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Abstract

In this thesis we seek to make advances towards the goal of effective learned com-

pression. This entails using machine learning models as the core constituent of

compression algorithms, rather than hand-crafted components.

To that end, we first describe a new method for lossless compression. This method

allows a class of existing machine learning models – latent variable models – to be

turned into lossless compressors. Thus many future advancements in the field of

latent variable modelling can be leveraged in the field of lossless compression. We

demonstrate a proof-of-concept of this method on image compression. Further, we

show that it can scale to very large models, and image compression problems which

closely resemble the real-world use cases that we seek to tackle.

The use of the above compression method relies on executing a latent variable

model. Since these models can be large in size and slow to run, we consider how

to mitigate these computational costs. We show that by implementing much of the

models using binary precision parameters, rather than floating-point precision, we

can still achieve reasonable modelling performance but requiring a fraction of the

storage space and execution time.

Lastly, we consider how learned compression can be applied to 3D scene data - a

data medium increasing in prevalence, and which can require a significant amount of

space. A recently developed class of machine learning models - scene representation

functions - has demonstrated good results on modelling such 3D scene data. We

show that by compressing these representation functions themselves we can achieve

good scene reconstruction with a very small model size.



Impact statement

Given the ever-increasing amount of data generated and transmitted in the world,

improvements to compression systems have the potential to be of high utility outside

of academia. In this thesis we make steps towards improved learned compression.

Since learned methods have come to outperform hand-crafted methods in many

computational tasks, it seems likely that the task of compression will also follow this

pattern.

Indeed the performance of such learned compression systems is, at the time of

writing, already superior in many metrics to more traditional approaches. Some of

the main barriers to adoption are now of a more practical nature - is the compressor

fast to execute, and small enough in size to be distributed widely? This thesis makes

preliminary approaches at answering these questions, which we hope will be useful

on the progression of learned compression from a research project to something that

is widely used.

The core of the research presented in this thesis has been peer-reviewed and

published at machine learning conferences. The work on lossless compression and

the use of binary precision parameters is published at three top-tier machine learning

conferences [Townsend et al., 2019, 2020, Bird et al., 2021b]. The work on compressing

3D scene data was published at a more specialised compression conference [Bird

et al., 2021a], and the corresponding presentation won the Best Presentation award,

sponsored by Tencent Media Lab1.

As such, there is a reasonable footprint of this thesis in the research world,

including many methods which build directly on the work presented in this thesis

[Kingma et al., 2019, Ho et al., 2019b, Hoogeboom et al., 2019, Kingma et al., 2021].

1See https://pcs2021.org/awards/

https://pcs2021.org/awards/


Collaborations and personal

contributions

This thesis is, at its core, constructed from 4 separate publications [Townsend et al.,

2019, 2020, Bird et al., 2021b,a]. All of these publications are collaborative in nature,

to varying degrees, as are many modern machine learning papers. Indeed it wouldn’t

have been possible to write this thesis without the insights and input from all of my

co-authors.

For the first paper presented [Townsend et al., 2019], Jamie Townsend was the

primary author and the genesis of the main idea of the paper. My own personal

contribution was largely in designing and running the experiments, as well as general

contributions towards idea discussion and writing. The second paper Townsend et al.

[2020] was a follow-up work, for which we shared primary authorship. This reflects

the equal contributions we made towards the paper, although we did have some

specialisation in what we worked on. In particular, Jamie did more of the work on

vectorised coding, whereas I did more of the work on initialising the bits-back chain.

Both papers are presented in this thesis for completeness, although all content

from the original papers which was not created by myself has been re-presented here

in my own words and designs.

For the third [Bird et al., 2021b] and fourth [Bird et al., 2021a] papers, I was the

primary author, and the main contributor to all aspects of the works.
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Introduction

Sending and storing digital data has become ubiquitous in modern life, and by

compressing this data, we can significantly reduce the storage and transmission costs

incurred.

There is a wide range of literature and existing approaches to compression. In

this thesis, we make progress in the relatively new methods of learned compression -

that is, methods which use machine learning at their core rather than hand-crafted

components.

The high-level structure of this thesis are the following 4 chapters:

1. Background

We give a brief background on the relevant topics that we will build on in this

thesis.

2. Lossless compression with latent variable models

We demonstrate how to use the class of latent variable models as lossless

compressors. The core of this method is to combine the relatively old bits-

back coding argument [Hinton and van Camp, 1993] with a modern entropy

coder, asymmetric numeral systems [Duda, 2009]. This combination overcomes

difficulties which had previously prevented the method from being effective,

and we demonstrate the resulting compressor practically in a variety of settings.

3. Binary neural networks for probabilistic generative models

Neural networks form the computational backbone of the learned compressors

that we are interested in. As such, we show how to effectively make these

neural networks much less computationally expensive in terms of space and time

requirements. This is done via implementing large parts of the neural networks
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using binary weights, which has not been tried before to our knowledge, and

requires a variety of innovations to work effectively.

4. Scene compression

We explore how to apply learned compression to a relatively new data domain -

that of 3-dimensional data from a scene. We compress a model which can render

a scene from any perspective, and to evaluate its performance we construct a

more traditional baseline methodology.

We now give a more detailed description of what motivates each chapter, and

the contributions contained in each.

We begin in Chapter 2, with contributions towards learned lossless compression.

Lossless compression is the often less-studied counterpart to lossy compression, where

we impose the restriction that our compression system can incur no reconstruction

error. Although lossy compression is generally more prevalent in the world, lossless

compression is also widespread and many lossless compressors are ubiquitous (e.g.

PNG). Indeed, there are many scenarios where lossless compression is essential. For

example compression of executable files, where reconstruction errors from compression

may result in program execution failures. Or in the world of scientific imaging, for

example astronomical imaging is sensitive to small errors. Consider the case of the

closest exoplanet to Earth - Proxima Centauri b. This would resolve to less than one

pixel in images from the newly launched James Webb telescope, so clearly errors in

the imaging process can affect the discovery or observation of similar celestial bodies.

Our contribution centres on developing methods to use latent variable models

to create lossless compressors. Latent variable models are a class of model in

which there exist hidden (i.e. latent) variables. Although latent variable models

are popular in research and industry, they are often not straightforward to use as

lossless compressors. This is due to the fact that in many latent variable models

of interest, we cannot calculate a closed form of the marginal distribution over the

data (i.e. observed variables). As such, to use entropy coding, we need to compress

information about the state of the latent variables as well as the observed variables.

To overcome this difficulty, we consider a method known as bits-back coding which
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is a theoretical argument regarding the compression rate of a latent variable model.

The only previous attempts to turn bits-back coding into a lossless compressor [Frey,

1997] have suffered from high overheads and consequently sub-optimal compression

rate, due to the choice of entropy coder used (arithmetic coding [Witten et al., 1987]).

Instead, we show that using a relatively modern entropy coder, asymmetric numeral

systems [Duda, 2009], does not suffer from such overheads. As such, it can be used in

conjunction with a latent variable model and the bits-back coding method to achieve

close to the theoretically optimal compression rate.

We initially demonstrate a proof-of-concept implementation of this, bits-back

coding with ANS (BB-ANS), compressor. This uses a relatively small latent variable

model and the simple MNIST dataset [LeCun et al., 1998] to demonstrate that

we can achieve close to the desired compression rate. We then iterate upon the

implementation to show that BB-ANS can have many of the required properties for

a powerful, generic compressor.

To improve the BB-ANS implementation, we propose using a hierarchical latent

variable model, which have been shown to have good modelling performance [Kingma

et al., 2016, Maaløe et al., 2019]. We call the resulting system hierarchical latent

lossless compression, or HiLLoC. We train the model on a more diverse dataset,

ImageNet [Deng et al., 2009], to ensure the model performs well on a range of images.

Although ImageNet is a labelled dataset (which we do not require), we use it since it is

standard in machine learning research, and has a large number of images (1.3 million)

from 1000 classes. We show that the resulting model achieves good compression

performance even on unseen datasets2 - a key requirement for an effective generic

compressor. We also propose systems to effectively overcome some of the challenges

posed by scaling up the model to a larger, hierarchical latent variable model. In

particular, we demonstrate a simple method to mitigate the overheads incurred by

BB-ANS at the start of compression. We also speed up our coding implementation

such it can run in reasonable speeds on larger data-points that we wish to compress.

Although we investigate how to make the coding process efficient in Chapter 2, we

2Although the datasets we test are been collected in a similar manner to ImageNet, or are
variants of ImageNet.
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did not consider the computational efficiency of the model itself. As such, in Chapter 3

we consider how to improve the computational efficiency of the models, with both the

space and speed requirements being factored in. For a learned compression algorithm

to be viable to be adopted more widely, it is crucial that the models themselves do

not have an excessive space requirement, and that they are fast to run.

There are various methods to improve the space efficiency of machine learning

models, such as quantising the weights to a lower precision than floating-point,

or compressing the weights using some other codec [Oktay et al., 2020]. In this

dissertation we consider the method of quantising the weights down to binary

precision - that is each weight being described by just one bit. This has been shown

to be surprisingly effective at reducing the space requirement in neural networks

[Courbariaux et al., 2015, Hubara et al., 2016, Rastegari et al., 2016, M., 2018, Gu

et al., 2018]. Furthermore, the binary precision restriction means that the underlying

operations used in neural networks can be implemented using fast versions that

exploit the binary nature of the weights - this can increase the speed of the models

in addition to the space improvements.

Despite having been shown to be effective for classes of models used for classifica-

tion, to our knowledge there has been no research into whether using binary weights

can be effective for probabilistic generative modelling. Since we use probabilistic

generative models for lossless compression, we seek to understand whether they can

be effectively implemented with binary weights.

We show that a popular weight normalisation scheme [Salimans and Kingma,

2016], widely used in generative models, has a simple analogue when the weights are

restricted to be binary, which we term binary weight normalisation. This scheme

is simpler than the binary version of batch normalisation [Ioffe and Szegedy, 2015],

and also results in more stable learning. In addition, we motivate just implementing

the residual layers [He et al., 2016] of the deep convolutional networks at the core of

our generative models using binary weights, since they often account for most of the

parameters, and importantly are robust to degradation in the quantisation process.

Taking these methods, we show that two modern and powerful classes of generative

models can have large portions implemented using binary weights, reducing their
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space requirement, and potentially their run-time, by a large amount. Thus we make

progress towards having models that can be used as learned compressors which do

not have prohibitive computational requirements.

