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Abstract We study the Travelling Salesperson (TSP) and the Steiner Tree problem (STP) in graphs
of low highway dimension. This graph parameter was introduced by Abraham et al. [SODA 2010]
as a model for transportation networks, on which TSP and STP naturally occur for various applica-
tions in logistics. It was previously shown [Feldmann et al. ICALP 2015] that these problems admit a
quasi-polynomial time approximation scheme (QPTAS) on graphs of constant highway dimension. We
demonstrate that a significant improvement is possible in the special case when the highway dimen-
sion is 1, for which we present a fully-polynomial time approximation scheme (FPTAS). We also prove
that STP is weakly NP-hard for these restricted graphs. For TSP we show NP-hardness for graphs of
highway dimension 6, which answers an open problem posed in [Feldmann et al. ICALP 2015].

1 Introduction

Two fundamental optimization problems already included in Karp’s initial list of 21 NP-complete prob-
lems [Kar72] are the Travelling Salesperson problem (TSP) and the Steiner Tree problem (STP).
Given an undirected graph G = (V,E) with non-negative edge weights w : E → R

+, the TSP asks to
find the shortest closed walk in G visiting all nodes of V . Besides its fundamental role in computational
complexity and combinatorial optimization, this problem has a variety of applications ranging from circuit
manufacturing [GH91; LR75] and scientific imaging [BS89] to vehicle routing problems [LND85] in trans-
portation networks. For the STP, a subset R ⊆ V of nodes is marked as terminals. The task is to find
a weight-minimal connected subgraph of G containing the terminals. It has plenty of fundamental applic-
ations in network design including telecommunication networks [Lju+06], computer vision [CG18], circuit
design [Hel+11], and computational biology [Cho+13; LAS16], but also lies at the heart of line planning in
public transportation [BNP09].

Both TSP and STP are APX-hard in general [Aro+92; BP89; CC08; KLS15; Lam14; PV06] implying
that, unless P = NP, none of these problems admit a polynomial-time approximation scheme (PTAS), i.e.,
an algorithm that computes a (1+ε)-approximation in polynomial time for any given constant ε > 0. On the
other hand, for restricted inputs PTASs do exist, e.g., for planar graphs [Aro+98; BKK07; GEP95; Kle08],
Euclidean and Manhattan metrics [ARR98; Mit99], and more generally low doubling1 metrics [BGK12].

We study another class of graphs captured by the notion of highway dimension, which was proposed
by Abraham et al. [Abr+10]. This graph parameter models transportation networks and is thus of particular
importance in terms of applications for both TSP and STP. On a high level, the highway dimension is based
on the empirical observation of Bast et al. [Bas+07; BFM09] that travelling from a point in a network to
a sufficiently distant point on a shortest path always passes through a sparse set of “hubs”. The following
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formal definition is taken from [Fel18] and follows the lines of Abraham et al. [Abr+10].2 Here the distance
between two vertices is the length of the shortest path between them, according to the edge weights. The
ball Bv(r) of radius r around a vertex v contains all vertices with distance at most r from v.

Definition 1 For a scale r ∈ R>0, let P(r,2r] denote the set of all vertex sets of shortest paths with length
in (r, 2r]. A shortest path cover for scale r is a hitting set for P(r,2r], i.e., a set spc(r) ⊆ V such that
| spc(r) ∩ P | 6= ∅ for all P ∈ P(r,2r]. The vertices of spc(r) are the hubs for scale r. A shortest path cover
spc(r) is locally h-sparse, if | spc(r) ∩ Bv(2r)| ≤ h for all vertices v ∈ V . The highway dimension of G is
the smallest integer h such that there is a locally h-sparse shortest path cover spc(r) for every scale r ∈ R>0

in G.

The algorithmic consequences of this graph parameter were originally studied in the context of road
networks [Abr+10; Abr+11; Abr+16], which are conjectured to have fairly small highway dimension. Road
networks are generally non-planar due to overpasses and tunnels, and are also not Euclidean due to different
driving or transmission speeds. This is even more pronounced in public transportation networks, where large
stations have many incoming connections and plenty of crossing links, making Euclidean (or more generally
low doubling) and planar metrics unsuitable as models. Here the highway dimension is better suited, since
longer connections are serviced by larger and sparser stations (such as train stations and airports) that can
act as hubs.

The main question posed in this paper is whether the structure of graphs with low highway dimension
admits PTASs for problems such as TSP and STP, similar to Euclidean or planar instances. It was shown
that quasi-polynomial time approximation schemes (QPTASs) exist for these problems [Fel+18], i.e., (1 +
ε)-approximation algorithms with runtime 2polylog(n) assuming that ε and the highway dimension of the
input graph are constants. However it was left open whether this can be improved to polynomial time.

1.1 Our results

Our main result concerns graphs of the smallest possible highway dimension, and shows that for these fully
polynomial time approximation schemes (FPTASs) exist, i.e., a (1 + ε)-approximation can be computed in
time polynomial in both the input size and 1/ε. Thus at least for this restricted case we obtain a significant
improvement over the previously known QPTAS [Fel+18].

Theorem 2 Both Travelling Salesperson and Steiner Tree admit an FPTAS on graphs with high-
way dimension 1.

From an application point of view, so-called hub-and-spoke networks that can typically be seen in air
traffic networks can be argued to have very small highway dimension close to 1: their star-like structure implies
that hubs are needed at the centers of stars only, where all shortest paths converge. From a more theoretical
viewpoint, we show that surprisingly the STP problem is non-trivial on graphs highway dimension 1, since it
is still NP-hard even on this very restricted case. Interestingly, together with Theorem 2 this implies [Vaz01]
that STP is weakly NP-hard on graphs of highway dimension 1. This is in contrast to planar graphs or
Euclidean metrics, for which the problem is strongly NP-hard.

Theorem 3 The Steiner Tree problem is weakly NP-hard on graphs with highway dimension 1.

It was in fact left as an open problem in [Fel+18] to determine the hardness of STP and also TSP on
graphs of constant highway dimension. Theorem 3 settles this question for STP. We also answer the question
for TSP, but in this case we are not able to bring down the highway dimension to 1 so that the following
theorem does not complement Theorem 2 tightly.

Theorem 4 The Travelling Salesperson problem is NP-hard on graphs with highway dimension 6.
2It is often assumed that all shortest paths are unique when defining the highway dimension, since this allows

good polynomial approximations of this graph parameter [Abr+11]. In this work however, we do not rely on these
approximations, and thus do not require uniqueness of shortest paths.
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1.2 Techniques

We present a step towards a better understanding of low highway dimension graphs by giving new structural
insights on graphs of highway dimension 1. It is not hard to find examples of (weighted) complete graphs with
highway dimension 1 (cf. [Fel+18]), and thus such graphs are not minor-closed. Nevertheless, it was suggested
in [Fel+18] that the treewidth of low highway dimension graphs might be bounded polylogarithmically in
terms of the aspect ratio α, which is the maximum distance divided by the minimum distance between any
two vertices of the input graph.

Definition 5 A tree decomposition of a graph G = (V,E) is a tree D where each node v is labelled with
a bag Xv ⊆ V of vertices of G, such that the following holds: (a)

⋃

v∈V (D) Xv = V , (b) for every edge

{u,w} ∈ E there is a node v ∈ V (D) such that Xv contains both u and w, and (c) for every v ∈ V
the set {u ∈ V (D) | v ∈ Xu} induces a connected subtree of D. The width of the tree decomposition is
max{|Xv|− 1 | v ∈ V (D)}. The treewidth of a graph G is the minimum width among all tree decompositions
for G.

