝑜𝑑𝑒 < 𝑛𝑖𝑛𝑁𝑜𝑑𝑒𝑠; 𝑖𝑛𝑜𝑑𝑒 + +){
(3) //each thread fills two rows of the CSR format coefficient matrix
(4) //The 2𝑖th row: from 𝑟𝑜𝑤_𝑎𝑟𝑟[2𝑖] to 𝑟𝑜𝑤_𝑎𝑟𝑟[2𝑖 + 1] − 1
(5) //And the 2𝑖 + 1th row: from 𝑟𝑜𝑤_𝑎𝑟𝑟[2𝑖 + 1] to 𝑟𝑜𝑤_𝑎𝑟𝑟[2𝑖 + 2] − 1
(6) ⋅ ⋅ ⋅
(7) codes in 2DPCMA algorithm: line (1) to (22)
(8) }

Listing 1: OpenACC implementation for 2DPCMA algorithm on GPU.

i

j

k

l

�휑

Figure 5: Diagram of 3D torsional spring in a tetrahedron.

4.2. Three-Dimensional Parallel Deforming Mesh Algorithm.
Degand and Farhat’s work [17] extended the two-dimensional
torsional springs deforming mesh algorithm to three-
dimensional ones. The main idea of their work is to split
the quality constraints of a tetrahedron into the quality
constraints of several triangles and then transform each 2D6 × 6 stiffness matrix to 3D 9 × 9 matrix via the coordinate
transformation formula. Burg [18] proposed a universal for-
mulation of the torsional spring idea where two-dimensional
formulation can be directly extendible to three-dimensional
case by analyzing the equations of volume and area for a
mesh cell. As the three-dimensional formulation is more
straightforward in Clarence’s work, the parallel algorithm of
this formulation is considered as follows.

As demonstrated in Figure 5, considering face 𝑖𝑗𝑘 and
the opposite point 𝑙 of an tetrahedron cell 𝑇𝑖𝑗𝑘𝑙, the stiffness
matrix is expressed as 𝐾𝑖𝑗𝑘,𝑙𝑡 = 𝑅𝑖𝑗𝑘,𝑙𝑡 𝐶𝑖𝑗𝑘,𝑙𝑡 𝑅𝑖𝑗𝑘,𝑙𝑇𝑡 , where 𝐶𝑖𝑗𝑘,𝑙𝑡 =1/sin2𝜑 and 𝑅𝑖𝑗𝑘,𝑙𝑡 = [𝜕𝜑/𝜕𝜉]𝑇(1 × 12 matrix, 𝜉 = 𝑥𝑢, 𝑦𝑢, 𝑧𝑢,𝑢 = 𝑖, 𝑗, 𝑘, 𝑙). The complete stiffness matrix with respect to
corner 𝑖 can be obtained by accumulating the stiffness matrix

formed from every face containing point 𝑖. Thus, all inner
points (𝑁inner) can produce 12𝑁inner × 12𝑁inner matrix, but
there are only 3𝑁inner unknown variables that need to be
solved, which indicates that the 12𝑁inner row of the matrix
is not linearly independent. In fact, the first three rows of the
stiffnessmatrixwith respect to node 𝑖 and cell𝑇𝑖𝑗𝑘𝑙, denoted as𝐾𝑖−𝑗𝑘𝑙𝑡 , are formed by looping every face that contains 𝑖 while
the remaining rows are the same as the first three rows of𝐾𝑗−𝑖𝑘𝑙𝑡 , 𝐾𝑘−𝑖𝑗𝑙𝑡 , 𝐾𝑙−𝑖𝑗𝑘𝑡 , respectively, when the same cell 𝑇𝑖𝑗𝑘𝑙 and𝑗, 𝑘, 𝑙 node are considered.

Algorithm 2 lists the pseudocode for 3DPCMA algo-
rithm that is capable of assembling the final stiffness matrix
in parallel. Much like 2DPCMA algorithm, the notion of
3DPCMA algorithm is to split the task of filling the CSR
format matrix into each subpart of three rows and distribute
the subtask to independent GPU thread. Nevertheless, unlike
2DPCMA algorithm, to complete filling the values of the
neighbors of node 𝑖may requiremore than one accumulation
while the same work is finished in one loop process (lines
(17)–(20) in Algorithm 1) in 2DPCMA. This is to increase
cache space utilization rate because a lot of variables such
as X𝑖𝑗𝑘𝑙,Y𝑖𝑗𝑘𝑙,Z𝑖𝑗𝑘𝑙 need to read when an element 𝑇𝑖𝑗𝑘𝑙 that
contains 𝑖 starts to be visited (line (4) in Algorithm 2)
and these variables could be reused to compute as many
related data as possible. However, this causes a problem that
the position of each neighbor of node 𝑖 which is already
operated could be visited again in the next loop. So extra
data structure is required to be constructed to record the
relative address of each neighbor with respect to node 𝑖
for possible revisiting. Moreover, more complicated than
2DPCMA, 3DPCMA procedure requires the adjacent data to
provide the information with which three points along with
node 𝑖make up a tetrahedron because the linear arrangement
of the neighbors, unlike the strategy illustrated in Figure 2,
can not embrace the configuration of a tetrahedron implicitly.

It should be noted that a temporary matrix-variable 𝐾
is declared in Algorithm 2 to store the 3 × 3 submatrix of

Scientific Programming 7

Input: (1) Unstructured grid metrics (UGM), including the coordinates of the mesh nodes(X,Y) and the indices of the nodes that form the elements; adjacent data structure of grid
(2) Row array, 𝑟𝑜𝑤_𝑎𝑟𝑟, which stores the starting positions of rows.
(3) Inner node identifier 𝑖 and the GPU thread identifier 𝑡𝑖𝑑.

Output:
(1) Column array, 𝑐𝑜𝑙_𝑎𝑟𝑟, which stores the positions of the no-zero values in each row.
(2) Value array, V𝑎𝑙_𝑎𝑟𝑟, which stores the no-zero values in each row.
(3) Right hand vector of the linear system of equations, b.

