1,640 research outputs found

    Long-term monitoring of biophysical characteristics of tidal wetlands in the northern Gulf of Mexico — A methodological approach using MODIS

    Get PDF
    Accurate and efficient monitoring is critically important for the effective restoration and conservation of threatened tidal wetlands in the Gulf Coast. The high carbon sequestration potential, habitat for important wildlife and fish, and numerous ecosystem services make these tidal wetlands highly valuable both ecologically and economically to Gulf Coast communities. Our study developed a new methodological approach for mapping biophysical health of coastal tidal wetland habitats in terms of green leaf area index (GLAI), canopy level chlorophyll content (CHL), vegetation fraction (VF), and above ground green biomass (GBM). We measured these biophysical characteristics in tidal wetlands of the northern Gulf of Mexico using a combination of ground data collected from field surveys during the growing seasons of 2010 and 2011 and NASA\u27s Moderate Resolution Imaging Spectroradiometer (MODIS) 250 m and 500 m images. Additionally, we compared and evaluated the performances of both in situ proximal and satellite remote sensing measurements in terms of their potential for mapping the wetland biophysical characteristics. MODIS-based models proved superior at the landscape level compared to models developed from in situ proximal sensing, as species level signals seemed to be diluted at coarser spatial scales. We selected Wide Dynamic Range Vegetation Index (WDRVI) for MODIS 250 m and Visible Atmospheric Resistant Index (VARI) for MODIS 500 m to map biophysical characteristics of tidal wetlands. Time-series composites and phenological information derived using the MODIS based models captured the impact of the selected disturbances in the last decade on the ecological and physiological status of the tidal wetland habitats in the Gulf Coast. This is the first study to employ MODIS data to analyze the biophysical characteristics of tidal wetlands in the Gulf Coast, which, in turn, has the potential to improve our ability to predict their productivity and carbon sequestration potential. These techniques could also be used to assess the success of previous and ongoing tidal wetland restoration projects, and evaluate the productivity of marshes under threat from developmental activity, sea level rise, and industrial pollution

    CHEMOMETRICS, SPECTROMETRY, AND SENSORS FOR INTEGRATED SENSING AND PROCESSING: ADVANCING PROCESS ANALYTICAL TECHNOLOGY

    Get PDF
    The research contained in the following dissertation spans a diverse range of scientific scholarship, including; chemometrics for integrated sensing and processing (ISP), near infrared and acoustic resonance spectrometry for analyte quantification and classification, and an ISP acoustic sensor as an alternative to conventional acoustic spectrometry. These topics may at first seem disjointed; however, closer inspection reveals that chemometrics, spectrometry, and sensors taken together form the umbrella under which applied spectrometry and analytical chemistry fall. The inclusion of each of these three serves to paint the complete portrait of the role of applied spectrometry for the advancement of process analytical technology. To illustrate the totality of this portrait, this research seeks to introduce and substantiate three key claims. (1) When applicable, optical spectrometry and acoustic spectrometry are preferred alternatives to slower and more invasive methods of analysis. (2) Chemometrics can be implemented directly into the physical design of spectrometers, thus sparing the need for computationally demanding post-collection multivariate analyses. (3) Using this principle, ISP sensors can be developed specifically for use in highly applied situations, making possible automatic analyte quantification or classification without the computational burden and extensive data analysis typically associated with conventional spectrometry. More concisely, these three claims can be stated as follows: spectrometry has a broad range of uses, chemometrics for ISP makes spectrometry more efficient, and for all analytical problems with a spectrometric solution, an ISP sensor, specifically tailored to the needs of the experiment, can more effectively solve the same analytical problem

    Microfluidics for Biosensing

    Get PDF
    There are 12 papers published with 8 research articles, 3 review articles and 1 perspective. The topics cover: Biomedical microfluidics Lab-on-a-chip Miniaturized systems for chemistry and life science (MicroTAS) Biosensor development and characteristics Imaging and other detection technologies Imaging and signal processing Point-of-care testing microdevices Food and water quality testing and control We hope this collection could promote the development of microfluidics and point-of-care testing (POCT) devices for biosensing

