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The research contained in the following dissertation spans a diverse range of scientific 
scholarship, including; chemometrics for integrated sensing and processing (ISP), near infrared 
and acoustic resonance spectrometry for analyte quantification and classification, and an ISP 
acoustic sensor as an alternative to conventional acoustic spectrometry.  These topics may at first 
seem disjointed; however, closer inspection reveals that chemometrics, spectrometry, and 
sensors taken together form the umbrella under which applied spectrometry and analytical 
chemistry fall.  The inclusion of each of these three serves to paint the complete portrait of the 
role of applied spectrometry for the advancement of process analytical technology.  To illustrate 
the totality of this portrait, this research seeks to introduce and substantiate three key claims.  (1) 
When applicable, optical spectrometry and acoustic spectrometry are preferred alternatives to 
slower and more invasive methods of analysis.  (2) Chemometrics can be implemented directly 
into the physical design of spectrometers, thus sparing the need for computationally demanding 
post-collection multivariate analyses.  (3) Using this principle, ISP sensors can be developed 
specifically for use in highly applied situations, making possible automatic analyte quantification 
or classification without the computational burden and extensive data analysis typically 
associated with conventional spectrometry.  More concisely, these three claims can be stated as 
follows: spectrometry has a broad range of uses, chemometrics for ISP makes spectrometry more 
efficient, and for all analytical problems with a spectrometric solution, an ISP sensor, specifically 
tailored to the needs of the experiment, can more effectively solve the same analytical problem. 
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Preface 

This research seeks to substantiate three claims.  (1) When applicable, optical spectrometry and 

acoustic spectrometry are preferred alternatives to slower and more invasive methods of analysis 

for sample quantification and classification.  The prospect of noninvasive and nondestructive 

analysis is of interest to analysts across a number of different fields.  For this reason, near 

infrared and acoustic resonance spectrometry are two rapidly growing analytical techniques in 

the pharmaceutical, food, and chemical industries.  NIR spectrometry involves irradiation of the 

target analyte, excitation of vibrational and rotational motion of the functional groups, and the 

measurement of the absorbance pattern across the frequency range of interest.  Despite 

vibrational and rotational motion, the energy provided with NIR light is insufficient to excite 

electrons from their ground state electronic configuration.   The degree to which a molecule is 

free to vibrate and rotate can be visualized when one imagines two molecules attached to each 

other by a spring, where the spring represents the chemical bond.  Effects such as molecule size 

and mass, force of attraction, position of neighboring molecules, and the length and type of the 

chemical bond all exert influences on the patterns of motion.  The NIR region of the 

electromagnetic spectrum is a result of combination and overtone bands from the mid-IR 

fundamental vibration modes.  Due to this fact, nearly every molecule absorbs in multiple 

locations of the NIR spectrum.  As such, NIR analysis usually requires chemometric 

deconvolution and multivariate statistics to extract chemical information from the spectra.   

 

Acoustic resonance spectrometry is based on the acoustic excitation of a molecular system while 

observing a given frequency range for resonance structures.  The coupling between the acoustic 

excitation device and the chemical system creates a system of standing resonance waves as a 

 xiv



function of properties including: frequency and amplitude of the excitation signal, sample 

compressibility, density, mass, size, viscosity, and temperature.  There are two primary effects 

seen in acoustic spectra, a shift in resonance frequency to a higher or lower frequency, and an 

increase/decrease in amplitude at a particular frequency.  Often a frequency spectrum is 

sufficiently complex where multivariate statistics are needed to extract the exact relationship 

between physical properties and the accompanying spectra.  As optical and acoustic data sets 

become more and more descriptive with each emerging generation of spectrometer, the 

computational burden associated with data processing also increases.   

 

(2) Rather than digitally calculating multivariate relationships between physical properties and 

analytical spectra, chemometrics can be implemented directly into the physical design of 

spectrometers, thus sparing the need for computationally demanding post-collection multivariate 

analyses.  This approach, termed integrated sensing and processing, is quickly emerging as the 

ideal approach for optical and acoustic imaging systems.  Optical systems involve construction 

of optical transmission filters or masks, while acoustic systems involve construction of tailored 

excitation signals.  Identification of the distinguishing spectral features from which to design the 

chemometrics is still accomplished digitally.  Once the spectral features best used for 

classification or quantification are known, a weight function can be physically implemented into 

the design of the analytical system. 

 

(3) Using this principle, ISP sensors can be developed specifically for use in highly applied 

situations, making possible automatic analyte quantification or classification without the 

computational burden and extensive data analysis typically associated with conventional 

 xv



spectrometry.  Ideally, ISP sensors are small, portable, inexpensive devices that can be designed 

to improve analysis in virtually any application.  For example, small ISP sensors placed in-line in 

a pharmaceutical manufacturing process can offer insight into process variability.  This type of 

information could be used as a feedback system to monitor and control manufacturing steps, in 

order to guarantee a predefined quality of pharmaceutical product.  Contained within this 

dissertation are a number of near infrared applications, acoustic resonance applications, and 

examples of integrated sensing and processing sensors.  The overall purpose of this dissertation 

is to clearly outline the advantages that ISP offers over both slower and more invasive methods 

of analysis, and conventional spectrometry for pharmaceutical and chemical analysis.  
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Section I: Chemometrics for ISP 

 

 

 

 

 

Chapter One – Applications of integrated sensing and processing in spectroscopic imaging and 

sensing 

 
 
 

1 



Introduction 

Integrated sensing and processing (ISP), a term coined by the Defense Advanced Research 

Projects Agency (DARPA), is an initiative calling for the implementation of new developments 

in chemometrics to the design of sensors and spectroscopic instrumentation.1  Though not yet 

termed ISP, the idea was actually conceived in the 1970’s and 1980’s as a method to optically 

perform simple mathematical operations on spectroscopic data.2  It has more recently been 

extended to more complex situations such as military imaging systems (in tanks and unmanned 

aerial vehicles) and the pharmaceutical industry for use in process analytical technology (PAT).  

PAT calls for the design and development of processes to guarantee a predefined quality of 

pharmaceutical materials at the end of the manufacturing process as warranted by risk analysis.3 

The goal of PAT is to encourage pharmaceutical companies to monitor each step of a 

manufacturing process, thus making ISP a perfect solution to the PAT initiative.  ISP sensors are 

capable of measuring physical and chemical attributes in real-time, thus giving in-process and 

end-point knowledge of the quality and integrity of pharmaceutical materials.3 Pharmaceutical 

PAT requires the development of rapid and accurate sensors so that existing full spectrum 

analytical instruments can be replaced with smaller, less expensive online alternatives.  ISP is 

currently being studied as an alternative to traditional Fourier transform infrared (FT-IR), near-

infrared (NIR), IR, UV-visible, fluorescence, Raman, and acoustic-resonance spectrometry 

(ARS).   

 

Acoustic and optical spectrometry coupled with multivariate mathematics is routinely used for 

analyte quantification and identification, such as in NIR imaging for the quantification of 

organics in the presence of interferents,4,5 scanning monochromator instruments and 
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multichannel array spectrometers,6 and acoustic resonance spectrometry for the classification of 

tablets and quantification of active pharmaceutical ingredient in semi-solids.7,8 As the complexity 

and dimensionality of data sets increases with each emerging generation of hyperspectral 

imaging, the amount of computing power necessary for processing increases significantly.  For 

example, each image collected with a digital micromirror array or an acoustic-resonance 

spectrometer may contain 500,000 discrete wavelengths or frequencies.  When experimenters 

measure the correlation between spectral features and physical properties (e.g. concentration, 

temperature, and/or hydration), high order relationships must be extracted.  Often the 

relationship is determined with a method like principal component analysis (PCA).  Linear PCA 

is limited by the fact that the maximum number of principal components that can be extracted is 

I-1 where I is the number of spectra.9 Because the number of wavelength or frequency 

observations often far exceeds the number of samples, these I-1 components can fail to identify 

the spectral features that correlate to the measured property of interest.  Higher order algorithms 

such as support vector machines (SVM) and kernel PCA (KPCA) can be employed in such 

situations, such as multidimensional image and multivariate data analysis.  SVMs have been 

used for analysis of mid-infrared spectra,10 nonlinear parametric models called multilayer 

perceptrons,11 NIR spectra affected by temperature induced spectral variation,12 NIR spectra for 

acidity prediction in grapes,13 and neural networks.14 KPCA has been used for optical character 

recognition and analysis of DNA,15 images,16 and NIR spectra.17  

 

While these approaches have proven successful, SVM and KPCA are computationally 

demanding.  In ISP, rather than performing the calculations explicitly in a computer, some 

portion of the instrumentation (typically the detector) is designed to complement the spectral 
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features of the incoming data set (e.g. frequencies and their respective amplitudes).  The 

instrument itself extracts the distinguishing data structures without the need for further data 

processing.  As new generations of spectrometry and imaging arrive with higher dimensionality, 

detectors are built to share the computational burden, obviating the need for increases in post-

collection computing power.  Currently, there are many different research groups approaching 

this goal in a number of different ways.   

 

ISP with Optical Signal Processing 

Theory. The most widely used ISP alternative to conventional optical spectrometry involves the 

construction of optical interference filters.  One of the first published methods, termed optical 

signal processing (OSP), is based on the four components illustrated in Figure 1.1: an element to 

disperse wavelength-dependent information into space-dependent information, a spatially variant 

optical transmission mask to filter incoming spectroscopic information, optical or analog 

elements to integrate the transmitted intensity, and a processor to perform simple algebraic 

computations.18 The dispersion element directs wavelengths to different spatial locations on the 

transmission mask where the mathematical product is calculated between the spectroscopic 

information and the orthogonal weight function in the mask.  The vector dot product is calculated 

as the sum or the integrated total signal by focusing the light from the transmission mask on the 

photodetector such that only one voltage, proportional to the concentration of the analyte, is 

recorded at the detector. 

 

To optically process an emission signal composed of several component spectra, a vector 

function is formulated so that it is orthogonal to the emission spectra of interfering species.  The 
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product of this vector and the interfering species effectively eliminates light emission from the 

interferents.  The vector function is also formulated so that it is not orthogonal to the emission 

signal of the analyte of interest.  In this manner the integral product of the vector and dispersed 

emission leaves only the signal from the analyte of interest, making the signal directly 

proportional to the analyte concentration, suggesting that the overall purpose of an OSP mask is 

to maximize the signal-to-background ratio.  Clearly, this means that if there is significant 

overlap between the interferents and the analyte emission spectrum, or in the presence of many 

interferents, the throughput of the instrument will decrease significantly.   

 

Mathematical construction of the optical filters can be illustrated in the following example.  The 

total emission spectrum, free from interferences and directly related to the analyte property of 

interest is known as the Net Analyte Signal (NAS).19,20,21,22 Free from instrument variation 

(noise, baseline shift) and chemical properties (temperature, viscosity, etc.), the NAS can be 

represented by the wavelength-dependent emission spectrum, aa, and a total emission magnitude 

xa.  The interference components ai and xi are arranged in matrix I.  Gram-Schmidt 

orthonormalization of I results in a matrix of orthogonal vectors, Q, related to the original matrix 

by the factorization matrix, F. 

QFI =  1.1

For an emission spectrum a, a least-squares solution is used to determine the individual emission 

magnitudes, xn, which are components of the vector x, such that the 2-norm is a minimum: 

2
min aIx −  1.2

Premultiplication of Equation 1.2 gives: 
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2
)()(min aQxIQ TT −  1.3

where the superscript T indicates the matrix transpose.  With Equation 1.1 and the fact that 

vector components of Q are orthonormal, the solution is: 

aQFx T=  1.4

QTa is a vector with elements equal to the dot products of a with the individual component 

vectors of QT.  The dot product of qn, the last vector of QT, with the emission spectrum, a, is the 

optimal estimate, xn, which is used as the optical transmission filter.   

 

Many recently published ISP applications stem directly from OSP research and the construction 

of optical interference filters.  A discussion of the results appears later with the presentation of 

more recent OSP material.  

 

ISP with Optical Regression 

Theory. ISP with optical regression23 is designed as an improvement over scanning 

spectrometers.  In response to the assumption that in any data set there are many uninformative 

or useless variables, this method uses analog variable selection as opposed to post-collection 

processing, saving valuable time by collecting only the important variables. The overall purpose 

of optical regression is to improve S/N.  Some authors contend that a digital regression, while 

powerful and flexible, does not necessarily give the optimal precision.  In a typical scanning 

spectrometer, equal time is dedicated to the collection of each wavelength, thus valuable 

integration time is sometimes dedicated to the collection of useless data.  The regression vector 

in optical regression serves as template for the amount of integration time spent at each 

wavelength.  Thus, by varying the amount of time spent collecting light at each wavelength, the 
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spectrum collected at the detector automatically represents the dot product of the transmission 

spectrum and the regression vector, saving valuable post-collection processing time.  Because the 

transmission spectrum cannot be negative, two spectra are collected and differenced; one for the 

positive lobes of the regression vector, and one for the negative lobes.  This difference is directly 

proportional to the concentration of the analyte of interest.   

 

The integration times are determined by the inverse calibration model calculated by: 

eAbc +=  1.5

where b is the regression vector, c is a set of properties associated with an I x J matrix A 

composed of I independent samples and J observations, where e is a J x 1 vector of model errors.  

The dot product is calculated between the regression vector and the unknown spectrum, a: 

∑
=

==
J

j
jjun

^
ac

1
bbaT  1.6

where ĉun is the estimation of the property of interest.  If the regression vector is free from 

random errors, the errors in ĉun are the dot product of the errors, e, in unknown spectrum a with 

the regression vector b: 

j

J

j
j

T

c
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=
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 1.7

The expected standard deviation of ĉun for normally distributed errors with mean of zero and 

standard deviation, σ, is given by: 
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In a spectrum with J wavelengths, there are J time units for the integration of the entire 

spectrum.  The time dedicated for collection at each individual wavelength is determined by 

normalizing with the 1-norm, the sum of absolute values, on the regression vector to J:  

)/(
1

bbbt J=  1.9

where is the sum of , the time dedicated to each of the wavelength with a positive 

regression value and , the time dedicated to wavelengths with a negative regression value.  

The difference between the two measurements is equal to J/||b||

tb tb +j

tb −j

1 times the calibrated property. 

Jc
J

j

t
j

J

j

t
jun /

1
1\1

^
bbb ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−= ∑∑

=
−

=
+  1.10

If the measurement errors are equivalent to the errors in Equation 1.8, the standard deviation of 

ĉun is: 

JJ
c

/2/)(
1

2/1
1

2/122
^ bb σσσσ =+= −+  1.11

In digital regression, the detector collects K measurements per unit time over the J digitized 

channels, thus there are KJ total measurements.  The regression vector must therefore be scaled 

such that the 1-norm equals KJ: 

1
( bbbt KJ=  1.12

where the J elements of designate the number of signals integrated at each channel.  The 

standard deviation of estimation here is expressed as: 

tb

2/1
1

2/1
1

2/1 //)(^ JKJKJ
c

bb σσσ ==  1.13

The relative magnitudes of the standard deviations from analog (Equation 1.8) and digital 

(Equation 1.11) regression can now be compared.  Analog optical regression predicts a lower 

standard deviation of estimation than digital regression by: 
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21
2/1 /2 bb σσ <J  1.14

since by definition of multivariate analysis J is 2 or greater. 

 

Results from Optical Regression. To demonstrate that optical regression outperforms digital 

regression in practice, Prakash et al. provide a short description of its application to the 

concentration prediction of 4 mixtures of rhodamine B, sulforhodamine, and rhodamine 590 in 

20:80 methanol:water using fluorescence emission spectra.  The regression vector was calculated 

by principal component regression (PCR), and visual inspection was used to select the 20 

wavelengths with the highest predictive ability.  The regression vector determined how much 

time was spent integrating the signal at each of the 20 wavelengths.  With 20 wavelengths, 

digital regression allocated 30 ms to integrate each channel, whereas optical regression 

integrated each channel according to its weight in the regression vector.  Elimination or 

reduction of the contribution of less important wavelengths in optical regression effectively 

raised the signal-to-noise ratio.  Of the 12 different mixtures, on average, optical regression 

predicted analyte concentration 28.0% more precisely than digital regression.  Table 1.1 

summarizes the results from optical regression.   

 

Multivariate Optical Elements 

Theory. The overall purpose of these optical interference filters, termed multivariate optical 

elements (MOE),4,5,6,24,25,26,27 is to minimize the standard error of prediction (SEP), or the root-

mean-squared error of calibration (RMSEC) of chemical species.  MOE methods begin with the 

collection of spectra of target analytes.  For example, if the objective is the NIR quantification of 

ethanol in water, spectra from different concentrations of ethanol in water are collected with a 
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broadband source.  Calculation of the principal components of the raw spectra is usually 

accomplished by a singular value decomposition of matrix A according to Equation 1.15: 

USLA =  1.15

where A is the matrix of original spectra, the eigenvectors of ATA make up the columns of L, the 

eigenvectors of AAT make up the columns of U, and S is a diagonal matrix of singular values.9

 

As shown in Equation 1.16, a regression using U reveals which has the strongest correlation to a 

change in ethanol concentration c, where y is the y-intercept, b is a vector of regression 

coefficients, and e, is the residual. 

ebUc ++= y  1.16

Equation 1.17 demonstrates how a leave-one-out cross validation can be used in predicting the 

reliability of the concentrations of ethanol from NIR spectra, where σ2 is the variance, ĉun is the 

prediction of the model for the i-th pattern I in the training set, after it has been trained on the I-1 

other patterns. 

2
^

1

2 )(1
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i
LOO cy
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=

=

σ  1.17

In the case of a minimal two-component system using ethanol and water, it is a simple matter to 

observe a linear change in ethanol concentration.  With just two chemical constituents, only one 

principal component is needed to accurately describe the concentration changes that occur in 

mixtures.  The loading corresponding to this principal component reflects the contribution of 

each wavelength to the overall classification.  The concentration of unknown samples can be 

quantified by multiplying the loading and spectral intensity at the same wavelength, then 

summing over all wavelengths according to Equation 1.18 below: 
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where lj is the loading at wavelength j, Aij is the intensity of the raw spectrum of the i-th mixture 

at wavelength j, yi is the chemical analysis result, and j is an index over J wavelengths in the 

spectrum. 

 

Figure 1.2 illustrates a generic version of the MOE selection process.  The spectral variables 

demonstrate that the two peaks needed for sample differentiation describe the majority of the 

variation.  The corresponding principal component loading identifies these regions and can be 

used as a template for the design of the optical filters.  Because transmission spectra cannot be 

negative, negative loadings must be inverted as shown in MOE-2.  Figures 1-3 and 1-4 illustrate 

the basic configurations of this instrument.   

 

The MOEs in these configurations act as optical beamsplitters.  The MOEs are designed so the 

transmittance to detector DT at wavelength j is expressed by Equation 1.19, while the reflectance 

to detector DR is expressed by Equation 1.20: 

jj kl+= 5.0T  1.19

 

jj kl−= 5.0R  1.20

where k is a proportionality constant.  These equations assume that the MOE does not absorb 

light or scatter stray light, thus the sum of T and R is unity at each wavelength.  When light from 

all J wavelengths strikes the MOE, the total reflectance is given by Equation 1.21 and the total 

transmittance is given by Equation 1.22: 
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The difference between transmittance and reflectance is shown in Equation 1.23. 

i
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ART  1.23

This equation demonstrates that the difference between transmittance and reflectance is directly 

proportional to analyte concentration. 

 

The actual construction of the MOE has been approached in two different ways.  The objective 

of both methods, however, is consistent; to design a MOE that has a transmission spectrum 

resembling the desired loading vector.  In the first approach, a library of transmission spectra 

from organic compounds is screened to identify the optimum combination of organic materials 

whose transmission spectra will sum to the desired regression vector.  The identified MOEs can 

be placed in a glass cuvette or in a rotating filter wheel directly before or after the analyte.  These 

specific MOEs have been termed molecular optical filters.  The second approach involves the 

deposition of alternating layers of two metal oxide films, Nb2O5 and SiO2, on a 2.54 cm BK-7 

glass substrate with reactive magnetron sputtering.28 The interference effects of the layers are 

monitored as the layers are deposited to be sure the end-product resembles the target 

transmission spectrum.   
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The utility of optical transmission filter spectrometers lies in the speed and accuracy at which 

they operate.  Rather than using complex, bulky machinery with a dispersion element such as a 

grating or a stepping monochromator, one photodetector is capable of extracting the same 

information with no post-collection computation (the ISP advantage).  Collection of all 

wavelengths simultaneously provides the multiplex advantage.  The absence of a slit to achieve 

wavelength resolution provides the throughput advantage.  An instrument simultaneously 

measuring a signal over a range of wavelengths/frequencies obtains a t1/2 advantage in the time t 

required to obtain a given signal-to-noise ratio compared to that which would be necessary using 

dispersive methods.29

 

Select Results from Multivariate Optical Elements. Soyemi et al. describe an example of the use 

of a single MOE filter for the integrated sensing and prediction of analyte concentration.  

Transmission spectra from 400-650 nm were collected from mixtures of Bismarck Brown (BB) 

and Crystal Violet (CV), where BB was the analyte and CV was the random interferent.  Digital 

principal component regression (PCR) using a 4- component model gave a standard error of 

calibration (SEC) of 2.9% error relative to the mean of the calibration set, and a standard error of 

performance (SEP) of 4.3% relative to the mean of the calibration set.  A plot of the root mean 

squared error of cross validation vs. number of principal components indicated how many 

components were required for the best predictive ability.  Ten MOEs, with layers ranging from 1 

to 31, were constructed to resemble the regression vector as calculated from the PCR loadings.   

The best filter had 15 layers and gave SEC = 0.7% and SEP = 0.8% relative to the mean of the 

calibration set.  (See Table 1.2 for the results of all the filters in comparison to the 4- component 

digital regression model.)  MOEs demonstrated an improvement of two orders of magnitude in 
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both SEP and SEC over digital PCR for the prediction of analyte concentration.6 The authors 

speculated that this is partly due to the inclusion of more model error in the PCR model, whereas 

the MOE avoids model error because it passes a smooth transmission waveform to the detector.   

 

ISP in Hyperspectral Integrated Computational Imaging 

Background.  Hyperspectral integrated computational imaging is the imaging of a target analyte 

at a number of discrete wavelengths simultaneously.30 As illustrated in Figure 1.5, HICI forms a 

data cube or hypercube.  Data cube axes have different dimensions depending on the application.  

For example, the three dimensions in fluorescence excitation-emission matrix spectrometry are 

excitation wavelength, emission wavelength, and sample number, which all serve as indices for 

the recorded property, spectral intensity.31 However, for NIR imaging, spectral intensity is 

indexed by two spatial dimensions (length and width), excitation wavelength, and sample 

number.30,31 Typical fluorometry and NIR spectrometry are conducted by varying the excitation 

wavelengths and raster scanning across an analyte surface until an entire spectrum is collected at 

the photodetector.  In HICI, data across all wavelengths are collected simultaneously with a 

digital camera such as a charge-coupled device (CCD) camera.  In either case, the resulting 

image is often presented as a contour plot as illustrated in Figure 1.5.  The collection of all data 

in one measurement speeds up data collection times and standardizes the results.  For example, 

environmental conditions, temperature fluctuations, ambient light differences, and detector drift 

for a given set of scans may all be subject to change when collecting multiple spectra over time.  

On the other hand, these effects are negligible when collecting only one measurement.  Thus, a 

main advantage of HICI over conventional imaging spectrometry is reduced data collection time.   
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Theory. A number of chemometric techniques have been applied to the processing of the 

resulting data cubes from HICI images, including parallel factor analysis (PARAFAC)31 and a 

nonparametric cluster analysis algorithm, the bootstrap error-adjusted single sample technique 

(BEST).32  This review will concentrate on the BEST, which can be implemented in simple 

hardware and is based on the premise that spectra from similar samples tend to cluster together in 

the same region of hyperspace.  The BEST draws probability-density contour plots around 

analyte populations based on asymmetric standard deviations (SDs).32 For a more detailed 

description of the BEST, an in-depth discussion is provided by Hamilton et. al.  In the BEST, a 

population P is created as an I x J matrix in hyperspace H whose rows are the individual samples 

and the columns are the wavelengths.  P* is a discrete realization of P based on a calibration set 

A of the same dimensions as P*.  This realization is chosen one time from P to approximate all 

possible sample variations present in P.  P* has parameters Mc and P , where )(PP E= and Mc is 

the Monte Carlo approximation to the bootstrap distribution.  The expectation value, E(P), is the 

center of P, and P  is a row vector with the same number of rows as there are columns in vector 

P.  New test spectra AT are projected into H containing Mc rows of Mc are mapped onto a vector 

connecting P  and AT.  P and AT have the same dimensions.  The integral over H is calculated 

from the center of P in all directions.  A skew-adjusted SD is based on the comparison of the 

expectation value )(PP E=  and )(AP med= , the median of A in hyperspace is projected on the 

hyperline connecting P  and AT.  The result is an asymmetric SD that provides two measures of 

the SD along the hyperline connecting P  and AT.  Skew adjusted SDs can be used to calculate 

mean distances between spectra of different samples. 
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Select Results from Hyperspectral Integrated Computational Imaging. Groups of aspirin tablets 

exposed to different levels of moisture have been used to test the assumption that the BEST 

approach offered an advantage over conventional NIR spectrometry.30 Tablet groups were 

exposed to water vapor or a pH 9.0 ammonium hydroxide solution.  Water uptake was 

determined by gravimetric analysis and NIR spectrometry.  To verify that NIR could be used to 

differentiate between different tablets, calibration lines were constructed for both water uptake 

and for the decomposition of aspirin into salicylic acid.  The standard error of estimate (SEE) for 

the prediction of water content was 0.05% and the standard error of performance (SEP) was 

0.06%.  The SEE and the SEP for the prediction of salicylic acid were each 0.06%.  NIR images 

of 1286 control tablets were collected simultaneously with a CCD camera, and the BEST 

algorithm was used to calculate multidimensional standard deviations.  Figure 1.6 is a contour 

plot with lines drawn in BEST standard deviations.  It is apparent from this plot that NIR 

imaging can readily indicate water exposure time.  In this example, NIR imaging resulted in a 

30,000 fold increase in speed over HPLC and a 1,000 fold increase in speed over conventional 

NIR spectrometry, suggesting a high degree of utility in process analytical technology, as 

thousands of tablets can be scanned simultaneously and in real-time as they move down a 

manufacturing line.   