Lastly, we consider how to implement learned compression in another data domain.

In Chapters 2 and 3, we largely considered compressing 2D image data. In Chapter

4 we consider how to compress a collection of images that come from a single 3D

scene. We consider the problem of how best to compress a system that allows the

user to render the scene from any viewing position that they wish, which is a natural

application for technologies such as augmented and virtual reality.

To compress such scene data losslessly is prohibitive, since the ability to render

the scene from any angle means theoretically an extremely high number of images

(from different angles) need to be recovered by the receiver with no error. So instead

we seek to use lossy compression.

There has been a recent surge of developments in the field of learned methods for

scene generation [Mildenhall et al., 2019, Sitzmann et al., 2019, Mildenhall et al.,

2020], and so we leverage these methods for learned compression. We choose the

neural radiance fields, or NeRF, method [Mildenhall et al., 2020], which represents

a scene via a neural-network based function, which is trained to render a scene

from any angle. The task of lossy compression is thus transformed into the task of

compressing this function itself, effectively becoming a task for model compression.

As such, the method we used in Chapter 3 of using binary weights is technically

applicable. However, since the models are smaller and without residual components,

our methods used in Chapter 3 are less appropriate. As such we use a different

model compression technique, which instead penalises the entropy of weights directly

in the learning process [Oktay et al., 2020]. Combined with a simple codec to

encode quantised versions of the low-entropy weights, the model can be effectively

compressed.

Although this method requires decoding of the weights, which adds to the runtime,

the decoding is a simple affine scaling per weight so is negligible when compared to the

execution costs of the model. As with the previous compression methods presented

in this thesis, the primary benefit of this approach is the reduced space required for
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storage and reduced transmission costs of the compressed data (represented in this

case by the model).

We show that by using this low entropy penalty directly on the NeRF model

weights, which we term compressed NeRF (or cNeRF), we can effectively compress

scenes down to fractions of their original size without noticeable degradation in their

quality. We demonstrate this on a variety of synthetic and real scene data. To

understand how cNeRF compares to other approaches, we construct a benchmark

that does not use a scene representation function. Although this benchmark does

use a modern, learned method (LLFF [Mildenhall et al., 2019]), cNeRF consistently

outperforms the benchmark in terms of the rate-distortion trade-off.

We conclude with a review of the contributions of this thesis and potential avenues

for future work.



Chapter 1

Background

In this chapter we cover the background material required to understand the con-

tributions made in this thesis. Overall, this thesis is on the effectiveness of learned

compression and the computational efficiency of such methods. As such we give

background on a range of topics.

Firstly we describe the framework of probabilistic generative modelling. That is,

the use of models which approximate the probability distributions of observed data.

We then give more detail to the description of latent variable models in particular, a

sub-class of model in which some variables are not observed (i.e. latent).

We also describe some of the model architectures used in approaches to prob-

abilistic generative modelling, in particular focusing on those models that we use

and iterate on in this thesis. These are models that are primarily designed for visual

data, both two and three dimensional, which is the main data type that we test on.

Secondly, we describe the models for 3D scene data that we will utilise in this

thesis. These models are defined by their ability to render a scene from an arbitrary

viewpoint, thus in some sense representing the scene.

Thirdly, we give background for binary neural networks, a method of making

neural networks more computationally efficient. In this thesis we will explore how to

implement some of the models we use for compression with binary neural networks.

Lastly, we give background on the field of data compression, which is the topic

which the majority of this thesis pertains to.
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1.1 The machine learning paradigm and neural net-

works

This thesis will concern topics within the broader field of machine learning, for which

we describe the key concepts that we will use. We also give a description of neural

networks, which have become a common methodology in recent years, and which we

will be using throughout this thesis. The following descriptions are necessarily brief

and are written to give readers who are not familiar with the topics an understanding

of some of the common concepts in this thesis. For a far more thorough and concrete

introduction to these topics, we recommend reading Mackay [2003], Bishop [2006],

Murphy [2022].

Machine learning can concisely be described as constructing a model which will

learn from data how to perform some task of interest. By learning, we mean that

the model will be shown data relevant to the task, referred to as the dataset, and

the model will in some way use this data to improve its performance on the task.

In this thesis we will be concerned with methods which utilise neural networks as

the backbone of the model. Neural networks can be thought of, at a high level, as

function approximators, with their naming owing to the crude resemblance to neural

structures observed within the brain.

A key aspect of neural networks is how they are trained1. Many popular training

methods are based on gradient descent, which relies on the model being differentiable.

By this we mean that gradients of the neural network with respect to some loss

function parameters exist, and can be calculated efficiently by automatic differen-

tiation. The loss function is some quantity that we wish to minimise as a proxy

for improving the performance on the task of interest. Thus we can evaluate the

gradients of the model parameters on our dataset, and update the parameters to

move in the direction of steepest descent for the loss. Since datasets can be large, the

gradients on the full dataset often cannot be evaluated, so instead they are evaluated

on subsets of the dataset, referred to as batches or mini-batches2.

1Note that “training” a model is analogous to a model “learning”.
2Although these two terms are used somewhat interchangeably, we will use the term batch in

this thesis.
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1.2 Notation

Before the more technical sections of this thesis, we briefly lay out the notation that

will be used.

• We will use bold for vectors, e.g. x, as compared to scalars x. In general we

will describe variables as vectors when their dimension is unspecified.

• We will take logarithms to be base 2, such that the corresponding unit of

information is bits, so we abbreviate log to mean log2.

• In general we use the convention of using the characters x for data, y for labels

and z for latents. The characters θ and ϕ always refer to model parameters,

although we also use other characters for model parameters where required.

• We will use p, q to denote density/mass functions. To avoid cluttered notation,

the context of which density function we are specifying is made clear by the

argument. For example, p(z) refers to the density over the latents z, whereas

p(x) refers to the density of the data. Despite the fact that we use the same

function notation in both cases, namely p(·), the actual density function is

different.

• We will often subscript functions and probability distributions, for example pθ.

This indicates that the θ are the parameters which are used to specify p (or

whichever function/distribution is subscripted).

• At some points we will wish to make the clear the difference between a sample

from a distribution and the random variable name itself, in which case we will

use 0 as a superscript to denote a sample. For example, z ∼ p(z) defines a

random variable z which is distributed according to p(z), and z0 would be a

sample of this random variable. We will use subscripts to identify data points

within a dataset, and to identify layers within a hierarchy of layers, which

should be identifiable from the context of their usage.
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1.3 Probabilistic generative modelling

Probabilistic generative modelling is, broadly, the task of constructing a probability

distribution q(x) to fit to some distribution of interest p(x). Usually, we do not have

access to p itself, but rather just samples from it {xn}Nn=1 where xn ∼ p(x). So in

practice, since we normally do not have access to p, our task is to construct q such

that it fits the dataset {xn}Nn=1 well, in some sense to be defined.

We refer to the resulting models as probabilistic generative models (PGMs)

since they are clearly probabilistic (we are constructing a probability distribution),

and they are generative in the sense that they can be used to generate synthetic

data by sampling from q(x). The probabilistic nature differentiates PGMs from

non-probabilistic approaches in generative modelling, such as GANs [Goodfellow

et al., 2014] which can only generate samples from the distribution q(x) , but

cannot evaluate the density itself. The generative nature differentiates them from

discriminative approaches which seek to model the conditional probability p(y|x) of

some label y. Discriminative approaches have no method to generate synthetic data,

and are instead only interested in the dependence of the labels on the data.

We also narrow the domain of interest for this thesis to PGMs for which we have

a functional form for the density (or each conditional density in a structured model),

and that the density is normalised. This precludes energy-based models in which the

density is not normalised. Although it is possible in some circumstances to evaluate

densities of such models, it is not necessarily possible in the general case, and as

such our methods that we will use in this thesis may not be applicable.

1.3.1 The data domain

We now give some relevant properties of the types of data that we will be modelling

in this thesis.

The data x can take values in some set X , formally known as the sample space.

For example, a 6-sided die has X = {1, 2, 3, 4, 5, 6}, and a 64 × 64 image with

8-bit colours is in X = {0, 1, ..., 255}3×64×64. We will make the assumption that the

sample space is discrete, since any continuous data can be taken to be discrete and
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high-precision to approximate it well. This is common in computing, where only

discrete values can be stored.

In this thesis we will be using PGMs to model image data, and the architectures

we use are generally specific to the image data type. However, the general methods,

for example the graphical models and application of lossless compression using PGMs,

are applicable to other data types such as audio or text.

1.3.2 Classes of PGMs

We can divide probabilistic generative models (PGM) into two classes - fully observed

models, and latent variable models. The difference between the two is defined by

whether they contain latent variables, which, as the name implies, are variables that

are not observed. We may simply be constructing such variables in the modelling

process, or such latent variables may truly exist but not be observable to us as

modellers.

We now describe both fully observed and latent variable models - giving their

key properties, an example of such a model and the most common methodologies to

train them.

1.3.2.1 Fully observed models

A fully observed model is one in which there are no latent/unobserved variables. In

the PGM setting, we can denote the model therefore by pθ(x) where θ are the model

parameters.

As an example, consider modelling the number of cars observed passing a set

of traffic lights in an hour. We may choose to model this variable with a Poisson

distribution, which requires us to choose one free parameter - known as the rate.

Since we have only one variable which we can observe (in this case to literally record

how many cars pass the traffic lights in an hour), our model is indeed fully observed.

To train such fully observed PGMs there are a variety of techniques. A widely

used, straightforward method, is that of maximum likelihood. The likelihood refers

to the likelihood of a set of model parameters given the data, i.e. pθ({xn}Nn=1).

Assuming the data is drawn independently the likelihood becomes
∏N

n=1 pθ(xn).
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Thus by maximising this likelihood we are encouraging our model parameters to be

appropriate for the data, in a sense defined by the likelihood function.

It is common to use the log-likelihood instead of the likelihood, which mitigates

some numerical issues, and admits simpler computation of derivatives in many cases.

Thus the objective becomes log pθ({xn}Nn=1)) =
∑N

n=1 log pθ(xn). Since the log is a

strictly monotonically increasing function, if we find a parameter setting which is a

maximum of the log-likelihood function, it will be a corresponding maximum of the

likelihood function.

