173 research outputs found

    A Power-Efficient Bio-Potential Acquisition Device with DS-MDE Sensors for Long-Term Healthcare Monitoring Applications

    Get PDF
    This work describes a power-efficient bio-potential acquisition device for long-term healthcare applications that is implemented using novel microelectromechanical dry electrodes (MDE) and a low power bio-potential processing chip. Using micromachining technology, an attempt is also made to enhance the sensing reliability and stability by fabricating a diamond-shaped MDE (DS-MDE) that has a satisfactory self-stability capability and superior electric conductivity when attached onto skin without any extra skin tissue injury technology. To acquire differential bio-potentials such as ECG signals, the proposed processing chip fabricated in a standard CMOS process has a high common mode rejection ratio (C.M.R.R.) differential amplifier and a 12-bit analog-to-digital converter (ADC). Use of the proposed system and integrate simple peripheral commercial devices can obtain the ECG signal efficiently without additional skin tissue injury and ensure continuous monitoring more than 70 hours with a 400 mAh battery

    Low Power Bio-potential Amplifier (for EEG)

    Get PDF
    The size and dependency on power supply of current biopotential data acquisition systems prohibit continuous monitoring of biopotential signals through battery powered devices. As the interest in continuous monitoring of EEG increases for healthcare and research purposes such as seizure detection, there is an increasing need to bring down the power consumption on the biopotential amplifier (BPA). BPA is one of the most power consuming components in the biopotential data acquisition system. In this FYP, we will develop a method to improve the existing BPA using MIMOS 0.35um process technology through implementation of various low power flicker noise cancelation techniques. Techniques used include low impedance node chopping and non-overlapping demodulation chopping. The scope of this FYP is focusing on design and simulation on Cadence software in circuit level implementation. This work provides insights as well as a starting point in lowering the power consumption of bio-potential data acquisition system. This will help to enable battery power system for continuous monitoring of EEG signals in the future. This final report discusses on both the literature review, background of the projects and methodology as well as the outcome of the work. The report is concluded by suggesting future works that can be carried out in this final year project (FYP)

    Low Power Circuits for Smart Flexible ECG Sensors

    Get PDF
    Cardiovascular diseases (CVDs) are the world leading cause of death. In-home heart condition monitoring effectively reduced the CVD patient hospitalization rate. Flexible electrocardiogram (ECG) sensor provides an affordable, convenient and comfortable in-home monitoring solution. The three critical building blocks of the ECG sensor i.e., analog frontend (AFE), QRS detector, and cardiac arrhythmia classifier (CAC), are studied in this research. A fully differential difference amplifier (FDDA) based AFE that employs DC-coupled input stage increases the input impedance and improves CMRR. A parasitic capacitor reuse technique is proposed to improve the noise/area efficiency and CMRR. An on-body DC bias scheme is introduced to deal with the input DC offset. Implemented in 0.35m CMOS process with an area of 0.405mm2, the proposed AFE consumes 0.9W at 1.8V and shows excellent noise effective factor of 2.55, and CMRR of 76dB. Experiment shows the proposed AFE not only picks up clean ECG signal with electrodes placed as close as 2cm under both resting and walking conditions, but also obtains the distinct -wave after eye blink from EEG recording. A personalized QRS detection algorithm is proposed to achieve an average positive prediction rate of 99.39% and sensitivity rate of 99.21%. The user-specific template avoids the complicate models and parameters used in existing algorithms while covers most situations for practical applications. The detection is based on the comparison of the correlation coefficient of the user-specific template with the ECG segment under detection. The proposed one-target clustering reduced the required loops. A continuous-in-time discrete-in-amplitude (CTDA) artificial neural network (ANN) based CAC is proposed for the smart ECG sensor. The proposed CAC achieves over 98% classification accuracy for 4 types of beats defined by AAMI (Association for the Advancement of Medical Instrumentation). The CTDA scheme significantly reduces the input sample numbers and simplifies the sample representation to one bit. Thus, the number of arithmetic operations and the ANN structure are greatly simplified. The proposed CAC is verified by FPGA and implemented in 0.18m CMOS process. Simulation results show it can operate at clock frequencies from 10KHz to 50MHz. Average power for the patient with 75bpm heart rate is 13.34W

    A 122 fps, 1 MHz bandwidth multi-frequency wearable EIT belt featuring novel active electrode architecture for neonatal thorax vital sign monitoring