 

Acoustic-Resonance Spectrometry with an ISP Excitation Signal 

Theory. Typical acoustic-resonance spectrometric measurements involve very large amounts of 

data.  For example, 15 seconds of data collection at a sample rate of 44.1 KHz results in 661,500 

data points per spectrum.  Normally, there is a large disparity between the number of sample 

spectra and the number of frequencies at which data are collected on the samples.33 Due to 
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instrumental (noise, baseline shift, etc.) and chemical inconsistencies (temperature, viscosity, 

etc.), spectral features of interest may be severely overlapped by interferences.  Additionally, not 

all frequencies respond linearly or exclusively to the desired change in analyte concentration, 

therefore, linear principal component regression may be inadequate to describe the relationship 

between AR spectra and physical properties.  For PAT applications the data burden mandates 

that an ISP method be developed to reduce the dimensionality, retaining only those frequencies 

directly proportional to the concentration of the physical property of interest. 

 

Figure 1.7 illustrates the ISP encoding and processing scheme.  Full spectra are collected in the 

time domain, and transformed to the frequency domain with an FFT.  Fisher weights are 

calculated for each discrete frequency according to Equation 1.24.7,8 Frequencies with the top 

weights are selected, and an inverse Fourier transform is performed to put the frequencies back 

into the time domain.  This file, which serves as the new excitation signal, can be saved as an 

MP3 file and encoded on a CD/MP3 player. 
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Because the excitation signal was created using only those frequencies directly proportional to 

the concentration of the physical property of interest, once the signal passes through the sample 

the signal intensity is directly proportional to the analyte concentration.  No FFT or spectral 

sweeping is required to generate the result.  In fact, a simple rectifier circuit and volt meter will 

suffice.8   
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In generating the Fisher weights, data populations P1 and P2 contain I x J points where I rows 

contain the samples and J columns contain the frequencies.  The algorithm uses an Jx1 

classification matrix, c, to identify the number of unique classes, cu, in a given data set.  The 

number of possible combinations of classes, and thus the number of rows in the Fisher weights 

matrix F, If, is calculated by Equation 1.25. 

)1(
2
1

−= uufI cc  1.25

Each row in F is composed of short sound segments or "bites" that are designed for the 

differentiation of specific analytes.  When trying to differentiate between groups of similar 

samples, the most distinguishing frequencies for one analyte are usually the most distinguishing 

frequencies for all analytes in that group.  It is this property that allows the use of only one row 

in F for the final integrated sensing and processing sound segment.  The row is selected based 

upon some other method of multivariate analysis, such as partial least squares, PCR, or the BEST 

nonparametric clustering algorithm.  Whichever two analytes exhibit the largest separation 

according to these methods indicates which of the rows in F are used as the excitation source.     

 

Despite the potential introduction of a few uninformative variables for each individual 

calibration by using only one row in F, the overall reduction in insignificant frequencies boosts 

the S/N much higher than seen in conventional ARS.  In addition, the ISP approach offers a large 

advantage in terms of speed, which outweighs the small loss in performance due to the possible 

inclusion of useless variables.  Data sets collected with the new excitation source are presently 

still collected in full, however, the computational burden is greatly reduced by filtering the 

incoming data according to the pre-selection of the distinguishing frequencies.  Future AR 
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spectrometers will include analog frequency selection elements and an analog integrator so that 

fewer data points can be collected. 

 

Results from ISP Acoustic-Resonance Spectrometry. ISP ARS has been applied to the 

differentiation of similarly sized and shaped tablets.7,8,33 The success metric for the 

differentiation of tablets was intercluster distance in BEST standard deviations.  Five groups of 

tablets, aspirin, ibuprofen, acetaminophen, vitamin B12, and vitamin C were selected for 

analysis.  For initial data collection, tablets were scanned in random order for 15 seconds at a 

sample rate of 8 KHz.  BEST SDs were calculated, and the excitation signal was selected from 

the tablets with the largest intergroup separation.  All tablets were rescanned with the new 

excitation source for the ISP approach.  The average multidimensional SD between tablet groups 

for the non-ISP approach was 13.52, and for the ISP approach was 10.8.  Table 1.3 lists all 

results.  While the average SD was higher for the non-ISP approach, tablet populations separated 

by 3 or more SDs are considered separable.  In addition, not all tablet groups separated in the 

non-ISP approach.  This suggests that the ISP offers an advantage in reliability of separation as 

well as in data reduction and simplicity of detection, presumably by the increase in S/N due to 

the elimination of uninformative variables.   

 

Conclusion 

Integrated sensing and processing is a viable alternative to conventional spectrometry and 

imaging, offering substantially faster analysis times while maintaining equivalent performance 

with its digital counterparts.  Without ISP, it is necessary for analytical techniques to make a 

trade-off between longer data acquisition (scan) times or lower predictive ability.  With the 
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emergence of ISP, however, experimenters can reduce the data collection times and data 

dimensionality without forfeiting high predictive performance.  ISP has shown promising results 

in spectrometry and imaging, and has demonstrated a high degree of utility for military 

applications and pharmaceutical process analytical technology.
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Chapter One Figures 

 

 

Figure 1.1: Optical signal processing (OSP) is based on the four components illustrated in this 

figure. The dispersion element (monochromator/grating/filter wheel) wavelength-dependent 

information is coupled to a spatially variant optical transmission mask to filter incoming 

spectroscopic information, optical or analog elements integrate the transmitted intensity, and the 

analog processor subtracts the signal from the negative lobe of the regression from the positive 

lobe signal.

21 



 
 
Figure 1.2: In this simple example, the spectral variables demonstrate that the two peaks needed 

for sample differentiation describe the majority of the variation in the spectra.  The principal 

component loading corresponding to this change can be used as a template for the design of the 

optical filters.  Molecular filters are designed so that their transmission spectra match the desired 

principal component loading vector.  Transmission spectra cannot be negative; therefore, 

negative loadings must be inverted separately as MOE-2.
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Figure 1.3: A simple T-format spectrometer with the multivariate optical element (MOE) as the 

beamsplitter.  The transmitted signal passes through the MOE where it is collected at detector T, 

and the reflected signal bounces off the MOE for collection at detector R.  The difference 

between transmission, T, and reflection, R, is directly proportional to the concentration of the 

analyte.
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Figure 1.4: Diagram of a high-throughput molecular filter spectrometer.  The molecular filters 

(MF), which are designed to resemble the principal component loading vectors of interest, are 

placed in line with the sample.  This implicitly calculates the dot product between the MFs and 

the sample transmission spectra, automatically weighting the most distinguishing variables for 

rapid and accurate analyte quantification.
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Figure 1.5: (a) A contour plot of an excitation-emission fluorescence spectrum.  Rows represent 

emission spectra at a particular excitation wavelength, and columns represent excitation spectra 

at a particular emission wavelength. (b) A three-way data cube can be constructed by stacking 

correlated EEM spectra.  The cube can be mathematically modeled by a set of trilinear 

components, where Rijk is the fluorescence intensity of 

sample k at excitation wavelength i and emission wavelength j, N is the number of unique 

spectral profiles found in the data cube, the columns of X, Y and Z are the estimations of the 

pure excitation, emission and concentration profiles respectively and Eijk is the 

error matrix.
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Figure 1.6: Bootstrap error-adjusted single sample technique contour plot of 1286 standard 

aspirin tablets scanned through the blister packaging with a NIR camera.  Distances calculated in 

BEST standard deviations from the center of the population distribution indicate the moisture 

absorption of individual tablets. 
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Figure 1.7: (a) Voltage signal collected for each analyte [sample rate of 44.1 kHz, duration 15 

seconds, thus 661,500 data points] (b) Fourier transform calculated to put data into frequency 

domain, allows for identification of distinguishing frequencies, thin line = analyte 1, thick line = 

analyte 2, (c) calculation of Fisher weights identifies most distinguishing frequencies, and (d) 

those frequencies are used to construct the sound file, (for simplicity of visualization, the sum of 

only 6 frequencies is used in this example), using a sample rate of 44.1 kHz for 15 second 

duration. 
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Chapter One Tables 

Table 1.1: Optical regression demonstrated an average improvement over digital regression by 

28.0% for the prediction of fluorescent dye mixtures. 

 

Analyte Exp. # Conc. 
(ppm) 

Mean Bias
(ppm) 

σĉ Digital σĉ Optical Improvement 
% 

Rhodamine B 1 
2 
3 
4 

5 
5 
0 
5 

-0.0074 
-0.0126 
0.0085 
0.0624 

0.0944 
0.0828 
0.0880 
0.0815 

0.0700 
0.0526 
0.0527 
0.0552 

25.8 
36.5 
40.1 
32.2 

Rhodamine 590 1 
2 
3 
4 

1 
1 
1 
0 

-0.0248 
-0.0039 
0.0378 
-0.0502 

0.0561 
0.0438 
0.0570 
0.0469 

0.0527 
0.0329 
0.0358 
0.0364 

6.1 
24.9 
37.2 
22.4 

Sulforhodamine 1 
2 
3 
4 

0 
10 
10 
10 

-0.0012 
0.0007 
-0.0526 
0.1089 

0.0620 
0.0617 
0.0747 
0.0640 

0.0509 
0.0468 
0.0458 
0.0450 

17.9 
24.1 
38.7 
29.7 
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 Table 1.2: Multivariate optical elements (MOE) with different numbers of layers constructed 

for the quantification of Bismarck Brown and Crystal Violet dyes.  Optical regression with the 

use of MOEs outperformed digital principal component regression by an order of magnitude for 

standard errors of calibration, performance, and the root mean squared errors. Statistics are 

reported relative to the mean of the calibration set, and as such, are unitless. 

No. layers SEC 
 

SEP Average 
RMS  

29 
28 
19 
29 
20 
30 
21 
20 
25 
15 

0.00950 
0.00924 
0.00923 
0.00841 
0.00885 
0.00919 
0.00909 
0.00879 
0.00728 
0.00699 

0.00792 
0.00802 
0.00796 
0.00875 
0.00822 
0.00782 
0.00784 
0.00794 
0.00846 
0.00794 

0.00875 
0.00865 
0.00862 
0.00858 
0.00854 
0.00853 
0.00849 
0.00838 
0.00789 
0.00748 

PCR Model 4 components 0.029 0.043 0.045 
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Table 1.3: Bootstrap error-adjusted single sample technique (BEST) standard deviations for 

tablet clusters as scanned by acoustic resonance spectrometry (ARS).  The non-integrated 

sensing and processing (ISP) approach resulted in an average intertablet standard deviation of 

13.52 and the ISP approach had an average intertablet standard deviation 10.8.  Aspirin and 

vitamin B12 failed to separate in the non-ISP approach, whereas all tablets separated in the ISP 

approach.  Therefore, ISP offers both an advantage in separation as well as faster processing 

times. 

Non-ISP Aspirin Ibuprofen APAP Vitamin B12 Vitamin C 
Aspirin 
Ibuprofen 
APAP 
Vitamin B12 
Vitamin C 
 

X 19.17 
X 

5.32 
12.30 
X 

1.84 
29.13 
10.09 
X 

6.13 
30.68 
16.10 
4.47 
X 

ISP      
Aspirin 
Ibuprofen 
APAP 
Vitamin B12 
Vitamin C 

X 3.41 
X 

4.01 
6.98 
X 

5.09 
14.07 
10.26 
X 

15.03 
21.17 
16.13 
12.94 
X 
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Section II: Acoustic Resonance Spectrometry 

 

 

 

 

 

Chapter Two - Acoustic-resonance spectrometry as a process analytical technology for rapid 

and accurate tablet identification 
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Introduction 

On December 4, 2003, the US Food and Drug Administration recalled 504 bottles of mislabeled 

Magno-Humphries, Inc, Dixon’s, Acetaminophen, 325 mg Analgesic Tablets.34 A rapid, 

nondestructive online method of analysis and comparison with labeling could have prevented the 

recall and disposal of the batch of mislabeled acetaminophen, thus sparing the company 

considerable cost and a major safety risk. Process analytical technology (PAT) encompasses the 

design and development of processes to guarantee a predefined quality of pharmaceutical 

materials at the end of the manufacturing process, as warranted by risk analysis.3 These 

processes come in various forms, including multivariate data acquisition and analysis tools, and 

in-process and endpoint monitoring tools. With the PAT system in effect, it becomes possible to 

implement real-time product release and increase pharmaceutical automation, thus providing the 

environment for significant reduction in manufacturing and labeling accidents. 

 

Acoustic-resonance spectrometry (ARS) is an underutilized PAT that could become an analytical 

method of choice for the physical characterization of some analytes in pharmaceutical 

manufacturing. The wide-ranging measurements that can be made by ARS include sample 

compaction and axial strain, deformation, hydration and drying endpoint, elasticity, molecular 

stacking, and homogeneity, making ARS a very descriptive method of sample analysis.35 In 

addition, ARS provides a rapid and efficient way to nondestructively identify and quantify an 

analyte with no sample preparation.36 It has thus far successfully analyzed tablets,7,36,37 

powders,8,38-40 and semisolids and liquids,8,41-42 and it has quantified bulk moisture levels in 

otherwise identical samples.36 Unlike most methods of analysis using photons, in ARS acoustic 

waves penetrate centimeters or even meters of material. Currently, the industry standard for 
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tablet characterization and identification is high performance liquid chromatography (HPLC), 

which, in addition to requiring extensive preparation (tablet grinding, dissolution, and 

extraction), destroys the tablet during the analytical process.43-44 Only a few samples are 

collected from each batch for HPLC analysis, but entire batches must be disposed of if there are 

a few failed samples. Through chemometrics, near-infrared (NIR) and acoustic spectrometry are 

now making their way into the pharmaceutical industry as alternatives to HPLC testing.45-46 

Though the identification of specific functional groups from AR spectra is beyond the scope of 

this research, ARS can easily be applied to the quantification of active pharmaceutical ingredient 

(API) or moisture in tablets because of the high correlation between AR spectral features and 

chemical composition. Chemical changes lead to changes in physical characteristics such as 

density, compressibility, and acoustic velocity. For example, the density of acetaminophen is 

1.2083 g/mL, while the density of aspirin is 1.3571 g/mL. The velocity of sound, therefore, is 

much higher in aspirin than it is in acetaminophen, resulting in a different set of acoustic 

interactions between each tablet and the quartz rod. These different interactions permit the 

extraction of bulk physical properties from the AR spectra and the characterization of even subtle 

correlated chemical differences between tablet groups. The chemical/physical relationship 

linkage can also be exploited to differentiate between unique formulations of the same API, as 

numerous constituents contribute to the final formulation, including excipients, compression 

aids, binders, coatings, disintegrants, and emulsifying agents. 

 

Vibrational techniques such as NIR and infrared spectrometry are very sensitive to the presence 

of water. In fact, water’s absorption is so strong that it often overwhelms other signals of 

interest.47 Much computation can be required to correct for or deconvolve spectra with a large 
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water absorption to extract other useful features.47-53 Acoustic waves are not necessarily as 

sensitive to the presence of water and do not suffer from the same limited penetration depth in 

water that causes problems in the NIR. ARS can be used along with NIR spectrometry to 

decrease interferences from water and increase the range of analytes that can be determined with 

good sensitivity.54 The last few years have seen the advent of commercial instruments for 

acoustic analysis of liquid and semisolid samples.55 Thus, this technology is rapidly gaining 

popularity for the physical characterization of analytes. 

 

Sound is a longitudinal wave—one whose compressions and rarefactions oscillate parallel to the 

direction of propagation.56 When an acoustic wave is applied to a sample, the medium responds 

by locally expanding and contracting, with particles in the medium drawing closer together and 

moving farther apart. The degree to which a particular medium responds is a product of its bulk 

modulus, or simply, its incompressibility. For dense materials with very little compressibility, a 

sound wave propagates very rapidly, while for less dense samples, sound travels more slowly. 

 

Figure 2.1 shows a schematic of the AR spectrometer used for the following discussion. In the 

absence of a tablet at the vertex of the quartz rod, the applied acoustic signal received at the 

detector is a standing wave that is characteristic of the quartz wave guide. When a tablet comes 

in contact with the rod, the acoustic waves propagate through the tablet/quartz interface and pass 

to the tablet holder (which may contain a second transmitting transducer). Waves are transmitted 

through the tablet or reflected back through the tablet, where they reenter the quartz rod. The two 

sound paths lead to a pattern of in-phase and out-of-phase interferences (between the standing 

wave traveling through the quartz rod from piezoelectric transducer (PZT) to PZT with no tablet 

35 



interaction, and the wave propagating through the tablet) that is characteristic of the tablet.57 This 

phenomenon is illustrated in an animation in Figure 2.2. The quartz rod was chosen as the means 

of propagation because the speed of sound is significantly larger in the rod than in the tablet; 

thus, the difference in delay time between the reference channel and the tablet channel is 

maximized. A rod composed of quartz also helps keep acoustic impedance to a minimum, 

according to Zac = P/(vA), where Zac is acoustic impedance, P is pressure (which is proportional 

to the wave amplitude), v is the velocity of the sound wave, and A is a unit of area.56

 

The next-generation AR spectrometer, which is already in construction and testing, will use 

integrated sensing and processing (ISP), encoding the excitation signal source so the detector 

output is directly proportional to the analyte concentration or classification (such an excitation 

signal is also called an ISP waveform). When the most distinguishing frequencies are preselected 

for excitation, the ISP excitation source can be an encoded weighted frequency spectrum, 

eliminating the need for postcollection computation and simplifying the AR spectrometer for use 

as a PAT sensor. Thus, an ISP excitation waveform is one in which each frequency in the 

frequency-domain representation of the waveform is weighted (typically between +1 and –1) so 

that the sum of the signals over the frequency and the integration time is proportional to the 

property of interest. ISP has demonstrated significantly reduced analysis times compared with 

the full-spectrum approach and appears to perform consistently with full-spectrum ARS for 

analyte separation and API quantification.7,8 The utility in the ISP approach lies in its ease of 

application. For example, to differentiate between two visually indistinguishable groups of 

tablets, one can download from an online database an ISP waveform that is a prerecorded MP3 

36 



file written to distinguish between the required tablets. The final PAT sensor can be very simple 

when the waveform is recorded to a CD or an MP3 player and “played” through the tablets. 

 

The current work represents a step in the direction of ISP-ARS. This research was performed to 

test the hypothesis that an AR spectrometer using ISP-compatible waveforms is able to rapidly 

and accurately differentiate tablets of similar size and shape. An ISP-compatible waveform is an 

excitation signal in which each frequency in the frequency-domain representation of the 

waveform is weighted +1. In an ISP calibration process, the calibration samples are usually 

tested first with an ISP-compatible waveform to determine the distinguishing frequencies for the 

actual ISP encoded waveform. In this research, an FM radio receiver supplies one source of 

broadband random excitation for ARS. Such a waveform could easily be recorded in MP3 format 

or on a CD for use in a high-throughput PAT sensor. 

 

The ultrasound literature indicates that buffer rods (steel, aluminum, quartz, etc) coupled to PZTs 

are commonly used as probes to monitor various online processes, including fabrication of 

microfluidic devices,58 polymer processing,59 and inline die casting.60 A typical industrial tablet 

press is capable of pressing slightly more than one tablet per punch station per second.61 Each 

punch station can easily be fitted with a PZT, much like the buffer rod probe. With one second 

per punch, there is ample time to collect an acoustic signal from the tablet as it is being punched. 

Such technology would be capable of testing 100% of the tablets passing down the 

manufacturing line; therefore, no scale-up would be required to reach production rates. Thus, 

ARS is a high-throughput assay suitable for 100% product testing. 
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Theory 

ARS spectra collected at n frequencies can be expressed as points in an n-dimensional 

hyperspace.  These spectra usually form complex patterns in that hyperspace as analyte 

concentration changes because of the nonlinear nature of acoustic interactions.62 Nevertheless, a 

plot of canonical correlation coefficients calculated from the principal component scores shown 

in Figure 2.3 illustrates that spectra from similar tablets tend to cluster in the same region of 

hyperspace.9,63   However, in order to prove this assertion more quantitatively, the BEST 

nonparametric cluster analysis algorithm can be employed, and multidimensional standard 

deviations (MSDs) between clusters and spectral data points can be calculated.30 To calculate the 

distances in MSDs, a population P is created as an m x n matrix in hyperspace R whose rows are 

the individual samples and the columns are the frequencies. The BEST method considers each 

frequency from a spectrum of n frequencies to be taken as a separate dimension64 P* is a discrete 

realization of P based on a calibration set T of the same dimensions as P*.  This realization is 

chosen one time from P to approximate all possible sample variations present in P.  P* has 

parameters B and C, where C = E(P) and B is the Monte Carlo approximation to the bootstrap 

distribution.  The expectation value, E(P), is the center of P, and C is a row vector with the same 

number of rows as there are columns in vector P.  New test spectra X are projected into R 

containing B; rows of B are mapped onto a vector connecting C and X.  C and X have the same 

dimensions.  The integral over R is calculated from the center of P in all directions.  A skew-

adjusted MSD is based on the comparison of the expectation value C=E(P) and C=med(T), the 

median of T in hyperspace projected on the hyperline connecting C and X.  The result is an 

asymmetric MSD that provides two measures of the MSD along the hyperline connecting C and 

X.  Equation 2.1 defines the MSD in the direction of X, and Equation 2.2 defines the MSD in the 
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opposite direction.  Skew adjusted MSDs can be used to calculate mean distances between 

spectra of different samples. 
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Materials and Methods 

A simple schematic of the instrument is shown in Figure 2.1 and an animated illustration of its 

operation is shown in Figure 2.2.36,65-66.  The acoustic range was limited to 0 - 4 KHz in the 

computational model for experiments to assure compatibility with the simple ISP strategy.  Three 

different broadband acoustic noise sources were tested; a radio receiver (Model D-3150 radio 

receiver, Consumer Electronics Corp., Knoxville, TN, USA) tuned to a local unused frequency 

(94.9 MHz FM), a white-noise generating Zener diode amplifier circuit constructed for these 

experiments,67 and a function generator (FG) (Model DS335, Stanford Research Systems, 

Sunnyvale, CA, USA).  The PZTs (CUI Inc., Beaverton, OR, USA) were connected directly to 

the audio-amplifier leads inside the receiver, and due to the magnitude of the receiver signal, no 

pre- or post-amplification was necessary.  Ideally, a white noise generator creates equal 

excitation at each frequency in its spectral range.  However, even in the case of the best possible 

applied white noise, the PZTs responded much better at some frequencies than others.  The 
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receiver and Zener white noise generators were compared with a FG programmed to output a 

swept 10 V signal from 10 Hz to 4 kHz in steps of 10 Hz.  The following discussion concentrates 

on a brief comparison of the two most effective methods of generating the noise excitation, the 

FG and the FM receiver.  Typical Fourier transform spectra of the received signal from both 

methods are shown in Figure 2.4.  Spectra appear different between the two methods because the 

FG sweeps a signal from 10 Hz to 4 kHz in discrete steps of 10 Hz, while the FM receiver 

delivers essentially random noise excitation across the entire range from 0 – 4 kHz.  Because the 

overall magnitudes of the signals per unit time at the receiving PZT were comparable between 

the two methods, the FG had to deliver a much more intense excitation per unit time at each of 

its frequencies, which increases the acoustic nonlinearities caused by mechanical interface 

discontinuities in the sampling system.  To more effectively visualize the distinctions between 

AR tablet spectra, Figure 2.5 illustrates second derivatives of the logarithms calculated from the 

Fourier transform of the radio data.   

 

The vertex of the quartz rod was in mechanical contact with the sample, causing it to resonate 

with the rod.  Tablet samples were mounted on a scale (Model 3120, Health O Meter, 

Bridgeview, IL, USA) to ensure that the pressure on each sample was consistent and 

reproducible.  The PZT detector output signal was collected via a 16-bit soundcard (Realtek 

AC97, Realtek Semiconductor Japan Corp., Yokohama, Kanagawa, Japan) for processing and 

analysis in Matlab 7.0.1 (The Mathworks Company, Natick, MA, USA). For each sample, 15 

seconds of data were collected at a sample rate of 8 kHz and a Fourier transform was calculated.  

Using the spectra of the blank (quartz rod), a signal-to-noise ratio of 50/1 was calculated by 

dividing the magnitude of the largest peak by the standard deviation of its replicates.  With the 
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sample rate of 8 kHz, the maximum frequency collected was 4 kHz, though there was very little 

signal above 2.5 kHz. 

 

The objective of the initial experiment was to prove that the selected tablets of similar size and 

shape could be differentiated unequivocally.  Tablets used were ibuprofen (Perrigo, Allegan, MI, 

USA), acetaminophen (Leiner Health Products, Carson, CA USA), aspirin (Wal-Mart Stores, 

Inc, Bentonville, AR, USA), vitamin C (Leiner Health Products, Carson, CA, USA), and vitamin 

B-12 (Weider Nutrition Group, Salt Lake City, UT, USA).  Please see Appendix B for chemical 

structures of named compounds.  In order to effectively capture small variations and 

inconsistencies inherent to different tablets, ten tablets were scanned from each group.  The 

instrument was configured so the quartz rod applied 100 grams of pressure to each tablet for the 

duration of the scan.  To eliminate any effects of instrument drift on the analysis, tablets were 

scanned in random order.  Each tablet was removed from the sample holder prior to replicate 

scans, and the quartz rod was raised and repositioned between each subsequent scan. 

 

Tablet mass was determined with a digital mass balance (Mettler BB244, Mettler Instrument 

Corp., Hightstown, NJ, USA), thickness was measured to ± 0.1mm with a Vernier caliper, and 

volume for density measurements was determined by water displacement.  Figure 2.6 

demonstrates the correlation between acoustic spectra and these physical properties.  For initial 

data analysis, principal components and canonical correlation coefficients were calculated from 

the spectral data.  Principal components were calculated by a singular value decomposition of 

matrix A according to Equation 2.3: 

USVA =  2.3
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where A is the matrix of original spectra, U is the matrix of eigenvalues (scores), S is a diagonal 

matrix of singular values, and V is the matrix of eigenvectors (loadings). 

 

In Equation 2.4, a multiple linear regression of U indicates which of the components have the 

strongest correlation to tablet thickness, mass, or density, y, where a is the y-intercept, b is a 

vector of regression coefficients, and c is the residual. 

cbUay ++=  2.4

These components were used in a leave-one-out cross validation to determine how effectively 

the ARS predicted these physical properties from their acoustic spectra according to Equation 

2.5, where σ2 is the variance, fi(Ui) is the prediction of the model for the i-th pattern m in the 

training set, after it has been trained on the m-1 other patterns.  
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These physical properties have a tightly knit relationship, thus their individual effects on acoustic 

spectra need not be isolated for the purpose of the following discussion.  Using a 

multidimensional translation of tablet populations, the dynamic range of the ARS instrument for 

each of the properties listed above was established.30   

 

To estimate detection limits for dynamic range calculations, ARS spectra between tablet groups 

(intertablet spectra) from the two tablet populations (P1 and P2) with the smallest MSD 

separation (aspirin and ibuprofen) were used as m x n matrices.30  The columns of the matrices 

were averaged by Equations 2.6 and 2.7, giving two 1 x n vectors. 
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A difference spectrum X was calculated from P2ave – P1ave.  One population was spatially 

translated toward the other, PAdjusted = y*X+P2, where y (defined on the interval {0<y≤1}) started 

at zero, and increased in increments of 0.01 until P1 and PAdjusted were inseparable.  To estimate 

the smallest possible tablet thickness, mass, and density differences that could still be separated, 

the fraction of the final spatial translation was multiplied by the difference in physical 

properties.30 The procedure was conducted separately using the two tablet groups with the 

smallest MSD separation (ibuprofen and aspirin) and the largest MSD separation 

(acetaminophen and vitamin C). 

