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Abstract

The first part of this thesis presents the advances made in the Open-Source software SU2,

towards transforming it into a high-performance framework for design and optimization of

multiphysics problems. Through this work, and in collaboration with other authors, a tenfold

performance improvement was achieved for some problems. More importantly, problems that

had previously been impossible to solve in SU2, can now be used in numerical optimization

with shape or topology variables. Furthermore, it is now exponentially simpler to study new

multiphysics applications, and to develop new numerical schemes taking advantage of modern

high-performance-computing systems.

In the second part of this thesis, these capabilities allowed the application of topology optimiza-

tion to medium scale fluid-structure interaction problems, using high-fidelity models (nonlinear

elasticity and Reynolds-averaged Navier-Stokes equations), which had not been done before

in the literature. This showed that topology optimization can be used to target aerodynamic

objectives, by tailoring the interaction between fluid and structure. However, it also made ev-

ident the limitations of density-based methods for this type of problem, in particular, reliably

converging to discrete solutions. This was overcome with new strategies to both guarantee and

accelerate (i.e. reduce the overall computational cost) the convergence to discrete solutions in

fluid-structure interaction problems.
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Chapter 1

Introduction

The need for more efficient commercial aircraft has resulted in an increase of wing aspect
ratio (AR) over the years [1], which has been greatly facilitated by the adoption of composite
material-based designs. In the high altitude long endurance (HALE) aircraft space, the aspect
ratios used are even higher (≈35) [2]. Moreover, wind turbine blades can also be seen as high
AR wings and in this field the tendency has also been to increase the power output of single
units, by increasing their size in order to improve efficiency and harness the energy of higher
altitude winds [3].

Slender aerodynamic structures designed for low weight and high aerodynamic efficiency will
unavoidably be subjected to large displacements and strong fluid structure interaction (FSI) ef-
fects, i.e. the deformation of the structure due to the aerodynamic loads alters its aerodynamic
characteristics thereby changing the loads applied initially and so on. The aeroelastic system
may reach static equilibrium, exhibit limit cycle oscillations (e.g. flutter), or diverge (suffering
catastrophic failure). In the presence of strong coupling effects, prediction and optimization of
aerodynamic features and flight performance, is not possible with current tools. Therefore, sim-
ulation of this non-linear, tightly coupled behavior requires new robust computational methods
capable of accurately modeling fluid flow, structural deformations accounting for geometric,
and possibly material, non-linearities, and the interaction between domains.

The main purpose of this move towards larger and slender structures (and thus more flexible),
is to increase the efficiency of the machines they are part of, therefore it is highly desirable that
they be optimum in some sense. There are many examples in the literature of large scale aircraft
optimization [4, 5]. However, the structural and aerodynamic design are often separated and
done sequentially, or simplified when they are done simultaneously (by using medium fidelity
models). While it has been shown that a sequential design strategy can produce sub-optimal
results in the presence of tight coupling between disciplines [6], simplifications are nevertheless
required to reduce the computational cost of numerical optimization of complex systems.

The conventional structural design of wings consists in sizing the individual components of the
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2 Chapter 1. Introduction

skeleton-like structure to which the wing leading and trailing edge fairings, fuel tanks, and
control surface actuators are attached. These components are: the spars, large spanwise beam-
like elements that confer bending stiffness to the wing; the ribs, that define the cross section
of the wing and together with the spars form the wing-box; the stringers, which are spanwise
elements that transfer the load from the outer panels to the spars and ribs. Considering only
its load bearing internal components, a wing is mostly hollow. Topology optimization is a
method of determining how to best distribute material within an available volume according
to some measure of constrained optimality. Compared to the conventional design process,
it represents a radical paradigm shift (from which those more flexible structures may benefit).
However, reports of its application to wing design are few and far between. Arguably, structures
resulting from applying topology optimization to the entire volume of a wing would be difficult
to manufacture with current methods, unless this requirement is taken in consideration, e.g. by
constraining the shape of the available volume. Nevertheless, the unconstrained approach may
be viable for smaller structures, or specialized applications where additive manufacturing may
be suitable, or when the benefits outweigh the costs. Therefore, it is worth exploring this design
concept, to understand the potential benefits and limitations of current topology optimization
methods applied to tighly coupled FSI problems.

There is growing interest in even richer combinations of physical disciplines (than just FSI).
For example, supersonic flight and some turbomachinery applications may warrant aerother-
moelastic considerations during their design [7], certainly other multiphysics applications await
the design tool that will enable them. There is merit, therefore, in developing highly generic
numerical methods and software for multiphysics simulation and optimization. Furthermore, it
is reasonable to expect the importance of simultaneously optimizing all disciplines to increase
as their number grows, for this reason, it is important for those methods (and their software
implementation) to be nearly as efficient as purpose-built tools.

Some literature on these two research goals is reviewed next to further frame the motivation
for this work. Method-specific literature is reviewed in later chapters as the chosen methods
and their alternatives are discussed.

1.1 Topology optimization with fluid-structure interaction

Maute et al. ([8, 9]) tackled the optimum layout (minimummaterial) of reinforcement structures
for an airfoil and a wing subject to constraints on deformation, lift, and drag. The Euler
equations were solved on the fluid side while the wing was modeled by three surfaces of linear-
elastic shell elements. Their work demonstrated the potential importance of considering the
real FSI loads in an optimization.

Around the same time Krog et al. [10] reported on the optimization of the wing box ribs of the
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Airbus A380. To reconcile the local and redundant nature of this component with the typical
objectives of topology optimization (minimum compliance for given available material) a fully
decoupled strategy was adopted, i.e. the fluid loads were assumed to be constant. Nevertheless,
weight savings of approximately 1000kg were achieved. Recently in [11], also assuming constant
loading, an example is given of large-scale (600k variables) topology optimization of compliance
and linear bucking of the common research model (CRM) wing box. However, the largest
published example of decoupled topology optimization is ref. [12], where a wing box was
discretized by one billion structural elements. A review of similar decoupled applications is
given in [13].

Later, in [14], and also with coupled FSI, topology optimization was applied to a morphing
airfoil. The actuating mechanism, actuating points, and hinge locations were determined such
that the lift to drag ratio is maximized subject to constraints on mass and pitching moment.
The flow was modeled by the Euler equations and the structure discretized with hyper-elastic
solid elements.

In [15] the distribution of composite-material reinforcement on the membrane wing of a micro
air vehicle was optimized. Low-fidelity modeling of the fluid and membrane was adopted to
reduce computational cost. The strong coupling and non-linear response of the structure was
exploited to achieve load-augmentation or alleviation. Still using low-fidelity modeling, the same
authors [16] optimized the aeroelastic stability characteristics of a plate-like wing showing that
a maximum stiffness design is not always optimum. The same authors and Kobayashi [17] then
optimized flapping wings and their actuation mechanisms using a cellular-division approach
rather than the density approach. More recently, a level-set topology optimization method was
used on an aeroelastic stability optimization problem [18] to avoid some of the disadvantages
of the density approach.

In 2014 James, Kennedy, and Martins ([6]) performed concurrent shape and topology optimiza-
tion of the CRM wing box, considering potential flow and linear elasticity. Optimizing both
sets of variables simultaneously allowed them to achieve better results than taking a sequential
approach. Shortly after, in [19], almost the same problem was considered, but using a level-set
method instead of the density approach and not including any shape variables. The same prob-
lem has recently been solved with a finer structural mesh in [20], which proved to be important
to allow the appearance of truss-like structures (this has been taken to the extreme in the one
billion element example mentioned above). In fact, mesh-dependency effects are well known in
topology optimization and have motivated adaptive mesh strategies.

In aerodynamic applications, where loads are distributed, authors have also resorted to ap-
proximate representations of the surface, e.g. by limiting the lower bound on the stiffness of
surface elements, to avoid unreasonably large meshes while still ensuring the surface loads can
be transferred effectively to the internal structural features. It will be shown in this thesis
that this is one of the greatest challenges in applying topology optimization to FSI problems.
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The issue of connecting the surface to the main load-bearing structures is eliminated if the
entire structure is solid. This has been explored recently in [21], where two-material topology
optimization was used to design wind tunnel models with specific flutter characteristics.

In summary, topology optimization has been used for classical minimum weight design problems
and also to explore load alleviation or augmentation concepts (passive and active), or to improve
stability characteristics. It has been used on conceptual 2D studies and on large-scale realistic
3D problems, mostly making use of the density approach. However, due to its computational
cost, inviscid and often low-fidely fluid models are used, this is a disadvantage as a practical
wing design should include viscous drag and additional aerodynamic constraints, such as buffet
[22].

Since a direct comparison has yet to be presented, it is an open question if this more complex
design space can significantly improve the state of the art in very flexible wing design. The
work of Maute, Stanford and their associates does show that topology optimization can be
used beyond minimum weight design to produce load alleviation or augmentation (passively or
actively), and improved aeroelastic stability characteristics.

While consensus seems to exist around the importance of fully coupled FSI simulation and
optimization, only James et al. [6] have so far optimized shape and topology simultaneously
using a limited parameterization of the shape (spanwise twist distribution). Moreover, lower-
fidelity models are often used to reduce the computational cost, and only inviscid fluid models
have been used. Indeed one of the disadvantages of topology optimization is the larger number
of iterations it requires, efficient optimization strategies are needed to reduce the cost.

This thesis will investigate means to perform concurrent shape and topology optimization of
very flexible wings using high-fidelity FSI modeling, accounting for structural non-linearities,
and will aim to apply the methods to relatively large-scale problems. This work will be car-
ried within the SU2 open-source framework [23] building upon its FSI and discrete adjoint
capabilities [24].

1.2 PDE-constrained optimization

Computational optimization problems are common in contexts such as optimal control, model
calibration, engineering design, etc. due to the availability of mathematical models for the
underlying physical phenomena. When the phenomena are modeled by partial differential
equations (PDE), the optimization problem is said to be PDE-constrained. Two major ap-
proaches can be identified to solve this class of optimization problem. One only requires the
PDE constraints to be satisfied for the optimal (final) solution, whereas the other requires them
to be satisfied at every step of the optimization. The former may fall in either the AAO (all
at once) or SAND (simultaneous analysis and design) categories, depending on how multidisci-
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plinary coupling constraints are handled [25]. To a large extent, in this class of methods (called
one-shot by some authors) the optimizer is also the PDE solver.
The second approach, where PDE’s are satisfied in each iteration, is more common due to the
availability of mature solvers for common primal problems (e.g. the Navier-Stokes equations)
and general optimizers. Moreover, it does not require the optimizer to have any knowledge of
the PDE constraints, which allows optimizers and solvers to be developed independently. Most
mathematical programming methods used in this approach (which in multidisciplinary contexts
falls in the broader "discipline feasible" category) require the gradient of the objective and con-
straint functions with respect to the design parameters. In effect, gradient based methods are
the only effective alternative for general large scale optimization, though simpler alternatives
do exist based on heuristic optimality criteria for some types of topology optimization problem.

Adjoint methods are a common strategy to obtain gradients of functions whose evaluation
involves the solution of a PDE problem, especially when the number of design parameters is
large relative to the number of functions. The discrete adjoint method is based on the discretized
primal problem. Its continuous counterpart is based on the differentiation of the primal PDE’s
and subsequent discretization/solution of an adjoint PDE problem. The derivatives obtained
with the discrete adjoint method do not suffer from discretization errors (in the sense that
they operate directly on algebraic equations) and as will be shown, it is possible to derive
generic discrete adjoint approaches for multiphysics problems. By definition, continuous adjoint
methods need to target a specific primal problem and there are further restrictions on the type
of function that can be differentiated. This is not to say that the discrete approach is free of
challenges, nor that the continuous approach is without merit. For one a continuous adjoint
solver is a PDE solver akin to the primal, from which efficient implementation strategies can
be borrowed. It will be seen later that this is not always the case for discrete adjoints, and that
the trade-off between generality and efficiency motivates different variations of the method.

Although the discrete adjoint approach promises generality, it is most often presented in a
specific context by deriving solution methods for particular methods and types of multiphysics
problem. For example, in [7, 26] the authors present a framework for simultaneous FSI and
conjugate-heat-transfer (CHT), designed especially to couple a flow solver to a thermoelastic
solver. Part of this specificity is carried from hand-coded implementation strategies (which are
method-specific), which are used, for example, in FUN3D [27]. A similar example for pure CHT
problems is presented in [28], there the authors also incorporate density-based topology opti-
mization variables. Indeed, the differentiation of multiphysics solvers for topology optimization
is common [19, 29, 30]. However, in such applications solvers tend to be of the monolithic
type (for example so that locations of the domain can be either fluid or solid), or the discrete
adjoint methodology is developed specifically for the primal methods used. Algorithmic (or
automatic) differentiation lies on the other end of the spectrum of differentiation techniques,
however, despite being generic, efficiency concerns require the code to be modified in ways that
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are specific to the methods. For example, in [31] the open-source software OpenFOAM [32]
was differentiated using AD, applying it to the entire CHT solver and using a checkpointing
strategy to reduce memory usage. In SU2 (and thus this work), AD is also applied to entire
solvers, however the main strategy used to reduce memory usage is preaccumulation [33, 34].

As mentioned above, given the increasing interest in more complex problems, it is highly relevant
to propose generic approaches that will allow easy extension as other combinations of physical
disciplines become relevant (for example FSI combined with heat transfer). Although numerous
examples of purpose-built discrete adjoint methods could be found in the literature, such a
flexible approach, adaptable to multiple kinds of partitioned multiphysics problems, has not
been developed so far.

1.3 Research goals

This project will investigate means to perform concurrent shape and topology optimization of
very flexible wings using high-fidelity FSI modeling, accounting for structural non-linearities
and viscous fluid effects, and will aim to apply it to relatively large-scale problems. Further-
more, the focus will be on aerodynamic-driven optimizations, where the structural topology
will have a direct influence on the aerodynamic performance, instead of its more common use
as a structural design tool. While there are examples of large-scale aerostructural shape opti-
mization using high-fidelity models, this is yet to be done with topology optimization. One of
the impediments is the computational cost, noting that topology optimization requires at least
O(10) more iterations, and larger structural meshes. Therefore, the performance of software
and methods will be an important aspect of enabling this work. Also from a software imple-
mentation perspective, this work (which will be carried within the SU2 open-source framework
[23]) will aim to develop foundations to facilitate further high performance developments. That
is, simplify the process of introducing new physics, new parameters, new functions, etc., while
taking advantage of modern high performance computing systems, with minimal programming
effort. These goals can be summarized in the following questions:

1. Is there a potential benefit in using internal topology to influence aerodynamic properties?

2. What are the challenges in combining shape and topology optimization?

3. Are there aspects of aerostructural topology optimization for which high-fidelity models
are indispensable?

4. Besides computational cost, what challenges does the application and models introduce?

5. Is it possible to mitigate this cost?
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6. What implementation strategies should be used to allow extending this work to other
multiphysics problems with relative ease?

7. What are the trade-offs associated with such general strategies?

1.4 Thesis layout

Having introduced the main research goals of this thesis (aerostructural topology optimization
and differentiation of generic multiphysics problems), the relevant numerical methods for sim-
ulation of FSI are presented in chapter 2, along with the topology optimization strategies used
for the main numerical examples in this work (which are presented in chapter 5). Chapter 3
is dedicated to discrete adjoint methods, while it reviews the most common solution methods
and implementation strategies, the focus of the chapter is on generic approaches that can be
easily extended to new physical phenomena, new design strategies, etc. These, of course, have
some limitations which are described in that chapter, and for which this work has proposed
solutions. Chapter 4 focuses on efficient software implementation aspects of low-order unstruc-
tured solvers (used in this work), whose application to SU2 was necessary to allow solving the
numerical examples of chapter 5 (note how performace is an ever-present limiting factor in the
topology optimization examples listed above).

1.5 Publications

The work from this thesis has resulted in the journal and conference publications listed below.

Journal publications

P. Gomes and R. Palacios, “Aerodynamic-driven topology optimization of compliant airfoils,”
Structural and Multidisciplinary Optimization, vol. 62, 2020.

O. Burghardt, P. Gomes, T. Kattmann, T. D. Economon, N. R. Gauger, and R. Palacios,
"Discrete adjoint methodology for general multiphysics problems - A modular and efficient
algorithmic outline with implementation in an open-source simulation software," Structural
and Multidisciplinary Optimization, 2021.

P. Gomes and R. Palacios, "Pitfalls of Discrete Adjoint Fixed-Points based on Algorithmic
Differentiation," AIAA Journal, 2021.

[pending] P. Gomes and R. Palacios, “Aerostructural Topology Optimization using High Fidelity
Modeling,” Structural and Multidisciplinary Optimization.
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Conference publications

C. Venkatesan-Crome, P. Gomes and R. Palacios, "Optimal Compliant Airfoils Using Fully
Non-Linear FSI Models," in AIAA Scitech 2019 Forum, January 2019

P. Gomes and R. Palacios, "Aerodynamic Driven Multidisciplinary Topology Optimization of
Compliant Airfoils," in AIAA Scitech 2020 Forum, January 2020.

O. Burghardt, N. R. Gauger, P. Gomes, R. Palacios, T. Kattmann and T. D. Economon,
"Coupled Discrete Adjoints for Multiphysics in SU2," in AIAA Aviation 2020 Forum, June
2020.

P. Gomes, T. D. Economon and R. Palacios, "Sustainable High-Performance Optimizations in
SU2," in AIAA Scitech 2021 Forum, January 2021.

P. Gomes and R. Palacios, “Aerostructural Topology Optimization using High Fidelity Model-
ing,” in AeroBest 2021, July 2021.



Chapter 2

Methodology

This chapter starts with a description of the computational models and methods used for the
fluid-structure interaction (FSI) problems in this work. By and large, these methods were
already part of SU2, nevertheless, some adaptations were necessary, and they are usually dis-
cussed at the end of each subsection. Moreover, the software implementation of those methods
benefited from substantial refactoring, which will be detailed in chapter 4. The second part
of this chapter focuses on the structural topology optimization strategies implemented by the
author in SU2, and used for the numerical examples of chapter 5.

2.1 Partitioned simulation of fluid-structure interaction

FSI problems arise when a fluid medium and a deformable (or moving) solid medium interact
over a common interface. They are of special interest when the characteristics of the media
provide for strong mutual influence. Simulation of FSI, involves the numerical solution of
mathematical descriptions of the physics within each medium, subject to coupling conditions
at their interface.

Two major solution approaches can be identified. In the monolithic approach, both sets of
governing equations are jointly discretized, typically using a single scheme (i.e. finite element
method), accounting for the coupling conditions, and the solution for fluid and structural
variables is sought simultaneously. The partitioned approach makes use of independent solution
methods for the individual problems, thereby transferring the onus of enforcing the coupling
conditions to a coupling method.

Evidently the partitioned approach is attractive from the development point of view, as it can
leverage existing technology (even in the form of black-box solvers) whereas the monolithic
approach requires the development of specialized fluid-structure solvers. However, partitioned
formulations may not ensure energy preservation and thus become unstable for time-domain

9
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problems [35], furthermore, the simulation of incompressible flows may require a special in-
terface treatment if the boundary conditions are such that the volume of fluid must remain
constant [36]. The monolithic approach is advantageous when problems exhibit these charac-
teristics, hence it is commonly used in biomechanical applications (e.g. arterial flows [37]). For
a review of the two approaches see e.g. [38]. For the steady-state, compressible, external flow
problems of interest to this thesis, the partitioned approach (which is the one implemented in
SU2) is by far the most common choice.

In this approach, as the solid domain undergoes deformation, so does the fluid domain, i.e. the
interface moves. The typically-adopted Lagrangian specification of the structural displacement
field, makes it straightforward to track the nodes of the structure as it deforms. Conversely, the
Eulerian specification of the flow field creates two possible ways of accounting for the interface
movement. In the arbitrary Lagrangian-Eulerian (ALE) formulation of the fluid flow equations,
the fluid grid is allowed to move, and thus in time accurate simulations the grid velocities need
to be considered in the discretization of convective fluxes. The grid is deformed based on the
structural deformation, such that the two domains do not overlap. Some authors treat this
deformation as a third field of the FSI problem (with its own governing equations), whereas
others consider it part of the fluid problem. No significant changes are required to wall boundary
conditions.

Alternatively, in immersed boundary (IB) methods (initially developed by Charles Peskin [39]),
the fluid grid is fixed and the presence of the structure within it is modeled by source terms
in the momentum equations. The use of a fixed fluid grid avoids the problem of maintaining
good grid quality as it is deformed (a concern also in non FSI shape optimization problems),
and may permit the use of very efficient structured solvers. Moreover, this way of modeling
solids within fluids is notably suitable for topology optimization problems, see e.g. the work of
[40], [41], or [42]. However, accurately modelling near wall flow at high Reynolds number (an
indispensable capability for the prediction of viscous drag) is a non trivial task in IB methods
(see e.g. [43]). In [44] overlapping fluid grids were used, one fixed the other deforming, to
combine the advantages of both approaches, this comes at the expense of an additional layer
of coupling between the fluid domains. The three-field ALE formulation adopted in SU2 (see
[45]) is analyzed in the remainder of this section.

2.1.1 Fluid problem

In the fluid domain the flow is governed by the continuity, Navier-Stokes, and energy conser-
vation equations, which in the ALE formulation may be written as

∂w

∂t
+∇ · Fc

ALE(w) = ∇ · Fd(w) + Q(w), (2.1)
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where w = (ρ, ρv, ρE) is the vector of conservative variables. The convective and diffusive
fluxes, and the volumetric sources are defined, respectively, as

Fc
ALE(w) =

 ρ(v − ż)

ρv ⊗ (v − ż)

ρE(v − ż)

 , (2.2)

Fd(w) =

 0

τ

κ∇T

 , (2.3)

Q(w) =

 0

−∇p
∇ · (τ · v − pv)

 , (2.4)

where ρ is the density, v and ż, the flow and grid velocities respectively (in a Cartesian coor-
dinate system), p the pressure, E the total energy per unit mass, τ the stress tensor, κ the
thermal conductivity and T the temperature (all material properties refer to the fluid).

For a Newtonian fluid, and ignoring bulk viscosity effects, the stress tensor is given by

τ = µ

(
∇v +∇vT − 2

3
I(∇ · v)

)
. (2.5)

Furthermore, under the Boussinesq hypothesis, turbulence is modeled as increased viscosity,
that is,

µ = µd + µt, (2.6)

with µd and µt the dynamic and turbulent viscosities, respectively. The latter is determined by
a suitable turbulence model (e.g. Menter’s Shear Stress Transport (SST) model [46]). Using
the definition of Prandtl number (Pr), the total thermal conductivity is given as a function of
viscosity and specific heat at constant pressure (Cp) as

κ = Cp

(
µd
Prd

+
µt
Prt

)
. (2.7)

Pressure and temperature are related with the conservative variables via a suitable equation of
state, e.g. for an ideal gas with gas constant R and ratio of specific heats γ it is

p = (γ − 1)ρ

(
E − 1

2
v · v

)
, T =

p

ρR
.

In SU2, equation (2.1) is integrated in space, using a vertex-based finite volume method (FVM),
on a median-dual grid, which results in the following semi-discrete integral equation for each
volume [23]
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∫
Ωi

∂w

∂t
dΩ +

∑
j∈N (i)

(F̃c
ij + F̃d

ij)Aij −Q|Ωi| =
∫

Ωi

∂w

∂t
dΩ + Ri(w) = 0, (2.8)

where F̃ij are the discretized fluxes projected onto the normal of the face (of area Aij) associated
with edge ij (which connects nodes i and j), |Ωi| is the volume of the dual control volume i,
and N represents the set of its neighbours (i.e. the nodes directly connected to it). The
convective fluxes are computed using some numeric scheme, typically either Jameson-Schmidt-
Turkel (JST, with scalar or matrix dissipation) or an approximate Riemann solver such as Roe’s
method. The viscous fluxes are computed from the average of nodal gradients, with support
of the directional derivative to avoid decoupling [47]. These gradients, which are also used
for MUSCL reconstruction of the variables (for second-order upwind convective methods), are
computed using either the weighted least squares method, or making use of the Green-Gauss
(divergence) theorem in discrete form. The spatially integrated terms in (2.8) are commonly
denoted the residual, Ri.

Equation (2.8) can be integrated in time either explicitly (typically using a Runge-Kutta
method) or implicitly, by approximating the time derivative by a backward difference formula
(usually second order). For dual-time integration, or when a steady state solution is sought,
the pseudo-time (τ) is first introduced, and the solution is then marched in this variable to the
end of the time step, or to steady state, using first-order implicit-Euler integration. That is,

|Ωi|
∆τ

(w −wn−1) + R∗i (w) = 0, (2.9)

where R∗i is the (possibly) modified residual if accurate time integration is desired. For sim-
plicity, the modification has been omitted as it can be readily found in the aforementioned
literature. Linearizing equation (2.9) about w results in a quasi-Newton solution process, re-
quiring, at each iteration, the solution of a linear system of equations with the Jacobian of the
residual. Namely,

(
|Ωi|
∆τi

δij +
∂R∗i
∂w

)
(wn+1 −w) = −R∗i . (2.10)

It is common for the solution of this equation to be approximate in two ways. First, and more
obvious, the linear system is solved to a relatively large tolerance (O(0.1)), i.e. it is smoothed.
Second, when the linearization (Jacobian) is stored (as a sparse matrix) it is only approximate.
For example, by considering only the derivatives with respect to immediate neighbors, thereby
increasing sparsity. Furthermore, for central schemes it is common to artificially increase the
Jacobian of numerical dissipation terms to improve the diagonal dominance of the matrix (and
thus its condition number). If products with the Jacobian are obtained in a matrix free manner,
sparsity is no longer a concern. This requires a Krylov linear solver (typically GMRES), and
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thus forms the basis for Newton-Krylov methods. Nevertheless, the condition number may still
need to be improved to reduce the cost of solving the linear systems. Although the pseudo-time
increment can be set arbitrarily low, to improve the numerical properties of the matrix, for the
purpose of obtaining a steady-state solution it is more efficient, up to a point, to act on the
linearization of the residual. One common acceleration technique is to determine a local, for
each volume, pseudo-time step based on a target Courant-Friedrichs-Lewy (CFL) number. This
local CFL may also be defined locally to improve stability, for example based on the local rate
of residual reduction, or on an automatic limiting of the rate of change of the solution [48]. In
SU2, a geometric multigrid method may also be used to accelerate the solution, the solution of
the linear system then becomes the multigrid smoothing operator. In what follows, the fluid
solution process is represented by the fixed-point iteration

w = F(w, z). (2.11)

The turbulence model equations are solved in the same manner but, in SU2, they are lagged.
Nevertheless, for the purposes of the fixed-point representation, the turbulence variables can
be considered part of w.

The compressible flow solver in SU2 has been verified and validated for a number of external
flow applications [4, 23, 48].

2.1.2 Structural problem

The deformed state of a solid domain, Ω, is governed by the point-wise equilibrium of linear
momentum and of tractions on its surface (Γ), that is,

ρ(ü− f)−∇ · σ = 0 in Ω, (2.12)

σn− λ = 0 on Γ, (2.13)

where ρ is the density, ü the acceleration with respect to an inertial frame, f the body forces, σ
the Cauchy stress tensor, n the outward surface unit normal, and λ the external tractions. To
solve equation (2.12), for the structural displacements via the finite element method (FEM),
its weak form is first established and the stresses related to the displacements via kinematics
and material constitutive models, the resulting equations are then discretized.

Applying the principle of virtual work, the problem can be stated as finding the structural
displacements u that respect the essential boundary conditions, such that, for an arbitrary
virtual displacement, δu, vanishing at essential boundaries, the total virtual work is zero [49],
that is, ∫

Ωc

δu · ρ(ü− f)dΩ +

∫
Ωr

δE : SdΩ−
∫

Γc

δu · λdΓ = 0, (2.14)



14 Chapter 2. Methodology

were δE is the variation of the Green-Lagrange strain tensor with respect to δu, S is the
second Piola-Kirchhoff stress tensor, Ωr refers to the reference (undeformed) configuration of
the structure, and Ωc and Γc to the current configuration of the structure and its surface. The
Green-Lagrange strain tensor is a Lagrangian measure of finite strain given by

E =
1

2
(C − I), (2.15)

where C is the right Cauchy-Green deformation tensor, computed from the deformation gra-
dient F as

C = F
T
F (2.16)

,
F = I +∇Xu, (2.17)

where X are the coordinates in the reference configuration. For hyperelastic materials the
relation between stress and strain is given by the strain energy density function Ψ as

S =
∂Ψ

∂E
. (2.18)

For example, for a neo-Hookean material with Lamé constants µ and λ, and defining J = detF ,

Ψ =
µ

2

(
trC − 3

)
− µ lnJ +

λ

2
(lnJ)2. (2.19)

Equation (2.14) is linearized around the current state of deformation before being discretized.
The implementation in SU2 (described and verified in [45]) uses isoparametric linear solid
elements and it is largely based on [50]. The solution is then found iteratively via the Newton-
Raphson method (the Jacobian matrix of this problem is called the tangent stiffness matrix),
which again can be formulated as a fixed-point iteration, namely

u = S(u,λ(w, z)). (2.20)

2.1.3 Mesh deformation

The deformation of the fluid-structure interface must be transferred to the fluid grid, in a way
that maintains its quality. Mesh deformation strategies are usually preferred to re-meshing due
to their simpler implementation, higher computational efficiency, and differentiability (which is
important in optimization contexts). Several strategies have been proposed:

• Interpolation techniques, for example, based on radial basis functions (RBF), can be used
to smoothly spread the interface displacements to the interior nodes ([51]). When basis
functions with compact support are used, the approach is attractive from a computational
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cost perspective. However, it lacks fine control over how certain areas of the domain may
be differently affected by the boundary displacements. Moreover, the author’s experience
with using RBF’s for mesh deformation, is that to maintain acceptable quality, the radius
should be proportional to the deformation, which can negate the effect of compact support.

• Diffusion analogies (e.g. [52]) solve a Poisson equation for the displacements with Dirich-
let boundary conditions at the interface, other types of boundary condition may be used
for other fluid boundaries, which allows, for example, sliding planes to be implemented.
A spatially varying "diffusion" coefficient may be used to avoid excessive deformation of
small control volumes, Helenbrook [53] explores the use of the biharmonic operator to
improve mesh quality near boundaries (since it allows Dirichlet conditions on the gradi-
ents). The approach is relatively expensive but incompressible flow solvers will in general
have fast solvers for this type of equation.

• The spring analogy, in which the edges of the fluid grid are considered linear springs.
Torsional springs may also be added to help preserve orthogonality close to solid walls.
Variable spring stiffness (e.g. inversely proportional to edge lenght) is commonly used to
keep edges from collapsing [54]. High computational cost can be avoided by using the
method in an explicit manner.

• The solid elasticity analogy, consists in solving the equations of solid mechanics for the
entire fluid domain. This approach also permits different boundary conditions to be used,
and the control volumes (elements in this context) may also be given a local stiffness,
for example, inversely proportional to their volume or distance to deforming boundaries.
This approach carries the highest computational cost. Consider, for example, that the
required level of refinement near viscous walls for RANS problems is unnecessary for an
elasticity problem. Furthermore, elasticity problems are notorious for being numerically
stiff, and thus difficult to scale. Note that strong linear preconditioners and solvers lose
some efficiency with increased parallelization, which can make this deformation approach
impractical for large meshes. Nevertheless, in an FSI context, a solver for this type
of equation is likely to be available, which simplifies the implementation. This is the
approach used in SU2.

A common strategy to all these approaches, when they are used outside the FSI context,
i.e. for shape optimization, is to apply the displacement in increments as a way to achieve
better mesh quality (thereby making the mesh deformation operation nonlinear). For FSI
problems, this application in increments is inherently present due to the iterative nature of the
coupling algorithms. However, this may very easily result in a final fluid mesh that depends
on convergence settings. For example, if the solid mechanics analogy is used, and a stiffness
distribution inversely proportional to element volume is computed every iteration, the final
mesh will depend on the convergence history, for once an element is compressed it will not
recover its initial shape. Therefore, a desirable property of the deformation operation, is for
the deformed grid to be defined exclusively by the initial node coordinates and the boundary
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deformation uΓ (in keeping with the elasticity analogy, the mesh deformation should be elastic
rather than plastic). That is,

z =M(uΓ). (2.21)

Moreover, as will be seen, not depending on the deformed coordinates (at any iteration) is
important when deriving a steady-state adjoint FSI solver. Finally, it is worth noting that no
single deformation strategy is best, while physical analogies become expensive for large scale
problems, explicit approaches struggle with maintaining mesh quality when deformations are
large. Therefore, multiscale approaches have been proposed, where an expensive strategy is
applied to a coarse representation of the mesh, and an algebraic approach is then used within
each coarse unit [55]. However, such strategies are difficult to implement for unstructured
meshes, and not fundamental for the size of the problems studied in this work, they will,
however, have to be pursued for full aircraft RANS simulations. Of course, tuning the elasticity
analogy was still crucial for this work. In particular, ensuring the linear systems are initialized
to reduce their cost as the problem converges, and also reducing their overall cost by improving
the numerical properties of the stiffness matrix. The simplest way to achieve this is by lowering
the Poison’s ratio, more intricate strategies involve clamping all inner nodes that are far away
from the deforming surfaces, and avoiding excessively high local stiffness as wall distance or
element volume approach zero.

2.1.4 Coupling conditions

At the interface between domains (Γ), the fluid grid velocity (ż) is equal to the velocity of the
structure’s surface (u̇), and the solid and fluid stresses are in equilibrium, that is

żΓ = u̇Γ,

σns +
(
−pI + τ

)
nf = 0 on Γ. (2.22)

From the fluid’s perspective the interface is a wall, for which the no-slip condition dictates
vΓ = żΓ. For time accurate FSI simulations the grid velocities at the internal nodes can be
computed via a finite difference formula, or using the fluid grid deformation operation if it is
linear (since otherwise the grid velocity would not be consistent with the deformation). Grid
velocities are ignored for steady state simulations.

The coupling conditions simply state that the interface moves according to the structural de-
formation, and that the structure is subjected to the fluid forces. As the grid size requirements
are usually not the same for both problems, the grids will usually not match at the interface.
Therefore, suitable interpolation strategies must be used to transfer the displacements onto the
fluid side, and the stresses onto the structural side.

The interpolation of displacements and stresses between discrete locations can be generalized
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by introducing interpolation matrices, H, such that

∆zΓ = HsfuΓ,

λs = Hfsλf on Γ. (2.23)

The interpolation of displacements should be smooth, which bars the use of nearest neighbour
interpolation, instead, RBF (e.g. [56]) or isoparametric (e.g. [57]) interpolation are suitable
techniques. For tractions, nearest neighbour interpolation may also be used as the response
of the structure will in general be smooth. A common alternative, however, is the use of
conservative interpolation, whereby setting Hfs = HT

sf , and transferring discrete forces rather
than tractions, results in equal work on both sides of the interface. That is,

λs · uΓ = λf ·∆zΓ. (2.24)

Although this is an attractive property, in areas where the structural mesh is finer that the
fluid (which is common for topology optimization), the conservative approach creates a non-
physical representation of the loads, where only some structural nodes are loaded. In turn, this
may result in non-physical deformations of the surface, which may be exacerbated due to the
coupling with the fluid (e.g. due to shocks). Therefore, in these cases, the author has found it
better to use an interpolation technique consistent with the one used for displacements. Note
that unless the matrices are square, it is not possible for the interpolation to be both consistent
and conservative, since a rectangular matrix cannot have both its columns and its rows adding
to one.

It is worth noting a particularly pernicious implementation aspect of these interpolation tech-
niques, which had to be addressed as part of this work. Namely, it is necessary to ensure that
the interpolation is not sensitive to domain decomposition, and to node renumbering strate-
gies. For example, in nearest neighbor interpolation, a structural node should be mapped to
the same fluid node, regardless of how these are ordered. This means they should be ranked
not only by distance, but also by some invariant that can be used to break ties between equidis-
tant candidates. One such invariant is the global index of the node, i.e. prior to partitioning
and renumbering. Similarly, some radial-basis functions lead to matrices with high condition
number, hence sensitive to floating-point errors. It is advisable, therefore, to give an invariant
order to the nodes before preparing the RBF matrices.