As suggested in [Fel+18], one may hope to prove that the treewidth of any graph of highway dimension h
is, say, O(h polylog(α)). As argued in Section 6, it unfortunately is unlikely that such a bound is generally
possible. In contrast to this, our main structural insight on graphs of highway dimension 1 is that they have
treewidth O(logα). This implies FPTASs for TSP and STP, since we may reduce the aspect ratio of any
graph with n vertices to O(n/ε) and then use algorithms by Bodlaender et al. [Bod+13] to compute optimum
solutions to TSP and STP in graphs of treewidth t in 2O(t)n time. Since reducing the aspect ratio distorts
the solution by a factor of 1+ ε, this results in an approximation scheme. Although these are fairly standard
techniques for metrics (cf. [Fel+18]), in our case we need to take special care, since we need to bound the
treewidth of the graphs resulting from this reduction, which the standard techniques do not guarantee.

It remains an intriguing open problem to understand the complexity and structure of graphs of constant
highway dimension larger than 1.

1.3 Related work

The Travelling Salesperson problem (TSP) is among Karp’s initial list of 21 NP-complete prob-
lems [Kar72]. For general metric instances, the best known approximation algorithm is due to Christofides
[Chr76] and computes a solution with cost at most 3/2 times the LP value. For unweighted instances, the
best known approximation guarantee is 7/5 and is due to Seb and Vygen [SV14]. In general the problem is
APX-hard [KLS15; Lam14; PV06]. For geometric instances where the nodes are points in R

d and distances
are given by some lp-norm, there exists a PTAS [Aro98; Mit99] for fixed d. When d = logn, the problem
is APX-hard [Tre00]. Krauthgamer and Lee [KL06] generalized the PTAS to hyperbolic space. Grigni et al.
[GEP95] gave a PTAS for unweighted planar graphs which was later generalized by Arora et al. [Aro+98]
to the weighted case. For improvements of the running time see Klein [Kle08].

The Steiner Tree problem (STP) is contained in Karp’s list of NP-complete problems as well [Kar72].
The best approximation algorithm for general metric instances is due to Byrka et al. [Byr+10] and computes
a solution with cost at most ln(4)+ ǫ < 1.39 times that of an LP relaxation. Their algorithm improved upon
previous results by, e.g., Robins and Zelikovsky [RZ05] and Hougardy and Prmel [HP99]. Also the STP is
APX-hard [CC08] in general. For Euclidean distances and nodes in R

d with d constant there is a PTAS due to
Arora [Aro98]. For d = log |R|/ log log |R| where R is the terminal set, the problem is APX-hard [Tre00]. For
planar graphs, there is a PTAS for STP [BKK07], and even for the more general Steiner Forest problem
for graphs with bounded genus [BHM11]. Note that STP remains NP-complete for planar graphs [GJ77].

It is worth mentioning that alternate definitions of the highway dimension exist.3 In particular, in a
follow-up paper to [Abr+10], Abraham et al. [Abr+16] define a version of the highway dimension, which
implies that the graphs also have bounded doubling dimension. A related model for transportation networks
was given by Kosowski and Viennot [KV17] via the so-called skeleton dimension, which also implies bounded

3See [Fel+18, Section 9] and [Blu19] for detailed discussions on different definitions of the highway dimension.
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doubling dimension. Hence for these definitions, Bartal et al. [BGK12] already provide a PTAS for TSP.
The highway dimension definition used here (cf. Definition 1) on the other hand allows for metrics of large
doubling dimension as noted by Abraham et al. [Abr+10]: a star has highway dimension 1 (by using the
center vertex to hit all paths), but its doubling dimension is unbounded. While it may be reasonable to
assume that road networks (which are the main concern in the works of Abraham et al. [Abr+10; Abr+11;
Abr+16]) have low doubling dimension, there are metrics modelling transportation networks for which it can
be argued that the doubling dimension is large, while the highway dimension should be small. These settings
are better captured by Definition 1. For instance, the so-called hub-and-spoke networks that can typically
be seen in air traffic networks are star-like networks and are unlikely to have small doubling dimension while
still having very small highway dimension close to 1. Thus in these examples it is reasonable to assume that
the doubling dimension is a lot larger than the highway dimension.

Feldmann et al. [Fel+18] showed that graphs with low highway dimension can be embedded into graphs
with low treewidth. This embedding gives rise to a QPTAS for both TSP and STP but also other prob-
lems. However, the result in [Fel+18] is only valid for a less general definition of the highway dimension
from [Abr+11], i.e., there are graphs which have constant highway dimension according to Definition 1 but
for which the algorithm of [Fel+18] cannot be applied. For the less general definition from [Abr+11], Becker
et al. [BKS18] give a PTAS for Bounded-Capacity Vehicle Routing in graphs of bounded highway
dimension. Also the k-Center problem has been studied on graphs of bounded highway dimension, both
for the less general definition [BKS18] and the more general one used here [Fel18; FM18].

2 Structure of graphs with highway dimension 1

In this section, we analyse the structure of graphs with highway dimension 1. To this end, let us fix a graph
G with highway dimension 1 and a shortest path cover spc(r) for each scale r ∈ R

+. As a preprocessing, we
remove edges that are longer than the shortest path between their endpoints, so that the triangle inequality
holds.

We begin by analysing the structure of the graph G≤2r, which is spanned by all edges of the input graph
G of length at most 2r. If G has highway dimension 1 it exhibits the following key property.

Lemma 6 Let G be a metric graph with highway dimension 1, r ∈ R
+ a scale, and spc(r) a shortest path

cover for scale r. Then, every connected component of G≤2r contains at most one hub.

Proof. For the sake of contradiction, let r ∈ R
+ and let x, y ∈ spc(r) be a closest pair of distinct hubs in

some component of G≤2r. Let further P be a shortest path in G≤2r between x and y using only edges of
length at most 2r. (Note that P need not be a shortest path between x and y in G.) In particular, there is
no other hub from spc(r) \ {x, y} along P . This implies that every edge of P that is not incident to either x
or y must be of length at most r, since otherwise the edge would be a shortest path of length (r, 2r] between
its endpoints (using that G is metric) contradicting the fact that spc(r) is a shortest path cover for scale r.

Since the highway dimension of G is 1, any ball Bw(2r) around a vertex w ∈ V (P ) contains at most one
of the hubs x, y ∈ spc(r). Let x′, y′ ∈ P be the vertices indicent to x and y along P , respectively. Since the
length of the edge {x, x′} is at most 2r, the ball Bx′(2r) must contain x and, by the observation above, it
cannot contain y (in particular {x, y} is not an edge). Symmetrically, the ball By′(2r) contains y but not x.
Consequently, x′ 6= y′ and neither of these two vertices can be a hub of scale r, i.e., the path P contains at
least two vertices different from x and y.

Let Vx = {w ∈ V : dist(x,w) < dist(y, w)} contain all vertices closer to x than to y, where dist(·, ·) refers
to the distance in the original graphG. As all edge weights are strictly positive, we have that dist(x, y) > 0 and
thus y /∈ Vx. Since P starts with vertex x ∈ Vx and ends with vertex y /∈ Vx we deduce that there is an edge
{u, v} of P such that u ∈ Vx and v /∈ Vx. In particular, dist(x, u) < dist(y, u) and dist(y, v) ≤ dist(x, v). We
must have {u, v} 6= {y′, y}, since otherwise dist(x, y′) < dist(y, y′) ≤ 2r and hence By′(2r) would contain x.
Similarly, we have {u, v} 6= {x, x′}, since otherwise Bx′(2r) would contain y. Note that, by definition, u 6= y
and v 6= x, and hence x, y /∈ {u, v}. Consequently, since every edge of P not incident to either x or y must
have length at most r, we conclude that {u, v} has length at most r.
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Finally, consider the scale r′ ∈ R
+, defined such that 2r′ = dist(x, u) + dist(u, v). Let Q and Q′ denote

shortest paths between x, u and v, y inG, respectively. Then the ball Bv(2r
′) around v containsQ by definition

of r′. From dist(y, v) ≤ dist(x, v) ≤ dist(x, u) + dist(u, v) = 2r′ it follows that Bv(2r
′) contains Q′ as well.