 

NIR data were collected from tablets concurrently with ARS for comparison.  Spectra from 

1100-2500 nm were collected with a NIR spectrometer (Technicon InfraAlyzer 500, Tarrytown, 

NY) interfaced to a computer (OptiPlex GXM 5166, Dell, Round Rock, TX, USA) running 

SESAME 3.1 (Bran+Luebbe, Norderstedt, Germany).  The data set consisted of fifty tablets, ten 

of each type as listed above.  To reduce room noise, external interferences, and thermal detector 

drift, the tablets were scanned inside the instrument drawer and scanned in random order.  All 

NIR data were also exported to Matlab 7.0.1 for processing and analysis. 

 

Results 
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The BEST MSDs for the AR spectra are shown in Table 2.1. The average intertablet MSD for 

the AR spectra using receiver-generated noise was 65.44, and the average for the FG was 38.65. 

Leave-one-out cross-validations were calculated to quantify the intratablet variation (variation in 

AR spectra for multiple scans of the same type of tablet). A distance in MSDs between a tablet 

and a spectral data cluster that is less than 3 is defined as inseparable (a 99.8% confidence limit). 

The average cross-validation MSDs were 1.92 for the receiver-generated noise and 2.2 for the 

FG, suggesting that the receiver-generated noise was better for maximizing intertablet variation 

and minimizing intratablet variation. While the FG and the radio provided different excitation 

signals, the magnitudes of the total integrated signals at the receiving PZT at any given time 

were comparable between the 2 methods. Therefore, the FG had to deliver a much larger 

excitation at each of its individual frequencies as the frequency was swept. Because of small 

mechanical interface discontinuities between the PZTs and the quartz rod, and between the rod 

and the samples, the larger excitation signal with the FG produced more acoustic nonlinearity 

effects in the spectra. This suggests that a CD/MP3 player with an excitation signal specifically 

tailored to match the frequencies and amplitudes of the most distinguishing spectral features will 

also be more effective than an FG. NIR spectrometry (with a 120-second sample scan integration 

time) provided a median MSD intertablet separation of 363.55 and a median intratablet 

separation of 1.96. These results suggest that NIR spectra are superior to AR spectra in 

differentiating among the tablet classes. However, it should be noted that the NIR integration 

time was almost 10× greater than the ARS integration time, so the distances in MSDs should be 

almost 3× greater for NIR spectrometry than for ARS based on the integration time alone. In 

many process sensing applications, the fact that NIR spectrometry produces slightly better results 
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will not justify the much higher cost of using it. It should be noted that both NIR spectrometry 

and ARS were perfectly accurate in all of their tablet classifications. 

 

The strong correlation between AR spectra and tablet thickness, mass, and density is illustrated 

in Figure 2.6. ARS predicted tablet thickness with r2 = 0.977, a standard error of estimate (SEE) 

of 5.23%, and a standard error of performance (SEP) of 6.17%. ARS predicted tablet mass with 

r2 = 0.977, SEE = 5.73%, and SEP = 6.16%, and ARS predicted tablet density with r2 = 0.900, 

SEE = 11.0%, and SEP = 12.2%. NIR spectrometry only slightly outperformed ARS for these 

measurements, with average leave-one-out cross-validation r2 = 0.998, SEE = 1.30%, and SEP = 

1.40% (data not shown). 

 

Discussion 

Versatility and Flexibility of ARS.  ARS provides an extremely versatile instrument for process 

analytical technology.  The same instrument and chemometrics can be applied to multiple sample 

types including powders,8,38-40 semi-solids and liquids,8,41-42.  Due to the large difference in 

acoustic velocities between a quartz rod and a sample, there is no practical minimum physical 

sample size in order for this instrument to function.  The rod and excitation can always be scaled 

to the physical sample size.  While the excitation frequencies passing through the rod and the 

sample are the same, because of the difference in acoustic velocity, the waveforms are almost 

always longer in the quartz.  The sample pathlength is always longer than the reference 

pathlength.  Regardless of the sample size, the waveforms will never be perfectly in phase as 

they recombine at the detector on the rod.  This will result in a characteristic pattern of 

constructive and deconstructive interferences for every analyte in response to their difference in 
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thickness.  Additionally, when the API and formulations are different chemically between 

samples, physical manifestations of the chemical differences, such as mass, density, and 

compressibility are observed in the AR spectra.   

 

Speed of Method.  A short experiment was conducted to determine the minimum scan time at 

which the radio-receiver ARS was still capable of separating tablets.  Tablets were scanned again 

for 15 seconds.  Rather than calculating the Fourier transform from the time domain data in its 

entirety, the FFT was calculated from the first 1 s and from the first 250 ms of data.  Principal 

components and BEST MSDs were calculated from the shorter data sets and plotted to verify 

that tablet groups were still separable by the same success metrics.  For 1 s of time domain data, 

the average intertablet MSD was 29.30 and the average intratablet MSD was 1.768.  For 250 ms 

of time domain data, the average intertablet MSD was 19.51 and the average intratablet MSD 

was 1.71.  These results suggest that while 15 seconds of data collection offers an advantage in 

separation, it is not necessary to collect more than 250 ms, an obvious advantage in PAT. 

 

Freedom from Interferences.  The main sources of potential interference for the ARS in this 

configuration are (1) RF cross-talk directly between PZTs, (2) acoustic waves propagating 

through the support structures of the instrument, (3) spontaneous additional noise bursts in the 

receiver (this source of interference is unlikely in the FG), and (4) inconsistent sample placement 

due to the manual loading procedure.  Studies were conducted to identify and quantify these 

effects.  (1) To assess the possibility of RF cross-talk, a PZT was suspended (no mechanical 

contact) 10 cm from the epoxy-fastened receiving PZT.  A white noise signal was generated with 

the suspended PZT and collected with the epoxy-fastened PZT.  No signal was recorded with the 
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sound card, suggesting that the electromagnetic shielding was sufficient on the PZTs, and that 

when the PZTs are fastened with epoxy to the quartz, they do not move unless driven by the 

excitation signal through mechanical contact.   (2) Where possible, support structures were made 

of wood to dampen sound. Wood is made up of a cellular network of pores that convert sound 

energy into heat by frictional and viscoelastic resistance.68  Because of the high internal friction 

created by the cellular pore network, wood has more sound dampening capacity than most 

structural materials (e.g., steel, aluminum, or glass).  Because the PZT and the sample support 

structures were made of wood, there was less sound traveling through the beams than if they had 

been made of metal.  Additional sound dampening was accomplished by coupling the quartz rod 

to the support structure through rubber grommets.  Finally, the support structure was fixed in 

place and did not change during the course of the experiment, so any sound traveling through it 

was the same for all sample and reference measurements.   (3) Spontaneous noise bursts (e.g., 

lightning) from the receiver-generated noise might be a problem if they appeared sporadically in 

some tablet scans and not others.   Such noises were eliminated by the use of frequency 

modulation and VHF frequencies.   (4) 280 tablets were scanned without an anomalous spectrum 

due to manual tablet loading.  A contoured sample holder helped to maintain reproducible 

sample positioning.36  

 

Limits of Detection.  The multidimensional population translation experiment30 described in the 

Materials and Methods section was used to estimate the theoretical limits of detection.  Using the 

populations with the smallest multidimensional separation (ibuprofen and aspirin), translation of 

one cluster toward the other indicated that tablets with a 0.08mm difference in thickness, a 

0.0046g difference in mass, and a 0.01658g/mL difference in density were no longer separable 
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by ARS.  This corresponds to a translation of one cluster 90% of the distance across hyperspace 

toward the other before the two begin to overlap (<3 SDs, i.e., p=0.0013).  Using the populations 

with the largest multidimensional separation (acetaminophen and vitamin C), translation of one 

cluster toward the other indicated that tablets with a 0.27mm difference in thickness, 0.0756g 

difference in mass, and 0.01157 g/mL difference in density are inseparable.  This corresponds to 

a translation of one cluster 93% of the distance across space toward the other before the two 

begin to overlap. The dynamic range for these properties appears to be about a factor of 10 from 

these experiments. 

 

ARS may be useful within a PAT paradigm of networked sensors throughout a manufacturing 

process.  The possibility of ‘integrating the sensing and processing’ (ISP)7,8 makes ARS a very 

attractive method for further investigation. An ISP-AR spectrometer now under construction 

employs a tailored excitation signal so the voltage at the detector becomes directly proportional 

to the desired analyte concentration or classification.  When ARS becomes a standard sensor on a 

pharmaceutical manufacturing line, speed and accuracy of identification and quantification will 

be paramount.  Collecting and processing full AR spectra for every sample can be too costly in 

terms of time, hardware, and computing power.   ISP can pre-select and weight excitation using 

only distinguishing frequencies, obviating the need for a full spectrum approach.  In this manner, 

the detector itself will provide the tablet identity signal without the need for post-collection 

chemometric interpretation.  An ISP ARS can be constructed from a CD or MP3 player, a 

simple, rugged device perfect for PAT.  The sensor could be easily reprogrammed to analyze 

new samples using CDs (or downloaded MP3s) with preprogrammed tracks consisting of 

calibration signals specifically written for different analytes and different properties.   
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Conclusion 

This research suggests that ARS is a viable PAT method for high-throughput tablet identification 

and characterization due to its speed, performance, low cost, durability, versatility, and freedom 

from interferences. The FM receiver used as an excitation source in this research outperformed 

the function generator, demonstrating that the most effective PAT sensor could be a very 

inexpensive instrument. 
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Chapter Two Figures 

 

 
 
 
 
Figure 2.1: ARS schematic illustrating the instrumentation.  The PZT on the left receives the 

excitation signal from the radio, while the PZT on the right receives the transmitted signal 

through the quartz rod. 
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Figure 2.2: Animation demonstrating the principle by which the ARS operates.  In the absence 

of a sample, excitation of the rod results in a standing wave and a consistent frequency spectrum.  

In the presence of a sample, a second sound path is introduced, passing through the sample and 

reflecting off the sample holder, and recombining with the original standing wave.  This results 

in an entirely new wave, the interference pattern from the combination of frequencies from the 

standing wave and the sample wave. 
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Figure 2.3: Illustrates the first three canonical correlation coefficients calculated from the 

principal component scores from the receiver noise source.  Ellipses are drawn three standard 

deviations from the center of the clusters.  (A) Ibuprofen, (B) aspirin, (C) acetaminophen, (D) 

vitamin B12, and (E) vitamin C.  
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Figure 2.4: Fourier transform spectra comparison of the received signals between the FG and 

radio.     

 

53 



 

Figure 2.5: The log and second derivatives were calculated from the Fourier transform radio 

data to more easily visualize the distinct differences between the tablet groups.
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Figure 2.6: Cross validation results demonstrating the ability of ARS to predict tablet thickness, 

mass, and density from the acoustic-resonance spectra of the tablets.   
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Chapter Two Tables 

Table 2.1: BEST multidimensional standard deviations (MSDs) between the tablet groups for 

the FM receiver (top) and the FG (bottom).  Intragroup tablet MSDs are shown across the 

diagonal. 

 
Radio MSDs Ibu APAP Asp Vit B12 Vit C 
Ibu 2.33 62.29 13.82 74.82 77.61 
APAP  1.78 50.08 77.34 105.22 
Asp   1.76 74.77 83.57 
Vit B12    1.95 36.94 
Vit C     1.76 
      
FG MSDs Ibu APAP Asp Vit B12 Vit C 
Ibu 2.88 62.32 24.10 29.24 31.77 
APAP  2.52 47.49 45.76 75.73 
Asp   1.80 16.65 39.26 
Vit B12    1.74 14.21 
Vit C     2.07 
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Chapter Three - Acoustic-resonance spectrometry as a process analytical technology for the 

quantification of active pharmaceutical ingredient in semi-solids 
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Introduction 

Colloidal oatmeal (CO) is used as an ingredient in some pharmaceutical lotions, cosmetics, and 

toiletries.  While listed as inert in some lotions but active in others, CO is one of many examples 

in cosmetics and other household products that fall into a gray area for the US FDA.  Between 

November 2002 and March 2004, there were over 20 FDA recalls on household cosmetic 

products; shampoos, sprays, hand soaps, toothpastes, and lotions.69 These recalls, due to 

mislabeling and active pharmaceutical ingredient (API) concentration errors, caused companies 

considerable unnecessary expense.  A rapid and accurate in-process assay, capable of testing and 

validating individual samples, would obviate the need for the disposal of entire lots of problem 

products.  The FDA process analytical technology (PAT) initiative calls for the development and 

implementation of manufacturing processes to guarantee a predefined quality of pharmaceutical 

materials as warranted by risk analysis.3  These processes include multivariate data acquisition 

and analysis tools, and in-process and endpoint monitoring tools.  The development of acoustic 

resonance spectrometry as an in-process and endpoint monitoring device is in harmony with the 

PAT initiative.   

 

Current assays for analyzing API in various topical lotions are based on HPLC with UV/VIS 

detection,70-71  FT-IR spectrometry,72 and NIR spectrometry.73 These conventional assays require 

both more sample preparation and more time for each scan than ARS.  Sometimes lotions do not 

exhibit an optical chromophore74 so they must be fixed with labeled isotopes.71 In addition, 

optical methods provide poor penetration through semi-solids in comparison to acoustic 

methods.     
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ARS is typically much more rapid than HPLC and NIR.  It is nondestructive and requires no 

sample preparation as the sampling waveguide can simply be pushed into the lotion.  To date, the 

AR spectrometer has successfully differentiated and quantified sample analytes in various forms; 

tablets,36 powders,38-40 and liquids.41-42,75 .It has been used to measure and monitor the 

progression of chemical reactions, such as the setting and hardening of concrete from cement 

paste to solid.76  Acoustic spectrometry has also been used to measure the volume fraction of 

colloids in a dispersion medium, as well as for the investigation of physical properties of 

colloidal dispersions, such as aggregation and particle size distribution.77-78  Typically, these 

experiments are carried out with sinusoidal excitation signals and the experimental observation 

of signal attenuation.  From a comparison of theoretical attenuation to experimental observation, 

the particle size distribution and aggregation phenomena are inferred.  In place of a sinusoidal 

excitation signal sweeping across the desired frequency range, this research makes use of 

broadband white noise and standing resonance waves.  To the author’s knowledge, this research 

presents the first application of a broadband white noise excitation signal to a resonant system 

for quantification of colloidal particles in a dispersion medium.   

 

It must be noted that a description of colloid aggregation and particle-particle interaction is 

beyond the scope of this research.  Colloidal oatmeal is a lyophilic colloid, and it is readily 

hydrated and dispersed evenly through a solution.  Therefore, the resonant acoustic signal 

received at the detector is taken to be approximate representation of the bulk of the sample, 

regardless of microscopic differences between individual colloids.  As with other acoustic 

studies, the individual colloid particles are considered to be spherical and uniform, thus each 

particle produces a uniform effect on the bulk physical properties of the surrounding medium.77    
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Figure 3.1 provides a simple schematic of the AR spectrometer for the following discussion.  

The AR spectrometer used in this research was built in the near-field configuration, where the 

wavelength of the excitation signal is much larger than the quartz rod or the sample that is 

applied to the rod.  An acoustic signal is applied to one of the piezoelectric transducers (PZTs) 

and received at the other.  The sample, which is in mechanical contact with the vertex of the 

quartz rod, constitutes a load on the resonant system.  With no sample in mechanical contact with 

the waveguide connecting the PZTs, little excitation signal is lost and the acoustic signal 

received at the detector is the sum of an ensemble of standing waves. The typical AR spectrum 

results from the pattern of constructive and destructive interference between the two sound paths; 

one that travels down the quartz waveguide and through the sample and back on the way to the 

collecting PZT, and the other that stays in the quartz rod and has no sample interaction. The 

excitation signal is a broadband white noise source as illustrated in Figure 3.2, where all 

frequencies between 0-22.05 KHz are excited simultaneously.  However, the wave collected at 

the detector is primarily composed of three large resonance structures as illustrated in Figure 3.3 

(2.35-2.7KHz, 9.6-11.2KHz, and 14.15-17.0KHz).  When a sample is placed in contact with the 

vertex of the waveguide, acoustic waves escape and propagate through the lotion/quartz interface 

and into the sample holder.  The added mass effect causes a shift in the resonant frequency of the 

system, while the frictional or viscous drag force causes a reduction in peak amplitude.  This 

pattern gives rise to the characteristic AR spectrum for any given analyte.  In some cases, a third 

transmitting transducer beneath the sample may increase the analytical signal,36 although it was 

not required in this research. 
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Because the propagation of an acoustic wave is based on longitudinal compressions and 

rarefactions of the medium through which the sound propagates, each analyte responds 

differently to the frequency and amplitude of the applied acoustic signal.  Acoustic spectra are 

the direct manifestation of the physical differences between samples such as density, viscosity, 

acoustic velocity, the degree to which samples and analytes compress and expand in response to 

an applied acoustic excitation, as well as depth of penetration, and the contact pressure between 

the resonator and the sample.79-81  These effects are seen in the acoustic spectra as a shift in the 

resonant frequency of the system, a reduction or an increase in the peak amplitude, or a mixture 

of both effects.  Chemical changes in samples affect the physical properties measured in acoustic 

spectra.  Figure 3.4 illustrates the shifts in resonance frequency and changes in peak height 

between acoustic spectra from four different analytes; water, air, metal, and lotion.  The forces 

acting on the standing acoustic wave come from the inertial effect as the sample is moved by the 

vibrating quartz rod, and from the dissipative effect due to the viscous drag force.  The quartz 

rod was chosen as the waveguide due to its high characteristic sound velocity and because quartz 

is an electrical insulator, which prevents electromagnetic standing waves in the waveguide.  The 

velocity keeps acoustic impedance to a minimum according to Zac = P/vA, where Z is acoustic 

impedance, P is sound pressure, v is sound velocity, and A is cross sectional area.57,66  

 

Chemometrics . This research compared two different calibration methods, net analyte signal 

(NAS) and principal component regression (PCR).  PCR has been described previously.82 For 

NAS calibration, a vector of instrumental responses  is the sum of two independent signals, the 

signal from all interferences , and the signal from the analyte of interest , which is 

orthogonal to the contribution from the interferences.

kr

=
kr ⊥

kr

22 This orthogonal portion is termed the net 

62 



analyte signal (NAS), and is the portion of the signal used for multivariate calibration.  A matrix 

R (J x I) without the analyte of interest must be available, where J is the number of wavelengths 

and I is the number of samples.  A projection matrix  can be calculated according to Equation 

3.1: 

⊥
kP

)( +
−−

⊥ −= kkk RRIP  3.1

where I is the identity matrix, and the ‘+’ superscript indicates the Moore-Penrose 

pseudoinverse.  Using one-point calibration with spectrum , the NAS vector can be 

calculated with Equation 3.2. 

calr ⊥
calr

calkcal rPr ⊥⊥ =  3.2

This vector is then normalized to length one with Equation 3.3: 

⊥
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The slope of the calibration line is calculated from Equation 3.4: 

cal

cal

c
s

⊥

=
r

 3.4

where s is the slope and ccal is the analyte concentration of the calibration spectrum.  The first 

step of NAS calibration includes using Equations 3.2-3.4 to find the NAS direction and 

determine the length of the NAS vector.  When the NAS direction and magnitude are known, the 

unknown spectrum  can be projected in the NAS direction with Equation 3.5 and its 

magnitude compared to the calibration magnitude. 

unr

NAS
k

T
un

NAS
uny rr=  3.5

Equation 3.6 can now be used to calculate , the unknown analyte concentration. unc
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The NAS approach allows for the calculation of figures of merit from multivariate data sets.  In 

severely overlapping spectra, it has historically been difficult to quantify selectivity, sensitivity, 

and signal-to-noise (S/N) because of the inability to distinguish between interferences and the 

analyte of interest.19-20 With the NAS, these quantities can be measured directly.  Selectivity is 

defined as the scalar degree of overlap, α, between the NAS vector and the calibration spectrum 

according to Equation 3.7: 

cal

cal

r

r⊥

=α  3.7

The selectivity is a measure from 0 to 1 indicating how unique the analyte of interest is 

compared to the interferences.  The sensitivity is a measure of the analyte variation in response 

to a change in concentration.  This quantity can be expressed as Equation 3.8: 

k
NAS

kk c/rs =  3.8

where ck is the concentration of the k-th analyte.  Sensitivity should be the same for each 

concentration and each NAS vector.21 The S/N ratio can be expressed as Equation 3.9: 

ε

r NAS
kkc

NS =/  3.9

where ε is the random instrumental error. 

 

ISP-ARS for PAT. Integrated sensing and processing (ISP) is a paradigm for instruments in 

which large physical fields of data are reduced to high-level information as the data are sensed, 

before the data are passed to a computer.83 In many cases, the signal transmitted from the 

detector to the computer is directly proportional to the analyte concentration, or is a classification 
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that represents the sample identity.  Using ISP, little or no post-collection data processing is 

required, making analyses significantly faster and perhaps even more accurate.  An imminent AR 

spectrometer, already under construction and validation, employs ISP by encoding a special 

excitation signal to resemble the spectral features required for the quantification of colloidal 

oatmeal in lotion, so the signal received at the detector is directly proportional to the analyte 

concentration without further processing.  ISP-ARS has great potential as a process analytical 

technology (PAT) for sensing in the pharmaceutical industry.  The excitation can be specifically 

tailored to meet the needs of demanding analytical challenges.  For example, if the need is to 

differentiate between 1% and 5% colloidal oatmeal creams, an ISP waveform created for this 

purpose could be easily downloaded from an online database in the form of an .MP3 file.  The 

hardware of the ISP-ARS comprises inexpensive COTS (commercial off-the-shelf) components, 

simplifying its manufacture and deployment. 

 

Materials and Methods 

Sample Preparation. Colloidal oatmeal samples were prepared using Gold Bond Sensitive 

Lotion (Lot #03518).  Lotion was weighed into an 800 mL beaker.  Five concentrations (2.0 %, 

2.5 %, 3.0 %, 4.0 %, 5.0 %) of CO were prepared by gravimetric addition of CO to the lotion 

samples for a total sample mass of 350g.  Samples were heated to 50oC on a hot plate while 

mixing with a paddle blade.  When lotions reached 50oC, the CO (Vendor Lot #22915) was 

added and the sample was mixed (Heidolph RZR 50, Frankfort, Germany) at a sufficient RPM to 

create a gentle vortex.  The heat was then turned off and samples were mixed until they cooled to 

35oC.  
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ARS Data Collection. Rubber grommets were positioned on the rod so that they firmly held it in 

place, but dampened the signal minimally.  Previous investigations with a similar ARS model 

made use of a third transducer beneath the vertex of the rod, which acted as an interferometer.54 

Our investigation indicated that the interference pattern inherent to the two sound paths and its 

effects on the resonance frequency and peak amplitudes was sufficient to negate the need for an 

additional transducer.  A white noise signal played through an ordinary MP3 player was used as 

the source of random noise across the range from 0-22.05 KHz.  The ARS instrument was 

designed to output a voltage signal to a computer sound card (Realtek AC97, Realtek 

Semiconductor Japan Corp., Yokohama, Kanagawa, Japan), operated with a graphic user 

interface in Matlab 7.0.1 (The Mathworks Company, Natick, MA, USA). Lotion samples were 

placed in a small plastic cup and the vertex of the quartz rod was plunged into the cup so the two 

were in mechanical contact for the duration of the scan.  The penetration depth of the rod into the 

lotion was kept constant at 5mm.  All data were collected for three seconds at a sample rate of 

44.1 KHz.  Data were transformed from the time domain into the frequency domain by an FFT, 

resulting in a signal-to-noise ratio of 110/1.  Because the data set dimensions are a product of the 

sample rate and duration of the collection, each spectrum collected with these instrument 

parameters was 132,300 data points long.  A twenty-point moving boxcar average was 

performed on the frequency domain data as a smoothing function.  In its current configuration, 

there are significant resonance peaks at 2.35-2.70 KHz, 9.6-11.2 KHz, and from 14.5-17.0 KHz.  

All data analysis was performed on these three frequency regions for the duration of the 

experiment. 
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NIR Data Collection. A layer of lotion approximately 1 mm thick was spread on a single-well 

depression microscope slide (Gold Seal Products, Portsmouth, NH, USA).  NIR scans were 

collected with a scanning monochromator NIR instrument described previously.84  Scans were 

collected from samples inside light-proof chamber in a darkened room to eliminate stray light 

interference.  Samples were scanned in random order to eliminate the effects of drift over time 

on the results.  All data were exported to Matlab 7.0.1 for all processing. 

 

Data Analysis. The objective of this experiment was to test ARS in lotion analysis, and compare 

the results with NIR spectrometry for the measurement of concentration change of API in lotion.  

NIR data were multiplicative scatter-corrected to eliminate baseline variations due to pathlength 

differences.85  One-point NAS calibration was compared with principal component regression 

(PCR)82 for the measurement of CO from ARS and NIR spectra.  Detection limits were estimated 

by a BEST multidimensional population translation of one cluster toward another.32 The clusters 

used in the translation were unprocessed AR FFT spectra and PC scores.  Other figures of merit 

such as selectivity, sensitivity, and signal to noise ratio were calculated using the net analyte 

signal (NAS).  All algorithms were written by the authors.   

 

Results and Discussion 

ARS vs. NIR. The results from the calibration models are summarized in Table 3.1.  NAS 

calibration outperformed PCR for both NIR and ARS.  NIR for the measurement of CO gave an 

r2 prediction accuracy of 0.971, and a standard error of performance (SEP) of 0.517 %CO.  ARS 

for the API resulted in an average r2 = 0.983, calculated by averaging the r2 from the three 

resonance peaks, and an SEP = 0.317 %CO.  Each NIR scan took almost 90 seconds to complete 
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(the long integration time was selected to get a S/N competitive with ARS), while each ARS 

scan required only a maximum of three seconds to achieve similar sample predictive ability.   

 

ARS Detection Limits. ARS spectra collected at n frequencies can be reduced to a single point in 

an n-dimensional hyperspace using the bootstrap error-adjusted single sample technique (BEST).  