2.1.5 Partitioned solution methods

The role of a coupling method is to ensure conditions (2.22) at convergence. Based on a
Dirichlet-Neuman (D-N) decomposition, the coupling problem can be stated as finding interface
displacements, such that the interface tractions are in equilibrium. Two operators can be defined
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from the fluid and structural fixed-points, by noting that under a suitable level of convergence,
the fluid solver can be considered the D-N operator F (which maps displacements to tractions),
and the structural solver the N-D operator S (which does the opposite), i.e. λf = F(uΓ) and
uΓ = S(λf ). In terms of the operations described in this section, the fluid operator consists
in first transferring the structural displacements to the fluid side, then deforming the fluid
grid, and finally solving the fluid flow equation, thereby obtaining the fluid tractions. Whereas
the structural operator consists in first transferring the fluid tractions to the structural side,
and then solving the structural problem to obtain the displacements. These operators can be
applied sequentially to produce a fixed-point iteration for the interface displacements, namely,

uΓ = S ◦ F(uΓ), (2.25)

which in practice is equivalent to a block-Gauss-Seidel (BGS) approach to solve the coupled
problem. It is common, however, for this approach to require significant under-relaxation for
strongly coupled problems, that is

un+1
Γ = ωS ◦ F(uΓ) + (1− ω)uΓ. (2.26)

The relaxation factor, ω, is often determined by Aitken’s relaxation (see e.g. [58]). Two major
factors make the BGS approach popular despite its limitations, first it is well suited for coupling
black-box solvers, and second, it allows amortizing the cost of deforming the mesh over multiple
fluid and structural iterations. Nevertheless, other partitioned methods have been proposed to
improve its convergence rate (and thus stability) or to allow the structural and fluid solvers to
be executed simultaneously (see for example [59], [36]). The interface-quasi-Newton family of
methods is common. These typically start with a manipulation of (2.25) to derive an interface
residual, namely

RΓ(uΓ) = S ◦ F(uΓ)− uΓ ≡ r = ûΓ − uΓ = 0, (2.27)

which is then solved in a quasi-Newton manner. That is,

un+1
Γ = uΓ + r̃−1

u (−r), (2.28)

where r̃−1
u is an approximate inverse Jacobian. Different strategies to obtain this matrix, or

its action on the residual, result in different methods within the quasi-Newton family. For
example, the IQN-ILS method [60] (used for some problems in this work) applies linear least
squares to a window of inputs (uΓ) and outputs (r) of the residual function to accelerate its
convergence. A process not unlike those used for solution [61], or stabilization [62], of general
fixed-point equations. One important practical aspect of using these methods, is that the fluid
and structural problems should be solved to reasonable accuracy within each coupling iteration.
Otherwise, the assumption that the interface residual is only a function of the interface variables
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is incorrect. Note that the BGS approach is not affected by this issue.

To allow the fluid and structural solvers to be executed simultaneously, a block-Jacobi approach
can be used instead of BGS (which is sequential). That is,(

λf

uΓ

)
=

(
F(uΓ)

S(λf )

)
, (2.29)

to which quasi-Newton methods can also be applied. Simultaneous, and possibly asynchronous,
execution is important to make optimal use of high performance computing systems, for example
the structural problem may not scale to the same extent as the fluid (which is typically larger).
Moreover, the two solvers may run on different architectures, for example, the flow solver on
GPU and the structural solver on CPU. This type of approach was not explored in this work,
since topology optimization results in structural and fluid problems of similar cost.

2.2 Density-based topology optimization

Topology optimization is a well established technique for determining the optimal distribution
of material (or materials) within an available volume. It was initially applied to structural
problems ([63]) but has since been used across a broad range of disciplines. The continuous
form of the problem is commonly stated as

min
ρ

f(u, ρ)

subject to : S(u, ρ) = 0 in Ω

g0(ρ) =

∫
Ω

ρ dΩ− V0 ≤ 0

gi(u, ρ) ≤ 0, i=1,· · · ,M

ρ ∈ Z ∩ [0, 1], ∀x ∈ Ω

(2.30)

where the equality constraint represents the governing equations, g0 is the optional constraint
on the volume of solid material (ρ = 1) used by the design, gi are M inequality constrains
(included for generality), and ρ may either be 0 or 1 anywhere in the design domain Ω.

This formulation suggests a density-based approach, i.e. finding the function ρ(x) that min-
imizes f subject to the constraints. Notwithstanding, shape optimization of the boundaries
separating solid and void regions, can be a valid alternative if new boundaries (holes) can be
created during the optimization (see the bubble method of [64]). The density and boundary
approaches may also be viewed respectively as Eulerian and Lagrangian descriptions of the
domain [65]. In the latter the governing equations only need to be respected (solved) inside the
solid region, moreover, density influences them through the shape of the boundary, conversely,
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the Eulerian approach requires a mechanism to be included in the governing equations whereby
density can signal the absence or presence of material. This is typically achieved through penal-
ization of relevant material properties, such as the elasticity modulus in structural applications,
or the thermal conductivity in heat conduction applications. One clear advantage of the La-
grangian description is the lower computational burden of solving the governing equations only
where necessary. However, the Eulerian description is more common due to its simplicity, in
fact, most level-set methods adopt it (e.g. [66]), despite being boundary approaches, to avoid
dealing with adaptive mesh strategies.

This project aims to explore the use of topology optimization in aerostructural settings, and
not to propose new topology optimization approaches. With this in mind, the density approach
is the logical candidate as there is no dearth of examples of its successful application and of
how to manage its shortcomings (see e.g. [67, 68]) albeit in purely structural contexts. For an
in-depth review of other approaches see e.g. [65].

The discretization of the domain naturally discretizes the density function into a vector of
design variables, an optimization method can then be used to determine the optimum topology.
Discrete methods have been applied to directly handle the binary nature of the variables (e.g.
genetic algorithms [69]), however, the number of function evaluations required by such methods
makes them too expensive for large scale problems. A much more common approach is the use of
continuous variables and gradient-based optimization methods (the next chapter deals with how
to obtain gradients). Then, a penalization method is used to discourage intermediate values.
For example, in Bendsoe’s SIMP approach (Simplified Isotropic Material with Penalization [70])
a power law is used, e.g. for the elasticity modulus (E)

E(ρ) = Emin + (Eref − Emin)ρp (2.31)

where Emin is introduced for stability of the structural solver and typically set to 0.1% of Eref ,
the reference value of the property. It will be discussed later that this lower bound on stiffness
also relaxes the optimization problem. When the exponent (p) is greater than 1, the ratio
of stiffness to mass at intermediate densities is unfavorable, and thus, if this ratio is valuable
under the objective and constraints of the problem, the optimum topology should be discrete.
A similar approach is the rational function of [71]. In most published applications of SIMP
authors use p = 3, higher values may be required, for example if inertial loads are significant,
but should be avoided as they make convergence more difficult and increase the propensity to
converge to local minima. For this reason, many authors also recommend the exponent to be
ramped to achieve better results and reproducibility (e.g. when testing a different optimization
algorithm). However, the author’s experience is that this may sometimes drive the solution into
a topology that is not optimal for the final exponent, and from which the algorithm repeatedly
tries to escape, always failing. Formally, however, the penalization exponent should be based on
realizability of intermediate densities via a two-phase microstructured-material, which is itself
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completely discrete, and obtained from an arrangement of the lower and upper bound material
properties (e.g. Emin and Eref ). It is then said that the penalized material (2.31) respects the
Hashin-Shtrikman bounds for two-phase materials [67], which in 2-D requires p ≥ 3 for Poisson
ratio of 1/3.

2.2.1 Challenges and solutions

In general, topology optimization problems are non-convex, which makes the results obtained
via mathematical programming methods sensitive to optimization parameters such as initial
values, continuation strategies, the methods themselves, etc. Many engineering problems suf-
fer from this and, in practice, little can be done about it apart from empirically testing the
sensitivity of a given problem to the optimization parameters.

A more important issue (arguably the most) is the mesh dependency created by penalizing
intermediate densities. As the mesh is refined, finer and finer checkerboard patches of unpe-
nalized intermediate stiffness appear, the condition is exacerbated by numerical issues such as
the overestimated stiffness of corner contacts. Several ways of tackling the problem have been
proposed which fall in two broad categories:

• Constraints can be added to the problem to prevent sharp oscillations of material distribu-
tion, in [72] local gradient constraints are used to avoid checkerboards, the large number
of constrains makes the optimization problem extremely costly, global constraints (often
implemented as penalties) are therefore proposed by several authors, see e.g. [73, 74].
Functions that directly detect corner contacts have also been proposed by [75], however,
this methodology is not easily extended to unstructured grids.

• Smoothing strategies, inspired by image processing techniques, filter sharp variations by
either pre-processing the densities (see [76]) or post-processing their derivatives (see [77]).
The latter predates the former and is appealing when the adjoint code is hand built, for it
dispenses differentiation of one more operation (i.e. the filter). However, density filtering
poses no challenge when algorithmic differentiations is used. Moreover, it is more versatile
as it can also control feature size see e.g. [78, 79]. The simplest form of the technique
consists in replacing the derivative/density by a weighted average of neighbouring values.
In general, filtering also ameliorates the non-convex nature of the optimization problem.

The ability of the density filtering approach to control feature size is fundamental in engineering
and is a necessary condition for mesh independence (it ensures a minimum number of elements
is used to discretize the smallest feature of the topology). Moreover, contrary to constraint-
based approaches, it does not increase the complexity of the optimization problem, hence it
was the selected approach for this project.

Simple filter kernels create a "gray" halo that is undesirable when perfectly discrete topolo-
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gies are sought, in the sense that it creates an inconsistency between the model and the real
world. Moreover, this increases the sensitivity to the SIMP exponent, since higher values favor
topologies with smaller "wetted" area (and thus less material in halo regions). To avoid this,
in [78] an approximation of the Heaviside (step) function is used in a projection step after the
application of a conical-weight filter, namely

y(x) = 1− e−βx + x e−β. (2.32)

For β approaching infinity, small values of x are projected to 1. As large values of β make
the gradients poorly behaved, a continuation strategy needs to be adopted, and therein lies
the greatest problem of the approach, for the filtering and projection step becomes less volume
preserving as β increases, consequently, the design-density field must become sparser to respect
the volume constraint, slender features that developed early in the optimization may therefore
become poorly represented. To avoid this, function (2.32) can be modified (y∗ = 1− y(1− x))
to project values towards 0 instead of 1 thereby making the design field denser, in so doing,
control over minimum thickness is traded for control over minimum hole size.

To avoid these shortcomings, [79] proposed morphology-based filtering operations that can:
produce solid-void designs; be nearly volume preserving; and impose both minimum thickness
and minimum hole size. This is done by sequencing dilation (material deposition around a
solid point) and erosion operations (material removal around a void point) whose continuous
formulation is, respectively,

ỹi(x) = log

 1

N

∑
j∈N (i)

eβxj

 /β, (2.33)

yi(x) = 1− ỹi(1− x), (2.34)

where N is the set of N points inside the reference radius. As β → 0 both operations reduce
to the arithmetic average. Following dilation by erosion closes holes smaller than the reference
radius, the opposite opens holes of at least that size. The close/open operations are similar
to the dilate/erode or the heaviside "up"/"down" ones, but they are almost volume preserving
which improves the convergence of the optimization (a continuation strategy for β is required
nevertheless). To control minimum hole size and minimum thickness simultaneously, Sigmund
suggests the close-open or open-close filters, however, the author’s experience is that these
worsen convergence, possibly due to the initial large effective filter radius (when β is small 4
averages are performed).

Although simple in nature, discrete filters are challenging to implement for partitioned un-
structured domains with re-entrant features. If the neighbour search is based on distance alone
those features may be bridged. Moreover, the filter operation will in general require values
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from interior elements of adjacent partitions which are not trivial to communicate (domain
decomposition is discussed in a later chapter). Finally, the memory required to differentiate
discrete filters with algorithmic differentiation, can be significant when the element size is small
compared to the filter radius. For example, with a ratio of 1:3.5 in a 3D Cartesian grid each
element has 178 neighbours (per filtering stage). It may be necessary, therefore, to analytically
differentiate the filter operation. For these reasons, some authors propose the use of PDE-based
filters, [80] used the Helmholtz equation, although computationally efficient, this approach does
not allow the same level of control that morphology-based filters do.

It is worth noting that a major challenge of topology optimization is incorporating stress con-
straints, which are a staple of mechanical engineering design, but notoriously difficult to handle
in gradient-based optimizations. While treating them like local constraints substantially in-
creases the cost of the optimization, converting them to global constraints (via aggregation
strategies [81]) reduces the performance of optimized designs. Topology optimization makes
matters worse by creating a singularity at zero density. In particular, void material is not
stressed (by definition) but as density tends to zero stress tends to a finite value. To address
this, in [82] the stress constraints were replaced by quality functions, whereas [83] proposes a
penalization of stresses consistent with that of stiffness and a relaxation of the stress constraints
near zero density. Stress constraints will not be explicitly included in this work.

2.2.2 Solution by gradient-based optimization methods

Although the method for computing gradients will only be discussed in the next chapter, it is
now worth discussing the strategy used in this work to solve topology optimization problems.

Topology optimization problems are characterized by a large number of design variables and
relatively few constraints (excluding simple bound constraints), that from the physics point of
view, do not need to be imposed strictly. Therefore, the exterior penalty method is herein used
to impose constraints, that is, problems of the form

min
α

f(α)

subject to : gi(α) = 0

hj(α) ≤ 0

become min
α

f̂(α) with

f̂(α) = f(α) +

Ng∑
i=1

aigi(α)2 +

Nh∑
j=1

bjh
+
j (α)2, (2.35)

where h+ = max(0, h). The penalized objective function can then be minimized using an un-
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constrained (but bounded) optimization method. The penalty parameters (ai and bj) need to
be gradually increased (usually by multiplying the previous value by a fixed factor r) until a
predetermined small constraint tolerance is met. This creates the need for outer iterations since
updating the parameters within unconstrained (inner) iterations leads to bad approximations
of the Hessian matrix. Although these outer iterations force an undesired reversion to steepest
descent, they are also needed (and commonly used) to update topology optimization parame-
ters. The continuation strategy for these parameters, which was found to be adequate for both
structural and FSI problems, is given in algorithm 1.

Data: optimization problem, p
Result: solved problem
set loose convergence criteria for optimizer;
while true do

UnconstrainedMinimization(p);
// update the penalty parameters (ai, bi)
foreach c in p.constraints do

if c.value > tolerance then
c.penalty ← c.penalty × r

end
end
// conditional update of other parameters (e.g. β)
if p.constraints.satisfied() then

p.parameters.nextvalue();
if p.parameters.finalvalue() then

restore tight criteria for optimizer;
UnconstrainedMinimization(p);
return p

end
end

end
Algorithm 1: Exterior penalty method with parameter updates.

This was implemented by the author in a new optimization framework1, which is more versatile
than what was available in SU2 (regarding definition of design variables and parameters). Note
that penalty parameters are increased geometrically, whereas problem parameters are simply
a sequence of values through which the algorithm advances if all constraints are currently
satisfied. Before the target values of the parameters are reached, loose convergence criteria
are used for the unconstrained optimizer (e.g. 40 inner iterations). The objective function is
shifted and scaled by representative minimum value and range respectively, the constraints are
shifted by their bounds and scaled by a reference value (the reciprocal of the bound unless
otherwise specified). Doing so allows the same constraint tolerance (≈ 0.01) to be used, the
penalty parameters to be initialized equally (a0

i , b
0
i ∈ [1, 10]), and also updated with the same

factor (r ∈ [1.4, 4]).
1https://github.com/su2code/FADO

https://github.com/su2code/FADO
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The unconstrained optimizer used in this work is the L-BFGS-B [84] implementation available
with SciPy [85]. This choice was made during the early research stage, based on comparisons
with the well know MMA method [86]. Later, the constrained optimizer IPOPT [87] was also
tested, based on promising results in the literature [88], however, it performed worse than
L-BFGS-B. Recently, other researchers have also found that current versions of IPOPT have
difficulties with topology optimization problems [89]. One computationally advantageous aspect
of the exterior penalty approach (which was not explored in this work) is that it may reduce
the cost of evaluating gradients, for example, it may be possible to differentiate the penalized
function at the same cost of differentiating one of the constraints or objectives.

2.2.3 Benchmark example

The strategy described above, and the implementation of the SIMP scheme in SU2, were tested
by reproducing published results for the classic tip loaded cantilever problem, shown in Figure
2.1.

Figure 2.1: 4:1 aspect ratio tip loaded cantilever.

In particular the nonlinear topology optimization results of [90], where a material with elasticity
modulus of 3GPa and Poisson ratio of 0.4 was considered. For this test the morphology based
filters were used to obtain solid-void topologies. The objective is to minimize end compliance
(Wtip) subject to an equivalent mass constraint of 0.5, that is

min
ρ

Wtip ≡ Pδy

subject to :
1

V

∫
V

ρdΩ ≤ 0.5
(2.36)

where δy is the vertical displacement of the point where the load is applied. Since geometric
non-linearities are considered, different topologies are expected for different values of the load
(P). Referring to algorithm 1, the objective is normalized by initial value, b0

1 = 8 and r = 2, the
constraint tolerance is 0.005. The value sequence for the filter parameter β (equation (2.33))
is {0.01, 1, 4, 16, 64, 200}. The initial small value makes both morphology filters equivalent to
the simpler conical filter. The loose convergence criteria for L-BFGS-B are 40 iterations or a
variation of objective function value less than 10−5. For the tight criteria the latter is reduced
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to 10−7 and the number of iterations unlimited. The domain is discretized with 10 000 square
isoparametric elements, the filter radius (defining N (i) in (2.33)) is twice the element size,
however note that the close and open filters are applied in two stages which effectively doubles
the radius of the neighborhood. Ramping the SIMP exponent was not found to be advantageous
for these simple cases, instead, a constant value of 3 was used. Because loads are large in these
examples, it is not practical to start the optimization with a uniform density distribution that
also respects the mass constraint, instead, the optimal density distribution for SIMP exponent
of 1 and linear elasticity was used (which was obtained with the same process described above,
but without increasing the filter parameter). Figures 2.2 and 2.3 show the topologies obtained
for P=60 kN with the open filter and for P=240 kN with the close filter, respectively.

Figure 2.2: Optimized topology for 60 kN
with the open filter.

Figure 2.3: Optimized topology for 240 kN
with the close filter.

Figure 2.4 shows the convergence history for both cases, both the obtained topologies and
compliance values (Wtip(60 kN) = 4.36 kJ and Wtip(240 kN) = 67.0 kJ) compare favorably with
the reference results (4.65 kJ and 66.5 kJ respectively). The optimization process requires on
average 350 function evaluations, which again compares well with other sources (e.g. [79]), and
the obtained topologies after filtering are nearly perfectly discrete.

Figure 2.4: 4:1 tip loaded cantilever optimization histories for the two load values considered.

2.2.4 A strategy for discrete topologies in FSI

To obtain discrete topologies, density-based topology optimization methods (such as the SIMP
formulation) rely on the penalization of intermediate densities. In the case of structural prob-
lems, the local ratio of stiffness to mass is lower for intermediate densities than for solid or void
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material. Certain objective functions, such as compliance, benefit from higher values of this
ratio anywhere in the domain, that is, compliance decreases regardless of where new material
is added. Then, by constraining the available amount of material, the optimizer tends to place
it where it is most effective at reducing compliance.

On the other hand, aerodynamic optimization objectives generally do not benefit from an
optimum stiffness to mass ratio, and thus intermediate densities may not be naturally avoided
using the SIMP formulation. This is especially true when seeking passive load alleviation, as
deformation is necessary, and in 2D where an increase in lift due to higher mass does not
penalize drag as severely as it does in 3D due to higher induced drag. Therefore, an explicit
mass objective or constraint may be required. However, here it was found that this tends to
make the optimization process less robust, since a strong-enough incentive to remove material
often conduces to critically stable structures, that is, close to buckling, for which it is difficult
to fully converge the primal and adjoint problems. Furthermore, it was also observed that these
strategies increase the sensitivity to initial design values. For example, starting from an initial
configuration that produces more lift than required, will cause material to be quickly removed
from high strain energy areas. Therefore, it is not trivial to determine to what value the mass
should be constrained, or how it should be weighted before combining it with an aerodynamic
objective function, such that a discrete topology is obtained (this is discussed further in chapter
5).

To avoid these issues, a two-step optimization process has been investigated to reduce the in-
terference between the goals of improving aerodynamic performance and producing a realizable
(i.e. discrete) topology. The proposed two-step strategy consists of first solving the natural
aerostructural optimization problem, for example minimizing drag subject to a lift constraint,
without additional penalties or manipulation of the objectives. This first step is conducted
with fully coupled FSI modelling (so called multidisciplinary-feasible approach) and generally
results in a non-discrete topology, but one defined by feasible FSI solutions and realizable since
the SIMP exponent is still set according to the two-phase material bounds. The second step
then aims to produce a discrete topology that replicates the response of the former, i.e. one
that under the fluid loads known from the coupled FSI simulation results in the same deformed
surface. This inverse design step is formulated similarly to a compliant mechanism design prob-
lem, for example the force inverter (see [67] or [79]), but instead of focusing on the response of
a single node, an error metric is defined for the entire interface as

εΓ =
1

NΓ

∑
j∈Γ

(uj − u∗j)
2 (2.37)

and used as a constraint in a mass minimization problem. Here both steps are solved with
algorithm 1. While it would be possible to perform the inverse design step simulating only the
structure, for highly flexible structures it has been found that doing so can easily result in an
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unstable structure, that buckles under small variation of FSI loads caused by small discrepancy
between the target response (obtained from the fully coupled step) and the response of the
discrete-topology structure. To mitigate this issue, a one-way FSI simulation has been used
instead, then, based on the variation of the fluid loads (due to the discrepancy in target and
current surface coordinates), a stability metric is defined based on points where the variation
of work is positive, that is

W+
Γ =

∑
j∈Γ

max(0, dΓj · (λj − λ∗j) · (uj − u∗j))
2 (2.38)

The one-way simulation is relatively inexpensive as good initial conditions for the flow field are
available from the coupled FSI simulation, especially if the initial topology is almost feasible
in error metric (2.37) (the topology obtained in the fully coupled step should not be used as
the starting point to avoid convergence to a poor local optimum, i.e. not discrete). The upper
bounds for constraints based on equations (2.37) and (2.38) are set based on a reference value
obtained by applying a small (≈ 1%) perturbation to the elasticity modulus of solid material.

For clarity it is worth considering a different view of the fully coupled step, which could be
stated as finding surface displacements u∗Γ that minimize the objective function, subject to
the optimization constraints, and to the additional one that ∃ρ : u∗Γ = S(ρ,λ∗Γ). In other
words, the outputs of the fully coupled step are (feasible) displacements and tractions (not
the material distribution) which then become inputs of the inverse design step, tasked with
producing a completely new material distribution that is discrete. An iterative procedure with
the two steps could be proposed, in which case explicit penalization of non discreteness would
likely be required to maintain the discreteness achieved by the inverse design step. It is worth
noting that this does not decouple the multidisciplinary nature of the problem, in a way, in the
inverse design step the FSI coupling conditions become optimization constraints, whereas in
the fully coupled step they are inherently satisfied.

Although the optimization problem can be posed in an alternative way that avoids the discrete-
ness and stability issues. For example, by converting it to a compliance minimization problem
with aerodynamic constraints while prescribing the topology of certain key areas, such as the
trailing edge. Here, it was deemed important to keep the design space as unconstrained as
possible, and to deal with the aforementioned issues in a way that allowed assessing the capa-
bility of topology optimization to improve aerodynamic performance across multiple operating
points.
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Discrete Adjoint Method

As mentioned in chapter 1, the discrete adjoint method is the approach used in this work
to obtain the derivatives of functions computed from the solution of PDE problems. These
arise, for example, in the context of the topology optimization problems described in chapter
2. The present chapter, is principally focused on how different discrete adjoint methods and
implementation strategies contribute to the trade-off between performance and generality. The
framework developed in SU2, for solving generic adjoint problems, is presented at the end of
the chapter after a discussion on solution methods and implementation strategies.

3.1 Adjoint equations

There is more than one way to derive discrete adjoint solvers, by which is meant algorithms
that solve discrete adjoint equations. These equations can be different depending on the chosen
approach, and different approaches offer different insights into the method, its characteristics,
and indeed suggest variations to the implementation strategy.

To begin, take the typical PDE constrained optimization statement

min
α

J(x,α)

subject to R(x,α) = 0,
(3.1)

where J , the function of interest, depends on the optimization variables α (also known as
parameters) and the solution x of the discretized primal problem (also known as state). Primal
convergence is implied by the constraints R = 0, where R is a residual arising from either the
discretization or the solution of the problem. This distinction will be clarified shortly.

Given this implicit relation between state and parameters, application of the chain rule to J
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yields
dαJ = Jα + Jx xα, (3.2)

where subscripts denote partial derivatives. Note that vectors (e.g. x) are column vectors but
the shape of derivative terms "mn" is m by n.
The xα term represents the sensitivity of the state with respect to the parameters, that is,
the linearization of the primal solver around the converged solution. To compute it recall that
R = 0 ∀ α, therefore

dαR = Rα +Rx xα = 0→ Rx xα = −Rα, (3.3)

which is a linear system with one right-hand-side per parameter. Solving these equations and
using the result to evaluate (3.2) constitutes the direct differentiation of J . To obtain the
adjoint equations, (3.3) is substituted into (3.2) yielding

dαJ = Jα + λTRα, (3.4)

which is an alternative way to evaluate the gradient of J , where the adjoint variables λ are
given by the adjoint equations

RT
x λ = −JT

x , (3.5)

which are also a linear system, but with one right-hand-side per function. It is important to
note that this result is based on the identity uT(Av) = (ATu)Tv, and that this identity provides
a way to verify adjoint (λ) and direct (xα) solutions.

In regards to computational effort (time complexity), the choice between direct or adjoint
approaches depends on the number of parameters versus the number of functions. However,
depending on what the residual of the problem represents, storage (space complexity) may also
become a decisive criteria. For example, for time domain problems solved by time-marching
algorithms, the Jacobian Rx is a lower triangular, block-n-diagonal matrix, with one block
per time step. Solving the direct equations is equivalent to forward substitution, whereas the
adjoint equations must be solved by backwards substitution (the Jacobian is transposed). The
direct problem can be solved alongside the primal, whereas the adjoint can only be solved
once all primal results are known. Therefore, the space complexity of the adjoint approach
becomes linear in the number of time steps, and reducing it requires the time complexity to be
increased, e.g. by checkpointing (recomputing primal results during the adjoint solution, based
on a downsampled version of the converged state).
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3.1.1 Interpretation of adjoint variables

While the previous discussion gave some insight into the differences between direct and adjoint
approaches, it revealed very little about the nature and physical meaning of adjoint variables.
They are indeed more than a simple byproduct of algebraic manipulation.
Returning to the optimization statement (3.1), let

L(x,α,λ) = J + λTR, (3.6)

be the Lagrangian function, where the adjoint variables λ are the Lagrange multipliers (the
interpretation of which is well known in optimization problems) whose value can be chosen
arbitrarily since R = 0 for any value of α. This implies L = J and simplifies differentiating it
with respect to the parameters to

dαJ = dαL = Lα + Lx xα. (3.7)

Formally, the above results from Lλ = 0, due to R = 0. Consider now the additional condition
Lx = 0, which simplifies (3.7) to be

dαJ = Lα = Jα + λT Rα, (3.8)

where xα no longer needs to be evaluated. The equations that result from this requirement,

RT
x λ = −JT

x ,

are identical to the adjoint equations obtained previously.

Lagrange multipliers, and thus adjoint variables, represent the marginal effect of the constraints
on the optimum value of the function [91], or, in other words, the cost of respecting the physical
laws associated with R. To demonstrate this, note that the constraints can be assumed to
contain an arbitrary constant part c, that is

R = c− R̂(x,α) = 0. (3.9)

Now consider the parametric optimization problem given by

V (c) = J∗(c) = J(x∗(α∗(c)),α∗(c)), (3.10)

where the superscript ∗ indicates optimality, i.e. the solution of problem (3.1), whose first order
optimality conditions are obtained by differentiating the Lagrangian with respect to each of its
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variables
JT
α +RT

α λ = 0,

JT
x +RT

x λ = 0,

R = 0.

(3.11)

Note how these conditions state, respectively, the convergence of the optimization, the adjoint
equations, and the primal equations. Differentiating both sides of (3.10) with respect to c yields

dcV = Jx xc + Jα αc, (3.12)

where the superscripts have been omitted for simplicity. Substituting the first order conditions
into (3.12),

dcV = −λT(Rx xc +Rα αc), (3.13)

and differentiating R, again using the fact that it is 0 for any value of c,

dcR = Rx xc +Rα λc + I = 0. (3.14)

Finally, substitution of (3.14) into (3.13) yields

dcV = λT. (3.15)

This result can be easily demonstrated for non optimum values of the parameters, for example
by considering c as the parameters (i.e. α ≡ c) and performing the required substitutions.
However, the implication for the solution of (3.1) is more meaningful.

Evidently, the physical meaning of adjoint variables depends only on that of the constants c.
For example, many physical processes are modeled by the convection-diffusion (or transport)
equation, fluid flow, heat transfer, turbulence, to name a few. The equation states that, at a
given location the rate of change of the transported quantity φ (momentum, energy, etc.) with
time is equal to its volumetric rate of production (q̇) minus the divergence of the convective
and diffusive fluxes.

∂φ

∂t
= q̇ −∇ · (Uφ− µ∇φ) (3.16)

The source term may be a function of the other variables, to model for example the production
of turbulent kinetic energy, or the production of thermal energy due to friction, it may be
a penalization to model an immersed boundary, the heat produced due to Joule heating or
radioactive decay, the result of a body acceleration, or something completely arbitrary such as
the constants introduced in (3.9). Therefore, an adjoint variable associated with the imbalance
of a convection-diffusion problem, represents the sensitivity of the objective function to a change
in the rate of production of the transported quantity at the corresponding location. Consider
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Fig. 3.1 where the magnitude and direction of the adjoint momentum of lift are shown for a
NACA0012 airfoil at 0 deg AoA. Unsurprisingly, inducing circulation around the airfoil increases
lift, except close to the surface where it would be more effective to produce an updraft. Note
that the upstream-travelling wake simply shows that in the primal problem information travels
predominantly downwind.

Figure 3.1: Magnitude and direction of the adjoint momentum of lift for an airfoil at 0 deg
AoA.

3.1.2 Solution methods

The previous section has given valuable insight into the nature of adjoint variables, however, it
did not suggest an algorithm to solve the adjoint problem. To some extent, adjoint equations
(3.5) play the role of governing (linear) equations, which, similarly to the primal (typically
nonlinear) equations, can be solved by multiple methods.
For classes of primal problems that are solved by an exact Newton method, and where the
residual Jacobian is available, the adjoint solution method is evidently to solve a linear system.
Furthermore, if those problems make use of a complete factorization of the Jacobian (e.g.
elasticity problems) the adjoint variables may even be obtained at close to zero cost, more so if
the problem is self-adjoint. For other classes of problems, fluid flow being the prime example,
an accurate residual Jacobian is generally not available and its high condition number renders
the linear system much harder to solve than expected. The fact that such problems are never
solved by exact Newton methods is telling. The reasons and solutions for the lack of availability
of Jacobians will be explored further on. For this class of problems it is necessary to either find
a strong preconditioner for (3.5), or to derive the adjoint equations based on a definition of the
residual R that has a well conditioned Jacobian.
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Discretization residual and solution residual

To that end, the discussion returns to the distinction between "discretization residual" and
"solution residual". The solution methods for all problems of interest for this work can be
viewed as fixed-point iterations, where new values of x are given by some primal solution
algorithm or program P , that is

xn+1 = P(xn,α). (3.17)

At convergence, when the fixed-point of (3.17) is obtained, the residual can be defined as

R = P(x,α)− x = 0. (3.18)

Using this as the constraint of the optimization problem (3.1) to define the Lagrangian, and
restating the requirement on its gradient with respect to the state,

Lx = Jx + λ̂
T

(Px − I) = 0, (3.19)

results in a fixed-point iteration for a different set of adjoint variables λ̂, that is

λ̂
T

= Jx + λ̂
T
Px. (3.20)

Similar manipulation of (3.8) yields

dαJ = Jα + λ̂
T
Pα. (3.21)

The properties of (3.20) can be studied by considering a concrete solution algorithm, take a
quasi-Newton method where new iterates are given by

xn+1 = xn + M̃−1R̂, (3.22)

where M̃−1 is an approximate inverse (usually a linear system solved approximately) of an
approximate (and better conditioned) Jacobian of the discretization residual R̂. Differentiat-
ing the right-hand-side of (3.22) with respect to the state at convergence (i.e. R̂ = 0) and
substituting into (3.20) results in

λ̂ = λ̂+ ω(JT
x + R̂T

xM̃
−Tλ̂), (3.23)

which is a Richardson iteration for the right-preconditioned adjoint equations (3.5), where the
relaxation factor ω was introduced for completeness. It is known that this procedure converges
if

||I− ωR̂T
xM̃

−T|| < 1. (3.24)
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The relationship between the adjoint variables obtained for the discretization and solution
residual approaches is

λ = M̃−Tλ̂, (3.25)

and so the direct interpretation of these fixed-point adjoint variables requires knowledge about
the solution method, e.g. how certain boundary conditions are enforced. Moreover, since
the adjoint variables depend on the preconditioner, it is of little use to initialize the solution
of (3.20) when changes are made to the solution methods within P , e.g. changing the CFL
number. These observations are fairly general since many methods can be written in the quasi-
Newton form, either naturally or after some algebra, more examples are given later.
The convergence condition (3.24) offers some insight into what aspects of the primal program
influence the convergence of the adjoint, namely under-relaxation and the quality of M, which
represents a trade-off between how well it approximates R̂x and its cost relative to one evalua-
tion of the residual. Note that for 2D problems where M is a matrix, factorization is efficient
since it only needs to be done once at relatively low cost (due to low bandwidth) and then
the cost of the linear systems becomes independent of the condition number of M. For large
scale 3D problems this is not an option, moreover M might not be a matrix (e.g. it could be a
multigrid method) and the fact that the M̃−1 operation often involves iterative processes makes
guaranteeing (3.24) rather difficult and indeed raises other issues that will now be discussed.

Efficient treatment of linear solvers

Among the most common discrete adjoint solvers, the use of a fixed-point adjoint iteration based
on the "solution residual" is unique to SU2 [33], although it was demonstrated earlier for a 2D
code in [92]. The approach is based on the abstract application of algorithmic differentiation
(AD) to the "whole iteration" (instead of "only" to the discretization residual) and is inspired by
the broader topic of algorithmic differentiation of general fixed-point iterations [93, 94]. Earlier
fixed-point adjoint solution methods in the literature were based on the duality-preserving
concept [95]. They typically read [96, 97]

λ = λ+ ωM̃−T(JT
x +RT

xλ), (3.26)

which is a Richardson iteration for the left preconditioned adjoint equations. Condition (3.24)
still holds since the eigenspectra of AB and BA are the same. The objective of preserving
duality is to inherit the convergence properties of the primal solution method by routinely
transposing (and reversing) the primal solution algorithm (note the similarity between (3.22)
and (3.26)) as done in e.g. [95, 98, 99, 100]. This has the added effect of making the gradient
of the objective function equal at every iteration of the tangent and adjoint problems (so long
as both start from 0).
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This left-right difference in the fixed-point form was pointed out in [33] but not explored
further. In theory both types of iteration have the same convergence properties, however, the
nature of the primal solution method, i.e. the preconditioner M, may warrant some practical
considerations. In particular, when M̃−1 involves some form of iterative linear solver, the
operation is only linear with respect to the right-hand side if the linear solver is allowed to
converge (making M̃−1 ≡ M−1), which in general would be an inefficient way to solve the
primal problem. The nonlinearity of approximate solutions is of little importance to the primal
problem and the left fixed-point, since they are applied to a residual that converges to zero.

