1,712 research outputs found

    Electronic circuits and systems: A compilation

    Get PDF
    Technological information is presented electronic circuits and systems which have potential utility outside the aerospace community. Topics discussed include circuit components such as filters, converters, and integrators, circuits designed for use with specific equipment or systems, and circuits designed primarily for use with optical equipment or displays

    The Logic of Random Pulses: Stochastic Computing.

    Full text link
    Recent developments in the field of electronics have produced nano-scale devices whose operation can only be described in probabilistic terms. In contrast with the conventional deterministic computing that has dominated the digital world for decades, we investigate a fundamentally different technique that is probabilistic by nature, namely, stochastic computing (SC). In SC, numbers are represented by bit-streams of 0's and 1's, in which the probability of seeing a 1 denotes the value of the number. The main benefit of SC is that complicated arithmetic computation can be performed by simple logic circuits. For example, a single (logic) AND gate performs multiplication. The dissertation begins with a comprehensive survey of SC and its applications. We highlight its main challenges, which include long computation time and low accuracy, as well as the lack of general design methods. We then address some of the more important challenges. We introduce a new SC design method, called STRAUSS, that generates efficient SC circuits for arbitrary target functions. We then address the problems arising from correlation among stochastic numbers (SNs). In particular, we show that, contrary to general belief, correlation can sometimes serve as a resource in SC design. We also show that unlike conventional circuits, SC circuits can tolerate high error rates and are hence useful in some new applications that involve nondeterministic behavior in the underlying circuitry. Finally, we show how SC's properties can be exploited in the design of an efficient vision chip that is suitable for retinal implants. In particular, we show that SC circuits can directly operate on signals with neural encoding, which eliminates the need for data conversion.PhDComputer Science and EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/113561/1/alaghi_1.pd

    NASA Tech Briefs Index, 1977, volume 2, numbers 1-4

    Get PDF
    Announcements of new technology derived from the research and development activities of NASA are presented. Abstracts, and indexes for subject, personal author, originating center, and Tech Brief number are presented for 1977

    THE DESIGN OF AN IC HALF PRECISION FLOATING POINT ARITHMETIC LOGIC UNIT

    Get PDF
    A 16 bit floating point (FP) Arithmetic Logic Unit (ALU) was designed and implemented in 0.35µm CMOS technology. Typical uses of the 16 bit FP ALU include graphics processors and embedded multimedia applications. The ALU of the modern microprocessors use a fused multiply add (FMA) design technique. An advantage of the FMA is to remove the need for a comparator which is required for a normal FP adder. The FMA consists of a multiplier, shifters, adders and rounding circuit. A fast multiplier based on the Wallace tree configuration was designed. The number of partial products was greatly reduced by the use of the modified booth encoder. The Wallace tree was chosen to reduce the number of reduction layers of partial products. The multiplier also involved the design of a pass transistor based 4:2 compressor. The average delay of the pass transistor based compressor was 55ps and was found to be 7 times faster than the full adder based 4:2 compressor. The shifters consist of separate left and right shifters using multiplexers. The shift amount is calculated using the exponents of the three operands. The addition operation is implemented using a carry skip adder (CSK). The average delay of the CSK was 1.05ns and was slower than the carry look ahead adder by about 400ps. The advantages of the CSK are reduced power, gate count and area when compared to the similar sized carry look ahead adder. The adder computes the addition of the multiplier result and the shifted value of the addend. In most modern computers, division is performed using software thereby eliminating the need for a separate hardware unit. FMA hardware unit was utilized to perform FP division. The FP divider uses the Newton Raphson algorithm to solve division by iteration. The initial approximated value with five bit accuracy was assumed to be pre-stored in cache memory and a separate clock cycle for cache read was assumed before the start of the FP division operation. In order to significantly reduce the area of the design, only one multiplier was used. Rounding to nearest technique was implemented using an 11 bit variable CSK adder. This is the best rounding technique when compared to other rounding techniques. In both the FMA and division, rounding was performed after the computation of the final result during the last clock cycle of operation. Testability analysis is performed for the multiplier which is the most complex and critical part of the FP ALU. The specific aim of testability was to ensure the correct operation of the multiplier and thus guarantee the correctness of the FMA circuit at the layout stage. The multiplier\u27s output was tested by identifying the minimal number of input vectors which toggle the inputs of the 4:2 compressors of the multiplier. The test vectors were identified in a semi automated manner using Perl scripting language. The multiplier was tested with a test set of thirty one vectors. The fault coverage of the multiplier was found to be 90.09%. The layout was implemented using IC station of Mentor Graphics CAD tool and resulted in a chip area of 1.96mm2. The specifications for basic arithmetic operations were met successfully. FP Division operation was completed within six clock cycles. The other arithmetic operations like FMA, FP addition, FP subtraction and FP multiplication were completed within three clock cycles

    Design and implementation of gallium arsenide digital integrated circuits

    Get PDF

    An investigation of a multiple iteration rate incremental data processor

    Get PDF

    A digital analog of an analog computer

    Get PDF

    VLSI architectures for high speed Fourier transform processing

    Get PDF

    The 30/20 GHz flight experiment system, phase 2. Volume 2: Experiment system description

    Get PDF
    A detailed technical description of the 30/20 GHz flight experiment system is presented. The overall communication system is described with performance analyses, communication operations, and experiment plans. Hardware descriptions of the payload are given with the tradeoff studies that led to the final design. The spacecraft bus which carries the payload is discussed and its interface with the launch vehicle system is described. Finally, the hardwares and the operations of the terrestrial segment are presented

    Serial-data computation in VLSI

    Get PDF
    • …
    corecore