The resulting points usually form complex Lissajous patterns (or curved portions thereof) in 

hyperspace as analyte concentrations change due to the nonlinear nature of acoustic 

interactions.62  BEST is a nonparametric cluster analysis algorithm based on the premise that 

spectra from similar samples tend to cluster in the same region of multidimensional 

hyperspace.30  In order to demonstrate clustering quantitatively, multidimensional standard 

deviations (MSDs) can be used to measure the separation between clusters of different 

samples.30,32,54  Using the BEST, intercluster MSDs greater than three indicate distinct cluster 

populations, while clusters less than three MSDs apart are inseparable with statistical 

significance.  A multidimensional translation operation can be performed with this algorithm to 

estimate the theoretical detection limits of the instrument.32 The translation operation is based on 

the principle that clusters from pure component spectra form distinct and separate populations, 

and a translation of one toward the other corresponds to a mixture of the two components when 

Beer’s Law holds.   

 

To estimate the theoretical detection limits for dynamic range calculations, intragroup spectra 

from the two lotion populations (P1 and P2) were used as m x n matrices.32 The columns of the 

matrices were averaged by Equations 3.10 and 3.11, giving two 1 x n vectors. 
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A difference spectrum X was calculated from 12 PP − .  One population was spatially translated 

toward the other, , where y (defined on the interval {0<y≤1}) started at zero, and 

increased in increments of 0.01 until and were inseparable by the BEST metric.  The 

detection limits were estimated by the BEST multidimensional translation experiment using raw 

AR spectra in the selected frequency regions and PC scores calculated from the selected 

frequency regions.  The limits were calculated using translation of two clusters, the translation 

from 2%CO to 2.5%CO, and the translation from 2%CO to 5%CO, all results are summarized in 

Table 3.2.  The best detection limits were seen using PC scores rather than raw AR spectra.  This 

is an expected result as PC scores are inherently the representation of the largest difference 

between spectral groups.  Therefore, separation has been optimized prior to estimation of the 

detection limits by PC scores.   

2PyXP +=A

1P AP

 

Speed of ARS Method. To assess the maximum speed at which the ARS is still capable of 

quantifying colloidal oatmeal, the FFT was calculated for progressively shorter blocks of time 

rather than calculating the FFT from the time domain data in its entirety.  For example, the FT 

was calculated for three seconds, two seconds, and one second.  NAS calibration and a PC 

regression were performed on the FFT.  The speed of method results are presented in Table 3.1.  

These results suggest that longer periods of data collection offer an advantage in quantification, 

though it is not necessary to collect more than 1s for a high predictive ability.  There is a trade-
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off between scan time and performance.  If the experimenter can spend the time to collect only 

1s of data, the process is much faster but the predictive ability of the instrument suffers slightly. 

 

Selectivity, S/N Ratio, and Sensitivity of ARS. Estimation of figures of merit is a straightforward 

task when the measured response is a scalar, such as in zeroth-order calibration methods.  The 

measured response in zeroth-order methods is simply the contribution of the analyte plus a 

constant instrumental background or constant interference.  However, in first-order data where 

the measured response is a vector of scalars, the total instrument response is not sufficient to 

determine the figures of merit.  The presence of multiple chemical and instrumental interferences 

varying simultaneously requires an extra step for multivariate calibration.  Therefore, the portion 

of the signal orthogonal to the interfering chemical species and background, termed the net 

analyte signal (NAS), must be determined prior to calculation of figures of merit.19-22 Because 

the ARS functions by the interference between the analyte acoustic signal and a standing wave, 

there is usually a substantial instrument response even in the absence of a sample.  For this 

reason, calculation of the NAS with acoustic data tends to behave much like an additional 

smoothing function.  The NAS and figures of merit were calculated according to Equations 3.7-

3.9.  Selectivity is a unitless scalar ratio, indicative of the degree of overlap between the two 

vectors, and was calculated to be 0.5963.  The signal-to-noise ratio (S/N) was 110/1.  The 

sensitivity of the ARS for colloidal oatmeal in lotion is 0.230, given in instrumental response per 

unit concentration change.  

 

Versatility and Flexibility. In addition to being rapid, effective, and inexpensive, the ARS has 

also proven to be an extremely versatile instrument.  The same instrument and chemometrics can 
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be applied to multiple analytes including tablets,36 powders,38-40 and liquids.41-42,75 Because the 

system is set up such that a standing wave forms in the quartz rod in the absence of a sample, the 

addition of an analyte to the vertex of the rod acts as a load on the resonance of the system and 

necessarily disrupts the pathlength of sound in the waveguide.  While the excitation frequencies 

passing through the rod and the analyte are the same, because of the large differences in their 

velocities, the wavelengths are usually longer in the quartz than in the sample.  As a result, 

regardless of the colloid size, shape and concentration, the waveforms from the waveguide and 

the sample will never be perfectly in-phase as they recombine at the vertex of the rod.  This 

phase change will result in a characteristic pattern of constructive and deconstructive 

interferences for every analyte because of differences in physical properties.   

 

Freedom from Interferences. The main sources of interferences for the ARS in this configuration 

are (1) acoustic waves propagating through the support structure of the instrument, (2) RF cross-

talk directly between PZTs, and (3) inconsistent analyte and quartz rod alignment due to a 

manual loading procedure.  Each of these points is addressed in the following discussion.  (1) 

The quartz rod was mounted on a frame of wood, which is made up of a cellular network of 

pores that convert sound energy into heat by frictional and viscoelastic resistance.68 The cellular 

pore network creates high internal friction, thus wood has more sound dampening capacity than 

most structural materials.  Because the mounting framework is constructed from wood, there is 

less sound traveling through the beams, and any sound that may get through is dampened due to 

the placement of the rubber grommets holding the quartz rod in place.  It should be noted that the 

wood construction for the purposes of this experiment was the low cost alternative to other 

potential materials.  For example, if this instrument were needed in a cGMP environment for 
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PAT, it could just as easily be constructed from other acoustic dampening materials such as 

concrete and rubber.  (2) To assess direct RF cross-talk, a PZT was suspended 10 cm from the 

epoxy-fastened receiving PZT.  A white noise signal was generated with the suspended PZT and 

collected with the epoxy-fastened PZT.  No signal was recorded with the sound card, suggesting 

that when the PZTs are fastened with epoxy to the quartz, they do not move unless driven by the 

excitation signal through mechanical contact.   (3) More than 90 lotion samples have been 

scanned without an anomalous spectrum due to manual loading.  Because the position of the 

quartz rod is regulated by a vertical translation stage, the depth of penetration into the lotion is 

consistent; therefore, spectra are reproducible, demonstrating the durability of the ARS. 

 

Conclusion 

This research demonstrates that acoustic resonance spectrometry is faster, less expensive, and 

outperforms near infrared spectrometry for the quantification colloidal oatmeal in lotion.  

Therefore, it has demonstrated its potential as a process analytical technology for the 

quantification of active pharmaceutical ingredient in semi-solids.
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Chapter Three Tables 

Table 3.1: Three seconds of data collection gave the highest r2 and the lowest RMSEP for each 

frequency range and both chemometric models.  

 

Method   NAS PCR 
Frequency 

(KHz) 
Analysis 
Time (s) r2 RMSEP 

(% CO) r2 RMSEP 
(% CO) 

1 0.892 1.532 0.926 0.306 
2 0.985 0.787 0.943 0.260 

2.35-2.70 

3 0.991 0.504 0.946 0.265 
1 0.962 0.491 0.855 0.427 
2 0.973 0.299 0.879 0.391 

9.60-11.20 

3 0.983 0.251 0.948 0.255 
1 0.968 0.398 0.813 0.511 
2 0.979 0.262 0.816 0.495 

ARS 

14.5-17.0 

3 0.991 0.180 0.855 0.488 
       

NIR 1100-2500nm 120 0.971 0.517 0.956 0.314 
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Table 3.2: Theoretical detection limits as estimated by the BEST population translation.  

Translations were performed with the two closest concentrations and the two most distant 

concentrations. 

 

 Raw AR Spectra  
(Detection Limit %CO) 

PC Scores (4 PCs) 
(Detection Limit %CO) 

Frequency 
(KHz) 2% → 2.5% 2% → 5.0% 2% → 2.5% 2% → 5.0% 

2.35-2.70 0.210 1.26 0.100 0.150 
9.0-11.20 0.175 1.23 0.050 0.210 
14.5-17.0 0.235 1.41 0.160 0.090 
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Chapter Three Figures 

 

Figure 3.1: A schematic diagram of the ARS instrument. 
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Figure 

3.2: Frequency domain representation of the white noise excitation signal source delivered from 

an MP3 player to the PZT.  All frequencies between 0-22.05KHz are excited simultaneously. 
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Figure 3.3: Three large resonance structures are prevalent for this design of the AR spectrometer 

despite excitation with a broadband white noise source.  This figure illustrates AR scans of the 

different colloidal oatmeal concentrations in lotions.
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Figure 3.4: A zoomed view of the three large resonance peak structures considered in this study.

78 



Copyright Statement 

 

Copyright© AAPS PharmSciTech 

Joseph Medendorp, Robert G. Buice, Jr., Robert. A. Lodder. AAPS PharmSciTech. 2006; 7(3): 

Article 59. 

 

79 



Section III: Near Infrared Spectrometry 

 

 

 

 

 

Chapter Four - Near-infrared spectrometry for the quantification of dermal absorption of 

econazole nitrate and 4-cyanophenol 

 

 

80 



Introduction 

Application. Methods to determine the bioequivalence of drugs from topical administration have 

been discussed formally by the FDA for many years.86 A vasoconstrictor assay measuring skin 

blanching has been used to determine the bioequivalence of topical steroids.87 This steroid 

blanching is the only topical bioequivalence test that has been agreed upon among the majority 

of the topical drug delivery scientists.  Punch biopsies of the dermis and epidermis have been 

done to determine skin drug concentrations in humans in vivo, but this is very invasive and 

leaves permanent scarring.  Sampling of just the stratum corneum using tape stripping has 

generated the most interest of all the current methods under investigation, however, this method 

has many variables and intricacies that result in inter- and intra- lab variation in the results.88 One 

problem noted with tape stripping is that chemical continues to diffuse through the skin sample 

in the time it takes to collect the tape strips.  In addition, tape stripping is not ideal for volatile 

chemicals as they tend to evaporate faster than the required analysis time.  As an alternative to 

processing the tape strips with solvent extraction and HPLC analysis, attenuated total 

reflectance-Fourier transform infrared spectrometry (ATR-FTIR) has been used to quantify 

chemicals on the tape with some degree of success.89-91 The tape stripping technique is not 

exactly non-invasive, as substantial skin irritation is also generated by complete removal of the 

stratum corneum. Microdialysis has also been explored for topical bioequivalence measurement, 

but this is also a relatively invasive and inflammation-inducing procedure.92 Non-invasive 

imaging techniques of the skin have become more popular over the last few years.93  

 

Currently in vitro human skin drug-diffusion studies are done to study topical drug products. In 

these experiments, tissue samples are often extracted whole or sectioned and extracted, and then 
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the solvent extract is analyzed by high pressure liquid chromatography (HPLC) or some other 

analytical method for drug content.  The skin-sample analysis time doubles the length of the 

experimental time, and doubles the cost of the experiment as well.   

 

There is a significant need to find a non-invasive and simple method to determine topical drug 

product bioequivalence.  There is also a substantial need to be able to do topical drug-product 

development research with an instrument that would cut development time and costs in half, if 

there was an easier way to analyze and image skin drug concentrations. 

 

The best solution, however, in terms of time and ease of application is an all-optical approach.  A 

rapid all-optical approach effectively eliminates the possibility of continued diffusion while 

scanning.  In addition, different volatilities of chemicals are less relevant because scans are 

collected instantaneously from all depths in the skin sample.  For these reasons, NIR 

spectrometry was chosen as the method of analysis.   

 

Photonic techniques can detect and measure chemically and medically significant optical 

parameters not accessible to other clinical imaging modalities.94-95 However, in contrast to X-

rays, for example, the use of optical methods to probe human tissue properties presents major 

problems because human tissue is decidedly scattering, which sets up uncertainty in the 

interpretation of transmission and scattering data. 

 

A number of types of experiments have been utilized in medical applications. One is the 

continuous-wave (CW) experiment employed in this research. In a CW experiment, a continuous 
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modulated beam (often a laser) injects photons into a tissue like skin and the intensity of 

reradiated light on the same surface is measured as a function of distance from the injection 

point. A second kind of experiment entails time gating, in which, after a pulse of photons is 

injected in the tissue, the reradiated photons are measured at a fixed distance from the injection 

point as a function of time. Models for these experiments normally presume that the tissue is 

semi-infinite and bounded by a planar surface. This is typically a fine assumption because 

photons at the energies used are able to penetrate only a few millimeters of the tissue. A third 

kind of experiment, not particularly useful in skin studies in vivo, is termed the transillumination 

experiment.  In transillumination, photons traverse a thin slab of tissue. Measurements of the 

transmitted light are made either with a steady input beam or as a function of time. 

 
Because tissue is greatly scattering, theory must be applied to decipher the measurements. The 

most rigorous formulation of the theory entails solving a transport equation (TE). Solving the 

transport equation involves intense computation and because scattering cross-sections can only 

be approximated, these calculations are not used as frequently as calculations based on photon 

diffusion theory or random walk theory.96-97 Unluckily, diffusion theory is intrinsically 

inaccurate in close proximity to interfaces, which exist in skin. A further impediment to use of 

optical diffusion theory is that it cannot imitate very short-time ballistic behavior, which can 

include important information in time-gated experiments, and which would also be required to 

achieve depth resolution in skin. 

 

Instrumentation. Econazole nitrate (EN) and 4-cyanophenol (4-CP) were chosen as the analytes 

for the following research.  4-CP is a model chemical with an NIR chromophore unique from 

skin.89  Both compounds exhibit strong NIR chromophores, thus it is a simple matter to analyze 
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their spectra.  Because NIR can have a tissue penetration depth of many millimeters, it has 

previously been used in studies for the noninvasive analysis of drugs in tissue.98 It has also been 

used to quantify the depth of photon penetration in tissues.99-100

 

A future instrument already under construction will replace the bulky full spectrum NIR with a 

small and portable hand-held device termed a solid-state spectral imager (SSSI).  It is composed 

of an aluminum block with three concentric rings of light-emitting diodes (LED).  Each ring has 

a different diameter and is centered on a single lead sulfide photodetector.  With different angles 

of incidence, each ring has a different angle of skin penetration.  To be collected at the 

photodetector, light from the ring farthest from the center must penetrate the skin more deeply 

than from the ring closest to the center.  Though only one signal is collected, the LEDs are 

frequency modulated such that the contribution of each individual LED can be deconvolved from 

the total signal.  In this manner, a spectral profile can be constructed at different depths in the 

tissue, allowing for the rapid determination of drug penetration.   

 

Theory. A three-dimensional version of the TE for the electric field E can be calculated using 

Maxwell’s equations. Assuming a constant charge density, Maxwell’s equations are: 
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where σ is the conductivity, ε is the dielectric permittivity, and µ is a parameter expressed in 

terms of impedance.97  If H is removed from these equations then E fulfills the three-dimensional 

TE 

E
t
E

t
E 2
2

2 1
∇=

∂
∂

+
∂
∂

µεε
σ  4.2

84 



NIR models for chemical composition based on scattering data are generally derived statistically 

based upon calibration data, and as such are incomplete without a description of the multivariate 

statistics needed to analyze the results.  In search for the most descriptive model, the present 

research explored the use of a number of different chemometric approaches including principal 

component regression (PCR),69 interval PCR (iPCR), and PCR-uninformative variable 

elimination (PCR-UVE).101-102  For each of these models, principal components were calculated 

by a singular value decomposition of matrix A according to Equation 4.3: 

USVA =  4.3

where A is the matrix of original spectra, U is the matrix of eigenvalues (scores), S is a diagonal 

matrix of singular values, and V is the matrix of eigenvectors (loadings). 

 

Shown in Equation 4.4, a regression of U indicates which of the components have the strongest 

correlation to a change in drug concentration y, where a is the y-intercept, b is a vector of 

regression coefficients, and c is the residual. 

cbUay ++=  4.4

Equation 4.5 demonstrates how a leave-one-out cross validation can be used to predict the 

concentration of topical drug present from the NIR spectra, where σ2 is the variance, fi(Ui) is the 

prediction of the model for the i-th pattern m in the training set, after it has been trained on the 

m-1 other patterns. 
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 In the case of a simple two-component system it is a simple matter to observe a linear change in 

the analyte concentration.  When only two system components are present, only one principal 

component is needed to describe the concentration change accurately.  The loading 
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corresponding to this principal component accurately reflects the contribution of each 

wavelength to the overall classification.  However, in complex systems, such as tissues, where 

many system components change simultaneously, multiple principal components are needed for 

the prediction model.   

 

Interval PCR performs the same analysis as above except on smaller subsets of the data set rather 

than the data set in its entirety.102 For example, when the experimenter specifies an interval (I) of 

200 wavelengths, the algorithm performs PCR followed by principal component selection and 

cross-validation on intervals of 200.  By using a moving boxcar, all wavelengths are paired with 

all other wavelengths inside of ±I.  For example, after the algorithm analyzes 1501-1700nm, the 

next iteration analyzes 1502-1701nm, and so on.  At the final wavelength, the first I wavelengths 

are added to the end for the final iterations.  In this manner, each wavelength is included in a new 

model I*2 times.  The goal of interval selection is the minimization of the standard error of 

performance in Equation 4.6, which indicates the interval with the highest correlation to the 

change in drug concentration: 

)min()max(
1

2/12

RR −

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

=
n
c

SEP  
4.6

where c is the residual, n is the number of spectra, and R is a concentration vector.   

 

From the description of iPCR, it is apparent that while one interval may give an acceptable 

predictive ability, it does not take into account the interaction among variables and peaks outside 

of the specified interval.  Uninformative variable elimination (PCR-UVE) compensates for this 

by randomly selecting combinations of I variables.102 Loading vectors are retained and summed 
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for each combination of variables so that every variable contains a weight from a number of 

different local models.  The final loading vector indicates the individual wavelengths with the 

highest correlation to the desired change in drug concentration.  The variables with the largest 

loading are used in the final calibration with the ultimate goal of minimizing the SEP. 

 

Materials and Methods 

Materials. 4-Cyanophenol (4-CP), Hanks’ balanced salts modified powder, sodium bicarbonate 

and propylene glycol were purchased from Sigma Chemical (St. Louis, MO).  Econazole nitrate 

(EN), 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES), gentamicin sulfate, 

trifluroacetic acid (TFA), triethylamine (TEA), potassium phosphate (monobasic, anhydrous), 

hydrochloric acid, polyethylene glycol 400, methanol and acetonitrile (ACN) were obtained from 

Fisher Scientific (Fair Lawn, NJ).  1-octane sulfonic acid sodium salt was purchased from Chrom 

Tech® (Apple Valley, MN).  Chemical structures of 4-CP and EN can be found in Appendix B. 

 

Donor solutions and creams.  Saturated donor solutions of EN were prepared in propylene glycol 

(20 mg/mL).  Saturated donor solutions of 4-CP were prepared in nanopure water (35 mg/mL).  

One percent econazole nitrate creams were used from four different manufacturers, Clay Park, 

Johnson and Johnson (Spectazole®), Fougera, and Taro.  Propylene glycol, nanopure water, and a 

placebo cream were also investigated in order to collect skin spectra from vehicle interference. 

 

In vitro diffusion studies. Teflon MatTek Permeation Devices (MPD, MatTek Corporation, 

Ashland, MA, USA) were used for the in vitro skin diffusion studies.  The MPD is essentially a 

modified form of a Franz diffusion cell that is meant to be used for in vitro tissue culture 
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permeation studies.  It is a practical diffusion cell choice because it requires a smaller amount of 

valuable skin and it is a portable and unbreakable Teflon design, as opposed to the larger glass 

Franz cells, which must be used on a large water-circulating/stirring bench.  Spacers are used in 

the wells of the diffusion cells to hold the skin in place.  Three MPDs were used for each 

treatment (donor solution/cream) and exposure time (three per formulation treatment), for a total 

of nine MPDs per formulation treatment.  The purpose of the different exposure times was to 

create different skin concentrations for measurement and correlation.  The receiver solution 

(simulated “blood flow” compartment under the skin in the MPD) was composed of 60% Hanks’ 

pH 7.4 buffer and 40% polyethylene glycol 400 (PEG).  The PEG is added to the buffer in order 

to help solubilize hydrophobic drugs without damaging the skin. 

 

The diffusion studies were conducted with dermatomed (split-thickness, ~250µm) hairless 

guinea pig skin.  Skin samples were stored at -20oC until use.  Animal use was approved by the 

University of Kentucky Institutional Animal Care and Use Committee.  Hairless guinea pig skin 

was used for these experiments instead of human skin, in order to develop and validate the 

methodology in a tissue that is more readily available and economical than human tissue.  

Hairless guinea pigs are the best small animal model skin match to human skin for diffusion 

studies.103 Skin samples were secured into the MPD and placed in a tightly sealed glass chamber 

with 10 mL of the receiver solution so that the level of receiver solution remained constant and 

in contact with the dermis side of the skin.  Two-hundred µl of donor solution or 400 µl of cream 

were added directly onto the stratum corneum from the upper opening of the cell.  To prevent the 

evaporation of the donor solution, cells were capped with vial caps (Waters, Milford, MA, USA). 

Micro-stirring bars were centered below each diffusion cell and set to stir at a constant rate 

88 



throughout the experiment.  At the end of the diffusion experiment, skin samples were removed 

from the diffusion cells and rinsed with nanopure water 3 times for 10 seconds each.  In the case 

of the creams, an alcohol wipe was used to remove excess surface formulation gently.  Samples 

were placed on a paper towel and blotted, then two tape strips (Scotch Book Tape 845) were 

done to remove surface drug.  The skin was rinsed once more with nanopure water, blotted dry 

with paper towel, and the treated skin area was excised from the center of the skin sample. NIR 

analysis followed immediately. 

  

Skin extraction and HPLC analysis.  Immediately following NIR analysis, the tissue was 

weighed. The sample was then minced with a scalpel and placed in a vial with 5 mL of 

acetonitrile.  This vial was then sonicated for 10 minutes and shaken for 15 hours at 32°C to 

extract the drug from the tissue into the acetonitrile.  The tissue extract was then analyzed for 

drug concentration by HPLC analysis, and expressed as µg of drug per wet g of tissue weight.   

 

The high-pressure liquid chromatography (HPLC) assay was done with a Perkin-Elmer Series 

200 Autosampler, Pump, Column Oven, and a 785A UV/VIS Detector with Turbochrom 

Professional Version 4.1 Software.  A Brownlee® C18 RP Spheri-5 µm column (220 x 4.6 mm) 

with a C18 RP 7 µm guard column (15 x 3.2 mm) was used with the UV/VIS Detector set at a 

wavelength of 215 nm for econazole nitrate and 246 nm for 4-cyanophenol.  The mobile phase 

used for econazole nitrate was 70:30 ACN:25mM potassium phosphate buffer with 0.65 g/L 1-

octane sulfonic acid sodium salt.  The mobile phase used for 4-cyanophenol was 50:50 

ACN:0.1% TFA adjusted with TEA to a pH of 3.0.  The flow rate of the mobile phase was at 1.5 

mL/min for econazole nitrate and 1.0 mL/min for 4-cyanophenol with 100 µL and 30 µL 
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injections of the sample, respectively.  Standards were analyzed with each set of diffusion 

samples and exhibited excellent linearity over the concentration range employed.  The retention 

times for econazole nitrate and 4-cyanophenol were 5.94 ± 0.05 min and 3.33 ± 0.04 min, 

respectively.  The sensitivity of each assay was 25 ng/mL.  

 

NIR Analysis 

Drug powders. Pure powders were scanned first to ensure that econazole nitrate (EN) and 4-

cyanophenol (4-CP) had distinct near infrared (NIR) chromophores.  A uniform layer of pure 

drug approximately 1mm thick was loaded on a one-well depression microscope slide (Gold Seal 

Products, Portsmouth, NH).  NIR spectra from 1100-2500nm were collected in steps of two nm 

(1100, 1102, 1104…) with a NIR spectrometer (Technicon InfraAlyzer 500, Tarrytown, NY) 

interfaced to a computer (OptiPlex GXM 5166, Dell, Round Rock, TX, USA) running SESAME 

3.1 (Bran+Luebbe, Norderstedt, Germany).  Scans were collected inside the instrument drawer.  

To maximize light scatter, microscope slides and samples were placed on top of a conical 

reflecting cup, designed such that when a sample is placed along the axis of radial symmetry of 

the cone, specular reflection at the detector is minimized while diffuse reflectance is 

maximized.104 All data were exported to Matlab 7.0.1 (The Mathworks Company, Natick, MA) 

for processing and analysis.  Samples were each scanned three times, rotating them 120 degrees 

between each scan.   

 

Drugs in Solution. To demonstrate how effectively NIR could predict drug concentrations from 

NIR spectra of drugs in solution, spectra were collected from EN and 4-CP in 75% acetonitrile 

(ACN) and 25% buffer:PEG receiver solution.  The drug that diffuses through the skin can be 
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analyzed in the receiver solution diluted with 75% ACN for HPLC analysis, so the same solution 

composition was compared by NIR.   Samples were placed inside the instrument drawer and 

scanned on top of a 135-degree conical reflecting cup to maximize light collection by the 

integrating sphere and detector.  Each sample was scanned three times, and rotated 120 degrees 

between each subsequent scan.  For data analysis, data were divided into their respective groups.   

 

Saturated Solutions and Creams on Skin. Exposure times for EN solutions were 2 min, 2 hrs, and 

15 hrs, EN creams were 2 hrs, 8.5 hrs, and 15 hrs, and exposure times for 4-CP were 2 min, 10 

min, and 1 hr.  Following exposure to drug treatment, skin samples were removed from the 

MPD, the drug-exposed skin section (approximately 1.0 cm in diameter) was excised and the 

surface formulation was carefully removed, loaded on a one-well depression slide, and covered 

with a cover slip (Gold Seal Products, Portsmouth, NH).  NIR spectra were collected from 

covered skin samples.  Samples were placed inside of the instrument drawer and on top of the 

conical reflecting cup and scanned three times each, rotating them 120 degrees between each 

scan.  For the data analysis, data were divided into their four respective groups; EN epidermis 

(outside/donor surface facing NIR probe), EN dermis (inside/receiver surface facing NIR probe), 

CP epidermis, and CP dermis.   