Also, dist(y, v) ≤ dist(x, v) means that Bv(2r) cannot contain x, and hence 2r′ = dist(x, u) + dist(u, v) ≥
dist(x, v) > 2r, which implies r′ > r. W.l.o.g., assume that dist(x, u) ≤ dist(v, y) (otherwise consider scale
2r′ = dist(y, v)+dist(u, v) and the ball Bu(2r

′)). Our earlier observation that dist(u, v) ≤ r with r < r′ then
yields dist(v, y) ≥ dist(x, u) = 2r′ − dist(u, v) > r′. In other words, the lengths of both paths Q and Q′ are
in (r′, 2r′], and so they both need to contain a hub of spc(r′). However, by definition of u, v, the paths Q
and Q′ are vertex disjoint, which means that the ball Bv(2r

′), which contains Q and Q′, also contains at
least two hubs from spc(r′). This is a contradiction with G having highway dimension 1. ⊓⊔

Given a graph G, we now consider graphs G≤2r for exponentially growing scales. In particular, for any
integer i ≥ 0 we define the scale ri = 2i and call a connected component of G≤2ri a level-i component. Note
that the level-i components partition the graph G, and that the level-i components are a refinement of the
level-(i+1) components, i.e., every level-i component is contained in some level-(i+1) component. W.l.o.g.,
we scale the edge weights of the graph such that mine∈E w(e) = 3, so that there are no edges on level 0, and

every level-0 component is a singleton. Let α =
maxu6=v dist(u,v)
minu6=v dist(u,v) =

maxu6=v dist(u,v)
3 be the aspect ratio of G.

In our applications we may assume that G is connected, so that there is exactly one level-(1 + ⌈log2(α)⌉)
component containing all of G.

Since every edge is a shortest path between its endpoints, every edge e = {u, v} that connects a vertex u
of a level-i component C with a vertex v outside C is hit by a hub of spc(rj), where j is the level for which
w(e) ∈ (rj , 2rj ]. Moreover, since v lies outside C, we have w(e) > 2ri and, thus, j ≥ i + 1. The following
definition captures the set of the hubs through which edges can possibly leave C.

Definition 7 Let C be a level-i component of G. We define the set of interface points of C as IC :=
⋃

j≥i{u ∈ spc(rj) : distC(u) ≤ 2rj}, where distC(u) denotes the minimum distance from u to a vertex in C
(if u ∈ C, distC(u) = 0).

Note that, for technical reasons, we explicitly add every hub at level i of a component to its set of interface
points as well, even if such a hub does not connect the component with any vertex outside at distance more
than 2ri.

Lemma 8 If G has highway dimension 1, then each interface IC of a level-i component C contains at most
one hub for each level j ≥ i.

Proof. Assume that there are two hubs u, v ∈ spc(rj) in IC , and recall that we preprocessed the graph so
that the triangle inequality holds. Then u and v must be contained in the same level-j component C′, since
u and v are connected to C with edges of length at most 2rj (or are contained in C) and C ⊆ C′. This
contradicts Lemma 6. ⊓⊔

Using level-i components and their interface points we can prove that the treewidth of a graph with
highway dimension 1 is bounded in terms of the aspect ratio.

Lemma 9 If a graph G has highway dimension 1 and aspect ratio α, its treewidth is at most 1 + ⌈log2(α)⌉.

Proof. The tree decomposition of G is given by the refinement property of level-i components. That is, let
D be a tree that contains a node vC for every level-i component C for all levels 0 ≤ i ≤ 1 + ⌈log2(α)⌉. For
every node vC we add an edge in D to node vC′ , if C is a level-i component, C′ is a level-(i+1) component,
and C ⊆ C′. The bag XC for node vC contains the interface points IC . For a level-0 component C the bag
XC additionally contains the single vertex u contained in C.

Clearly, the tree decomposition has Property (a) of Definition 5, since the level-0 components partition
the vertices of G and every vertex of G is contained in a bag XC corresponding to a level-0 component C.
Also, Property (b) is given by the bags XC for level-0 components C, since for every edge e of G one of its
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endpoints u is a hub of spc(ri) where i is such that w(e) ∈ (ri, 2ri], and the other endpoint w is contained
in a level-0 component C, for which XC contains u and w.

For Property (c), first consider a vertex u of G, which is not contained in any set of interface points for
any level-i component and any 0 ≤ i ≤ log2(α). Such a vertex only appears in the bag XC for the level-0
component C containing u, and thus the node vC for which the bag contains u trivially induces a connected
subtree of D.

Any other vertex u of G is an interface point. Let i be the highest level for which u ∈ IC for some level-i
component C. We claim that u ∈ C, which implies that C is the unique level-i component containing u in its
interface. To show our claim, assume u /∈ C. Then, by definition, IC contains u because u ∈ spc(rj) for some
j ≥ i and u has some neighbour at distance at most 2rj in C. Since we preprocessed the graph such that
every edge is a shortest path between its endpoints, this means that there must be an edge e = {u, v} with
w(e) ∈ (rj , 2rj ] and v ∈ C. Since u /∈ C, we have i < j. Let C′ be the unique level-j component with C ⊆ C′.
Then, by definition, u ∈ IC′ , which contradicts the maximality of i. This proves our claim and shows that
the highest level component C with u ∈ XC is uniquely defined. Moreover, we obtain u ∈ spc(ri).

Now consider a level-i′ component C′ with i′ < i, such that u ∈ XC′ , and let C′′ be the unique level-
(i′+1) component containing C′. We claim that u ∈ XC′′ . If u ∈ C′ ⊆ C′′, then u ∈ XC′′ , since u ∈ spc(ri),
distC′′(u) = 0 ≤ 2ri and i′+1 ≤ i. If u /∈ C′, then u ∈ XC′ implies u ∈ IC′ , which means that there must be a
vertex w ∈ C′ with dist(u,w) ≤ 2ri. But then w ∈ C′′ and thus distC′′(u) ≤ 2ri. Together with u ∈ spc(ri),
this implies u ∈ XC′′ , as claimed. Since vC′ is a child of vC′′ in the tree D, it follows inductively that the
nodes of D with bags containing u induce a subtree of D with root vC , which establishes Property (c).

By Lemma 8 each set of interface points contains at most one hub of each level. Since all edges have
length at least 3, there are no hubs in spc(r0) on level 0. This means that each bag of the tree decomposition
contains at most 1 + ⌈log2(α)⌉ interface points. The bags for level-0 components contain one additional
vertex. Thus the treewidth of G is at most 1 + ⌈log2(α)⌉, as claimed. ⊓⊔

An additional property that we will exploit for our algorithms is the following. A (µ, δ)-net N ⊆ V is a
subset of vertices such that (a) the distance between any two distinct net points u,w ∈ N is more than µ,
and (b) for every vertex v ∈ V there is some net point w ∈ N at distance at most δ. For graphs of highway
dimension 1 however, we can obtain nets with additional favourable properties, as the next lemma shows.

Lemma 10 For any graph G of highway dimension 1 and any r > 0, there is an (r, 3r)-net such that every
connected component of G≤r contains exactly one net point. Moreover this net can be computed in polynomial
time.