Procedure:Thread 𝑡𝑖𝑑 is responsible for the following tasks
(1) initialize vector b that 𝑡𝑖𝑑 is to calculate: b[3𝑖] = b[3𝑖 + 1] = b[3𝑖 + 2] = 0;
(2) fetch the global and local indices of the neighbors of node 𝑖: 𝑛𝑏𝑔𝑙𝑜𝑏𝑎𝑙, 𝑛𝑏𝑙o𝑐𝑎𝑙
(3) fill 𝑐𝑜𝑙_𝑎𝑟𝑟: 𝑐𝑜𝑙_𝑎𝑟𝑟[𝑟𝑜𝑤_𝑎𝑟𝑟[3𝑖 + 𝑟] + 3𝑛𝑏𝑙𝑜𝑐𝑎𝑙 + 𝑠] = 3𝑛𝑏𝑔𝑙𝑜𝑏𝑎𝑙 + 𝑠; (𝑟, 𝑠 ∈ {0, 1, 2})
(4) For each tetrahedron 𝑇𝑖𝑗𝑘𝑙 ∋ 𝑖Do
(5) consider each face that contains node 𝑖, face 𝑖𝑗𝑘 for example:
(6) 𝐾[0 : 2][0 : 2] = 𝐾𝑖𝑗𝑘,𝑙𝑡 [0 : 2][0 : 2] = 𝑔(X𝑖𝑗𝑘𝑙,Y𝑖𝑗𝑘𝑙,Z𝑖𝑗𝑘𝑙, 𝑉𝑖𝑗𝑘𝑙)
(7) V𝑎𝑙_𝑎𝑟𝑟[𝑟𝑜𝑤_𝑎𝑟𝑟[3𝑖 + 𝑟] + 𝑠]+ = 𝐾[𝑟][𝑠]; (𝑟, 𝑠 ∈ {0, 1, 2})
(8) 𝐾[0 : 2][0 : 2] = 𝐾𝑖𝑗𝑘,𝑙𝑡 [3 : 5][3 : 5]
(9) IF (𝑗 is a boundary node) then
(10) b[3𝑖 + 𝑟]− = 𝐾[𝑟][0]𝑑𝑥𝑗 + 𝐾[𝑟][1]𝑝𝑦𝑗 + 𝐾[𝑟][2]𝑝𝑧𝑗 ; (𝑟 ∈ {0, 1, 2})
(11) ELSE
(12) V𝑎𝑙_𝑎𝑟𝑟[𝑟𝑜𝑤_𝑎𝑟𝑟[3𝑖 + 𝑟] + 3𝑗𝑙𝑜𝑐𝑎𝑙 + 𝑠]+ = 𝐾[𝑟][𝑠]; (𝑟, 𝑠 ∈ {0, 1, 2})
(13) End IF
(14) 𝐾[0 : 2][0 : 2] = 𝐾𝑖𝑗𝑘,𝑙𝑡 [6 : 8][6 : 8]
(15) similar steps are performed like previous (9)–(13) lines for node 𝑘
(16) 𝐾[0 : 2][0 : 2] = 𝐾𝑖𝑗𝑘,𝑙𝑡 [9 : 11][9 : 11]
(17) similar steps are performed like previous (9)–(13) lines for node 𝑙
(18) End For

Algorithm 2: Three-dimensional parallel coefficient matrix assembly (3DPCMA) algorithm.

𝐾𝑖𝑗𝑘,𝑙𝑡 . In fact, the temporary variable 𝐾 can be substituted
by a single variable to store each value of 𝐾𝑖𝑗𝑘,𝑙𝑡 and be used
to update the corresponding position of V𝑎𝑙_𝑎𝑟𝑟 in turn
because the value in each position of 𝐾𝑖𝑗𝑘,𝑙𝑡 can be explicitly
expressed and calculated by 𝑅𝑖𝑗𝑘,𝑙𝑡 . The implementation that
contains less temporary variables is preferable as the registers
are costful hardware resource of GPU. However, this low-
level consideration, termed as register usage optimization, is
less popular but very helpful for efficiency improvement in
directive-based OpenACC implementation.

5. Unsteady Solver Parallelized by OpenACC

In this section, the proposed algorithms are integrated into
an unstructured, vertex-centered finite volumemethod based
numerical solver to form a full GPU version of an ALE solver
that is able to simulate unsteady flows with deforming mesh.
By demonstrating Figure 6, the vertex-centered finite volumeΩ𝑝 around a node 𝑃 on two-dimensional triangle meshes,
the basic numerical schemes employed in this solver, are
structured as follows:

(i) Roe scheme, in which the convective fluxes are
computed at a face of the control volume from the
left and right state by solving the Rieman prob-
lem, is employed for convective flux discretization.

P

Q

L
R

⃗n

Sb

Sa

Figure 6: Vertex-centered finite volume.

The mathematical formulation for Roe scheme is
expressed as

Finv,PQ𝑐

= 12 [Finv𝑐 (W𝑅) + Finv𝑐 (W𝐿) − 󵄨󵄨󵄨󵄨󵄨APQ
Roe
󵄨󵄨󵄨󵄨󵄨 (W𝑅 −W𝐿)] , (8)

where the right and left state, W𝑅,W𝐿, are con-
structed by using Venkatakrishnan limiter [44] and
the gradients of convective variables.

8 Scientific Programming

Grid data
Memory allocation

Data copy
Initialize
flowfield

Yes

Yes

YesYes No

No

No

Advance SA
model

Turbulent?

Update
variables

Time
advancement

Convergence?

Data copy
Device to hostUnsteady?T < T_limit?

PCMA algorithm

P-Bicgstab-solver

Updates nodes info.

Compute inviscid
& viscous fluxes

Figure 7: Flowchart of the unsteady GPU solver.

(ii) The central scheme which evaluates the flow quan-
tities at a face of the control volume by averaging
the quantities of left and right volumes is applied to
discretize both ALE flux FALE𝑐 and viscous flux FV in
(1).