Conversely, with the right fixed-point that results from applying AD to the entire primal it-
eration, the operation is applied to a non zero vector even at convergence. The implication is
that if iterative processes within the adjoint are not converged to reasonable accuracy, even the
asymptotic convergence behavior will depend on Jx, the right-hand side of the adjoint equation
(3.5). In partitioned multiphysics contexts this right-hand side includes contributions due to
the coupling between different solvers[24, 101], which can be less smooth than the gradient of
the objective function depending on the type of interface interpolation used. Empirically, this
translates into normalized linear system residuals of O(10−4) being required by this type of
adjoint solver, whereas O(10−1) often suffices for the primal solver. Moreover, there is also a
dependence on the type of linear solver, since methods like GMRES produce smoother solu-
tions than conjugate-gradient (CG) methods for the same residual. Furthermore, care is needed
when evaluating λ̂

T
Pα to ensure consistency with λ̂

T
Px (e.g. the same starting point should

be used) otherwise the gradient of the objective function will be incorrect.

Note that obtaining λ̂
T
Px via AD achieves a consistent transposition of M̃−1 by definition.

However, since in practice the solution of linear systems is not differentiated automatically
(which would be extremely inefficient) but instead manually replaced by analytical formulas
for matrix operations (specifically x = A−1b, see [102]) the resulting transposed linear systems
should be solved accurately, that is, what in the primal solver is M̃−1R with R → 0 at
convergence, should become "exactly" M−Tλ̂ as the adjoint solver converges. Note that these
transposed linear systems can be initialized since the right-hand sides converge (e.g. to λ̂),
whereas for the left fixed-point there is no benefit in doing so.

The limitations of approximately solved linear systems during reverse accumulation have re-
cently been discussed in [103]. The problem addressed there is different and it arises from
"whole program AD", where the objective function gradient is evaluated at the start of the
reverse pass, used to seed the reverse-mode derivatives of the state and parameters, and then
not handled explicitly anymore. The typical treatment given to linear solvers will effectively
corrupt Jx if the initial assumption (exact linear operation) is not respected during reverse
accumulation, as shown in [103].

However, this is not the issue that affects the right fixed-point. Since Jx is reintroduced in
every iteration, if (3.23) converges, it does so to the solution of (3.5). For that to happen in
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a manner that is relatively independent of the adjoint right-hand side, M̃−T must be applied
more accurately than in the left fixed-point. Intuitively, if in forming M̃−Tλ̂ the system is
not solved with sufficient accuracy, some error components are not attenuated thereby making
the fixed-point process sensitive to the adjoint right-hand side. To avoid "over solving" the
transpose systems, it is then helpful to initialize them and to make their target tolerance ε
proportional to the current residual of the adjoint equations radj, that is,

ε = max(εL,min(radjβ, εU)) (3.27)

where εL ≈ εadjβ and εU ≈ 0.01 are suitable lower and upper bounds respectively, β is O(1) or
O(10−3) for the left and right fixed-point respectively, and εadj is the target for radj. Residuals
are defined here as r = ||b−Ax||(||b||)−1.

A simple adjoint solver, for which it was easy to switch between left and right preconditioning, is
used to substantiate these claims with some empirical evidence. The primal solver is an unstruc-
tured pressure-based coupled solver, developed by the author 1, for the incompressible RANS
equations, based on the SIMPLE algorithm with Rhie and Chow momentum interpolation.
It also uses Menter’s SST turbulence model, whose two equations are solved in a segregated
manner. The adjoint solver uses the frozen turbulence and frozen limiter assumptions. This
produces a representative adjoint problem, that is, an ill-conditioned residual Jacobian Rx and
a more tractable approximate Jacobian M used in the primal solver to march to steady state
(as per (3.22)) using BiCGSTAB, which is preconditioned with the additive Schwarz block
ILU(0) of M. Its transpose is then used in the adjoint solver to precondition the fixed-point,
using either (3.26) or (3.23). Fig. 3.2a shows the convergence history of the adjoint fixed-point
for two objective functions, with a fixed relaxation factor of 0.7 and the proportional toler-
ance strategy as described above. The functions are total-to-total (tt) and static-to-static (ss)
pressure rise across the centrifugal pump geometry shown in Fig. 3.2b. Table 3.1 lists the cost
for each function and type of iteration, measured by the total number of BiCGSTAB (inner)
iterations which are the largest contribution to solution time. The two types of fixed-point
preconditioning perform similarly, both in number of outer iterations, i.e. convergence rate,
and in number of inner iterations, i.e. computational cost. For this problem, not converging
the right preconditioner to the much lower tolerance would result in divergence, whereas not
initializing it would increase the computational cost by one order of magnitude. This is much
more evident for this incompressible flow problem where due to the numerical stiffness of the
Poisson equation for pressure, on average 50 linear iterations are performed per outer iteration.

The importance of adequate convergence and influence of the type of linear solver are now
explored for SU2. The test problem is the turbulent flow around a NACA0012 airfoil at zero
angle of attack, Mach 0.5 and Reynolds number of 20 million. The SA turbulence model is used

1https://github.com/pcarruscag/Flow-Solver-Experiments

https://github.com/pcarruscag/Flow-Solver-Experiments
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(a) Convergence histories.

(b) Centrifugal pump geometry.

Figure 3.2: Comparison of left and right preconditioned fixed-point iterations.

Iteration type ∆Pss ∆Ptt

Left 5967 7712
Right 7532 7398

Table 3.1: Cost for left and right preconditioned fixed-points, total BiCGSTAB iterations.

without wall functions and convective fluxes are evaluated using the JST scheme. The domain
is discretized with an O-grid of 75 000 quadrilaterals and the solution method being linearized
(operator P in (3.17)) is a segregated quasi-Newton approach for mean flow and turbulence
variables using the first-order residual Jacobian with a local CFL number of 1000. Fig. 3.3
shows the influence of the type of linear solver and tolerance (used for the transposed linear
systems) on the convergence of the right fixed-point for the adjoint variables of lift. The linear
preconditioner for the transposed systems is again the additive Schwarz block ILU(0). The
first four lines in Fig. 3.3 correspond to the default strategy of not initializing the transposed
systems, whereas in the last (fine dotted) line GMRES was initialized and allowed to run up
to 30 iterations per fixed-point or until a linear residual of 10−7. Table 3.2 lists for the three
successful configurations (i.e. adjoint residual is O(10−3)) the total cost associated with the
transposed linear systems, measured by the total number of matrix-vector products with the
first-order Jacobian and applications of the linear preconditioner.

Several aspects are worth noting. First, due to its smoother solutions GMRES can be used with
a lower tolerance than BiCGSTAB, which results in a large difference in solution time. Second,
initializing the transposed linear systems reduces their cost by approximately 50%. Finally,
and more nuanced, when the linear systems are initialized a smaller tolerance is needed. By
analogy with the primal problem it can be said that a certain amount of smoothing is required
per adjoint iteration, as simply maintaining the 10−2 tolerance required by the zero-initialized
strategy, would not be effective. Here the 30 iteration subspace size serves this purpose while
also avoiding "over solving" the linear systems while the adjoint residual is high. For CG-type
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Figure 3.3: Effect of linear solver type and tol-
erance on the convergence of SU2’s discrete ad-
joint solver for the NACA0012 problem.

Linear solver Total cost

GMRES 10−2 23888
BiCGSTAB 10−6 (radj = 0.002) 113904
GMRES(30) 10−7 Init. 12178

Table 3.2: Cost for different transposed linear
solver options to obtain residuals of 10−3 for
the NACA0012 problem.

methods limiting the number of iterations may fail catastrophically since these methods do not
have the monotonic convergence of minimum residual methods. Consequently, the proportional
tolerance strategy (3.27) is more appropriate for CG methods. This type of strategy is clearly
important for efficient fixed-point implementations, note how the 10−6 tolerance for BiCGSTAB
is not needed in the first 150 iterations, where 10−3 achieves the same reduction in adjoint
residuals. However, implementing these strategies within a generic framework is challenging
when the transposed linear systems are created and managed by AD. As an example, one must
keep track of which initialization should be used depending on context (e.g. multigrid pre/post
smoothing) and especially across operations with the two Jacobians (Px and Pα).

Acceleration and stabilization by Krylov methods

In spite of inheriting the convergence properties of the primal problem by preserving duality, it
is common for linearizations (tangent or adjoint) of industrial problems to have stability issues,
even when the primal problem converges. This has been attributed to limit cycle behavior found
in the primal problem either due to inherent unsteadiness or due to shortcomings of the primal
methods [104, 96, 105, 97]. Proposed solutions have ranged from stabilization approaches using
GMRES [104] or the Recursive Projection Method (RPM) [62, 106] to Newton-Krylov and
Krylov methods for primal and adjoint equations respectively [107, 105, 97].

To stabilize the right preconditioned fixed-point (3.20) it is, of course, possible to use the RPM
while still having in mind the earlier linear solver observations, lest the method be unnecessarily
burdened with also stabilizing those processes. To use GMRES, or some other Krylov method,
note first that manipulation of (3.20) yields the system

(PT
x − I)λ̂ = −JT

x (3.28)
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Here, matrix-free methods are the only alternative since Px is dense. Again, the nature of
the primal solution algorithm must be considered. If it contains only linear operations, any
matrix-free method is applicable, as done in, e.g., [104]. However, the presence of incompletely
solved linear systems is a challenge since they may not be easily extricable from the primal
program (after all, this is what motivates the "whole iteration" approach (3.20)) to then be
used as variable preconditioners within a flexible Krylov method, such as FGMRES, as it is
routinely done for the left fixed-point [97]. Then, if the action of PT

x on a vector is not strictly
linear, i.e. for all u and v

PT
x (u + v) = PT

x (u) + PT
x (v) (3.29)

there is no guarantee that, for example, GMRES will minimize the residual. Therefore, iterative
processes within the adjoint program that do not respect (3.29), need to be converged to much
lower tolerances than that expected for the outer Krylov method. Furthermore, the outer solver
should be restarted to avoid the build-up of numerical error.

Contrary to the right fixed-point approach, Krylov methods evaluate the vector-Jacobian prod-
uct with different vectors in each iteration (e.g., the orthonormal basis built by GMRES).
Therefore, although this makes the solution process more robust with respect to right-hand
side sensitivity, it becomes extremely difficult to initialize the iterative processes within the
adjoint program. To configure it such that it is inherently linear, for example by using a fixed
number of implicit smoothing iterations in lieu of Krylov linear solvers, will almost always re-
quire a reduction of CFL number. Then, to compensate for the weaker preconditioning of the
adjoint problem, a larger subspace size may need to be used to avoid the stagnation of GMRES.
Therefore, it is possible that its direct application to (3.28) will stabilize the problem but not
accelerate it substantially, and for the size of subspace to make it a significant contribution to
memory usage. These aspects are shown for the NACA0012 problem, by comparing two Krylov
approaches with their corresponding fixed-point iterations. In the first of those, GMRES is used
as the outer solver and restarted every 50 iterations, the transposed linear systems are solved to
a tolerance of 10−5 using GMRES (also restarted every 50 iterations). Whereas in the second
the transposed linear systems are smoothed with 20 applications of the ILU(0) preconditioner
with a relaxation factor of 0.7 (an iteration akin to (3.26)). To enable this, the subspace size is
increased to 100 and the CFL number reduced from 1000 to 500. Fig. 3.4 shows the convergence
histories and table 3.3 lists the cost of the different approaches, the adjoint residual plotted is
the L2 norm over all variables (flow and turbulence).

As expected, GMRES improves the convergence rate for both types of fixed-point, however,
applying it to one with inner Krylov methods results in higher computational cost. The stagna-
tion of the Krylov approaches is due to the accumulation of numerical errors, which effectively
causes a loss of linearity. Note in Fig. 3.4 how solving the transposed systems with a direct
LU factorization mitigates this problem, which is also ameliorated by use of double precision
for the linear algebra operations. Note that no operation is "truly" linear in floating point
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Figure 3.4: Comparison of fixed-point (black)
and Krylov (red) methods for the NACA0012
problem, lift objective function.

Method Cost

FP + GMRES(30) 10−7 Init. 12178
FP + 20xILU CFL 500 14800
GMRES(50) + RGMRES(50) 10−5 38759
GMRES(100) + 20xILU CFL 500 6000

Table 3.3: Cost of fixed-point and Krylov
approaches to obtain residuals of 10−3 for the
NACA0012 problem.

arithmetic (especially single precision) due to round-off error. Not being able to separate the
preconditioner from the vector-Jacobian product aggravates this condition, and increases the
importance of scaling all solution variables.

The original objective of applying GMRES to (or instead of) the fixed-point was to improve
their stability, the importance of this argument is made more evident by a more challenging
problem. Namely the high lift configuration of NASA’s common research model (HL-CRM),
which has significant regions of separated flow (see Fig. 3.5a) that complicate the task of
obtaining completely converged primal results. The turbulence model and numerical schemes
are identical to the NACA0012 example. Since in high-lift configuration the drag is mostly
due to pressure forces, there is no noticeable downside in using a centered scheme. Previous
numerical experiments in [48] showed the results to be in good agreement with other CFD codes
for all reference meshes. The coarse reference hybrid mesh (B3-Coarse, see [108]) was used to
study the convergence of the discrete adjoint solver. This mesh has approximately 8.3 million
nodes and 18 million elements. The primal problem can be solved to residuals of 10−7 using
either a quasi-Newton approach with CFL of 25 or a Newton-Krylov approach with CFL of
100, in both cases using GMRES+ILU(0) to approximately solve the linear systems. Fig. 3.5b
is evidence that a converging primal iteration may not yield a converging adjoint fixed-point as
shown by the stagnant curves for CFL of 25. With the quasi-Newton approach, a CFL of 100
results in limit-cycle oscillations, which in the adjoint fixed-point translates to quick divergence
even with significant relaxation (fine dotted line).

To use GMRES to stabilize the fixed point iteration for this problem, the Krylov solvers were
replaced by ILU smoothing. Specifically 30 iterations (as this gave a cost per iteration similar
to the primal problem with CFL of 100) with relaxation factor of 0.3 (which was found to
maximize smoothing), the CFL was then increased (to 250) until the average linear residual
reduction from the 30 iterations was 1 to 2 orders of magnitude. With this setup and a GMRES
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(a) Mach number contours at 35 ft from center-
line.

(b) Comparison of fixed-point (black) and Krylov
(red) methods, lift objective function.

Figure 3.5: Results for the HL-CRM at 8 deg AoA and Mach 0.2, "B3" coarse mesh.

subspace size of 100 iterations, the adjoint residuals for lift and drag across all variables (flow
and turbulence) drop 4 orders of magnitude in 1000 iterations, as shown in Fig. 3.5b. The
adjoint computed in this manner takes approximately 30% of the time needed by the primal
problem.

Note that the application of GMRES to the right preconditioned adjoint system (3.28) still
allows a generic approach without the challenges of managing the initialization of transposed
linear systems. A subspace size of O(100) iterations requires an amount of memory comparable
to the primal problem, which may not be significant for the adjoint problem depending on the
implementation strategy, nevertheless, the flexible variant of GMRES requires twice the storage
and this could be an argument for linear preconditioners, even when they are easy to separate
from the primal fixed-point.

It would be interesting to compare these results directly with FGMRES applied to the adjoint
equations based on the discretization residuals (3.5), preconditioned by either ILU smoothing
or GMRES unrestricted by tight tolerances. The former should be less affected by floating point
issues, the latter could be faster by achieving the same smoothing effect with fewer iterations,
or by supporting higher CFL number. However, for most codes this would require substantial
changes to their architecture.

Finally, in both the NACA0012 and HL-CRM cases the numerical challenges are mostly due to
the turbulence model, in the former it is the first adjoint residual to stagnate, and to diverge
in the latter. This is not to suggest the use of the frozen turbulence assumption (which can be
one of the most damaging simplifications for some optimization methods, see [109]) but rather
that special care may be needed, for example different CFL number or using single precision
linear algebra for the mean flow but not for turbulence.
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3.1.3 Adjoints of complex programs

It is useful to show the applicability of the results from the previous sections to more intricate
solution methods of the primal equations, as this will also begin to address how to obtain vector-
Jacobian products. Consider the segregated solution of mean flow and turbulence equations,
for which one iteration can be represented by the diagram in Fig. 3.6, where the state was
split into x1 and x2 and the operations with Mi are depicted as multiplication by a constant,
this is valid under the assumption of zero residuals but in practice these operations depend
on the state. Circles represent a function, which may be trivial like addition, or complex like
computing the discretization residuals (R).
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Figure 3.6: Schematic representation of the solution of two sets of variables by sequential
quasi-Newton iterations.

The reverse mode of differentiation can be used to evaluate vector-Jacobian products. This
mode of differentiation consists in traversing the chain rule in reverse, obtaining for each opera-
tion the derivative of the final output of the program with respect to the inputs of the operation.
For completeness, the forward mode of differentiation yields for each operation the derivative
of its outputs with respect to the inputs of the program. The reverse mode derivatives of some
variable y are commonly represented as ȳ. There are known expressions to obtain them for
matrix operations (see [102]), while for a general function y = f(x) it is x̄ = ȳ fx. The initial
statement (regarding Jacobian-vector products) is simple to prove by applying this definition
to the function g(x) = λ · f(x) starting with ḡ = 1.
For the example of Fig. 3.6, splitting also the adjoint vector into λ1 and λ2 and setting (or seed-
ing) x̄∗i = λT

i to evaluate the product with Px, the reverse mode derivatives at the intermediate
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steps are
y2 = λT

2 ,

r2 = y2M
−1
2 ,

y1 = λT
1 + r2 ∂x1R2,

r1 = y1M
−1
1 .

(3.30)

Collecting the results at the nodes for x1 and x2, the product x = λTPx is obtained as

x1 = y1 + r1 ∂x1R1,

x2 = y2 + r2 ∂x2R2 + r1 ∂x2R1,
(3.31)

which with some algebra can be presented in the right-preconditioned form

xT =

[
∂x1R1 ∂x2R1

∂x1R2 ∂x2R2

]T [
M1 0

−∂x1R2 M2

]−T

λ. (3.32)

This approach of splitting the state and adjoint vectors according to the high-level structure
of the primal program, can be recursively applied to different time instances, different solvers
in a multi-physics problem, and different variables within weakly coupled solvers. With such
a partitioned view of the problem it is relatively simple to suggest adjoint solution methods.
For example, the aforementioned reverse time marching, or block Gauss-Seidel strategies for
multi-physics (see e.g. [24]).

3.1.4 Trade-off between performance and generality

Notwithstanding the linear solver challenges, the "solution residual" derivation and subsequent
analysis of what high-level operations are required to evaluate PT

x λ̂, suggests solutions for
how to precondition the adjoint equation (3.5) to allow its solution by iterative methods, and
more importantly, it shows what aspects of the primal program P can be tuned to improve
the convergence of the adjoint fixed-point approach. This type of analysis is an important
tool because direct application of general linear preconditioners (e.g. ILU(n)) to the Jacobian
Rx is not trivial due to its high condition number, there are reports [96] of up to ILU(4)
being used, with one and two levels of fill being common [110]. Moreover, general linear
preconditioners may pose a greater scalability challenge on modern (heterogeneous) parallel
machines than that of transposing the primal solution method. Nevertheless, the linear solver
aspects mentioned before are disadvantages of the right fixed-point approach compared with
its left counterpart, which offers more flexibility and control over the solution methods when a
discretization residual is readily available, and consequently better performance. In broadening
the scope of application to any primal fixed-point, essentially any solver, the "whole iteration"
strategy trades performance for generality.
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Its advantage is its applicability when a discretization residual cannot be readily identified. For
example, the SIMPLE scheme (and others like it) does not have a single equation like (3.22) for
any of its variables (velocities and pressure) all of them are subject to one or more corrections
over the course of one iteration. Then, to derive a traditional discrete adjoint equation (3.5)
that is consistent with the primal solution method, authors [111, 110] augment the state and
residual vectors beyond physical variables to include the Rhie and Chow interpolated fluxes,
and use either general preconditioners [110] or ones based on the primal method [111].
As demonstrated above, in the whole iteration approach the preconditioning of the adjoint
equations (3.5) is embedded in the vector-Jacobian product λTPx, thereby allowing a generic
treatment of any type of solver. This ability for top-level handling has later been used to build
a multiphysics adjoint solver within the SU2 framework [101]. This is paid for with additional
care and cost, needed to ensure that the preconditioning is effective, efficient, and compatible
with stabilization and acceleration techniques. This multiphysics framework is based on the
partitioning strategy introduced in the previous subsection. Later in this chapter, it will be
described in more detail after the following discussion on implementation strategies.

3.2 Implementation aspects

Regardless of the adjoint solution method (fixed-point, Krylov, etc.), vector-Jacobian (or
Jacobian-transposed-vector) products are central to any implementation. In fact, in the "whole
iteration" approach, the solution method is a vector-Jacobian product. Given that any dis-
crete adjoint implementation represents a compromise between performance, maintainability,
third-party compatibility, knowledge level for new developers, etc. the techniques to compute
those products, described in this section, should be seen as complementary. Furthermore, this
discussion is applicable even for self-adjoint problems where an exact Jacobian with respect to
the state is available, since differentiating the residual with respect to the parameters may not
be trivial.

3.2.1 Manual differentiation

The reverse mode of differentiation described in subsection 3.1.3 can be applied recursively
to smaller and smaller components of a function or program, to obtain highly optimized (and
problem-specific) functions to compute vector-Jacobian products in a matrix-free manner. This
technique has the potential for highest performance and lowest memory usage, at the expense
of higher maintenance costs. One example of its application is manually replacing large linear
algebra operations (such as solving linear systems) by their adjoint counterparts, as done in the
previous sections. For such operations there is no alternative if the resulting code is expected
to be efficient.
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As a lower level example consider the computation of spatial gradients by the Green-Gauss
method, which for a median-dual discretization can be written as

Gi =
1

Ωi

∑
(j,k)

s(i, j)Ak
1

2
(φi + φj), (3.33)

where boundary contributions are omitted for simplicity. The summation for each volume Ω

is over its direct neighboring pairs of nodes j and edges k. The sign function s changes the
direction of the normal vector A as needed, the common convention is for the normal to be
directed from i to j if i < j. The gradient of the solution variable φ is denoted by G to avoid
the potentially confusing notation of reverse mode derivatives of spatial derivatives. Recalling
that for y = f(x) it is x̄ = ȳ fx, and applying it to (3.33) yields for each of the inputs

φ̄i = Gi ·
1

2Ωi

∑
(j,k)

s(i, j)Ak,

φ̄j = Gi ·
1

2Ωi

s(i, j)Ak,

Ω̄i = −Gi ·Gi
1

Ωi

,

Ak = Gi
1

2Ωi

s(i, j)(φi + φj).

(3.34)

Collecting the contributions for each node and each edge over the entire domain, and noting
that s(j, i) = −s(i, j), results in the expressions

φ̄i =
1

2

∑
(j,k)

s(i, j)Ak ·
(

1

Ωi

Gi −
1

Ωj

Gj

)
,

Ak =
1

2
(φi + φj)

(
1

Ωi

Gi −
1

Ωj

Gj

)
,

Ω̄i = −Gi ·Gi
1

Ωi

.

(3.35)

Note that the only additional memory required by the hand-differentiated implementation is
to store the reverse mode derivatives Moreover, under the assumption that the solution is
converged, the same values of φ and G can be used to compute reverse mode derivatives in all
calls to the gradient routine within the program (or iteration). Furthermore, the final access
pattern to memory was not changed, initial naive application of the differentiation rule resulted
in a scattering of contributions to all inputs of (3.33), however, manually collecting the terms
restored the embarrassingly parallel gather pattern of the primal algorithm. This second step
required domain knowledge, namely that each edge connects two nodes, consequently, the sparse
pattern associated with the neighbor matrix is symmetric.
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3.2.2 Algorithmic differentiation

Algorithmic differentiation (AD) (also known as automatic differentiation, although the accu-
racy of this designation depends on context) refers to the software implementation of forward or
reverse-mode differentiation as described earlier. The objective of this section is not to provide
an exhaustive description of AD techniques, which can be sought in [112], but rather to discuss
the implications of using them to build discrete adjoint solvers. AD is commonly implemented
either via source transformation or operator overloading.

Source transformation

Source transformation AD tools create new code based on the primal program. In a way
these tools transform code like that of (3.33) into (3.34), in general such tools lack the domain
knowledge required to obtain (3.35). Domain specific languages (DSL) can provide optimized
implementations for certain families of operations, for example adjoint stencil operations which
still perform gather operations and thus are thread-safe like their primal counterparts. The
programmer can annotate the primal code to inform the source transformation tool, for example,
that in the Green-Gauss example φ and G will not change and will still be available during
the reverse pass, this allows the tool not to store a copy of those variables. Nevertheless, it is
common for transformed sources to require manual tuning to remove this kind of store/restore
instructions. In general, source transformation tools do not support all the features of C++, or
to do so they need to borrow operator-overloading techniques. Thus they are most suitable for
C and Fortran codes, notwithstanding, it is not unreasonable to use such tools to help create
optimized reverse-mode code for specific functions of a C++ program.

Operator overloading

Operator overloading AD consists in the application of x̄ = ȳfx to all unary and binary op-
erations in the code (which are what C++ allows programmers to overload). To do this, an
AD type that replaces the usual computation type (float or double) is defined and all relevant
math functions and operators are overloaded, such that for each elementary function its Ja-
cobian (fx) can be computed. To allow the reverse mode derivatives to be computed without
generating new code, a representation of the the primal computations needs to be created by
storing enough information about them in a tape during a recording pass of the primal code.
There are multiple options for what information to store (see e.g. [34]), that discussion is out-
side the scope of this work and as will be explained, its does not matter for the final adjoint
implementation which to be efficient must make heavy use of higher level features of the AD
tool. The main downside of this technique compared with source transformation is that it will
use more memory, whereas the latter will encode a loop as a reverse loop in the adjoint code
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at compile-time, the former will unroll the entire loop into the tape at runtime. The main ad-
vantage is that in general a first version of an adjoint solver can be obtained in less time, even
if inefficient, such a solver can guide the development of highly tuned hand-differentiated codes.

Three features are fundamental to make operator overloading efficient for HPC-class codes,
namely expression templates, external function handling, and preaccumulation. Expression
templates allow data to be stored in the tape per assignment rather than per statement, that
is, a complex statement such as y = cos(a)∗

√
a− b(c− d) generates one tape entry rather than

one for each unary/binary operation, this reduces both memory usage and tape interpretation
time. External function handling allows the programmer to provide reverse-mode code for cer-
tain key areas, for example linear solvers, and for external functions that the AD tool cannot
access. Finally, preaccumulation consists in converting sections of the tape into small Jacobians
during the recording phase, again this reduces memory usage and interpretation time, but at
the expense of longer recording times since the preaccumulated sections need to be evaluated
a number of times to generate a Jacobian (typically the minimum between number of inputs
and number of outputs, i.e. forward and reverse mode evaluation respectively). Preaccumula-
tion requires the programmer to define what regions and variables it should be used on, and
this can be a common source of errors when new developers add features to the primal code
without being aware of the implications to adjoint solvers. Logically this technique is most
effective for compute-dense regions of code. Therefore, choosing the preaccumulation scope
to take advantage of locality is important, for example, capturing several calls of a function
where some inputs or outputs are the same. To further reduce memory usage it is important to
fuse loops, recompute certain quantities rather than storing them, and in the limit re-organize
certain computations for the recording phase.

To illustrate the last point consider a finite element elasticity problem on a hexahedral grid.
Typically the residual and stiffness matrix are computed by looping over elements gathering
data from its nodes (8 in this case) and then scattering contributions to those nodes. With
3 state variables (displacements) and 3 parameters (coordinates) per node, and at least 2
parameters per element (Young’s modulus and Poisson’s ratio), more if other material properties
are relevant. The size of the preaccumulated Jacobian is (8(3 + 3) + 2)(8 × 3) = 1200 per
element. Alternatively, the complete residual of each node could be evaluated by looping over
the 8 elements that contribute to it (discarding the contributions to other nodes), with this
strategy the size of the Jacobian is (27(3 + 3) + 8× 2)(1× 3) = 534 per node. Since there are
approximately as many nodes as there are elements in a hexahedral grid, the second approach is
approximately 2 times more efficient in terms of memory use. Moreover, it is not 8 times more
computationally expensive since the section of the tape would be evaluated fewer times. Even
if the primal code is structured in a way that allows this type of re-organization, its impact
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to the readability and maintainability of the code is high. The conclusion of this analysis
is that excluding the use of external functions, operator overloading AD requires at least as
much memory as storing the entire Jacobian of an operation. Note that for finite volume
discretizations a similar re organization would not be beneficial, since looping over edges is
already equivalent to looping over the neighbors of each node, and only one quantity (the flux)
is computed per edge. It is, however, very beneficial to fuse all loops over edges that contribute
to their fluxes, and all loops over nodes that contribute to their residuals.

Table 3.4 shows a realistic assessment of how much memory is used by the discrete adjoint
flow solver in SU2 relative to the primal flow solver2 for a practical RANS problem (SA model,
MUSCL reconstruction, Roe flux, steady state Euler implicit without multigrid). For reference,
for this type of problem the primal solver requires approximately 4GB and 2GB per 106

elements on the hexahedral and hybrid meshes respectively. The relative memory use is better
for Euler or Navier-Stokes problems since gradients are only computed once per iteration.
It is much worse, however, if a multigrid solution is differentiated, since currently multiple
smoothing iterations are added to the tape. The Jacobian with respect to the parameters
(mesh coordinates) uses more memory due to the computation of the geometric properties of
the dual volumes. It would be possible to bring memory use down to approximately six times
that of the primal solver by manually differentiating gradients and geometric properties, but
thus far that was not deemed necessary.

Mesh type Jacobian Memory factor

Hexahedral State (Px) 7.17
Hexahedral Parameters (Pα) 10.6
Hybrid State (Px) 7.72
Hybrid Parameters (Pα) 10.2

Table 3.4: Memory used by the SU2 discrete adjoint solver relative to primal, typical RANS
problem.

Typically the use of operator overloading involves replacing the native floating-point type by the
AD type in all active regions of the code, such that any variable can easily be considered part of
the state or parameters. In the context of typical unstructured solvers this has implications on
the optimizability of the code, for example vectorization becomes difficult (note that a reverse-
mode AD type is a real-integer pair, therefore, in an array of these types the real parts are
not contiguous in memory). Even if external functions are used, they will either operate on a
type with twice the size, or require primal and reverse-mode values to be extracted from the
AD type into temporary variables, which may be unavoidable if the external function is "truly
external", such as a call to a BLAS library. Note that in different contexts it may be possible
to define matrix-AD types for which the real parts are contiguous in memory. Notwithstanding

2after the improvements made by the author, see chapter 4
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these challenges, one interpretation of the tape may be faster than one residual evaluation of the
primal code, it all depends on how much computation can be condensed into the preaccumulated
Jacobians. Table 3.5 shows the time taken per explicit iteration of the adjoint solver relative to
the primal. For Navier-Stokes problems the adjoint solver is at a lesser disadvantage as more
computations are included in the same preaccumulation scope (with a similar number of inputs
and outputs). Reducing memory usage would reduce tape interpretation time proportionally,
however, since implicit solution methods are more common, and it is generally possible to
use higher CFL for adjoint problems, the time disadvantage is not as important as the higher
memory usage

Equations Time factor

Euler 4.2
Navier-Stokes 3.4

Table 3.5: Time per explicit iteration of the SU2 discrete adjoint flow solver relative to primal.

There is yet hope for operator overloading -based discrete adjoint solvers that are nearly as
efficient, in both compute and storage, as the primal solvers, but less so for their development
being automatic. However, note that the discussion in this section was focused on the 10%
of a code that is responsible for 90% of its runtime. Being able to immediately differentiate
the other 90% of code (e.g. boundary conditions, fluid models) is an advantage of applying
operator overloading AD to an entire code, especially one like SU2 that aims to be a generic
framework open for anyone to develop.

Other considerations

There are two aspects of AD, that although not directly relevant for vector-Jacobian prod-
ucts, are relevant to the implementation of matrix-based strategies (i.e. where the Jacobian is
obtained).

First, the forward (or tangent) mode of AD, which cannot be used directly to evaluate vector-
Jacobian products (unless the Jacobian is symmetric). It is tape-less even if implemented via
operator overloading, in which case the replacement type is a real-real pair. Derivatives are
evaluated immediately without the need for recording the primal function, thus the reduced
optimizability of the code is not offset by the potential savings of preaccumulating some regions.
With the source transformation approach there is no impact on optimizability. Parallelism is
not affected by either approach, since there is no reversal of the flow of information.

Second, vector mode, or multi directional forward mode, or multi objective reverse mode AD,
which consists in propagating multiple derivatives simultaneously. It is equivalent to solving
equations (3.3) or (3.5) for multiple right-hand-sides at once, which can reduce the cost per
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right-hand-side by increasing the FLOP-to-byte ratio of bandwidth-limited operations, but for
that to happen sparse linear solvers must operate on a matrix right-hand-side (rather than on
one column at a time). Furthermore, vector mode provides a naturally vectorizable dimension
to all computations, even with operator overloading (the replacement type becomes a real-
array pair), and this may, for example, tip the scale further towards direct differentiation of
time domain problems (as mentioned earlier the adjoint of such problems may be more compute
intensive if it is necessary to recompute states to save storage).

3.2.3 Matrix-based methods

There are some arguments for instantiating the Jacobian of a discretization residual instead of
directly obtaining its action on a vector in a matrix-free manner. As detailed in the previous
section, for a given operation this would not use more storage than operator overloading AD
with preaccumulation. The Jacobian can be stored in a format that allows better parallelization
and optimization of the matrix-vector product than is possible with source transformation. It
may be feasible to obtain the Jacobian without using AD, which may allow adjoint solvers to
be developed even in cases where AD is difficult to apply, for example closed sources, external
libraries, complex code bases (for example [113, 110]), or highly optimized ones, to name a
few. The sledgehammer approach of solving equation (3.5) via a direct sparse solver becomes
available.
One possible way of generating rows of the Jacobian is the aforementioned re-organization of
routines into a high level function that computes the residual for a single solution location
(node or cell). This function can be differentiated using either AD (of any kind), the complex
step method, or finite differences (which allows opaque routines to be differentiated). This local
residual function is natural for finite difference discretizations, it is relatively straightforward
to create for finite element methods, but complex to define for unstructured finite volume
methods. In general, the residual of a control volume (dual or not) depends on neighbors of
neighbors (NoN) due to the way quantities such as gradients, limiters, laplacians, sensors, etc.
are computed. To some extent the discretization is not local, as it involves multiple loops over
the entire domain to compute these variables. It is possible to reconstruct, for each volume,
the part of the mesh that influences its residual so that the normal solver routines can be
applied locally, this is a complex task. Consider for example that in the context of domain
decomposition some NoN are usually not available locally. Nevertheless, this approach results
in an embarrassingly parallel way of generating the Jacobian, it was used for example in [114]
and by the author in the simple adjoint solver mentioned in subsection 3.1.2.
Alternatively, since the Jacobian is sparse (and its graph is known) it is possible to perturb (or
seed in case AD is used) multiple entries of the entire solution vector simultaneously to obtain
multiple columns of the Jacobian (see [113, 115, 110]). For completeness, using the reverse mode
would generate rows, but if efficient reverse mode routines were available this approach would
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be redundant. Determining which locations can be perturbed simultaneously is a graph coloring
problem, any two locations that are NoN to each other must have different colors. Therefore,
the minimum number of colors is equal to the maximum number of NoN in the mesh, and the
number of times the residual function needs to be evaluated is equal to the number of colors
multiplied by the number of degrees of freedom per location divided by the AD vector length
(if vector mode is used). Note that special care is still needed for domain decomposition as the
perturbations will cross MPI boundaries. For structured grids efficient analytical colorings can
be devised that allow the computation of the Jacobian in O(10) to O(100) time (relative to
one residual evaluation) [115], greedy coloring can produce acceptable results for unstructured
meshes where the number of NoN is small [113]. However, for polyhedral meshes (e.g. dual
volumes of a hybrid mesh) the number of NoN can be O(100) and 200 colors can easily be
required, which makes this approach almost one order of magnitude more expensive for this
type of discretization. This can still be acceptable for pressure-based incompressible solvers
whose residuals are inexpensive to evaluate compared to a complete iteration. The analysis
for the Jacobian with respect to mesh coordinates (Rα) is similar but must account for what
geometric properties are used to compute the gradients at the direct neighbors, and how those
properties depend on the mesh coordinates.
These two approaches can also be used in a matrix-free manner where the rows or columns are
immediately used in the product, which can be especially important for the geometric Jacobian
which is used less often, and in general is denser.