1.3.3 Latent variable models

The counterpart to fully observed models, as described in Section 1.3.2.1, are latent

variable models, in which there is at least one latent variable z - as well as the

observed variable(s) x that we are truly seeking to model. In PGMs in particular,

our model now consists of multiple components: the prior over our latent variables

pθ(z), the likelihood conditioned on our data pθ(x|z) and a posterior over our latents

conditioned on our data pθ(z|x). Given the prior and likelihood, the posterior

can theoretically be computed using Bayes’ theorem. However, in practice such a

computation is intractable, and as such an approximate posterior qϕ(z|x) is used.

Note that following convention we use ϕ to denote the posterior parameters.

As an example of a latent variable model, suppose we wished to model the

distribution of rainfall of a tropical country with a monsoon season. In this case the

rainfall distribution is likely to be bimodal, since the rainfall is likely to be much

higher during monsoon season than other times. As such we may introduce a binary

latent variable, which we hope will capture whether it is the monsoon season or not.

We can then model the rainfall conditional on this latent variable (for example as a

Gaussian with mean and variance different for each setting of the latent).

As with fully observed PGMs, we can use the log-likelihood as the objective for

latent variable PGMs also. However, the existence of the latent variables makes the

optimisation slightly more complicated. In many cases of interest, we cannot perform

the integration to marginalise the latent variables, and performing a numerical

integration is not useful since we would like a closed form of the objective to optimise.
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To overcome this intractability, we can form a lower bound on the log-likelihood by

using Jensen’s inequality:

log pθ(x) = log

∫
pθ(x, z)dz (1.1)

≥ Eqϕ(z|x)[log pθ(x, z)− log qϕ(z|x)] (1.2)

Where we have assumed that our variables are continuous for simplicity (for discrete

variables we replace the integration with a sum). This lower bound is known as

the evidence lower bound or ELBO. By maximising this bound, we are maximising

a lower bound on the log-likelihood, which serves as a proxy for direct maximum

likelihood optimisation.

1.3.4 Model architectures

In this section we will describe the architectures of the probabilistic generative models

which we use in this thesis. We include these descriptions here in the background,

since they will be used or referred to in multiple chapters. Although the details are

specific, the intention is for the reader to refer back to this section later on.

1.3.4.1 Variational autoencoders

The variational autoencoder (VAE) [Kingma and Welling, 2014, Rezende et al.,

2014] is a latent variable PGM as per Section 1.3.3. The generative model can be

decomposed into the prior on the latent variables pθ(z) and the likelihood of our

data given the latent variables pθ(x|z). The inference model qϕ(z|x) is a variational

approximation to the true posterior.

Training is generally performed by maximisation of the ELBO. Note that although

the ELBO introduces an expectation over the latent variables z, we can use Monte

Carlo integration to form a differentiable estimate to Equation 1.1 with a number of

samples from the posterior (even just a single sample). To reduce variance of the

resulting gradients, it is also common to use the reparameterisation trick [Kingma

and Welling, 2014].
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Generally the distributions pθ(x|z) and qϕ(z|x) are implemented using neural

networks. In order to parameterise distributions, it is common to model the parame-

ters (or sufficient statistics) of a specific distribution. For example, we may model

qϕ(z|x) as a diagonal Normal distribution via two functions µ(x) and σ2(x) to give

qϕ(z|x) = N (z;µ(x), σ2(x)I).

1.3.4.2 Hierarchical VAEs

To give a more expressive model, the latent space can be structured into a hierarchy

of latent variables z1:L. In the generative model each latent layer is conditioned on

deeper latents pθ(zi|zi+1:L). A common problem with hierarchical VAEs is that the

deeper latents can struggle to learn, often collapsing such that the layer posterior

matches the prior: qϕ(zi|zi+1:L,x) ≈ pθ(zi|zi+1:L)
3. One method to help prevent

posterior collapse is to use skip connections between latent layers [Kingma et al.,

2016, Maaløe et al., 2019], turning the layers into residual layers [He et al., 2016].

Note that a skip connection refers to adding the input value to a layer to the output

value of the layer (thus one component of the sum has “skipped’ the layer). Blocks

of residual layers are referred to as residual blocks.

An example of a hierarchical VAE that we use in this thesis is the ResNet VAE

(RVAE) [Kingma et al., 2016]. In this model, both the generative and inference

model structure their layers as residual layers. The ResNet VAE uses a bi-directional

inference structure with both a bottom-up and top-down residual channel. This is a

similar structure to the BIVA model [Maaløe et al., 2019], which has demonstrated

state-of-the-art results for a latent variable model.

The generative model factors as:

pθ(x, z1:L) = pθ(x|z1:L)pθ(zL)
L−1∏
l=1

pθ(zl|zl+1:L) (1.3)

The inference model is factored top-down:

qϕ(z1:L|x) = qϕ(zL|x)
L−1∏
l=1

qϕ(zl|zl+1:L,x) (1.4)

3We have assumed here that the inference model is factored top-down.
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(b) Bi-directional inference model

Figure 1.1: Graphical models of the generative and inference models in a hierarchi-
cal VAE with bi-directional inference. Stochastic nodes are circular, deterministic
nodes are diamond. Brown lines indicate residual layers.

There is also a deterministic upwards pass (through the latent layers) performed

in the inference model, which produces features used by the posterior, conditioned

on just x. We refer to the inference model as bidirectional, since there is both an

upwards and downwards pass to be performed. The full graphical model is shown in

Figure 1.1.

The objective is obtained by expanding the usual ELBO:

log p(x) ≥ Eqϕ(z1:L) [log pθ(x|z1:L)]−DKL(qϕ(zL|x) ∥ pθ(zL)) (1.5)

−
L−1∑
l=1

DKL(qϕ(zl|zl+1:L,x) ∥ pθ(zl|zl+1:L)) (1.6)

Where DKL is the KL divergence. Both the prior and posterior for a latent layer

are factorised when conditioned on deeper layers. Generally the distributions on the

latent layers are Gaussian, although it is also possible to use logistic distributions.

In Figure 1.1 the residual connections are displayed in green, with the non-

residual connections in black. The non-residual connections are convolutional layers

[LeCun et al., 1989] with ELU activation functions [Clevert et al., 2016]. The

residual connections are made from stacks of residual blocks. Each residual block is

constructed as:

Input→ Activation→ Conv2D3x3 → Activation→ Conv2D3x3 (1.7)
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With a skip connection adding the output to the input. 2D refers to the dimension

of the convolution, and 3× 3 refers to the shape of the convolution kernel.

1.3.4.3 Flow models

Flow models consist of a parameterised invertible transformation, z = fθ(x), and a

known density pz(z) usually taken to be a unit normal distribution. Given observed

data x we obtain the objective for θ by applying a change-of-variables to the log-

likelihood:

log pθ(x) = log pz(fθ(x)) + log

∣∣∣∣ det dfθdx

∣∣∣∣ (1.8)

For training to be possible, it is required that computation of the Jacobian determinant

det(dfθ/dx) is tractable. We therefore aim to specify a flow model fθ which is

sufficiently flexible to model the data distribution well, whilst also being invertible

and having a tractable Jacobian determinant. One common approach is to construct

fθ as a composition of many simpler functions: fθ = f1 ◦ f2 ◦ ... ◦ fL, with each fi

invertible and with tractable Jacobian. So the objective becomes:

log pθ(x) = log pz(fθ(x)) +
L∑
i=1

log

∣∣∣∣ det dfi
dfi−1

∣∣∣∣ (1.9)

There are many approaches to construct the fi layers [Dinh et al., 2015, Rezende and

Mohamed, 2015, Dinh et al., 2017, Kingma and Dhariwal, 2018, Ho et al., 2019a]. In

this thesis we will use the Flow++ model [Ho et al., 2019a]. In the Flow++ model,

the fi are coupling layers which partition the input into x1 and x2, then transform

only x2:

fi(x1) = x1, fi(x2) = σ−1
(
MixLogCDF(x2; t(x1))

)
· exp(a(x1)) + b(x1) (1.10)

Where MixLogCDF is the CDF for a mixture of logistic distributions. This is an

iteration on the affine coupling layer [Dinh et al., 2015, 2017]. Note that keeping part

of the input fixed ensures that the layer is invertible. To ensure that all dimensions

are transformed in the composition, adjacent coupling layers will keep different parts

of the input fixed, often using an alternating checkerboard or stripe pattern to choose
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the fixed dimensions [Dinh et al., 2017]. The majority of parameters in this flow

model come from the functions t, a and b in the coupling layer, and in Flow++ these

are parameterised as stacks of convolutional residual layers, with a convolution layer

before and after the stack to project to and from the channel size of the residual

stack. Each block is of the form:

Input→ Activation→ Conv2D3x3 → Activation→ Gate (1.11)

Where Gate is a 1× 1 convolution followed by a gated linear unit [Dauphin et al.,

2017]. There is a skip connection adding the input to the output, along with layer

normalisation [Ba et al., 2016].

Our data is generally discrete, so we actually require a discrete distribution, not a

continuous density. To allow this, the Flow++ model uses variational dequantisation.

Suppose that the data is in [0, 1, ..., 255]D. We can get a discrete distribution from a

continuous density by integrating over the D-dimensional unit hypercube:

Pθ(x) =

∫
[0,1)D

pθ(x+ u)du (1.12)

Variational dequantisation then proceeds by forming a lower-bound to this discrete

distribution by applying Jensen’s inequality:

logPθ(x) ≥ Eqϕ(u|x) [log pθ(x+ u)− log qϕ(u|x)] (1.13)

Where qϕ(u|x) is now a learned component, which dequantises the discrete data.

This is itself parameterised as a flow, using a composition of coupling layers as above.

So our model in total consists of a main flow pθ(x) and a dequantising flow qϕ(u|x).

1.4 Compression

In this section we describe the fundamentals of compression that we will utilise later

when we describe learned compression methods.
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1.4.1 Lossless compression

The task of lossless compression is to communicate data via a message, with as

short a message length as possible, such that the decoded message is identical to the

original data. We imagine that the communication occurs between the sender, who

has the data, and the receiver who is in receipt of the message, and must reconstruct

the original data. The pair of coder and decoder, which map from data to message

and message to data respectively, are known as a codec. It is common to refer to the

encoded version of each element of the data as a codeword.