(iii) The implicit schemes of dual time-stepping based on
the second-order time [42] accuracy is employed to
discrete (1) in time. By introducing a pseudo-time
variable 𝑡∗ and unsteady residual variable𝑅∗, the dual
time-stepping scheme can be formulated as

[(1△𝑡∗ + 32 △ 𝑡)Ω𝑛+1 + 𝜕R𝜕W] △W∗ = − (𝑅∗)𝑙 , (9)

whereR∗ = R(W∗)+ (3/2△𝑡)Ω𝑛+1 −(2/△𝑡)Ω𝑛W𝑛 −(1/2 △ 𝑡)Ω𝑛−1W𝑛−1.
(iv) The Spalart-Allmaras (SA) one-equation turbulence

model [45] is adopted. It can be written in integral
form as𝜕𝜕𝑡 ∫Ω]̃𝑑Ω + ∮

𝜕Ω
(𝐹𝑐,𝑇 − 𝐹V,𝑇) 𝑑𝑆 = ∫

Ω
𝑄𝑇𝑑Ω. (10)

The convective flux and viscous flux are given by𝐹𝑐,𝑇 =]̃𝑉 and 𝐹V,𝑇 = 𝑁⃗ ⋅ ⃗𝜏 with 𝑉 being the con-
travariant velocity, 𝑁⃗ being the outward facing unit
normal vector of the control surface, and ⃗𝜏 being
the normal viscous stresses. The source term 𝑄𝑇 is
introduced in [45]. The first-order upwind scheme
and central scheme are adopted to discretize the
convective and viscous flux and the implicit time
scheme [42] is employed for advancing SA equation
in time.

The detailed steps of the solver are demonstrated as Fig-
ure 7 inwhich the procedures ofPCMAalgorithm,P-Bicgstab-
solver, updates nodes info. are to be executed between each

two physical steps. Listing 2 gives an overview of the Ope-
nACC implementation of the unsteady solver. It starts with
alloc_mem_init subroutine to allocate and initialize variables
on the host.Then the variables which are used as intermediate
variables for computation are explicitly created on GPU
memory by using #pragma acc data create clause. And the
variables which are created and initialized by alloc_mem_init
are copied from CPU to GPU by using copyin keyword.
The previous two steps of data arrangement operation are
followed by a pair of curly braces where the main part of
GPU computation is placed. This data transfer consideration
avoids extra data exchange between the host and the device
during the whole computational process. By considering (1),
(10), GCL law (3), andmesh deformation equations, there are8𝑁 unknown variables (𝜌, 𝑢, V, 𝑤, 𝐸, 𝑝, 𝑇) to be solved in (1)
and (10) at each pseudo-time step and 4𝑁 unknown variables
(GCL volume, movements of each node in 𝑥, 𝑦, 𝑧 directions)
between each two physical time steps, where 𝑁 denotes the
number of mesh nodes.

In the main computation section, each step is encapsu-
lated as a subroutine that accepts necessary parameters.These
functions have no difference with the serial implementation.
At this point in the OpenACC implementation, it requires
no effort except two directive-based data declarations out
of the curly braces. Even in each function, the modification
of the CPU code is concentrated only in for loop regions
and data segments where read-write conflicts exist. Take
Set_Time_Step function, for example (shown in Listing 2),
#pragma acc parallel loop clause, is declared to make the for
loop parallel and this clause is followed by present keyword
to declare that the global arrays used in the following for
loop are already present on GPU memory. The variables
which are not mentioned in the data statement are treated as
private variables during the loop. Edge-based data structure
for parallel implementationwill encounter read-write conflict
inevitably because the quantities of a common node shared

Scientific Programming 9

//Allocates memory on CPU and initialization
(1) alloc_mem_init(data_pointer1,data_pointer2, . . .);
(2) #pragma acc data create(𝑔V𝑎𝑟_𝑎𝑟𝑟_1, 𝑔V𝑎𝑟_𝑎𝑟𝑟_2, . . .)
(3) #pragma acc data copyin(𝑐𝑔V𝑎𝑟_𝑎𝑟𝑟_1, 𝑐𝑔V𝑎𝑟_𝑎𝑟𝑟_2,)
(4) {
(5) ⋅ ⋅ ⋅
(6) Set_Time_Step(nNds,nEgs,lambda_inv,lambda_visc, . . .);
(7) Compute_Grident_Limiter(nNds,nEgs,edgeLn,edgeRn,den,denU,denV,denW,denE, . . .);
(8) Upwind_Residual(⋅ ⋅ ⋅);Viscous_Residual(⋅ ⋅ ⋅); Time_Advance(⋅ ⋅ ⋅);
(9) }
(10) #pragma acc data update(cgvar_arr_1,cgvar_arr_2, . . .)// example of one function
void Set_Time_Step(nNds,nEgs,lambda_inv,lambda_visc, . . .) {
(1) #pragma acc parallel loop present(𝑒𝑑𝑔𝑒𝐿𝑛[0 : 𝑛𝐸𝑑𝑔𝑒𝑠], 𝑒𝑑𝑔𝑒𝑅𝑛[0 : 𝑛𝐸𝑑𝑔𝑒𝑠], ⋅ ⋅ ⋅ 𝑙𝑎𝑚𝑏𝑑𝑎_𝑖𝑛V[0 : 𝑛𝑁𝑜𝑑𝑒𝑠])
(2) for (𝑖𝐸𝑑𝑔𝑒 = 0; 𝑖𝐸𝑑𝑔𝑒 < 𝑛𝐸𝑑𝑔𝑒𝑠; 𝑖𝐸𝑑𝑔𝑒 + +){
(3) iPoint=edgeLn[iEdge];
(4) jPoint=edgeRn[iEdge];
(5) ⋅ ⋅ ⋅
(6) #pragma acc atomic
(7) lambda_inv[iPoint]+=lambda;
(8) #pargma acc atomic
(9) lambda_inv[jPoint]+=lambda;
(10) ⋅ ⋅ ⋅
(11) }

Listing 2: OpenACC implementation of the unsteady solver.

Table 1: Configuration parameters of K20 GPU.

