77 research outputs found

    Data compression and computational efficiency

    Get PDF
    In this thesis we seek to make advances towards the goal of effective learned compression. This entails using machine learning models as the core constituent of compression algorithms, rather than hand-crafted components. To that end, we first describe a new method for lossless compression. This method allows a class of existing machine learning models – latent variable models – to be turned into lossless compressors. Thus many future advancements in the field of latent variable modelling can be leveraged in the field of lossless compression. We demonstrate a proof-of-concept of this method on image compression. Further, we show that it can scale to very large models, and image compression problems which closely resemble the real-world use cases that we seek to tackle. The use of the above compression method relies on executing a latent variable model. Since these models can be large in size and slow to run, we consider how to mitigate these computational costs. We show that by implementing much of the models using binary precision parameters, rather than floating-point precision, we can still achieve reasonable modelling performance but requiring a fraction of the storage space and execution time. Lastly, we consider how learned compression can be applied to 3D scene data - a data medium increasing in prevalence, and which can require a significant amount of space. A recently developed class of machine learning models - scene representation functions - has demonstrated good results on modelling such 3D scene data. We show that by compressing these representation functions themselves we can achieve good scene reconstruction with a very small model size

    Lossless compression with latent variable models

    Get PDF
    We develop a simple and elegant method for lossless compression using latent variable models, which we call `bits back with asymmetric numeral systems' (BB-ANS). The method involves interleaving encode and decode steps, and achieves an optimal rate when compressing batches of data. We demonstrate it rstly on the MNIST test set, showing that state-of-the-art lossless compression is possible using a small variational autoencoder (VAE) model. We then make use of a novel empirical insight, that fully convolutional generative models, trained on small images, are able to generalize to images of arbitrary size, and extend BB-ANS to hierarchical latent variable models, enabling state-of-the-art lossless compression of full-size colour images from the ImageNet dataset. We describe `Craystack', a modular software framework which we have developed for rapid prototyping of compression using deep generative models

    3D Medical Image Lossless Compressor Using Deep Learning Approaches

    Get PDF
    The ever-increasing importance of accelerated information processing, communica-tion, and storing are major requirements within the big-data era revolution. With the extensive rise in data availability, handy information acquisition, and growing data rate, a critical challenge emerges in efficient handling. Even with advanced technical hardware developments and multiple Graphics Processing Units (GPUs) availability, this demand is still highly promoted to utilise these technologies effectively. Health-care systems are one of the domains yielding explosive data growth. Especially when considering their modern scanners abilities, which annually produce higher-resolution and more densely sampled medical images, with increasing requirements for massive storage capacity. The bottleneck in data transmission and storage would essentially be handled with an effective compression method. Since medical information is critical and imposes an influential role in diagnosis accuracy, it is strongly encouraged to guarantee exact reconstruction with no loss in quality, which is the main objective of any lossless compression algorithm. Given the revolutionary impact of Deep Learning (DL) methods in solving many tasks while achieving the state of the art results, includ-ing data compression, this opens tremendous opportunities for contributions. While considerable efforts have been made to address lossy performance using learning-based approaches, less attention was paid to address lossless compression. This PhD thesis investigates and proposes novel learning-based approaches for compressing 3D medical images losslessly.Firstly, we formulate the lossless compression task as a supervised sequential prediction problem, whereby a model learns a projection function to predict a target voxel given sequence of samples from its spatially surrounding voxels. Using such 3D local sampling information efficiently exploits spatial similarities and redundancies in a volumetric medical context by utilising such a prediction paradigm. The proposed NN-based data predictor is trained to minimise the differences with the original data values while the residual errors are encoded using arithmetic coding to allow lossless reconstruction.Following this, we explore the effectiveness of Recurrent Neural Networks (RNNs) as a 3D predictor for learning the mapping function from the spatial medical domain (16 bit-depths). We analyse Long Short-Term Memory (LSTM) models’ generalisabil-ity and robustness in capturing the 3D spatial dependencies of a voxel’s neighbourhood while utilising samples taken from various scanning settings. We evaluate our proposed MedZip models in compressing unseen Computerized Tomography (CT) and Magnetic Resonance Imaging (MRI) modalities losslessly, compared to other state-of-the-art lossless compression standards.This work investigates input configurations and sampling schemes for a many-to-one sequence prediction model, specifically for compressing 3D medical images (16 bit-depths) losslessly. The main objective is to determine the optimal practice for enabling the proposed LSTM model to achieve a high compression ratio and fast encoding-decoding performance. A solution for a non-deterministic environments problem was also proposed, allowing models to run in parallel form without much compression performance drop. Compared to well-known lossless codecs, experimental evaluations were carried out on datasets acquired by different hospitals, representing different body segments, and have distinct scanning modalities (i.e. CT and MRI).To conclude, we present a novel data-driven sampling scheme utilising weighted gradient scores for training LSTM prediction-based models. The objective is to determine whether some training samples are significantly more informative than others, specifically in medical domains where samples are available on a scale of billions. The effectiveness of models trained on the presented importance sampling scheme was evaluated compared to alternative strategies such as uniform, Gaussian, and sliced-based sampling