We will restrict our discussion of lossless compression to the class of methods

referred to as entropy coders. Entropy coders compress data x from a finite state

space X 4. The compression is accomplished by using some mass function q(x), which

can possibly be conditioned on prior data points in a sequence if such a sequence

exists. The mass function assigns probabilities (i.e. masses) to each element of the

sample space, and the fundamental mechanism of entropy coders is to assign shorter

codewords to more likely elements of data.

To be more precise, let us denote the mass function of the true distribution

which generated the data as p(x), which may be different from our mass function

q(x). Entropy coders assign a codeword of length − log q(x) for a given x, thus

the expected length of our codeword is Ep(x)[− log q(x)]. By Gibbs’ inequality, the

shortest expected codelength is achieved when q(x) = p(x), at which point the

expected codelength is the entropy of the data H(p) = Ep(x)[− log p(x)]. When q(x)

is not equal to p(x), the extra expected codelength over the entropy of the data is

the KL-divergence between p and q: Ep(x)[− log q(x)] = H(p) +DKL(p(x) ∥ q(x)).

Note that although we cannot have shorter codelengths than the entropy of

the data on average, which is stated formally by Shannon’s source coding theorem

[Shannon, 1948], we can have shorter codelengths for a given data point, i.e. it is

possible that − log q(x) < − log p(x).

The main entropy coders we will discuss in this thesis are arithmetic coding

[Witten et al., 1987] and asymmetric numeral systems [Duda, 2009], since they are

4In the compression literature the data is often referred to as symbols, and the sample space as
an alphabet.
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the most useful for the modelling situation which we are in. There are a wealth

of other coders that may be of use in different circumstances, for example prefix

codes such as Huffman coding [Huffman, 1952] and Golomb codes [Golomb, 1966], or

universal codes such as Elias gamma coding [Elias, 1975]. Note that the requirement

of a mass function distinguishes entropy coders from other lossless compressors such

as dictionary coders which rely on replacing runs of symbols which have already

occurred in the data with references to the previous occurrences5. Examples of

dictionary coders include the widely used LZ77 [Ziv and Lempel, 1977], LZ78 [Ziv

and Lempel, 1978] and LZW [Welch, 1984] algorithms which form the backbone of

the popular gzip [Gailly and Adler, 1992] compressor.

1.4.2 Lossy compression

When performing lossy compression, we do not operate under the restriction that

the receiver has to have zero reconstruction error when decoding compressed data.

As such, it is less obvious to define the utility of lossy codecs as compared to lossless

codecs.

In lossless compression, we can simply seek methods which can compress data

into as small a message as possible6, since the reconstruction error is always zero. For

lossy compression we instead have to consider how much reconstruction error there

is for a given compressed size of the data (which we refer to as the rate). We expect

that as we allow the rate to increase (possibly by altering the hyperparameters of

the codec in some way) then we expect the reconstruction error (or distortion) to

decrease. This is known as the rate-distortion trade-off.

The desired balance between the rate and distortion terms can be expressed by

some weighting parameter λ. As such, it is common to define the learning objective

for a lossy compressor as:

L(θ) = D(θ) + λR(θ) (1.14)

5There are also dictionary coders that rely on using a pre-computed dictionary, rather than
calculating the dictionary on-the-fly. However, they are less common and we do not include them
in this brief discussion for simplicity.

6Although there are of course other practical considerations, such as the computational demands
of the codec.
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Where D(θ) is the distortion for a given set of model parameters θ, for example the

mean-squared error D(θ) = 1
N

∑N
i=1∥xi − decθ(encθ(xi))∥22, where enc/dec are the

encoder and decoder respectively. R(θ) is the rate, for example the mean compressed

size of the encoded data.



Chapter 2

Lossless compression with latent

variable models

The work presented in this chapter was published in two papers [Townsend et al.,

2019, 2020]. These two papers are presented in this single chapter since the second,

most recent paper [Townsend et al., 2020] follows on directly from the first [Townsend

et al., 2019]. For the first paper [Townsend et al., 2019] my personal contribution to

the paper was less than my co-author James Townsend, which is indicated by my

position as second author. For the second paper [Townsend et al., 2020], we shared

first authorship as our contributions were roughly equal. The concepts and results

from both papers are presented here in their entirety, for a complete overview of the

method we developed.

In this chapter, we describe a methodology to turn latent variable models into

lossless compression algorithms. Previous attempts have incurred an overhead to

compression which makes them impractical, and we demonstrate how to avoid this.

We then explore the resulting algorithm and show its efficacy on a variety of datasets

and a variety of latent variable models.

2.1 Introduction

As discussed in Section 1.4.1, a probabilistic model pθ(x) can be used in conjunction

with an entropy coder such as arithmetic coding (AC) or asymmetric numeral systems
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(ANS) to perform lossless compression. In the case where can evaluate the normalised

probabilities, and where the model is fully observed (i.e. has no latent, or unobserved,

variables), the operation is straightforward. The model gives probabilities for discrete

data pθ(x) and thus with the use of an entropy coder the data can be compressed

using approximately − log pθ(x) bits.

For a latent variable model it is not so obvious how to perform lossless compression

using the model and an entropy coder. This is because we do not have direct access

to the probability pθ(x), since in most models of interest we cannot perform the

integration1 to calculate the functional form of the marginal probability over the

data:

pθ(x) =

∫
pθ(x | z)pθ(z)dz (2.1)

For example using a neural network to calculate the distribution parameters of

pθ(x | z) will usually result in an intractable integral, due to the non-linearities in

the neural network.

Note that, as discussed in Section 1.3.3, using numerical integration is not useful

since we would have to evaluate the probability of every possible value of x (to

construct the full mass function), and for high-dimensional problems this would be

computationally burdensome.

2.2 Bits back coding with ANS

2.2.1 Bits back coding

z x

Figure 2.1: Graphical model with latent variable z and observed variable x. The
latent variable is greyed to indicate that it is not observed.

Bits back coding [Wallace, 1990, Hinton and van Camp, 1993] is an argument

pertaining to latent variable models and their application to lossless compression. In
1Or if the latent z is discrete, replace integral with sum.
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general, it claims that it is possible to use fewer bits than the naive − log pθ(x
0, z0)

which result from simply entropy coding the data x0 plus a corresponding latent z0

according to the joint distribution2. We use the superscript 0 to denote that these

are samples. We now present a detailed description of the argument.

As in the general case for lossless compression, assume a sender wishes to com-

municate data x0 to the receiver, with no reconstruction error. In addition, assume

that the sender and receiver both have access to the same latent variable model,

which consists of a generative model pθ(x, z) = pθ(z)pθ(x | z) and an approximate

posterior qϕ(z |x).

Naively, the sender may select z0 by some method, and encode both z0 and x0

according to the generative model. As discussed in Section 1.4.1, an ideal entropy

coder would result in a message length of −
(
log pθ(z

0)+log pθ(x
0 | z0)

)
bits, ignoring

constant overheads. To minimise the message length, the sender should selected the

maximum a posteriori (MAP) value z0 under the posterior p(z|x).

The receiver could then decode according to the generative model by first decoding

z0 according to pθ(z) and then decoding x0 according to pθ(x | z0). However, they can

do better, and decrease the encoded message length significantly. To see that there

is inefficiency here, we note that the receiver could, seeing x0, find the maximum a

posteriori (MAP) value z0 themselves, so in a sense z0 has been “sent twice”.

To resolve the inefficiency, we suppose that there is some other auxiliary infor-

mation which the sender would like to communicate to the receiver3. We assume

the other information takes the form of some random bits. As long as there are

sufficiently many bits, the sender can use them to generate a sample z0 by decoding

some of the bits to generate a sample from pθ(z). That is, the sender can treat the

random bits as if they were an encoded message and “decode” them - the result is a

sample from the distribution used to decode4.

Generating this sample uses some amount of bits, dependent on the distribution

used. The sender can then encode z0 and x0 with the generative model, and the

2Note we can select the latent to minimise the resulting codelength, which is equivalent to
performing MAP estimation

3We will discuss the consequences of the absence of this auxiliary information later in the thesis.
4This demonstrates the equivalence of sampling and decoding.
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message length will be −
(
log pθ(z

0)+ log pθ(x
0 | z0)

)
as before. But now the receiver

is able to recover the other information, by first decoding x0 and z0, and then encoding

z0, reversing the decoding procedure from which the sample z0 was generated, to get

the “bits back”.

Note that we can choose any distribution for the sender to sample z0 from - it

does not have to be pθ(z), and it may vary as a function of x0. If we generalise and

let qϕ(z |x0) denote the distribution that we use, possibly depending functionally on

x0, we can write down the expected message length:

L(q) = Eqϕ(z |x0)

[
− log pθ(z)− log pθ(x

0 | z) + log qϕ(z |x0)
]

(2.2)

= −Eqϕ(z |x0) log
pθ(x

0, z)

qϕ(z |x0)
(2.3)

This quantity is equal to the negative of the evidence lower bound (ELBO),

sometimes referred to as the free energy of the model.

Having recognised this equivalence, it is straightforward to show using Gibbs’

inequality that the optimal setting of qϕ is the posterior pθ(z |x0), and that with

this setting the message length is

Lopt = − log pθ(x
0) (2.4)

This is the information content of the sample x0, which by the source coding

theorem is the best that we can achieve on average5. Thus bits back can achieve an

optimal compression rate, if sender and receiver have access to the posterior. In the

absence of such a posterior (as is usually the case), then an approximate posterior

must be used.

2.2.2 Arithmetic coding versus asymmetric numeral systems

As discussed in Section 1.4.1, arithmetic coding (AC) and asymmetric numeral

systems are entropy coders, which allow us to losslessly compress a symbol by

utilising a probability distribution over the set of all possible symbols. The resulting
5We can assign shorter codelengths than this to a given sample, but it will be at the expense of

other samples such that on average it is not beneficial.
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message length for both schemes is the information content of the symbols, plus

some small overhead. We will now discuss a key difference between AC and ANS

which is instrumental in our method in applying latent variable methods for lossless

compression.

AC encodes a sequence of symbols into a real number in the interval [0, 1). The

way it does this is to partition the interval into n sub-intervals, where n is the number

of possible values the symbols can take, i.e. the size of the sample space. The length

of each sub-interval is proportional to the probability of the corresponding symbol

(possibly conditioned on previous symbols in the sequence). To encode the current

symbol the corresponding sub-interval is selected, and then the process is repeated

recursively, with the selected sub-interval now being divided up as [0, 1) was divided

to code the first symbol. As such, during the coding process, the running encoded

sub-sequence is a shrinking interval that is some subset of [0, 1). After all symbols

have been encoded, a single number c that lies in the final interval can be chosen

and transmitted.