Proof. We first derive an upper bound of 3r for the diameter of any connected component of G≤r. Lemma 6
implies that a connected component C contains at most one hub x of spc(r/2). By definition, any shortest
path in C of length in (r/2, r] must pass through x. We also know that every edge of C has length at most
r. Consequently, every edge in C not incident to x must have length at most r/2, since each edge constitutes
a shortest path between its endpoints. This implies that any shortest path in C that is not hit by x must
have length at most r/2: if C contains a shortest path P with length more than r/2 not containing x we
could repeatedly remove edges of length at most r/2 from P until we obtain a shortest path of length in
(r/2, r] not hit by x, a contradiction. Now consider a shortest path P in G of length more than r/2 from
some vertex v ∈ C to x (note that this path may not be entirely contained in C). Let {u,w} be the unique
edge of P such that dist(v, u) ≤ r/2 and dist(v, w) > r/2. If the length of the edge {u,w} is at most r/2
then dist(v, w) ≤ r, and thus w = x, since the part of the path from v to w is a shortest path of length in
(r/2, r] and thus needs to pass through x. Otherwise the length of the edge {u,w} is in the interval (r/2, r],
which again implies w = x, since the edge must contain x. In either case, dist(v, x) ≤ 3r/2. This implies that
every vertex in C is at distance at most 3r/2 from x, and thus the diameter of C is at most 3r.

To compute the (r, 3r)-net, we greedily pick an arbitrary vertex of each connected component of G≤r.
As the distances between components of G≤r is greater than r, and every vertex lies in some component
containing a net point, we get the desired distance bounds. Clearly this net can be computed in polynomial
time. ⊓⊔
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3 Approximation schemes

In general the aspect ratio of a graph may be exponential in the input size. A key ingredient of our algorithms
is to reduce the aspect ratio α of the input graph G = (V,E) to a polynomial. For STP and TSP, standard
techniques can be used to reduce the aspect ratio to O(n/ε) when aiming for a (1 + ε)-approximation. This
was for instance also used in [Fel+18] for low highway dimension graphs, but here we need to take special
care not to destroy the structural properties given by Lemma 9 in this process. In particular, we need to
reduce the aspect ratio and maintain the fact that the treewidth is bounded.

Therefore, we reduce the aspect ratio of our graphs by the following preprocessing. Both metric TSP

and STP admit constant factor approximations in polynomial time using well-known algorithms [Byr+10;
Chr76]. We first compute a solution of cost c using a β-approximation algorithm for the problem at hand
(TSP or STP). For TSP, the diameter of the graph G clearly is at most c/2. For STP we remove every
vertex of V that is at distance more than c from any terminal, since such a vertex cannot be part of the
optimum solution. After having removed all such vertices in this way, we obtain a graph G of diameter at
most 3c. Thus, in the following, we may assume that our graph G has diameter at most 3c. We then set
r = εc

3n in Lemma 10 to obtain a ( εc
3n ,

εc
n )-net N ⊆ V . As a consequence the metric induced by N (with

distances of G) has aspect ratio at most 3c
εc/(3n) = O(n/ε), since the minimum distance between any two

net points of N is at least εc
3n and the maximum distance is at most 3c. We will exploit this property in the

following.
By Lemma 10, each connected component of G≤ εc

3n
contains exactly one net point of N . Let η : V 7→ N

map each vertex of G to the unique net point in the same connected component of G≤ εc

3n
. We define a new

graph G′ with vertex set N ⊆ V and edge set {{η(u), η(v)} : {u, v} ∈ E ∧ η(u) 6= η(v)}. The length of each
edge {w,w′} of G′ is the shortest path distance between w and w′ in G. This new graph G′ may not have
bounded highway dimension, but we claim that it has treewidth O(log(n/ε)).

Lemma 11 If G has highway dimension 1, the graph G′ with vertex set N has treewidth O(log(n/ε)).
Moreover, a tree decomposition for G′ of width O(log(n/ε)) can be computed in polynomial time.

Proof. We construct a tree decomposition D′ of G′ as follows. Following Lemma 9 we can compute a tree
decomposition D of width at most 1+⌈log2(α)⌉, where α is the aspect ratio of G: for this we need to compute
a locally 1-sparse shortest path cover spc(ri) for each level i, which can be done in polynomial time via an
XP algorithm [Fel+18] if the highway dimension is 1. We then find the level-i components and their interface
points, from which the tree decomposition D and its bags can be constructed. Since there are O(logα) levels
and α is at most exponential in the input size (which includes the encoding length of the edge weights), we
can compute D in polynomial time.

We construct D′ from D by replacing every bag X of D by a new bag X ′ = {η(v) : v ∈ X} containing the
net points for the vertices in X . It is not hard to see that Properties (a) and (b) of Definition 5 are fulfilled
by D′, since they are true for D. For Property (c), note that for any edge {u, v} of G, the set of all bags of D
that contain u or v form a connected subtree of D. This is because the bags containing u form a connected
subtree (Property (c)), the same is true for v, and both these subtrees share at least one node labelled
by a bag containing the edge {u, v} (Property (b)). Consequently, the set of all bags containing vertices
of any connected subgraph of G form a connected subtree. In particular, for any connected component A
of G≤ εc

3n
, the set of bags of D containing at least one vertex of A form a connected subtree. This implies

Property (c) for D′. Thus, D′ is indeed a tree decomposition of G′ according to Definition 5. Note that D′

can be computed in polynomial time.
To bound the width of D′, recall that a bag X of the tree decomposition D of G contains the interface

points IC of a level-i component C, in addition to one more vertex of C on the lowest level i = 0. Each
interface point is a hub from spc(rj) at some level j ≥ i and is at distance at most 2rj from C. In particular,
if 2ri ≤

εc
3n then C is a component of G≤2ri ⊆ G≤ εc

3n
, and all hubs of IC ∩ spc(rj) for which 2rj ≤

εc
3n lie in

the same connected component A of G≤ εc

3n
as C. These hubs are therefore all mapped to the same net point

w in A by η. In addition to w, the bag X ′ = {η(v) : v ∈ X} resulting from X and η contains at most one
vertex for every level j such that 2rj > εc

3n . As rj = 2j , this condition is equivalent to j > log2(
εc
3n ) − 1. As

7



there are 1 + ⌈log2(α)⌉ levels in total, there are O(log(αnεc )) hubs in X ′. This bound is obviously also valid
in case 2ri >

εc
3n . We preprocessed the graph G so that its diameter is at most 3c and its minimum distance

is 3, which implies an aspect ratio α of at most c for G. This means that every bag X ′ contains O(log(n/ε))
vertices, and thus the claimed treewidth bound for G′ follows. ⊓⊔

We are now ready to prove our main result.

Proof (of Theorem 2). To solve TSP or STP on G we first use the above reduction to obtain G′ and its
tree decomposition D′, and then compute an optimum solution for G′. For TSP, G′ is already a valid input
instance, but for STP we need to define a terminal set, which simply is R′ = {η(v) | v ∈ R} if R is the
terminal set of G. Bodlaender et al. [Bod+13] proved that for both TSP and STP there are deterministic
algorithms to solve these problems exactly in time 2O(t)n, given a tree decomposition of the input graph
of width t. By Lemma 11 we can thus compute the optimum to G′ in time 2O(log(n/ε)) · n = (n/ε)O(1).
Afterwards, we convert the solution for G′ back to a solution for G, as follows.