 

Data Analysis Method. To eliminate baseline variation due to different tissue thicknesses and 

sample preparation techniques, all data were multiplicative scatter-corrected.85 Data were 

presmoothed with a cubic spline operation.  The following chemometric processing was applied 

to each of the data sets individually.  From the scatter-corrected NIR spectra, principal 

components were calculated.9 A multiple least-squares regression (MLR) identified the PCs that 
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correlated most highly with the reported drug concentrations from the HPLC analysis.  These 

components were used in a leave-one-out cross-validation to determine how effectively the NIR 

method predicted drug concentrations from the spectra.  To find the most effective data analysis 

method, PCR was compared with iPCR and PCR-UVE.   

 

Testing for interferences. To prove the strong correlations between HPLC and NIR were not 

artifacts, and were in fact coming from 4-CP and EN, the contributions of solvents, drug 

vehicles, and placebo cream were evaluated and appropriate corrections were made.  For 

example, normalized ACN and 25% buffer:PEG control spectra were subtracted from the 4-CP 

and EN solution spectra and statistical analysis was repeated.  The solvent corrected spectra still 

demonstrated a high correlation to known concentrations, suggesting the effects were entirely 

due to the analyte of interest.  In addition, the absence of the solvent peaks allowed for the 

identification of the most significant regions in the NIR spectrum for the quantification of each 

drug.  Rather than using a full-spectrum approach where the likelihood of chance correlations is 

higher, these specific wavelength regions were used for the quantification of each drug for 

saturated solution and cream experiments.  In its identified wavelength region, the EN cream 

demonstrated a high correlation to HPLC concentrations, while at the same region, there was no 

predictive ability for the placebo cream, proving this was the correct region.   

 

Results 

Interval PCR with 200 wavelengths resulted in the best standard errors of performance.  Leardi 

et. al. suggest the inclusion of more variables increases the likelihood of overfitting and chance 

correlations.101  For 4-CP, the region spanning 1470-1870nm demonstrated the highest 
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correlation to HPLC concentrations, and for EN the best region spanned 1936-2336nm.  

Therefore, these regions were selected for all quantification experiments.  Figures 4.1-4.4 

illustrate calibration curves for 4-CP and EN in solution and in tissue.  Near-infrared 

spectrometry successfully predicted the concentration of both types of analytes in solution, as 

shown in Figure 4.1. The left side of Figure 4.1 illustrates that NIR analysis of 4-CP in solution 

gives a relative standard error of estimation (SEE) over the concentration range of 4.36%, 

relative standard error of performance (SEP) over the concentration range of 5.74%, and 

r2=0.978.  The right side of Figure 4.1 illustrates that NIR analysis of EN in ACN/PEG gives a 

SEE=4.73%, SEP=6.38%, and r2=0.974.   

 

Figure 4.2 (left) illustrates that the epidermal NIR calibration line from skin samples treated with 

an applied dose of saturated EN in propylene glycol gave a SEE=4.95%, SEP=6.28%, and 

r2=0.965.  Figure 4.2 (right) illustrates that the dermal NIR calibration line gave a SEE=4.77%, 

SEP=6.73%, and r2=0.959.  These calibration lines were based on the leave-one-out cross-

validation using the HPLC concentrations for the regression. 

 

Skin samples treated with an applied dose of saturated 4-CP in water and scanned from the 

epidermal side gave a SEE=7.31%, SEP=9.17%, and r2=.0952, shown in Figure 4.3 (left).  The 

same samples scanned from the dermal side gave an SEE=5.51%, SEP=6.84%, and r2=0.973, 

shown in Figure 4.3 (right).   

 

The most important results obtained are in Figure 4.1 and Tables 4-1 and 4-2, showing the 

excellent correlation of the 1% econazole nitrate cream-treated skin data (analyzed by NIR) with 
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the reference HPLC assay.  Skin samples treated with an applied dose of 0.4 mL Clay Park (1% 

EN) scanned from the epidermis gave a SEE=4.16%, SEP=5.39%, r2=0.975, shown in Figure 4.4 

(left).  The same samples scanned from the dermis gave a SEE=4.17%, SEP=5.05%, r2=0.978, 

shown in Figure 4.4 (right).  An expanded list of Clay Park results are given in Table 4.1 and 

concise results for the other three lotions are given in Table 4.2.  It is this proof of concept data 

that leads us to believe that it will be possible to analyze many other topical drug products using 

an NIR SSSI.  Additionally, we are not limited by NIR, because UV, visible, and NIR LEDs plug 

into the SSSI and are easily changed. 

 

Discussion 

Great Flexibility and Durability. This experiment applied NIR spectroscopic analysis in four 

distinct applications; drug powders, drug in solution, and tissue concentrations of drug after 

exposure to solutions and creams.  The relative standard errors of performance and estimation, 

and the strong correlation of NIR concentration prediction to the HPLC results suggest that NIR 

spectrometry is a flexible technique for analysis of tissue concentrations of drugs and other 

chemicals after topical exposure.  In total, 270 NIR spectra were collected from skin samples.  

Only two spectra were discarded because of anomalous scans (short noise spikes from 

instrument preamplifier), suggesting that NIR is a very durable instrument. 

 

NIR is also a nondestructive and rapid method of analysis, taking less than two minutes to 

complete a scan.  No special sample preparation is required. In this research, samples were 

simply placed on a microscope slide and scanned.  NIR also has the capability of being a 

noninvasive method of analysis.  Using a fiber-optic probe it is possible to scan skin tissue in 
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vivo in whole animal or clinical studies.  In this case, skin samples were scanned inside the 

instrument drawer, thus external light and room noise were not a factor.  In the drawer 

configuration, NIR spectra are essentially free from external noise and interference.  Freedom 

from interference can be measured.  An NIR "contaminant" spectrum (e.g. EN in the presence of 

trace amounts of 4-CP) can be mathematically translated in hyperspace toward one of the drugs 

until the two are chemically indistinguishable by the BEST metric.32 Spectra from similar 

samples tend to cluster in the same region of hyperspace, thus pure component spectra cluster in 

distinct regions.  The space between the two cluster centers is composed of theoretical mixtures 

of the two components.  The distance that one cluster is translated toward the other before they 

are spatially indistinguishable corresponds to the theoretical NIR detection limit.  When applied 

to EN and 4-CP, this operation indicated that both clusters were mathematically distinguishable 

until the mixture consisted of 98.0% contaminant. 

 

The success of this phase of the experiments suggests the utility of a new portable NIR sensor for 

the rapid and accurate in vivo measurement of dermal absorption and topical bioequivalence.106  

The concentric circle design of a new NIR SSSI allows the instrument to focus on all tissue 

depths simultaneously.  When a scan is collected from the epidermal side, the signal detected 

from the innermost circle reflects tissue scattering events only from the surface.  However, the 

signal detected from the middle circle reflects tissue scattering events from both the surface and 

a moderate number of skin layers.  Likewise, the signal detected from the outermost circle 

reflects tissue scattering events from all depths simultaneously.  With this information in hand, 

the inner and middle circles can be used as reference channels, and their drug spectra can be 

subtracted to yield pure interference-free spectra at lower depths.  Removal of formulation prior 
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to scanning tends to be highly variable; however, the SSSI will make it possible to measure drug 

penetration at lower tissue depths without removing formulation from the surface. 

 

Conclusion 

As the use of topical dosage forms becomes more common, the need has arisen for an analytical 

method capable of noninvasively assessing dermal absorption and topical bioequivalence.  This 

research demonstrates that for the rapid and accurate measurement of topical bioequivalence of 

econazole nitrate formulations, NIR spectrometry is an analytical method worth further 

exploration.  A portable NIR instrument is currently under construction that provides for depth 

profiling at a number of discrete NIR wavelengths based on a CW experiment format using 

spatial feature encoding and integrated computational imaging.107 With an array of light-emitting 

diodes, and the use of frequency modulation, all wavelengths are collected simultaneously.  The 

instrument is designed so a NIR spectrum is collected at various depths in the skin sample, so 

that the experimenter can locate a spectral signature at different depths in the sample.  With this 

design, the entire analysis takes merely 15 seconds, eliminating the problem of thermal drift and 

chemical evaporation.   
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Chapter Four Tables 

Table 4.1: This table presents the skin concentrations from a 0.4 mL applied dose of 1% Clay 

Park cream at three different exposure times as measured by the HPLC and NIR, and the strength 

of correlation between the two analytical instruments.  Each tissue was scanned three times in the 

NIR prior to HPLC analysis. 

 

Exposure 
Time 

Tissue 
Number 

HPLC 
(µg/g) 

NIR 
(µg/g) 

NIR Std 
Error 

HPLC NIR 
Correlation 

2 hr Tissue #1 216 249  0.867 
  216 191 17.3 0.886 
  216 207  0.956 

2 hr Tissue #2 196 194  0.992 
  196 192 1.64 0.979 
  196 189  0.963 

2 hr Tissue #3 394 413  0.955 
  394 416 7.18 0.946 
  394 383  0.972 

8.5 hr Tissue #4 116 149  0.780 
  116 136 10.5 0.854 
  116 113  0.973 

8.5 hr Tissue #5 235 223  0.948 
  235 228 10.5 0.970 
  235 202  0.862 

8.5 hr Tissue #6 489 494  0.991 
  489 501 18.1 0.975 
  489 444  0.907 

15 hr Tissue #7 408 394  0.966 
  408 414 5.81 0.985 
  408 404  0.989 

15 hr Tissue #8 212 227  0.936 
  212 207 14.2 0.978 
  212 178  0.838 

15 hr Tissue #9 108 143  0.755 
  108 101 15.6 0.931 
  108 93  0.863 

 

97 



Table 4.2: This table illustrates the strength of correlation between the HPLC and NIR for the 

four different brands of econazole nitrate lotions tested.  The statistics (r2, standard error of 

estimation (SEE), and standard error of performance (SEP)) come from a leave-one-out cross 

validation.   

 

Lotion 
Brand Spectazole® Clay Park 

 Epiderm. Dermis Epiderm. Dermis 
r2 0.957 0.931 0.975 0.978 

SEE 5.46 6.53 4.16 4.17 
SEP 6.43 8.17 5.39 5.05 

 

Lotion 
Brand Taro Fougera 

 Epiderm. Dermis Epiderm. Dermis 
r2 0.936 0.961 0.934 0.960 

SEE 7.42 5.38 7.36 5.78 
SEP 8.94 6.95 8.97 6.96 
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Chapter Four Figures 

 

Figure 4.1: (Left) Calibration line for 4-cyanophenol (4-CP) in solution, relative standard error 

of estimation (SEE) over the concentration range is 4.36%, relative standard error of 

performance (SEP) over the concentration range is 5.74%, r2=0.978. (Right) Calibration line for 

EN in solution, SEE=4.73%, SEP=6.38%, r2=0.974. 
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Figure 4.2: NIR calibration line from skin samples treated with an applied dose of saturated EN 

in propylene glycol, (left) epidermis calibration, SEE=4.95%, SEP=6.28%, r2=0.965, (right) 

dermis calibration, SEE=4.77%, SEP=6.73%, r2=0.959.  The calibration line is based on the 

leave-one-out cross-validation using the HPLC concentrations for the regression.  The diagonal 

line is the mean of the HPLC results, and the error bars are the means and the standard errors of 

the NIR predictions.
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Figure 4.3: NIR calibration line from skin samples treated with an applied dose of saturated 4-

CP in water, (left) epidermis calibration, SEE=7.31%, SEP=9.17%, r2=0.917, (right) dermis 

calibration, SEE=5.51%, SEP=6.84%, r2=0.973.  The diagonal line is the mean of the HPLC 

results, and the error bars are the means and the standard errors of the NIR predictions. 
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Figure 4.4: NIR calibration line from skin samples treated with an applied dose of 0.4 mL Clay 

Park (1% EN), (left) epidermis calibration, SEE=4.16%, SEP=5.39%, r2=0.975, (right) dermis 

calibration, SEE=4.17%, SEP=5.05%, r2=0.978.  The diagonal line is the mean of the HPLC 

results, and the error bars are the means and the standard errors of the NIR predictions. 
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Chapter Five - Near infrared spectrometry for the quantification of human dermal absorption of 

econazole nitrate and estradiol 
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Introduction 

The drugs used in this study cover two different broad classes of biopharmaceutical goals; a 

topical drug product category requiring development of a rapid and noninvasive 

bioavailability/bioequivalence test, and a popular transdermal drug product category requiring 

development of a rapid and noninvasive test for examining skin drug concentrations after 

changes in formulation strategy.  Whereas it is obvious that topical drug products for local skin 

treatment need to have a method for biosampling the tissue after product application, it is not as 

obvious that measuring skin drug concentrations after transdermal treatments are relevant for 

optimization of drug partitioning and investigation of skin depot effects.  Transdermal studies 

also require standard systemic plasma sampling for complete bioavailability/bioequivalence 

determination, but if drug concentrations do not exist in the skin of human subjects after 

application, then there is no need to continue with the time and expense of systemic sampling.  

The two drugs investigated in this study were econazole nitrate (EN) and estradiol (EST).  EN is 

an antifungal agent that is indicated for the  treatment of infections caused by susceptible 

dermatophyte and candida species, including tinea pedis, tinea cruris, tinea corporis, tinea 

versicolor and cutaneous candidiasis. A 1% EN topical cream prescription drug product is 

commercially available from multiple generic manufacturers and Johnson and Johnson 

(Spectazole® brand name). EST is typically prescribed for hormone replacement therapy in post-

menopausal women.  In addition to the multiple oral, vaginal, and injectable EST formulations 

on the market, many brands of transdermal delivery dosage forms are also available. Gels, 

emulsions, and patches comprise the popular options for non-oral hormone replacement, 

including  Estrogel®, Estrasorb®, Climara-Pro®, Combipatch®, Esclim®, Estraderm®, 

Menostar™, Vivelle®, Vivelle-Dot® and others  
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Current methods for measuring dermal absorption of drugs such as EN and EST include tape 

stripping,88 punch biopsies, and microdialysis.92  Each of these methods is invasive, causing skin 

irritation or permanent scarring for the patient or healthy human volunteer. Additionally, 

quantification of the drugs sampled during these procedures requires a very time-consuming 

tissue/fluid extraction step and chromatography-based assay.  To illustrate why this is so 

problematic, consider briefly the phases of the drug development cycle of a topical 

pharmaceutical product.  In preclinical testing, the initial research is conducted and a formulation 

is developed, followed by phase I, II, and III clinical trials.  At each step of the development 

process, topical bioavailability/bioequivalence must be measured and guaranteed to fall within 

required therapeutic limits.  Preclinical testing alone includes both in vivo animal studies and in 

vitro tissue extraction studies, requiring perhaps thousands of tissue samples.  Phase I, II, and III 

clinical trials require 10-80, 100-300, and 1000-3000 volunteer test subjects, respectively.108 

Before one even takes into account potential studies needed for manufacturing process changes, 

formulation changes, or generic product development, this process requires a very high number 

of tissue samples for the development of a single drug product.  With inefficient and invasive 

methods of analysis as the industry standard, an all-optical alternative for measuring dermal 

absorption is comparatively attractive.  An all-optical bioanalytical method is ideally suited as a 

high-throughput method of analysis for such a demanding drug development process.   

 

As an alternative to processing the tape strips from dermatopharmacokinetic studies with solvent 

extraction and HPLC analysis, attenuated total reflectance-Fourier transform infrared 

spectrometry (ATR-FTIR) has been used to quantify chemicals on the tape strips.89-91  While 

ATR-FTIR is an improvement over tissue extraction and HPLC, it still requires tape stripping.  
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Because tape stripping is an inefficient method of biosample collection, drug has been 

demonstrated to continue diffusing faster than the tape strips can be collected.91 This inaccuracy 

and inconvenience of sample collection demonstrates that there is clearly a place for an all-

optical approach for measuring dermal absorption. In our previous study,82 we have 

demonstrated the utility of NIR spectrometry for the in vitro quantification of EN and 4-

cyanophenol in hairless guinea pig skin. The purpose of the current study was to investigate the 

use of NIR spectrometry for the in vitro quantification of EN and EST in human skin. 

 

Theory and Instrumentation.  NIR spectrometry can have a tissue penetration depth of many 

micrometers, millimeters or centimeters depending upon wavelength; making it an analytical 

method of choice for this research.98,109 Beer’s Law states that NIR spectra are the result of a 

linear combination of the pure component spectra that comprise the sample; therefore, linear 

multivariate statistics can be used to quantify the analyte of interest even as all other system 

components change.110  A vector of instrumental responses  can be represented as the sum of 

two independent signals, the signal from all interferences , and the signal from the analyte of 

interest , which is orthogonal to the contribution from the interferences.

kr

=
kr

⊥
kr 22  This orthogonal 

portion is termed the net analyte signal (NAS), and is the portion of the signal used for 

multivariate calibration.  Figure 5.1 illustrates the concept of the NAS.  For NAS calibration, 

only the presence of interferences and their specific spectra must be known a priori, not their 

specific concentrations.  A matrix R (J x I) without the analyte of interest must be available, 

where J is the number of wavelengths and I is the number of samples.  For the solution exposure 

experiments, the matrix R is composed of drug vehicle and a blank tissue spectrum, and for the 
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cream experiments the matrix R is composed of placebo cream and a blank tissue spectrum.  A 

projection matrix  can be calculated according to Equation 5.1: ⊥
kP

)( +
−−

⊥ −= kkk RRIP  5.1

where I is the identity matrix, and the ‘+’ superscript indicates the Moore-Penrose 

pseudoinverse.  Using one-point calibration with spectrum , the NAS vector can be 

calculated with Equation 5.2. 

calr ⊥
calr

calkcal rPr ⊥⊥ =  5.2

This vector is then normalized to length one with Equation 5.3: 

⊥
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The slope of the calibration line can be calculated from Equation 5.4: 

cal

cal

c
s

⊥

=
r

 5.4

where s is the slope and ccal is the analyte concentration of the calibration spectrum.  Illustrated in 

Figure 5.2a, the first step of NAS calibration includes using Equations 5.2-5.4 to find the NAS 

direction and determine the length of the NAS vector.  As illustrated in Figure 5.2b, when the 

NAS direction and magnitude are known, the unknown spectrum  can be projected in the NAS 

direction with Equation 5.5 and its magnitude compared to the calibration magnitude. 

unr

NAS
k

T
un

NAS
uny rr=  5.5

The ultimate goal of the multivariate calibration is the calculation of the unknown analyte 

concentration  which can now be derived with Equation 5.6. unc
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The NAS approach allows for the calculation of figures of merit from multivariate data sets.  In 

severely overlapping spectra, it has historically been difficult to quantify selectivity, sensitivity, 

and signal-to-noise (S/N) because of the inability to distinguish between interferences and the 

analyte of interest.19-20 With the NAS, these quantities can be measured directly.  Selectivity is 

defined as the scalar degree of overlap, α, between the NAS vector and the calibration spectrum 

according to Equation 5.7: 

cal

cal

r

r ⊥

=α  5.7

The selectivity is a measure from 0 to 1 indicating how unique the analyte of interest is 

compared to the interferences.  The sensitivity is a measure of the analyte variation in response 

to a change in concentration.  This quantity can be expressed as Equation 5.8: 

k
NAS

kk c/rs =  5.8

where ck is the concentration of the k-th analyte.  Sensitivity should be the same for each 

concentration and each NAS vector.21 The S/N ratio can be expressed as Equation 5.9: 

ε

r NAS
kkc

NS =/  5.10

where ε is the random instrumental error. 

 

Materials and Methods 

Materials. Estradiol (EST), Hanks’ balanced salt powder, sodium bicarbonate, ethanol and 

propylene glycol were purchased from Sigma Chemical (St. Louis, MO).  Econazole nitrate 

(EN), 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES), gentamicin sulfate, 
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trifluroacetic acid (TFA), triethylamine (TEA), potassium phosphate (monobasic and dibasic), 

sodium hydroxide, polyethylene glycol 400, methanol and acetonitrile (ACN) were obtained 

from Fisher Scientific (Fair Lawn, NJ).  The chemicals were used to make the buffers, donor and 

receiver solutions for the skin diffusion studies, and for the HPLC mobile phases as described in 

the respective section below.  Chemical structures for estradiol and econazole nitrate can be 

found in Appendix B. 

 

Human skin. The diffusion studies were conducted with human skin. Human skin from 

abdominoplasty surgery was obtained from the National Cancer Institute’s Cooperative Human 

Tissue Network (CHTN). The samples were dermatomed immediately upon arrival to a 

thickness of approximately 200 µm and frozen at – 20oC. On the day of the experiment, the skin 

was thawed and used for the studies. Skins from three different individuals were used for three 

different treatments (EST solution, EN solution and EN cream studies).  

 

Donor solutions and creams. Saturated donor solutions of EN were prepared in propylene glycol 

(20 mg/mL).  Donor solutions of EST (0.25%) were prepared in ethanol, a concentration relevant 

to current topical formulations for transdermal delivery. One percent EN cream and a 

corresponding placebo cream were used. Propylene glycol and ethanol were also investigated in 

order to collect skin spectra from drug vehicle interferences. 

 

In vitro diffusion studies. Teflon MatTek Permeation Devices (MPD, MatTek Corporation, 

Ashland, MA, USA) were used for the in vitro skin diffusion studies with EN and EST solutions.  

The MPD is essentially a modified form of the Franz diffusion cell that is designed for in vitro 
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tissue culture permeation studies.  The MPD was the diffusion cell of choice because it requires a 

smaller amount of valuable skin, and is a portable and unbreakable Teflon design in contrast to 

the larger glass Franz cells, which must be used on a large water-circulating/stirring bench.  

Spacers were used in the wells of the diffusion cells to hold the skin in place.  Three MPDs were 

used for each treatment (donor solution) and exposure time (three per donor solution treatment).  

The receiver solution (simulated “blood flow” compartment under the skin in the MPD) was 

composed of 60% Hanks’ pH 7.4 buffer and 40% polyethylene glycol 400 (PEG). The PEG was 

added to the buffer in order to help solubilize hydrophobic drugs without damaging the skin. 

 

Skin samples were secured into the MPD and placed in a tightly sealed glass chamber with 10 

mL of the receiver solution so that the level of receiver solution remained constant and in contact 

with the dermis side of the skin.  Two-hundred µL of donor solution were added directly onto the 

stratum corneum from the upper opening of the cell.  To prevent the evaporation of the donor 

solution, cells were capped with vial caps (Waters, Milford, MA, USA). Micro-stirring bars were 

centered below each diffusion cell and set to stir at a constant rate throughout the experiment.   

 

EN cream studies were conducted in PermeGear modified-Franz flow-through diffusion cells 

with an area of 1.77 cm2 and heating blocks maintained at 32°C (PermeGear, Riegelsville, PA), a 

retriever IV fraction collector (ISCO, Inc., Lincoln, NE), and a Pumppro MPL static pump 

(Watson Marlow, Wilmington, MA).  The FDA has previously recommended 1.77 cm2 Franz 

diffusion cells for the in vitro testing of topical products.  Thus, the present study encompasses 

both the MPDs, a more practical and portable Teflon-design cell, as well as the standard 1.77 

cm2 diffusion cells. The diffusion experiment was initiated by charging the donor compartment 
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with 50 mg of the 1% EN or placebo cream. The cream was applied evenly on the skin with a 

Teflon rod taking care not to damage the skin. The receiver solution was pumped through the 

diffusion cells at a flow rate of 1.0 mL/h for 2h.  

 

At the end of the diffusion experiment, skin samples were removed from the diffusion cells and 

rinsed with nanopure water three times for ten seconds each.  In the case of the creams, an 

alcohol wipe was used to remove excess surface formulation gently.  Samples were placed on a 

paper towel and blotted, and two tape strips (Scotch Book Tape 845) were applied to remove any 

surface drug.  The skin was rinsed one more time with nanopure water, blotted dry with paper 

towel, and the treated skin area was excised from the center of the skin sample. NIR analysis 

followed immediately. 

 

Near infrared analysis. Drug powders were scanned first to verify the presence of distinct NIR 

chromophores for EN and EST.  A uniform layer of pure drug approximately 1mm thick was 

loaded on a one-well depression microscope slide (Gold Seal Products, Portsmouth, NH).  NIR 

spectra from 1100-2500nm were collected in steps of two nm with a scanning monochromator 

system described earlier84 interfaced to a computer (OptiPlex GXM 5166, Dell, Round Rock, 

TX, USA) running SESAME 3.1 (Bran+Luebbe, Norderstedt, Germany).  To maximize light 

scatter, microscope slides and samples were placed on top of a 135-degree conical reflecting cup, 

designed such that when a sample is placed along the axis of radial symmetry of the cone, 

specular reflection at the detector is minimized while diffuse reflectance is maximized.104 All 

data were exported to Matlab 7.0.1 (The Mathworks Company, Natick, MA) for processing and 

analysis.  Powder samples and solutions were scanned six times each, rotating them 120 degrees 
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between each scan.  Tissue samples were scanned three times from the epidermal side, and three 

times from the dermal side. 

 

Chemometric analysis. All chemometric algorithms were written by the authors.  NAS 

calibration requires a matrix of spectra without the analyte such that the region of space spanned 

by the interferences is included in the calibration model.  For quantification of drug absorbed 

from solutions of EST and EN applied to the tissue, the matrix consisted of a pure component 

spectrum from drug vehicle (ethanol or propylene glycol) and a blank tissue spectrum exposed to 

drug vehicle alone.  For quantification of EN cream, the matrix consisted of a placebo cream 

spectrum and a blank tissue spectrum exposed to placebo.  With this approach, it was not 

necessary to identify the spectrum regions of the spectrum where the target drug could be 

quantified.  NAS calibration automatically finds the regions of the spectrum orthogonal to the 

space spanned by the interferences, thus canceling out their effects on the net analyte signal.  

Figures of merit, such as sensitivity, selectivity, S/N ratio, limit of detection, bias, and precision 

were also calculated directly from the NAS.   

 

Skin extraction and HPLC analysis. Immediately following NIR analysis, the tissue was 

weighed. The sample was then minced with a scalpel and placed in a vial with 1 or 2 mL of ACN 

for solution and cream studies, respectively.  This vial was sonicated for 10 minutes and shaken 

for 15 hours at room temperature to extract the drug from the tissue into the ACN.  The tissue 

extract was then analyzed for drug concentration by HPLC analysis, and expressed as µg of drug 

per wet g of tissue weight.   
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The high-pressure liquid chromatography (HPLC) assay was done with a Perkin-Elmer Series 

200 Autosampler, Pump, Column Oven, and a 785A UV/VIS Detector with Turbochrom 

Professional Version 4.1 Software.  A Brownlee® C18 RP Spheri-5 µm column (220 x 4.6 mm) 

with a C18 RP 7 µm guard column (15 x 3.2 mm) was used with the UV/VIS Detector set at a 

wavelength of 215 nm for EN and 205 nm for EST. The mobile phase used for EN was 70:30 

ACN:0.1% TFA adjusted with TEA to a pH of 3.0. The mobile phase used for EST was 45:55 

ACN:methanol and distilled water (5% and 50%, respectively). The flow rate of the mobile 

phase was at 1.0 mL/min for EN and EST.   