To decode the resulting number from AC encoding, the receiver begins by mir-

roring the first step of encoding. That is, they divide the interval [0, 1) into n

sub-intervals of size proportional to the symbol probabilities. They then observe

which sub-interval c lies in, which tells them the first symbol that was encoded by the

sender. The process is then repeated recursively, much like the encoding process, by

dividing the selected sub-interval according to the (conditional) symbol probabilities,

observing which sub-interval c relies in and so on. As such, the receiver recovers the

symbols in the same order that they were encoded. To borrow from the computer

science terminology, we can say that AC behaves like a queue, that is first-in-first-out

(with regards to symbols being coded and decoded).

We will now give a high-level description of ANS, which does not share this

property of behaving like a queue. In particular we will describe the range variant

of ANS (rANS). ANS encodes a sequence of symbols into a natural number s ∈ N,

referred to as the state. Given a current state (resulting from the encoding of some

symbols, or given an initial state), we will describe the process to encode a symbol

x and result in a new state s′. Assuming again that our sample space has size n,
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we first partition N into n (infinite) disjoint subsets ri, one for each symbol. For a

random number sampled uniformly on the integers less than some upper bound K,

i.e u ∼ U [1, 2, ..., K − 1], we seek to make p(u ∈ ri) ≈ pi as K →∞.

To encode a symbol x, such that Xi = x, into state s, we update the state s′ to

be the sth element of range ri. To decode the symbol x from s′ and recover s, we can

note that the ranges {ri} partition N, so by identifying which range s′ is in, x can

be identified. Once x has been obtained, we can simply look up which occurrence x

was in ri, which gives us s.

To give a concrete example, suppose we have a sample space of two symbols

{a1, a2} with respective probabilities 2/3 and 1/3, and we wished to encode the

sequence of symbols a2a1a1. We would first divide the natural numbers into two

disjoint subsets r1 = {1, 2, 4, 5, 7, 8, ...} and r2 = {3, 6, 9, ...}, and start with an initial

state s1 = 1.

To then encode the first symbol a2, we would choose the first (since our state

is equal to 1) element of r2 (since our symbol we wish to encode is a2), which is 3,

so we set s2 = 3. Our next symbol is a1, so we pick the third element of r1, to get

s3 = 4. To encode our final symbol we pick the fourth element of r1, to get s4 = 5.

The receiver would receive this state s4 = 5, and then lookup that this is in r1,

which tells them the last element encoded was a1. They then calculate that this is

the fourth element of r1, which tells them that the previous state was s3 = 4. They

then lookup that 4 is the third element in r1, so the penultimate element encoded

was a1 and the previous state was s2 = 3. They finally lookup that 3 was the first

element of r2, which tells them that the first element encoded was a2. They know

this is the end of the decoding since they reached a state of 1.

So in summary, we have two operations, one to encode a symbol to the state

and return a new state enc : s, x → s′ and one to decode the symbol and recover

the old state dec : s′ → s, x. Again to borrow terminology from wider computer

science, we would say that ANS behaves like a stack, and that symbols are encoded

last-in-first-out, or LIFO.

Thus we have seen that AC behaves like a queue and ANS like a stack, which we

will utilise in the next section. For a far more detailed introduction to arithmetic
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coding, see Witten et al. [1987], for asymmetric numeral systems, see Duda [2009].

It is also important to note that we gave a simple example of ANS in action above,

but in practice there are many implementation details, which we have omitted for

the sake of clarity. For example, to avoid integer overflow it is common to constrain

the state to be bounded, and when the state would increase beyond the upper bound

to remove and store the least significant bits such the state is within the bounds

again. These details do have a small impact on compression performance, but the

extend of the overhead is implementation dependent.

Algorithm 1: BB-ANS encode
Data :D
Model : pθ(z), pθ(x|z), qϕ(z|x)
Require :ANS stack with sufficient data encoded
while D ≠ ∅ do

pick x0 ∈ D;
decode z0 with qϕ(z|x0);
encode x0 with pθ(x|z0);
encode z0 with pθ(z);
D ← D \ x0;

Send :ANS stack (serialised into bitstream), N := |D|

Algorithm 2: BB-ANS decode
Model : pθ(z), pθ(x|z), qϕ(z|x)
Require :ANS stack with data encoded (deserialised), N
D ← ∅;
for n = 1 to N do

decode z0 with pθ(z);
decode x0 with pθ(x|z0);
encode z0 with qϕ(z|x0);
D ← D ∪ x0;

Output :D

2.2.3 Combining bits back coding and ANS

Suppose now that we wish to implement bits-back coding as described in Section

2.2.1 using an entropy coder such as AC or ANS - which one should we use? We

will now show why the stack-like nature of ANS is naturally compatible with the

bits-back scheme, and admits coding with a minimal overhead.
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The first step in bits-back coding of some data x0 is to decode a latent z0 according

to the posterior qϕ(z|x0), since before the latent is sampled the sender does not have

access to the required distribution over the data pθ(x|z). After the latent is sampled,

both x0, z0 must be encoded according to the generative model pθ(x, z).

The receiver does not have access to x0, z0, so the only thing they can do is

to decode them according to the generative model (which is shared by sender and

receiver). Thus we see the requirement that bits-back coding imposes: elements

must be decoded in the opposite order to which they were encoded. Frey [1997]

noted this and thus that it is not possible to implement bits-back with AC directly,

since it is FIFO. His solution was to implement a stack-like wrapper using AC which

is LIFO, however the issue is that an overhead of 2 bits must be paid for every

iteration. In contrast, ANS can be used to directly implement bits-back coding, since

the stack-like nature of ANS means that elements are decoded in the opposite order

to which they are encoded naturally.

We give a precise algorithmic definition in Algorithm 1. Since the first step of bits-

back encoding is to decode from the stack, we require that the stack already contains

some encoded data. Note that this may be random data, if we have not actually

previously encoded anything. We then show the decoding process in Algorithm 2.

Note that we recover the same encoded data that we begun with, after decoding x0.

We refer to the codec resulting from these encoding and decoding processes as bits

back with ANS, or BB-ANS.

2.2.4 Chaining BB-ANS

An important observation, first noted in Frey [1997], about bits-back coding is that

the encoding of a sequence of symbols can also be done in sequence with the same

stack. In Frey [1997], the stack was artificially constructed from the queue-like AC,

but in the case of BB-ANS we use the ANS coder, which is naturally stack-like.

In other words, once a symbol has been encoded, the resulting ANS stack can

then be added to encode the next symbol in the sequence, with the encoding of

each symbol following the steps in Algorithm 1 (and correspondingly Algorithm

2 for the decodes). We refer to this process of sequential BB-ANS encodes (and
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correspondingly, decodes), as chaining.

As noted in Section 2.2.3, BB-ANS has the peculiar property that we require data

to already be in the ANS stack in order to encode a symbol, since the first step of

encoding is to decode a latent according to the approximate posterior z0 ∼ qϕ(z|x0).

A major benefit of chaining is that we (generally) only need enough encoded data in

the ANS stack such that we can decode a latent for the first symbol in the sequence.

Once we have encoded the first symbol, the ANS stack will have grown, and we

should have enough data in the stack to then encode the next symbol and so on.

One consideration the above argument ignored is that the entropy of the posterior

qϕ(z|x0) may change with x0. It is therefore possible that we may have enough data

in the stack to encode the first symbol, but not enough for the second symbol if the

posterior is higher entropy under the second symbol than the first. The problem

could also occur at some later symbol. In practise we find that this occurs very

rarely, since the size of the stack always increases after coding a data point. If it

were to occur, one simple method to mitigate it would be to restart compression

with a larger initial stack size.

2.3 Practical considerations for BB-ANS

In this section we explore the issues that may prevent BB-ANS from achieving the

theoretical compression rate of the negative ELBO.

2.3.1 Initial data in the ANS stack

As discussed in Section 2.2.4, although we can chain BB-ANS to use previously

encoded data as the source of auxiliary data for future BB-ANS encoding, we do still

require the ANS stack to have some encoded data in it to code the initial symbol.

We cannot assume the existence of some auxiliary information that we would also

wish to send (such as metadata for images), and so we must treat the data that

initially fills the ANS stack as overhead to our compression scheme. It is overhead

since the initial data in the stack must also be communicated to the receiver, so adds

to the message length. We refer to the size of this initial cost as the initial bits, to
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convey that they are effectively random (uniform) bits in the ANS stack, required to

begin BB-ANS coding.

When using BB-ANS to compress a large dataset, the initial bits can effectively

be amortised, and as such will generally be insignificant. However, for a small

number of data points, or in the extreme, for a single data point, this cost may be

prohibitive. For example, if the latent space is large enough then it could well be

that the BB-ANS encoded version of a single data point would be larger than the

uncompressed data point. This is since, for a single data point, the message length

will be equal to the negative log joint − log pθ(x
0, z0), which will generally increase

as the latent space grows.

There are various ways to mitigate this starting cost of data in the ANS stack.

We can optimise for the initial data point(s) by selecting the latents which minimises

the message length (rather than decoding from a random ANS stack, which amounts

to sampling), and this is equivalent to maximum a posteriori (MAP) estimation.

Another way to reduce the initial bits is to use a different codec to encode a

number of data points at the beginning of compressing a sequence. Thus we fill

the ANS stack until there is sufficient data encoded to permit BB-ANS encoding.

This will result in a net compression rate somewhere between that of the auxiliary

codec and BB-ANS. A simple alternative to an actual codec is also to simply fill

the ANS stack with some of the raw data, i.e. the first few data points. This way

we can ensure BB-ANS is never increasing the data size - in this case it will be at

the uncompressed size until we have enough data in the stack to permit BB-ANS

encoding.

In practice we are usually concerned with compressing vectors of symbols, rather

than individual symbols, for example images. In such cases, another way to mitigate

the initial BB-ANS cost is to begin by compressing sub-vectors independently to

build up the ANS stack, since smaller vectors generally require a smaller amount

of initial bits to begin BB-ANS encoding. Again using the image example, we can

compress patches from the images, rather than full images, until we have sufficient

data in the ANS stack such that we can code full images.
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2.3.2 Non-uniform random bits in the stack

To achieve the negative ELBO as a message length (Equation 2.3) we require that the

latent we decode from the ANS stack is a sample from the posterior z0 ∼ qϕ(z|x0).