3.2.4 Choice of parameters

In the preceding sections it was mentioned in passing that the adjoint parameters (α) are
typically the mesh coordinates. This is a common choice for shape optimization (and a require-
ment for goal oriented mesh adaptation) but logically other applications require other variables,
for example, global model constants for model calibration, or local densities for density-based
topology optimization. What makes mesh coordinates a common choice is that this allows a
modular approach, whereby any type of differentiable shape parameterization method (S) can
use those sensitivities to complete the chain rule and obtain the derivatives with respect to the
design parameters (β) that are actually used in the optimization, that is,

dβJ = dαJ dβS. (3.36)

Here, what is meant by choice of parameters is not the type of parameterization but rather
the adjoint parameters, or, in other words, where the design and simulation pipeline (the chain
rule) is split. Usually the computational cost of the discrete adjoint method does not depend
strongly on the number of parameters, however, the storage requirements might depending on
the implementation strategy. This is shown by the SU2 measurements of table 3.4, where the
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geometric sensitivities use 30 to 50% more memory. Similar issues arise for topology optimiza-
tion where local densities are typically the result of a spatial filtering operation. When this
type of pre-processing operation is differentiated using operator overloading AD, peak memory
usage may be reduced by including them in the parameterization S rather than in the program
P . Furthermore, when the strategies of section 3.2.3 are used, computational cost may also
become a concern since Jacobians with respect to mesh coordinates are denser and more ex-
pensive to compute. Then, depending on the number of design parameters (β) it may become
less expensive to differentiate the parameterization with a forward method. Note that for some
types of problem, for example fluid structure interaction, the computation of geometric prop-
erties (areas and volumes) is part of the state Jacobian since the deformed mesh coordinates
depend on the state variables.

3.3 Multiphysics adjoints in SU2

Having described general trade-offs between different solution approaches and implementation
strategies, the case of SU2 can now be discussed in more detail. The current vision for SU2 is for
it to become a framework for multiphysics simulation and optimization. This term, framework,
can sometimes be used with too much liberty. A framework imposes a certain way, i.e. a
flow of control, to perform a general task, e.g. computing adjoints. It then allows its users
to extend, or specialize, its functionality, by allowing them to override certain key aspects (for
example, what are the parameters of the problem). An even more ambitious goal of SU2, is
for this extension process to be "discrete-adjoint-oblivious", that is, for new functionality to
be differentiated with no additional effort. To achieve these goals, operator overloading AD is
used to implement the "whole iteration" solution approach. In a multiphysics context, where
there are time iterations, coupling iterations (across different physics), and inner iterations (for
each physics), it is important to specify to which iteration AD is applied. Because operator
overloading AD is used, the only cost-efficient solution is to record inner iterations, one for
each physical domain, since otherwise the memory usage would be too high (due to multiple
iterations being added to the tape). In doing so, the solution process is no longer a "simple"
application of AD, it becomes necessary to orchestrate these recordings into a multiphysics
(and possibly also unsteady) adjoint solution method.

It is worth noting that this description, in terms of coupling and inner iterations, is typical of
partitioned solution methods, and thus not appropriate for monolithic solvers. In fact, zone
is a more appropriate designation, and better software abstraction, than physics. A zone is a
physical region, which may have multiple physics (i.e. solvers) associated. The solvers within a
zone, are typically tightly coupled and exchange information over the entire domain. Whereas
zones, exchange information across shared boundaries (although nothing precludes them from
overlapping). Before deriving a solution method for general multizone problems, it is worth
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considering a specific multiphysics example.

3.3.1 Earlier work on fluid-structure-interaction

Earlier work by Sanchez et al.[24], followed a domain-specific strategy for FSI, analogous to
that of Maute et al.[116] (based on the discretization residuals of the three-field problem, i.e.
flow, structural, and mesh deformation), to obtain an AD-based discrete adjoint solver for
coupled FSI problems. Their derivation is based on a global fixed-point iteration, obtained by
concatenating the inner iterations of the three fields. Contrary to single zone problems, this
global fixed-point is not the solution method of the primal problem, but rather a convenient
manipulation used to derive the coupled adjoint equations. That is, this fixed-point is used as
the equality constraints in (3.1). In particular,

R = P(x,α)− x =

 F(w, z,α)

S(u,w, z,α)

M(u,α)

−
w

u

z

 = 0, (3.37)

where F ,S,M and w,u, z are the fluid, structural, and mesh iterations and state variables,
respectively. Recalling the adjoint fixed-point (3.20)
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but now using the definition of residual based on the three fields, results in
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where the over-bar denotes adjoint variables. This is not yet the complete coupled solution
method. For that, and in analogy with the primal problem, inner iterations are introduced for
the fluid and structural problems (mesh deformation is assumed to be explicit). Which results
in a segregated solution method (also known as lagged-coupled-adjoint [117]), given by

w∗ = F(w,STwu)

z∗ = M(w∗,u) = FTz w∗ + STz u

u∗ = S(u,MT
uz
∗)

(3.39)

where * denotes new values after all inner iterations. Also in analogy with primal problems,
the combined effect of these iterations is a solver, denoted here by F,M, and S, for each of
the three fields. Note that it is possible to apply a Krylov method to (3.38), as it was shown
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for single zone problems, and as it has been done for approaches based on the discretization
residuals (e.g. [5]). However, in the "whole iteration" context, this may not be efficient for
some mesh deformation strategies. In particular, the solid elasticity analogy, which involves the
solution of a linear system, that is much more expensive than one fluid or structural iteration.
Doing so, with the accuracy required to ensure the linearity of the vector-Jacobian product,
would not be cost-efficient. Furthermore, even if a cheaper deformation approach were used,
the structural solver would eventually become the bottleneck. Indeed, each of the fields has
very different convergence rates, one mesh iteration, a few structural iterations, tens of fluid
iterations, and this suits the segregated strategy well. Note, however, that this issue would be
less severe if flexible preconditioning were possible. Checkpointing is another aspect that makes
the segregated strategy more adequate. As the previous section showed, the major challenge
of operator overloading AD is memory usage. The segregated approach allows each field to
be recorded independently, once per coupling iteration, thereby reducing peak memory usage.
However, this is only efficient if the recording cost is amortized over a number of inner iterations.

The downside of this type of solution method, is the potential lack of stability for strongly
nonlinear problems. Solving this by relaxing the update of cross terms (i.e. products with
off-diagonal blocks of the Jacobian) results in slow convergence. A better alternative, is to use
stronger coupling methods [36] which are common for primal simulations [59]. Typically, such
methods determine the interface variables of the problem, since these define the solution of all
fields. To obtain the interface problem for (3.39), note that with sufficient convergence of the
adjoint solvers, it can be simplified to

u = S(MT
uz)

w = F(STwu)

z = M(w,u).

(3.40)

Moreover, note that by the construction ofM, it isMu = 0 for any structural node that is not
part of the interface (Γ). Therefore, the adjoint interface displacements are identified as

MT
uz =

(
0

uΓ

)
, (3.41)

which allows defining an adjoint interface residual, given by

RΓ(uΓ) = M ◦ F ◦ S(uΓ)− uΓ, (3.42)

to which quasi-Newton methods, such as IQN-ILS [36], can be applied to determine uΓ and
consequently λ. This strategy was used by the author in [118].



56 Chapter 3. Discrete Adjoint Method

This approach is not as general as it is desired, since its implementation requires domain-specific
knowledge to evaluate the different cross terms in an efficient way (especiallyMu). However,
at the time it was implemented, the AD tool did not allow the more general approach that is
described next.

3.3.2 General method for multizone problems

The desired (for generality) partitioning of the adjoint problem by zones, rather than by fields,
makes the three-field FSI approach inadequate, since the mesh deformation and fluid problem
are part of the same zone. In other words, the mesh coordinates become dependent variables
(of the structural displacements) and their adjoints are no longer handled explicitly. Then, the
fluid and structural fixed points are written as

w = F(w,u)

u = S(u,w)
. (3.43)

However, for the reasons already mentioned, a combined recording of the fluid iteration and
mesh deformation would be inefficient to evaluate. Similarly, the checkpointing approach is
not adequate for problems where the number of inner iterations is small, which is the case of
conjugate heat transfer (CHT) problems. Instead, it is more efficient to record all iterations.
This requires either multiple tapes, or for the AD tool to allow partial evaluation of its global
tape. Furthermore, in the latter case, due to the fixed-point nature of the primal iterations
(which override the state variables), a custom way of referring to their input and output adjoint
values is needed. These were the insights by Burghardt [101], which made the general approach
possible. It consists of identifying the existence of cross terms, programmatically, from the
interfaces defined by users of the code. The sum of cross terms is combined with the objective
function gradient, for each zone, to form the right-hand-side for the inner iterations (with the
diagonal blocks of the Jacobian). For example, for an FSI problem with two zones this process
is equivalent to

w = (JT
w + ST

wu) + FT
ww

u = (JT
u + FT

u w) + ST
u u
. (3.44)

The combined recording is organized, by sections, in a manner that allows evaluating diagonal
terms separately from cross-terms (where mesh deformation is included). The first section is
used to register all state variables, and desired parameters, as inputs of the global iteration.
The second section contains the dependencies of all zones, these are relatively simple (but
crucial) orchestrations of pre- and post-processing operations within each zone, that capture
the cyclic nature of iterative methods. For example, eddy viscosity is needed at the start
of a RANS iteration, however, this quantity results from the post-processing of the turbulence
solver, which in turn, requires some quantities from the pre-processing of the flow solver, namely
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the primitive variables and their gradients. Without dependencies, it would not be possible to
record just one iteration. This is one area of the adjoint framework that requires modification
when a new solver is added. The third section contains the objective function, this also
requires transferring data across all interfaces and deforming the mesh for zones that receive
displacements, the dependencies of such zones need to be re-evaluated. To evaluate the gradient
of the objective function the recording is stopped here, otherwise the third section is empty.
The fourth section contains the transfer of data. Finally, one section per zone is dedicated to
the respective primal iteration and to register the state variables as outputs.

To evaluate the product of a vector with a diagonal term, the adjoints of the outputs are first
seeded with the vector, then, the corresponding section of the tape is evaluated, skipping the
transfer of data, but evaluating the dependencies. The result of the product is then read from
the adjoints of the inputs. To be able to extract also the cross terms for which this zone is
responsible (by reading the adjoints of the inputs of other zones), the section for the transfer of
data (and mesh deformation) is not skipped. To obtain the gradient of the objective function,
or to evaluate the derivatives with respect to the parameters, all the relevant output adjoints
are seeded and the entire tape is evaluated.

Because all domain-specific knowledge is encapsulated in abstractions, such as dependencies,
solvers, transfer of data, etc., the framework can be used for an arbitrary number of zones
(and thus physics). The advantage of a general strategy becomes more evident when consider-
ing aerothermoelasticity problems, where domain-specific approaches have required authors to
contend with 9× 9 block Jacobians [7].

The main contributions of the author to this framework (full details in [101]) were: a strategy
to manage cross terms such that they can be updated with relaxation and in a Gauss-Seidel
manner (rather than Jacobi, i.e. only after all zones are iterated); the use of GMRES within
inner iterations; general tuning for specific FSI aspects; and refactoring the transfer strategy
to allow overlapping zones, which allows combined FSI and CHT simulations.

Interface methods are not used at the moment, as the solution method described above has
(thus far) proved more stable than the FSI-specific approach 3. A generic way to convert the
multizone iteration into an interface problem, would be to consider the cross terms of the last
zone as the interface variables. This would require a programmatic way to identify interface
indices (i.e. a way of inferring the sparsity pattern of each cross term), which preferably would
not need domain-specific knowledge. A further challenge for such methods, in a multizone
context, is to scale the different terms appropriately to avoid numerical issues.

The combined recording strategy does raise memory usage issues. In particular, recording the
mesh deformation operation requires approximately as much storage as a typical RANS fluid

3The reason for this is unknown, both approaches were verified, and to some extent are equivalent. Insofar
as it is simpler, the current implementation is less likely to be at fault.
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problem, which would make the framework impractical even for medium scale problems. There-
fore, currently this operation is not accurately differentiated with respect to the unreformed
mesh coordinates. Instead, the stiffness matrix of the mesh deformation problem is assumed
to be constant. Although this does not affect the adjoint solution, it nevertheless introduces
errors in the shape sensitivities of problems with large deformations.

Numerical example

To verify the shape sensitivities for FSI problems, the simulation of a flexible wing at low Mach
number (0.6) and 4 degrees angle-of-attack (AoA) is considered. The wing geometry shown
in Fig. 3.7, is generated by lofting two symmetric 4-digit NACA profiles. The root profile has
0.25m chord and 9% thickness, whereas the tip has 0.175m chord and 7.2% thickness. The wing
span is 1m, with the 25% chord-line swept back 5 degrees, and a linear twist distribution of
-3 degrees to prevent static divergence. The wing structure is approximated as a neo-Hookean
hyper-elastic solid, with elasticity modulus of 7.5GPa and Poisson’s ratio of 0.35 With these
properties the vertical displacement of the wing tip is approximately 20% of chord (see Fig. 3.8).
On the fluid side, air at standard temperature and pressure is considered. Both fluid and struc-
tural grids are composed mostly of hexahedra, the former having 832 000 nodes and the latter
174 000 nodes. Although the fluid grid is not sufficiently fine for detailed flow field analysis,
since y+ ≈ 5 and Menter’s SST turbulence model is used without wall functions (which at the
time of writing were not fully implemented in SU2), it is nevertheless adequate for verification
of discrete adjoint sensitivities (whose accuracy is not mesh dependant). Convective fluxes are
computed with a second order Roe scheme, the gradients are computed via the Green-Gauss
theorem, and the MUSCL reconstruction of flow variables is limited by the Venkatakrishnan
and Wang’s limiter.

The free-form-deformation (FFD) box shown in Fig. 3.7 has 98 control points, but instead of
verifying derivatives for each point (and each Cartesian coordinate), stretch (acting on chord)
and translation variables were defined for each spanwise section of FFD points. These 14
variables will be referred to as S0−6 and T0−6 respectively (starting the numbering at the root),
moreover their values are normalized by 20% of root chord (0.05m). The gradients of drag
coefficient (Cd) and elastic energy (or compliance) were verified, these were chosen because the
first is fluid oriented, whereas the second is mostly structural. The values of these functions
are also normalized (by 0.01 and 75 J respectively) which leaves both gradients dimensionless
and of comparable magnitudes.

A suitable finite difference step size was determined by conducting a convergence study, starting
with a step size of 0.05 and halving it each time, to obtain second order central approximations
to the gradients. At step sizes below 0.0125, the approximations start to diverge due to the
typical limitations of finite differences, in particular, the variation of the functions approach the
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Figure 3.7: Wing geometry and free-form-
deformation box, viewed from the wing tip
and the top.

Figure 3.8: Deformed configuration of the
wing and pressure coefficient contours.

accuracy to within which the primal problem can be converged (≈ 10−6 change over FSI iter-
ations). Therefore, gradients obtained with step size of 0.025, were considered for comparison
with the discrete adjoint based derivatives. The error associated with the approximation, used
to compute lower and upper confidence bounds, was estimated by taking the average plus three
standard deviations of the differences between second and fourth order central approximations,
across all variables (S0−6, T0−6). The fourth order values were computed by considering also
the function values obtained at ±0.05. The results for drag and elastic energy are plotted in
Fig. 3.9 and Fig. 3.10, respectively.

Figure 3.9: Absolute value of drag sensitivi-
ties, from the adjoint solver, and finite differ-
ence error bounds.

Figure 3.10: Absolute value of elastic energy
sensitivities, from the adjoint solver, and fi-
nite difference error bounds.

The agreement between finite difference approximations, and adjoint sensitivities of drag, is
better for the translation variables (T0−6). To some extent this was expected due to the larger
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magnitude of those derivatives, and the way those variables are constructed from the FFD
control points. Note that a translation variable moves all the points in a section by an equal
amount, whereas a stretch variable, moves points away from the centerline of the FFD box
(proportionally to their distance to this line). The overall agreement is also better for the elastic
energy function, which was again expected, due to the strong dependence of this function on
pressure and structural deformation (i.e. almost directly on the state variables) whereas drag
at subsonic speed depends mostly on viscous effects (and therefore on gradients of the state
variables).

Since it was not possible to obtain derivative approximations with a small-enough step size (the
one used is 2.5% of the plausible range for use in optimization), the discrepancies cannot be
attributed exclusively to the memory-saving approximations, and may be due in part to finite
difference errors. Running this adjoint FSI problem requires 113GB of memory, or approxi-
mately 4 times the memory required to run the primal simulation. Note, however, that while
a multigrid method was used for the primal solution, it was not used for the adjoint solution,
since that would roughly double the memory footprint of the fluid problem, which would in-
crease the adjoint-to-primal memory ratio to ≈ 6. Notwithstanding not using multi-grid, the
adjoint solution takes approximately the same time as the primal, i.e. ≈ 15 minutes running
on four Intel Xeon E5-2650v4 CPU (48 cores in total).

Extension to unsteady problems

For completeness, it is worth discussing the extension of the general framework to unsteady
problems (without this capability, the "general" designation would be inadequate). This has
been an active area of research at Imperial and of SU2 development [119], but it is not an
integral part of this work. Nevertheless, to obtain an unsteady adjoint method, it is convenient
to consider the state, and adjoint variables, as the concatenation of all time iterations, that is

x =


x0

...
xN

 ,

where superscripts denote the time iteration. Using this definition in the adjoint fixed-point
equations (3.20), and noting that in most time marching methods the current solution depends
on one or two prior time iterations, results in
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λ0

...
λN

 =


JT
x0

...
JT
xN

+



P0
x0

. . . 0

P ixi−2 P ixi−1 P ixi
. . .

0 PNxN−2 PNxN−1 PNxN



T
λ0

...
λN

 , (3.45)

where the Jacobian is a block lower banded matrix. It follows, that the adjoint problem can be
solved by backwards time marching, where the adjoint variables for a particular adjoint-time
iteration, i, are given by

λi = JT
xi + (P i+2

xi
)Tλi+2 + (P i+1

xi
)Tλi+1 + (P ixi)Tλi. (3.46)

Note that the vector-Jacobian products at previous adjoint-time iterations (i + 2 and i +

1), are known from those iterations, and simply combined with the gradient of the objective
function, to obtain the right-hand-side for the current iteration. The question, therefore, is
what modifications, if any, are required to make the multizone strategy applicable. In other
words, in what conditions can P i be "simply" substituted by the steady state multizone adjoint
method.

If it is assumed, with some loss of generality, that the primal iterations are of a form where
each zone only uses its own previous state (despite depending on the current global state), that
is

xi =

(
0P(xi, 0xi−1, . . . )
1P(xi, 1xi−1, . . . )

)
, (3.47)

where pre-superscripts denote the zone index. The off-diagonal blocks in (3.45) become block
diagonal, and there are no multizone cross terms due to previous state values. For example,

∂0P i

∂1xi−1
= 0. (3.48)

Therefore, for this restricted form of iteration, the unsteady contributions to the adjoint right-
hand-side, can be managed by each zone independently of the multizone method (for example,
by combining them with the gradient of the objective function). Note that the vector-Jacobian
products responsible for these contributions, are obtained by treating the previous state values
as parameters of the current iteration. Moreover, they should be managed by the adjoint solvers
in each zone, since they are domain-specific (i.e. the time integration method may not be the
same in all zones). One example of loss of generality, is the approximation of grid velocities
by finite-differences, which cannot be used, since this would cause the fluid iteration to depend
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on previous values of mesh coordinates, which in turn, are a function of previous structural
displacements. However, this can be avoided by computing fluid grid velocities from structural
velocities, which are part of the current state of the structural problem, and thus, contribute
to multizone cross terms analogously to structural displacements in steady-state problems.
Another example, for which a solution has yet to be proposed, is the geometric conservation
law that depends on volumes at the previous time step (when time derivatives are computed
using second order backward differences).

Finally, note that spectral time-domain methods, such as harmonic balance, are not solved by
marching in time, notwithstanding, the multizone method is clearly applicable to each time
instance.



Chapter 4

Efficient Implementation of Unstructured
Solvers

The previous chapters presented the simulation and optimization methodology used herein.
While their focus is on methods, considerations regarding the software implementation were also
justified. For example, in chapter 3, it is rather evident how discrete adjoint implementation
choices can limit the suitability of the resulting software to large-scale problems. Indeed,
performance is itself a tool, more than an objective, in the sense that it enables more: more
robust solution methods, able to deal with more challenging applications; larger and richer
problems, resolved in more detail; robust optimizations with larger design spaces, targeting
wider operating envelopes. The examples go on, but in summary, performance is not just a
complement for methods, for it is also a requirement to make their use possible.

In principle, obtaining good performance for particular operations is not a hard problem, in the
sense that the capabilities and limitations of modern hardware and programming languages are
well known and have been described at length. However, these are not mentioned in the vast
majority of mathematical modeling books, which are focused primarily on methods. To some
extent, this separate exposition of algorithms and implementation aspects is logical (in fact, it
could be seen as good software engineering). However, performance results from the interaction
between the implementation of a method (subject to the constraints of a programming language)
and the capabilities of the target hardware. In this sense performance is multidisciplinary, and
therefore, in analogy with physical engineering systems, it may not be possible to predict it
without considering both fields. Moreover, doing so is nearly impossible for a complex software
due to the trade-offs between different algorithms. However, contrary to physical systems, it is
inexpensive to measure the performance of a software. Therefore, a high performance research
code, that hopes to be long-lasting, should be implemented in the most generic way possible.
So that it may be reconfigured (rather than re-written) to better suit particular algorithms or
hardware platforms.

63
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This chapter deals with efficiency and generic programming aspects applied to the algorithms
of unstructured solvers, whose characteristics allow only a small subset of software and hard-
ware aspects to be considered to propose good implementations. It is then shown that data
layouts are responsible for the trade-offs between different types of algorithm, and how generic
programming allows the latter to be implemented independently of the former. This is covered
in section 4.1, which sets the background to discuss unstructured solver algorithms in more
detail in section 4.2. Then, section 4.3 is dedicated to parallelization strategies for those algo-
rithms. Finally, section 4.4 shows how these widely applicable concepts were used to improve
SU2, thereby enabling the computationally expensive optimization problems covered in other
chapters. This was, in fact, the main motivation (or at least justification) for the numerous
contributions (over 1300 commits1) the author has made to SU2. By and large, SU2 is known
for its low-order finite volume solvers, which have, of course, heavily influenced the discussion
in this chapter. Nevertheless, important differences with high-order finite element methods are
noted when appropriate, even though their specific aspects are not discussed.

4.1 Capabilities and limitations of hardware and software

Before restricting the discussion to specific algorithms of unstructured solvers, it is necessary to
discuss what modern hardware and programming languages (and their compilers) can do for,
or against, each other.

4.1.1 Hardware

CPU’s, and to a much larger extent GPU’s, thrive on applying a small set of instructions
(preferably one) to data held in high levels of the cache hierarchy (preferably in register). Any
deviation from this will cause a loss of performance, and one deviates from it mainly by asking
the processing unit to operate on cold data (not in cache) or by branching, i.e. making the next
instructions conditional on the results of current computations. Branching hurts performance
by interfering with the instruction pipeline. The complete execution of one instruction requires
multiple steps that take place over a number of clock cycles (around 10) that define its latency.
The throughput is increased by having multiple execution units for some instructions and by
staggering (i.e. pipelining) their execution, such that all stages of the pipeline are active in
every clock cycle, performing the different steps for the multiple instructions in flight. One of
the key differences between CPU and GPU’s, is that the former are designed to minimize the
overall latency, therefore most of their resources are dedicated to caching data and attempting
to predict the outcome of branches, to then speculatively execute the most probable execution

1https://github.com/su2code/SU2/graphs/contributors

https://github.com/su2code/SU2/graphs/contributors
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path. Conversely, GPU’s are designed for throughput, which is achieved by having many
execution units controlled by comparatively simple scheduling units.

Memory subsystems are also much more efficient at providing continuous streams of data, than
at satisfying scattered accesses to it. One reason for this is that memory is accessed by lines
rather than one element of data at a time, that is, to access a single element (e.g. an integer) the
processing unit loads the entire cache line (64 bytes) that contains it. Then, accessing the other
elements in that line is much less expensive. This is a form of spatial locality. Another reason
is that processing units, especially CPU’s, are able to detect regular access patterns and exploit
them by automatically prefetching data. In modern hardware the balance between compute and
bandwidth is largely skewed towards the former, with processing units being capable of more
floating point operations per second than what can be streamed out of memory, by a factor of
O(100). Thus, it is usually much more important to conserve bandwidth than computation,
and to take advantage of the cache hierarchy to hide the latency of accessing main memory,
which can be achieved via temporal locality, i.e. accessing recently used data that is likely to
still exist in cache.

Similarly to having multiple cores and multiple execution units for some instructions, those units
are generally capable of operating on wide data types. This single-instruction-multiple-data
(SIMD) paradigm (commonly called vectorization) consists in applying the same instruction
to multiple scalars (integers, floats, doubles) simultaneously, and with the same latency and
throughput of processing a single element. However, this does not happen automatically, the
compiler must issue this type of instruction rather than single element versions.

4.1.2 Programming languages and compilers

From the previous discussion it is evident that minimal indirection is desirable in the machine
code generated by the compiler, i.e. the instructions, but also in how data is accessed. Then, the
question is how to use the programming language to give the compiler the maximum amount
of information, and how to store data to use the available bandwidth most efficiently. This
discussion will be around C++ since it is used in SU2, and also because it is a language that
allows close access to the hardware while providing language features that allow writing generic
code.

The common cause of indirection is lack of compile-time information. Consider the example
in listing 4.1. Besides the values of the data, the compiler does not know the size (n) of
the arrays (x,y) and it does not known if they overlap (formally this is known as aliasing).
Therefore, the compiler has to check that the size is not zero, check if the overlap is smaller
than the vectorization width and if so handle one index at a time, otherwise it will vectorize, i.e.
compute multiple indices with a single instruction, but only the part of the loop that is divisible
by the vectorization width, handling the remainder with progressively narrower instructions.
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1 void daxpy(int n, double a, const double* x, double* y) {

2 for (int i=0; i<n; ++i)

3 y[i] += a*x[i];

4 }

Listing 4.1: "AXPY" operation.

For large array sizes, the overhead of the extra checks is negligible, however, for small sizes it
is significant. This is not only due to the checks themselves, but also because of the redundant
instructions which pollute the instruction cache. Note that instructions are also data loaded by
the processor. This issue is aggravated by more aggressive optimizations such as loop unrolling,
to a point where it is possible for the code to perform worse with more optimization.

Small loop optimizations

Small loops are prevalent in numerical simulation, for example, over the number of degrees of
freedom per node, or over the number of spatial dimensions. Returning to the axpy example,
if the function is defined inline and the size is known at compile-time, e.g. it is a literal at
the call site (daxpy(3, a, x, y)) the redundant instructions will not be generated. Likewise for
the aliasing checks when the compiler can prove it will not occur, for example for two stack-
allocated variables. To force the size to be a compile-time constant, it could be made a template
parameter, as shown in listing 4.2.

1 template<int n, class Scalar, class Array>

2 void axpy(Scalar a, const Array& x, Array& y) {

3 for (int i=0; i<n; ++i)

4 y[i] += a*x[i];

5 }

Listing 4.2: Template "AXPY" operation.

Now, every time the function is called, the template is instantiated for a known size. However,
templates are notorious for spreading, that is, the client of the axpy template would very likely
also become a template, itself instantiated for the possible values of the size. At some point the
spreading needs to be stopped, usually when the cost of choosing the right instantiation has
been amortized over many calls to functions that benefit from the known size. One common
mechanism to achieve this for free functions is shown in listing 4.3.

1 // Templatized implementation of the function would go here.

2 template<int n> void f();

3

4 // This should be defined in a cpp, and not inline, so that templates are instantiated

only once.

5 void f(int n) {

6 switch(n) {
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7 case 2: f<2>(); break;

8 case 3: f<3>(); break;

9 default: assert(false); break;

10 }

11 }

Listing 4.3: Using a wrapper function to stop templating from spreading.

A particularly non-intrusive way, in that it avoids this type of template boilerplate, to inform
the compiler about a variable with only two possible values (e.g. 2 or 3 spatial dimensions),
is to state it in the body of the function, as listing 4.4 suggests. Then, the compiler should
take advantage of this information for the inline functions called after the statement. When
the function is a method of a class, and the size is a member instead of an argument, it is
still important to make this statement for each method. The templating alternative gives the
additional flexibility of using the size for stack allocated arrays, for which it is easiest for the
compiler to prove that there is no aliasing, and thus that vectorization is safe.

1 void f(int n) {

2 // In practice this logic should be encapsulated in an inlinable type or function.

3 n = n>2? 3:2;

4 assert(n==2 || n==3); // requirements should be asserted

5 ...

6 }

Listing 4.4: A portable compiler hint.

In fact, assuring the compiler that aliasing will not occur, and thus that it is safe to vectorize
and possibly fuse different loops, is not trivial to a point where this last optimization capability
is rare among compilers. One possibility is to copy the inputs into local (i.e. on the stack)
arrays, of course, this is not practical for large sizes (and it is cumbersome for small ones).
Another is to use compiler-specific attributes, to annotate either the variables or the loops with
information about aliasing, alignment (e.g. the start of the array coincides with a cache line),
etc. However, a more portable alternative (i.e. not compiler-specific) is to use the OpenMP
SIMD directive, as listing 4.5 shows.

1 void daxpy(int n, double a, const double* x, double* y) {

2 assert(max(x,y) - min(x,y) > n || x==y); // this becomes a requirement

3 #pragma omp simd

4 for (int i=0; i<n; ++i)

5 y[i] += a*x[i];

6 }

Listing 4.5: "AXPY" operation, with SIMD directive.

Together with size hints, this already allows functions with small loops to be well optimized,
because for those, loop fusion is not as relevant as for large loops, where temporal locality
is an important performance factor. This type of low level performance claim requires some
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empirical evidence to support it. Consider the typical operation of computing the tangential
projection (ut) of a vector (u) onto a plane defined by a normal vector (n), given by

ut = u− u · n
n · n

n.

For simplicity it is assumed that the signature for the function that performs this action for a
number of vectors is

1 template<class Matrix>

2 void tangentComponent(const Matrix& n, Matrix& ut);

where the argument "ut" contains u on entry and ut on exit. For reasons that will be discussed
later, the Matrix type is assumed to use row-major storage, that is, the 2 or 3 components of
each vector are contiguous in memory. The implementation uses two dot products and one axpy
operation per pair of vectors. Three versions of the code were tested, on version A the number
of components is not known and SIMD directives are not used, on version B the number is
known to be either 2 or 3 and SIMD directives are used, version C additionally restricts the
number of components to 3. The code was compiled with g++ 7.5 for the Skylake architecture
with varying level of compiler optimization, namely O2, O2+unrolling, and O3+unrolling. The
code was run in parallel (4 cores) and sequentially, on a machine with 2 memory channels, for
two matrix sizes, one that just fits in L3 cache and another 100 times larger. The program
was run 10000 and 100 times, respectively, so that the total number of computations was the
same for the two sizes. Tables 4.1 and 4.2 show the execution time for the small and large sizes
respectively. The execution time is normalized by the best over all combinations.

Version Parallel O2 O2+Unroll O3+Unroll

A No 7.7 12 13
B No 6.0 4.0 7.3
C No 8.8 3.2 4.0
A Yes 2.2 3.5 3.8
B Yes 1.7 1.2 2.2
C Yes 2.6 1 1.3

Table 4.1: Effect of small loop optimizations on small matrix size.

This simple example shows many of the aspects addressed so far. All versions of the code
eventually lose performance, once the optimization level becomes "excessive" for the level of
information the compiler is given about the algorithm. Once the bandwidth limit is reached,
all versions of the code perform similarly at all levels of optimization. This limit is reached for
large matrices in parallel, note how the speedup gained from running the code in parallel is
much less than expected. The variation in performance is small because even the superfluous
computations (branches, etc.) take place while the processing unit waits for data. This clearly
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Version Parallel O2 O2+Unroll O3+Unroll

A No 8.1 13 13
B No 6.5 5.4 7.9
C No 9.3 5.1 5.8
A Yes 4.5 4.7 4.6
B Yes 4.5 4.5 4.6
C Yes 4.6 4.5 4.6

Table 4.2: Effect of small loop optimizations on large matrix size.

shows the importance of prioritizing bandwidth over computations. The situation is very differ-
ent when the processing unit operates on cached data, in that case, the code is compute-bound
and the implementation and compiler optimizations have a significant effect. As a first ap-
proximation, an algorithm can be judged to be bound by compute or bandwidth by comparing
its FLOP-to-byte ratio against what the hardware is capable of. Essentially this consists of
dividing the total number of operations by the amount of data retrieved from main memory.
This analysis can be difficult if the effects of spatial and temporal locality are considered, in
fact, given the simplicity of these small loop optimizations, it takes less time to simply apply
them than to accurately predict their effect.

Large loop optimizations, advanced language features

Loop fusion

The optimizations described earlier do not address loop fusion, which is important for large
loops due to temporal locality effects, and they do not address a few code quality issues in the
examples. First, arrays are being passed by pointer, this is sub optimal because memory is a
resource, and as such, it should be contained in a class that manages it during the lifetime of
the object. By doing so, the requirements on aliasing, alignment, padding (rounding up the size
to a convenient multiple), and any other implementation detail, are passed alongside the data
and centralized in the class, which is responsible for guaranteeing them. This encapsulation
is especially important for higher dimension arrays (e.g. matrices), as it allows hiding (from
the user) the most important detail, namely how the different dimensions are flattened into
linear addressing space (e.g. row ∗ columns + column). The importance of this encapsulation
will be even clearer in later sections. Second, the interface begs users to implement the loops
themselves. Consider, for example, the steps required to compute u = 2x + y − z using only
copy and axpy operations. In either case the resulting code is not very readable, and the
proliferation of custom loops becomes a maintenance problem (for example, consider the effort
of refactoring them to include the SIMD directive).

The solution to obtain loop fusion and improve code quality, is to define a vector type and to
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use meta programming (namely expression templates) to automatically convert natural syntax
(u = 2x + y − z) into specialized vector operations. Expressions are symbolic representations
of operations (e.g. x+y) rather than their result, they can be assembled cheaply (to represent
complex operations) and evaluated as a whole only when the final result is needed, i.e. without
creating temporaries. The starting point is a base class for all expressions, with a mechanism
to convert it to its derived type, namely the curiously recurring template pattern (CRTP), as
shown below.

1 template<class Derived, class Scalar>

2 struct VecExpr {

3 // Cast the expression to Derived, usually to allow evaluation via operator[].

4 const Derived& derived() const { return static_cast<const Derived&>(*this); }

5 };

Then, the vector type can derive from this base and implement the assignment operator (=),
responsible for populating the vector based on any expression.

1 template<class Scalar>

2 class Vector : public VecExpr<Vector<Scalar>,Scalar> { // CRTP

3 private:

4 Scalar* data_ = nullptr;

5 size_t size_ = 0;

6 size_t paddedSize_ = 0;

7 public:

8 // Align should be the SIMD width divided by sizeof(Scalar)

9 static constexpr size_t Align = 4;

10 static constexpr bool StoreAsRef = true; // explained later

11

12 // aligned allocation of data, padding it to a multiple of "Align"

13 void resize(size_t n);

14

15 // operators to access data

16 Scalar& operator[] (size_t i) { return data_[i]; }

17 const Scalar& operator[] (size_t i) const { return data_[i]; }

18

19 // the vector populates itself from any (T) expression of the same Scalar type

20 template<class T>

21 Vector& operator= (const VecExpr<T,Scalar>& expr) {

22 // the size is guaranteed to be a multiple of Align

23 for (size_t i=0; i < paddedSize_/Align; ++i)

24 // vectors cannot overlap partially

25 #pragma omp simd

26 for (size_t j=0; j<Align; ++j)

27 // the expression is evaluated for each index via [], as if it were a

vector

28 data_[i*Align+j] = expr.derived()[i*Align+j];

29 return *this;
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30 }

31

32 // quirks of C++

33 Vector& operator= (const Vector& other) {

34 return *this = static_cast<const VecExpr<Vector,Scalar>&>(other);

35 };

36

37 // other methods, including constructors and destructor

38 ...