For TSP we may greedily add vertices of V to the tour on N by connecting every vertex v ∈ V to the
net point η(v). As the vertices N of G′ form a ( εc

3n ,
εc
n )-net of V , this incurs an additional cost of at most 2 εc

n
per vertex, which sums up to at most 2εc. Let Opt and Opt

′ denote the costs of the optimum tours in G
and G′, respectively. We know that c ≤ β ·Opt, since we used a β-approximation algorithm to compute c.
Furthermore, the optimum tour in G can be converted to a tour in G′ of cost at most Opt by short-cutting,
due to the triangle inequality. Thus Opt

′ ≤ Opt, which means that the cost of the computed tour in G is
at most Opt

′ + 2εc ≤ (1 + 2βε)Opt.

Similarly, for STP we may greedily connect a terminal v of G to the terminal η(v) of G′ in the computed
Steiner tree in G′. This adds an additional cost of at most εc

n , which sums up to at most εc. Let now Opt

and Opt
′ be the costs of the optimum Steiner trees in G and G′, respectively. We may convert a Steiner tree

T in G into a tree T ′ in G′ by using edge {η(u), η(v)} for each edge {u, v} of T . Note that the resulting tree
T ′ contains all terminals of G′, since R′ = {η(v) | v ∈ R}. As the vertices N of G′ form a ( εc

3n ,
εc
n )-net of V ,

the cost of T ′ is at most Opt+ 2εc if the cost of T is Opt (by the same argument as used for the proof of
Lemma 11). As before, we know that c ≤ β ·Opt, and thus the cost of the computed Steiner tree in G is at
most Opt

′ + εc ≤ Opt+ 3εc ≤ (1 + 3βε)Opt.

Hence we obtain FPTASs for both TSP and STP, which compute (1+ε)-approximations within a runtime
that is polynomial in the input size and 1/ε. ⊓⊔

We prove next that STP is NP-hard on graphs of highway dimension 1, which means that the problem is
weakly NP-hard for these inputs (cf. [Vaz01]). Whether TSP is NP-hard for such small highway dimension
remains open, but we prove that it is for highway dimension 6.

4 Hardness of Steiner Tree for highway dimension 1

We present a reduction from the NP-hard satisfiability problem (SAT) [GJ02], in which a Boolean formula ϕ
in conjunctive normal form is given, and a satisfying assignment of its variables needs to be found.

Proof (of Theorem 3). For a given SAT formula ϕ with k variables and ℓ clauses we construct a graph Gϕ

as follows (cf. Fig. 1). For each variable x we introduce a path Px = (tx, ux, fx) with two edges of length
1 each. The vertex ux is a terminal. Additionally we introduce a terminal v0, which we call the root, and
add the edges {v0, tx} and {v0, fx} for every variable x. Every edge incident to v0 has length 11. For each
clause Ci, where i ∈ {1, . . . , ℓ}, we introduce a terminal vi and add the edge {vi, tx} for each variable x such
that Ci contains x as a positive literal, and we add the edge {vi, fx} for each x for which Ci contains x as a
negative literal. Every edge incident to vi has length 11i+1. Note that the edges incident to the root v0 also
have length 11i+1 for i = 0.

Lemma 12 The constructed graph Gϕ has highway dimension 1.
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Figure 1: Illustration of the part of the construction involving vertices x, y, z and a clause Ci = (x∨ ȳ∨ z̄). Terminals
are marked as boxes.

Proof. Fix a scale r > 0. If r ≤ 5 then the shortest path cover spc(r) only needs to hit shortest paths of
length at most 2r ≤ 10. Since all edges incident to terminals vj with j ∈ {0, . . . , ℓ} have length at least 11,
any such path contains only edges of paths Px. Thus it suffices to include all vertices ux in spc(r). A ball
Bw(2r) of radius 2r ≤ 10 can also only contain some subset of vertices of a single path Px, or a single vertex
vj . In the former case the ball contains at most the vertex ux ∈ spc(r), and in the latter none of spc(r).

If r > 5, let i = ⌊log11(r/5)⌋ ≥ 0 and spc(r) = {vi}. Since there is only one hub, this shortest path cover
is locally 1-sparse. Note that any edge incident to a vertex vj with j ≥ i + 1 has length at least 11i+2 ≥

11r/5 > 2r. Also, all paths that do not use any vj with j ≥ i have length at most 2 +
∑i−1

j=0(2 · 11
j+1 + 2),

since such a path can contain at most two edges incident to a vertex vj with j ≤ i− 1 and the paths Px of
length 2 are connected only through edges incident to vertices vj . The length of such a path is thus shorter
than

2 + 2
11i+1

11− 1
+ 2i ≤ 3 · 11i + 2 · 11i ≤ 5 · 11i ≤ r,

where the first inequality holds since i + 1 ≤ 11i whenever i ≥ 0. Hence the only paths that need to be hit
by hubs on scale r are those passing through vi, which is a hub of spc(r). ⊓⊔

To finish the reduction, we claim that there is a satisfying assignment for ϕ if and only if there is a Steiner
tree T for Gϕ with cost at most 12k +

∑ℓ
i=1 11

i+1. If there is a satisfying assignment for ϕ, then the tree
T contains the edges {ux, tx} and {v0, tx} for variables x that are set to true, and the edges {ux, fx} and
{v0, fx} for variables x that are set to false. This connects every terminal ux with the root v0, and the cost
of these edges is 12k. For every terminal vi where i ≥ 1 we can now add the edge {vi, sx} for sx ∈ {tx, fx}
that corresponds to a literal of Ci that is true in the satisfying assignment. Since this Steiner vertex sx is
connected to the root v0, we obtain a Steiner tree T . The latter edges add another

∑ℓ
i=1 11

i+1 to the solution
cost, and thus the total cost is as claimed.

Conversely, consider a minimum cost Steiner tree T in Gϕ. Note that for any terminal ux the tree must
contain an incident edge of cost 1, while for any terminal vi with i ≥ 1 the tree must contain an incident
edge of cost 11i+1. This adds up to a cost of k+

∑ℓ
i=1 11

i+1. Assume that there is some variable x such that
T contains neither {v0, tx} nor {v0, fx}. This means that in T the terminal ux is connected to the root v0
through an edge {vi, sx} for sx ∈ {tx, fx} and some i ≥ 1. The edge v0sx forms a fundamental cycle with the
tree T , which however has a shorter length of 11 compared to the edge {vi, sx}, which has length 11i+1. Thus
removing {v0, sx} and adding {vi, sx} instead, would yield a cheaper Steiner tree. As this would contradict
that T has minimum cost, T contains at least one of the edges {v0, tx} and {v0, fx} for every variable x.

This adds another 11k to the cost, so that T costs at least 12k +
∑ℓ

i=1 11
i+1.

If we assume that 12k +
∑ℓ

i=1 11
i+1 is also an upper bound on the cost of T , by the above observations

the tree T contains exactly one edge incident to every terminal ux and vi for i ≥ 1, and exactly k edges
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incident to v0. Furthermore, for every variable x the latter edges contain exactly one of {v0, tx} and {v0, fx}.
Thus T encodes a satisfying assignment for ϕ, as follows. For every edge v0tx we may set x to true, and
for every edge {v0, fx} we may set x to false. For every clause Ci the corresponding terminal vi connects
through one of the Steiner vertices sx ∈ {tx, fx} of a corresponding literal contained in Ci. The only incident
vertices to sx in Gϕ are some terminals vj , the terminal ux, and the root v0. As each vj and also ux only has
one incident edge contained in the tree T , the tree must contain the edge {v0, sx} so that the root can be
reached from sx in T . Hence sx corresponds to a literal that is true in Ci. Using Lemma 12, which bounds
the highway dimension of Gϕ, we obtain Theorem 3. ⊓⊔

5 Hardness of Travelling Salesperson for highway dimension 6

We now show hardness of TSP for graphs of bounded highway dimension. We first introduce a simple lemma
that will allow us to easily bound the highway dimension of our construction by adding edges incrementally.
In the following we denote the highway dimension of a graph G by hd(G).