 

Results 

For HPLC, standards were analyzed with each set of diffusion samples and exhibited excellent 

linearity over the concentration range employed.  The retention times for EN and EST were 

10.02 ± 0.05 min and 10.37 ± 0.03 min, respectively.  The sensitivities of the assays for EN and 

EST were 25 ng/mL and 50 ng/mL, respectively. 

 

To test whether or not there were appreciable differences between the NIR ability to measure 

drug absorption from the dermal side and the epidermal side, scans were collected from each side 

and analyzed separately.  Using NAS calibration, NIR spectrometry measured an applied dose of 

200 µL of saturated EN in propylene glycol on human skin with an r2=0.988, a standard error of 

estimate over the concentration range (SEE) of 2.46%, a standard error of performance over the 

concentration range (SEP) of 2.86% from the epidermal side, and an r2=0.996, SEE=1.98%, 

SEP=2.12% from the dermal side.  (See Figure 5.3 for the calibration results.)  Figure 5.4 

illustrates that NIR spectrometry measured different concentrations of EST in ethanol using NAS 
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calibration with an r2=0.988, SEE=3.46%, SEP=4.01%.  Figure 5.5 illustrates that NIR measured 

an applied dose of EST in ethanol on human tissue with an r2=0.987, SEE=3.30%, SEP=5.66% 

from the epidermal side, and an r2=0.967, SEE=5.53%, SEP=6.83% from the dermal side.  NIR 

measured an applied dose of 50 mg of either placebo cream or 1% EN cream with an r2=0.987, 

SEE=2.30%, SEP=2.66% from the epidermal side, and an r2=0.987, SEE=2.53%, SEP=2.83% 

from the dermal side (data not shown).  The drug absorption was extremely high for one tissue 

sample with these data, however, and these statistics were calculated with the inclusion of a 

high-end outlier point.  This outlier was most likely due to an insufficient surface formulation 

wash-step in this particular sample; however, it was encouraging to note that both assay methods 

consistently detected this procedural artifact.  Figure 5.6 illustrates the same scenario with the 

high-end outlier excluded from the model.  In this case, NIR resulted in a calibration r2=0.981, 

SEE=5.67%, SEP=6.07% from the dermal side and an r2=0.980, SEE=5.93%, SEP, 6.71% from 

the epidermal side. 

 

The sensitivity (sk), selectivity (α), and S/N ratios were calculated according to Equations 5.7-

5.9, respectively.  For solutions of EST on human skin, sk = 0.0455, α = 0.143, and the S/N = 

29.54.  For saturated solutions of EN on human skin, sk = 0.0104, α = 0.0205, and the S/N = 

10.04, and for EN cream, sk = 0.052 , α = 0.0778, and the S/N = 7.763.  Selectivity is a unitless 

quantity, and sensitivity is given in units of signal/concentration.  Bias was calculated as the 

mean of the difference between replicate measurements of each concentration and the reported 

HPLC true concentration, and precision was calculated by the standard deviation of the 

difference between replicate measurements at each concentration and the reported HPLC true 

concentration.  Because bias and precision values were calculated for each concentration, the 
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final reported values are the means calculated from the data set in its entirety.  For EST on 

human skin, bias = -16.37 and precision = 1.149.  For saturated solutions of EN on human skin, 

bias = 0.4706, and precision = 3.171, and for EN creams on human skin, bias = 16.03, and 

precision = 1.357.  Both bias and precision are given in units of µg/g.   

 

Discussion 

Some multivariate calibration models offer the capability of wavelength and feature selection, 

such as principal component regression,101 interval partial least squares,102 and uninformative 

variable elimination.111  These chemometric models require the construction of a large database 

of calibration samples, to ensure that all sample spectral variations are included in the calibration 

model.  Then, the calibration model is validated by using it to predict the analytical results of a 

new set of samples through their spectra.  This prediction is compared to the results from a 

reference analytical method (usually the same method employed to provide reference values for 

the calibration samples).   

 

NAS calibration offers a distinct advantage over these methods, namely the potential for one-

point calibration.  When the experimenter has a set of pure component spectra for each of the 

system components, and a matrix of spectra without the analyte, it is a simple matter to identify 

the portion of the signal orthogonal to the interferences.  If the NAS is the portion of the signal 

the experimenter is looking for, it will correlate highly to a change in concentration of the 

analyte of interest.  If it is not the right signal, it will not correlate to the desired change in 

concentration.  Therefore, NAS accomplishes with one-point calibration what other chemometric 
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models require an entire calibration set to accomplish.  This offers a distinct advantage in time 

and in the computational burden for analysis of NIR spectra. 

 

In our previous in vitro study with guinea pig skin, the skin contents of EN were found to be 

generally higher than with the human skin studied here.82 For example, a statistically significant 

(p<0.05) 14-fold difference  between the EN content in the human skin (103±21 µg/g) and the 

guinea pig skin (1497±345 µg/g, (7)) after a 15 h exposure to the saturated EN solution was 

observed (Student’s t-test, SigmaStat, SPSS, Inc., Chicago, IL).  For topical and transdermal 

studies, hairless guinea pig skin is a close approximation of human skin. Skin permeability 

studies with many compounds indicate that hairless guinea pig skin is more similar to human 

skin than either rat skin or hairless mice skin.111-112 However, some morphological and 

biochemical differences do exist between the two, as the stratum corneum in the hairless guinea 

pig is composed of only a few layers.103  The increased permeability of drugs through guinea pig 

skin, as compared to human skin, is most likely due to the lack of the multilayered stratified and 

resistant stratum corneum structure.  Other studies have shown that there are also some immune 

and biochemical differences between guinea pig and human skin.113 Each of these differences 

contributed to the decreased drug permeation in the human tissue as compared to the previously-

studied guinea pig skin.  Additionally, light scatter was noticeably more pronounced in human 

tissue, as is evident from Figure 5.7.  A NIR scan of human tissue and guinea pig tissue treated 

with drug vehicle demonstrates that while the spectral features are similar between the two 

models, the absolute signal was far smaller in human tissue.  This did not, however, affect the 

predictive ability of the NIR.   
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Great Flexibility and Durability. This experiment applied NIR spectroscopic analysis in four 

different applications; drug powders, drug in solution, and tissue concentrations of drug after 

exposure to solutions and creams.  Additionally, it successfully measured drug concentrations in 

both guinea pig skin and human skin.  The strong correlation of NIR concentration prediction to 

the HPLC results suggests that NIR spectrometry is a flexible technique for analysis of tissue 

concentrations of drugs and other chemicals after topical exposure.  Once the method was 

established, no NIR spectra had to be discarded from a sample set consisting of 44 tissue samples 

and 264 scans, suggesting that NIR is a very reliable method of analysis.  For the duration of this 

experiment, there were no failures or erroneous spectra.  When the NIR does fail, a short noise 

spike from the preamplifier causes a very distinct and easily identifiable spectral feature, making 

it a simple matter to locate and discard.     

 

NIR is also a nondestructive and rapid method of analysis, taking less than two minutes to 

complete each scan.  In this research, samples were simply placed on a microscope slide and 

scanned, thus no sample preparation is required.  NIR also has the capability of being a 

noninvasive method of analysis.  Using a fiber-optic probe it is possible to scan skin tissue in 

vivo in whole animal or clinical studies.  Skin samples in this research were scanned inside a 

closed metal chamber, thus external light and room noise were not a factor.  In the chamber, NIR 

spectra are essentially free from external noise and interference.  The limit of detection can be 

approximated as the concentration at which the S/N ratio is equal to three.20  The lowest drug 

concentrations measured in this research were 11.5 µg/g for EST and 26.4 µg/g for EN, and in 

both cases the S/N ratios were greater than three.  The NIR dynamic range can be expressed as 

the region of the NIR that responds linearly to a change in concentration.  Since this experiment 
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did not exceed the upper or lower limits of detection, the dynamic range is simply the range of 

concentrations used.  For EST, the dynamic range was 0 - 625.4µg/g, and for EN the dynamic 

range was 0 - 125.8µg/g. These results demonstrate that EN and EST can be measured in human 

skin at clinically relevant detection levels, because we have applied clinically relevant doses of 

EN cream and EST solution in the diffusion studies. 

 
Conclusion 

NIR spectrometry NAS multivariate regression demonstrated the ability to measure dermal 

absorption from estradiol in ethanol, econazole nitrate in propylene glycol, and a 1% econazole 

nitrate cream in human tissue samples with a very high degree of success.  This suggests that 

NIR could serve as a noninvasive, rapid, and accurate alternative to the other topical 

bioavailability/bioequivalence analytical methods in use today.   
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Chapter Five Figures 

 

Figure 5.1: Figure depicting the NAS for any given analyte.  Marked in gray is the space 

spanned by interferences and . The spectrum of the analyte is the sum of the NAS vector 

and the interferences. 
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Figure 5.2: This figure summarizes the steps for multivariate calibration using the NAS.  (a) The 

first step is to find the NAS direction and calculate the distance of the NAS calibration vector, 

and (b) the second step is to project the unknown spectrum in the NAS direction and calculate 

the unknown concentration. 
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Figure 5.3: NIR calibration line from human skin samples treated with 200 µL of saturated 

econazole nitrate in propylene glycol, (left) epidermis calibration, r2=0.988, SEE=2.46%, 

SEP=2.86%, (right) dermis calibration, r2=0.996, SEE=1.98%, SEP=2.12%.  %.  The diagonal 

line illustrates the perfect correlation between HPLC and NIR, HPLC concentrations are shown 

on the x-axis, and the error bars are the means and standard errors of the NIR measurements.
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Figure 5.4: NIR calibration line for estradiol in ethanol using net analyte signal for the 

prediction of solution concentrations, r2=0.988, SEE=3.46%, SEP=4.01%. 
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Figure 5.5: NIR calibration line from human skin samples treated with an applied dose of 

estradiol in ethanol, (left) epidermis calibration, r2=0.987, SEE=3.30%, SEP=5.66%, (right) 

dermis calibration, r2=0.967, SEE=5.53%, SEP=6.83%. The diagonal line illustrates the perfect 

correlation between HPLC and NIR, HPLC concentrations are shown on the x-axis, and the error 

bars are the means and standard errors of the NIR measurements. 
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Figure 5.6: NIR calibration line from human skin samples treated with an applied dose of either 

50 mg of placebo cream or 1% econazole nitrate cream, (left) dermis calibration, r2=0.981, 

SEE=5.67%, SEP=6.07%, (right) epidermis calibration, r2=0.980, SEE=5.93%, SEP=6.71%.  

The outlier is not included in this model.
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Figure 5.7: Raw NIR spectra from guinea pig skin (top) and human skin (bottom) treated with 

drug vehicle only (propylene glycol). 
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Chapter Six - Rapid near-infrared qualification of microcrystalline cellulose and sodium caprate 

minitablets through intact enteric coated capsules 

 

 

128 



Introduction 

In this study we show the application of a nondestructive process analytical technology to 

separate two populations of enteric coated capsules that contained minitablets. In the course of a 

small, phase 1, clinical trial investigation it was deemed necessary to have two different placebo 

capsule formulations that were matched in appearance. These capsule batches were manually 

filled wherein subsequent processing required that they be specifically identified and accordingly 

classified (i.e., sorted). The sorting was based on a near-infrared (NIR) spectral differentiation 

between the capsule fill of the two formulations. Both capsule lots appear identical as enteric 

coated, white (titanium dioxide) hard gelatin capsules having an orange band. One lot contains 

pure microcrystalline cellulose (MCC) minitablets while the other lot contains minitablets 

composed principally of sodium caprate (C10) with PEG 3350 added as a binder. The enteric 

coating used on both lots is composed of methacrylate polymers with plasticizers at a cured 

coating level of approximately 14 mg solids per cm2 of capsule surface area.  In order to 

facilitate a streamlined manufacturing schedule, it was necessary to rapidly develop and GMP 

qualify a technically feasible, nondestructive capsule identification and sorting process. 

Near-infrared (NIR) spectrometry has successfully been applied to the noninvasive and 

nondestructive differentiation of various capsules, tablets, and drugs in solution.32,45,104,114-115 

While current scholarship suggests that NIR is fairly well established for this purpose, previous 

studies focus on the utility of NIR for the quantification and identification of capsules filled with 

powders and solutions.  In the current case, the formulations in the capsules (methacrylate 

coated; orange-banded, hard gelatin) were not powders or solutions, but were minitablets.  Due 

to the large particle size (2 mm) and random orientation of the minitablets in the capsules, the 

NIR absorbance spectra demonstrated more variation than a uniformly filled powder capsule.  
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The combined effect of the enteric-coated hard gelatin exterior, and the random distribution of 

the minitablet interior, made analysis of these capsules potentially more challenging than those in 

previous experiments.  We undertook a combination of selective wavelength analysis along with 

chemometric principles to develop a non-destructive method for distinguishing between these 

two capsules.   The method was subjected to validation testing using a calibration set and was 

ultimately used to sort through two populations of capsules totaling 3407 units using only two 

near-IR wavelengths provided by interference filters from a tungsten-halogen source.  Such a 

simple instrument can be easily manufactured and widely deployed as a process sensor.   

 

NIR Spectrometry and Chemometrics.  The near-infrared region of the electromagnetic (EM) 

spectrum covers wavelengths from 750 nm to 3000 nm.  This region consists of broad, 

overlapping peaks that result from overtone bands, combination bands, and difference bands 

from molecular vibration of CH, NH, OH, and SH bonds.116  Many factors contribute to the 

variations in NIR spectra, such as detector noise, environmental conditions, and different sample 

preparation.  Often the largest variations come from the constituent or concentration differences.  

Using this knowledge, chemometric techniques such as principal axis transformation can be used 

to interpret complex overlapping spectra by placing the original spectral variables into a new, 

smaller coordinate axis system.9  Calculation of the principal components is accomplished by a 

singular value decomposition of matrix A according to USVA = , where A is the matrix of 

original spectra, U is the matrix of eigenvalues (scores), S is a diagonal matrix of singular values, 

and V is the matrix of eigenvectors (loadings).  The first principal component may capture 80% 

or more of the total variance.  Many of the eigenvalues model only noise, therefore, only those 
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that contain a significant proportion of the variation with analytical signal are used in calibration 

and evaluation of samples. 

 

BEST Algorithm.  Principal components can be used to illustrate the separation of two groups.  

For a more quantitative result, the bootstrap error-adjusted single sample technique (BEST) was 

applied to the calibration data.  The BEST algorithm begins by encoding the intensity on each 

wavelength as a separate dimension, thus reducing each spectrum to a single point in 

multidimensional space.  Population P is an m x n matrix in hyperspace R whose rows are the 

individual samples and the columns are the frequencies.30 BEST considers each wavelength from 

a spectrum of n wavelengths to be taken as a separate dimension, such that each spectrum is 

reduced to a single point in n-dimensional hyperspace.32 P* is a discrete realization of P based 

on a calibration set T of the same dimensions as P*.  This realization is chosen one time from P 

to approximate all possible sample variations present in P.  P* has parameters B and C, where C 

= E(P) and B is the Monte Carlo approximation to the bootstrap distribution.  The expectation 

value, E(P), is the center of P, and C is a row vector with the same number of rows as there are 

columns in vector P.  New test spectra X are projected into hyperspace R containing B, rows of 

B are mapped onto a vector connecting C and X.  C and X have the same dimensions.  The 

integral over R is calculated from the center of P in all directions.  A skew-adjusted standard 

deviation (SD) is based on the comparison of the expectation value C=E(P) and C=med(T), the 

median of T in hyperspace projected on the hyperline connecting C and X.  The result is an 

asymmetric SD that provides two measures of the SD along the hyperline connecting C and X.  

Equation 6.1 defines the SD in the direction of X, and Equation 6.2 defines the SD in the 
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opposite direction.  Skew adjusted SDs can be used to calculate mean distances between spectra 

of different samples. 
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Methods 

Separation of MCC and C10 capsules with full NIR spectra.   The first objective was to prove 

that full NIR spectra from 1100-2500 nm (in 2 nm steps with 10 nm bandpass) could be used to 

separate the MCC and C10 capsules.  Initial experiments involved only three MCC capsules and 

three C10 capsules.  Spectra were collected with a NIR spectrometer (Technicon InfraAlyzer 

500, Tarrytown, NY) interfaced to a computer (OptiPlex GXM 5166, Dell, Round Rock, TX, 

USA) running SESAME 3.1 (Bran+Luebbe, Norderstedt, Germany).  Each capsule was scanned 

three times for a total of 18 spectra (Figure 6.1).  The capsules were scanned in random order and 

rotated following each scan to average possible sample variations due to inconsistencies in the 

enteric coating, gelatin layer and the orientation of the minitablets.  Scans were collected inside 

of the instrument drawer to eliminate room noise and external interferences.  All data were 

exported to Matlab 7.0.1 (The Mathworks Company, Natick, MA) for processing and analysis.  
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Data were multiplicative scatter-corrected to eliminate baseline variations,85 and second 

derivatives49 were plotted to find the regions in the spectrum where the most variation was 

apparent (Figure 6.2).  Principal components (PCs) were calculated and the PCs with the largest 

contribution to variation were plotted in two and three dimensions to visualize the differences 

between capsule groups (Figures 6-3 and 6-4).9  BEST standard deviations and cross-validation 

standard deviations (CV-SD) provided a quantitative measure of group separability.30,32   

 

In order to estimate the limits of detection for the NIR, a cluster translation procedure was 

performed.117 NIR spectra from the two capsule populations, P1 and P2 are expressed in m x n 

matrices, where n is the number of wavelengths and m is the number of spectra.  The columns of 

the matrices are averaged by Equations 6.3 and 6.4, giving two 1 x n vectors. 
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A difference spectrum X is calculated from P2ave – P1ave.  One population was spatially translated 

toward the other, PAdjusted = y*X+P2, where y starts at zero, increasing in increments of 0.01 until 

P1 and PAdjusted are inseparable.  It is assumed that the two capsule groups represent the possible 

variations in the pure component spectra (MCC and C10), and that all points on the hyperline 

connecting the centers of the two population distributions correspond to mixtures of the two 

components because the Beer-Lambert Law holds.  For example, when one population is 

translated one-half the distance toward the other, that population corresponds to a 50/50 mixture 
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of MCC and C10.  The maximum distance the two groups can move toward each other while 

maintaining statistical separation determines the minimum quantities of MCC and C10 that can 

be detected in each other.   

 

Rapid separation of MCC and C10 capsules with fewer wavelengths.   Although the overall goal 

of this project was to develop a process analytical method sensitive enough to assign the MCC 

and C10 capsules to their respective groups accurately, it was also imperative that the project be 

completed as quickly as possible.  This time constraint required a modification of the full 

spectrum approach.  Experiments were conducted to accomplish the separation with as few 

wavelengths as possible yet still with adequate statistical assurance of specificity.  Using the 

same six capsules scanned above at 701 wavelengths, new spectra were collected with a 19-

wavelength NIR filter InfraAlyzer FLEX spectrometer (Bran+Luebbe, Elmsford, NY) between 

1445 and 2348 nm.  Capsules were placed in the conical reflective cup oriented with the thicker 

cap end down, body end up, and held in place with a steel rod (Figure 6.5).  The conical 

reflecting cup is designed such that when a sample capsule is placed along the axis of radial 

symmetry of the cone, specular reflection at the detector is minimized while diffuse reflectance 

is maximized.104 All radiation that follows a path parallel to the incident beam and perpendicular 

to the base of the conical reflector is reflected and collimated back toward the source.  This 

radiation is predominantly specular reflectance and contains little information about the capsule 

fill.  In the same fashion, a small amount of radiation that passes through the capsule but does not 

scatter is also returned to the source. Therefore, the majority of the radiation reaching the 

detector via the integrating sphere is scattered by the contents of the capsule.  The amount of 

radiation that reaches any given location on the capsule is directly proportional to the curved 
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surface area of the frustum (the conic section defined by two parallel lines from the light source, 

and a plane parallel to the reflector base connecting the two lines) in which it lies.  Therefore, 

more light reaches the top of the capsule than the bottom of the capsule because there is more 

curved surface area at the top of the reflector than at the bottom.  The curved surface area is 

given by πs(r1+r2) where r1 and r2 are the radii of the base and top of a circular frustum, s is the 

length between the top and bottom measured along the surface of the cone.  If the detector 

collected scattered light from cross-sections of the capsule, there would be a different intensity 

value for each cross-section.  However, the detector uses an integrating sphere, which collects all 

of the scattered light from the entire capsule.  This configuration eliminates the concern of 

uneven illumination along the capsule.   

 

In order to best accommodate the capsules, the spectrometer was inverted, and an instrument 

drawer was fashioned for consistent and reproducible sample loading.  Each scan took 

approximately two minutes to collect the full 19 wavelengths.  Capsules were scanned in random 

order and rotated to average sample positioning variations.  Principal components, intercapsule 

BEST standard deviations (SDs), and intracapsule cross-validation standard deviations were 

calculated from the resulting spectra.  Spectra for the two groups of capsules were very different, 

allowing a visual inspection of the spectra to sufficiently identify the more distinguishing 

wavelengths.  Standard deviations and cross-validation-SDs were calculated from four selected 

wavelengths.  To operate as quickly as possible while maintaining the highest level of capsule 

classification accuracy, the two most distinguishing wavelengths were selected by visual 

inspection.  From these wavelengths, ratios were calculated and plotted to prove that the two 

wavelength approach was sufficient to justify exploration of a larger validation set.   
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Equipment Calibration. The FLEX spectrometer was installed in the GMP facility in the 

University of Kentucky Center for Pharmaceutical Science & Technology, and turned on for the 

remainder of the procedure to eliminate detector drift due to thermal variations.  A polystyrene 

calibration film standard (Perkin Elmer Corp., Norwalk, CT, USA) fitted to a conical reflective 

cup was scanned 50 times to capture all possible sample variations.  A ratio was calculated from 

the signal intensity at 1734 nm and 1445 nm for each scan of polystyrene standards, and 

confidence limits were constructed around the mean at ± six standard deviations, 1.0245 ± 

0.0118.  The choice of a 12 standard deviation acceptance range was made to ensure essentially 

100% confidence limits on classifications for the set of 3407 capsules to be scanned.  To prove 

that the instrument response was the same from day to day, these ratios were projected on top of 

the predefined constructed confidence limits.  The same approach was used to identify the 

different capsules.  A calibration set consisting of fifty MCC and fifty C10 capsules was 

scanned.  Wavelength ratios were calculated and confidence limits were constructed at the mean 

± six standard deviations for each of the two capsule formulations. These limits were defined as 

the acceptance criteria boundaries for the determination of which group the incoming capsule 

belonged (Figure 6.6).   

 

Capsule identification screening using the reduced-wavelength approach and confidence limits.  

At the start of each day of data collection, the polystyrene calibration standard was scanned to 

prove the instrument was performing reproducibly.  Capsules were sequentially scanned in 

groups of twenty; a total of 3407 capsules were scanned.  An algorithm was written to 

automatically calculate and display the wavelength ratios on top of the predefined confidence 
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intervals (Figure 6.7).  Capsules were sorted according to where their NIR ratios projected 

relative to the calibration experiments.  Chemical structures for microcrystalline cellulose and 

sodium caprate can be found in Appendix B. 

 

Results and Discussion 

Figure 6.8 illustrates the two wavelengths that were selected to distinguish between the two 

groups of capsules.  The inert MCC has a relatively flat spectrum while C10 has a very steep 

spectrum at these wavelengths.  It is this spectral feature that allowed the simple calculation of a 

ratio from two wavelengths to distinguish between the two groups.  Cross-validation results and 

the BEST standard deviations between capsules are reported in Table 6.1 for the full spectrum 

NIR measurements, for four wavelengths, and for two wavelengths.  Note that the standard 

deviations are the same magnitude with two wavelengths as with the full spectra, suggesting that 

the basis of selectivity is improved by focusing on those wavelengths which can unequivocally 

distinguish between groups.  This approach justifies and allows for a much smaller data set with 

which to base the classification upon.  Illustrated in Figure 6.9 are the ratios (1734/1445 nm) 

calculated from all capsules projected into the confidence intervals determined during the 

calibration stage of the experiment.  This experiment resulted in greater than 99.71% successful 

capsule identification.  Of the 3407 capsules scanned, ten capsules projected directly on or just 

outside their respective decision boundaries.  These outliers were scanned a second time at the 

end of the experiment, and their two-wavelength ratios projected inside their respective 

confidence intervals.  These results proved that the unclassified capsules were a result of 

erroneous manual sample loading, and further demonstrated the consistency and integrity of both 

the method of analysis as well as the capsules themselves.   
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Detection limits were estimated by the spatial cluster translation experiment described in the 

Methods above.  When using MCC capsule spectra as the calibration set and C10 capsule spectra 

as the test set, C10 capsules could be spatially translated 92% of the distance across space before 

the populations were inseparable.  When using C10 as the calibration set and MCC as the test 

set, MCC was spatially translated 89% of the distance across space before the populations were 

inseparable.  This demonstrates that NIR is capable of nondestructively identifying mixtures of 

C10/MCC in the capsules down to approximately ten percent of each one in the other.  It is 

apparent that the NIR detection limits far exceed what is necessary to distinguish between MCC 

and C10 capsules.  

 

Conclusion 

This study presents an effective application of NIR spectrometry to the noninvasive and 

nondestructive classification of MCC and C10 minitablets contained in enteric-coated 

(methacrylate polymer) hard gelatin capsules.  The experiment was conducted in a GMP facility 

and is relevant to PAT.  It was a very rapid method with data collection times of only 10 

seconds, and the two wavelength approach gave unequivocal separation between the two 

capsules.  The entire process, from conception to completion, required only 20 days.   Of the 

3407 capsules scanned, greater than 99.71% projected into their respective confidence intervals.  

Of the ten capsules that initially failed to validate, it was proven that human sample loading 

errors were responsible, suggesting that an automated version of the same experiment could have 

classified 100% of the capsules correctly.  One of the primary goals of the FDA PAT initiative is 

to increase automation to reduce human error.  This experiment provides an example of the 
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benefits of automation, as well as of the utility of a method for real-time characterization and 

release of individual drug products.     

 

New measurement, control and information technologies are needed in PAT to predict, control 

and assure product quality and performance.  Using an appropriate PAT sensor, product quality 

attributes can be accurately and reliably predicted over the design space established for the 

materials used, the process parameters, and the environmental and other conditions.  A two-

wavelength near-IR sensor for PAT will be rugged, inexpensive, and simple to construct using 

two interference filters and a detector (e.g., PbS or InGaAs).  Such a sensor would be a dynamic 

tool for process innovation and continuous quality improvement using risk-based models for 

inspection. 
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Chapter Six Tables 

Table 6.1: BEST standard deviations reported for the broadband, 4 wavelength, and 2 

wavelength calibration data.  Using the BEST, a successful measure of statistical separation 

between two populations was defined as a standard deviation greater than three, and a measure of 

statistical inseparability was a standard deviation less than three.  The table reports intercapsule 

standard deviations, all greater than three, and reports intracapsule standard deviations along the 

diagonal, all less than three. 