39 };

A reference to this vector type is convertible to a reference to its base class, due to inheritance,
and vice versa due to the CRTP. An expression to add any two expressions, is also derived from
the base expression class, and can be implemented as follows.

1 template<class U, class V, class Scalar>

2 struct VecAdd : VecExpr<VecAdd<U,V,Scalar>, Scalar> {

3 store_t<const U> u;

4 store_t<const V> v;

5 static constexpr bool StoreAsRef = false;

6 // the expression is contructed with left and right hand sides

7 VecAdd(const U& u_, const V& v_) : u(u_), v(v_) {}

8 // the implementation of the operation is trivial

9 Scalar operator[] (size_t i) const { return u[i] + v[i]; }

10 };

Note that the left and right hand sides need to be stored either by reference if they are vectors
(to avoid copying data), or by value if they are expressions. This is necessary because the
expressions themselves are temporaries (formally r-values) which do not have an address and
thus cannot be stored by reference. When the final expression is evaluated, the intermediate
ones no longer exist since they have gone out of scope. One way to control the storage mode is
via a trait ("StoreAsRef" in the examples) which informs the expression how to store a given
value. For the vector type this is true, while for expressions it is false. This makes the (fair)
assumption that vectors will not be created as r-values, nevertheless, an alternative will be
discussed shortly. A possible meta programming mechanism to conditionally add an l-reference
to a type based on the "StoreAsRef" trait is

1 // Base case, a struct template where reference is not added to the template type (T)

2 template<class T, bool> struct add_lref_if { using type = T; };

3 // Partial (boolean parameter) template specialization that adds the reference to T

4 template<class T> struct add_lref_if<T,true> { using type = T &; };

5

6 // Convenient way to simplify the syntax

7 template<class T> using store_t = typename add_lref_if<T,T::StoreAsRef>::type;

Finally, to convert natural syntax to an expression, the operator for addition needs to be
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overloaded for expression types, that is

1 template<class U, class V, class S>

2 VecAdd<U,V,S> operator+ (const VecExpr<U,S>& u, const VecExpr<V,S>& v) {

3 return VecAdd<U,V,S>(u.derived(), v.derived());

4 }

The alternative to the "StoreAsRef" mechanism, is to overload the operator for all combinations
of l-value and r-value references, and explicitly force the latter to be copied into the expression.
However, this becomes rather verbose, especially if one considers also the overloads required
for operations between vectors and scalars (e.g. 2u).

Given the simple and repetitive nature of the expression classes and operator overloads, code
generation techniques are used to generate them, e.g. from a master macro, and code is not
repeated. Another important detail is that in the example, the evaluation operator ([ ]) for
the addition expression forces a conversion to "Scalar". However, if that type has its own
expression templates (for example it is an AD type), they are defeated by this conversion. The
implementation by the author in SU22 considers these aspects. Indeed, allowing this nesting of
expressions is what justified a custom implementation, rather than adopting an existing library.
It should be noted, however, that the code complexity grows rather quickly to implement level 2
and 3 BLAS operations, for example it is important to exploit associativity to reduce costs, and
to convert some expressions into calls to standard BLAS functions to maximize performance.

To summarise, what was achieved by the vector class and the expression templates, is loop fusion
and vectorization in a compiler-independent way. More importantly, the public interface for
these operations is highly readable, and from a maintenance point of view, all implementation
details are encapsulated in a class. This means, for example, that to explore non-temporal
store instructions only one loop needs to be modified (the one in the assignment operator),
likewise to add OpenMP work-sharing directives to parallelize operations with vectors. It is
not necessary to benchmark this example, since it provides an algorithmic improvement over
multiple calls to axpy-type functions to modify one vector, that is, the compute intensity is
increased by traversing the target vector only once.

Loop tiling

While loop fusion is a way to optimize multiple loops, loop tiling is a way to optimize nested
loops. Both improve performance by reducing the frequency with which main memory is
accessed, thereby increasing the effective FLOP-to-byte ratio.

Consider the multiplication of a narrow matrix, or a list of vectors, by its transpose on the left,
which occurs for example in linear least squares fitting, that is

2https://github.com/su2code/SU2/blob/v7.1.1/Common/include/linear_algebra/vector_

expressions.hpp

https://github.com/su2code/SU2/blob/v7.1.1/Common/include/linear_algebra/vector_expressions.hpp
https://github.com/su2code/SU2/blob/v7.1.1/Common/include/linear_algebra/vector_expressions.hpp


4.1. Capabilities and limitations of hardware and software 73

M = ATA. (4.1)

Naive implementation of this multiplication would involve three nested loops to compute n(n+

1)/2 dot products (n is number of columns). This requires each column (i.e. the entire matrix)
to be traversed n times. If columns do not fit in cache, they need to be retrieved from main
memory every time. Loop tiling avoids this by splitting the innermost loop (the dot products)
into blocks that fit in cache. Then, a new outer loop over all blocks performs multiple updates
of the result (M in this case) as shown is listing 4.6.

1 for (int begin = 0; begin < end; begin += tileSize) {

2 for (int i = 0; i < cols; ++i)

3 for (int j = 0; j <= i; ++j)

4 for (int row = begin; row < min(rows,begin+tileSize); ++row)

5 M(i,j) += A(row,i) * A(row,j);

6 }

Listing 4.6: Tiled multiplication of two narrow matrices.

This loop transformation allows the matrix to be retrieved from main memory only once (rather
than n times), by moving one block at a time into cache. However, note that the output is
now accessed multiple times, this is not an issue so far as M fits in cache (hence the choice
of narrow A for this example). Conversely, when M is large, more tiling loops are needed to
reduce also the frequency of writes to main memory.

Loop tiling is what allows level 3 BLAS operations to be bound by compute rather than
bandwidth. There the technique is taken further to also take advantage of the differences
between cache levels. For operations and data formats that are (or can be manipulated into
being) compatible with BLAS routines it is wise to use a BLAS library. However, this type of
nested loop occurs in other contexts, for example radial-basis-function interpolation (without
compact support) where each interpolated value depends on all sample values. Another example
is the GMRES method where operations akin to (4.1) are used to generate the vectors of the
basis. Furthermore, it is sometimes more efficient to represent a matrix as a list of vectors (i.e.
multiple blocks of memory, rather than one) which is not compatible with BLAS but allows
swapping columns or rows quickly, without copying data, simply by swapping the corresponding
pointers. An example of loop tiling applied to the block-structured CFD code ADFlow has been
recently given in [120].

Encapsulation and insulation

The previous vector class is an example of encapsulation, that is, a number of implementation
details were centralized in a few key places, in a way that is transparent to the compiler and
thus fully optimizable. On the other hand, insulation refers to mechanisms whereby details are
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hidden from the compiler. Therefore, such mechanisms can occur at runtime. One example of
this is the mechanism of listing 4.3, where the implementation of the dispatch function does
not need to be available at the call site. This is why that type of strategy can be used to
stop templates from spreading. However, a more classical example is polymorphism, which
consists of using virtual functions to create abstract interfaces to objects whose concrete type
is only known at runtime. One common application of polymorphism, is to allow the user of a
library to extend its functionally by implementing only some details. Because polymorphism is
a runtime mechanism, the library does not need to be recompiled, which allows it to be closed
source software. This type of runtime flexibility is also important for very large code-bases
to allow continuous deployment, where individual elements (libraries) of the application can
be compiled in isolation without affecting all others. Typical scientific codes do not fit this
description, nevertheless, providing some dedicated way for users to add custom functionality
is not unreasonable. Moreover, insulation is clearly important to manage templates (and thus
compilation times) and good abstractions (i.e. expressive) can make the high-level architecture
easier to understand.

As an example, consider allowing users of the vector type defined earlier to create custom types
compatible with the vector expressions. These could be used to represent functions, implement
out-of-core objects (whose data does not reside in main memory), etc. The abstract interface
for this is clearly the square bracket operator, that is,

1 struct AbstractVector : VecExpr<AbstractVector,double> {

2 static constexpr bool StoreAsRef = true;

3 // Derived classes will have to override this method

4 virtual double operator[] (size_t) const = 0;

5 };

Now, any function of the library that accepts an AbstractVector (by reference or pointer) can
be passed a user defined object at runtime, for example,

1 class UserDefinedVector final : public AbstractVector {

2 public:

3 double operator[] (size_t i) const override { return i; }

4 };

Although this example is somewhat contrived, it clearly illustrates this feature of the language
and allows discussing its implications. The main one is that even a simple function like

1 void copy(const AbstractVector& src, Vector<double>& dst) { dst = src; }

will no longer be vectorized. This happens because when the template assignment operator
of Vector is instantiated, the implementation of the user defined type is not known, hence it
cannot be inlined and optimized. Instead, the compiler needs to retrieve the correct function
pointer from the virtual table of the object and call it. This costs three levels of indirection
versus one level for a direct function call. Furthermore, even if the compiler were aware of
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the implementation of UserDefinedVector, the only optimization it could legally perform, is
to inline it speculatively. Then, at runtime, the concrete type of the object is checked, to
decide between the speculative inline or the virtual call procedure. At that point it is up
to the processor to notice (i.e. predict) which branch is being taken repeatedly. Indeed, the
only way a virtual method can be perfectly inlined, is when it is known to be "final" for the
type it is called on. That is, it would not be possible for a more derived class to override
its implementation. In the present example this happens for UserDefinedVector since it is
marked final (however, note that the base expression is only aware of AbstractVector, hence
even a reference to UserDefinedVector would be upcast to AbstractVector by the expression
templates). Evidently, using virtual functions for point-wise access to data, incurs significant
overhead and reduces the optimizability of the code. Therefore, their use should be reserved
for large methods (e.g. that perform significant computation), or amortized by accessing large
data sets, or made optimizable. That is, similarly to the small loop optimization strategies,
it may be important (for performance) to specialize some functions to operate on final classes
rather than on the abstract base.

In summary, encapsulation and insulation are about creating compile-time and runtime inter-
faces, respectively. Moreover, insofar as they avoid code repetition, these are the main tools to
write code that is extendable, maintainable, expressive, and generic (in the particular case of
encapsulation). Any code repetition is difficult to modify. If complex conditional expressions
are repeated, some of the occurrences either have bugs, or will have them after the first mod-
ification. The comments on such code snippets are out of date, by definition, documentation
only remains actual if made enforceable by the compiler, i.e. a class name, function signature,
concept, etc. For example, if a comment expresses an action, there is a good chance it is either
redundant or what comes after it should be a function. It is particularly important for portabil-
ity to encapsulate third party libraries (i.e. wrap them) to allow disabling or customizing those
interfaces, this also applies to OpenMP directives (or any other pragma) which can be wrapped
using macros. Furthermore, encapsulation provides a way to automatically profile the code for
subsequent optimization, in functions with multiple "steps" (which are an anti-pattern) it may
not be obvious at first which "step" is the most intensive. In the long run everything is made
easier by using good abstractions to compartmentalize key operations, however small.

Generic programming

"Generic programming is an approach to programming that focuses on designing algorithms and
data structures so that they work in the most general setting without loss of efficiency." [121]

The classic generic programming example is the standard template library (STL). This library
provides a number of algorithms (sort, min_element, partition, etc.), and data structures (vec-
tor, list, map, etc.) which are made compatible with each other via the iterator concept.
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Iterators are a way to encapsulate the details of how each data structure organizes its data in
memory, they form a transparent interface, rather than abstract and opaque. Therefore, when
a generic (template) algorithm is instantiated for a specific data structure, it is optimized to
take advantage of how it stores its data in memory. Those algorithms can be extended by
proving user-defined details via function objects at compile time, thereby allowing both to be
optimized together.

Returning to the earlier example of the function

1 void tangentComponent(const Matrix& n, Matrix& ut);

it was mentioned that it could be implemented via dot products and axpy operations, which
can be implemented (naively) as

1 double ddot(int n, const double* u, const double* v) {

2 double r = 0;

3 for (int i=0; i<n; ++i) r += u[i]*v[i];

4 return r;

5 }

6

7 void daxpy(int n, double a, const double* x, double* y) {

8 #pragma omp simd

9 for (int i=0; i<n; ++i) y[i] += a*x[i];

10 }

Then, assuming that Matrix stores doubles in row-major order, a possible implementation of
tangentComponent is

1 void tangentComponent(const Matrix& n, Matrix& ut) {

2 for (int i = 0; i < n.rows(); ++i) {

3 const double un = ddot(n.cols(), &n(i,0), &ut(i,0));

4 const double nn = ddot(n.cols(), &n(i,0), &n(i,0));

5 daxpy(n.cols(), -un/nn, &n(i,0), &ut(i,0));

6 }

7 }

This is not generic because the algorithms are tied to a particular data layout, if the storage
order of Matrix were changed to column-major, the elements in each row would no longer be
adjacent in memory. The code would compile and run without crashing, but the results would
be incorrect. What is needed are algorithms that are only bound to an interface, for example

1 template<class Interface>

2 auto dot(const Interface& u, const Interface& v) {

3 typename Interface::Scalar r = 0;

4 for (int i=0; i<u.size(); ++i) r += u[i]*v[i];

5 return r;

6 }

7
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8 template<class Interface, class Scalar>

9 void axpy(Scalar a, const Interface& x, Interface&& y) {

10 #pragma omp simd

11 for (int i=0; i<x.size(); ++i) y[i] += a*x[i];

12 }

and for Matrix to provide a lightweight object (the interface) that represents its rows, for
example

1 template<class T>

2 struct RowInterfaceColMajor {

3 using Scalar = T;

4 Scalar* data;

5 int cols, rows;

6 RowInterfaceColMajor(Scalar* d, int c, int r) : data(d), cols(c), rows(r) {}

7 int size() const { return cols; }

8 Scalar& operator[] (int i) { return data[i*rows]; }

9 const Scalar& operator[] (int i) const { return data[i*rows]; }

10 };

Then, tangentComponent can be implemented in a more generic way

1 void tangentComponent(const Matrix& n, Matrix& ut) {

2 for (int i = 0; i < n.rows(); ++i) {

3 const auto un = dot(n.row(i), ut.row(i));

4 const auto nn = dot(n.row(i), n.row(i));

5 axpy(-un/nn, n.row(i), ut.row(i));

6 }

7 }

Furthermore, if the interface provides expression templates, the axpy function can be replaced
by

1 ut.row(i) -= un/nn * n.row(i);

Any size hint would now be part of the row interface, for example, the "row" method of Matrix
could have different template overloads to allow specifying a fixed size, two possible sizes, or no
known size. This encapsulation also allows the algorithm to be tailored to some characteristics
(formally traits) of the interface. For example, when data is not contiguous, and vectorization
is forced via the SIMD directive, the performance may be worse than without vectorization.
Similarly, dot products can be vectorized by carrying multiple partial sums over the SIMD
width, and reducing them to a single scalar at the end. The overhead of this final reduction
makes vectorization counterproductive for small sizes. The SIMD directive accepts an "if"
clause, since version 5.0 of the OpenMP standard, which the axpy function could exploit by
adding a "Contiguous" trait to the interface, that is,

1 template<class Interface, class Scalar>
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2 void axpy(Scalar a, const Interface x, Interface y) {

3 #pragma omp simd if(Interface::Contiguous)

4 for (int i=0; i<x.size(); ++i) y[i] += a*x[i];

5 }

Note that, in practice, traits should be defined in dedicated classes. This allows a base case to
be defined with suitable defaults, and it allows specializations for native types (e.g. pointers)
or from third party libraries (e.g. std::vector).

The encapsulation of details required for generic programming does not introduce runtime
overhead. In fact, it allows generic algorithms to be better optimized for specific applications,
by providing the compiler with more information. It should be evident from the discussion thus
far, that informing the compiler is the only way to obtain performance. General abstract code
cannot be optimized to the same extent. Furthermore, by replacing assumptions with expressive
interfaces, the code is made more readable through the concepts expressed by them. The wrong
preconception that high performance code must be hard to read, can only result from exercises
in manual inlining of implementation details. Of course, diving into the machinery of generic
programming will require progressively richer C++ vocabulary (which has been made simpler
by newer versions of the standard) and some knowledge of the software architecture and idioms,
lest the concepts be missed for the language details.

4.1.3 Effects of storage layout

The examples used so far already alluded to the importance of how data is stored in memory,
for example, vectorization is most effective if data is contiguous. Indeed, it is for this topic that
the interaction between software and hardware is more tightly coupled. Whereas for previous
examples it was relatively straightforward to predict the effect of changes to the code, the effects
of changing the layout depend on how the data structure is used, which makes it the principal
contributor to the aforementioned trade-offs between algorithms.

Storage layout refers to how a multi dimensional address space (e.g. of a matrix) is flattened into
the one dimensional virtual address space. Because of this characteristic of computer systems,
only one dimension can be contiguous in memory, thus, advancing along non contiguous indices
requires longer strides. The assumption that this type of n-D to 1-D mapping is known at
compile time, usually implies that the data structure allocates a single block of memory. For
data structures that do not meet this characteristic, i.e. allocate multiple blocks, the discussion
that follows only applies within each block. Moreover, the focus will be on the narrow data
structures that are characteristic of CFD solvers, which store a fixed amount of data per solution
location, much smaller than the total number of locations. Fig. 4.1 shows the typical ways to
map a pair of indices (i, j) to memory, this visual aid will also be helpful when discussing sparse
storage formats or higher dimension arrays.
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Figure 4.1: Types of 2-D layout. a) Row-major or array of structures; b) Column-major or
structure of arrays; c) Array of structure of arrays.

Sequential and scattered access patterns

Sequential access consists in traversing the data structure along its outer index, using most
of the values associated with inner indices in some computation. The function used in the
examples of section 4.1.2 is an example of this.

Scattered access patterns arise when the order in which the outer indices are accessed, is
given by some map or permutation of the natural, sequential, order. Insofar as they imply
indirection, scattered accesses are slower, it is worth showing how much. To that end, the
"tangentComponent" function is modified to read the target row index for each loop iteration
from a permutation array.

1 void tangentComponent(const std::vector<int>& idx, const Matrix& n, Matrix& ut);

The permutation is given by (i mod S)(N ÷ S) + i÷ S (in integer arithmetic) where N is the
number of rows and S ≈

√
N is the stride, i.e. the distance between consecutive loop iterations.

This type of access was compared with sequential access, for row- and column-major storage,
using the best version of the code (version C compiled with O2+unrolling) running in parallel.
Table 4.3 shows the results for the small (L3 cache) and large (RAM) matrix sizes.

Matrix size Access Row-major Col-major

Small Sequential 1 1.1
Small Scattered 4.1 8.5
Large Sequential 4.5 4.5
Large Scattered 12 23

Table 4.3: Effect of access patterns on different storage layouts.

When data is accessed sequentially the transition from row-major to column-major is of little
consequence. For small sizes there is a 10% loss of performance because partial vectorization
of the axpy operation is no longer possible. However, for large sizes where memory bandwidth
is the limiting factor, both storage layouts perform similarly. Switching to scattered accesses
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causes significant loss of performance, as expected, due to the less efficient use of the available
bandwidth and automatic prefetching capabilities. Note that the effect is more pronounced for
the column-major layout, this is explained by spacial locality. Recall that memory is accessed
by cache lines, each line contains on average 2.7 (64/24) rows of a row-major matrix (with three
doubles per row) on the other hand, it only contains one third of each row of a column-major
matrix. In this example temporal locality does not play a strong roll since each row is only
accessed once.

Software prefetching

The main drawback of scattered accesses on column-major layouts is the increase in cache
misses. The programmer can ameliorate this by explicitly instructing the processor to move
data into cache. However, this introduces some overhead. By themselves, the prefetching
intructions have a latency and throughput similar to addition or multiplication, however, to
look ahead in the iteration space, requires an extra index of the permutation to be loaded
and corresponding memory addresses to be computed. Moreover, the iteration space may not
be defined at compile-time, for example if it is distributed dynamically over multiple threads.
Therefore, it is necessary to tune the prefetching distance so that data becomes available as it
is needed. This tuning is even more important when temporal locality effects are important,
otherwise the prefetched data may actively pollute the cache. The effect of prefetching is shown
in table 4.4.

Matrix size Prefetch Row-major Col-major

Small No 4.1 8.5
Small Yes 4.0 8.2
Large No 12 23
Large Yes 9.4 19

Table 4.4: Effect of prefetching on scattered access pattern.

Note how the speedup is more pronounced for large matrix sizes, this is logical since the small
size fits in cache. Although cache misses are more severe with column-major storage, the
prefetching overhead is also higher since one instruction per column is needed to prefetch one
row, whereas the row-major layout only requires one instruction per row (since they are small
in this example). Moreover, there is not enough computation per loop iteration to hide the
cost of the extra instructions. This explains why the speedup for large sizes is similar for both
layouts.
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Vectorization

The advantage of column-major storage, is that it is more amenable to vectorization of algo-
rithms that access data sequentially. While some vectorization is possible in the "tangentCom-
ponent" example with row-major storage (of the axpy operation), this makes poor use of the
hardware, consider that modern CPU are capable of processing 4 to 8 doubles simultaneously
(AVX and AVX512 respectively). This is even more relevant for GPU’s where work is dis-
patched for large groups of threads (32 or 64), and allowing all of them to read from adjacent
memory locations (so called coalesced memory access) is fundamental to fully utilize the avail-
able bandwidth. In cases where the inner dimension does not offer enough "vectorizability",
processing multiple outer indices simultaneously may be an alternative. Especially if data is
adjacent along the outer dimension, which is a requirement to access it at peak bandwidth.

Note that this is an expensive type of compiler optimization (O3 for most) that effectively
involves moving blocks of the outer into the inner loops (e.g. the dot product loops in the
"tangentComponent" example). Thus, not all compilers may perform it, especially if the body
of the loop is too complex or contains unvectorizable operations (which is generally the case of
transcendental math functions, unless some fast-math optimizations are allowed). Moreover, it
was seen earlier that this level of optimization may actually introduce overhead, which the gains
from vectorization may not offset, especially in bandwidth-limited algorithms. This is shown
by the results in table 4.5, where scalar code is compared with implicitly (by the compiler)
and explicitly (by the programmer) vectorized versions of the code (explicit vectorization is
discussed later). For small sizes the advantage of vectorized code is evident, on the other hand,
there is no noticeable benefit for large sizes. However, note that the vectorized version is able
to use all the memory bandwidth with a single core.

Matrix size Scalar Implicit Vec. Explicit Vec.

Small 1.1 1.1 0.62
Large 4.5 4.6 4.5

Table 4.5: Effect of vectorizing sequential accesses on column major layout.

For scattered access patterns, vectorization requires gathering data into SIMD registers and
then scattering the results. In other words, data needs to be made contiguous before vectorized
computations can take place. While there are dedicated hardware instructions for this pur-
pose (gather/scatter), their performance and availability depends on the architecture. Namely,
scatter is only part of the AVX512 instruction set, and gather is approximately 50% faster on
the Intel Skylake and AMD Zen3 architectures than on their respective predecessors. Notwith-
standing this major performance leap, gather still has 10 times lower throughput than load
[122]. Fig. 4.2a shows a diagram of this operation. For this type of access pattern, row-major
layouts offer an alternative to gather and scatter data without using those instructions. That
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alternative consists in loading data along the inner dimension (using SIMD loads since data is
adjacent) and then transposing it to make it contiguous along the outer indices that are being
accessed. This is shown in Fig. 4.2b, in comparison with the native gather operation.
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(a) Gather instructions on column-major layout.
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(b) Gather or load-transpose on row-major layout.

Figure 4.2: Strategies to gather data for multiple outer indices to then process it with SIMD
instructions.

Of course, this transposition adds overhead, however, it is vectorizable via swizzle instructions
(shuffle, permute, etc.) which have high throughput on most architectures. Moreover, this is a
common operation that compilers can identify and optimize well, especially when the number
of elements per row is a multiple of the SIMD width. Nevertheless, making the associated loop
counts available at compile time is crucial for performance, more so than in the optimization of
small scalar loops. For clarity, this strategy of vectorizing the accesses along the inner dimension
does not go against the earlier comment that this could make poor use of the hardware. Note
that even when the number of elements per row is a multiple of the SIMD width, the operations
performed for each element may be different, in which case they would not fit the single-
instruction model without the grouping of multiple outer indices (which this operation makes
possible).

A final overhead factor, that affects both strategies to fetch data (gather and load-transpose)
is the increased probability of cache misses, which is a consequence of accessing data that is far
apart. This has made row-major storage the recommended layout for cached machines [123],
and may explain why the load-transpose strategy was also found useful on architectures with
efficient gather instructionst [124]. Regardless of loading strategy, it is important that the
amount of computation performed with the data justifies the added cost of accessing it in this
manner.

Hybrid layouts

As mentioned in the introduction to this section, no single layout is optimal for all applications.
The array of structures of arrays layout in Fig. 4.1 attempts to balance spatial locality with
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the vectorizability of sequential accesses on column-major storage. It was used in [124] for
some of the geometric quantities used by an unstructured CFD solver, to reduce the pressure
on the hardware prefetchers (i.e. the number of arrays from which data is streamed). While
evaluating that layout for this work, it was noticed that the arithmetic needed to convert pairs
of indices (i, j) to 1-D memory locations, namely

(i÷ P )PN + Pj + (i mod P )

where P is the length of the short (inner) arrays and N the number of columns, adds significant
overhead to lightweight loops (even when P is a power of two). This happens when the compiler
does not move the terms in i to the outside of a loop over j. To help the compiler it was helpful
to define an iterator for inner indices, then the programmer can obtain the iterator outside of
the loop (evaluating the terms in i) and simply increment it in the loop over j.

Hybrid layouts also find application in sparse storage formats. For example, matrix-vector
multiplication of typical compressed sparse formats, either by rows (CSR) or columns (CSC),
does not take full advantage of GPU (or CPU with wide vector units) unless the algorithm is
modified to access memory in a coalesced manner [125]. Even for block-compressed formats
(where each non-zero is a small dense matrix) which occur e.g. when there are multiple degrees
of freedom per node, good memory bandwidth utilization is only possible for large block sizes
[126]. The list-of-lists format (also known as ELLPACK format) allows coalesced accessed by
storing the non-zero coefficients and column indices in column-major matrices. However, this
requires the sparse matrix to have either a constant number of non-zeros per row, or for the
rows be padded (with zero coefficients). Padding reduces the efficiency of this storage format
when the number of non-zeros per row varies significantly, as it happens in dual discretizations
of hybrid meshes. Earlier solutions consisted in storing the most common size in ELLPACK
format and the remainder coefficients in a compressed format or as triplets [125]. More recently,
it has been proposed to divide the matrix into multiple ELLPACK slices [127], thereby creating
an array of structures of arrays, where each group of rows (slice) is allowed to have different
number of columns. In fact, balancing different aspects of classical layouts (e.g. performance,
versatility, storage efficiency) has resulted in the proposal of many hybrid storage formats [128].

4.1.4 Explicit and implicit vectorization

The results for the vectorized version of the "tangentComponent" function, in table 4.5, show
that compiler-generated (implicit) vectorization may be a far cry from hand-tuned (explicit)
code. Based on inspecting the assembly code generated for a number of examples, ranging from
the simple "tangentComponent" to complex parts of SU2, the main shortcoming of implicit
vectorization is register spillage, that is, data is moved in and out of memory more times
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than necessary. Moreover, implicit vectorization is not always automatic, as it was mentioned
before, more complex code may require changes to help the compiler. One common change
is to separate data accesses from computations, that is, moving data into local variables first,
instead of referring to the original memory locations in the computations. Examples of this are
found in [129, 124] in the context of unstructured solvers. One consequence of this approach,
is that new loops over the SIMD width need to be introduced to annotate which areas the
compiler should target for vectorization. Listing 4.7 shows what this type of change could look
like for the simple example.

1 void tangentComponent(const Matrix& n, Matrix& ut) {

2

3 constexpr size_t nDim = 3;

4 constexpr size_t simdLen = 4;

5

6 for (size_t i0 = 0; i0 < n.rows(); i0 += simdLen) {

7

8 double dot[simdLen] = {0}, n2[simdLen] = {0};

9

10 for (size_t j = 0; j < nDim; ++j) {

11 #pragma omp simd

12 for (size_t k = 0; k < simdLen; ++k) {

13 const auto i = i0 + k;

14 dot[k] += n(i,j) * ut(i,j);

15 n2[k] += n(i,j) * n(i,j);

16 }

17 }

18

19 #pragma omp simd

20 for (size_t k = 0; k < simdLen; ++k) dot[k] /= n2[k];

21

22 for (size_t j = 0; j < nDim; ++j) {

23 #pragma omp simd

24 for (size_t k = 0; k < simdLen; ++k)

25 ut(i0+k, j) -= dot[k] * n(i0+k, j);

26 }

27 }

28 }

Listing 4.7: Helping the compiler with vectorization.

On the other hand, explicit vectorization makes use of either inline assembly, or intrinsic types
and functions [130] (which are essentially a lightweight wrapper for assembly). The latter are
demonstrated in listing 4.8

1 void tangentComponent(const Matrix& n, Matrix& ut) {

2

3 constexpr size_t simdLen = 4;
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4 for (size_t i = 0; i < n.rows(); i += simdLen) {

5 // load

6 auto nx = _mm256_load_pd(&n(i,0));

7 auto ny = _mm256_load_pd(&n(i,1));

8 auto nz = _mm256_load_pd(&n(i,2));

9 auto ux = _mm256_load_pd(&ut(i,0));

10 auto uy = _mm256_load_pd(&ut(i,1));

11 auto uz = _mm256_load_pd(&ut(i,2));

12

13 // compute

14 auto nn = _mm256_mul_pd(nx,nx);

15 nn = _mm256_fmadd_pd(ny,ny,nn);

16 nn = _mm256_fmadd_pd(nz,nz,nn);

17 auto un = _mm256_mul_pd(nx,ux);

18 un = _mm256_fmadd_pd(ny,uy,un);

19 un = _mm256_fmadd_pd(nz,uz,un);

20 auto un_nn = _mm256_div_pd(un,nn);

21 ux = _mm256_fnmsub_pd(un_nn,nx,ux);

22 uy = _mm256_fnmsub_pd(un_nn,ny,uy);

23 uz = _mm256_fnmsub_pd(un_nn,nz,uz);

24

25 // store

26 _mm256_store_pd(&ut(i,0),ux);

27 _mm256_store_pd(&ut(i,1),uy);

28 _mm256_store_pd(&ut(i,2),uz);

29 }

30 }

Listing 4.8: Explicit vectorization using x86 intrisics.

SIMD types

The two vectorization options described above are not very readable or generic. Moreover, using
intrinsics not only ties the algorithm to a particular data layout, it locks it to one datatype and
architecture. Notwithstanding, using this type of function allows portable performance, in the
sense that it is predictably high across different compilers (old and new). The solution to the
generality issues is, of course, encapsulation, namely, by defining SIMD types to wrap the type-
and architecture-specific intrinsics with natural syntax, allows existing algorithms (e.g. axpy)
to function with minimal changes. Furthermore, moving data into or out of the SIMD type
should be implemented by the container (Matrix in the example) such that any assumption
regarding the data layout stays within the class responsible for it. It is no coincidence that
these considerations are reminiscent of the earlier "Vector" type, after all, a SIMD type is in
essence a short vector. Therefore, the starting point for a portable SIMD type is a Vector of
known size, e.g.
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1 template<class Scalar, size_t Size = preferredSimdLen<Scalar>()>

2 class Array : public VecExpr<Array<Scalar,Size>, Scalar> {

3 alignas(Size*sizeof(Scalar)) Scalar x_[Size];

4 ...

The constructors of this type should reflect the normal ways to fetch data, e.g.

1 public:

2 Array(Scalar x) { broadcast(x); }

3 Array(const Scalar* ptr) { load(ptr); }

4 template<class T> Array(const Scalar* beg, const T& offset) { gather(beg,offset); }

5 ...

Math operations are provided by the expression templates, and so the complete implementation
of the portable SIMD array has less than 100 lines3. Now, the type- and architecture-specific
optimizations (via intrisics) are obtained by specialization of this class template. For example

1 template<>

2 class Array<double,4> {

3 public:

4 // allows accessing individual elements, but requires compiler support as it is not

strict C++

5 union {

6 __m256d reg; // this array specialization wraps an intrinsic type

7 double x_[4];

8 };

9

10 Array(__m256d other) { reg = other; } // allow construction from wrapped type

11 ...

Note that the specialization no longer uses expression templates, there is no benefit in doing
so since each SIMD operation is by definition a single instruction. Instead, operators are
overloaded to return arrays directly, for example

1 inline Array<double,4> operator+ (const Array<double,4>& a, const Array<double,4>& b) {

2 return _mm256_add_pd(a.reg, b.reg);

3 }

For transcendental operations, for which there are no native instructions, the overload needs
to loop over individual elements, e.g.

1 inline Array<double,4> cos (const Array<double,4>& a) {

2 Array<double,4> r;

3 #pragma omp simd

4 for (size_t k=0; k<4; ++k) r[k] = cos(a[k]);

5 return r;

6 }

3https://github.com/su2code/SU2/blob/v7.1.1/Common/include/parallelization/
vectorization.hpp

https://github.com/su2code/SU2/blob/v7.1.1/Common/include/parallelization/vectorization.hpp
https://github.com/su2code/SU2/blob/v7.1.1/Common/include/parallelization/vectorization.hpp
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Then, it is up to the compiler to call specialized libraries that may vectorize this type of
operation (via some series expansion). To call such functions directly, it is important to note
that different compilers use different libraries, thus one more layer of encapsulation is needed.

Similarly to what is done with expression templates, the specializations for different types
and SIMD widths are obtained with code generation. This can be done using only the C
preprocessor by defining a generic specialization in a header file (a "template" specialization as
it were) where the names of the types, the size, and other properties are represented as macros.
That is

1 template<>

2 class ARRAY_T {

3 public:

4 using Scalar = SCALAR_T;

5 using Register = REGISTER_T;

6 enum : size_t {Size = sizeof(Register) / sizeof(Scalar)};

7 union {

8 Register reg;

9 Scalar x_[Size];

10 };

11 ...

The same could be done for the implementation of the math operators, however, it is more
elegant to define a common interface and then rely on overload resolution. For example

1 inline ARRAY_T operator+ (const ARRAY_T& a, const ARRAY_T& b) {

2 return simd_add(a.reg, b.reg);

3 }

where "simd_add" is defined (elsewhere) as

1 inline __m256d simd_add(__m256d a, __m256d b) { return _mm256_add_pd(a,b); }

2 inline __m512d simd_add(__m512d a, __m512d b) { return _mm512_add_pd(a,b); }

3 // etc.

Specializations are created by defining the symbols and overloads, and then including the header
with the generic specialization.

1 #ifdef __AVX__

2 // Create specialization for array of 4 doubles.

3 // symbols

4 #define ARRAY_T Array<double,4>

5 #define SCALAR_T double

6 #define REGISTER_T __m256d

7 // overloads

8 inline __m256d simd_add(__m256d a, __m256d b) { return _mm256_add_pd(a,b); }

9 // generate

10 #include "generator.hpp"
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11 // undefine symbols

12 // #undef ...

13 #endif

The code generation mechanism is as concise as the base SIMD type4 and it is not specific
to any architecture. Its only requirement is the concept of a "native" SIMD type, which is
available for a number of architectures, such as x86, ARM, and POWER, to name a few.

Listing 4.9 shows the explicitly vectorized version of "tangentComponent" written using the
SIMD type. The algorithm is unchanged, hence it is as expressive as before. Nevertheless, it
performs as if intrisics were used directly. The only intrusion is in how the loop is advanced
and how data is retrieved and stored. Note how the interface for accessing data operates on
entire rows of the matrix type, this allows the different modes of accessing data (explained in
the previous section) to be selected automatically based on the storage layout.