The decoded latent is a deterministic function of the bits inside the stack, so the

randomness for the sample comes from the randomness of the bits. A sufficient

condition to ensure z0 is a true sample is that the bits inside the ANS stack are

independent and uniform distributed (on {0, 1}). We refer to such bits as clean, and

if they are not clean, then we refer to them as dirty.

At initialisation of BB-ANS, we are free to put clean bits in the stack. During

chaining, we effectively use each compressed data point as the seed for the next.

Specifically, we use the bits at the top of the ANS stack, which are the result of

coding the previous latent z0 according to the prior pθ(z). Will these bits be clean?

The latent z0 is originally generated as a sample from qϕ(z |x0). This distribution

is clearly not equal to the prior, except in degenerate cases, so naively we wouldn’t

expect encoding z0 according to the prior to produce clean bits. However, the

true sampling distribution of z0 is in fact the average of qϕ(z |x0) over the data

distribution. That is, qϕ(z) ≜
∫
qϕ(z |x)p(x)dx. This is referred to by Hoffman and

Johnson [2016] as the average encoding distribution.

If q is equal to the true posterior, then evidently qϕ(z) ≡ pθ(z), however in

general this is not the case. Hoffman and Johnson [2016] measure the discrepancy

empirically using the marginal KL divergence KL[qϕ(z)∥pθ(z)], showing that this

quantity contributes significantly to the ELBO for three different VAE like models

learned on MNIST. This difference implies that the bits at the top the ANS stack

after encoding a sample with BB-ANS will not be perfectly clean, which could

adversely impact the coding rate.

When initialising the ANS stack, if we choose to mitigate the initial bits cost

using one of the methods discussed in Section 2.3.1 then we may also be starting

with dirty bits. For example if we initially fill the stack with uncompressed data

(e.g. an image) then these are clearly dirty. One method suggested in Frey [1997], to

make the bits cleaner, is to XOR the dirty bits with uniform random bits generated

by some PRNG and known seed (such that the receiver can invert the process).
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2.3.3 Discretising a continuous latent space

Up til now we have assumed that all variables have been discrete, as they must

be to be entropy coded via AC/ANS. This is generally true for our data x, since,

as discussed in Section 1.3, we can generally safely make the assumption that the

sample space is discrete. However, many latent variable models have latents in a

continuous space. For example, the canonical VAE example [Kingma and Welling,

2014] has continuous and Gaussian-distributed latents.

If our model has continuous latents, then we must convert the latents (and

corresponding distributions) into discrete analogues in order to be compatible with

BB-ANS (or any compression scheme based on entropy coding). We refer to this

process as discretisation.

In the following we will treat the latent as a scalar z - for a vector z we can

apply the same discretisation scheme but applied independently in each dimension,

which is appropriate if the relevant distributions over z factorise into a product over

each dimension. We will also use capital letters for the discretised mass functions

we obtain, to make clear the difference to the density over the continuous latent

space6. We will not discuss the more complicated case, where the distributions do

not factorise, since in our models the distributions over the latent space will factorise

by design.

The discretisation process can be thought of as partitioning the real line into

buckets of width δzi indexed by i ∈ I. We can then convert a density pθ(z) over the

continuous latent space to a mass function by taking the probability of a bucket i to

be P (i) ≈ pθ(zi)δzi where zi is some point in the bucket, for example its centre-point7.

This discrete mass function is clearly an approximation of the continuous density,

so will introduce some overhead compared to the theoretical message length (using

continuous latents). However, for sufficiently small bucket widths, this error can be

negligible.

A separate concern is whether the precision (i.e. bucket widths) affects the coding

rates independent of the difference in continuous density and discrete mass function.

6Note that elsewhere in this thesis we use lower case for all densities/mass functions.
7Note that we may have to normalise this to make it a proper distribution.



2.3. Practical considerations for BB-ANS 44

Naively, we may expect that using a higher precision would increase message length.

A straightforward example to motivate this is that the entropy of a discrete uniform

distribution is h = logN where N is the number of elements in the distribution.

However, there is a simple argument that shows that in bits-back coding this effect

will not occur. In bits-back coding we must discretise a continuous latent space and

then apply the prior and posterior over the same set of buckets, since if the buckets

differed then a sample from the posterior could not be coded according to the prior

(since they would operate over different spaces). If we denote the discretised version

of the posterior as Q (which is a distribution over the buckets I), then we can write

the expected message length for bits-back as:

L ≈ −EQ(i |x0)

[
log

pθ(x
0 | zi)pθ(zi)δzi

qϕ(zi |x0)δzi

]
. (2.5)

We can see that the δzi terms cancel, thus using a higher precision (equivalently,

smaller buckets) does not affect the message length. It would seem, therefore, that

we should wish to use a high precision such that the continuous density and discrete

analogue are very similar, but there is one important caveat. Using a high precision

requires more bits to draw a sample (again this can be understood by our trivial

example about the uniform distribution), so using a high precision means we need

more initial bits to start BB-ANS. These initial bits are an overhead, so in reality we

would prefer to keep the precision low in order to reduce this overhead. In practice,

we seek to strike a balance between having the precision high enough to negate the

impact from approximating our continuous densities, but not so high as to impose a

prohibitive cost to starting the BB-ANS chain.

2.3.3.1 Choosing the discretisation scheme

We have established that we must discretise any continuous latent spaces in order

to proceed with BB-ANS, but what is the best way to assign the buckets? Some

important points to note about the discretisation are that:

• The discretisation must be appropriate for the densities that will use it for
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Figure 2.2: An example of the discretisation of the latent space with a standard
Gaussian prior, using 16 buckets with equal prior probability mass.

coding. For example, imagine we were to discretise such that all but one of our

buckets were in areas of very low density, with just one bucket covering the

area with high density. This would result in almost all of the latent variables

being coded as the same symbol (corresponding to the one high density bucket).

Clearly this cannot be an efficient discretisation.

• The prior and the approximate posterior must share the same discretisation.

This is due to the fact that they both describe the same set of latent variables,

and if we do not share a discretisation then the argument used in Section 2.3.3

does not apply, since there is no cancellation of δzi in 2.5.

• The discretisation must be known by the receiver before seeing data, since the

first step of decoding is to decode z0 according the prior.

We propose to satisfy these considerations, by using the maximum entropy

discretisation of the prior, pθ(z). This amounts to allocating buckets of equal mass

under the prior and so results in a uniform distribution over the buckets, which is

the discrete distribution with the maximal entropy for a given number of buckets.

We visualise this for a standard Gaussian prior in Figure 2.2.
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Having the discretisation be a function of the prior (which is fixed) allows the

receiver to know the discretisation up front, which we have noted is necessary for the

receiver to begin decoding. This would not be true for a discretisation that depended

on the posterior.

This discretisation is appropriate for coding according to the prior, since we are

maximising the entropy for this density. However, it is not obvious that it will be

appropriate for coding according to the posterior, which it must also be used for.

Note that we can write our the expected message length (negative ELBO) for a

single data point as:

L(qϕ) = −Eqϕ(z |x0)

[
log pθ(x

0 | z)
]
+DKL(qϕ(z |x0) ∥ pθ(z)) (2.6)

We can see that minimising this objective encourages the minimisation of the KL

divergence between the posterior and the prior. Therefore a trained model will

generally have a posterior close (in a sense defined by the KL divergence) to the

prior. This indicates that the maximum entropy discretisation of the prior may also

be appropriate for coding according to the posterior.

The above discussion has been regarding the model with a single layer of latent

variables, i.e. those models following the straightforward graphical model seen in

Figure 2.1. We will return to the discussion of discretisation when we consider models

with more complicated latent structures, in particular those with a hierarchy of latent

layers.

2.4 Proof-of-concept experiments

In this section we provide the results of experiments designed to verify that the

BB-ANS codec performs as expected on relatively small models and datasets, before

we proceed onto more challenging datasets and complex models.
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2.4.1 Compressing MNIST with a VAE

For our proof-of-concept implementation, we use a Variational Auto-Encoder (VAE)

[Kingma and Welling, 2014]. The VAE is a popular probabilistic generative model

with latent variables, and we have given a thorough background in Section 1.3.4.1.

We use a relatively simple VAE with a single (but multi-dimensional) layer of

latent variables. As is common, we place a unit Gaussian prior over the latents, and

model the approximate posterior as a diagonal Gaussian.

pθ(z) = N (z; 0, I) (2.7)

qϕ(z |x) = N (z;µϕ(x), diag(σ2
ϕ(x))) (2.8)

(2.9)

We will be modelling the MNIST dataset [LeCun et al., 1998], which consists

of 28 × 28 monochrome images, with each pixel described in 8 bits. As such,

we need an output distribution pθ(x | z) that is discrete and produces a vector of

256 probabilities. We use the Beta-binomial distribution with 255 trials, which is

equivalent to a binomial distribution with 255 trials, with parameter p unknown, and

modelled as a random Beta variable with parameters α, β. We factor pθ(x | z) over

each image dimension. We also consider a simpler case of a stochastically binarised

MNIST [Salakhutdinov and Murray, 2008]. For this case, we use a Bernoulli output

distribution on each image dimension. So our two output distributions are:

pfull(x | z) = BetaBin(x; 255,αθ(z),βθ(z)) (2.10)

pbinary(x | z) = Bernoulli(x;γθ(z)) (2.11)

Where we have used γ rather than the usual p to denote the Bernoulli parameter,

to avoid confusion with the prior. So the functions that we learn in training are

µϕ(x),σ
2
ϕ(x) for the posterior and either αθ(z),βθ(z) or γθ(z) depending on whether

we model full MNIST or the binarised version.
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Binarised MNIST Full MNIST

Raw data 1 8
VAE test ELBO 0.19 1.39

BB-ANS 0.19 1.41
bz2 0.25 1.42

Codecs gzip 0.33 1.64
PNG 0.78 2.79
WebP 0.44 2.10

Table 2.1: Compression rates on the binarised MNIST and full MNIST test
sets, using BB-ANS and other benchmark compression schemes, measured in
bits per dimension. We also give the negative ELBO value for each trained
VAE on the test set.