    Healing failures and improving generalization in deep generative modelling

    Get PDF
    Deep generative modeling is a crucial and rapidly developing area of machine learning, with numerous potential applications, including data generation, anomaly detection, data compression, and more. Despite the significant empirical success of many generative models, some limitations still need to be addressed to improve their performance in certain cases. This thesis focuses on understanding the limitations of generative modeling in common scenarios and proposes corresponding techniques to alleviate these limitations and improve performance in practical generative modeling applications. Specifically, the thesis is divided into two sub-topics: one focusing on the training and the other on the generalization of generative models. A brief introduction to each sub-topic is provided below. Generative models are typically trained by optimizing their fit to the data distribution. This is achieved by minimizing a statistical divergence between the model and data distributions. However, there are cases where these divergences fail to accurately capture the differences between the model and data distributions, resulting in poor performance of the trained model. In the first part of the thesis, we discuss the two situations where the classic divergences are ineffective for training the models: 1. KL divergence fails to train implicit models for manifold modeling tasks. 2. Fisher divergence cannot distinguish the mixture proportions for modeling target multi-modality distribution. For both failure modes, we investigate the theoretical reasons underlying the failures of KL and Fisher divergences in modelling certain types of data distributions. We propose techniques that address the limitations of these divergences, enabling more reliable estimation of the underlying data distributions. While the generalization of classification or regression models has been extensively studied in machine learning, the generalization of generative models is a relatively under-explored area. In the second part of this thesis, we aim to address this gap by investigating the generalization properties of generative models. Specifically, we investigate two generalization scenarios: 1. In-distribution (ID) generalization of probabilistic models, where the test data and the training data are from the same distribution. 2. Out-of-distribution (OOD) generalization of probabilistic models, where the test data and the training data can come from different distributions. In the context of ID generalization, our emphasis rests on the Variational Auto-Encoder (VAE) model, and for OOD generalization, we primarily explore autoregressive models. By studying the generalization properties of the models, we demonstrate how to design new models or training criteria that improve the performance of practical applications, such as lossless compression and OOD detection. The findings of this thesis shed light on the intricate challenges faced by generative models in both training and generalization scenarios. Our investigations into the inefficacies of classic divergences like KL and Fisher highlight the importance of tailoring modeling techniques to the specific characteristics of data distributions. Additionally, by delving into the generalization aspects of generative models, this work pioneers insights into the ID and OOD scenarios, a domain not extensively covered in current literature. Collectively, the insights and techniques presented in this thesis provide valuable contributions to the community, fostering an environment for the development of more robust and reliable generative models. It's our hope that these take-home messages will serve as a foundation for future research and applications in the realm of deep generative modeling