Broadband MCC C10 
MCC 1.70 29.54 
C10  1.85 

   
 4 λ MCC C10 

MCC 1.52 25.56 
C10  1.58 

   
2 λ MCC C10 

MCC 1.24 23.46 
C10  1.27 
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Chapter Six Figures 

 

Figure 6.1: Broadband NIR spectra of C10 (blue) and MCC (red) capsules collected with an 

InfraAlyzer 500 scanning monochromator instrument.
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Figure 6.2: Second derivative spectra calculated from the broadband spectra of C10 (blue) and 

MCC (red) capsules.
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Figure 6.3: The two-dimensional principal component plot from broadband calibration data 

demonstrates how closely the capsules cluster in space, C10 capsules (marked with ‘A’) project 

on the right and MCC capsules (marked with ‘B’) project on the left.
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Figure 6.4: Three-dimensional principal component (PC) plot from broadband NIR spectra. The 

majority of the separation is seen along the PC 1 axis, which captures 66.33% of the total 

variation. This separation suggests that the difference in capsule constituents, C10 (blue) vs. 

MCC (red), is mainly responsible for the separation between the two groups of spectra. 
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Figure 6.5: 90o conical reflective cup used as a capsule holder.  The cup is designed so that when 

a sample capsule is placed along the axis of radial symmetry of the cone, specular reflection at 

the integrating sphere detector is minimized while diffuse reflectance is maximized.  As a result, 

the majority of the light reaching the detector has been scattered by the contents of the capsules. 

145 



 

Figure 6.6: Ratio of the signals at 1734 and 1445 nm from the validation set of capsules. The 

steeper curve has the higher ratio, thus C10 projects on top (x), and the flatter curve has a lower 

ratio so the MCC capsules project on the bottom (*).  The bars above and below the data sets are 

the confidence intervals, placed at six standard deviations above and below the mean.
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Figure 6.7: Real data sets were collected in groups of twenty capsules.  An algorithm was 

written to output this plot to show the two-wavelength ratio for each capsule.
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Figure 6.8: Data collected with an InfraAlyzer FLEX spectrometer at two NIR wavelengths 

(1734 nm and 1445 nm) collected from the two capsule validation set.  MCC is the flat curve and 

C10 is the steeper curve. Of the 100 spectra displayed in this plot, there is obviously no overlap 

between the two different groups. 
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Figure 6.9: Two-wavelength ratios from all 3407 capsules projecting inside their respective 

confidence intervals, C10 (top clusters) and MCC (bottom clusters). This figure illustrates 

greater than 99% successful identification.
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Chapter Seven - NIR spectrometry for the characterization of solid rocket booster fuel 

components in a novel tamper-resistant pill bottle 
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Introduction 

OxyContin, the brand name for Purdue Pharma’s narcotic pain reliever Oxycodone-HCl, is a 

Schedule II drug under the Controlled Substances Act due to its propensity for abuse and 

dependency.118 It is an opium-based pain reliever prescribed for relief of moderate to severe 

pain; however, it exhibits heroin-like effects lasting up to twelve hours when abused.  The illicit 

diversion of pharmaceuticals such as OxyContin is a pervasive problem across the country.119 

The chief source of diverted pharmaceuticals on the illicit market has historically been corrupt 

pharmacists and doctors.120 However, as law enforcement agencies crack down on pharmacists, 

technicians, and fraudulent doctors, the burden of drug protection falls on drug suppliers and 

patients.  Protecting drugs continues to cost millions of dollars for heightened security measures, 

including the redesign of pharmacies and drugstores so they bear resemblance to modern 

fortresses, where drugs are delivered in armored vehicles and stored in heavy vaults protected by 

guards.  Repeated robberies at gunpoint suggest the times have long since passed when child-

proof caps were sufficient to discourage drug abuse.  Rather than redesigning architecture in 

pharmacies and fortifying drugstores, this manuscript proposes a more comprehensive and less 

expensive measure of additional security for patient’s prescription drugs.  The time is right for a 

well-secured, better-regulated pill dispensing system.  Companies like e-pill, Inc. have attempted 

to respond with their Monitored Automatic Pill Dispenser (MD.2), which features voice alarms 

and reminders.121 To the author’s knowledge, the MD.2 is the only automated vault-like delivery 

system on the market.  At a retail price of $899.00 US, dispensing new MD.2 bottles with each 

monthly refill is prohibited by cost.  Therefore, the MD.2 comes with a lock and key, and it is the 

responsibility of the patient to refill their bottles.  Potential thieves need only to obtain the key to 

pilfer the MD.2 contents.  The MD.2 system offers only one line of defense against would-be 
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thieves.  An opportunity lies in building an inexpensive and impenetrable container as a fail-safe 

second line of defense, capable of scheduling and dispensing medications like OxyContin, and 

deterring those interested in obtaining the drugs purely for abuse and illicit purposes. 

 

Pill Safe. In response to the need for a better protected pill bottle, the Pill Safe precludes the 

possibility of theft and illegal dissemination of prescription drugs.  The Pill Safe simply presents 

the patient with a button.  When pressed, it dispenses the medication through a small aperture if 

and only if the prescribed dosing period has passed since the previous pill was dispensed.  

Meanwhile, the Pill Safe monitors its outer shell for tampering, destroying all of the pills rapidly 

upon tamper detection.  Figure 7.1 gives a block diagram of the system.  The mechanism shown 

in Figure 7.2 houses and delivers the pills and destroys them at the direction of the 

microcontroller. The pills are stored in columns adjacent to solid rocket booster (SRB) fuel.  In 

this configuration hot exhaust gases from the burning fuel are directed toward the pills. The 

entire assembly is enveloped in a protective shell with a conductive loop printed on the interior 

using conductive ink.  Breaching the shell breaks the loop, signaling the microcontroller to ignite 

the SRB fuel.  The entire system is powered by 2 alkaline AA batteries, and constructed from 

inexpensive parts, costing less than $10 US.   

  

NIR spectrometry can be used in the design of SRB fuel mixtures for the quantification of SRB 

fuel components and for the prediction of burn characteristics using NIR spectra of different fuel 

mixtures.   When the fuel formula changes, the burn characteristics change; therefore, it is 

imperative that the fuel mixtures have the right constituents in the right amounts.  For example, 

when the fuel mixture is deficient in ammonium perchlorate the burn duration increases 
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significantly, giving would-be thieves crucial extra seconds to break into the pill bottle.  

Therefore, NIR was chosen to monitor the component concentrations and provide quality 

control.  NIR has previously been used with great success for the quantification of fuel 

components in both solid and liquid propellant mixes.122-123  NIR, FT-IR, and transmission 

spectrometry have been used for accurate and precise quality control analysis of fuel pre-mixes, 

and have demonstrated the ability to monitor antioxidant depletion over time.124  In-process 

reaction information such as intensity distribution, ignition processes, reaction temperatures, 

reaction species and their concentrations have been studied using the spectral range from UV, 

visible, NIR, and mid-IR.125  Safety considerations for sample analysis using NIR for the study 

of rocket propellants have also been addressed, such as the thermal response to NIR exposure, 

and the effects of Raman spectrometry on the mixtures.126

 

Theory 

Absorbance in the NIR region of the electromagnetic spectrum is primarily a result of overtones 

and combinations of the fundamental bands from the mid- and far- infrared regions.  The bands 

are a result of anharmonic stretching and bending of functional groups such as N-H, O-H, C-H 

and C=O.  In most cases, the molecular structures are sufficiently complex that the spectral 

features of interest are highly overlapping, and thus not directly usable without statistical 

analysis.110  The formula for the pill safe rods used to destroy pills included aluminum dust with 

iron oxide catalyst (fuel), NH4ClO4 (oxidizer), bisphenol A/epichlorohydrin (casting agent), and 

a polyamide resin (curing agent).  The latter three components are primarily the 

spectroscopically active constituents in this mixture; therefore, their concentrations were used for 
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building and testing the regression model.  Rather than using absolute mass, the prediction model 

used the constituent percentages (by mass) of the total mixture.   

 

Because NIR spectra are usually a linear combination of pure component spectra according to 

Beer’s Law, it is theoretically possible to determine the concentration of each individual 

component in overlapping spectra.  However, there are noise factors that tend to complicate this 

procedure, such as sample inhomogeneity, particle size differences, and temperature drift.  For a 

linear calibration model, samples must be identified as outliers and removed from the calibration, 

or the noise and variation must be incorporated into the model.  In this work, Hadi outlier 

detection was used to identify the spectra that belonged in the calibration model.127  Outlier 

detection is generally approached by forming a clean subset of data M (free from outliers), 

followed by testing the fit of the remaining points relative to the clean subset.  Consider the 

regression in Equation 7.1: 

εXβY +=  7.1

where Y is an n x 1 vector of responses, X is an n x k matrix of responses and observations, β is a 

vector of estimated regression coefficients from fitting the model to M, and ε is a matrix of 

errors.  The best clean subset M is found by the deletion of the variables that result in the largest 

reduction in SSEM, the residual sum of squares.   

 

When building a calibration model from NIR spectra, it can be helpful to visualize the total 

instrument response, , as the sum of two orthogonal components, the interferences, , and the 

net analyte signal (NAS), , according to Equation 7.2.

kr =
kr

⊥
kr 22  The superscript ‘=’ denotes the fact 
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that the interferences span the space occupied by the analyte, and the ‘ ⊥ ’ denotes the fact that 

the NAS is orthogonal to the interfering species. 

⊥= += kkk rrr  7.2

 A linear combination of the interferences produces , therefore the signal orthogonal to  

belongs exclusively to the analyte of interest.

=
kr =

kr

32 A projection matrix is calculated according to 

Equation 7.3:  

)( +
−−

⊥ −= kkk RRIP  7.3

where R-k is a matrix of samples without the analyte, I is the identity matrix, and the superscript 

“+” is the Moore-Penrose pseudoinverse.  The NAS vector,  can be calculated from a 

calibration spectrum, by projection of the spectrum onto the null space of the rows of R with 

Equation 7.4: 

⊥
calr

calr

calkcal rPr ⊥⊥ =  7.4

The NAS vector is normalized to length one by Equation 7.5: 

⊥

⊥

=
cal

calNAS
k r

rr  7.5

A linear regression is fit to this vector, and the regression coefficients are used for subsequent 

predictions. 

 

One of the advantages of using the NAS approach is for the calculation of so-called figures of 

merit.  In severely overlapping spectra, it has historically been difficult to quantify selectivity, 

sensitivity, and signal-to-noise (S/N) because of the inability to distinguish between interferences 

and the analyte of interest.19-20 With the NAS, these quantities can be measured directly.  
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Selectivity can be calculated as the scalar degree of overlap, α, between the NAS vector and the 

calibration spectrum according to Equation 7.6: 

cal

cal

r

r ⊥

=α  7.6

The selectivity is a measure from 0 to 1 indicating how unique the analyte of interest is 

compared to the interferences.  The sensitivity is a measure of how much the analyte varies in 

response to a change in concentration.  This quantity can be expressed as Equation 7.7: 

k
NAS

kk c/rs =  7.7

where ck is the concentration of the k-th analyte.  Theoretically, sensitivity should be the same 

for each concentration and each NAS vector.21 The S/N ratio can be expressed as Equation 7.8: 

ε

r NAS
kkc

NS =/  7.8

where ε is the random instrumental error.   

 

To prove the relationship between NIR spectra and the SRB fuel components is not a product of 

correlated initial constituent concentrations, the mixture concentrations were calculated by the 

following orthogonalization procedure.  A random matrix A corresponding to I mixtures and J 

components per mixture was constructed with a random number generator.  Singular value 

decomposition of A according to Equation 7.9 yields orthogonal principal component scores, U, 

between -1 and +1, S is a diagonal matrix of singular values, and V is the matrix of eigenvectors 

(loadings). 

USVA =  7.9
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A coefficient matrix, K, was constructed according to Equation 7.10 such that each row contains 

a zero and a one. 

[ ] [ ]
[ ]i

j
jii

U
UU

K
max

min 1=+
=  7.10

A final matrix of concentrations is constructed by multiplication of K with the fuel ratios from 

the accepted SRB fuel recipe.   

 

In search for the most descriptive multivariate model, the present research compared NAS 

regression with principal component regression (PCR),9 interval PCR (iPCR), and PCR-

uninformative variable elimination (PCR-UVE).101-102  For each of these models, principal 

components were calculated by a singular value decomposition of the raw spectra according to 

Equation 7.9. 

 

The regression of U in Equation 7.11 indicates which of the components have the strongest 

correlation to a change in constituent concentration c, where a is the y-intercept, b is a vector of 

regression coefficients, and ε is the residual. 

εbUac ++=  7.11

Equation 7.12 demonstrates how a leave-one-out cross validation was used to predict the 

concentration of fuel components, where σ2 is the variance, fi(Ui) is the prediction of the model 

for the i-th pattern m in the training set, after it has been trained on the m-1 other patterns.   

2
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=
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σ  7.12

In the case of a simple two component system it is a simple matter to observe a linear change in 

the analyte concentration.  In the presence of two system components, theoretically the 
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concentration change can be modeled by one principal component.  The loading corresponding 

to this principal component accurately reflects the contribution of each wavelength to the overall 

classification.  However, when multiple system components change simultaneously, multiple 

principal components are needed for the prediction model.   

 

Interval PCR performs the same analysis as above, but rather than using the full spectrum, it uses 

smaller subsets of variables.102 For example, when the experimenter specifies an interval (In) of 

100 wavelengths, the algorithm performs PCR followed by principal component selection and 

cross-validation on intervals of 100.  With a moving boxcar, all wavelengths are paired with all 

other wavelengths inside of ±In.  For example, after the algorithm analyzes 2101-2200nm, the 

next iteration analyzes 2102-2201nm, and so on.  At the final wavelength, the first In 

wavelengths are added to the end for the final iterations.  In this manner, each wavelength is 

included in a new model 2*In times.  The goal of interval selection is the minimization of the 

standard error of performance in Equation 7.13, which indicates the interval with the highest 

correlation to the change in drug concentration: 

)min()max(
1

2/12

cc

ε

−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

=
N

SEP  
7.13

where ε is the residual, N is the number of spectra, and c is a concentration vector.   

 

 
Experimental 

 
Fuel preparation. Thirty-three different mixtures of ammonium perchlorate (NH4ClO4), 

aluminum dust (Al), iron oxide (Fe2O3), casting resin (Bisphenol A/Epichlorohydrin), and 
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polyamide curing agent (Versamid 140) (Firefox Enterprises, Pocatello, ID) were constructed 

such that the percentage of each component was uncorrelated to the other components.  Epoxy 

and curing agents were heated to 35oC on a hot plate.  Powders were mixed together and stirred 

to ensure a homogenous mixture.  Epoxy and curing agent were added to the powder mixtures 

and stirred vigorously for three minutes.  Fuel was poured into a ceramic mold so it could easily 

be inserted into the Pill Safe model.  Chemical structures for iron oxide, ammonium perchlorate, 

bisphenol A, epichlorohydrin, polyamide resin, and Oxycodone can be found in Appendix B. 

 

NIR Data Collection. NIR spectra were collected from 1100-2500 nm in 2 nm steps with a 

scanning spectrometer (Technicon InfraAlyzer 500, Tarrytown, NY) interfaced to a computer 

(OptiPlex GXM 5166, Dell, Round Rock, TX, USA) running SESAME 3.1 (Bran+Luebbe, 

Norderstedt, Germany).  To eliminate room noise, samples were scanned inside of the instrument 

drawer.  Each of the mixtures was scanned six times, all in random order to eliminate the effects 

of drift.  All NIR data were exported to Matlab 7.0.1 (The Mathworks Company, Natick, MA) 

for processing and analysis.   

 

Ignition Tests. To identify the burn characteristics, fuel samples were ignited quickly with a 

propane torch.  The torch was adjusted so its flame extended two inches, and samples were 

placed at the very tip of the two-inch flame.  The torch and flame were held in place by a series 

of clamps to ensure reproducibility.  Ignitions were recorded on digital video and ignition start 

times and durations were noted.   
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Analysis of NIR spectra. Algorithms for net analyte signal (NAS), Hadi outlier detection, 

principal component regression (PCR), and interval principal component regression (iPCR) were 

all written by the authors for Matlab 7.0.1.  NAS, PCR, and iPCR were all used to predict the 

concentrations of each fuel component from the collected NIR spectra.  These methods allowed 

for the identification of the statistically significant regions of the NIR spectrum for the 

measurement of each component.  Using the same methods, NIR spectra were then used to 

predict the ignition times and burn durations.   

 

Extent of Incineration. The extent of OxyContin incineration was determined by high-pressure 

liquid chromatography (HPLC).  Burn residue from the pill bottle loaded with OxyContin was 

ground with a mortar and pestle, washed with 200 mL of mobile phase, filtered two times 

through a 0.2 µm filter, and a chromatogram was collected to measure the remaining 

concentration of OxyContin.  The HPLC assay was done with a Waters 717plus Autosampler, 

Waters 1525 Pump, and a Waters 2487 Dual Wavelength Absorbance Detector with Waters 

Breeze v3.30 Software.  A Waters µBondapak C18 column (300 x 3.9 mm) was used with the 

UV/VIS Detector set at a wavelength of 206 nm for OxyContin standards.  The mobile phase 

used for OxyContin was 0.005 M 1-hexanesulfonate, methanol, phosphoric acid, and 

triethylamine (900:100:5:2).  The flow rate of the mobile phase was at 1.5 mL/min with 10µL 

injections of the sample.  Standards analyzed exhibited excellent linearity over the concentration 

range employed.  The retention time for OxyContin was 22.22 ± 0.211 min.  The sensitivity of 

the assay was 25 ng/mL. 

   

Results and Discussion 
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HPLC analysis indicated that following tablet incineration, the burn residue contained 5.58% by 

mass of the initial OxyContin.  It must be noted that this 5.58% was recovered by grinding, 

washing, filtering, purifying, and chromatographic separation of the burn residue.  With such an 

extensive extraction procedure and such a small yield, it is likely that would-be thieves would be 

sufficiently discouraged from a recovery attempt.  The best fuel mixture required approximately 

ten seconds to consume the contents of the safe, making it nearly impossible to break into the 

bottle and remove the contents before the burn was complete.  The Pill Safe is designed so that 

the flame is contained, and there is no danger of igniting external fires.  The fuel formula 

contains an oxidizer; therefore, there is no need for atmospheric oxygen to sustain the reaction 

that destroys the tablets. 

 

The most effective chemometric method for the measurement of SRB fuel components and 

prediction of ignition characteristics from the NIR spectra was the NAS regression.  The fuel 

components had no significant correlation to each other; therefore, the predictive ability of the 

NIR was not a product of correlated concentrations.  Additionally, the NAS found the portion of 

the signal unique to the analyte of interest, thus there were two measures of certainty that the 

strong correlation was not an artifact.  The NIR measurement of NH4ClO4 resulted in an 

r2=0.983, RMSEP=4.54%, the measurement of epoxy resulted in an r2=0.997, RMSEP=2.31%, 

and the measurement of curing agent resulted in an r2=0.996, RMSEP=4.27%.  Pure component 

and second derivative NIR spectra from NH4ClO4, epoxy, and curing agent are shown in Figure 

7.3 and Figure 7.4.  It is apparent from these figures that the spectra were sufficiently distinct 

from each other, making it relatively easy to identify the NAS for each component.  Iron oxide 

and aluminum had no distinguishing features in the NIR; therefore, they were not quantified in 
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this experiment.  Of course, other fuel recipes can be used in place of the SRB fuel recipe.  A 

mixture with five components, each with its own unique NIR chromophore, might make the most 

sense from a quality control standpoint.  On the other hand, iron oxide can be determined in 

mixtures of aluminum dust using visible light spectrometry.  The figures of merit calculated from 

the NAS vector for NH4ClO4 resulted in a selectivity=0.014, sensitivity=5.874, and S/N=39.941, 

for the casting agent, selectivity=0.005, sensitivity=6.467, and S/N=50.76, and for the curing 

agent, selectivity=0.022, sensitivity=4.097, and S/N=35.32.  Selectivity is a unitless quantity, and 

sensitivity is given in units of signal/concentration.  The limit of detection (LOD) is defined as 

the concentration at which S/N=3.19 The S/N ratios were calculated separately for each 

individual concentration, and the theoretical LOD was extrapolated from the linear plot of 

concentration versus S/N.  The LOD was 0.93% for NH4ClO4, 1.37% for casting agent, and 

1.36% for curing agent.  Precision was measured by calculating the relative standard deviation 

(RSD) of the predicted concentrations from the NAS vector.  The RSD for NH4ClO4 was 0.38%, 

casting agent was 0.32%, and curing agent was 0.70%.  There was no net bias for any of these 

measurements.   

 

Figure 7.5 is a plot of principal component ellipses calculated from the fuel mixtures, 

demonstrating how well NIR was able to separate them.  Ellipses are drawn six standard 

deviations from their cluster centers.  NH4ClO4 demonstrated a high correlation to both ignition 

time and burn duration, suggesting that it was largely responsible for the reaction rates.  Principal 

component 1 (PC1) demonstrated a high correlation to the concentration of curing agent, PC2 to 

casting agent, and PC3 to NH4ClO4.  Mixture 1 demonstrated the best burn characteristics for the 

purpose of this research (i.e. fastest ignition, longest burn).  The cluster location from mixture 1 
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can quickly be compared to other fuel mixtures, allowing this figure to act as a map to identify 

those components in which a particular mixture might be deficient.  This figure can also be used 

to predict the ignition time and burn duration of each mixture depending on its constituent 

concentrations. 

 

NIR spectrometry is a very versatile, nondestructive, and rapid method of analysis.  It has been 

applied to both liquids and solid propellants with no sample preparation required.122-125 As is 

evident by the PC clusters in Figure 7.5, it is also highly reproducible.  Even when samples are 

very close to each other in concentration, they still cluster in distinctly different regions of a PC 

plot.  This effect can be quantified by the bootstrap error-adjusted single sample technique 

(BEST).32 According to the BEST, multidimensional standard deviations (MSD) greater than 

three indicate that clusters belong to different populations.  When MSDs are less than three, 

clusters are considered inseparable.  The average MSD separation between fuel mixtures was 

431.36, and the average MSD separation calculated between repeat scans of the same mixture is 

1.69, demonstrating the high degree of reproducibility from scan to scan.  NIR analysis is also 

very rapid technique.  NIR spectrometers can now collect thousands of spectra per second with 

high resolution.128 NIR can effectively function as an in-process assay for the quantification of 

fuel mixtures as they are cast into the Pill Safe model.  From the two hundred NIR spectra 

collected for this experiment, there were no aberrant scans, demonstrating that NIR is also a very 

rugged and durable assay.   

 

Conclusion 
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This research presents a novel pill bottle design intended to provide a second line of defense 

against the theft of prescription drugs.  NIR spectrometry was able to rapidly and accurately 

quantify the fuel components in fuel mixtures, and to identify burn characteristics of the different 

mixtures.  This research suggests that Pill Safe manufacturing and SRB fuel analysis would be 

neither challenging nor expensive, thus making this a valuable product for use in the  

pharmaceutical  industry.    
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Chapter Seven Figures 

 
 
Figure 7.1: A simple schematic illustrating the main components of the Pill Safe.  A 

microcontroller is responsible for the master coordinator.  Based on the inputs and programmed 

instructions, the microcontroller dispenses the tablet as needed.  If the sensor is perturbed, the 

microcontroller signals for neutralization, triggering the ignition of the fuel components.  
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Figure 7.2: A cartoon depiction of the Pill Safe and the main components.  Powered entirely by 

two AA batteries, the microcontroller dispenses a tablet once per dosing period.  A conductive 

loop wraps around the assembly.  Disruption of this loop causes the microcontroller to ignite the 

fuel rods and incinerate the tablets.   
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Figure 7.3: Pure component NIR spectra, epoxy resin is shown in blue, curing agent is shown in 

green, and NH4CLO4 is shown in red. 
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Figure 7.4: Second derivative NIR spectra, epoxy resin is shown in blue, curing agent is shown  

in green, and NH4CLO4 is shown in red.
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Figure 7.5: A plot of principal component scores indicates very rapidly if a mixture is deficient 

in a particular fuel component.  PC score 1 corresponds very highly to curing agent, PC score 2 

to epoxy, and PC score 3 to NH4ClO4.  The ideal burn (fastest ignition and longest burn) was 

mixture number 1, therefore, projection of PC scores onto this plot can be used as a map for the 

prediction of SRB burn characteristics.
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Section IV: Sensors 

 

 

 

 

 

Chapter Eight - Integrated Sensing and Processing Acoustic Resonance Spectrometry (ISP-

ARS) for Sample Classification 
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Introduction 

Integrated sensing and processing acoustic resonance spectrometry (ISP-ARS) can be used as an 

alternative to conventional Fourier transform ARS (FT-ARS) for the characterization of rocket 

fuel pre-mixes.  ISP is a paradigm for the implementation of mathematics and chemometrics 

directly in the physical design of sensors for the purpose of data reduction.1 Each new generation 

of computerized sensors and spectrometers contain more and more information obscured in data 

sets of higher and higher dimension.  A typical data set from the FT-ARS used in this research 

contains n data points, where n is the product of sampling rate and duration.  Even in low-

frequency ultrasound applications, the resulting data vector contains a large number of variables 

(44.1KHz x 3s = 132,300 points per spectrum).  Following data collection, a multivariate 

chemometric algorithm, such as classical/partial least squares, principal component regression, 

or multiple analysis of variance (MANOVA) must be applied to the data set to determine which 

frequencies correspond to the analyte of interest.  For experiments requiring the collection of 

multiple spectra for multiple analytes, the computational burden of conventional FT-AR 

spectrometry is clear.   

 

Conventional AR spectrometry has previously been used for the analysis of pharmaceutical 

tablets,33,36 semi-solids and colloidal dispersions,78,129 liquids,41-42,75 and powders.38-40  To the 

author’s knowledge, this research presents the first application of ISP-ARS and comparison to 

full spectrum ARS.  ISP-ARS is unique in that it does not rely exclusively on a scanning 

resonant waveform as with typical AR spectrometry, or the signal attenuation and time delay 

associated with active pulse acoustics.  Instead, it relies on the excitation of key frequencies 

identified by MANOVA specifically for the maximization of inter-cluster distances and the 
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minimization of intra-cluster distances.  The samples chosen for this research are different 

mixtures of ammonium perchlorate (NH4ClO4), aluminum dust (Al), iron oxide (Fe2O3), casting 

resin, and curing agent; the combination of which make up the fuel for the Pill Safe.  Depending 

upon the concentrations of the individual components in fuel pre-mixes, different burn 

characteristics (i.e., burn duration, ignition time…) result, and there is a wide range of 

performance between mixes.130 An analytical method capable of rapidly and accurately 

characterizing pre-mixes prior to burning can answer questions about burn performance, and 

optimize burns for different kinds and sizes of tablets in the Pill Safe. 