Compute capability 3.5 Stream multiprocessor 14
Architecture Kepler Processors 2496
Processor clock 706MHZ Registers/SM 65536
Memory clock 2.6G Max registers/thread 255
Memory size 320-bit GDDR5 5GB Share memory config 16K/32K/48K

by two edges may be updated simultaneously in two different
GPU threads. This problem can be solved by employing
atomic operation in OpenACC.

6. Experiments

The following test cases were conducted on a heteroge-
neous platform YUAN at supercomputing center of Chinese
Academy of Sciences. YUAN consists of 270 blades nodes,
30GPU nodes, and 40MIC (Intel Many Integrated Core
Architecture) nodes. Each GPU node has two Intel E5-2658
V2 (Ivy Bridge, 2.8 GHz) CPUs and two Nvidia Tesla K20
GPU cards.The configuration parameters of K20GPU are list
in Table 1.

6.1. Performance of Parallel Mesh Deformation. In this part,
both triangular and tetrahedral meshes with variety of com-
putational scales are available to capture the performance of
the parallel deforming mesh algorithm on the GPU device.
The evaluation of performance is speedup which is defined
as the ratio of wall clock times running on Intel E5-2658 V2
CPUs and K20 Card. In order to make fair comparison, the

Table 2: Four mesh configurations for test.

Mesh number Type Points Elements
1 Triangular 21329 416362 Triangular 288268 5742323 Tetrahedral 108396 5827524 Tetrahedral 275561 1453849

serial version of deforming mesh code is compiled by using
GCC compiler with highest optimization option -O3.

Table 2 lists two 2D and two 3D mesh configurations
performed in this test. Table 3 gives the CPU times, GPU
times for each part of mesh deforming procedure, and the
speedup performances. The fourth column in Table 3 shows
the speedup for matrix assembly running on K20 GPU card
against Intel E5-2658 CPUs. It is shown that higher speedup
can be achieved on the first two 2D meshes compared to
that on the following two 3D meshes. This can be explained
by the fact that the workload each GPU thread undertakes
varies owing to neighbor sweeping procedure in Algorithms

10 Scientific Programming

Table 3: CPU times, GPU times, and speedups on four test meshes.

Mesh CTMA(s) GTMA(s) SPMA CTB(s) GTB(s) SPB OSP
1 0.0379 0.0021 18.04x 0.2476 0.0304 8.14x 8.78x
2 0.4902 0.0219 22.38x 3.6404 0.3023 12.04x 12.74x
3 0.3805 0.0244 15.59x 2.5815 0.2392 10.79x 11.23x
4 0.8923 0.0537 16.62x 5.1088 0.3582 14.26x 14.56x
CTMA: CPU time of matrix assembly; GTMA: GPU time of matrix assembly; SPMA: speedup for matrix assembly; CTB: CPU time of p-bicgstab solver; GTB:
GPU time of p-bicgstab solver; SPB: speedup for p-bicgstab solver; OSP: overall speedup.

1 and 2 and a 3D tetrahedral node has a larger disparity in the
number of neighbors than that of a 2D triangle node, which
leads to more load imbalance of workload on GPU threads
for 3D meshes. The fourth column data also indicates that
larger mesh size results in higher speedup for the same mesh
type. This is to be expected, because larger mesh size is more
conductive to make best use of the GPU resources and this
trend can be sustained before the saturation of the available
GPU resources is achieved.

Thefifth and sixth columnofTable 3 list theCPU time and
GPU time of the sparse linear systemof equations obtained by
PCMA algorithm, respectively. Six iterations are performed
in the P-BiCGSTAB procedure and all of the four cases
attain an accuracy of 1.0 × 10−8 within these 6 iterations.
In order to make the GPU implementation of P-BiCGSTAB
solver more efficient, cuBLAS and cuSPARSE [46], the opti-
mized, parallel GPU-accelerated libraries that provide effi-
cient matrix-vector, sparse matrix-vector, and vector-vector
multiplications, are introduced. However, the API functions
in cuBLAS or cuSPARSE require explicit data pointers in
the GPU memory while the general OpenACC model uses
unified data pointers and switches onCPUandGPUplatform
implicitly. Fortunately, OpenACC model provides a way to
invoke the third-party CUDA library via OpenACC directive
declaration with #pragma acc host_data use_device (pointerA,
pointerB), which returns the corresponding device pointers
for the following CUDA-based API calls. cusparseDcsrilu0()
was used to compute the incomplete-LU factorization as the
preconditioner and cusparseDcsrmv() was called to conduct
SpMV during the process of P-BiCGSTAB. The last column
lists the overall speedups by combining the wall clock times
of the previous two subprocedures. And about 8.78x∼14.56x
speedup can be obtained for both 2D and 3D meshes.

Figures 8 and 9 show the speedup trend of parallel
deforming mesh algorithm for 2D mesh and 3D mesh,
respectively, with the size of mesh nodes increases. Nine
meshes whose numbers of mesh nodes were within [2.7 ×105, 56.7 × 105] interval were generated by Triangle [47]
for 2D test. And seven meshes whose numbers of mesh
nodes were within interval [3.2 × 105, 41.2 × 105] were
generated by TetGen [48] for 3D PDMA test. An average
of 10 iterations were performed for P-BiCGSTAB process.
The results indicate that larger mesh size produces higher
speedup.That is expected, because larger meshes make better
use of the available GPU resources, such as GPU memory,
stream processors, and registers. However, the increment of
speedup is not proportional to the increment of mesh size
as the mesh size increases; this can be explained by the fact

0 5 10 15 20 25 30 35 40 45 50 55 60
10

15

20

25

30

35

Sp
ee

du
p

Number of mesh nodes (×105)

Figure 8: 2D speedup trend for PDMA corresponds to mesh size.

0 5 10 15 20 25 30 35 40 45
10

15

20

25

30

35

Sp
ee

du
p

Number of mesh nodes (×105)

Figure 9: 3D speedup trend for PDMA corresponds to mesh size.

that the available resources of GPU are gradually saturated
as the processing data of the mesh increases. Figures 8 and
9 demonstrate that the speedups of both 2D and 3D case
become stable at around 30x.

