3,870 research outputs found

    Dynamic S-BOX using Chaotic Map for VPN Data Security

    Full text link
    A dynamic SBox using a chaotic map is a cryptography technique that changes the SBox during encryption based on iterations of a chaotic map, adding an extra layer of confusion and security to symmetric encryption algorithms like AES. The chaotic map introduces unpredictability, non-linearity, and key dependency, enhancing the overall security of the encryption process. The existing work on dynamic SBox using chaotic maps lacks standardized guidelines and extensive security analysis, leaving potential vulnerabilities and performance concerns unaddressed. Key management and the sensitivity of chaotic maps to initial conditions are challenges that need careful consideration. The main objective of using a dynamic SBox with a chaotic map in cryptography systems is to enhance the security and robustness of symmetric encryption algorithms. The method of dynamic SBox using a chaotic map involves initializing the SBox, selecting a chaotic map, iterating the map to generate chaotic values, and updating the SBox based on these values during the encryption process to enhance security and resist cryptanalytic attacks. This article proposes a novel chaotic map that can be utilized to create a fresh, lively SBox. The performance assessment of the suggested S resilience Box against various attacks involves metrics such as nonlinearity (NL), strict avalanche criterion (SAC), bit independence criterion (BIC), linear approximation probability (LP), and differential approximation probability (DP). These metrics help gauge the Box ability to handle and respond to different attack scenarios. Assess the cryptography strength of the proposed S-Box for usage in practical security applications, it is compared to other recently developed SBoxes. The comparative research shows that the suggested SBox has the potential to be an important advancement in the field of data security.Comment: 11 Page

    Current implementation of advance encryption standard (AES) S-Box

    Get PDF
    Although the attack on cryptosystem is still not severe, the development of the scheme is stillongoing especially for the design of S-Box. Two main approach has beenused, which areheuristic method and algebraic method. Algebraic method as in current AES implementationhas been proven to be the most secure S-Box design to date. This review paper willconcentrate on two kinds of method of constructing AES S-Box, which are algebraic approachand heuristic approach. The objective is to review a method of constructing S-Box, which arecomparable or close to the original construction of AES S-Box especially for the heuristicapproach. Finally, all the listed S-Boxes from these two methods will be compared in terms oftheir security performance which is nonlinearity and differential uniformity of the S-Box. Thefinding may offer the potential approach to develop a new S-Box that is better than theoriginal one.Keywords: block cipher; AES; S-Bo

    Advanced approach for encryption using advanced encryption standard with chaotic map

    Get PDF
    At present, security is significant for individuals and organizations. All information need security to prevent theft, leakage, alteration. Security must be guaranteed by applying some or combining cryptography algorithms to the information. Encipherment is the method that changes plaintext to a secure form called cipherment. Encipherment includes diverse types, such as symmetric and asymmetric encipherment. This study proposes an improved version of the advanced encryption standard (AES) algorithm called optimized advanced encryption standard (OAES). The OAES algorithm utilizes sine map and random number to generate a new key to enhance the complexity of the generated key. Thereafter, multiplication operation was performed on the original text, thereby creating a random matrix (4×4) before the five stages of the coding cycles. A random substitution-box (S-Box) was utilized instead of a fixed S-Box. Finally, we utilized the eXclusive OR (XOR) operation with digit 255, also with the key that was generated last. This research compared the features of the AES and OAES algorithms, particularly the extent of complexity, key size, and number of rounds. The OAES algorithm can enhance complexity of encryption and decryption by using random values, random S-Box, and chaotic maps, thereby resulting in difficulty guessing the original text

    Image encryption for Offshore wind power based on 2D-LCLM and Zhou Yi Eight Trigrams