 

The Pill Safe is a tamper-resistant pill bottle that uses fuel mixtures to destroy tablets when 

needed.  Drug tablets are stacked next to fuel.  Attempts to force the mechanism off the 

prescribed time or to penetrate the bottle cause instant destruction of the Pill Safe contents.  The 

Pill Safe reduces the need for heightened security measures in pharmacies and drugstores due to 

theft of prescription drugs. 

 

This study focused on the ISP waveform excitation.  A detailed description of the basic AR 

spectrometer components has appeared elsewhere.33,129 The ISP-ARS used in this research 

encoded the excitation signal (ISP waveform) so the detector automatically outputs the 

classification of the fuel pre-mix as a voltage.  Calibration begins with acoustic excitation across 

a spectral range (0-22.05 KHz) using a broadband white noise source, as used with conventional 

FT-AR spectrometry.  With the 22 KHz spectral range, the broadband excitation signal can be 

loaded into an inexpensive MP3 player, and the received signal can be collected with a computer 

sound card, thus sparing the expenses of a function generator and an A/D converter.  As 
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illustrated in Figure 8.1, the AR spectrometer demonstrated two large resonant peak structures at 

10-12 KHz and 14-17 KHz, making these useful regions to study for classification purposes.   

 

In ARS, the resonance peak locations and heights shift in response to physical properties of 

samples such as pressure, density, viscosity, concentration, analyte size, and particle distribution.  

These properties are what the experimenter correlates to changes in instrumental response.  

When the goal of the experiment is quantification or classification, multivariate statistics can be 

used to determine a weight function by which the incoming spectrum can be projected onto for 

multivariate calibration.  This projection can be accomplished in one of two ways; varying the 

excitation time at particular frequencies such that each frequency is weighted according to its 

importance in the regression (encoding the excitation signal), or by analog multiplication of the 

detected signal with an acoustic weight function prior to collection (post-collection).83 As 

illustrated in Figure 8.2, conventional ARS consists of six steps.  (1) A white noise signal source 

is used to excite all frequencies with equal amplitudes simultaneously.  (2) The transmitting 

piezoelectric transducer (PZT) sends the signal through the quartz rod which is in mechanical 

contact with the fuel sample, which creates a standing wave resonant system.  (3) The frequency 

spectrum from each sample is collected with a computer sound card or an analog/digital 

converter. (4) Using multivariate statistics, the weight function which accentuates the 

relationship between the most important frequencies or spectral features to the classification or 

analyte concentration can be calculated.  (5) This weight function is either used as the excitation 

source (ISP-ARS), or is multiplied by the frequency spectrum, giving the (6) sample 

classification or quantification.  Alternatively, ISP-ARS is effectively reduced to a two-step 

procedure: (1) excitation with the ISP waveform, and (2) data collection/analyte classification.  

175 



The data collection step is coupled with analyte classification by projection onto a three 

dimensional plot of the selected frequencies. 

 

ISP-ARS offers the advantages over conventional AR spectrometry of reduced data analysis 

times and the reduction of computational burden with the instant output of analyte identity.  In 

place of the white noise excitation signal, the weight function is used as the excitation source 

directly.  Since the system resonant frequencies are a product of the physical components of the 

system, thus the weight function leads to analyte classification without the need for further 

computation.  Therefore, ISP-ARS eliminates the entire digital component of the ARS.   

 

Theory. Analytical methods are typically directed towards one of two things, analyte 

quantification, as in multivariate calibration, or analyte classification such as undirected data 

mining (i.e. cluster analysis).  The intention of analyte classification, as is the focus of this 

research, is to determine the underlying structure of a data set.  In addition, there are two types of 

data mining for analyte classification, supervised and unsupervised.  In unsupervised data 

mining, no a priori information is given about the data structure as it relates to the classes of 

which it is comprised.  Conversely, supervised data mining uses prior knowledge of classes to 

help identify the structure.  For the purposes of ISP-ARS, class data is used to identify the key 

spectral features.  MANOVA is used to identify which frequencies can be used to maximize 

between-cluster distances while minimizing same-cluster distances.131  Once these frequencies 

are selected, they are encoded as the new excitation source, making possible the classification of 

incoming samples without the need for further computation. 
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Experimental Section 

Mixture Preparation. Rocket fuel mixtures consisted of combinations of ammonium perchlorate 

(NH4ClO4), aluminum dust (Al), iron oxide (Fe2O3), casting resin (Bisphenol 

A/Epichlorohydrin), and polyamide curing agent (Versamid 140) (Firefox Enterprises, Pocatello, 

ID).  The percentage of each component was chosen such that it was uncorrelated to the other 

components.  The casting resin and curing agent were heated to 35oC on a hot plate.  Powders 

were hand blended prior to addition of casting and curing agents to ensure a homogenous 

mixture.  The casting and curing agent were added to the powder mixtures and stirred vigorously 

for three minutes.  Fuel mixtures were cast into mini plastic Petri dishes of equal size to ensure 

equal volumes between samples.  Samples were dried for 48 hours prior to scanning.  Chemical 

structures for iron oxide, ammonium perchlorate, bisphenol A, epichlorohydrin, polyamide resin, 

and Oxycodone can be found in Appendix B. 

 

ARS Data Collection. Samples were placed on a scale (Model 3120, Health O Meter, 

Bridgeview, IL, USA) and kept in mechanical contact with the vertex of the quartz rod.  Pressure 

was maintained at 200g between the rod and the sample for the duration of the scan.  AR scans 

were first collected with a white noise excitation source.  A battery powered MP3 player (Nike, 

Beaverton, OR) was used to supply the signal, thus keeping the 60Hz noise to a minimum.  The 

signal was passed through a 741 dual supply operational amplifier prior to excitation of the PZT.  

The PZT detector output signal was collected via a 16-bit soundcard (Realtek AC97, Realtek 

Semiconductor Japan Corp., Yokohama, Kanagawa, Japan) for processing and analysis in 

Matlab 7.0.1 (The Mathworks Company, Natick, MA, USA).  MANOVA was performed to 

identify the most significant frequencies, which were subsequently used for the construction of 
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the ISP excitation source.  ISP-ARS data were collected with the weight function calculated with 

MANOVA.  The signal consisted of three frequencies, one second of each, for a total of three 

seconds.  The incoming voltage signal was summed for each frequency, and the total amplitude 

for each frequency was used as a single dimension in the classification procedure.   

 

Results and Discussion 

 

Three frequencies were retained for classification purposes.  These three frequencies can be 

visualized as the three dimensions of an XYZ plot.  As with all clustering algorithms, scans from 

similar samples tend to cluster together in hyperspace, while dissimilar samples tend to cluster in 

different regions of hyperspace.  Therefore, projection of three frequencies onto a three 

dimensional plot quickly indicate to which class each sample belongs.  Duplicate scans of the 

same analyte effectively draw probability contour plots, localized around the regions of highest 

probability.  This approach is the electronic (analog) alternative to the digital calculation of 

probability densities for a given analyte.   

 

ARS vs. ISP-ARS. Figure 8.3 illustrates the separation between clusters with conventional AR 

spectrometry.  Principal components (PC) were calculated from the frequency range 14-17KHz, 

and the three PCs that captured the largest variation were plotted against each other.  It is 

apparent from this figure that there was very little difficulty distinguishing between fuel samples.  

Illustrated in Figure 8.4 are the probability plots as calculated from the ISP-ARS data.  In place 

of PC scores on the axes, the sum of the absolute value of each frequency selected from 

MANOVA makes up the XYZ coordinates.  All clusters from both methods contain six points, 
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and the ellipses are drawn three standard deviations in all directions about the centroid of the 

clusters. 

 

Comparison of Figures 8.3 and 8.4 indicate that there were notable differences between the ARS 

and ISP-ARS predictions.  While both plots are drawn with three standard deviations about their 

centroid, it is clear that the clusters are smaller with ISP-ARS.  This indicates that there is less 

variation and more reproducibility between scans than the full spectrum approach.  This result is 

logical when one considers that the PC model was constructed with a window from 14-17KHz, 

whereas ISP-ARS uses only three frequencies.  If the systematic error associated with each 

frequency is assumed to be the same, the inclusion of more variables has an additive effect on the 

total error included in the PC model.  It must also be noted that the cluster sizes are all very 

similar to each other in Figure 8.3 (ARS), whereas there seems to be a larger variation in cluster 

sizes in Figure 8.4 (ISP-ARS).  This is also a product of the sheer number of variables included 

in the PC model as compared with the ISP-ARS model.  The calculation of PCs across a wide 

frequency range tends to suppress the overall effects of one erroneous frequency.  In the ISP-

ARS model however, one erroneous frequency can have an enormous effect on the overall 

projection point in hyperspace.  These results suggest that ISP-ARS more effectively minimizes 

same-group cluster distances, however, is more sensitive to the presence of outliers than 

conventional ARS. 

 

To illustrate the differences between ARS and ISP-ARS in a more quantitative fashion, the 

bootstrap error-adjusted single sample technique (BEST), a nonparametric cluster algorithm, was 

used to calculate multidimensional standard deviations (MSD) between clusters.30 Reported in 
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Table 8.1 are the MSDs calculated from the ARS, using the region spanning 14-17KHz.  Table 

8.2 reports the MSDs calculated from the ISP-ARS clusters.  According to this metric, standard 

deviations greater than three are considered separable.  ARS resulted in an average BEST MSD 

of 1164.24, while ISP-ARS resulted in an average BEST MSD of 109.44.  The average cross-

validation MSD was 1.41 for the ARS and 1.58 for the ISP-ARS.   

 

Versatility and Flexibility of ISP-ARS. ARS has previously been applied to the study of 

tablets,33,36 semi-solids and colloidal dispersions,78,129 liquids,41-42,75 and powders.38-40 Clearly, 

ARS can be used for the analysis of samples in nearly all phases.  For any analyte that can be 

characterized or quantified by conventional ARS, an analogous ISP waveform can be 

programmed for the same samples.  A database of ISP compatible waveforms can easily be built 

to accommodate any experimental need.  For example, if an experiment requires a waveform to 

quantify the active pharmaceutical ingredient in a pharmaceutical tablet, they could simply 

download the ISP waveform from an online database to an MP3 player.  Therefore, ISP-ARS is 

an extremely versatile method of analysis.    

 

Speed of Method. The data collection process itself is very rapid for both ARS and ISP-ARS.  No 

sample preparation is required, and all data files in this research were collected for three seconds.  

The data analysis for ARS, however, requires more time and more steps to process since it still 

requires the digital component of analysis.  Therefore, the analysis times vary with the size of the 

data matrices for ARS.  Alternatively, ISP-ARS automatically outputs the analyte classification 

without the need for further computation.  So, only three seconds are necessary as data collection 

and analysis are performed simultaneously.   
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Figures of Merit. In multivariate data, where the concentrations of multiple species are changing 

simultaneously, calculation of standard figures of merit (FOM), such as dynamic range, limit of 

detection, selectivity, sensitivity, and signal-to-noise ratio is not a straightforward task.83,130 The 

portion of the signal directly related to the analyte of interest is convoluted by the signals from 

all other species and interferences present in the signal.  The only way to assess these quantities 

directly is by calculation of the net analyte signal (NAS), or the portion of the signal directly 

related to the analyte of interest, orthogonal to all interfering species.19-22 Once the NAS is 

known, the relationship between system components and the analytical signal can be measured 

directly.  However, calculation of the NAS requires pure component spectra from each of the 

analytes present in the system.  For the purposes of this research, this is not a reasonable 

approach.  For example, both the casting resin and the curing agent are liquids prior to addition 

of the other.  As soon as they are mixed, they set and solidify almost immediately.  Clearly, the 

acoustic signal of the individual liquids does not combine in a linear fashion to form the acoustic 

signal of the combined solid.   

 

Calculations of accuracy, precision, and bias are typically associated with calibration 

experiments, where the analytical signal varies with a change in concentration in some 

quantifiable fashion.  This research however, was for classification purposes, so calculation of 

these values was again not as straight forward.  The following is a description of which FOM 

could be calculated and how each calculation was performed. 
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Detection limits. The detection limits were estimated by a mathematical translation of group 

populations P1 and P2 in hyperspace until they were no longer separable by the BEST metric.33  

For full spectrum ARS, the mean spectrum ( P ) between 14-17KHz is calculated for each 

population according to Equations 8.1 and 8.2. 
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A difference spectrum X is calculated by 12 PPX −= .  The two populations are mathematically 

translated toward each other with 2ADJ PyXP += , where y is a coefficient matrix defined on the 

interval {0<y<1} until PADJ and P1 are inseparable by the BEST metric.  To estimate the 

detection limits for each component, when the BEST MSD reaches three, the final value of y is 

multiplied by the difference in component concentrations.  Mixtures 1 and 2 were very close in 

BEST MSD for both full spectrum ARS and ISP-ARS, and they also had the most similar 

chemical composition of all the mixtures, therefore, these samples were used for the calculation.  

The limits of detection were as follows (reported [ARS %, ISP-ARS %]): aluminum = [0.208, 

0.176], NH4ClO4 = [0.161, 0.136], Fe2O3 = [0.004, 0.004], casting agent = [0.019, 0.016], and 

curing agent = [0.071, 0.060].  All values are reported in percent of the total mixture.  ARS 

populations could be translated 93.5% of the way toward each other in hyperspace before P1 and 

P2 were inseparable, and ISP-ARS populations were translated 94.5% of the way before P1 and 

P2 were inseparable.  Therefore ISP-ARS detection limits were slightly better than ARS for the 

measurement of each constituent. 
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Dynamic range. The lower end of the dynamic range is intimately related to the detection limit 

as described above.  However, because the purpose of this research was not multivariate 

calibration, no upper-end limit could be explicitly calculated.  The largest concentration 

differences were between mixtures 7 and 8.  Mixture differences are reported in % difference of 

mixture 7 relative to 8 (aluminum = [62.3%], NH4ClO4 = [153.1%], Fe2O3 = [39.8%], casting 

agent = [73.2%], and curing agent = [73.3%]).  In calculation of the BEST MSDs for ISP-ARS, 

mixtures 7 and 8 had the largest separation.  However, for full spectrum ARS, the MSD 

separation between these two mixtures was the second highest (please refer to Tables 8.1 and 

8.2).  These results suggest that in ARS, when mixtures are exceedingly different, MSD 

separation is not a linear indicator of the degree of separation, and as such is not linearly related 

to changing concentrations.  This conclusion is further supported by the ellipse plot in Figure 8.3.  

While mixtures 7 and 8 are clearly very far apart, they are not the most distant clusters in the 

representation.  These results indicate that for estimation of dynamic range, BEST MSDs are 

useful for the low-end calculation.  But for the high-end of the dynamic range, it is not 

necessarily the most accurate representation of the true chemical differences between AR 

spectra.  Conversely, in ISP-ARS the BEST MSD between mixtures 7 and 8 is the largest degree 

of separation of all the mixtures, which agrees with the known chemical constituent differences, 

suggesting that BEST MSDs calculated from ISP-ARS clusters continue to vary linearly with 

changing concentration.  In future studies, the ISP-ARS will be used for calibration in addition to 

sample differentiation; therefore, it will be a straightforward task to verify this claim.  

 

Signal-to-noise, Precision, and Accuracy. The signal-to-noise ratio (S/N) was calculated as the 

mean amplitude of the signal divided by the standard deviation of repeated measurements.  The 
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S/N ratios were [ARS = 24.87, ISP-ARS = 28.87].  Both S/N were of the same order, therefore, 

no appreciable differences were noted between the two methods.  The precision is a measure of 

how repeatable each scan was for each mixture, expressed as the spread of repeated 

measurements relative to their total magnitude, or the inverse of the S/N ratio.  The precisions 

were [ARS = 0.040, ISP-ARS = 0.035], thus the precision was slightly better for ISP-ARS.  The 

measure of accuracy requires a priori knowledge or an expectation value, as in a calibration 

experiment.  There was no known value to correlate the signal to; therefore, accuracy was 

meaningless in this context. 

 

Group assignment. The set of fuel mixtures was scanned six more times each with the ISP-ARS 

as an external validation set.  Projection onto the 3-dimensional plot of Figure 8.4 allowed for 

rapid group assignment.  Each incoming spectrum was correctly assigned to its corresponding 

group one hundred percent of the time. 

 

Freedom from Interferences. The main sources of potential interference in both ARS and ISP-

ARS are (1) radio frequency (RF) cross-talk between transmitting and receiving PZTs, (2) sound 

waves propagating through the support structures of the instrument, and (3) erroneous 

mechanical and electrical noise bursts.  (1) RF cross-talk was addressed by suspending two PZT 

transducers in mid-air 10cm apart from each other with no mechanical contact.  Using one PZT 

in transmission mode and the other in collection mode, the non-contact mode signal strength was 

assessed.  It was determined that the non-contact mode signal was negligible compared to the 

contact mode signal.  Additionally, in its operational configuration, both the transmitting and 

receiving PZTs are fastened with epoxy to the quartz rod, therefore, they do not move unless 
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excited by mechanical contact.  (2) The support structures for the ARS were made from wood, 

thus inhibiting aberrant waveforms from propagating through the beams.  Wood is made up of a 

cellular network of pores that convert sound energy into heat by frictional and viscoelastic 

resistance.68  The cellular pore network creates high internal friction, therefore, wood has more 

sound dampening capacity than most structural materials (e.g., steel, aluminum, or glass), thus, 

less sound traveled through the beams than if they had been made of metal.  By coupling the 

quartz rod to the support structure through rubber grommets, an additional measure of 

dampening kept the sound interference to a minimum.  Finally, the support structure was fixed in 

place and did not change during the course of the experiment, so interferences propagating 

through were the same for all sample and reference measurements.  (3) All waveforms were 

programmed and generated synthetically in Matlab, therefore, they were tightly regulated for 

unwanted characteristics, such as spontaneous noise bursts, so the sound files for the broadband 

white noise source and the ISP waveform were not subject to reproach.  However, the excitation 

signal was passed through a dual-supply 741 operational amplifier to drive the transmitting PZT 

to full capacity.  Electronic interference from electrical outlets, lights, computers, or radios all 

emit unwanted radiation that was picked up and amplified by the amplifier.  To address this 

issue, all electronic components associated with this research were battery powered.  All scans 

were collected with the lights out and power sources unplugged from the outlets.  In this manner, 

interferences were kept to a minimum. 

 

Conclusion 

Integrated sensing and processing acoustic resonance spectrometry has demonstrated the ability 

to perform favorably with conventional acoustic resonance spectrometry.  With a specifically 
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tailored excitation signal, the ISP-ARS outputs the fuel mixture identity directly and requires no 

post-collection analysis, thus reducing data collection times and sparing the post-collection 

computational burden associated with ARS.  An ISP waveform can easily be tailored for 

characterization or quantification of any type of analyte, therefore, this method is extremely 

attractive for further exploration.   
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Chapter Eight Figures 

 

 

Figure 8.1: In its current configuration, the ARS has two large resonance peaks (10-12KHz and 

14-17KHz).  The spectral features shift in frequency and in amplitude as a response to changes in 

physical properties of the analyte.  It is this property that allows for the quantification and 

classification of analytes using this resonant system. 
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Figure 8.2: This figure illustrates conventional AR spectrometry with a broadband excitation 

source.  When collecting full spectrum ARS, multivariate statistics are required to correlate the 

spectral features to the changing physical property of interest.  Regression techniques, principal 

components, and multiple analysis of variance can be used to calculate a weight vector for use as 

the new ISP-ARS signal source.
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Figure 8.3: The three principal components which capture the largest amount of variance can be 

projected into three dimensional principal component space for easy visualization of the clusters.  

No a priori knowledge was included in the formation of this plot, therefore; the underlying data 

structure is clearly different for each fuel pre-mix.
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Figure 8.4: Full spectrum ARS spectra can be reduced to three dimensional data with the 

MANOVA selection of the most distinguishing frequencies, followed by excitation and data 

collection using those three frequencies.  Contour plots drawn in three standard deviations 

indicate the separation of each mixture from all the others.  Each ellipse contains six points, 

taken from repeat scans of the same analyte. 
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Chapter Eight Tables 

Table 8.1: BEST distances calculated between mixture groups from 14-17 KHz.  Same-cluster 

BEST distances are reported on the diagonal.  Every one of the mixtures was greater than three 

standard deviations from the others, indicating that the data were separable by the BEST metric. 

 
Mixture 

# 1 2 3 4 5 6 7 8 9 10 

1 1.38 24.32 191.08 111.27 6429.50 28.96 224.42 713.40 12.85 80.22 
2 - 1.47 146.72 289.11 9472.70 45.32 138.94 3433.40 94.00 112.53 
3 - - 1.33 172.79 186.34 150.29 185.14 185.17 205.29 200.36 
4 - - - 1.58 507.43 18.63 92.03 51.25 321.79 57.69 
5 - - - - 1.31 980.15 783.20 11542.00 1367.20 530.10 
6 - - - - - 1.40 76.34 145.72 100.52 32.22 
7 - - - - - - 1.43 7985.60 2045.00 51.18 
8 - - - - - - - 1.46 1108.20 22.17 
9 - - - - - - - - 1.45 1738.20

10 - - - - - - - - - 1.29 
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Table 8.2: BEST distances calculated between mixture groups the ISP data.  Same-cluster BEST 

distances are reported on the diagonal.  Every one of the mixtures was greater than three standard 

deviations from the others, indicating that the data were separable by the BEST metric. 

 
Mixture 

# 1 2 3 4 5 6 7 8 9 10 

1 1.31 9.59 8.75 7.03 17.23 188.93 107.89 71.96 115.52 86.18 
2 - 1.19 20.75 9.72 34.90 242.78 211.67 89.64 120.54 91.59 
3 - - 1.96 10.49 49.57 190.47 124.72 59.83 123.84 70.85 
4 - - - 1.93 34.79 208.25 142.59 68.90 109.94 81.36 
5 - - - - 1.48 34.40 15.31 43.87 260.47 21.67 
6 - - - - - 1.81 77.53 260.87 406.41 38.50 
7 - - - - - - 1.97 327.08 314.64 154.45 
8 - - - - - - - 1.60 17.56 66.52 
9 - - - - - - - - 1.55 175.07 

10 - - - - - - - - - 0.97 
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Conclusion of Dissertation 

The overall purpose of this dissertation is to illustrate the successful combination of 

chemometrics, spectrometry, and sensors, into one functional unit, termed ‘integrated sensing 

and processing.’ The utility of this fusion can be seen with the following three points: (1) optical 

spectrometry and acoustic spectrometry are preferred alternatives to slower and more invasive 

methods of analysis, (2) chemometrics can be implemented directly into the physical design of 

spectrometers, thus sparing the need for computationally demanding post-collection multivariate 

analyses, and (3) ISP sensors can be developed specifically for use in highly applied situations, 

making possible automatic analyte quantification or classification without the computational 

burden and extensive data analysis typically associated with conventional spectrometry.  ISP and 

spectrometry comprise viable alternatives to many of the methods of analysis characteristic of 

those in pharmaceutical development today.  For example, in place of complicated tissue 

extractions, chromatographic separations, and dissolution tests; NIR and ARS can reduce sample 

preparation, data collection, data analysis, and allow for high-throughput noninvasive testing.  

With the implementation of chemometrics directly into the design of spectrometers, ISP sensors 

are even more efficient than spectrometry alone.  With these qualifications, ISP is the ideal 

solution for highly applied pharmaceutical challenges, such as process analytical technology.  In 

a situation where an analytical instrument can be entirely dedicated to a single purpose, its 

functionality can be specifically tailored to suit that particular purpose.  In this fashion, each step 

from inception to market; drug development, manufacturing, and testing can be monitored to 

minimize process variability.  The goals of this research are therefore consistent with the 

advancement of process analytical technology, helping to ensure consistency from measurement 
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to measurement, batch to batch, and patient to patient, thereby reducing the risks associated with 

drug therapy. 
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Appendix A – Band Assignments 

Irradiation with infrared light does not provide enough energy to excite an electron from its 

ground state configuration.  It provides only enough energy to incite vibrational and rotational 

motion in the functional groups of the molecule.  For a molecule with n-atoms, there are 3n-6 

degrees of vibrational freedom (3n-5 for a linear molecule), allowing for motions such as 

stretching, bending, scissoring, rocking, and twisting.  Each of these motions for a particular 

functional group has a characteristic frequency at which energy is absorbed.  This property gives 

a characteristic absorbance response at each fundamental vibration mode in the mid-IR.  The 

NIR region of the electromagnetic spectrum is a result of harmonic overtones and combinations 

from these mid-IR fundamental vibration modes.  As such, it is more difficult to assign a 

response at particular frequencies to a specific functional group in the NIR.  Often, a change in 

analyte concentration or identity can be seen across in multiple locations of the NIR spectrum, or 

in its entirety, rather than at specific bands.  However, in order to approximate the region of the 

NIR spectrum where an analyst may find the appropriate analytical signal, a simple calculation 

can be performed.  For example, a CH2 asymmetric stretch frequency shows up as a sharp peak 

in the mid-IR around 2850cm-1.  To find the first harmonic, simply multiply the wavenumber by 

2, and convert to nanometers.  To find the second harmonic, multiply the wavenumber by 3 and 

convert to nanometers.  With this calculation, an analyst would expect to see NIR absorbance 

peaks at 1169 and 1754 nm.  Illustrated in Figure A1, these numbers are reasonably close 

approximations for the CH2 asymmetric stretch frequency. 
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Figure A1: NIR functional group/spectrum correlation chart.  This chart serves as an 

approximate guide for NIR band assignments by functional group. 
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Appendix B – Chemical Structures 

 

Figure B1: Ibuprofen. 
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Figure B2: Acetaminophen.
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Figure B3: Aspirin.
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Figure B4: Ascorbic Acid.
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Figure B5: Vitamin B12.
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Figure B6: Econazole Nitrate.
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Figure B7: 4-Cyanophenol.
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Figure B8: Estradiol.
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Figure B9: Microcrystalline Cellulose.
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Figure B10: Sodium Caprate.
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Figure B11: Ammonium Perchlorate.
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Figure B12: Bisphenol A.
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Figure B13: Epichlorohydrin.
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Figure B14: Polyamide Resin.
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Figure B15: Oxycodone. 
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