The performance of the present algorithms was also
investigated by OpenMP directives which is a popular
shared-memory programming mode. The 2D test mesh was
configured by 5672268 nodes and 11114646 triangles, and
the 3D test mesh consisted of 4127686 nodes and 24023132
tetrahedrons. As the test node has two Intel E5-2658V2CPUs

Scientific Programming 11

Table 4: Performance comparisons of multicore CPU and GPU results on mesh deformation algorithm.

2D case Single CPU core GPU 20 OpenMP threads
5672268 nodes Matrix assembly 9.8 s 0.23 s 0.7 s
11117646 triangles P-BiCGSTAB 52 s 1.63 s 4.19 s
3D case Single CPU core GPU 20 OpenMP threads
4127686 nodes Matrix assembly 12.6 s 0.33 s 0.78 s
24023132 tetrahedrons P-BiCGSTAB 58.1 s 1.84 s 4.83 s

x

y

0 1 2 3 4

−1.5

−2

−2.5

−3

−0.5

−1

−2 −1

0

0.5

1

1.5

2

2.5

3

Figure 10: Unstructured grids around NACA0012 airfoil.

with each having 10 cores, total 20 threads can be launched.
Table 4 shows the comparisons of multicore CPU and GPU
results on the two test cases for mesh deformation algorithm.
It is shown in Table 4 that a speedup of 2.6x can be obtained
on K20 GPU in comparison with 20 OpenMP threads for
both of 2D and 3D cases, which demonstrates the computing
power of GPU through light-weighted threads.

6.2. Simulation Cases. The first simulating case used by
the presented solver is about the unsteady Euler solutions
induced by the NACA0012 airfoil. The varying of the angle
of attack by pitching harmonically about the quarter chord
with respect to physical time is given as𝛼 = 𝛼0 + 𝛼𝑚 sin (𝑘𝑡) , (11)

where 𝛼0 = 0.016∘, 𝛼𝑚 = 2.51∘ are the initial and amplitude of
angle of attack, respectively, 𝑘 = 0.0814 denotes the reduced
frequency based on semichord, and 𝑡 represents the physical
time. The initial Mach number is𝑀 = 0.755.

Figures 10 and 11 show the unstructured mesh that
contains 94085 nodes and 186306 triangles in a far and close
view, respectively. Steady state was first calculated at 𝛼0 =0.016∘ and the obtained flow is used as the initial flow field
for the following unsteady simulation. Figure 12 shows the
Mach contours around the NACA0012 airfoil at the steady
state. A physical time step of △𝑡 = 0.2 was employed
for the unsteady simulation. In the pseudo-time process, a

x

y

0

0

0.5 1 1.5

−0.5

0.5

−0.5
−1

1

Figure 11: Close view of the unstructured grids around NACA0012
airfoil.

x

y

0 0.2 0.4 0.6 0.8 1

−0.4

−0.2

0

0.2

0.4

0.6

M
1.1
0.98
0.86
0.74
0.62
0.5
0.38
0.26
0.14
0.02

Figure 12: Mach contours around the NACA0012 airfoil at 𝛼 =0.016∘.
maximum number of iterations of 𝑀𝑎𝑥_𝐼𝑡𝑒𝑟 = 5 and a
minimum error of 𝑆𝑜𝑙V𝑒𝑟_𝐸𝑟𝑟𝑜𝑟 = 1.0 × 10−6 are configured
for the linear solver of the implicit time formulation. The
parallel deforming mesh algorithm was conducted between
every two adjacent physical time steps for assembling and
solving a sparsematrix linear system of equations with a scale
of 182018 × 182018.

12 Scientific Programming

Alpha

C
l

−2 −1 0 1 2 3
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

GPU result
Experiment data
Batina [49]

Figure 13: Lift coefficient corresponds to instantaneous angle of
attack.

Alpha

C
m

−3 −2 −1 0 1 2 3
−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

0.02

0.025

GPU result
Experiment data
Batina [49]

Figure 14: Moment coefficient corresponds to instantaneous angle
of attack.

To obtain stable unsteady solutions, three cycles of
periodic motion were computed and comparisons were
conducted between the GPU results, experiment data, and
Batina’s results stated in [49], which are shown in Figures 13
and 14. It is noted that the calculated results show a slight
deviation when comparing with experiment data but agree
well with Batina’s work. The validation through comparing

x

−
C
p

0 0.2 0.4 0.6 0.8 1

−1

−0.5

0

0.5

1

1.5

GPU result
Lower surface, experiment
Upper surface, experiment

Figure 15: Instantaneous pressure coefficient comparisons at 𝑘𝑡 =69∘ (𝛼 = 2.34∘).
Table 5: Wall clock time of each procedure for the NACA0012 case.

Procedure name CPU time (s) GPU time (s) Speedup
Gradient_Limiter 0.2728 0.0261 10.45x
Set_Time_Step 0.0570 0.0041 13.90x
Upwind_Residual 0.4320 0.0301 14.35x
Boundary_Condition 0.0033 0.0008 4.125x
Implicit_Time_Advance 1.2436 0.1099 11.31x

instantaneous pressure coefficient with experiment data has
also been conducted at a specified angle of attack, which is
shown in Figure 15 for 𝛼 = 2.34∘ (𝑖.𝑒. 𝑘𝑡 = 69∘).

Table 5 lists the wall clock times executing on CPU and
GPU for five primary procedures of the unsteady solver. It is
shown that solving linear system equations, inviscid residual
computing, gradients, and limiter calculations are the most
time-consuming part in the solver. In Implicit_Time_Advance
procedure, 3 iterations in BiCGSTAB scheme make the
iteration convergence to the given solver_Error. And All
three parts can be obtained over 10x speedup on GPU with
respect to Intel E5-2658 V2 CPU core. According to statistics,
advancing one pseudo-step within a physical step requires
1.8876 seconds on CPU and 0.1620 seconds on GPU for this
case, and conducting a deforming mesh step requires 1.2886
on CPU and 0.1208 on GPU, in which the numerical solver
and mesh deforming parts are both accelerated.