1 void tangentComponent(const Matrix& n, Matrix& ut) {

2

3 constexpr size_t nDim = 3;

4 using Double = Array<double,4>;

5

6 for (size_t i = 0; i < n.rows(); i += Double::Size) {

7 auto n_i = n.getRows<std::array<Double,nDim> >(i);

8 auto ut_i = ut.getRows<std::array<Double,nDim> >(i);

9

10 auto un_nn = dot(ut_i,n_i) / dot(n_i,n_i);

11 axpy(-un_nn, n_i, ut_i);

12

13 ut.setRows(i, ut_i);

14 }

15 }

Listing 4.9: Explicit vectorization using a SIMD type.

Branch-less code

For code more complex than the example above, the use of a SIMD type may have a stronger
implication. Namely that it is not possible to branch (in the traditional sense) based on
comparisons involving SIMD types, for example

1 Double fcn(Double a, Double b) {

2 if (a > 0) return a+b;

3 else return 2*b-a;

4 }

4https://github.com/su2code/SU2/blob/v7.1.1/Common/include/parallelization/special_

vectorization.hpp

https://github.com/su2code/SU2/blob/v7.1.1/Common/include/parallelization/special_vectorization.hpp
https://github.com/su2code/SU2/blob/v7.1.1/Common/include/parallelization/special_vectorization.hpp
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is not valid code, which poses an implementation challenge for piece-wise functions. The way to
vectorize conditional expressions is to evaluate all branches and combine the results via masking
operations. This masking can be either logical

1 auto mask = a > 0;

2 return mask & (a+b) | ~mask & (2*b-a);

or arithmetic.

1 auto mask = a > 0;

2 return mask * (a+b) + (1-mask) * (2*b-a);

In the former the relational operators (>,<,==,etc.) are overloaded to return SIMD types
where all bits of each lane are either 1 or 0, masking is then done via bitwise operations.
All these operations have SIMD variants, and this is the strategy used by compilers (when
they succeed). For arithmetic masking, the results of the vectorized comparisons need to be
converted to 0.0 or 1.0. Thus this approach has lower performance and care is needed if any
branch may produce a non number (since 0 × Nan 6= 0b&Nan). However, it is compatible
with algorithmic differentiation types and natural for some functions. Consider for example
the upwind flux of a scalar variable

1 Double flux(Double mdot, Double a, Double b) {

2 if (mdot > 0) return mdot*a;

3 else return mdot*b;

4 }

which can easily be made branch-less by clamping "mdot" using min and max (which have
native SIMD implementations).

1 return max(mdot,0)*a + min(mdot,0)*b;

Although branch-less code is not required by GPU, their SIMT (single-instruction-multiple-
thread) execution model also benefits from it. Even scalar code executed on CPU may benefit
with the increased predictability of the operations.

4.1.5 Algorithmic complexity

So far, the discussion was centered on techniques and aspects of improving particular algo-
rithms. It is important, however, to first choose an appropriate algorithm (or to question
existing choices), lest any lack of performance be due to scalability rather than lower-level per-
formance aspects. This amounts to evaluating the complexity of the algorithm, that is, how the
computational effort and storage requirements grow with the size of the problem. It is highly
desirable for a simulation code to scale linearly. For that to happen, its components also need
to scale linearly, otherwise they may unexpectedly become responsible for large fractions of the
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total runtime. The unexpectedness of this has two sources, one is the hierarchical nature of
some elements of the hardware, the other is the "shape" of the problem.

Consider for example that loop tiling has no effect if the data already fits naturally in cache.
Similarly, the performance of an algorithm that uses linear searches will degrade significantly
each time the size of the data forces it to reside in slower memory. In fact, it is common
for high-complexity algorithms to be faster than low-complexity alternatives on small problem
sizes due to locality effects (which may give the programmer the wrong impressions during early
testing), but then, of course, perform poorly at scale.

Regarding "shape", in two and three dimensions the number of boundary elements is propor-
tional to

√
N and N2/3 of the total number of elements (N), respectively. These sub linear

relations allow some algorithms, that operate on boundaries, to have more than linear com-
plexity without becoming a bottleneck. However, for a very slender 3-D domain (in the limit,
a slice) such algorithms may "suddenly" become a bottleneck since the number of boundary
elements is directly proportional to the total. Two relevant examples, based on the experience
of the author with SU2, are presented next to illustrate how algorithm complexity can guide
the implementation of one algorithm and one data structure.

Transposing a sparse matrix

In the context of interpolation methods for fluid-structure-interaction interfaces, described in a
previous chapter, the conservative approach involves transposing the interpolation matrix for
structural displacements. This matrix is usually stored by rows, that is, for each fluid node,
the indices and weights of the structural donor nodes are known. Transposing this information
answers which fluid nodes does each structural node contribute to. Solving this by performing
multiple linear searches has quadratic complexity in the number of boundary points. A better
alternative is to first convert the original matrix into triplets (row,column,value) and then sort
them by column (with N logN complexity), since this allows them to be traversed only once.

An augmented queue

Consider a queue (a structure that allows items to be added to the back of the queue and
retrieved from the front, efficiently) with the additional characteristic that it should allow
arbitrary items in the middle to be found and removed. Referring to STL types, a vector
provides efficient push back, however, both searching and erasing elements is linear in the size
of the vector. A list allows any item to be modified with constant complexity but searches are
again linear (and much more expensive due to locality effects). Finally, maps (i.e. hash tables
or binary trees) provide either constant or logarithmic search times, respectively, however the
insertion order is not known like in a queue. One way to keep track of this order is to combine



4.2. Algorithms and data structures of unstructured solvers 91

a map with a vector, where the former maps the value of the items to their position in the
vector. Then, to remove one item from the queue, it should not be erased from the vector
(since that has linear complexity), instead, a sentinel value should be left in its place. Once
a number of elements has been marked for erasure via this process, the vector is compressed
and the map is updated. Making this number proportional to the number of elements gives
the operation constant complexity on average (also known as amortised constant time). This
is also the strategy used in the STL vector to provide efficient push back.

A hybrid solution like this should only provide an interface for the operations it implements
efficiently, a queue with "find and erase" in this case, and not the interface of either of the
underlying types (it is generally bad practice to make expensive operations convenient to use).

4.2 Algorithms and data structures of unstructured solvers

Before proceeding to apply the general concepts of section 4.1 to unstructured solvers, first, it is
helpful to describe their algorithms in terms of general characteristics. Here, what is meant by
algorithm is not a specific method, for example, least-squares gradient computation, but rather a
more general classification with respect to computational intensity and data accesses. Note how
these two factors dictate which implementation aspects (e.g. data layout) and optimizations
(e.g. vectorization) are relevant to obtain high performance. Furthermore, they have a major
influence on parallelization strategies, as will be discussed in section 4.3.

In unstructured solvers there is no inherent structure (e.g. a grid) that defines how elements
(triangles, hexahedra, etc.) are composed, and how nodes (and elements) are connected to each
other. Instead, this type of information, which is divided in those two major types, needs to
be stored explicitly in some structure that enables algorithms to be implemented.

4.2.1 Composition and adjacency matrices

Composition expresses how certain geometric entities are defined in terms of others, for example,
which nodes form an element (that is which node indices, not their coordinates) as Fig. 4.3
shows. This is how most mesh formats are defined, thus it is the starting point to compute the
geometric properties of the mesh, and to obtain the second type of information.

Adjacency expresses direct connections between the same type of geometric entity, for example,
the lists of neighbors of each element or of each node. Clearly both types of information can
be stored as sparse matrices. However, due to its symmetry, adjacency can also be represented
as a graph, that is, a collection of connected pairs ("edges") of geometric entities. A graph
uses approximately the same storage space as a compressed sparse format, but it has a regular
structure (e.g. a matrix with 2 columns) which is important for the implementation of some
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Figure 4.3: Definition of the elements of a mesh.

algorithms. Adjacency is used in the implementation of finite volume methods to integrate
the divergence of fluxes for the control volumes. In cell centered codes the edges of the graph
correspond to the faces of the elements. Whereas in node-based codes they correspond to
the edges of the elements, which in turn constitute the faces of the dual control volumes (see
Fig. 4.4). Note that in median-dual discretizations, the dual volumes are obtained by connecting
various medians around each edge, however, this is not clear in the figure. For example, in 3-D
one "dual face" is defined by the set of triangles obtained by connecting the median of the edge
with the medians of the primal faces and elements that surround it. Nevertheless, once the
areas of these construction faces are summed, there is only one noticeable difference between
cell- and node-based discretizations. Namely that (median) dual faces are located half way
between nodes (by construction), which is not the general case for primal faces and volumes.

0 1

2
3

4

 1 

 0 

 4 
 3 

 2 

Edges
0: (0,1)
1: (0,4)
2: (1,2)
3: (2,3)
4: (3,4)

Neighbors
0: (1,4)
1: (0,2)
2: (1,3)
3: (2,4)
4: (0,3)

0
 0 

Dual volume

Node
0 1

2

34

Element

 0  1 

 4 

 5  6 

 3 

 2 

 7 

Composition
0: (0,1,3,4)
1: (1,2,3)
2: (3,2,7)
3: (3,7,6)
4: (4,3,6,5)

Figure 4.4: Definition of the connections between control volumes.

This type of information is generally not needed for finite element methods. Only the compo-
sition of the elements is required when the equations are integrated for each element based on
nodal values. Note that adjacency indices do not need to follow any particular order, conversely,
to properly define an element requires its nodes to be specified according to some convention.

During the discretization of the equations, these composition and adjacency structures are used
to reference geometric and solution variables, which are logically associated with the various
geometric entities. For clarity, logical association means that some integer index can be used
to refer to both the geometric entity and the associated variables. It does not mean that
data is packed into various geometric objects, in an object-oriented way. Using the available
bandwidth in the most effective way is crucial for performance, as discussed in the previous
section. To that end, an efficient solver implementation is mostly data-oriented. That is, akin to
a database whose tables are the various matrices of variables. Then, composition and adjacency
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matrices are the means by which algorithms can query that data efficiently (i.e. with minimal
indirection).

4.2.2 Types of algorithm

Point loops

The simplest algorithms are implemented by looping over solution locations, in any order,
without needing to access the data of neighbors. One example is the computation of source
terms. In terms of data dependencies, the reference for this type of operation is the "axpy"
operation. Therefore, sequential access is possible and easily vectorizable if column-major or
hybrid layouts are used to store data. Otherwise, vectorization is only profitable for compute-
intensive tasks.

Stencil operations

This type of operation is akin to a point loop where information from direct neighbors is needed.
The simplest example of this is a sparse matrix-vector multiplication (SpMv) (assuming the
matrix is stored by rows). Since data is only read from neighbors (and not written to them)
the outer indices can also be processed in any order. However, the number of inner indices is
unlikely to be the same for every outer index. Therefore, vectorizing the processing of multiple
outer indices is not trivial, and may require the use of the hybrid layouts described previously,
inclusive for the adjacency matrix. However, note that this type of data access is typically found
in low compute intensity tasks (truly akin to SpMv), hence that only benefit significantly from
vectorization on some architectures. This is because for symmetric or anti-symmetric algorithms
(i.e. f(i, j) = ±f(j, i)) looping over edges is two times more computationally efficient since the
connection between locations i and j is only visited once (thus f is computed once). However,
that may not be the case for bandwidth, consider the computation of gradients by the Green-
Gauss method implemented either as a stencil operation or a loop over edges. The latter
option requires the gradient at each node to be modified many more times, namely one to
initialize it to zero, several to update it with contributions from various edges, and a final to
divide the surface integral by the volume. The stencil operation accesses the area of each face
two times, nevertheless, it still accesses less data, especially when the number of degrees of
freedom per node is large. Of course, temporal locality effects make this analysis less linear,
notwithstanding, experience in SU2 shows the stencil version is generally faster.
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Edge loops

In the context of finite volume methods, edge loops are associated with expressing a discretized
conservation principle. As discussed above, looping over edges is the right choice for compute-
intensive calculations whose results affect the two nodes of each edge. The traditional example
is the computation of convective and viscous fluxes. By definition edges are defined by two
nodes. Therefore, computations can be vectorized over multiple edges without having to rely on
hybrid layouts. However, this type of gather-scatter data access (shown in Fig. 4.5) introduces
a parallelization challenge, which will be addressed in section 4.3.

Figure 4.5: Gather-scatter pattern in edge loops.

Element loops

Loops over elements are common in finite element discretizations and are also found in the
preprocessing of finite volume meshes. With respect to data access, they are similar to edge
loops and thus pose the same parallelization challenge. However, in an unstructured context,
not all elements have the same number of nodes. Therefore, to process multiple elements in
a vectorized manner requires then to be of the same type. This suggests either an ordering
of elements by type, or a processing schedule. Note that although finite element discretiza-
tions are computationally intensive, in structural applications they are inexpensive compared
with the solution of linear systems (unless these are solved in a matrix-free manner, which is
rare). For this reason, it is less important to vectorize such computations, nevertheless, small
loop optimizations are still relevant. Here, it is worth noting some key aspects of high-order
methods. First, a large number of solution nodes is uniquely associated with each element,
hence the corresponding data is accessed sequentially. Second, these methods rely heavily on
matrix-matrix multiplication, which can be optimized via BLAS routines, rather than by ex-
plicit vectorization. These are the main computational aspects that make flux-reconstruction
methods highly suited for future HPC systems [131].

Linear system updates

In implicit solution methods, the solver is responsible for preparing a linear system as part of
the algorithms described above. This involves setting the non-zero values of a sparse matrix
and computing a right-hand-side vector. For generality the sparse storage format is typically
independent of the domain-specific structures. However, it may be convenient to augment it
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to make the matrix updates more efficient. For example, in finite volume methods each edge
can be uniquely associated with two off-diagonal values (i, j and j, i). Doing so avoids having
to find the location of those values in the storage layout of the matrix.

4.2.3 Improving temporal locality

Except in the simplest algorithms, which access data sequentially, data indices are accessed
multiple times. For example, each node is common to multiple edges and multiple elements.
Therefore, due to caching effects, it is important for multiple accesses to the same location to
occur as close to each other as possible. This improves performance by the same mechanism as
loop tilling, that is, by preventing data from being retrieved from main memory multiple times.

From a graph theory point of view, this is achieved by renumbering indices such that the
bandwidth of the graph (and any associated sparse matrix) is minimized. One method that
achieves this is the Cuthill–McKee algorithm [132]. Then, the main entities that those indices
form (edges or elements) should be sorted such that traversing them in order implies using
recently used data. Which can be achieved by sorting by minimum index, using the maximum
to break ties [123]. For edges this is equivalent to sorting by first followed by second index [23].
This convention is useful since it encodes the direction of any vector associated with the edge
relative to its nodes (i.e. "points" from i to j). It should be noted that to use native scatter
instructions, the sorting strategy needs to be modified so that indices do not repeat within each
SIMD group. Nevertheless, on current architectures the load-transpose (or transpose-store in
this case) strategy described before is more efficient [124].

4.3 Parallelization approaches

High performance computing and parallelization are indissociable. Having discussed, in the pre-
vious sections, general implementation aspects and algorithms (in an abstract sense) it will now
be clearer what different parallelization approaches require of the algorithms, and what implica-
tions they may have to their performance. Parallelization approaches vary mostly with respect
to the granularity with which work is distributed over multiple workers (machines, processors,
cores, threads, SIMD lanes, execution units, etc.). The usual way to extract parallelism from
an unstructured solver is through domain decomposition. This approach is compatible with
distributed memory systems, where individual machines do not have direct access to the mem-
ory of others, hence it provides coarse grained parallelism. On shared memory systems, where
multiple workers can access the same memory pool, it becomes possible to exploit finer-grained
division of work. To some extend, vectorization is an example of this, since multiple data val-
ues are processed simultaneously. The heterogeneity of modern high performance computing
(HPC) systems (e.g. CPU+GPU) has contributed to the increased interest and development
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of task-based parallelism. This approach consists in expressing the program as individual tasks
with certain data dependencies, which are interpreted, by a runtime scheduler, as a directed
acyclic graph (tasks as nodes, dependencies as edges). This scheduler is then responsible for
dynamically mapping this graph to the available hardware resources [133]. This approach
promises portability and reduced maintenance, as HPC systems progress into the exascale era.
However, it requires a rewrite of the code (typically using a domain specific language), and
the magnitude of such a task is clearly outside the scope of this work. Furthermore, even the
algorithmic differentiation of shared-memory API’s, such as OpenMP, is not widely available
in open-source AD tools [134].

4.3.1 Domain decomposition

Although the geometric aspect of domain decomposition is easy to visualize, its impact on algo-
rithms can be less evident. In fact this approach does not require the problem to be geometric
in any way. Sparse matrix-vector multiplication is a good case study that demonstrates domain
decomposition in a more abstract sense. The implications to the algorithms of unstructured
solvers should then be evident, since SpMv is akin to stencil operations (or their equivalent
edge loops).

General implementation aspects

Consider a sparse matrix with the sparsity pattern shown in Fig. 4.6, distributed over two
workers, i.e. each responsible for half of the rows.

Figure 4.6: Global matrix structure.

Note how to perform a matrix-vector product, some coefficients (colored in red) of the two half
matrices need to be multiplied by values of the vector that belong to the other domain. In
a distributed-memory context, it is not efficient to communicate those values every time they
are needed. Instead, the partitioned vectors of each domain are extended with so-called halo
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values. Furthermore, it is common for the data structures of each partition to be defined in
terms of local indices, and for halos to be implicitly defined by their local index. For example,
the tail of the local vectors contains all halos. Then, these sections of the vectors need to be
kept consistent across all partitions. In the SpMv example, assuming that values are consistent
at the start, only the result of the product needs to be synchronized, or communicated. This
involves setting each halo value equal to the value computed by the partition responsible for
that global index. These aspects are shown in Fig. 4.7.

Figure 4.7: Local matrix structures and vectors with halo values.

In a shared-memory setting, communications are simple copy operations, whereas in distributed-
memory the responsible partition needs to send messages to partitions that depend on its values.
At the same time, receiving partitions need to listen for incoming messages to then update their
halo values. Note that axpy-type operations do not require communications since each par-
tition can directly compute its halo values. Communications are typically implemented with
the Message Passing Interface (MPI) standard, the details of which are outside the scope of
this work. However, it is important to note that MPI defines various communication modes,
and the non-blocking type should be used to allow the application to scale to large number of
partitions. Furthermore, communications are limited by bandwidth and thus benefit from all
optimizations mentioned so far for that type operation.

Challenges

There are, however, efficiency aspects specific to domain decomposition. The main ones are
load balancing and minimization of communication costs. Note how a different distribution
of the example matrix (splitting it just above or below the middle) would not create halos,
formally it would not cut edges of the graph. However, this would result in an unbalanced
distribution, where one worker would be assigned more work, thereby becoming a bottleneck.
Partitioning algorithms attempt to minimize edge cuts while keeping load balance within some
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tolerance. This requires a cost model to be defined for the application, to then assign a weight
to each partitioned entity. For the SpMv example, the cost model is the number of non-zeros
and thus the weight of each row is its number of coefficients. For a finite volume discretization
the cost model is some combination of the number of edges and nodes per partition, then,
the weight of each node can be defined as the number of connected edges plus a constant.
Note that although it is possible to balance both edges and nodes simultaneously, this tends to
significantly increase the number of edge cuts. For finite element discretizations the integration
order of the elements should also be considered. Regardless of the accuracy of the cost model,
some effects are either difficult to predict, or impossible to account for. For example, the cost
of boundary conditions, temporal locality effects due to local renumbering, the cost of iterative
processes (e.g. for thermodynamic properties or wall models), to name a few. In the end, there
is always some unbalance.

Another relevant aspect of domain decomposition, is that in heterogeneous systems the com-
munication costs are not uniform due to the network topology. For example, cores of the same
processor can communicate much more efficiently than cores from different machines, even if
they are connected by high performance networks. Distributing a graph accounting for het-
erogeneity in the network (and possibly in the capabilities of the workers) is known as graph
mapping (rather than partitioning).

To some extent, the above-mentioned non-blocking communication mode ameliorates both is-
sues. First, by not forcing the order in which messages are received, it allows faster messages
to be processed first, thereby hiding the latency of slower ones. And second, by separating the
send and receive phases, it allows computations to be performed between them, which hides
communication costs, and moreover, may improve load balancing by allowing distinct tasks
to execute asynchronously (i.e. without synchronization barriers in between, recalling that it
may not be efficient to balance both point-loops and edge-loops). Of course, this requires the
code to be designed to take advantage of this MPI capability. Another way to improve load
balancing, and account for network heterogeneity, is to use different parallelization strategies
within each partition.

4.3.2 Shared data parallelism

Shared data parallelism works at the level of individual algorithms (as described in subsection
4.2.2) by assigning workers to portions of the algorithms. Generally these are some form of
loop over entities of the domain, thus a portion is a part of the loop’s range (i.e. a chunk, using
OpenMP terminology). Recalling that different loop indices require access to the same data,
fine grained distribution of loop indices is only possible if different workers have direct access
to data (i.e. explicit communication is not necessary).
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Benefits and limitations

The fine grained distribution mentioned above, is only efficient if accessing shared data is cheap.
For example, although two processors of a two-socket machine have access to the entire memory
of the system, however, it is not efficient for both to simultaneously operate on a small region
of shared memory due to the cache coherence overhead that this introduces. Similar reasoning
applies to cores of the same processor modifying the same cache line, which is known as false
sharing. Apart from this particular issue, shared data access is efficient within NUMA nodes
(non-uniform-memory-access) due to the uniform access of workers in those groups. Therefore,
domain decomposition is also applicable to shared-memory systems to distribute data over
NUMA nodes, in a way that restricts shared access to specific steps of the program, i.e. the
communications, which in this case do not have to be handled with MPI.

Insofar as data is uniformly shared, the distribution of work is not forced to be static (as in
domain decomposition) and thus dynamic load balancing is possible. In the SpMv example, this
means that small groups of rows could be assigned dynamically to each worker. A particularly
useful way to achieve this is using OpenMP, which provides a portable interface to distribute
loops and tasks (i.e. individual sections of code) over threads via work-sharing directives.
It is worth noting some performance aspects particular to OpenMP. First, note that dynamic
scheduling has a cost, and thus it is not appropriate for light-weight loops which have a constant
cost per loop index, e.g. "axpy" operations. Furthermore, static scheduling allows a number
of that type of operation to be executed without synchronization, since each thread does not
depend on the results of others. Second, very fine division (i.e. scheduling) of large loops is
inefficient (even if done statically) due to the cache aspects mentioned above. Instead, loops
should be divided such that on average, an equal number (1 to 10) of chunks is available for
each thread. A final source of overhead is the startup of each parallel section, which also
forces a synchronization at the end. It is important, therefore, to amortize this cost over many
operations, which are made ready to call in parallel (by means of work-sharing directives), but
do not launch threads by themselves (i.e. request them from the global thread pool).

The major challenge, however, of shared data approaches, is dealing with potential data-races
that occur when different workers try to modify the same variable, which can happen for
example in edge loops, as Fig. 4.8 shows. The strategies of dealing with this issue are discussed
next.

Figure 4.8: Data race in an edge loop, caused by simultaneous access to one point.
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Locks and atomic operations

Atomic operations and locks are the typical software-based solutions that can be used to guard
the access to potentially colliding memory locations, this has the advantage of requiring few
changes to the code. However, for frequently used resources, these solutions have limited
scalability, moreover atomic operations are only defined for native types. Higher performance
solutions are needed for that type of resource. Nevertheless, locks and atomics are particularly
useful for reduction operations, e.g. dot products of large vectors, finding the minimum or
maximum value, etc. The typical implementation pattern, is for each thread to first work on
local variables (within the loop), such that only the final update (outside of the loop) of the
shared variable needs to be guarded.

Loop transformations

Note that some algorithms are inherently thread safe, namely point loops and stencil operations,
since data is gathered into locations that are only modified by the worker assigned to them. In
other words, data is not scattered. Any gather-scatter operation can be converted into a stencil
operation, however, this may not be efficient for compute-intensive algorithms (as discussed in
subsection 4.2.2).

Reduction

A reduction strategy consists in separating the compute and scatter components of loops, such
that the former does not have to be duplicated. For example, edge quantities are stored (without
scattering) during the normal edge loop, and then reduced for each node via a separate stencil
operation, as Fig. 4.9 illustrates. Alternatively, the target locations (e.g. the residual vector)
could be (partially) duplicated, reduction then becomes a simple sum at the expense of some
storage overhead.

Step 1- Fluxes Step 2- Reduction

∑ .

Figure 4.9: Reduction strategy to avoid data races in edge loops.

The reduction approach described above makes the original loop embarrassingly parallel. How-
ever, it has the downside of adding a low compute intensity reduction loop. In the context
of finite volume discretizations and implicit methods, that loop is made more expensive by
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the updates to the residual Jacobian matrix (during the computation of edge fluxes). The
reduction step then involves setting diagonal blocks of the matrix as the sum of the blocks in
the same column, this is an operation with very poor memory access pattern when row-major
storage is used for the matrix. This column sum warrants further explanation, the edge flux
(F ) contributes to the residual of two nodes (i and j), whose variables are used to computed
it, therefore the flux Jacobians (∂iF and ∂jF ) are used to update four locations of the residual
Jacobian matrix (Aii ← Aii + ∂iF , Aij ← ∂jF , Ajj ← Ajj − ∂jF , Aji ← −∂iF ). Since the
pair (i, j) is unique to each edge, it is always safe to write to the off-diagonal blocks. It is
for the diagonal entries that race conditions may occur, note however that the data required
to compute them is naturally stored in the columns, i.e. Aii = −

∑
k 6=iAki, hence no storage

overhead is incurred. Reducing the matrix diagonal is less expensive for scalar solvers, where
the computation of fluxes is typically manipulated to ensure diagonal dominance, which results
in Aii = −

∑
k 6=iAik (i.e. a row sum). This is also true for structural finite element solvers,

on the other hand, reducing their residuals has a larger overhead since elements make distinct
contributions to the residuals of each node. For this reason, the reduction strategy is not so
well suited for this type of discretization.

Grid coloring

Edge coloring consists in identifying non intersecting groups of edges that can be freely processed
in parallel, thereby avoiding the overhead of the reduction loop. However, recall that nodes are
numbered to reduce the graph bandwidth and edges are sorted to improve temporal locality
when traversing them. Therefore, looping over non intersecting edge groups has a negative
impact on temporal locality (increased cache misses), so much so that with simple edge coloring
the algorithm will perform worse than with the reduction strategy. To preserve some temporal
locality it is possible to color groups of edges as depicted in Fig. 4.10. An adequate group
size is 500 edges. This grouping introduces some parallel inefficiency due to the reduction in
number of assignable work units within each color (a group must be processed by a single
worker). A greater challenge in coloring the edges of an unstructured dual grid, is doing so
with a reasonable number of colors. Note that the maximum number of intersecting edges can
easily exceed 30 and a large number of colors also introduces parallel inefficiency by reducing
the number of work units (colors cannot be processed simultaneously). Low parallel efficiency
can be especially problematic on coarse multigrid levels due to the reduced mesh size.

A greedy algorithm is used in SU2 to color any entity defined by a set of points (edges, elements,
or groupings thereof). The algorithm tries to assign the first available color to each group. A
color is not available if any point in the group has already been associated with the color by
another group. The interface with which this algorithm works is a sparse pattern.
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a) Simple coloring b) Group coloring

Figure 4.10: Simple (single) and edge group coloring.

Automatic fallback strategies

All strategies discussed above to deal with data-races have some downside. Group coloring
generally has the best performance and it is relatively non-intrusive, as it involves a simple
permutation of loop indices. However, it is possible for cache misses to become too frequent or
parallel efficiency too low. Since the conditions for this depend on the specific problem, it is
reasonable to combine different strategies. For example, if the coloring of some mesh is detected
to be too inefficient, the reduction strategy can be used instead (this is used for edge loops in
SU2). Another option is to use coloring while it is efficient, and to use locks (or atomics) for
the remainder of the loop, thus avoiding the storage overhead of the reduction strategy. This
is used for element loops in SU2, for which this overhead would be significant as mentioned
before. Here however, good temporal locality is not as important for performance due to the
work-split between discretization and linear solution. For that reason, simple element coloring
can be used to maximize the number of assignable work units. In fact, if the solution process
requires a direct factorization of the stiffness matrix, shared data parallelism is essential to
avoid excessive memory usage (thus rendering the performance of the discretization phase a
secondary concern).

4.3.3 Interaction between approaches

Combining different approaches allows the best overall performance. It is important, therefore,
to discuss some details of their interaction.

MPI + Threads

The main aspect of a hybrid parallel implementation where multiple threads work within an
MPI rank (responsible for a partition of the domain) is whether one or all threads make calls
to MPI. In thread funneled mode only the main thread can make calls to MPI, in serialized
mode all threads can use MPI but not simultaneously, which is only allowed in multiple mode.
This is represented in Fig. 4.11.
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Figure 4.11: Difference between funneled and multiple communication modes.

For some algorithms (e.g. direct sparse solvers) multiple mode is fundamental for performance.
On the other hand, unstructured solver algorithms require less often communications, further-
more, when threads are not rigidly assigned to parts of the data, due to dynamic scheduling, a
synchronization point needs to be reached by the threads in a rank before communicating the
results of an algorithm. For these reasons the funneled mode performs well, so long as messages
are prepared and unpacked in parallel.

Threads and vectorization

It was mentioned that vectorization, to some extent, is an example of data parallelism. In
fact, the limitation of scatter instructions not being allowed to refer to the same location
multiple times, is similar to the data race problem described before, and thus can be solved
with grid coloring. Nevertheless, some destructive interference is possible. For example, in
edge/element loops the quantities associated with the outer indices are accessed sequentially,
which potentially allows them to be loaded/stored with SIMD instructions. However, coloring
implies a permutation of outer indices, it is important, therefore, to color groups of a size
divisible by the SIMD width.

4.3.4 Loop carried dependencies

A common characteristic of the algorithms discussed so far is that different loop iterations
are logically independent from each other. That is, they can be performed in any order, and
simultaneously so long as race conditions are dealt with. This is representative of discretization
loops, but not of any linear preconditioner that involves triangular solves (e.g. ILU, LU-SGS,
etc.). Insofar as these preconditioners are an important part of implicit solution methods, a
discussion on parallelization approaches is not complete without discussing them. To that end,
consider the triangular solve with a lower-triangular matrix, that is

Lx = b. (4.2)
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The forward substitution procedure to solve this system is naturally sequential. That is, unless
the structure of the matrix allows multiple starting points, the rows of x need to be processed
in order. A typical strategy to parallelize this operation when L is dense, is to consider it a
block matrix, that is [

L00 0

L10 L11

](
x0

x1

)
=

(
b0

b1

)
(4.3)

Then, after solving for x0, a smaller system is obtained for x1,

L11x1 = b∗1 = b1 − L10x0, (4.4)

whose right-hand-side can be computed in parallel. The size of L00 is chosen small compared
with L so that computing x0 sequentially does not become a bottleneck. Therefore, this blocking
of L is repeated many times, which also takes better advantage of the cache (see subsection
4.1.2).

When L is sparse, updating the right-hand-side in parallel is more challenging. If the matrix is
stored by rows, it is necessary to check whether each column index belongs to the desired block
(e.g. L10), likewise for the row indices of matrices stored by columns. Note that this information
is implicit for dense storage. Row storage has an additional complexity challenge if all rows
are traversed (to search for column indices), which would make the operation quadratic rather
than linear. While this is not an issue for column storage, computing matrix vector products
in parallel is more difficult due to data races. Solving either of these issues requires additional
information about the sparsity of the matrix, for example bandwidth and coloring, respectively.
Furthermore, note that this parallelization strategy is inefficient in a domain decomposition
context, due to the restricted view each worker has of the matrix.

A totally different approach to solve (4.2) in parallel is to use an iterative method. For example
Richardson iterations with a parallel preconditioner, such as Jacobi, Gauss-Seidel (with coloring,
see Fig. 4.12), approximate sparse inverse [135], or an additive Schwarz decomposition of L.
The Schwarz alternative creates multiple starting points for forward substitution by ignoring
some off diagonal coefficients. In fact this is the most evident, and common, strategy in domain
decomposition contexts. However, it loses efficiency as the number of workers increases, and
thus limits scalability when the condition number of L is high, as more iterations become
necessary. Note that iterative approaches are less common when L is part of a preconditioner
for a Krylov linear solver (which is already iterative).

To extend this discussion to factorizations, consider that LU = A is a system of equations,
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Figure 4.12: Example coloring of the rows of a matrix to allow simultaneous Gauss-Seidel
updates within each color.

namely
lii = 1

lij =

(
aij −

∑
k<j

likukj

)
u−1
jj j < i

uij = aij −
∑
k<i

likukj j ≥ i,

(4.5)

and thus can be solved in similar fashion to (4.2). Indeed obtaining the l and u coefficients
in Gaussian elimination order is akin to forward substitution. To parallelize this process it
is possible to block the matrices, with similar challenges when they are sparse. Although
less evident, (4.5) can be solved iteratively [136] (note that it is a fixed-point iteration), this
allows fine grained parallelism but has some drawbacks. Regarding storage, the algorithm can
no longer work in place by overwriting A, furthermore a Jacobi solution strategy requires at
least a partial copy of the factorization, whereas a Gauss-Seidel strategy requires coloring the
coefficients to avoid data races. Regarding computation, each coefficient requires the product
of a row with a column, note that accessing a column of a sparse matrix stored by rows is
not efficient (and vice versa) at best the location of the coefficients is known but they are not
adjacent in memory. Of course, if A is symmetric this is no longer an issue. These aspects make
the additive decomposition of A more efficient when the number of workers is relatively small
(which is generally the case in CPU clusters). Moreover this allows systems with the factors (L
and U) to be solved in parallel, since the resulting structure provides multiple starting points.

4.4 Case study, SU2 implementation improvements

The concepts and strategies discussed so far have been applied to SU2 in three stages. First,
some kernel areas have been refactored to improve locality and reduce overhead. Then, a
hybrid parallel strategy has been implemented to improve the scalability of the code, and to
improve the effectiveness of some algorithms (especially geometric multigrid and external direct
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sparse solvers). Finally, a vectorization library (based on a SIMD type) has been developed
and applied to convective and viscous flux schemes. This not only benefited existing methods,
but also made Newton-Krylov strategies cost-efficient.

The effect of these optimizations, was first analyzed for a simple subsonic flow problem, namely
Mach 0.6 at 2 degrees angle of attack (AoA) over the wing geometry of Fig. 4.13, obtained by
lofting two NACA0012 profiles. The chord is 0.25m at the root and 0.175m at the tip, the span
is 1m. The 0.25c line is swept back 5 degrees and the wing has no twist. Convective fluxes were
computed with a second order Roe scheme, the gradients via the Green-Gauss theorem, and the
flow variable reconstruction limited with Venkatakrishnan and Wang’s limiter. Menter’s SST
turbulence model was used without wall functions and with first order upwind discretization of
convective fluxes. A coarse mesh (approximately 530 000 hexahedrons) was used for the initial
investigations as that allows the code to be easily profiled. Moreover, this problem allows a
fair comparison of the different stages of implementation improvements, because it was not
significantly affected by other changes, algorithmic in nature, that significantly benefited other
problems. For example, the static load balancing strategies described in subsection 4.3.1 were
implemented, by the author, later than the initial general optimizations. It would thus be unfair
to compare the performance of the different stages of optimization for hybrid mesh problems.

Figure 4.13: Geometry, with pressure coefficient contours, of the simple benchmark problem.

Nevertheless, larger scale problems such as NASA’s Common Research Model (CRM, see
Fig. 4.14) were used to study particular aspects of the final implementation, and to obtain
reference execution times on some architectures5. In high-lift configuration the CRM has large
regions of separated flow, which make it difficult to obtain converged results with upwind
schemes. Instead, the JST scheme was used with second and forth order dissipation coefficients
of 0.5 and 0.01, respectively. The Spalart-Allmaras turbulence model was used ("noft2" vari-
ant) with first order upwind discretization of convective fluxes, as it is typical for this problem
[108]. Finally the "B3-HLCRM" reference grids were used, these are four mixed element grids

5A type of information that is rarely provided, but would be rather useful (for example, while choosing what
software to use for a project).
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(from tetrahedra to hexahedra) with 8, 27, 71, and 208 million nodes, henceforth designated as
Coarse, Medium, Fine, and Extra Fine, respectively.