Definition 13 A cost c⋆ ∈ R is safe w.r.t. a (multi-)set of costs C ⊆ R if c⋆ ≥ 2
∑

c∈C c.

Lemma 14 Let G = (V,E) be a graph, E′ ⊆
(

V
2

)

, and G′ = (V,E ∪ E′). If the edges in E′ have safe costs
w.r.t. the edge costs of G, then hd(G′) ≤ max{hd(G), |E′|}.

Proof. Let c⋆ be the smallest cost among the edges of E′ and consider a fixed scale r ∈ R
+. If r < c⋆/2, then

no path of length l ∈ (r, 2r] in G′ contains any of the edges in E′. By the definition of the highway dimension
of G, there is a locally hd(G)-sparse shortest path cover spc(r) of G′ for this scale. Now if r ≥ c⋆/2, then
every path of length l ∈ (r, 2r] in G′ must contain an edge of E′, since the costs of all edges in E sum up
to at most r. Therefore, we can find a shortest path cover spc(r) of G′ simply by taking a minimum vertex
cover of E′, which has size at most |E′|. ⊓⊔

We are now ready to prove hardness.

Proof (of Theorem 4.). We reduce from (≤ 3, 3)-Sat [GJ02]. To that end, let a (≤ 3, 3)-Sat formula be
given, with variables x1, . . . xn and clauses C1, . . . , Cm, where each literal appears at most twice (and each
variable at most three times). We construct a graph G with edge costs taken from among the values a ≪
b ≪ c1 ≪ · · · ≪ cn−1 ≪ d ≪ e ≪ f1 ≪ · · · ≪ fm, where each cost value can be chosen arbitrarily such that
it is safe with respect to the costs of all cheaper edges. For example, there will be 2n edges of cost a, hence
we choose b ≥ 4an. Let T ⋆ be (any) TSP tour in G of minimum cost |T ⋆|. We consider T ⋆ to be oriented
arbitrarily in one of its two possible orientations.

For every variable xi, we introduce a gadget with four vertices vi1, vi2, vi3, vi4 and the edges {vi1, vi3}
and {vi2, vi4}, both of cost a. We further add edges {vi1, vi2}, {vi2, vi3}, {vi3, vi4}, {vi4, vi1} of cost b each
(cf. Fig. 2). We will enforce that T ⋆ uses both edges of cost a in every variable gadget, and we will interpret
the variable as ’true’, if the orientation of these edges along the tour is (vi1, vi3) and (vi4, vi2), or (vi3, vi1) and
(vi2, vi4), and ’false’ otherwise. Let Gb be the graph we have constructed so far. Each of the n components
of Gb has highway dimension 2: For scales r < a, we can set spc(r) =

⋃

i{vi1, vi2}, and for scales r ≥ a, we
can set spc(r) =

⋃

i{vi1, vi3}. Hence, hd(G
b) = 2.

We connect the variable gadgets by adding edges {vi1, v(i+1)1} of cost ci for all i ∈ {1, . . . , n− 1} in this
order. By definition, each new edge has a safe cost (w.r.t. all previous edges), and hence, by Lemma 14, the
resulting graph Gc has highway dimension hd(G2) = 2. We will enforce that T ⋆ uses each of these edges
exactly twice.

For each clause Cj , we introduce a clause gadget with six vertices wj1, w
′
j1, wj2, w

′
j2, wj3, w

′
j3 (cf. Fig. 3).

We first add three edges {w′
j1, wj2}, {w′

j2, wj3}, {w′
j3, wj1} of cost d each. Since these edges are disconnected,

the resulting graph Gd still has hd(Gd) = 2. Now, we add three edges {wj1, w
′
j1}, {wj2, w

′
j2}, {wj3, w

′
j3} of

cost e each. In the resulting graph Ge, clauses are still disconnected. Since we added three edges with safe
costs for each clause, by Lemma 14, we have hd(Ge) ≤ 3.
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Figure 2: Vertex gadgets.

Finally, we connect each clause gadget for clause Cj to the three variable gadgets corresponding to the
variables appearing in Cj (cf. Fig. 3). To this end, we add six edges per clause, step by step in the order of
increasing clause indices. Let Cj = λj1∨λj2∨λj3 and consider k ∈ {1, 2, 3}. Assume λjk = xi, i.e., xi appears
as a positive literal in Cj . Let δ = 0 if Cj is the first clause containing the literal xi, i.e., xi /∈ Cj′ for j

′ < j,
and δ = 2 otherwise. We add the edges {wjk, vi(2+δ)}, {w

′
jk, vi(1+δ)} of cost fj . Now assume λjk = x̄i and let

again δ = 0 if x̄i /∈ Cj′ for j
′ < j, and δ = 2 otherwise. We add the edges {wjk, vi(3−δ)}, {w

′
jk, vi(2+δ)} of cost

fj . Since we add six edges of safe costs in each step, by Lemma 14, the final graph G = Gf has hd(G) ≤ 6.
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Figure 3: Clause gadget.

Now let W = 2
∑m

j=1 fj + 2me + 3md + 2
∑n−1

i=1 ci + (2n −m)b + 2na. We claim that |T ⋆| ≤ W if and
only if the (≤3, 3)-Sat formula is satisfiable.

For the first part of the claim, assume the (≤3, 3)-Sat formula is satisfiable, and, for all j ∈ {1, . . . ,m},
let yj be a unique variable that satisfies clause Cj in the corresponding assignment. We describe a tour of
cost W by constructing a Eulerian graph consisting of edges of G (sometimes twice) that connect all vertices
with a total cost of W . We start by including the cycle of cost 3e+ 3d within each clause gadget, and each
edge between different variable gadgets twice, for a total cost of 3me+ 3md+ 2

∑n−1
i ci. For every variable

xi that is set to true, we include the cycle vi1, vi3, vi4, vi2, vi1 of cost 2b + 2a. For every variable xi that is
set to false, we include the cycle vi1, vi3, vi2, vi4, vi1 of cost 2b+2a. The resulting graph T ′ is Eulerian, since
we added only cycles, but not yet connected. Its cost is 3me+ 3md+ 2

∑n−1
i=1 ci + 2nb+ 2na.
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Now take a clause Cj that is satisfied by variable xi = yj . We add the edges {wjk, vir}, {w′
jk, vi(r+3 mod 4)}

that connect the corresponding clause and variable gadgets. Observe that the edge {wjk, w
′
jk} is in T ′ and

so is the edge {vir, vi(r+3 mod 4)}, because xi satisfies Cj . We can thus remove these two edges and obtain a
Eulerian graph. This increases the cost of the graph by 2fj − e− b. The final graph T is connected, Eulerian,
and has cost W as claimed.

For the second part of the claim, consider any TSP tour T with |T | ≤ W . Observe that 3fm > W ,
3fm−1 > W − 2fm, and so on. Since, for all j ∈ {1, . . . ,m}, the edges of cost fj form a cut of G, we can

conclude that T uses exactly 2 edges of cost fj (or one of them twice). Similarly, (2m+1)e > W −
∑n−1

j=1 fj ,
but T needs to use at least two edges of cost e (or one of them twice) to connect all vertices of a clause
gadget for Cj to the two edges of cost fj that are part of the tour. We can again conclude that T uses exactly

two edges of cost e in each clause gadget. And again (3m+ 1)d > W −
∑n−1

j=1 fj − 2me, but T needs to use
at least three times an edge of cost d to connect all vertices of a clause gadget, provided that it uses only
two edges of cost e. We conclude that T uses exactly three edges of cost d in each clause gadget. Finally,
observe that the only way to connect all vertices of a clause gadget with two edges of cost e and three edges
of cost d needs that the two edges of cost fj are distinct and connect to the same vertex gadget. We will
rely on this observation in the following, and on the fact that costs are chosen to be safe with respect to all
smaller costs (in particular, e is safe with respect to a, b, c, d, etc.).