The second example for validating the unsteady comput-
ing with deforming mesh on GPU involves the transonic
simulation induced by the ONERA M6 wing. The initial
conditions are configured as Mach = 0.84, Re = 21.66 × 106,
themotion of wing on different spans is expressed as 𝛼(𝑦, 𝑡) =𝛼0 + 𝛼𝑚(𝑦/𝐿) sin(𝑘𝑡), where 𝛼0 = 0∘ and 𝛼𝑚 = 10∘ denote the

Scientific Programming 13

Figure 16: View of the hybrid mesh around ONERAM6 wing.

X
Y

Z

Mach

1

0.02
0.16
0.3
0.44

0.72
0.58

0.86

1.14
1.28

Figure 17: Steady state Mach contours at the symmetrical plane.

average and the amplitude of angle of attack for this periodic
movement, 𝐿 is the wing span and 𝑦 represents the specified
station along the span direction, and 𝑘 = 0.27 is the reduced
frequency based on mean chord.

The hybrid mesh used for this case contains 450634
nodes, 961146 tetrahedrons, and 548688 prisms. Figure 16
shows the hybrid mesh at the symmetrical plane. Steady
calculations were performed at 𝛼0 = 0∘ at first to provide
initial solution of the flow for subsequent unsteady simula-
tions. And the steady state Mach contours at the symmetrical
plane are shown in Figure 17. In order to deform the hybrid
mesh, Liu’s method [20] was employed by providing a coarse
tetrahedral mesh as a background grid. The reason why
tetrahedral mesh is considered as the background mesh is
that it is more robust in the treatment of complex geometries
than that of Delaunay graphmesh. However, it requires more
CPU time to finish mesh deforming at each step. The present
parallel algorithm for deforming tetrahedral mesh was first
applied in Liu’s scheme and then the interpolation process
[20] was conducted to deform the foreground mesh. In this
case, the background mesh provided contains 108396 nodes
and 582752 tetrahedrons. △𝑡 = 0.12 was selected for the

C
p

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

x

0.2 0.4 0.6 0.8 1

Lower
Upper

Figure 18: One-quarter of last cycle: Instantaneous pressure coeffi-
cient distributing on 20% wing span along 𝑦 direction.

C
p

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

x

0.2 0.4 0.6 0.8 1

Lower
Upper

Figure 19: Half of last cycle: Instantaneous pressure coefficient
distributing on 20% wing span along 𝑦 direction.

global physical time step and 5 periods of simulation were
computed to lead to stable periodic results. Figures 18 and 19
demonstrate the instantaneous pressure distributing on 20%
wing span along 𝑦 direction in a quarter and half of the last
unsteady cycle, respectively.

It took about 0.31 seconds to deform the auxiliary
tetrahedral mesh in the background and 0.05 seconds to
interpolate the movement of the background mesh into the
computational mesh through DGM interpolation process

14 Scientific Programming

Ti
m

e (
s)

4

3.5

3

2.5

2

1.5

1

0.5

0

Single CPU core
16 OpenMP threads
GPU

Gradients &
limiter

SetTimeStep
residual
Upwind BCViscous

residual advance
Implicit time SA

turbulence

8.2x
13.5x

9.2x17.6x

11.3x
18.5x 9.8x

15.9x 3.0x
5.0x

9.6x
16.4x

8.5x
14.5x

Figure 20: CPU and GPU time comparisons for each part of the solver.

[20]. And 0.19 seconds was required to update the quantities
that are associated with the computationalmesh onK20GPU
card. Figure 20 gives the CPU and GPU time comparisons
for each part of the solver. It is shown in Figure 20 that
the calculation of gradients and limiters, the computing of
upwind residual, and the advancement of one-step flow solu-
tion are the three most time-consuming parts in advancing
ALE (1) equations. However, the process of implicit time
stepping, which is the most time-consuming procedure, does
not achieve the highest speedup among the three procedures.
That is mainly because an unsymmetrical linear system of
equations which contains a lot of memory intensive opera-
tions such as SpMV (Sparse Matrix Multiply Vector), cross
product of vectors, is required to be solved and accelerating
the operations of this type on GPU is generally not as easy
as that of compute intensive type. Another factor that affects
the parallel efficiency of implicit time advance is that the GPU
resources are not saturated due to relatively small-scale of the
equations and there is not enough computational workload to
switch during memory access. Memory intensive operations
also account for the relatively low speedup obtained by 16
OpenMP threads on the procedure of implicit time advance.
Another reason is that the OpenMP directives for solving
equations were implemented within the outer loop and the
frequent creating, switching, and destroying of OpenMP
threads increased the extra overhead.

Overall, higher speedup was obtained on GPU platform
in comparison with multicore CPU environment. This result
also demonstrates that GPU has great abilities in accelerating
fine-grained computational task by utilizing its light weighed
threads. These threads can be launched and switched with
extremely low overhead. Two procedures, involving gradient
and limiter computation, achieved the lowest speedup on
GPU; one of the reasons is that the two procedures con-
tain more atomic addition (or subtraction) operations than

SetTimeStep and SA Turbulence procedures. Actually, the
procedure of upwind residual involves the maximum number
of atomic operations among the procedures and these atomic
operations had much impact on its acceleration. The atomic
operations were eliminated by storing edge related values
into global memory individually first and accumulating these
values to nodes via looping the surrounding edges of these
nodes. However, this strategy was not applied on the other
procedures that contain atomic operations because it requires
extra code revision effort andmuchmorememory usage.The
time spent on atomic operations accounts for nearly 15% of
the total wall clock time of this case, which benefits from the
optimized atomic operations of the K-series GPU card. And
this reduces the effort on code revision and makes parallel
code developing more efficient. Overall, it took about 14.8
seconds on a single CPU core, 0.9457 seconds on K20 GPU
card, and 1.56955 seconds on 16 CPU cores for advancing one
pseudo-step in time. About 15.6x speedup can be achieved on
K20 GPU card relative to a single Intel E5-2568 V2 CPU core
and about 1.66x speedup relative to 16 OpenMP threads.