Figure 4.14: Pressure coefficient contours on the high lift CRM at 8 deg AoA, medium grid.

4.4.1 General optimizations

Data layout refactoring

Until version 7, the storage layout in SU2 could be described as arrays of classes, i.e. solvers
would use arrays of variables, and all data associated with a node would be close together in
memory. As the code grew, and acquired multiphysics capabilities, this architecture became a
performance bottleneck due to the decreasing spatial locality and optimizability that ensues as
more data members and virtual functions, respectively, were added to the base class. Either
to allow access to particular variables of a new physics problem, or simply to allow common
solution variables to be accessed by descriptive names (rather than by "magic number").

The storage layout introduced in version 7 can be described as class of arrays of structures (or
row-major matrices), i.e. multiple arrays of structures (for example for the conservative and
primitive variables) are encapsulated in Variable classes. This higher level encapsulation was
kept to allow fine tuning of the layout. For example, if it proves beneficial for some method to
store the conservative and primitive variables of each node contiguously, fewer changes should
be required. The encapsulation also allows some variables to be stored only at particular nodes
(e.g. boundaries). Row-major storage is used due to the spatial locality effects mentioned
before, but also because the variables of a node (e.g. primitive variables) are passed by pointer
to many routines throughout the code. It would thus be difficult to even experiment with a
different layout.

The Variable classes that encapsulate the storage arrays remain polymorphic, this overhead
was reduced in two ways. First, as there is a nearly one-to-one mapping between solvers and
variables, the former access their own variables via references (or pointers) to derived class,
instead of base, to allow compilers to de-virtualize. Second, the arrays of structures stored
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by the variable classes are of generic types with a common interface, important routines (e.g.
computing gradients) were made generic (templated) and operate on the entire data sets (e.g.
on the entire field of primitive variables), thereby making any virtual cost O(1) instead of O(N).
Using this generic storage type for solution and geometric variables is also key to implement
vectorization, as it centralizes aligned allocation, padding, and high-level vectorized accesses.

Loop fusion

Memory bandwidth is the main hardware bottleneck to low-order finite volume methods (FVM),
when considering the typical ratio of compute-to-bandwidth of modern machines, and even
before taking advantage of their SIMD capabilities. The single largest block of memory allocated
by the solvers is the sparse matrix used to store the residual Jacobian for implicit solution
methods. This matrix is populated during edge loops where the flux and its Jacobians are
computed (with respect to the solution at the nodes of the edge). In previous versions of
the code, two edge loops would be performed for a viscous problem, one to account for the
convective fluxes, and another for the diffusive fluxes. This separation (between Euler and
Navier-Stokes solvers and numerics) is physically logical but makes poor use of the available
bandwidth. To avoid this overhead, the two loops were fused such that the viscous flux for
each edge is computed immediately after the convective flux. Later, the vectorized versions of
the classes used to compute fluxes, were designed such that both contributions are computed
together. Note that this sacrifices the ability to (cleanly) implement hybrid multistage explicit
time marching schemes.

Mixed floating point precision

As mentioned above, the sparse matrix needed for implicit solution methods is the largest block
of memory allocated by the code. Albeit easy to vectorize, sparse matrix-vector multiplication
is a bandwidth-bound operation. Since these linear systems only need to be smoothed, the
matrix can be stored in single precision while all other operations in the code are carried in
double precision. This improves the FLOP-to-byte ratio of sparse operations without impacting
the overall accuracy of the code for problems that are solved iteratively, nevertheless, by default
the code compiles for double precision linear algebra. The impact of this optimization is more
significant for centered convective schemes and stretched grids, as both increase the condition
number of the Jacobian matrix, and consequently the number of linear solver iterations.

Augmented sparse storage format

A block compressed row-major storage format (BCSR) is used for sparse matrices in SU2.
In the aforementioned residual loops the matrix is populated by setting these blocks. By
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mapping off-diagonal entries to edges and diagonal entries to nodes, the location of blocks in
1-D storage space does not have to be searched. For viscous 3-D problems this increases the
storage requirements of the matrices by approximately 7%. Storing the location of the diagonal
entries is also beneficial when computing and applying linear preconditioners, like ILU or LU-
SGS, that operate on the lower/upper parts of the matrix in different phases. Furthermore,
operations on the blocks of the matrix are accelerated using Intel MKL’s just-in-time code
generation for GEMM-type operations (matrix-matrix or matrix-vector multiplication), which
to some extent is an example of small loop optimization.

Numerical demonstration on benchmark problem

Total solution times (5 orders of magnitude residual reduction) were obtained for the simple
benchmark problem, using a machine with 24 cores (two Intel Xeon E5-2650v4 CPU) with SU2
versions 6.2.0 and 7.0.6. Both versions were compiled with GCC 8.2.0 with optimization flags
"-O2 -funroll-loops -ffast-math -march=broadwell -mtune=broadwell"6, Intel MPI 2019.6 and
MKL 2019.4 were used (the latter is not relevant to version 6.2.0). Single core results were not
obtained as they are not representative of how CFD codes are used, nor of the compute-to-
bandwidth ratio of current mainstream hardware. Table 4.6 shows wall-time, total number of
iterations, and average time per iteration, version 7.0.6 is 3.2 times faster per iteration due to
the general optimizations.

Version Wall time Iterations Time per iteration

6.2.0 776 s 472 1.64 s
7.0.6 237 s 466 0.509 s

Table 4.6: Comparison of solution times for the simple benchmark, before and after general
optimizations.

4.4.2 Hybrid parallel strategy

As mentioned before, the main advantages of hybrid parallel approaches are the improved load
balance (static and dynamic), the reduction of communication costs (due to better awareness of
the network topology), and finally the increased efficiency of some algorithms. The benchmark
problem of Fig. 4.13 is used to demonstrate the strong scalability allowed by the hybrid strategy.
Solution times (as previously described) were obtained on a cluster with 24 core nodes (two
Intel Xeon E5-2650v4 CPU) connected by an InfiniBand network. Fig. 4.15 shows the observed

6The O3 level of optimization reduces the performance of the code, fast-math helps in the vectorization
of transcendental operations and dot products, in practice not all optimizations included with it are required.
Experience shows that accuracy is not compromised with GCC, moreover some of the fast-math optimizations
are used by default by the Intel compilers.
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speedup (relative to execution on one node) against the expected speedup (simply the number
of nodes).

Figure 4.15: Observed speedup vs expected speedup with increasing number of compute nodes.

On the 24 and 48 core runs, 24 MPI ranks were used, 16 were used on the other three. In the
transitions from 24 to 48 cores and 96 to 192 cores the relative speedup is approximately 1.85,
which is close to the ideal value of 2. However, from 48 to 96 cores the relative speedup is
1.65, this is due to the automatic switch from coloring to the reduction strategy (which for this
problem, on this kind of machine, performs noticeably worse). The final doubling of resources
produces almost no speedup, note that on the 192 core sample, there are approximately 2750
nodes (16 500 edges) per core. Therefore, communication costs are dominant and the solution
time is sensitive even to the position of the nodes in the network topology. Then, the final run
with 384 cores also marks the point where one MPI rank spans two NUMA nodes, which has a
negative impact on data parallel approaches (see subsection 4.3.2). Finally, note that for this
problem the solution time would increase in MPI-only mode with more than 48 cores, due to
reduced effectiveness of the geometric multigrid strategy. For this reason, this problem does
not permit a fair comparison between the MPI-only and MPI+threads implementations. To
that end, the CRM Coarse mesh was used to study the influence of the number of threads per
MPI rank on the wall time per iteration, with a fixed number of cores. Specifically 192 cores
(8 nodes) and 408 cores (17 nodes) as Fig. 4.16 shows.

With few threads per rank the domain decomposition overhead is highest (static load imbal-
ance, communication costs, etc.), whereas with few MPI ranks per compute node, i.e. many
threads, the shared memory overhead increases (coloring vs reduction, cache invalidation by
false sharing, etc.). For this system and problem, the solution time is minimized with one MPI
rank per socket (also a NUMA node in this system), this is expected anytime a significant
number of compute nodes is used, especially with lower performance networks. Recent x86
CPU architectures have up to 64 cores per NUMA node, in which case 2 to 4 MPI ranks per
NUMA node could be optimal, especially if that avoids falling back to the reduction strategy.
As observed with the benchmark problem, there is a large penalty for covering 2 NUMA nodes
with 1 MPI rank (24 threads in this case) therefore, the number of ranks should always be a
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Figure 4.16: Average time per iteration against number of threads per rank (2-socket 24 core
nodes), CRM Coarse mesh.

multiple of the number of NUMA nodes. From 192 to 408 cores at 12 threads per rank the
parallel efficiency is 91.2%. At those core counts, the hybrid parallelization allows a speedup of
1.11 and 1.22 respectively, compared to plain MPI. This correlation between number of nodes
and speedup is expected, and justified by the heterogeneity of communication times within
nodes or over the network. However, within a single machine, even if multi-socket, plain MPI
is expected to perform better insofar as the algorithms used remain effective with the number
of partitions used. With 408 cores the solution time improves by using 2 threads rather than 1,
whereas with 192 cores it worsens initially and only improves with 3 threads, this is explained
by three factors. First, with 192 cores the communication cost is lower as all nodes are on the
same network level, i.e. connected to the same switch; Second, load imbalance issues are less
important as MPI domains are still relatively large; Third, and finally, for this problem the
cost of switching to the hybrid approach is significant as the reduction strategy must be used
immediately (2 threads) by the majority of MPI domains, due to the difficulty in coloring the
edges of this mixed-element mesh.

4.4.3 Vectorization

The vectorization strategy is explicit and based on processing multiple edges simultaneously
using a SIMD type as described in section 4.1.4. For this reason, the implementation of the
convective and viscous schemes is as expressive as before, as listing 4.10 shows.

1 template<class PrimVarType, class ConsVarType, int nDim>

2 FORCEINLINE VectorDbl<nDim+2> inviscidProjFlux(const PrimVarType& V,

3 const ConsVarType& U,

4 const VectorDbl<nDim>& normal) {

5 Double mdot = dot(U.momentum(), normal); // "Double" is the SIMD type

6 VectorDbl<nDim+2> flux; // A static-size array of "Doubles"

7 flux(0) = mdot;
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8 for (int iDim = 0; iDim < nDim; ++iDim) {

9 flux(iDim+1) = mdot*V.velocity(iDim) + normal(iDim)*V.pressure();

10 }

11 flux(nDim+1) = mdot*V.enthalpy();

12 return flux;

13 }

Listing 4.10: Snippet of SU2 code illustrating the vectorization approach.

Two key aspects must be considered to extract the full potential of a SIMD type. First, the
number of variables is typically small (< 10), thus it is crucial for data sizes and loop counts
to be known at compilation thereby avoiding dynamic allocation and allowing perfect unrolling
of loops. Second, data accesses are more expensive due to the load-transpose strategy and the
higher probability of cache misses (see subsection 4.1.3) thus they must be amortized.

Accounting for these aspects requires dedicated (i.e. specialized) versions of each spatial dis-
cretization scheme for 2-D and 3-D, with or without viscous fluxes, which results in 4 combi-
nations in total. The 2-D/3-D versions allow known sizes, whereas the viscid/inviscid versions
permit directly re-using (due to inlining) some of the data gathered for the convective flux
in the viscous routines, and more importantly, scattering the results only once to the residual
vector and sparse matrix.

Class and function templates are used to create the aforementioned versions of each scheme,
polymorphism is used to insulate the templates, thereby stopping their propagation to the
client code of the numerical schemes, i.e. the solver classes. That is, all numerical scheme
class templates inherit from a conventional abstract base class. Then, the logic to select (i.e.
instantiate) the desired numerical scheme is centralized in a factory method, which also serves
as the template instantiation point for all 4 combinations mentioned above.

To simplify the interaction with the hybrid parallel implementation, these numerical classes
were designed to be thread safe. This means their state variables must be read-only, which
precludes passing data to class methods by "member variable" (which in any case is an anti-
pattern), therefore the implementation has a functional character. That is, code that can be
re-used across different families of numerical schemes is implemented in free functions. Similarly,
within families of numerical schemes, for which it makes sense to define a class hierarchy (e.g.
centered schemes), any intermediate results must still be passed explicitly when calling class
methods. At the expense of longer function signatures, a new developer can clearly see what are
the inputs and outputs of any function or method. This also forces all intermediate computation
results to be local, stack-allocated variables, which is a performance consideration as it allows
them to be truly temporary. Moreover it avoids any aliasing considerations associated with
heap-allocated variables (note that a member variable of a heap allocated object is also on the
heap).

The implementation components of each numerical method must be inline to minimize register
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spillage when calling functions, thus design patterns that rely on conventional polymorphism
cannot be used. For example, adding viscous fluxes to a convective method could be done
via the decorator pattern, whereby functionality is added to an existing object by attaching a
decorator object to it. To avoid polymorphism, a static variant of this pattern is used where
the decorator class (the viscous fluxes) is set at compilation via a template parameter. By
making this class the parent of the decorated class, any number of decorators can be chained
together (at compile time). Similarly, within a family of schemes, where it would be intuitive to
implement common parts in a parent class, and only small details in the final derived classes,
static polymorphism is used via the curiously recurring template pattern (see subsection 4.1.2).
The pseudo code of listing 4.11 shows the basic structure of these mechanisms.

1 // The abstract base.

2 struct NumericsSIMD {

3 virtual void ComputeFlux(...) const = 0;

4 }

5

6 // One of the viscous flux decorators.

7 template<int nDim>

8 class CompressibleViscFlux : public NumericsSIMD {

9 protected:

10 void ViscousTerms(...) const {...}

11 }

12

13 // A common parent for centered schemes, with Derived and Base classes as template

parameters.

14 template<class Derived, class Base>

15 class CenteredBase : public Base {

16 public:

17 void ComputeFlux(...) const final {

18 ... // gather data, do some computation

19 Derived::DissipationTerms(...); // static polymorphism

20 Base::ViscousTerms(...); // static decorator

21 ... // scatter results

22 }

23 }

24

25 // A final centered scheme, the viscous decorator is forwarded to the parent class.

26 template<class Decorator>

27 class JSTScheme : public CenteredBase<JSTScheme<Decorator>, Decorator> {

28 static void DissipationTerms(...) {...}

29 }

30

31 // Template instantiation in factory method, e.g. 3-D with viscous fluxes.

32 NumericsSIMD* Factory(...) {

33 return new CJSTScheme<CompressibleViscFlux<3> >(...);
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34 }

Listing 4.11: Pseudo code of the template mechanisms used to efficiently compose the vectorized
numerical classes.

Evidently this implementation required a complete re-write of the numerical schemes (not just
replacing a type). However, note that despite the template metaprogramming mechanisms, the
guiding principle of the implementation is removing indirection, not metaprogramming by itself,
which is only the means to achieve that principle. Notwithstanding, this is certainly the tallest
entry barrier in the implementation, as it is seen by many as a paradigm shift from declarative
programming. It is, however, inextricable from modern high performance C++, and there is an
ample supply of conference talks7 covering it in enough depth to acquaint new developers with
its idioms.

Interaction with algorithmic differentiation

Discrete adjoints (based on algorithmic differentiation, AD) are a central feature of SU2 [33]
enabling complex multidisciplinary optimizations [101, 118] as discussed in other chapters. A
typical reverse mode AD type contains a floating point primal value, and an integer adjoint
index. Therefore, in an array of such types the floating point values are not contiguous and
thus efficient vectorization is not possible. Nevertheless, when compiling the AD version of SU2,
"SIMD arrays" of the AD type are still used, which allows reducing the memory footprint of
discrete adjoint solvers. This is due to the use of preaccumulation and due to the repetition of
node indices within SIMD edge groups (that results from ordering the edges) which reduces the
size of the preaccumulated Jacobians. For the simple benchmark problem there is a reduction of
29% in the memory used by the AD tape. Therefore, although the AD version is not vectorized,
its runtime is still improved as the smaller memory footprint makes the tape faster to evaluate.

Preaccumulation is one of the less automatic features of AD, in the sense that it requires the
programmer to explicitly inform the AD tool of which variables are inputs or outputs of the
preaccumulated section of code. For this reason, this essential feature of AD is a common
source of error for new developers. In this implementation, an additional layer of encapsulation
is used to automate the registration of preaccumulation inputs, as shown in listing 4.12.

1 #ifndef SU2_AD // without AD

2 template<size_t nVar, class Container>

3 FORCEINLINE VectorDbl<nVar> gatherVariables(Int iPoint, const Container& vars) {

4 return vars.template get<VectorDbl<nVar> >(iPoint);

5 }

6 #else // with AD

7 template<size_t nVar, class Container>

8 FORCEINLINE VectorDbl<nVar> gatherVariables(Int iPoint, const Container& vars) {

7For example https://cppcon.org/
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9 VectorDbl<nVar> x;

10 for (size_t i=0; i<nVar; ++i)

11 for (size_t k=0; k<Double::Size; ++k) {

12 AD::SetPreaccIn(vars(iPoint[k],i));

13 x[i][k] = vars(iPoint[k],i);

14 }

15 return x;

16 }

17 #endif

Listing 4.12: Encapsulation of data access to automate aspects of AD preaccumulation.

This encapsulation also allows hiding some unusual template syntax, namely

1 auto x = vars.template get<VectorDbl<nVar> >(iPoint);

simplifies to

1 auto x = gatherVariables<nVar>(iPoint,vars);

and eventually it may be used to automate prefetching, which was not explored so far. For
example, memory addresses and sizes could be pushed onto a LIFO queue (i.e. stack) and
then popped and prefetched in between calculations. Note that prefetching instructions should
be blended with computations to hide their cost [137] instead of being issued close to load
instructions.

Numerical demonstration on benchmark problem

The simple benchmark problem is used again to show the effect of vectorization on solution
times. Table 4.7 shows the results for the 24 core machine (Broadwell architecture, which
supports AVX2 instructions). Table 4.8 shows the results on a machine with two Intel Xeon
Gold 6248 CPU and therefore support for AVX512 instructions. For this machine the code was
compiled with the Intel compiler version 2019.5 and Intel MPI 2019.6, with the optimization
flags "-O2 -funroll-loops -qopt-zmm-usage=high -xCOMMON-AVX512", and run in hybrid
parallel mode with 10 MPI ranks of 4 threads.

Version Wall time Iterations Time per iteration

7.0.6 237 s 466 0.509 s
7.0.7 (vectorized) 160 s 450 0.354 s

Table 4.7: Effect of vectorization on the simple benchmark problem, 24 core machine with
AVX2.

On the 24 core machine the speedup is 1.44, whereas on the 40 core machine the speedup is
larger at 1.71, which is expected due to the increased SIMD length (8 vs 4 doubles) and number
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Version Wall time Iterations Time per iteration

7.0.6 171 s 490 0.348 s
7.0.7 (vectorized) 97 s 478 0.203 s

Table 4.8: Effect of vectorization on the simple benchmark problem, 40 core machine with
AVX512.

of AVX registers (32 vs 16) which reduces spillage. Note how the use of vectorization on the
older architecture is equivalent to a generational improvement in hardware.

It is worth noting that the dedicated 2-D/3-D, viscid/inviscid versions of the schemes also
contribute to improved performance, and that speedups of 4 and 8 (for AVX2 and AVX512
respectively) were not expected. The main reason for this is that only part of the code was
vectorized, figures 4.17a and 4.17b show how computational time is distributed across the main
tasks of the flow solver (i.e. excluding turbulence which accounts for less than 20% of the total)
for the scalar and vectorized versions, respectively.

(a) Scalar implementation. (b) Vectorized (AVX) implementation.

Figure 4.17: Percentage of time spent in different tasks of the flow solver.

This time distribution was obtained by profiling the code (using Perf 8) running on similar
compute-to-bandwidth conditions to those of the 24 core machine but without MPI. Vectoriza-
tion takes the discretization task (computing fluxes) from using over 55% of the time to only
28.5%, making the linear solver the most costly operation in the vectorized implementation
even in a problem that requires only three linear iterations per nonlinear iteration. Note that
the high-lift CRM case requires ten linear iterations, which does raise the question of whether
the additional code complexity is justified (the answer is yes, depending on the solution method,
as will be discussed shortly).

4.4.4 Solution times on a large scale problem

Returning to the high-lift CRM problem, table 4.9 shows the lift and drag coefficients obtained
for the four refinement levels, which agree well with published results for other well known CFD
codes [108].

8https://perf.wiki.kernel.org/index.php/Main_Page

https://perf.wiki.kernel.org/index.php/Main_Page
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B3-HLCRM Grid CL [-] CD [-]

Extra Fine 1.74265 0.169493
Fine 1.73726 0.169452
Medium 1.73315 0.169939
Coarse 1.72186 0.170174

Table 4.9: Lift and drag coefficients of the HLCRM at 8 deg AoA.

On 10 of the 40-core AVX512 nodes previously mentioned, the Fine grid converges (to residuals
of 10−7) from free-stream conditions after 23 000 iterations in 28.5 h. After 15 000 iterations,
and 5 orders of magnitude reduction of the continuity residual, the coefficients settle to within 4
significant digits. This behavior is similar on the other grids, with coarser ones requiring fewer
iterations. For example 14 000 for convergence on the Coarse grid, which on 17 of the 24-core
Broadwell nodes take 1.6 h. The Extra Fine grid converges in 46 000 iterations and meets the 4
digit criterion in 24 500, on 96 ARCHER nodes (24-core Haswell architecture) this took 31.4 h
and 16.7 h respectively. The number of iterations is comparable to what has been published
for other codes on similar problems [138, 139]. However, it is clear that for large meshes (>100
million nodes) the simple quasi-Newton solution method scales poorly with problem size, note
that the number of iterations doubles from the Fine to Extra Fine grids. This shortcoming is
due to the current multigrid strategy, which aside its loss of performance with increased number
of MPI ranks, does not cope well with highly stretched boundary layer cells. In other codes
this has been attributed to isotropic coarsening of those regions [138].

4.4.5 Algorithmic improvements allowed by better performance

One of the main downsides of the quasi-Newton solution method, is that the typical simplifica-
tions of the residual Jacobian matrix, e.g. first order fluxes, thin shear layer, etc. often limit the
maximum CFL number and thus the convergence rate. However, simplifications are necessary
due to the residual depending on neighbors-of-neighbors, which makes the exact Jacobian dif-
ficult to obtain and expensive to store (as discussed in chapter 3). Conversely, Newton-Krylov
solution methods, where Jacobian-vector products are obtained via matrix-free approaches (e.g.
finite differences), allow much higher CFL since they do not simplify the Jacobian. Of course,
preconditioning the resulting linear system is more difficult due to the higher condition number
of the exact Jacobian. Nevertheless, this type of method is increasing in popularity [140, 141].
The ability to compute the residual of the discretization quickly is paramount for Newton-
Krylov implementations, not only due to matrix-free products, but also to allow the use of
backtracking strategies to improve robustness.

In a preliminary implementation in SU2, a Newton-Krylov approach based on finite-differences
can be used for the flow equations, while turbulence remains decoupled. The preconditioner
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for the Krylov solver is based on the approximate Jacobian matrix that would be used in the
quasi-Newton method. It is also possible to use the inverse of this matrix as the preconditioner
by approximately solving nested linear systems. These are equivalent to the quasi-Newton
approach, and can be used as the startup strategy to avoid the breakdown of the Newton-
Krylov approach while the residuals are high. This strategy allows higher CFL number to be
used for the high-lift CRM problem, namely 100 instead of 25. Fig. 4.18 shows the convergence,
residual vs wall-time, for the Coarse grid running on 8 ARCHER2 nodes (1024 total cores).

Figure 4.18: Comparison of convergence and solution time between quasi-Newton and Newton-
Krylov approaches for the high-lift CRM Coarse grid.

4.4.6 Summary of improvements

Through a number of software implementation optimizations, an average 4-fold performance
increase of SU2 has been achieved. These optimizations all build upon each other, for exam-
ple, it would not have been so advantageous to vectorize the flux computations while keep-
ing the linear system in double precision. Similarly, without the data layout refactoring, the
preprocessing-type operations (computing gradients, limiters, and primitive variables) would
be two times slower and it would be nearly impossible to implement vectorization cleanly and
efficiently. Furthermore, with algorithmic improvements such as better load balancing and
Newton-Krylov methods, the compound effect for some relevant problems is 10-fold better
performance, with additional benefits to the stability of the solver (which if fundamental for
numerical optimization). Finally, the implementation improvements were achieved via highly
re-usable and generic code patterns (container types, SIMD libraries, etc.) which will greatly
facilitate the optimization of other numerical schemes, or other areas of SU2. Importantly, this
will also allow the code to adapt to new hardware capabilities.



Chapter 5

Shape and Topology Optimization with
Fluid-Structure Interaction

This chapter presents and discusses two numerical examples that resulted from one of the
main research goals of this thesis. Namely, to apply topology optimization to highly flexible
aerodynamic structures, in a high-fidelity modelling setting, using the internal material layout
to influence the aerostructural response in a significant way. The first example is a compliant
airfoil designed for passive load alleviation, and it is the problem that motivated the two-
step strategy for discrete topologies described section 2.2.4. The second example is a flexible
wing where, by optimizing its internal topology, the same aerodynamic performance can be
maintained by an overall more flexible, hence lighter, structure. This 3-D problem, albeit
relatively modest in size (4.1M nodes), would not have been possible to solve in SU2 without
the improvements detailed in chapters 3 and 4.

5.1 A compliant airfoil

This example consists of a flexible airfoil operating at two distinct free-stream Mach numbers,
0.25 and 0.5, but at the same angle of attack (AoA) of 2 degrees with respect to the unde-
formed shape. Henceforth quantities at the lower or higher speed will be super-scripted l or h,
respectively. At low speed C l

l = 0.5 must be generated and the deformation of the airfoil kept
below a limit, drag should be minimized at the higher speed.

The ideal configuration for minimum drag is a symmetric airfoil operating at zero AoA. Since
the airfoil deforms passively and the AoA is fixed, this configuration could only be achieved by
a structure with no stiffness, which would then be unable to produce the required lift at low
speed. Therefore, constraining the deformation at low speed leads to higher drag at high speed,
unless the internal structure of the airfoil responds in a nonlinear way. Here, the objective is

119
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to exploit this nonlinear structural behavior to improve passive load alleviation. To that end
a baseline design was first obtained, and then the two-step process of chapter 2 was used to
design the internal topology. To recapitulate, that process consists in first conducting a topology
optimization without any explicit or implicit measure to encourage discrete results. Then, in
the second step, a discrete topology is sought by solving an inverse problem, in particular
minimizing mass for a target deformation under fixed loads (extracted from the coupled FSI
simulation). Later in this section, this strategy is compared with conventional approaches of
manipulating the formulation of the topology problem into converging to discrete results (of
course, those were tried first, their failure resulted in the proposal of the two-step approach).

5.1.1 Baseline airfoil from aerostructural shape optimization

A baseline compliant airfoil, for which the low speed deformation limit significantly affects
performance, was first designed by shape optimization with different allowed values of trailing
edge displacement (ymax). The starting point for the optimization is a NACA0012 profile with
0.5m chord, parameterized through the free-form-deformation box (FFD) shown in Fig. 5.1 of
which 17 points are allowed to move in the vertical direction, the bottom left point is fixed to
avoid translation of the airfoil. A further constraint is added to enforce that the final area be
greater or equal than the initial, that is

min
α

Ch
d (α)

subject to : C l
l (α) = 0.5

yl(α) ≤ ymax

A(α) ≥ A0

(5.1)

where α are the vertical displacements of the control points. For the RANS simulations,
the fluid grid is an O-Grid with 77 924 nodes and sufficient wall cell size for y+ ≈ 1, the
radius of the circular farfield boundary is 30 chords. The sizing of the grid was based on the
NACA0012 reference grids used in [48]. The fluid is considered to be ideal and standard-sea-level
properties are used for the free-stream state. The solid domain is discretized with 76 800 4 node
quadrilateral elements resulting in 77 875 nodes (this level of refinement is to ensure sufficient
resolution for topology optimization), the inside of the hollow region close to the leading edge
is clamped, the vertical section of this region is located at 5% chord. The elasticity modulus
considered is 50MPa and the Poisson ratio 0.35. Problem (5.1) was solved with algorithm 1
of chapter 2, with the following parameters a0

1 = b0
1 = b0

2 = 8 and r =
√

2, the constraint
tolerance used was 0.01. The convergence criteria for the optimizer (L-BFGS-B) are as used
for the benchmark topology problem of section 2.2.3. Table 5.1 shows the optimized drag and
lift for different values of the deformation limit, Figures 5.2 and 5.3 show the undeformed and
deformed at Mach 0.5 (in red) airfoils for the 10mm (0.02c) and 6mm (0.012c) deformation
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limits respectively.

Figure 5.1: Shape optimization parameterization.

ymax [mm] Ch
d Ch

l yh [mm] C l
d

10.0 0.008771 0.251 25.8 0.0106
8.0 0.008909 0.302 22.6 0.0106
6.0 0.009097 0.360 18.3 0.0107

Table 5.1: Shape optimization parametric study results (()l: Ma 0.25, ()h: Ma 0.5).

The optimum drag increases 3.7% by reducing the deformation limit from 10mm to 6mm.
Note that the deformation constraint is not met entirely by an increase in structural stiffness
(which could be achieved by increasing area) but mostly by the reduction in pitching moment
that results from the reflexed camber line (compare Figures 5.2 and 5.3). This 3.7% increase
in drag is a significant-enough trade-off between stiffness and performance, therefore the airfoil
optimized for 6mm is used as the baseline to which the two-step topology optimization strategy
is applied.

Figure 5.2: Baseline shape optimization results for 10mm constraint, undeformed (black) and
deformed at Mach 0.5 (red) configurations.

Figure 5.3: Baseline shape optimization results for 6mm constraint, undeformed (black) and
deformed at Mach 0.5 (red) configurations.

5.1.2 Fully coupled topology optimization step

For topology optimization the trailing edge displacement constraint (ymax) is replaced by a
compliance constraint with upper bound equal to the compliance of the baseline. This change



122 Chapter 5. Shape and Topology Optimization with Fluid-Structure Interaction

is necessary since, due to the trailing edge region not being forced to be solid, it could be possible
for a much more flexible airfoil to respect the local constraint by employing large amounts of
camber near the trailing edge in the deformed configuration, and thus producing the required
lift at the expense of increased drag. With the area constraint no longer required, the fully
coupled step is stated as

min
ρ

Ch
d (ρ)

subject to : C l
l (ρ) = 0.5

W l(ρ) ≤ W l
ref

(5.2)

where W l
ref is the compliance (W =

∫
Γ
u ·λ dΓ) of the shape optimized structure at Mach 0.25

(1.141 J), and ρ the design densities (before filtering) introduced in section 2.2. The elasticity
modulus is 100MPa, double the value used in the baseline shape optimization to allow material
to be removed while maintaining compliance. The outermost 3 layers of elements (3.6% of the
local thickness) are prescribed to be solid, elsewhere the initial density was 0.8, the density
filter radius is 2mm (approximately 3 times the largest element size), a linear weight function
was used for the filter, that is

w(x) = max(0, r − ||x− x0||)/r, (5.3)

where r is the filter radius, and x the coordinate of a point within that distance from the target
x0. For this case the SIMP exponent was gradually increased, taking the values 2, 2.5, and 3
(using the strategy of algorithm 1 of chapter 2). Fig. 5.4 shows the history (inner iterations of
L-BFGS-B) of drag and lift coefficients, compliance, and penalized objective function (f̂), the
large spikes correspond to the increases of SIMP exponent. Fig. 5.5 shows the final topology
and Mach number contours at the Mach 0.5 condition.

As expected the material distribution is not discrete, since the objectives and constraints do
not benefit from optimally stiff material (obtained for density of zero or one). Until around
30% chord the topology is mostly solid, around the center section the topology confers little
bending stiffness acting mostly as support for the wet surfaces. Notably, the trailing edge region
has compliant hinges which allow it to work as a mechanism, the importance of this will be
explained below.

The drag coefficient is reduced to 0.008812 (3.1% reduction) which is only 0.47% higher than
what was obtained for the shape optimization with ymax of 10mm, but as expected the topology
obtained in this step is not discrete.
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Figure 5.4: Fully coupled step convergence history.

Figure 5.5: Fully coupled step results, filtered structural density and Mach number contours.

5.1.3 Inverse design step

The inverse design step aims to obtain a discrete-topology structure. It is stated as a mass
minimization problem with constraints on the target deformed shape of the airfoil and on the
stability metric (whose formulation was described in chapter 2, equations (2.37) and (2.38)
respectively), that is

min
ρ

1

V

∫
V

ρdΩ

subject to : εl/hΓ (ρ) ≤ 0.01

W
+l/h
Γ (ρ) ≤ 0.01

(5.4)

The results for this step are shown in Fig. 5.6, where the black line shows the target deformed
surface, and the red line shows the verified deformed surface obtained from the coupled FSI
analysis loop for the topology obtained in this step. To reduce the computational cost of
the inverse design step, the stability constraints (on W+

Γ ) were only enabled after the design
became feasible with respect to the geometric constraints (εΓ). This allows part of the inverse
design step to simulate only the structure, transitioning to one-way FSI (needed to evaluate
W+

Γ ) only when the deformed configuration is near the target (for which good initial conditions
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are available for the fluid problem). Table 5.2 summarizes the two-step topology optimization
process listing the aerodynamic coefficients and the equivalent mass (for SIMP exponent of 3)
at the major checkpoints.

Figure 5.6: Results of inverse design step, density contours, target (black) and actual (red)
deformed surfaces.

Step Ch
d Ch

l C l
d C l

l Mass

Shape 6.0mm 0.009097 0.360 0.0107 0.498 0.794
Fully coupled 0.008812 0.238 0.0107 0.496 0.695
Inv. design 0.008846 0.260 0.0107 0.498 0.438

Table 5.2: Topology optimization summary.

With the inverse design step some of the improvement obtained in the fully coupled step is
lost as the drag coefficient increases 0.39%. However, the equivalent mass is reduced by 37%.
The reduced performance is mostly due to strong coupling effects, that amplify the effect of the
small discrepancy between target and obtained shapes. In the inverse design step the surface
error metric is constrained to 1%. However, when the performance of the resulting topology is
verified, this metric increases to 2% at Mach 0.5. The main physical mechanism that explains
this, is that regions of unsupported airfoil skin tend to form bumps as the airfoil flexes, these
bumps cause a reduction of the pressure (due to a local acceleration of the flow) which in
turn increases the bump size. This is the main effect the stability function helps to mitigate,
Fig. 5.7 shows how this function leads to material being added to the skin to increase its bending
stiffness. Coupling a bump-based shape parameterization method (e.g. Hicks-Henne) with the
topology variables could potentially reduce the importance of this positive feedback mechanism.
That was not deemed necessary for this example due to the subsonic speeds, however the effect
would be more significant at transonic speeds as bumps can produce shocks.

The seemingly insignificant increase in surface error metric (from 1% to 2%) results in a 9%
increase in lift (but no significant changes to the flow field). This high sensitivity of the
design is not entirely due to the proposed two-step method, but also due to the performance
metric that was optimized, which results in a system with highly nonlinear characteristics as
its apparent stiffness changes significantly between low and high speeds. Finally, note that
topology optimization results often require some form of post-processing to which the results
may likewise be sensitive (for example to remove vestigial areas of intermediate density, smooth
jagged edges, etc.). Therefore, it may be necessary to resort to robust design techniques when
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Figure 5.7: Detail of inverse design step results w/o (left) and with (right) stability function.

the formulation of the optimization problem results in structures with strong nonlinear response
to loads.

5.1.4 Comparison with conventional approaches to encourage solid-

void topologies

Two well known ways to encourage solid-void solutions, in problems that do not necessarily ben-
efit from them, are to penalize intermediate densities more severely (e.g. using higher values of
SIMP exponent) and to manipulate the problem formulation such that overall stiffness becomes
important (e.g. embedding mass reduction into the optimization goals). Both approaches were
investigated (in fact, before proposing the two-step process) and the results are presented and
discussed in this subsection.