The first implication is that T needs to use every edge between vertex gadgets twice, since the vertex
gadgets are not connected via clause gadgets. Our analysis so far implies that edges within variable gadgets
that are used in T incur a cost of at most W ′ = (2n−m)b+2na. Let k ∈ {0, . . . 4} be the number of clause
gadgets in T connected to the variable gadget of xi. Clearly, T needs to use at least 4− k edges within the
variable gadget. The cost within a variable gadget depending on k is at least 2b + 2a (if k = 0), b + 2a (if
k = 1), 2a (if k = 2), a (if k = 1), or 0 (if k = 4). Since each variable appears in at most four clauses and
each clause has at most 3 literals, we have m ≤ 4n/3 < 2n. To obtain a cost of at most W ′, we must thus
have k ≤ 2 in each variable gadget, since b ≫ a. Furthermore, if there are two clause gadgets connected
to a variable gadget, they must connect to disjoint vertices of the clause to allow for a cost of at most 2a
in the variable gadget. This means that the corresponding literals must either both be positive or both be
negative. But if there is an assignment of clauses to variables such that at most two clauses are assigned
to each variable and the corresponding literal of the assigned clauses must agree, this immediately yields a
satisfying assignment of the (≤3, 3)-Sat-formula. ⊓⊔

6 Conclusions

We showed that, somewhat surprisingly, graphs of highway dimension 1 exhibit a rich combinatorial structure.
On one hand, it was already known [Fel+18] that these graphs are not minor-closed and thus their treewidth
is unbounded. Here we additionally showed that STP is weakly NP-hard on such graphs, further confirming
that these graphs have non-trivial properties. On the other hand, we proved in Lemma 9 that the treewidth
of a graph of highway dimension 1 is logarithmically bounded in the aspect ratio α. This in turn can be
exploited to obtain a very efficient FPTAS for both STP and TSP.

At this point one may wonder whether it is possible to generalize Lemma 9 to larger values of the highway
dimension. In particular, in [Fel+18] it was suggested that the treewidth of a graph of highway dimension
h might be bounded by, say, O(h polylog(α)). However such a bound is highly unlikely in general, since it
would have the following consequence for the k-Center problem, for which k vertices (centers) need to
be selected in a graph such that the maximum distance of any vertex to its closest center is minimized.
It was shown in [Fel18] that it is NP-hard to compute a (2 − ε)-approximation for k-Center on graphs
of highway dimension O(log2 n), for any ε > 0. Given such a graph, the same preprocessing of Section 3
could be used to derive an analogue of Lemma 11, i.e., a graph G′ of treewidth O(polylog(n/ε)) could be
computed for the net N . Moreover, a 2-approximation for k-Center can be computed in polynomial time on
any graph [HS86], and if the input has treewidth t a (1+ε)-approximation can be computed in (t/ε)O(t)nO(1)

time [KLP17]. Using the same arguments to prove Theorem 2 for STP and TSP, it would now be possible
to compute a (1+ ε)-approximation for k-Center in quasi-polynomial time (cf. [FM18]). That is, we would
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obtain a QPTAS for graphs of highway dimension O(log2 n), which is highly unlikely given that computing
a (2− ε)-approximation is NP-hard on such graphs.

The above argument rules out any bound of (h logα)O(1) for graphs of highway dimension h and aspect
ratio α, unless NP-hard problems admit quasi-polynomial time algorithms. In fact, we conjecture that the k-
Center problem is NP-hard to approximate within a factor of 2−ε for graphs of constant highway dimension
(for some constant larger than 1). If this is true, then the above argument even rules out a treewidth bound
of f(h) polylog(α) for any function f . Thus, in order to answer the open problem of [Fel+18] and obtain a
PTAS for graphs of constant highway dimension, a different approach seems to be needed.

References

[Abr+10] I. Abraham, A. Fiat, A. V. Goldberg and R. F. Werneck. “Highway dimension, shortest paths, and
provably efficient algorithms”. In: Proc. 21st Annual ACM-SIAM Sympos. Discrete Algorithms
(SODA). 2010, pp. 782–793.

[Abr+11] I. Abraham, D. Delling, A. Fiat, A. V. Goldberg and R. F. Werneck. “VC-dimension and shortest
path algorithms”. In: Proc. 28th Internat. Colloquium on Automata, Languages, and Program-
ming (ICALP). 2011, pp. 690–699.

[Abr+16] I. Abraham, D. Delling, A. Fiat, A. V. Goldberg and R. F. Werneck. “Highway dimension and
provably efficient shortest path algorithms”. J. ACM 63.5 (2016).

[Aro+92] S. Arora, C. Lund, R. Motwani, M. Sudan and M. Szegedy. “Proof verification and hardness
of approximation problems”. In: Proc. 33rd Annual IEEE Sympos. Foundations Comput. Sci.
(FOCS). 1992, pp. 14–23.

[Aro+98] S. Arora, M. Grigni, D. R. Karger, P. N. Klein and A. Woloszyn. “A polynomial-time approx-
imation scheme for weighted planar graph TSP”. In: Proc. 9th Annual ACM-SIAM Sympos.
Discrete Algorithms (SODA). 1998, pp. 33–41.

[Aro98] S. Arora. “Polynomial time approximation schemes for Euclidean traveling salesman and other
geometric problems”. J. ACM 45.5 (1998), pp. 753–782.

[ARR98] S. Arora, P. Raghavan and S. Rao. “Approximation schemes for Euclidean k-medians and related
problems”. In: Proc. 30th Annual ACM Sympos. Theory Comput. (STOC). 1998, pp. 106–113.

[Bas+07] H. Bast, S. Funke, D. Matijevic, P. Sanders and D. Schultes. “In transit to constant time shortest-
path queries in road networks”. In: Proc. 9th Workshop Algorithm Engineering and Experiments
(ALENEX). 2007.

[BFM09] H. Bast, S. Funke and D. Matijevic. “Ultrafast shortest-path queries via transit nodes”. The
Shortest Path Problem: Ninth DIMACS Implementation Challenge 74 (2009), pp. 175–192.

[BGK12] Y. Bartal, L.-A. Gottlieb and R. Krauthgamer. “The traveling salesman problem: Low-dimensionality
implies a polynomial time approximation scheme”. In: Proc. 44th Annual ACM Sympos. Theory
Comput. (STOC). 2012, pp. 663–672.

[BHM11] M. Bateni, M. T. Hajiaghayi and D. Marx. “Approximation schemes for Steiner forest on planar
graphs and graphs of bounded treewidth”. J. ACM 58 (5 2011), 21:1–21:37.

[BKK07] G. Borradaile, C. Kenyon-Mathieu and P. Klein. “A polynomial-time approximation scheme for
Steiner tree in planar graphs”. In: Proc. 18th Annual ACM-SIAM Sympos. Discrete Algorithms
(SODA). 2007, pp. 1285–1294.

[BKS18] A. Becker, P. N. Klein and D. Saulpic. “Polynomial-time approximation schemes for k-center,
k-median, and capacitated vehicle routing in bounded highway dimension”. In: Proc. 26th. 2018,
8:1–8:15.

[Blu19] J. Blum. Hierarchy of transportation network parameters and hardness results. 2019. arXiv:
1905.11166 [cs.DM].

[BNP09] R. Borndrfer, M. Neumann and M. E. Pfetsch. “The line connectivity problem”. In: Operations
Research Proceedings. 2009, pp. 557–562.