7. Summary and Future Work

The parallel deforming mesh algorithm is present and
implemented by using directive-based programming model-
OpenACC. And the proposed algorithms are integrated into
an OpenACC-parallelized unstructured ALE solver which
can conduct unsteady simulation with deforming mesh
completely on GPU. The OpenACC implementation of the
unsteady solver requires minor revision of the original serial
codes, which makes code migration easier and efficient. The
effort is underway to extend the present unsteady solver to
CPU+GPUheterogeneous computing platform by consider-
ing combiningMPI and OpenACC and the new GPU-Direct
communication feature will be used to reduce overheadwhile
transferring data from one GPU to a remote GPU.

Scientific Programming 15

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This work is supported by grants from National Natural Sci-
ence Foundation of China (nos. 11502267 and 61501393).This
work is also supported by the key research project of institu-
tions of higher education ofHenan province (no. 17B520034).

References

[1] P. Le Tallec and J. Mouro, “Fluid structure interaction with
large structural displacements,” Computer Methods in Applied
Mechanics and Engineering, vol. 190, no. 24-25, pp. 3039–3067,
2001.

[2] E. H. van Brummelen, K. G. van der Zee, and R. de Borst,
“Space/time multigrid for a fluid–structure-interaction prob-
lem,” Applied Numerical Mathematics. An IMACS Journal, vol.
58, no. 12, pp. 1951–1971, 2008.

[3] M. Hussain, M. Abid, M. Ahmad, A. Khokhar, and A. Masud,
“A parallel implementation of ALE moving mesh technique for
FSI problems using OpenMP,” International Journal of Parallel
Programming, vol. 39, no. 6, pp. 717–745, 2011.

[4] N. C. Prewitt, D. M. Belk, and W. Shyy, “Parallel computing of
overset grids for aerodynamic problems with moving objects,”
Progress in Aerospace Sciences, vol. 36, no. 2, pp. 117–172, 2000.

[5] A. Naderi, M. Darbandi, and M. Taeibi-Rahni, “Developing
a unified FVE-ALE approach to solve unsteady fluid flow
with moving boundaries,” International Journal for Numerical
Methods in Fluids, vol. 63, no. 1, pp. 40–68, 2010.

[6] T. C. Rendall and C. B. Allen, “Parallel efficient mesh motion
using radial basis functions with application to multi-bladed
rotors,” International Journal for Numerical Methods in Engi-
neering, vol. 81, no. 1, pp. 89–105, 2010.

[7] B. Roget and J. Sitaraman, “Robust and efficient overset grid
assembly for partitioned unstructured meshes,” Journal of
Computational Physics, vol. 260, pp. 1–24, 2014.

[8] M. Jung and O. Kwon, “Numerical simulation of unsteady
rotor flow using an unstructured overset mesh flow solver,”
International Journal of Aeronautical and Space Sciences, vol. 10,
no. 1, pp. 104–111, 2009.

[9] G. Zagaris, M. T. Campbell, D. J. Bodony, E. Shaffer, and M. D.
Brandyberry, “A toolkit for parallel overset grid assembly
targeting large-scalemoving body aerodynamic simulations,” in
Proceedings of the 19th International Meshing Roundtable, IMR
2010, pp. 385–401, usa, October 2010.

[10] W. Liao, J. Cai, and H. M. Tsai, “A multigrid overset grid flow
solver with implicit hole cuttingmethod,”Computer Methods in
Applied Mechanics and Engineering, vol. 196, no. 9-12, pp. 1701–
1715, 2007.

[11] J. Cai, H. M. Tsai, and F. Liu, “A parallel viscous flow solver on
multi-block overset grids,” Computers & Fluids, vol. 35, no. 10,
pp. 1290–1301, 2006.

[12] B. Landmann and M. Montagnac, “A highly automated parallel
Chimera method for overset grids based on the implicit hole
cutting technique,” International Journal for Numerical Methods
in Fluids, vol. 66, no. 6, pp. 778–804, 2011.

[13] S. E. Rogers, N. E. Suhs, and W. E. Dietz, “PEGASUS 5: An
automated preprocessor for overset-grid computational fluid

dynamics,” Journal of American Institute of Aeronautics and
Astronautics, vol. 41, no. 6, pp. 1037–1045, 2003.

[14] F. J. Blom, “Considerations on the spring analogy,” International
Journal for Numerical Methods in Fluids, vol. 32, no. 6, pp. 647–
668, 2000.

[15] C. Farhat, C. Degand, B. Koobus, and M. Lesoinne, “Tor-
sional springs for two-dimensional dynamic unstructured fluid
meshes,”ComputerMethods in AppliedMechanics and Engineer-
ing, vol. 163, no. 1-4, pp. 231–245, 1998.

[16] C. L. Bottasso, D. Detomi, and R. Serra, “The ball-vertex
method: a new simple spring analogy method for unstructured
dynamic meshes,” Computer Methods in Applied Mechanics and
Engineering, vol. 194, no. 39-41, pp. 4244–4246, 2005.

[17] C. Degand and C. Farhat, “A three-dimensional torsional spring
analogy method for unstructured dynamic meshes,” Computers
and Structures, vol. 80, no. 3-4, pp. 305–316, 2002.

[18] Burg C., “A robust unstructured grid movement strategy using
three-dimensional torsional springs,” Journal of American Insti-
tute of Aeronautics and Astronautics, 2004.

[19] A. de Boer,M. S. van der Schoot, andH. Bijl, “Mesh deformation
based on radial basis function interpolation,” Computers and
Structures, vol. 85, no. 11-14, pp. 784–795, 2007.

[20] X. Liu, N. Qin, and H. Xia, “Fast dynamic grid deformation
based on Delaunay graph mapping,” Journal of Computational
Physics, vol. 211, no. 2, pp. 405–423, 2006.

[21] “A High Performance Message Passing Library,” http://www
.open-mpi.org.

[22] “The OpenMP API Specification For Parallel Programming,”
http://openmp.org.