    Understanding and advancing PDE-based image compression

    Get PDF
    This thesis is dedicated to image compression with partial differential equations (PDEs). PDE-based codecs store only a small amount of image points and propagate their information into the unknown image areas during the decompression step. For certain classes of images, PDE-based compression can already outperform the current quasi-standard, JPEG2000. However, the reasons for this success are not yet fully understood, and PDE-based compression is still in a proof-of-concept stage. With a probabilistic justification for anisotropic diffusion, we contribute to a deeper insight into design principles for PDE-based codecs. Moreover, by analysing the interaction between efficient storage methods and image reconstruction with diffusion, we can rank PDEs according to their practical value in compression. Based on these observations, we advance PDE-based compression towards practical viability: First, we present a new hybrid codec that combines PDE- and patch-based interpolation to deal with highly textured images. Furthermore, a new video player demonstrates the real-time capacities of PDE-based image interpolation and a new region of interest coding algorithm represents important image areas with high accuracy. Finally, we propose a new framework for diffusion-based image colourisation that we use to build an efficient codec for colour images. Experiments on real world image databases show that our new method is qualitatively competitive to current state-of-the-art codecs.Diese Dissertation ist der Bildkompression mit partiellen Differentialgleichungen (PDEs, partial differential equations) gewidmet. PDE-Codecs speichern nur einen geringen Anteil aller Bildpunkte und transportieren deren Information in fehlende Bildregionen. In einigen Fällen kann PDE-basierte Kompression den aktuellen Quasi-Standard, JPEG2000, bereits schlagen. Allerdings sind die Gründe für diesen Erfolg noch nicht vollständig erforscht, und PDE-basierte Kompression befindet sich derzeit noch im Anfangsstadium. Wir tragen durch eine probabilistische Rechtfertigung anisotroper Diffusion zu einem tieferen Verständnis PDE-basierten Codec-Designs bei. Eine Analyse der Interaktion zwischen effizienten Speicherverfahren und Bildrekonstruktion erlaubt es uns, PDEs nach ihrem Nutzen für die Kompression zu beurteilen. Anhand dieser Einsichten entwickeln wir PDE-basierte Kompression hinsichtlich ihrer praktischen Nutzbarkeit weiter: Wir stellen einen Hybrid-Codec für hochtexturierte Bilder vor, der umgebungsbasierte Interpolation mit PDEs kombiniert. Ein neuer Video-Dekodierer demonstriert die Echtzeitfähigkeit PDE-basierter Interpolation und eine Region-of-Interest-Methode erlaubt es, wichtige Bildbereiche mit hoher Genauigkeit zu speichern. Schlussendlich stellen wir ein neues diffusionsbasiertes Kolorierungsverfahren vor, welches uns effiziente Kompression von Farbbildern ermöglicht. Experimente auf Realwelt-Bilddatenbanken zeigen die Konkurrenzfähigkeit dieses Verfahrens auf

    Less is More: Restricted Representations for Better Interpretability and Generalizability

