A Gap-{ETH}-Tight Approximation Scheme for Euclidean {TSP}

Abstract

We revisit the classic task of finding the shortest tour of nn points in dd-dimensional Euclidean space, for any fixed constant d2d \geq 2. We determine the optimal dependence on ε\varepsilon in the running time of an algorithm that computes a (1+ε)(1+\varepsilon)-approximate tour, under a plausible assumption. Specifically, we give an algorithm that runs in 2O(1/εd1)nlogn2^{\mathcal{O}(1/\varepsilon^{d-1})} n\log n time. This improves the previously smallest dependence on ε\varepsilon in the running time (1/ε)O(1/εd1)nlogn(1/\varepsilon)^{\mathcal{O}(1/\varepsilon^{d-1})}n \log n of the algorithm by Rao and Smith (STOC 1998). We also show that a 2o(1/εd1)poly(n)2^{o(1/\varepsilon^{d-1})}\text{poly}(n) algorithm would violate the Gap-Exponential Time Hypothesis (Gap-ETH). Our new algorithm builds upon the celebrated quadtree-based methods initially proposed by Arora (J. ACM 1998), but it adds a simple new idea that we call \emph{sparsity-sensitive patching}. On a high level this lets the granularity with which we simplify the tour depend on how sparse it is locally. Our approach is (arguably) simpler than the one by Rao and Smith since it can work without geometric spanners. We demonstrate the technique extends easily to other problems, by showing as an example that it also yields a Gap-ETH-tight approximation scheme for Rectilinear Steiner Tree

    Similar works