    Full text link
    Offshore wind power is an important part of the new power system, due to the complex and changing situation at ocean, its normal operation and maintenance cannot be done without information such as images, therefore, it is especially important to transmit the correct image in the process of information transmission. In this paper, we propose a new encryption algorithm for offshore wind power based on two-dimensional lagged complex logistic mapping (2D-LCLM) and Zhou Yi Eight Trigrams. Firstly, the initial value of the 2D-LCLM is constructed by the Sha-256 to associate the 2D-LCLM with the plaintext. Secondly, a new encryption rule is proposed from the Zhou Yi Eight Trigrams to obfuscate the pixel values and generate the round key. Then, 2D-LCLM is combined with the Zigzag to form an S-box. Finally, the simulation experiment of the algorithm is accomplished. The experimental results demonstrate that the algorithm can resistant common attacks and has prefect encryption performance.Comment: accepted by Int. J. of Bio-Inspired Computatio

    Secure wireless sensor network using cryptographic technique based hybrid genetic firefly algorithm

    Get PDF
    Wireless sensor networks (WSNs) are formed of self-contained nodes of sensors that are connected to one base station or more. WSNs have several primary aims one of them is to transport network node's trustworthy information to another one. As WSNs expand, they become more vulnerable to attacks, necessitating the implementation of strong security systems. The identification of effective cryptography for WSNs is a significant problem because of the limited energy of the sensor nodes, compute capability, and storage resources. Advanced Encryption Standard (AES) is an encryption technique implemented in this paper with three meta-heuristic algorithms which are called Hybrid Genetic Firefly algorithm, Firefly algorithm, and Genetic algorithm to ensure that the data in the WSNs is kept confidential by providing enough degrees of security. We have used hybrid Genetic firefly as a searching operator whose goal is to improve the searchability of the baseline genetic algorithm. The suggested framework's performance that based on the algorithm of hybrid genetic firefly is rated by using Convergence Graphs of the Benchmark Functions. From the graphs we have conclude that hybrid genetic firefly with AES is best from other algorithms

    A novel secure artificial bee colony with advanced encryption standard technique for biomedical signal processing

    Get PDF
    Over the years, the privacy of a biomedical signal processing is protected using the encryption techniques design and meta-heuristic algorithms which are significant domain and it will be more significant shortly. Present biomedical signal processing research contained security because of their critical role in any developing technology that contains applications of cryptography and health deployment. Furthermore, implementing public-key cryptography in biomedical signal processing sequence testing equipment needs a high level of skill. Whatever key is being broken with enough computing capabilities using brute-force attack. As a result, developing a biomedical signal processing cryptography model is critical for improving the connection between existing and emerging technology. Furthermore, public-key cryptography implementation for meta-heuristic-based bio medical signal processing sequence test equipment necessitates a high level of skill. The suggested novel technique can be used to develop a secure algorithm of artificial bee colony, which depend on the advanced encryption standard (AES). AES can be used to reduce the encryption time and to increase the protection capacity for health systems. The novel secure can protect the biomedical signal processing against plain text attacks

    Single-shot compressed ultrafast photography: a review

    Get PDF
    Compressed ultrafast photography (CUP) is a burgeoning single-shot computational imaging technique that provides an imaging speed as high as 10 trillion frames per second and a sequence depth of up to a few hundred frames. This technique synergizes compressed sensing and the streak camera technique to capture nonrepeatable ultrafast transient events with a single shot. With recent unprecedented technical developments and extensions of this methodology, it has been widely used in ultrafast optical imaging and metrology, ultrafast electron diffraction and microscopy, and information security protection. We review the basic principles of CUP, its recent advances in data acquisition and image reconstruction, its fusions with other modalities, and its unique applications in multiple research fields

    Entropy in Image Analysis II

    Get PDF
    Image analysis is a fundamental task for any application where extracting information from images is required. The analysis requires highly sophisticated numerical and analytical methods, particularly for those applications in medicine, security, and other fields where the results of the processing consist of data of vital importance. This fact is evident from all the articles composing the Special Issue "Entropy in Image Analysis II", in which the authors used widely tested methods to verify their results. In the process of reading the present volume, the reader will appreciate the richness of their methods and applications, in particular for medical imaging and image security, and a remarkable cross-fertilization among the proposed research areas
    • …
    corecore