All functions are approximated using MLPs, with ReLU activations [Fukushima,

1975]. For the binarised data we use networks with a single hidden layer of dimension

100, and the latent of dimension 40. For the full MNIST data we use dimensions

of 200 and 50 for the hidden layer and latent respectively. Note that it is generally

acknowledged that convolutional neural networks are advantageous to use for image

modelling tasks, but for this proof-of-concept experiment we found it simpler to use

MLPs as a minimal working example.

The usual VAE training objective is the ELBO, which, as we noted in Section

2.2.1, is the negative of the expected message length with bits back coding. Thus

if we train a VAE as usual, by maximising the ELBO we are also minimising the

message length of the resulting codec when the VAE is used with BB-ANS.

For these proof-of-concept experiments, we do the simplest thing to initialise the

BB-ANS stack. That is, instead of directly sampling the first latents at random, to

simplify our implementation we instead initialise the BB-ANS stack with a supply

of clean bits. Thus to “sample” the first latents we simply decode according to the

posterior from our stack. We find that around 400 bits are required for this in our

experiments. The precise number of bits required to start the chain depends on

the entropy of the discretised approximate posterior (from which we are initially

sampling).

We show the results of the BB-ANS compression scheme against a suite of standard

image compression benchmarks in Table 2.1. We can see that despite using small,

fully-connected, neural networks we can outperform many of the benchmark methods.
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(a) Binarised MNIST
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Figure 2.3: A 2000 point moving average of the compression rate, in bits per di-
mension, during the compression process using BB-ANS with a VAE. We compress
a concatenation of three shuffled copies of the MNIST test set.

This is encouraging, particularly as a potential use case of learned compression is to

make specialised codecs for a particular dataset. For example we could simply be

interested in transmitting MNIST in as small a size as possible. In such cases though

we must take the model size into account, since we do not get to amortise the model

size over many compression use cases. We will return to this thought in Chapter 3.

However it is important to note that BB-ANS is compressing data which is very

close to that on which it was trained. That is, we trained the model on the train set

of MNIST and tested on the test set - but the method is not robust to a distributional
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shift in the data we seek to compress. For example, compressing a colour image

dataset would fail.

In contrast, the benchmark methods are more generic codecs, which do not require

training and have been shown to compress a wide set of image data effectively. In

fact, gzip and bz2 can compress arbitrary files, not even restricted to image data.

It might seem surprising that the more generic compressors actually outperform

specialised image codecs (PNG, WebP), but this effect is due to the simple nature of

the MNIST dataset. Namely, that there are large portions of the image which are

blank, which run-length encoding methods can compress very effectively.

In light of the above, perhaps the more important observation from Table 2.1

is that the achieved compression rate is very close to the value of the negative test

ELBO seen at the end of VAE training.

So we can conclude, that at least in this example, the detrimental effects identified

in Section 2.3 of finite precision, discretising the latent and of dirty bits do not have

a material impact on the compression rate. We visualise their effects in Figure

2.3, which plots a moving average of the compression rate against the lower bound

(negative ELBO). We can see that there is a gap of around 1% between the negative

ELBO and the achieved compression rate, which is reasonable (or at least not enough

to conclude that there is a serious issue).
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2.5 Scaling up BB-ANS

We verified in Section 2.4, that in some proof-of-concept experiments that BB-ANS

does come close to the theoretical message length, and that the various practical

considerations do not appear to manifest in a significant way in such experiments.

We now discuss the techniques we introduce to scale up BB-ANS to larger models

and more complex datasets, and the considerations required to ensure that BB-ANS

is a candidate to go beyond research and be a viable alternative to existing, generic

codecs.

To outline the rest of this section, we will identify shortcomings of the method

described in the previous section that manifest when scaling up the codec. For each

shortcoming we will then describe methods to mitigate it.

• As acknowledged in Section 2.4, the BB-ANS codec as described previously

was trained and tested on a narrow set of data, and would not generalise to

other image data. However, a strength of BB-ANS is that it simply a method

to translate a latent variable PGM into a codec. As such, we instead move to

use a more powerful model, trained on a more broad set of image data, namely

ImageNet [Deng et al., 2009]. We also consider how to compress images of

different sizes, which is a crucial element of making a more generic image codec.

We discuss our choice of model in Section 2.5.1, and examine the performance

on a diverse test set in Section 2.6.

• Another issue that manifests as we increase the scale of our model is that the

cost to initialise the BB-ANS stack, discussed in Section 2.3.1, increases as

our latent space grows. For a very large latent space, this cost can become

prohibitive. As such, we propose methods to mitigate this in Section 2.5.2.

• It is not obvious how to extend the discretisation scheme presented in Section

2.3.3 to the scenario in which latent variables have a prior which does not

factorise over the latent dimensions. We will discuss our method to resolve

this for a particular class of latent priors in Section 2.5.3. We propose a

simple method we refer to as dynamic discretisation, which is applicable for
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an important subset of latent variable models which have a hierarchy of latent

layers.

• A point we glossed over in the previous sections is the overhead of actually

performing the coding/decoding operations. In fact, in our previous experiments

we coded the dimensions of the data and latent in serial. This scales poorly to

high dimensions, and so it is crucial that we vectorise this coding procedure.

We discuss how to do this in Section 2.5.4.

We identify the resulting codec that uses the methods referred to in the above

list as Hierarchical Latent Lossless Compression, or HiLLoC.

2.5.1 Model selection

The main choice to be made when considering how to scale up a codec resulting from

BB-ANS is the choice of model that will be used in conjunction with BB-ANS.

We identify necessary conditions that the model must satisfy in order to be

considered as a viable replacement for generic image codecs.

• Firstly, the model must be trained on (and perform well on) a sufficiently

diverse set of training data. This ensures that performance will be acceptable

when attempting to code from image sources different from the source used for

training.

• Secondly, the model must be able to process different image sizes.

The model we used in Section 2.4 was a small VAE, trained on the simple MNIST

dataset [LeCun et al., 1998]. To improve the model performance we used a more

powerful, modern model as the VAE. Namely we use the ResNet VAE introduced

by Kingma et al. [2016]. This is a hierarchical latent variable model, as described

in Section 1.3.4.2, which has shown to be effective at probabilistic modelling of a

variety of image datasets.

We use the ImageNet dataset [Deng et al., 2009] as the training dataset, since

this is a relatively large dataset, with approximately 1.3M images in the training

set, and which covers a diverse range of subjects spanning over 1000 classes. These



2.5. Scaling up BB-ANS 53

images are also in a variety of sizes, so by training and testing on this dataset we

ensure that we have performance robust to changes in image size. Note that although

it is unnecessary to use a labelled dataset for our use case of compression, we also

are motivated to use ImageNet simply because it, at least at the time of publication,

is a widely used benchmark dataset. So many models that we wish to compare to

report performance on it.

It is possible to take a model with a fixed input size and obtain outputs on a

different model size with a combination of running the model on patches (if the

image is larger than the requested input size) or padding the input image (if it is

smaller). Neither of these are optimal solutions, since image context that could be

used by the model is being discarded in the process.

We seek instead to use a class of models which can be run on multiple different

image sizes, namely fully convolutional models. This refers to a model in which

there are no densely connected layers - every layer is either convolutional or operates

elementwise. Both convolutions and elementwise operations produce an output that

scales in size with the input, unlike a densely connected layer which requires a fixed

size input and output.

2.5.2 Starting the bits back chain when using hierarchical

latent variable models

As discussed in Section 2.3.1, to code our first data point (or batch of data points),

we require some data to be in the ANS stack in order to allow us to decode a latent

sample according to the posterior. With a hierarchical latent variable model, our

latent space may be very large, since many layers can be added to improve the

modeling performance (i.e. increase the ELBO). For example very deep hierarchies

are used in Kingma et al. [2016], Sønderby et al. [2016], Maaløe et al. [2019]. This

is problematic, since the entropy of the posterior distribution over the latent space,

and thus the amount of data initially required to be in the ANS stack, generally

scales with the dimensionality of the latent space. For a sufficiently large space, this

could result in requiring such a large amount of initial data to be in the ANS stack
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such that effective compression is impossible.

Note that we can in theory amortise the cost of these initial bits over all of the

data points being compressed. So for compressing large datasets it may not be

problematic. However, for a compression scheme to be truly practical, it’s imperative

that it also be useful for compressing smaller datasets, and even when compressing a

single data point.

We now discuss methods that can be used to reduce the initial bits required when

using BB-ANS and a hierarchical latent variable model.

2.5.2.1 Bit-Swap

One method proposed to reduce the initial bits is Bit-Swap [Kingma et al., 2019].

This core of this method is, at the beginning of compression, to not decode all latents

according to the posterior at once. Instead layers of latents are alternately decoded

according to the posterior, then encoded according to the prior. We show the encode

process precisely in Algorithm 3, and the decode in Algorithm 4.

The key benefit of Bit-Swap is that the latents are not all decoded with the

posterior at the start of BB-ANS coding. This means that the initial bits required is

smaller than the naive BB-ANS implementation, in which all latents z1:L are decoded

with the posterior at the first step of compression. The precise number of initial bits

for Bit-Swap will depend on the entropy of the latents and the data, but will always

be less than or equal to the number of initial bits required by the naive BB-ANS

algorithm, and in many cases be significantly less.

However, Bit-Swap has two main disadvantages. Firstly, the hierarchical posterior

must be bottom-up, namely deeper latents must be conditioned on earlier latents in

order to permit the alternative encode/decode steps. This precludes the use of certain

architectures that use top-down posteriors. Secondly, and most importantly, the

hierarchical prior, likelihood and posterior must be Markov. That is, pθ(zl|zl+1:L) =

pθ(zl|zl+1), pθ(x|z1:L) = pθ(x|z1) and qϕ(zl+1|z1:l,x) = qϕ(zl+1|zl) for all l8. Again,

this is required to permit the alternating encode/decode steps. To see why, if we

suppose that our likelihood pθ(x|z1:L) was not Markov, then we would be unable to

8Apart from the very first layer, where the posterior is just conditioned on x.
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perform the “encode x with pθ(x|z1)” step in the encode algorithm (and in fact any

of the other encodes according to the prior) since we do not have access to pθ(x|z1),

as it would require integrating out the latents zl for l > 1.