13



[Bod+13] H. L. Bodlaender, M. Cygan, S. Kratsch and J. Nederlof. “Deterministic single exponential time
algorithms for connectivity problems parameterized by treewidth”. In: Proc. 40th Internat.
Colloquium on Automata, Languages, and Programming (ICALP). 2013, pp. 196–207.

[BP89] M. Bern and P. Plassmann. “The Steiner problem with edge lengths 1 and 2”. Inform. Process.
Lett. 32 (1989), pp. 171–176.

[BS89] R. Bland and D. Shallcross. “Large traveling salesman problems arising from experiments in X-
ray crystallography: a preliminary report on computation”. Oper. Res. Lett. 8 (3 1989), pp. 125–
128.

[Byr+10] J. Byrka, F. Grandoni, T. Rothvo and L. Sanit. “An improved LP-based approximation for
Steiner tree”. In: Proc. 42nd Annual ACM Sympos. Theory Comput. (STOC). 2010, pp. 583–
592.

[CC08] M. Chlebk and J. Chlebkov. “The Steiner tree problem on graphs: Inapproximability results”.
Theor. Comput. Sci. 406 (3 2008), pp. 207–214.

[CG18] C. Y. Chen and K. Grauman. “Efficient activity detection in untrimmed video with max-subgraph
search”. IEEE Trans. Pattern Anal. Mach. Intell. 39 (5 2018), pp. 908–921.

[Cho+13] S. A. Chowdhury, S. E. Shackney, K. Heselmeyer-Haddad, T. Ried, A. A. Schffer and R. Schwartz.
“Phylogenetic analysis of multiprobe fluorescence in situ hybridization data from tumor cell
populations”. Bioinformatics 29 (13 2013), pp. i189–i198.

[Chr76] N. Christofides. Worst-case analysis of a new heuristic for the travelling salesman problem. Tech-
nical Report 388. Graduate School of Industrial Administration, Carnegie Mellon University,
1976.

[Fel+18] A. E. Feldmann, W. S. Fung, J. Knemann and I. Post. “A (1 + ε)-embedding of low highway
dimension graphs into bounded treewidth graphs”. SIAM J. Comput. 41 (4 2018), pp. 1667–1704.

[Fel18] A. E. Feldmann. “Fixed parameter approximations for k-center problems in low highway dimen-
sion graphs”. Algorithmica (2018).

[FM18] A. E. Feldmann and D. Marx. “The parameterized hardness of the k-center problem in trans-
portation networks”. In: Proc. 16th Scandinavian Sympos. and Workshop Algorithm Theory
(SWAT). 2018, 19:1–19:13.

[GEP95] M. Grigni, E. Koutsoupias and C. H. Papadimitriou. “An approximation scheme for planar graph
TSP”. In: Proc. 36th Annual IEEE Sympos. Foundations Comput. Sci. (FOCS). 1995, pp. 640–
645.

[GH91] M. Grtschel and O. Holland. “Solution of large-scale symmetric travelling salesman problems”.
Math. Program. 51 (1991), pp. 141–202.

[GJ02] M. Garey and D. Johnson. Computers and intractability. Vol. 29. Freeman, 2002.
[GJ77] M. R. Garey and D. S. Johnson. “The rectilinear Steiner tree problem is NP-complete”. SIAM

J. Appl. Math. 32 (4 1977), pp. 826–834.
[Hel+11] S. Held, B. Korte, D. Rautenbach and J. Vygen. “Combinatorial optimization in VLSI design”.

In: Combinatorial Optimization: Methods and Applications. Ed. by V. Chvatal. Amsterdam: IOS
Press, 2011, pp. 33–96.

[HP99] S. Hougardy and H. J. Prmel. “A 1.598 approximation algorithm for the Steiner problem in
graphs”. In: Proc. 10th Annual ACM-SIAM Sympos. Discrete Algorithms (SODA). 1999, pp. 448–
453.

[HS86] D. S. Hochbaum and D. B. Shmoys. “A unified approach to approximation algorithms for bot-
tleneck problems”. J. ACM 33.3 (1986), pp. 533–550.

[Kar72] R. M. Karp. “Reducibility among combinatorial problems”. Complexity of Computer Computa-
tions (1972), pp. 85–103.

[KL06] R. Krauthgamer and J. R. Lee. “Algorithms on negatively curved spaces”. In: Proc. 47th Annual
IEEE Sympos. Foundations Comput. Sci. (FOCS). 2006, pp. 119–132.

[Kle08] P. Klein. “A linear-time approximation scheme for TSP in undirected planar graphs with edge-
weights”. SIAM J. Comput. 37.6 (2008), pp. 1926–1952.

14



[KLP17] I. Katsikarelis, M. Lampis and V. T. Paschos. “Structural parameters, tight bounds, and ap-
proximation for (k, r)-center”. In: Proc. 28th Internat. Sympos. Algorithms Comput. (ISAAC).
2017, 50:1–50:13.

[KLS15] M. Karpinski, M. Lampis and R. Schmied. “New inapproximability bounds for TSP”. J. Comput.
Syst. Sci. 81 (8 2015), pp. 1665–1677.

[KV17] A. Kosowski and L. Viennot. “Beyond highway dimension: small distance labels using tree skelet-
ons”. In: Proc. 28th Annual ACM-SIAM Sympos. Discrete Algorithms (SODA). 2017, pp. 1462–
1478.

[Lam14] M. Lampis. “Improved Inapproximability for TSP”. Theory Comput. 10 (2014), pp. 217–236.
[LAS16] A. A. Loboda, M. N. Artyomov and A. A. Sergushichev. “Solving generalized maximum-weight

connected subgraph problem for network enrichment analysis”. In: Proc. 16th Workshop Al-
gorithms in Bioinformatics (WABI). Ed. by M. Frith and C. S. Pedersen. 2016, pp. 210–221.

[Lju+06] I. Ljubi, R. Weiskirchner, U. Pferschy, G. W. Klau, P. Mutzel and M. Fischetti. “An algorithmic
framework for the exact solution of the prize-collecting Steiner tree problem”. Math. Program.
105 (2–3 2006), pp. 427–449.

[LND85] G. Laporte, Y. Nobert and M. Desrochers. “Optimal routing under capacity and distance re-
strictions”. Oper. Res. 33 (5 1985), pp. 1050–1073.

[LR75] J. Lenstra and A. Rinnooy Kan. “Some simple applications of the traveling salesman problem”.
Oper. Res. Quart. 26 (1975), pp. 717–33.

[Mit99] J. S. B. Mitchell. “Guillotine subdivisions approximate polygonal subdivisions: A simple polynomial-
time approximation scheme for geometric TSP, k-MST, and related problems”. SIAM J. Comput.
28.4 (1999), pp. 1298–1309.

[PV06] C. H. Papadimitriou and S. Vempala. “On the approximability of the traveling salesman prob-
lem”. Combinatorica 26 (1 2006), pp. 101–120.

[RZ05] G. Robins and A. Zelikovsky. “Tighter bounds for graph Steiner tree approximation”. SIAM J.
Discrete Math. 19 (1 2005), pp. 122–134.

[SV14] A. Seb and J. Vygen. “Shorter tours by nicer ears: 7/5-approximation for the graph-TSP, 3/2 for
the path version, and 4/3 for two-edge-connected subgraphs”. Combinatorica (2014), pp. 1–34.

[Tre00] L. Trevisan. “When Hamming meets Euclid: The approximability of geometric TSP and Steiner
tree”. SIAM J. Comput. 30 (2 2000), pp. 475–485.

[Vaz01] V. V. Vazirani. Approximation Algorithms. New York, NY, USA: Springer-Verlag New York,
Inc., 2001.

15