    Get PDF
    A highly integrated, wearable electrical impedance tomography (EIT) belt for neonatal thorax vital multiple sign monitoring is presented. The belt has sixteen active electrodes. Each has an application specific integrated circuit (ASIC) connected to an electrode. The ASIC contains a fully differential current driver, a high-performance instrumentation amplifier (IA), a digital controller and multiplexors. The wearable EIT belt features a new active electrode architecture that allows programmable flexible electrode current drive and voltage sense patterns under simple digital control. It provides intimate connections to the electrodes for the current drive and to the IA for direct differential voltage measurement providing superior common-mode rejection ratio. The ASIC was designed in a CMOS 0.35-μm high-voltage technology. The high specification EIT belt has an image frame rate of 122 fps, a wide operating bandwidth of 1 MHz and multi-frequency operation. It measures impedance with 98% accuracy and has less than 0.5 Ω and 1o variation across all possible channels. The image results confirmed the advantage of the new active electrode architecture and the benefit of wideband, multi-frequency EIT operation. The wearable EIT belt can also detect patient position and torso shape information using a MEMS sensor interfaced to each ASIC. The system successfully captured high quality lung respiration EIT images, breathing cycle and heart rate

    Wired, wireless and wearable bioinstrumentation for high-precision recording of bioelectrical signals in bidirectional neural interfaces

    Get PDF
    It is widely accepted by the scientific community that bioelectrical signals, which can be used for the identification of neurophysiological biomarkers indicative of a diseased or pathological state, could direct patient treatment towards more effective therapeutic strategies. However, the design and realisation of an instrument that can precisely record weak bioelectrical signals in the presence of strong interference stemming from a noisy clinical environment is one of the most difficult challenges associated with the strategy of monitoring bioelectrical signals for diagnostic purposes. Moreover, since patients often have to cope with the problem of limited mobility being connected to bulky and mains-powered instruments, there is a growing demand for small-sized, high-performance and ambulatory biopotential acquisition systems in the Intensive Care Unit (ICU) and in High-dependency wards. Furthermore, electrical stimulation of specific target brain regions has been shown to alleviate symptoms of neurological disorders, such as Parkinson’s disease, essential tremor, dystonia, epilepsy etc. In recent years, the traditional practice of continuously stimulating the brain using static stimulation parameters has shifted to the use of disease biomarkers to determine the intensity and timing of stimulation. The main motivation behind closed-loop stimulation is minimization of treatment side effects by providing only the necessary stimulation required within a certain period of time, as determined from a guiding biomarker. Hence, it is clear that high-quality recording of local field potentials (LFPs) or electrocorticographic (ECoG) signals during deep brain stimulation (DBS) is necessary to investigate the instantaneous brain response to stimulation, minimize time delays for closed-loop neurostimulation and maximise the available neural data. To our knowledge, there are no commercial, small, battery-powered, wearable and wireless recording-only instruments that claim the capability of recording ECoG signals, which are of particular importance in closed-loop DBS and epilepsy DBS. In addition, existing recording systems lack the ability to provide artefact-free high-frequency (> 100 Hz) LFP recordings during DBS in real time primarily because of the contamination of the neural signals of interest by the stimulation artefacts. To address the problem of limited mobility often encountered by patients in the clinic and to provide a wide variety of high-precision sensor data to a closed-loop neurostimulation platform, a low-noise (8 nV/√Hz), eight-channel, battery-powered, wearable and wireless multi-instrument (55 × 80 mm2) was designed and developed. The performance of the realised instrument was assessed by conducting both ex vivo and in vivo experiments. The combination of desirable features and capabilities of this instrument, namely its small size (~one business card), its enhanced recording capabilities, its increased processing capabilities, its manufacturability (since it was designed using discrete off-the-shelf components), the wide bandwidth it offers (0.5 – 500 Hz) and the plurality of bioelectrical signals it can precisely record, render it a versatile tool to be utilized in a wide range of applications and environments. Moreover, in order to offer the capability of sensing and stimulating via the same electrode, novel real-time artefact suppression methods that could be used in bidirectional (recording and stimulation) system architectures are proposed and validated. More specifically, a novel, low-noise and versatile analog front-end (AFE), which uses a high-order (8th) analog Chebyshev notch filter to suppress the artefacts originating from the stimulation frequency, is presented. After defining the system requirements for concurrent LFP recording and DBS artefact suppression, the performance of the realised AFE is assessed by conducting both in vitro and in vivo experiments using unipolar and bipolar DBS (monophasic pulses, amplitude ranging from 3 to 6 V peak-to-peak, frequency 140 Hz and pulse width 100 µs). Under both in vitro and in vivo experimental conditions, the proposed AFE provided real-time, low-noise and artefact-free LFP recordings (in the frequency range 0.5 – 250 Hz) during stimulation. Finally, a family of tunable hardware filter designs and a novel method for real-time artefact suppression that enables wide-bandwidth biosignal recordings during stimulation are also presented. This work paves the way for the development of miniaturized research tools for closed-loop neuromodulation that use a wide variety of bioelectrical signals as control signals.Open Acces