    Optical Hydrogen Nanothermometry of Plasmonic Nanoparticles under Illumination

    Get PDF
    The temperature of nanoparticles is a critical parameter in applications that range from biology, to sensors, to photocatalysis. Yet, accurately determining the absolute temperature of nanoparticles is intrinsically difficult because traditional temperature probes likely deliver inaccurate results due to their large thermal mass compared to the nanoparticles. Here we present a hydrogen nanothermometry method that enables a noninvasive and direct measurement of absolute Pd nanoparticle temperature via the temperature dependence of the first-order phase transformation during Pd hydride formation. We apply it to accurately measure light-absorption-induced Pd nanoparticle heating at different irradiated powers with 1 \ub0C resolution and to unravel the impact of nanoparticle density in an array on the obtained temperature. In a wider perspective, this work reports a noninvasive method for accurate temperature measurements at the nanoscale, which we predict will find application in, for example, nano-optics, nanolithography, and plasmon-mediated catalysis to distinguish thermal from electronic effects

    Present and future of surface-enhanced Raman scattering

    Get PDF
    The discovery of the enhancement of Raman scattering by molecules adsorbed on nanostructured metal surfaces is a landmark in the history of spectroscopic and analytical techniques. Significant experimental and theoretical effort has been directed toward understanding the surface-enhanced Raman scattering (SERS) effect and demonstrating its potential in various types of ultrasensitive sensing applications in a wide variety of fields. In the 45 years since its discovery, SERS has blossomed into a rich area of research and technology, but additional efforts are still needed before it can be routinely used analytically and in commercial products. In this Review, prominent authors from around the world joined together to summarize the state of the art in understanding and using SERS and to predict what can be expected in the near future in terms of research, applications, and technological development. This Review is dedicated to SERS pioneer and our coauthor, the late Prof. Richard Van Duyne, whom we lost during the preparation of this article

    Development of a Plasmonic On-Chip System to Characterize Changes from External Perturbations in Cardiomyocytes

    Get PDF
    Today’s heart-on-a-chip devices are hoped to be the state-of-the-art cell and tissue characterizing tool, in clinically applicable regenerative medicine and cardiac tissue engineering. Due to the coupled electromechanical activity of cardiomyocytes (CM), a comprehensive heart-on-a-chip device as a cell characterizing tool must encompass the capability to quantify cellular contractility, conductivity, excitability, and rhythmicity. This dissertation focuses on developing a successful and statistically relevant surface plasmon resonance (SPR) biosensor for simultaneous recording of neonatal rat cardiomyocytes’ electrophysiological profile and mechanical motion under normal and perturbed conditions. The surface plasmon resonance technique can quantify (1) molecular binding onto a metal film, (2) bulk refractive index changes of the medium near (nm) the metal film, and (3) dielectric property changes of the metal film. We used thin gold metal films (also called chips) as our plasmonic sensor and obtained a periodic signal from spontaneously contracting CMs on the chip. Furthermore, we took advantage of a microfluidic module for controlled drug delivery to CMs on-chip, inhibiting and promoting their signaling pathways under dynamic flow. We identified that ionic channel activity of each contraction period of a live CM syncytium on a gold metal sensor would account for the non-specific ion adsorption onto the metal surface in a periodic manner. Moreover, the contraction of cardiomyocytes following their ion channel activity displaces the medium, changing its bulk refractive index near the metal surface. Hence, the real-time electromechanical activity of CMs using SPR sensors may be extracted as a time series we call the Plasmonic Cardio-Eukaryography Signal (P-CeG). The P-CeG signal render opportunities, where state-of-the-art heart-on-a-chip device complexities may subside to a simpler, faster and cheaper platform for label-free, non-invasive, and high throughput cellular characterization

    Biosensors for Diagnosis and Monitoring

    Get PDF
    Biosensor technologies have received a great amount of interest in recent decades, and this has especially been the case in recent years due to the health alert caused by the COVID-19 pandemic. The sensor platform market has grown in recent decades, and the COVID-19 outbreak has led to an increase in the demand for home diagnostics and point-of-care systems. With the evolution of biosensor technology towards portable platforms with a lower cost on-site analysis and a rapid selective and sensitive response, a larger market has opened up for this technology. The evolution of biosensor systems has the opportunity to change classic analysis towards real-time and in situ detection systems, with platforms such as point-of-care and wearables as well as implantable sensors to decentralize chemical and biological analysis, thus reducing industrial and medical costs. This book is dedicated to all the research related to biosensor technologies. Reviews, perspective articles, and research articles in different biosensing areas such as wearable sensors, point-of-care platforms, and pathogen detection for biomedical applications as well as environmental monitoring will introduce the reader to these relevant topics. This book is aimed at scientists and professionals working in the field of biosensors and also provides essential knowledge for students who want to enter the field
    corecore