    Get PDF
    Deep neural networks are prevalent in supervised learning for large amounts of tasks such as image classification, machine translation and even scientific discovery. Their success is often at the sacrifice of interpretability and generalizability. The increasing complexity of models and involvement of the pre-training process make the inexplicability more imminent. The outstanding performance when labeled data are abundant while prone to overfit when labeled data are limited demonstrates the difficulty of deep neural networks' generalizability to different datasets. This thesis aims to improve interpretability and generalizability by restricting representations. We choose to approach interpretability by focusing on attribution analysis to understand which features contribute to prediction on BERT, and to approach generalizability by focusing on effective methods in a low-data regime. We consider two strategies of restricting representations: (1) adding bottleneck, and (2) introducing compression. Given input x, suppose we want to learn y with the latent representation z (i.e. x→z→y), adding bottleneck means adding function R such that L(R(z)) < L(z) and introducing compression means adding function R so that L(R(y)) < L(y) where L refers to the number of bits. In other words, the restriction is added either in the middle of the pipeline or at the end of it. We first introduce how adding information bottleneck can help attribution analysis and apply it to investigate BERT's behavior on text classification in Chapter 3. We then extend this attribution method to analyze passage reranking in Chapter 4, where we conduct a detailed analysis to understand cross-layer and cross-passage behavior. Adding bottleneck can not only provide insight to understand deep neural networks but can also be used to increase generalizability. In Chapter 5, we demonstrate the equivalence between adding bottleneck and doing neural compression. We then leverage this finding with a framework called Non-Parametric learning by Compression with Latent Variables (NPC-LV), and show how optimizing neural compressors can be used in the non-parametric image classification with few labeled data. To further investigate how compression alone helps non-parametric learning without latent variables (NPC), we carry out experiments with a universal compressor gzip on text classification in Chapter 6. In Chapter 7, we elucidate methods of adopting the perspective of doing compression but without the actual process of compression using T5. Using experimental results in passage reranking, we show that our method is highly effective in a low-data regime when only one thousand query-passage pairs are available. In addition to the weakly supervised scenario, we also extend our method to large language models like GPT under almost no supervision --- in one-shot and zero-shot settings. The experiments show that without extra parameters or in-context learning, GPT can be used for semantic similarity, text classification, and text ranking and outperform strong baselines, which is presented in Chapter 8. The thesis proposes to tackle two big challenges in machine learning --- "interpretability" and "generalizability" through restricting representation. We provide both theoretical derivation and empirical results to show the effectiveness of using information-theoretic approaches. We not only design new algorithms but also provide numerous insights on why and how "compression" is so important in understanding deep neural networks and improving generalizability

    Understanding and advancing PDE-based image compression

    Get PDF
    This thesis is dedicated to image compression with partial differential equations (PDEs). PDE-based codecs store only a small amount of image points and propagate their information into the unknown image areas during the decompression step. For certain classes of images, PDE-based compression can already outperform the current quasi-standard, JPEG2000. However, the reasons for this success are not yet fully understood, and PDE-based compression is still in a proof-of-concept stage. With a probabilistic justification for anisotropic diffusion, we contribute to a deeper insight into design principles for PDE-based codecs. Moreover, by analysing the interaction between efficient storage methods and image reconstruction with diffusion, we can rank PDEs according to their practical value in compression. Based on these observations, we advance PDE-based compression towards practical viability: First, we present a new hybrid codec that combines PDE- and patch-based interpolation to deal with highly textured images. Furthermore, a new video player demonstrates the real-time capacities of PDE-based image interpolation and a new region of interest coding algorithm represents important image areas with high accuracy. Finally, we propose a new framework for diffusion-based image colourisation that we use to build an efficient codec for colour images. Experiments on real world image databases show that our new method is qualitatively competitive to current state-of-the-art codecs.Diese Dissertation ist der Bildkompression mit partiellen Differentialgleichungen (PDEs, partial differential equations) gewidmet. PDE-Codecs speichern nur einen geringen Anteil aller Bildpunkte und transportieren deren Information in fehlende Bildregionen. In einigen Fällen kann PDE-basierte Kompression den aktuellen Quasi-Standard, JPEG2000, bereits schlagen. Allerdings sind die Gründe für diesen Erfolg noch nicht vollständig erforscht, und PDE-basierte Kompression befindet sich derzeit noch im Anfangsstadium. Wir tragen durch eine probabilistische Rechtfertigung anisotroper Diffusion zu einem tieferen Verständnis PDE-basierten Codec-Designs bei. Eine Analyse der Interaktion zwischen effizienten Speicherverfahren und Bildrekonstruktion erlaubt es uns, PDEs nach ihrem Nutzen für die Kompression zu beurteilen. Anhand dieser Einsichten entwickeln wir PDE-basierte Kompression hinsichtlich ihrer praktischen Nutzbarkeit weiter: Wir stellen einen Hybrid-Codec für hochtexturierte Bilder vor, der umgebungsbasierte Interpolation mit PDEs kombiniert. Ein neuer Video-Dekodierer demonstriert die Echtzeitfähigkeit PDE-basierter Interpolation und eine Region-of-Interest-Methode erlaubt es, wichtige Bildbereiche mit hoher Genauigkeit zu speichern. Schlussendlich stellen wir ein neues diffusionsbasiertes Kolorierungsverfahren vor, welches uns effiziente Kompression von Farbbildern ermöglicht. Experimente auf Realwelt-Bilddatenbanken zeigen die Konkurrenzfähigkeit dieses Verfahrens auf