Weighted objective function

First note that the low speed lift and compliance constraints require the airfoil to have a
minimum stiffness, recall that the AoA is set relative to the undeformed configuration and
so an airfoil that is too flexible will not produce the target lift. Therefore, with a weighted
objective function of mass and drag a stiffness-based problem can be recovered by giving no
importance to drag and focusing solely on mass minimization (which would not be desirable).
To test the weighted objective approach, weights of 0.8 for drag and 0.2 for mass were used (after
scaling the functions), which based on the drag-mass trade-off from the fully coupled step to
the inverse design step (see table 5.2) should be sufficient. Moreover, numerical experiments
with higher weighing of mass were less successful due to poor stability of the optimization.

The optimization process is as described for the fully coupled step except for the change of
objective function and the SIMP exponent which was not ramped, being fixed at 3 from the
start instead (ramping it also made little difference in the results of the previous section). The
convergence history is shown in Fig. 5.8, the optimization stalls relatively early (the last 8
iterations required 66 function and gradient evaluations) resulting in the topology of Fig. 5.9,
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where the deformed configuration from the fully coupled step is also shown for comparison.

Figure 5.8: Weighted average approach, convergence history.

The response of the structure is similar and the drag is lower but within one count of what
was obtained with the two-step approach. The equivalent mass is 0.485, lower than in the fully
coupled step, as expected, but higher than in the inverse design step, due to the less discrete
material distribution (see Fig. 5.9).

Figure 5.9: Weighted average approach results, filtered structural density and Mach number
contours, deformed configuration from fully coupled step in red for reference.

Higher penalization

It is known that challenging topology optimization applications may require a SIMP exponent
higher than that suggested by the Hashin-Shtrikman bounds to converge to solid-void solu-
tions. To test this approach the weighted objective optimization was continued with the SIMP
exponent increased from 3 to 4 in steps of 0.25 every outer iteration of the exterior penalty
method. The resulting material distribution, shown in Fig. 5.10, is almost indistinguishable
with no significant topological changes. The drag coefficient was not improved and the equiva-
lent mass increased to 0.542 as a result of the stiffness reduction in intermediate density areas.
The lack of change could be due to the solution for SIMP exponent of 3 being a local optimum.
However, the general features of the solution, dense truss-like structure at mid chord and large
voids towards the trailing edge, develop very early in the optimization (note the quick decrease



5.1. A compliant airfoil 127

in mass in Fig. 5.8). As material is removed mostly from low strain energy areas, it is possible
that these solution features are inherent to the presence of the mass objective, and how quickly
and easily it can be targeted by the optimizer (note that the mass function is linear).

Figure 5.10: Density contours on the deformed geometry for the weighted average objective
with SIMP exponent of 4.

Gradual mass minimization

Based on the observation just above, it could be expected that gradually introducing the mass
objective would avoid rapid convergence to the poor local optima described. This was attempted
for the results of the fully coupled step in two-steps. First by adding a constraint to the
optimization problem (5.2) to gradually lower the equivalent mass to 0.5, the initial penalty
function parameters were selected such that the initial penalization was equivalent to two drag
counts. Then by switching to constraining drag below 0.00885 while minimizing mass, this is
required since once both mass and compliance constraints are satisfied there is no longer an
incentive to improve discreteness (one of the two must be a scarce resource). Fig. 5.11 shows the
convergence history, illustrating the more gradual decrease in mass, and Fig. 5.12 the obtained
topology.

Figure 5.11: Convergence history for gradual mass minimization approach.

Although mass is reduced without significantly increasing drag, and both values are marginally
lower than those obtained after the inverse design step, the resulting topology is still far from
discrete. Note that the optimization does not converge fully as the gradient of the penalized
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Figure 5.12: Density contours after the gradual mass minimization approach (deformed geom-
etry), fully coupled step deformed outline (in black) for reference.

objective function (see Fig. 5.13) is not zero. Nevertheless the line searches fail due to the much
larger gradients at the weakly connected regions around 80% chord, which result in poor search
directions.

Figure 5.13: Gradual mass minimization approach, contours of derivative of penalized objective
function with respect to density.

5.1.5 Discussion

The trailing edge region is not highly stressed as bending moments are low, therefore from a
purely structural perspective it does not require large regions of solid material. However, from
the aerodynamic standpoint the trailing edge is responsible for most of the load alleviation.
While the topology features close to the leading edge mostly confer stiffness to the airfoil, the
trailing edge behaves like a mechanism, one that under passive actuation notably increases the
camber near the trailing edge at the higher speed. This localized camber leads to a more aft
loaded pressure distribution (see Fig. 5.14 light color line) that counteracts the effect of the
reflexed camberline of the undeformed airfoil.

It is plausible, therefore, that this interference between aerodynamic and structural objectives
leads to an intermediate design and search direction that stall the optimization. Although the
problem is posed such that it benefits globally from high stiffness to mass ratio, locally (near
the trailing edge) that is not what minimum drag requires. Different strategies can potentially
be used to mitigate the interference between objectives without decoupling them. However, it
is worth noting that a strategy akin to the gradual mass minimization approach above nearly
doubled the computational cost, whereas the inverse design step only added 15% to the cost
of the fully coupled step.

Although simple, this problem proved challenging for density-based topology optimization. This
is in part due to the flexibility that is required to explore large displacements in 2-D, which
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Figure 5.14: Pressure coefficient distribution at Mach 0.5 for the baseline airfoil (6mm con-
straint) and for the fully coupled step result.

compromises the smoothness of the outer shape and thus increases drag. Note how the topology
that resulted from the fully coupled step provides much more support to the airfoil shell than
the topology from the inverse design step. In effect, this discrete-topology was only possible
due the relaxation of the problem, that results from approximately matching a deformed shape
instead of minimizing drag. Obtaining a discrete topology with the same level of outer layer
support (as the non-discrete result) could be possible, but it would require an impractical level
of detail, especially for a 3-D problem. Finally, note that the subtle increases in drag due to
irregularities of the deformed surface would not be captured by lower fidelity fluid models.

5.2 A flexible wing

Similarly to the problem of section 5.1, the purpose of this example is to study the feasibil-
ity of using the internal topology of a wing to alter its aerodynamic performance. In effect,
this is a proof of concept for a new design strategy for wings built using additive manufac-
turing techniques. Specifically, in this example the internal material distribution will be used
to obtain a more flexible wing (and thus presumably lighter) that produces the same lift at
the same angle of attack as a rigid baseline design. This is effectively a load augmentation
problem, where the deformation of the structure creates a positive feedback mechanism that
increases the aerodynamic load (i.e. the lift). Although changing the angle of attack would
be the most practical way to change the lift, doing so would not serve the objective for this
example. In effect, introducing the angle of attack as a design variable in this problem with
a single operating point, would convert it almost into a typical minimum-compliance problem.
Shape optimization is first used to produce a minimum-drag design with small deformations,
this is described in section 5.2.1. Topology optimization is then used on this design, which
should show the impact of load augmentation on aerodynamic performance. The previous 2-D
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example already showed the potential of using the internal layout to passively adapt to different
operating conditions. However, to assess feasibility in 3-D, only one operating point will be
considered. Moreover, given the challenges encountered in the 2-D problem of section 5.1, a
different relaxation approach is used. Specifically, to guarantee that the outer layer is never left
without support, the stiffness of the "void" material is increased, which effectively results in a
two-material optimization where the entire structure is solid. Such a structure may be easier to
manufacture than one with hollow regions. For example, if additive manufacturing techniques
are used, auxiliary support structures are not needed since the two materials support each
other. This approach was recently used in [21] to design wind tunnel models with tuned flutter
characteristics using medium fidelity modelling. Here, the focus will be on static characteristics
and large deformations, but using high fidelity models, which the previous example showed to
be important for that type of problem.

5.2.1 Baseline rigid design

A baseline design is obtained by optimizing the shape of a solid wing with uniform material
properties for minimum drag, with constraints on lift, pitching moment, and minimum thickness
(over the multiple spanwise sections). The initial geometry shown in Fig. 5.15, is generated
by lofting two symmetric 4-digit NACA profiles. The root profile has 0.25m chord and 9%
thickness, whereas the tip has 0.175m chord and 7.2% thickness. The wing span is 1m, the
25% chord-line is swept back 5 degrees, and a linear twist distribution of -3 degrees is used.
Fig. 5.15 also shows the FFD box used to parameterize the shape. Of the 98 control points,
97 are allowed to move in the vertical direction (±30mm), the bottom right point of the root
section (right side of the page) is fixed. Note that these variables are able to change the
effective angle of attack by pitching the wing, despite the flow direction not being changed
by the optimizer. Chord and translation (chord-wise displacement) are defined for each of
the 7 spanwise sections of the FFD box by controlling the horizontal coordinates of the 14
control points in each section. The tip section is not allowed to translate to help maintaining
the quality of the mesh. The bounds for these two variables are (±60mm) at the root and
decrease linearly to (±20mm) at the tip. There are 110 variables in total. A single operating
point was considered, namely Mach 0.6 at sea-level and 273.15K (the Reynolds number is
3.7M for the root chord). Convective fluxes are computed using Roe’s scheme with 1% entropy
correction, the second order reconstruction of flow variables uses Green-Gauss gradients and
Venkatakrishnan and Wang’s limiter. The Spalart-Allmaras turbulence model is used with first
order convective fluxes. The fluid and structural grid are composed mostly by hexaedra and
have 4.1 million nodes and 220 000 nodes, respectively. The grid sizing of spanwise sections is
comparable to the level 5 NACA0012 grid used in [48]. The sizing in the spanwise direction is
such that the aspect ratio of surface elements near the tip is close to one, and such that the
maximum aspect ratio of the first layer of volume elements was below 200. Although a rigorous
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mesh independence study was not conducted, the results with this level of refinement were in
agreement with coarser meshes (below 1 million nodes), of the same type, and for similar flow
conditions, used for performance benchmarking and adjoint verification (in chapters 4 and 3,
respectively). The radius of the farfield boundary is 25 span lengths, Fig. 5.16 shows a detail
of the structural grid near the wing tip. The solid material is modelled as hyperelastic with
Poisson’s ratio of 0.35 and Young’s modulus of 75GPa, which results in small deformations
(comparable to the thickness).

Figure 5.15: Initial wing geometry and FFD box.

Figure 5.16: Structural mesh near wing tip.

At 4 degrees AoA the initial geometry has lift, drag, and pitching moment coefficients of
0.295, 0.0103, and -0.0429 respectively. To obtain a baseline for topology optimization, drag
was minimized with lower bounds of 0.29 on lift and -0.06 on pitching moment coefficients.
A geometric constraint was also included to prevent the maximum thickness of the thinnest
spanwise section from decreasing. The SLSQP implementation from SciPy was used to solve
the optimization problem, all constraints and variables were scaled by their bounds and the
objective (drag) by its initial value.
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Fig. 5.17 shows a comparison of the planforms and spanwise sections at the root, mid-span, and
tip of the initial and optimized geometries. All constraints are active on the optimized design
and the drag coefficient was reduced to 0.00829. The design achieves this by reducing the
loading on tip sections and increasing it in the first half of the span. The sections towards the
tip are significantly cambered, which requires the root sections to operate with more incidence
to counteract the effect of camber on pitching moment, as shown by the pressure coefficient
contours in Fig. 5.18. However, note that despite the increase in incidence near the root, on
the optimized design those sections produce less lift due to a reduction in chord. Similarly,
the sections near the tip produce more lift due to camber, despite the lower incidence. This
is shown by the lift distributions in Fig. 5.19. As expected when minimizing drag at subsonic
conditions, the result is a more elliptical lift distribution.

Figure 5.17: Comparison of initial (bottom) and optimized (top) wing.

Figure 5.18: Pressure coefficient contours on initial (bottom) and optimized (top) designs.

Due to this camber (and moment) distribution, lift decreases if a more flexible material is
considered in the simulation, note that the aerodynamic forces act to twist the wing, which
reduces incidence and thus lift. Of course, the AoA can be increased to counteract this effect
(up to the point of static divergence), here however, topology optimization is used to obtain a
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Figure 5.19: Spanwise lift distribution on initial (light color) and optimized (dark color) designs.

two-material structure that, although more flexible, is able to compensate the twisting action of
the aerodynamic forces. The optimized geometry was re-meshed before proceeding to optimize
the internal topology.

5.2.2 Topology optimization

For topology optimization the soft and stiff materials were considered to have elasticity modulus
of 1.5 and 30GPa, respectively. It is not relevant for the purpose of this study if such materials
exist, these values were simply chosen based on expected deformation at 50% material fraction
(comparable to the chord). The structural elements are stretched (see Fig. 5.16), because using
a smaller size in the spanwise direction would result in an impractical number of elements.
This presents a challenge for density filtering strategies, since setting the filter radius based
on the longest element size would span the entire thickness of the wing. To avoid this, the
neighborhood search was constrained to consider only neighbors of neighbors, on a 2-D grid
this limits the filter to the equivalent of a 13-point stencil. The filter radius was then set as
1.5 times the largest element size (in the spanwise direction), and a linear weight function was
used. Finally, a fixed SIMP exponent of 3 is used throughout the investigation.

Due to the reasons described above, with a material with elasticity modulus of e.g. 22.3GPa
(equivalent to the starting point in 5.2.2) the lift coefficient drops to 0.24. Then, a first objective
is to recover the target value of 0.29, using the minimum amount of stiff material. Note that a
density of zero corresponds to the softer material and a density of one to the stiffer material,
therefore minimizing the fraction of the latter is equivalent (in formulation) to minimizing
mass in a classical "solid-void" problem. Note that it is not possible to do so "simply" by
stiffening the structure, since the stiffer material is still 60% more flexible than the one used
for the baseline rigid design. Of course, some structural constraint has to be introduced (the
softer material is too flexible), although maximum stress would be most appropriate, it is less
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challenging (numerically) to limit compliance. Moreover, given the challenges associated with
aerodynamic-driven topology optimization (described in the previous section), it was judged
as beneficial to divide the optimization in several steps, also as a way to make the trade-offs
between goals more evident. These steps are discussed next. The starting point for each step
are the results from the previous, unless noted otherwise. While this may lead to some loss
of performance, such incremental strategies are necessary to understand the challenges of new
problems, especially those with large design spaces.

Recovering lift

The first step was to recover lift, which also serves as evidence for the feasibility of the optimiza-
tion problem. To that end the exterior penalty algorithm (2.35) was used with a single equality
constraint with fixed penalty factor of 32. Note that this method would start by recovering lift
even if other goals were included because this constraint is not respected. Fig. 5.20a shows the
surface view of the resulting topology after the 11 L-BFGS-B iterations required to meet the
constraint, starting with uniform fraction of 0.9. By removing stiff material close to the leading
edge, the incidence on spanwise sections close to the root negates the pitch-down moment of the
tip sections, as shown by the distribution of aeroelastic twist (i.e. relative to the jig shape, and
thus the variation in AoA due to the deformation) in Fig. 5.20b. In part this is also necessary
to compensate the smaller projected area that results from larger displacements (because the
structural model accounts for geometric non-linearity).

(a) Material distribution to meet lift constraint. (b) Spanwise distribution of twist.

Figure 5.20: Results of recovering lift.

Determining a suitable bound for the fraction of stiff material

In the previous step there was no incentive to use a minimal amount of stiff material. That is
introduced in this step alongside an upper bound on compliance of 75 J (the compliance after the
initial step is 44.8 J). Although it is known that minimizing mass for a given compliance may give
rise to structures that are close to a stability limit, this formulation helps determining a suitable
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target for the stiff fraction (which can then be constrained instead of outright minimized). The
penalty factors for the two constraints were fixed at 8 and the objective (stiff fraction) was
not scaled since its initial value (resulting from the previous step) was close to one. Fig. 5.21
shows the resulting topology after 55 L-BFGS-B iterations. Mass fractions below 0.5 were made
transparent to reveal the internal structure, which is mostly composed of the softer material.
On the figure, the spanwise slices are taken from 0.25 to 0.55 span in increments of 0.075.
The main mechanism to maintain lift remains the same as in the initial step to recover lift,
and the stiffer material was removed from less strained areas, e.g. close to the wing tip. The
stiff fraction was reduced to 0.33, which made the compliance constraint active. However, the
material distribution is not discrete, mainly for two reasons: first, due to the relatively small
number of iterations (for a topology problem); and second, due to the lift constraint, which
requires material to be removed from a high strain region (the root). Note that this constraint
is responsible for the main load applied to the structure (and thus in part for its compliance)
and this contradiction between the two constraints makes the problem more difficult to solve.

Figure 5.21: Material distribution after minimizing stiff fraction.

Lift-constrained compliance minimization

To avoid the contradiction between constraints (described above), the roles of compliance and
stiff fraction were switched from 5.2.2, i.e. compliance should be minimized under the 0.29 lift
coefficient constraint and a maximum stiff fraction of 0.4 (if this value was known, e.g. from
experience, the previous step would not have been necessary). The initial penalty factors were
again set to 8 but increased by 50% (up to 64) every 30 L-BFGS-B iterations for constraints
that did not meet a 0.5% tolerance. Note that constraints are scaled by their bounds and the
objective by initial value. Fig. 5.22 shows the resulting topology after 225 iterations, which
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has compliance of 38.1 J, lift coefficient of 0.286, and stiff fraction of 0.403. The material
distribution is significantly more discrete than before, but not as much as desired. Although
the type of filter used (linear weight) will never produce a discrete result, only 50% of the
variables are at their bounds (0 or 1), it should be possible, therefore, to improve this result.

Figure 5.22: Material distribution after minimizing compliance.

Improving the discreteness of the material distribution

Ideally a topology optimization problem should benefit from a discrete solution due to the way
it is posed and parameterized. However, in this problem (and others like it), the requirement
on lift makes this difficult to achieve, since the structure is both responsible for creating the
load and resisting it. It is worth showing that posing the problem as a compliance (and lift)
-constrained mass minimization is not beneficial. To that end the roles of stiff fraction and
compliance were switched (again). The penalty factors were fixed at 64 and the bound on
compliance set to 40 J to direct the optimization towards the current local optimum (i.e. the
result of the previous step). Fig. 5.23 shows the resulting topology after 180 iterations.

The stiff material fraction is reduced to 0.336 with lift coefficient of 0.285 and compliance of
40.2 J. However, it is clear that conventional formulations do not produce a discrete result for
this problem. Along with reducing the size of areas with intermediate material fraction (note
the larger gaps from Fig. 5.22 to Fig. 5.23), i.e. moving the boundaries, the optimization
also removed stiff material from areas that were already completely stiff (note the change near
the leading edge at 60 to 70% span on the same two figures). A plausible explanation for
this is that, to support a distributed load, it is better to distribute the stiff material than to
concentrate it to produce stiff regions. In the literature, authors have used explicit penalization
of non-discreteness metrics for problems that do not converge naturally to discrete solutions
(see e.g. [142]). It is known that such strategies need to be managed with care (e.g. ramped),
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Figure 5.23: Material distribution after minimizing stiff fraction for a lower compliance con-
straint.

to avoid fast convergence to locally optimal solutions before any topological features begin to
develop. However, ramping strategies have the downside of increasing the computational cost
of the optimization, which is already significant for this problem due to high-fidelity modelling.
Moreover, even for topology problems that naturally converge to discrete solutions, most of
the objective function reduction takes place in the first iterations, where the main features of
the topology develop. The remainder of the iterations serve mostly to refine those features,
and in general, do not contribute substantially towards improving the objective function. For
example, note how in this problem the lift constraint can be met by a wide range of topologies
(from mostly soft to mostly stiff). Based on these observations it is tempting to propose an
early termination of the optimization, followed by a post-processing operation to force the
discreteness of the result (for example considering all values above a certain threshold to be
completely stiff, and vice versa). Though this may be viable for more linear problems, in the
presence of strong FSI it is likely that some constraints will no longer be respected after the
post-processing.

Therefore, to address the challenges of high computational cost and of obtaining discrete topolo-
gies, the solution proposed here is as follows. After obtaining a feasible solution (e.g. either 5.2.2
or the one in this section), the discreteness of the solution is improved by explicitly targeting
(minimizing) a non-discreteness metric (d), namely

d = 4
ρ · (1− ρ)

N
, (5.5)

where ρ are the filtered densities (material fractions in this case) and N the number of design
variables. The reduction of computational cost is achieved by simulating only the structure
under fixed fluid loads (obtained from the last FSI simulation). To ensure those loads are
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appropriate throughout the entire process, a deformation target is introduced for the surface
(Γ) nodes, that is,

εΓ =
||uΓ − u∗Γ||2

NΓ

. (5.6)

This error metric is both minimized (as a secondary objective) and constrained to a small value
(10−7 in this case). Despite the similar formulation, this step has a very different role than the
inverse-design approach used in section 5.1. Here, the initial topology is nearly discrete, and
thus only requires some incremental refinement. Conversely the inverse approach does not use
initialization and therefore produces substantially different material layouts.

On the result from stiff fraction minimization for compliance of 40 J the discreteness metric
is 0.3. This is reduced to 0.2 over the course of 1000 (inexpensive) iterations, after which
the error metric is 4 · 10−8 and the stiff fraction 0.339. To ensure that the final solution
would be as discrete as the type of filter allows, the weight of the non-discreteness metric was
progressively increased up to 500. In the end 75% of the variables were within 2% of their
bounds. Furthermore, evaluating (5.5) for the design variables (i.e. unfiltered fractions) yields
0.008.

As expected, the lift constraint is not respected by this solution, for which the value is 0.272.
To restore it to the target 0.29, the discretized solution was used as starting conditions for an
optimization with coupled FSI simulations, where non-discreteness is also minimized. After
25 iterations both this metric and the stiff fraction were maintained, lift was restored but
compliance increased to 42.2 J. The resulting material distribution is shown in Fig. 5.24 and
Fig. 5.25.

Figure 5.24: Material distribution after improving discreteness.
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Figure 5.25: Material distribution after improving discreteness (different view).

Discussion

The optimization process in the subsections so far can be summarized in the following steps.

1. Determining the feasibility of the aerodynamic goals, e.g. meeting lift (O(10) iterations).

2. Approximately solving the optimization for suitable structural targets (O(100) iterations).
This may include determining those targets via different formulations of the problem (as
done here).

3. Accelerating convergence to a discrete solution considering only the structure and fixed
loads (equivalent to O(10) iterations).

4. Correcting the aerodynamic goals for the discrete solution (O(10) iterations).

The main part of the optimization takes place in step 2, with steps 3 and 4 constituting a post
processing operation. Moreover, note that step 1 may be dispensed if the aerodynamic targets
are guaranteed by other variables (e.g. shape or AoA). The drag coefficient for the design that
only meets the lift constraint is 0.00917 (step 1). Some of the increase with respect to the
baseline is due to re-meshing, most however, is due to the larger deformation which reduces
the projected area of the wing, and thus requires the loading to be increased past the optimum
found by shape optimization. This is expected to become worse with larger deformations at
smaller fractions of stiff material. It is worth noting that single-point optimum shapes for
flexible wings tend to result in flat deformed shapes (i.e. straight line from root to tip), which
should be expected since for a given span this maximizes the projected area (after deformation).
For the designs with smaller stiff fraction (after 5.2.2), the drag coefficient increases to 0.011
and in the final discrete solution (that meets the lift constraint more strictly) it is 0.0115.
Table 5.3 shows a summary of the key performance values after each step of the optimization.

The 23 count increase in drag from the first to last step is significant, and not entirely justi-
fied by larger deformations. Recall that the lift-generation mechanism used by the topology
optimization is to allow the mid span to pitch-up to both reduce and compensate the effects of
higher pitch-down moments near the tip. In addition, to reduce the stiff fraction with limited
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Step CD[−] CL[−] Compliance [J ] Stiff fraction [−]

Recover lift 0.00917 0.290 44.8 0.938
Min. compliance 0.0109 0.286 38.1 0.403
Min. stiff frac. 0.0113 0.285 40.2 0.336
Final design 0.0115 0.290 42.3 0.338

Table 5.3: Performance values at different optimization steps.

compliance requires material to be removed from low strain regions, note how past 60% span
the design uses almost no stiff material. Consequently, this allows those areas to deform more,
that is, incidence is reduced due to the pitch-down moments. This reduces the lift generated by
those sections of the wing, in turn requiring the inboard sections to produce even more lift to
compensate (drag increases as the spanwise distribution of lift moves away from the optimized
baseline). This effect is visible in Fig. 5.26, where the deformation of the final design is com-
pared with the one from section 5.2.2, and in Fig. 5.27 where the lift distribution is compared
with the one from shape optimization.

(a) Deformation at mid-span and tip, of the final design (dark
colors, reduced by 20%), and the design obtained to meet the
lift constraint. (b) Spanwise distribution of twist.

Figure 5.26: Comparison of deformed configurations, between recovering lift and final design.

The vestigial areas of stiff material near the tip of the wing, whose placement at the leading
and trailing edges maximizes torsional stiffness, are justified by the need to maintain some
stiffness near the tip to avoid further lift reduction. Note that these reinforced areas are not
connected to the larger areas of stiff material, which in effect, reduces the coupling between the
two (note the rapid change of aeroelastic twist after 0.6 span in Fig. 5.26b). Moreover, although
the final design deforms more in torsion and bending, the corresponding moments are lower.
These interruptions of the main load paths (i.e. stiff material portions) are necessary for the
aerodynamic goals but raise structural concerns. In particular they cause the soft material to be
more strained than its stiff counterpart, due to being compressed and sheared between floating
regions of stiff material that are not connected to the root. Figure 5.28 shows the von Mises
stresses divided by the local elasticity modulus, which is used here in lieu of a safety margin
since the two materials do not exist in practice. It would important, therefore, to include stress
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Figure 5.27: Spanwise lift distribution on initial (light color), shape-optimized (dark color),
and final (dashed line) designs.

constraints in future work.

Figure 5.28: Von Mises stress normalized by local elasticity modulus.

5.2.3 Final remarks

This work aimed to explore the merits and challenges of applying a technique (topology op-
timization) that is well established for purely structural applications, to problems where the
structure is largely responsible for the aerodynamic performance. This was done by restrict-
ing the example problem to a single operating point and only topology variables. To fully
assess the challenges of topology optimization in state-of-the-art wing design methods, many
other aspects would have to be considered (shape optimization, multiple operating points, off-
design performance, composite materials, manufacturability, cost, etc.). Nevertheless, this use
of topology optimization appears to have merit, to the extent that the topological features can
be traced back to aerodynamic effects. Furthermore, such features develop in a similar number
of iterations as they would for purely structural problems. However, as a consequence of the
limited means the optimization was given to realize its goals, the aerodynamic performance of
the final design was reduced. Better performance could be expected, for example, from simply
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allowing the angle of attack to change, thereby allowing the inboard sections to operate at
higher incidence without having to compromise the stiffness of the structure so severely by
removing stiff material near the root. However, in so doing, the (desired) load augmentation
characteristic of the problem would be lost. Ideal performance, on the other hand, can only be
expected from a simultaneous optimization of shape and topology, which proved challenging
for this type problem. In particular, the exterior penalty approach is much less suited for shape
optimization than SLSQP, especially if the design space is augmented with thousands more
topology optimization variables (conversely SLSQP is not adequate for large scale optimization
problems due to its dense approximation of the Hessian matrix). In [6], shape (twist distri-
bution) and topology optimization were successfully combined using the SNOPT optimizer,
which is based on similar methods to the ones used by IPOPT. It is not clear why the latter
method was not suitable for shape and topology problems in this work. It is possible that the
problem studied in the aforementioned work (wing box of the common research model) is less
challenging numerically due to the use of linear elasticity and panel methods for the fluid, and
also due to the isotropic element sizes that the shape of the structural domain allowed.

One of the challenges in this type of topology optimization is the higher computational cost of
using high-fidelity models, when approximately 10 times more iterations are required than for
shape optimization. The greatest challenge, however, is that aerodynamic goals do not benefit
from an optimally stiff structure, and thus the optimization will not converge to a discrete
solution, unless that goal is explicitly introduced. Of course, level-set topology optimization
methods (which were not explored in this work) guarantee that the solution will be discrete.
However, a further contributor to the discreteness challenge is that loads are distributed over
a large surface, whose smoothness is important for aerodynamic performance. Since it is more
efficient to maintain that smoothness with a large number of small supports, than with a few
highly rigid connections, the mesh size required to resolve those features may render 3-D ap-
plication impractical. In that respect density-based methods may have some advantage due to
their connection with homogenization theory. In any case, the solutions proposed in this work
address both the high computational cost and the discrete-solution challenges. Notwithstand-
ing, comparing level-set approaches with density-based methods for the type of problem studied
here should be the subject of future work. For that it will be important to study the interaction
between shape and topology optimization, whether by proposing efficient sequential approaches
or by using an optimization method that can consider both sets of variables simultaneously.
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Conclusions

This thesis has investigated means to perform concurrent shape and topology optimization of
very flexible wings using high-fidelity FSI modeling, accounting for structural non-linearities,
and aimed to apply the methods to relatively large-scale problems. To that end, generic discrete
adjoint approaches (for arbitrary multi-physics problems), and high performance implementa-
tion strategies were also investigated. Chapter 1 introduced the research topics, their challenges,
and reviewed part of the existing work (concerning applications). Chapter 2 discussed the sim-
ulation and optimization methodology used in this work. Most importantly, it presented a new
approach for topology optimization with FSI, which accelerates convergence to discrete topolo-
gies (even when that would not be the natural result given the objectives and constraints).
Discrete adjoint methods were then discussed in chapter 3, the focus throughout that chapter
was on how methods and implementation choices influence the trade-off between performance
and generality. A pitfall of the highly generic AD-based fixed-point approach was identified
(i.e. the treatment of linear solvers) and solutions for it were proposed, which now allow well
know aerodynamic benchmark problems to be solved with SU2. Chapter 4 delved further into
the implementation details of unstructured solvers, in particular it details how modern C++
code patterns were used to achieve up to a 10-fold performance increase of SU2 for relevant
problems, while simultaneously facilitating the development of future high performance features
in the code. Finally, chapter 5 discussed two FSI topology optimization problems that were
made possible via the cumulative effect of the work in previous chapters. These showed that
the use of high-fidelity models is justified especially when structural deformations affect the
smoothness of the surface. Furthermore, they demonstrated how topology optimization can be
used to significantly alter aerodynamic characteristics (in particular to produce passive load
adaptation). The present chapter starts with a review of the main research outcomes, in light
of the goals set in chapter 1, but listing also the secondary outcomes. Finally some advice for
future work is given.

143
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6.1 Research outcomes

Considering the objectives and questions of section 1.3. This work has shown that topology
optimization can be used to obtain aerodynamic goals, instead of purely structural ones, by
carefully tailoring the interaction between a structure and a fluid (question 1). This capability
was used for passive load alleviation on a 2-D problem, and the methodology was shown to
work also for a 3-D problem. Furthermore, the use of high-fidelity models (nonlinear elasticity
and RANS equations), which had not been tried before, proved to be important to capture the
effect of surface deformations on aerodynamic drag (question 3), especially for the 2-D example.
This made the challenges of applying density-based topology optimization to FSI problem more
evident, in particular that the presence of aerodynamic objectives (or constraints) makes the
convergence to discrete material distributions more difficult (question 4). A new approach was
proposed to deal with this challenge, namely an inverse design process that allows decoupling
the main optimization goals from that of obtaining a discrete topology. This strategy was also
effective to accelerate the convergence of the optimization from O(1000) to O(100) iterations
(question 5). This is an important development since the high computational cost of topology
optimization (compared with shape optimization) is one of the main obstacles to the use of
high-fidelity models in large scale problems (as discussed in chapter 1).

Another outcome of this work, in collaboration with other researchers, was the development
of a generic framework for multiphysics discrete adjoints within SU2. This is highly relevant
to facilitate future research, involving even more complex physical phenomena, as it greatly
shortens the development time for new multiphysics applications (question 6). However, generic
approaches have limitations, ranging from potentially higher memory usage (depending on
implementation strategy) to reduced stability or performance due to the more restricted range
of methods that can be applied. Some of these have been identified in this work (in chapter
3), and the solutions proposed here should allow larger problems to be studied in future work
with the tools developed here (question 7).

Finally, as a secondary outcome, countless other improvements were made to SU2 to improve
its performance (up to 10 times), robustness, and correctness. Furthermore, this was done
while substantially reducing the number of lines of code, which should hopefully help future
developers write better code, and more advanced features, in less time.

6.2 Future work

Although it was shown that topology optimization can be used for aerodynamic goals, it was
also clear that the mechanisms used to achieve them may require significant compromise. For
example, using the structural response to increase lift resulted in a lift distribution that sac-
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rificed drag, and to some extent the integrity of the structure. Although the combination of
shape and topology variables was initially identified as an objective (question 2), and should
avoid this issue, it proved difficult to achieve with common optimization algorithms. Different
algorithms should be explored in future work, as well as efficient sequential strategies (i.e. al-
ternating between shape and topology), which may allow current methods to be used so far
as they are resilient to convergence to local optima. The challenges encountered with obtain-
ing discrete topologies also warrant exploration of other topology optimization approaches, in
particular level-set methods, which guarantee discreteness. However, the ability to combine
shape and topology should be kept present when exploring other options. The concerns with
structural integrity can only be incorporated via stress constraints and the basic functionality
for this was put in place (i.e. Kreisselmeier–Steinhauser stress aggregation in SU2). Neverthe-
less, more work will be required to determine adequate strategies to include them in an already
challenging optimization (for example, how to ramp the parameters of the stress aggregation
function). Although manufacturability was never a concern for the conceptual problems stud-
ied in this work, it is worth commenting on the feasibility of the structures obtained, given
how different they are from typical aircraft structures (briefly described in Chapter 1). Some
of those differences can also be found in the work of other authors [6, 20, 12]. One of the most
notable differences is that spar-like structures only develop with significant resolution [20, 12].
Furthermore these spars typically have truss features, which are unusual. Features akin to wing
ribs cannot be found even with very high levels of resolution (i.e. in [12]), this may be due to
the redundant nature of this element [10]. Finally, the type of structures that form during the
optimization to transfer the loads from the skin (panels) to the internal load-bearing elements
are unlike stringers. Instead of extending along the span, these intricate structures are highly
three-dimensional and appear almost biological in nature [12]. Moreover they also connect the
suction and pressure sides, thereby functioning partly as ribs (which may explain why those
do not form). Noting that it was also clear in this work that closely spaced supports of the
outer layers perform better than sparsely distributed supports. In effect, topology optimization
cannot be expected to recreate traditional wing designs, without somehow including in the op-
timization the manufacturing, economic, and safety constraints that have led human designers
to those structures over time. One way to include such constraints is to define a design domain
with the desired features (spars, ribs, etc.), as done in [9], another is to use techniques such
as feature mapping to constrain the shape of the topological features. In [143] the authors
report on the additional challenges of feature mapping compared to density based topology
optimization.

Regarding the progress made to make SU2 capable of larger FSI optimization problems, sub-
stantial work is still required to reach the full-aircraft scale. For one the current mesh defor-
mation strategy does not scale well and it is not suited for highly stretched meshes. It is not
clear whether a completely different strategy should be sought, or if the solid elasticity anal-
ogy still has room for improvement, for example by aggregating stretched elements (thereby
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reducing the size of the stiffness matrix and consequently its condition number). Similarly, the
current solution method for structural problems requires the use of a direct sparse solver (the
condition number is higher due to fewer Dirichlet boundaries), which scales quadratically with
problem size and will therefore become a bottleneck for larger topology optimization problems.
Algebraic multigrid is the state of the art solution for this challenge [12, 89]. Finally, on the
fluid side there are also some limitations, the main one is the ineffectiveness of the geometric
multigrid strategy for highly stretched and unstructured meshes. Although the initial Newton-
Krylov implementation may allow working around the issue for primal problems, this is not
carried into adjoint problems (since the Krylov method is not differentiated). Especially when
upwind schemes are used due to the more approximate nature of the residual Jacobian, and thus
reduced efficiency of the linear preconditioners derived from it. Therefore, algebraic multigrid
is not expected to help and the geometric agglomeration strategy should be improved instead.
It will also be necessary to revise the way it is differentiated with AD, which currently results
in a memory usage comparable to recording multiple iterations (due to pre/post smoothing
iterations).
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