    Low Power Bio-potential Amplifier (for EEG)

    Get PDF
    The size and dependency on power supply of current biopotential data acquisition systems prohibit continuous monitoring of biopotential signals through battery powered devices. As the interest in continuous monitoring of EEG increases for healthcare and research purposes such as seizure detection, there is an increasing need to bring down the power consumption on the biopotential amplifier (BPA). BPA is one of the most power consuming components in the biopotential data acquisition system. In this FYP, we will develop a method to improve the existing BPA using MIMOS 0.35um process technology through implementation of various low power flicker noise cancelation techniques. Techniques used include low impedance node chopping and non-overlapping demodulation chopping. The scope of this FYP is focusing on design and simulation on Cadence software in circuit level implementation. This work provides insights as well as a starting point in lowering the power consumption of bio-potential data acquisition system. This will help to enable battery power system for continuous monitoring of EEG signals in the future. This final report discusses on both the literature review, background of the projects and methodology as well as the outcome of the work. The report is concluded by suggesting future works that can be carried out in this final year project (FYP)

    Increasing Signal to Noise Ratio and Minimising Artefacts in Biomedical Instrumentation Systems

    Get PDF
    The research work described in this thesis was concerned with finding a novel method of minimising motion artefacts in biomedical instrumentation systems. The proposed solution, an Analog Frontend (AFE), was designed to detect any vertical (Y-Plane) or horizontal (X-Plane) movement of the electrode using two strain gauges, which were separated by 90° and fitted onto the electrode. The detected motion was fed back to the system for the removal of any motion artefact. The research started by emphasising the importance of minimising motion artefacts from biomedical signals and explaining how important it is for a clinical misinterpretation of the results. Hence, various motion artefact minimisation techniques undertaken by other researchers in the field were reviewed. This study covered different sources of artefacts, including the 40kHz powerline interference (PLI), 50/60kHz common-mode noise, white noise, and motion artefacts. The system was fully developed and tested and was firstly simulated using MATLAB Simulink tools to prove the effectiveness of the system before starting the implementation and build phase in the lab. The AFE system successfully produced a clean output signal, achieving an average correlation coefficient of 0.995. Also, the system output had a 98% SNR similarity with the clean source signal. Further, the system was then built and tested in the lab and successfully minimised the motion artefacts, achieving an average correlation coefficient of 0.974. Additionally, the final output had a 97.8% SNR similarity with the clean source signal. A novel test rig was developed to test the system with strain gauges. The system was able to remove the detected signal from the test rig and had an average correlation coefficient of 0.957. Lastly, the final output had a 94.2% SNR similarity with the clean source signal

    Ultra low power wearable sleep diagnostic systems

    Get PDF
    Sleep disorders are studied using sleep study systems called Polysomnography that records several biophysical parameters during sleep. However, these are bulky and are typically located in a medical facility where patient monitoring is costly and quite inefficient. Home-based portable systems solve these problems to an extent but they record only a minimal number of channels due to limited battery life. To surmount this, wearable sleep system are desired which need to be unobtrusive and have long battery life. In this thesis, a novel sleep system architecture is presented that enables the design of an ultra low power sleep diagnostic system. This architecture is capable of extending the recording time to 120 hours in a wearable system which is an order of magnitude improvement over commercial wearable systems that record for about 12 hours. This architecture has in effect reduced the average power consumption of 5-6 mW per channel to less than 500 uW per channel. This has been achieved by eliminating sampled data architecture, reducing the wireless transmission rate and by moving the sleep scoring to the sensors. Further, ultra low power instrumentation amplifiers have been designed to operate in weak inversion region to support this architecture. A 40 dB chopper-stabilised low power instrumentation amplifiers to process EEG were designed and tested to operate from 1.0 V consuming just 3.1 uW for peak mode operation with DC servo loop. A 50 dB non-EEG amplifier continuous-time bandpass amplifier with a consumption of 400 nW was also fabricated and tested. Both the amplifiers achieved a high CMRR and impedance that are critical for wearable systems. Combining these amplifiers with the novel architecture enables the design of an ultra low power sleep recording system. This reduces the size of the battery required and hence enables a truly wearable system.Open Acces

    A 90nm CMOS bio-potential signal readout front-end with improved powerline interference rejection

    Full text link
    • …
    corecore