    A Parametric Approach for Efficient Speech Storage, Flexible Synthesis and Voice Conversion

    Get PDF
    During the past decades, many areas of speech processing have benefited from the vast increases in the available memory sizes and processing power. For example, speech recognizers can be trained with enormous speech databases and high-quality speech synthesizers can generate new speech sentences by concatenating speech units retrieved from a large inventory of speech data. However, even in today's world of ever-increasing memory sizes and computational resources, there are still lots of embedded application scenarios for speech processing techniques where the memory capacities and the processor speeds are very limited. Thus, there is still a clear demand for solutions that can operate with limited resources, e.g., on low-end mobile devices. This thesis introduces a new segmental parametric speech codec referred to as the VLBR codec. The novel proprietary sinusoidal speech codec designed for efficient speech storage is capable of achieving relatively good speech quality at compression ratios beyond the ones offered by the standardized speech coding solutions, i.e., at bitrates of approximately 1 kbps and below. The efficiency of the proposed coding approach is based on model simplifications, mode-based segmental processing, and the method of adaptive downsampling and quantization. The coding efficiency is also further improved using a novel flexible multi-mode matrix quantizer structure and enhanced dynamic codebook reordering. The compression is also facilitated using a new perceptual irrelevancy removal method. The VLBR codec is also applied to text-to-speech synthesis. In particular, the codec is utilized for the compression of unit selection databases and for the parametric concatenation of speech units. It is also shown that the efficiency of the database compression can be further enhanced using speaker-specific retraining of the codec. Moreover, the computational load is significantly decreased using a new compression-motivated scheme for very fast and memory-efficient calculation of concatenation costs, based on techniques and implementations used in the VLBR codec. Finally, the VLBR codec and the related speech synthesis techniques are complemented with voice conversion methods that allow modifying the perceived speaker identity which in turn enables, e.g., cost-efficient creation of new text-to-speech voices. The VLBR-based voice conversion system combines compression with the popular Gaussian mixture model based conversion approach. Furthermore, a novel method is proposed for converting the prosodic aspects of speech. The performance of the VLBR-based voice conversion system is also enhanced using a new approach for mode selection and through explicit control of the degree of voicing. The solutions proposed in the thesis together form a complete system that can be utilized in different ways and configurations. The VLBR codec itself can be utilized, e.g., for efficient compression of audio books, and the speech synthesis related methods can be used for reducing the footprint and the computational load of concatenative text-to-speech synthesizers to levels required in some embedded applications. The VLBR-based voice conversion techniques can be used to complement the codec both in storage applications and in connection with speech synthesis. It is also possible to only utilize the voice conversion functionality, e.g., in games or other entertainment applications

    Deep Generative Modelling of Human Behaviour

    Get PDF
    Human action is naturally intelligible as a time-varying graph of connected joints constrained by locomotor anatomy and physiology. Its prediction allows the anticipation of actions with applications across healthcare, physical rehabilitation and training, robotics, navigation, manufacture, entertainment, and security. In this thesis we investigate deep generative approaches to the problem of understanding human action. We show that the learning of generative qualities of the distribution may render discriminative tasks more robust to distributional shift and real-world variations in data quality. We further build, from the bottom-up, a novel stochastically deep generative modelling model taylored to the problem of human motion and demonstrate many of it’s state-of-the-art properties such as anomaly detection, imputation in the face of incomplete examples, as well as synthesis—and conditional synthesis—of new samples on massive open source human motion datasets compared to multiple baselines derived from the most relevant pieces of literature
    corecore