[23] CUDA., http://www.nvidia.com/object/cuda_home_new.html.
[24] A. Corrigan, F. F. Camelli, R. Löhner, and J. Wallin, “Running

unstructured grid-based CFD solvers on modern graphics
hardware,” International Journal for Numerical Methods in
Fluids, vol. 66, no. 2, pp. 221–229, 2011.

[25] P. Castonguay, D. M. Williams, P. E. Vincent, M. Lopez, and
A. Jameson, “On the development of a high-order, multi-GPU
enabled, compressible viscous flow solver for mixed unstruc-
tured grids,” in Proceedings of the 20th AIAA Computational
Fluid Dynamics Conference 2011, 2011.

[26] K. Soni, D. D. Chandar, and J. Sitaraman, “Development of an
overset grid computational fluid dynamics solver on graphical
processing units,” Computers & Fluids, vol. 58, pp. 1–14, 2012.

[27] S. Gohari M I, V. Esfahanian, and H. Moqtaderi, “Coalesced
computations of the incompressible Navier—Stokes equations
over an airfoil using graphics processing units,” Computers &
Fluids, vol. 80, no. 1, pp. 102–115, 2013.

[28] L. Luo, “GPU port of a parallel incompressible Navier-Stokes
solver based on OpenACC and MVAPICH2,” in Proceedings of
the 7th AIAA Theoretical Fluid Mechanics Conference, Atlanta,
GA, USA, 2014.

[29] Y. Xia, H. Luo, M. Frisbey, and R. Nourgaliev, “A set of
parallel, implicit methods for a reconstructed discontinuous
Galerkin method for compressible flows on 3D hybrid grids,”
in Proceedings of the 7th AIAA Theoretical Fluid Mechanics
Conference, Atlanta, Ga, USA, 2014.

[30] J. A. Herdman, W. P. Gaudin, S. McIntosh-Smith et al.,
“AcceleratingHydrocodeswithOpenACC,OpeCL andCUDA,”
in Proceedings of the 2012 SC Companion: High Performance
Computing, Networking Storage and Analysis, SCC 2012, pp.
465–471, IEEE Computer Society, 2012.

http://www.open-mpi.org
http://www.open-mpi.org
http://openmp.org
http://www.nvidia.com/object/cuda_home_new.html

16 Scientific Programming

[31] D. D. J. Chandar, J. Sitaraman, and D. Mavriplis, “GPU
parallelization of an unstructured overset grid incompressible
Navier-Stokes solver for moving bodies,” in Proceedings of
the 50th AIAA Aerospace Sciences Meeting Including the New
Horizons Forum and Aerospace Exposition, 2012.

[32] V. G. Asouti, X. S. Trompoukis, I. C. Kampolis, and K. C. Gian-
nakoglou, “Unsteady CFD computations using vertex-centered
finite volumes for unstructured grids on Graphics Processing
Units,” International Journal for Numerical Methods in Fluids,
vol. 67, no. 2, pp. 232–246, 2011.

[33] D. Chandar, J. Sitaraman, and D. Mavriplis, “Dynamic Overset
Grid Computations for CFDApplications onGraphics Process-
ingUnits,” inProceedings of the Seventh International Conference
on Computational Fluid Dynamics, Big Island, Hawaii, 2012.

[34] A. Munshi, B. Gaster, T. Mattson G et al., “Programming Guid,”
2011.

[35] K. Gregory and A. Miller, C++ AMP: Accelereated Massive
Parallelism with Microsoft Visual C++, 2012.

[36] “The OpenACC Standard,” http://www.openacc-standard.or.
[37] CAPS, “The fastest way to many core programming,” 2012,

http://www.caps-entreprise.com.
[38] “OpenACC for HPC Accelerator Programming,” http://www

.cray.com/blog/openacc-for-hpc-accelerator-programming/.
[39] B. Lebacki, M. Wolfe, and D. Miles, Fortran and C99 OpenACC

Compliers, 2012.
[40] https://developer.nvidia.com/openacc.
[41] OpenACCProgramming and Best Practices Guide, http://www

.openacc.org.
[42] J. Blazek, Computational Fluid Dynamics: Principles and Appli-

cations, vol. 55 of Computational Fluid Dynamics Principles &
Applications, Chapter 6, 1, Second Edition edition, 2001, 1C4.

[43] H. A. van der Vorst, “BI-CGSTAB: a fast and smoothly converg-
ing variant of BI-CG for the solution of nonsymmetric linear
systems,” SIAM Journal on Scientific and Statistical Computing,
vol. 13, no. 2, pp. 631–644, 1992.

[44] V. Venkatakrishnan, “Convergence to steady state solutions of
the Euler equations onunstructured gridswith limiters,” Journal
of Computational Physics, vol. 118, no. 1, pp. 120–130, 1995.

[45] P. Spalart and S. Allmaras, “A one-equation turbulence model
for aerodynamic flows,” La Recherche Aerospatiale, no. 1, pp. 5–
21, 1994.

[46] CUDA Toolkit Documentation, http://docs.nvidia.com/cuda/.
[47] R. S. Jonatha and A. Triangle,A Two-Dimensional Quality Mesh

Generator and Delaunay Triangulator, http://www.cs.cmu.edu/∼quake/triangle.html.
[48] H. Si, “TetGen, a Delaunay-based quality tetrahedral mesh

generator,” Association for Computing Machinery. Transactions
on Mathematical Software, vol. 41, no. 2, Art. 11, 36 pages, 2015.

[49] J. T. Batina, “Unsteady Euler airfoil solutions using unstructured
dynamic meshes,” AIAA Journal, vol. 28, no. 8, pp. 1381–1388,
1990.

http://www.openacc-standard.or
http://www.caps-entreprise.com
http://www.cray.com/blog/openacc-for-hpc-accelerator-programming/
http://www.cray.com/blog/openacc-for-hpc-accelerator-programming/
https://developer.nvidia.com/openacc
http://www.openacc.org
http://www.openacc.org
http://docs.nvidia.com/cuda/
http://www.cs.cmu.edu/~quake/triangle.html
http://www.cs.cmu.edu/~quake/triangle.html

Submit your manuscripts at
https://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 201

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 201

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

