71 research outputs found

    Travelling on Graphs with Small Highway Dimension

    Get PDF
    We study the Travelling Salesperson (TSP) and the Steiner Tree problem (STP) in graphs of low highway dimension. This graph parameter was introduced by Abraham et al. [SODA 2010] as a model for transportation networks, on which TSP and STP naturally occur for various applications in logistics. It was previously shown [Feldmann et al. ICALP 2015] that these problems admit a quasi-polynomial time approximation scheme (QPTAS) on graphs of constant highway dimension. We demonstrate that a significant improvement is possible in the special case when the highway dimension is 1, for which we present a fully-polynomial time approximation scheme (FPTAS). We also prove that STP is weakly NP-hard for these restricted graphs. For TSP we show NP-hardness for graphs of highway dimension 6, which answers an open problem posed in [Feldmann et al. ICALP 2015]

    A Unified PTAS for Prize Collecting TSP and Steiner Tree Problem in Doubling Metrics

    Get PDF
    We present a unified (randomized) polynomial-time approximation scheme (PTAS) for the prize collecting traveling salesman problem (PCTSP) and the prize collecting Steiner tree problem (PCSTP) in doubling metrics. Given a metric space and a penalty function on a subset of points known as terminals, a solution is a subgraph on points in the metric space, whose cost is the weight of its edges plus the penalty due to terminals not covered by the subgraph. Under our unified framework, the solution subgraph needs to be Eulerian for PCTSP, while it needs to be a tree for PCSTP. Before our work, even a QPTAS for the problems in doubling metrics is not known. Our unified PTAS is based on the previous dynamic programming frameworks proposed in [Talwar STOC 2004] and [Bartal, Gottlieb, Krauthgamer STOC 2012]. However, since it is unknown which part of the optimal cost is due to edge lengths and which part is due to penalties of uncovered terminals, we need to develop new techniques to apply previous divide-and-conquer strategies and sparse instance decompositions

    A Survey on Approximation in Parameterized Complexity: Hardness and Algorithms

    Get PDF
    Parameterization and approximation are two popular ways of coping with NP-hard problems. More recently, the two have also been combined to derive many interesting results. We survey developments in the area both from the algorithmic and hardness perspectives, with emphasis on new techniques and potential future research directions

    Hierarchy of Transportation Network Parameters and Hardness Results

    Get PDF
    The graph parameters highway dimension and skeleton dimension were introduced to capture the properties of transportation networks. As many important optimization problems like Travelling Salesperson, Steiner Tree or k-Center arise in such networks, it is worthwhile to study them on graphs of bounded highway or skeleton dimension. We investigate the relationships between mentioned parameters and how they are related to other important graph parameters that have been applied successfully to various optimization problems. We show that the skeleton dimension is incomparable to any of the parameters distance to linear forest, bandwidth, treewidth and highway dimension and hence, it is worthwhile to study mentioned problems also on graphs of bounded skeleton dimension. Moreover, we prove that the skeleton dimension is upper bounded by the max leaf number and that for any graph on at least three vertices there are edge weights such that both parameters are equal. Then we show that computing the highway dimension according to most recent definition is NP-hard, which answers an open question stated by Feldmann et al. [Andreas Emil Feldmann et al., 2015]. Finally we prove that on graphs G=(V,E) of skeleton dimension O(log^2 |V|) it is NP-hard to approximate the k-Center problem within a factor less than 2

    A Gap-{ETH}-Tight Approximation Scheme for Euclidean {TSP}

    Get PDF
    We revisit the classic task of finding the shortest tour of nn points in dd-dimensional Euclidean space, for any fixed constant d2d \geq 2. We determine the optimal dependence on ε\varepsilon in the running time of an algorithm that computes a (1+ε)(1+\varepsilon)-approximate tour, under a plausible assumption. Specifically, we give an algorithm that runs in 2O(1/εd1)nlogn2^{\mathcal{O}(1/\varepsilon^{d-1})} n\log n time. This improves the previously smallest dependence on ε\varepsilon in the running time (1/ε)O(1/εd1)nlogn(1/\varepsilon)^{\mathcal{O}(1/\varepsilon^{d-1})}n \log n of the algorithm by Rao and Smith (STOC 1998). We also show that a 2o(1/εd1)poly(n)2^{o(1/\varepsilon^{d-1})}\text{poly}(n) algorithm would violate the Gap-Exponential Time Hypothesis (Gap-ETH). Our new algorithm builds upon the celebrated quadtree-based methods initially proposed by Arora (J. ACM 1998), but it adds a simple new idea that we call \emph{sparsity-sensitive patching}. On a high level this lets the granularity with which we simplify the tour depend on how sparse it is locally. Our approach is (arguably) simpler than the one by Rao and Smith since it can work without geometric spanners. We demonstrate the technique extends easily to other problems, by showing as an example that it also yields a Gap-ETH-tight approximation scheme for Rectilinear Steiner Tree

    A PTAS for planar group Steiner tree via spanner bootstrapping and prize collecting

    Get PDF
    We present the first polynomial-time approximation scheme (PTAS), i.e., (1 + ϵ)-approximation algorithm for any constant ϵ > 0, for the planar group Steiner tree problem (in which each group lies on a boundary of a face). This result improves on the best previous approximation factor of O(logn(loglogn)O(1)). We achieve this result via a novel and powerful technique called spanner bootstrapping, which allows one to bootstrap from a superconstant approximation factor (even superpolynomial in the input size) all the way down to a PTAS. This is in contrast with the popular existing approach for planar PTASs of constructing lightweight spanners in one iteration, which notably requires a constant-factor approximate solution to start from. Spanner bootstrapping removes one of the main barriers for designing PTASs for problems which have no known constant-factor approximation (even on planar graphs), and thus can be used to obtain PTASs for several difficult-to-approximate problems. Our second major contribution required for the planar group Steiner tree PTAS is a spanner construction, which reduces the graph to have total weight within a factor of the optimal solution while approximately preserving the optimal solution. This is particularly challenging because group Steiner tree requires deciding which terminal in each group to connect by the tree, making it much harder than recent previous approaches to construct spanners for planar TSP by Klein [SIAM J. Computing 2008], subset TSP by Klein [STOC 2006], Steiner tree by Borradaile, Klein, and Mathieu [ACM Trans. Algorithms 2009], and Steiner forest by Bateni, Hajiaghayi, and Marx [J. ACM 2011] (and its improvement to an efficient PTAS by Eisenstat, Klein, and Mathieu [SODA 2012]. The main conceptual contribution here is realizing that selecting which terminals may be relevant is essentially a complicated prize-collecting process: we have to carefully weigh the cost and benefits of reaching or avoiding certain terminals in the spanner. Via a sequence of involved prize-collecting procedures, we can construct a spanner that reaches a set of terminals that is sufficient for an almost-optimal solution. Our PTAS for planar group Steiner tree implies the first PTAS for geometric Euclidean group Steiner tree with obstacles, as well as a (2 + ϵ)-approximation algorithm for group TSP with obstacles, improving over the best previous constant-factor approximation algorithms. By contrast, we show that planar group Steiner forest, a slight generalization of planar group Steiner tree, is APX-hard on planar graphs of treewidth 3, even if the groups are pairwise disjoint and every group is a vertex or an edge
    corecore