The Markov restriction one is significant, since it forbids the use of skip con-

nections, described in Section 1.3.4.2 as the fundamental component of residual

layers. Skip connections have proven to be a crucial architectural component of deep

hierarchical latent variable models, increasing the stability of very deep models and

preventing posterior collapse [Kingma et al., 2016, Sønderby et al., 2016, Maaløe

et al., 2019].

Algorithm 3: Bit-Swap encode
Data :D
Model : pθ(z1:L), pθ(x|z1:L), qϕ(z1:L|x)
Require :ANS stack with sufficient data encoded
while D ≠ ∅ do

pick x0 ∈ D;
decode z01 with qϕ(z1|x0);
encode x0 with pθ(x|z01);
for l = 1 to L− 1 do

decode z0l+1 with qϕ(zl+1|z0l );
encode z0l with pθ(zl|z0l+1);

encode z0L with pθ(zL);
D ← D \ x0;

Send :ANS stack (serialised into bitstream), N := |D|

Algorithm 4: Bit-Swap decode
Model : pθ(z1:L), pθ(x|z1:L), qϕ(z1:L|x)
Require :ANS stack with data encoded (deserialised), N
D ← ∅;
for n = 1 to N do

decode z0L with pθ(zL);
for l = L− 1 to 1 do

decode z0l with pθ(zl|z0l+1);
encode z0l+1 with qϕ(zl+1|z0l );

decode x0 with pθ(x|z01);
encode z01 with qϕ(z1|x0);
D ← D ∪ x0;

Output :D
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2.5.2.2 Using auxiliary information sources as initial bits

We seek to decrease the number of initial bits, but also avoid the main disadvantage

of Bit-Swap, discussed in Section 2.5.2.1, that the model must be Markov. To do so,

we utilise one of the core properties of the bits-back argument - that auxiliary data

must be present in order to permit compression in the first place. As such, we can

simply use useful information to fill the ANS stack until we have sufficient initial bits

to permit decoding the latents. This way, the initial bits do not have to be viewed as

pure overhead to the codec, instead they may simply cause the compression rate to

be sub-optimal at the beginning of compression, and as more data is compressed the

compression rate will approach the optimal rate with BB-ANS (the negative ELBO).

There are two key questions that we are required to answer to make this method

effective:

• What useful auxiliary information can we insert into the ANS stack?

• How can we minimise the initial bits required to begin BB-ANS coding, allowing

us to approach the optimal rate faster?

A straightforward method to address the first question is proposed by Frey [1997]

- we can insert the data itself into the ANS stack, coded according to a uniform

distribution. This does not achieve compression, since our coding distribution is

uniform, but crucially is not worse than the raw data itself. For example for raw

data that is described by 8 bits per dimension, we can ensure that (on average) we

do not use more than 8 bits per dimension at the beginning of coding. This may

sound underwhelming, but it is noted in Bit-Swap [Kingma et al., 2019] that using a

deep hierarchical model and naive BB-ANS can result in significant size inflation at

the beginning of coding. For example, their 8 layer model requires roughly 44 bits

per dimension to compress a single data point, which is almost six times more than

the raw data itself.

One complication is that we require that our data we code via the uniform

distribution to be roughly random, and uniform. Otherwise BB-ANS coding may

not be effective due to the dirty bits issue described in Section 2.3. Clearly, if we use

our raw data, this constraint will not usually be satisfied, since the data will not be
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random and uniform. Frey [1997] deals with this by applying a XOR operation to

the data with a random bit-mask. As long as a seed for a pseudo-random number

generator is shared between sender and receiver to generate this bit-mask this step

is reversible on the receiver’s end.

Although the above method guarantees that BB-ANS will never be worse than

sending the raw data (as long as the dirty bits issue is not manifest), it is more

effective instead to use a different codec to fill the ANS stack with initial bits of

compressed data. We refer to this codec as the auxiliary codec. The resulting

compression rate would begin at the compression rate of the auxiliary codec, and

would then step to the compression rate of BB-ANS once the auxiliary codec had

compressed enough data points to permit BB-ANS coding to proceed. The auxiliary

codec would have to be known to both sender and receiver, but they can use a simple,

generic codec with a worse compression rate than BB-ANS.

In our experiments we use the Free Lossless Image Format (FLIF) [Sneyers and

Wuille, 2016] to build up the buffer. We chose this codec because it performed better

than other widely used codecs.

The above methods allow us to construct a codec which is practical at compressing

a small number of data points, but clearly there is still overhead. We will not achieve

our desired compression rate of the negative ELBO until we have sufficient initial

bits in the ANS stack. This brings us to the second question posed above - if we can

reduce the amount of bits required to begin BB-ANS coding then we will be able to

achieve the BB-ANS compression rate sooner.

Since the first step of BB-ANS is to decode the latents z1:L with the posterior

qϕ(z1:L|x), we wish to reduce the dimensionality of z1:L - this in turn will reduce the

initial bits required to decode it.

Each latent zl will in general have shape B ×Hl ×Wl ×Cl where B is the batch

size, Hl,Wl, Cl are the respectively the height, width, and number of channels in the

latent layer l. Our latent space has two spatial dimensions (height and width) since

we assume that we are using a fully convolutional model as discussed in Section 2.5.1.

Although we cannot alter the channels of the latents, each of the other 3 dimensions
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generally scales in accordance with the input data9. Therefore, to minimise the

initial bits required for BB-ANS we simply seek to minimise the batch and spatial

dimensions of the input image that we seek to code. As such, at the beginning of

coding we use a batch size of 1, and code small patches of images rather than full

images themselves.

These size reductions are effective at reducing the initial bits overhead, but by

using a small batch size we increase the run-time of our codec, since generally neural

network based models are most time efficient when running on larger batch sizes

since batch computations can be performed in a parallel fashion. By coding small

patches, rather than full images, we also expect a worsening in compression rate.

This is since the model has less context for each pixel it seeks to compress. As an

example, consider using the smallest possible patch size - a single pixel. The best

possible compression would be the marginal distribution over the pixel values, which

would not result in effective compression.

For our experiments on compressing full ImageNet images, we compress 32×32

patches, then 64×64, then 128×128 before switching to coding the full size images

directly. Note that since our model can compress any shape image, we can compress

the edge patches which will have different shape if the patch size does not divide the

image dimensions exactly. Using this technique means that our coding rate improves

gradually from the FLIF coding rate towards the coding rate achieved by HiLLoC

on full images. We compress only 5 ImageNet images using FLIF before we start

compressing 32×32 patches using HiLLoC.

Having to compress 5 images before we begin to utilise BB-ANS is an overhead

of our codec, but it is worth noting some important justifications. Firstly, it achieves

better performance than the primary alternative, Bit-Swap. With an 8 layer model,

Bit-Swap report an initial compression rate on ImageNet 3210 of 6.97 bits per

dimension. FLIF achieves a much better compression rate than this. Secondly, we

utilise a very deep latent hierarchy in our experiments of 24 latent layers. This is to

9There are some model architectures that may not have this property, but it is often true, and
true for the models that we utilise.

10This refers to a version of the ImageNet dataset with images cropped and down-sampled to
shape 32× 32.
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illustrate that our codec performs well even with such large models, but in practice

models would often use many less layers than this, which means that we would

require less images to be coded with the auxiliary codec.
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Figure 2.4: Graphical models representing the generative and inference models
with HiLLoC and Bit-Swap, both using a 3 layer latent hierarchy. The dashed
lines indicate dependence on the fixed observation.

2.5.3 Dynamic discretisation

2.5.3.1 Structured versus unstructured priors

In Section 2.3.3 we described a straightforward method to discretise a continuous

latent space to permit entropy coding via ANS. We referred to the method as the

maximum entropy discretisation, since it amounted to dividing a 1D latent space

into buckets with equal mass under the prior. With higher dimensional latent

spaces, the assumption made was that the prior factorises over latent dimensions,

i.e. pθ(z) =
∏D

d=1 pθ(zd) where D is the number of dimensions. Note that this

assumption can of course be violated, for example we could use a Gaussian prior

with a non-diagonal covariance matrix. This would be problematic, as now our

discretisation would have to index higher dimensional buckets. We do not consider

this case, since it is, for one, more complicated, but also for the simple fact that it is

more common in PGMs to just use a factorised prior.

However, for more complex latent variable models, it is usual to design the latent

space to be structured, in some sense. For example, we discussed models with a

hierarchy of layers of latent variables in Section 1.3.4.2. The hierarchy amounts to
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structuring the latent z into L layers z1:L and the prior is thus ordered:

pθ(z) = pθ(zL)
L−1∏
l=1

pθ(zl|zl+1:L) (2.12)

where the prior for each latent layer is conditioned on the previous layers. Compare

this to the simpler method that we used previously, i.e. in Section 2.4, where the

prior had no conditional dependencies, which we can think of as unstructured.

From a mathematical perspective, the hierarchical prior is a richer prior than the

unstructured prior, since it is a more expressive factorisation of the joint distribution

over all of the latent dimensions. Indeed, having an unstructured prior is actually

a very restrictive condition on the space of priors that can be modelled, since all

latent dimensions are independent. In contrast, the hierarchical prior places no

restrictions on the joint distribution - every multivariate distribution can be written

as per Equation 2.12 by Bayes’ theorem. But if we insist that each conditional prior

pθ(zl|zl+1:L) be factorised over the dimensions of zl then this does again place a

restriction on the set of priors that can be modelled. Note also that many other

choices of a structured prior could be specified, for example the prior could be

Markov: pθ(z) = pθ(zL)
∏L−1

l=1 pθ(zl|zl+1).

2.5.3.2 Static versus dynamic discretisation

Returning now to the task of discretising the latent space, we note that it is not as

straightforward to discretise a structured latent space as compared to an unstructured.

This is due to the fact that we do not know the marginal prior distribution p(zl)

on a latent layer l, since the prior itself is conditional on the values of other latent

layers (aside from the deepest layer L, which is not conditional).

Using the latent hierarchy described previously as an example, we see that to

access the marginal prior on a latent layer l we would have to integrate out the

deeper layers:

pθ(zl) =

∫
dzl+1:L pθ(zL)

L−1∏
k=l

pθ(zk|zk+1:L) (2.13)

This integral is usually intractable, and even if it were tractable it would probably
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induce dependencies between dimensions of the latent space, which would make

entropy coding more difficult. Therefore we cannot simply allocate buckets to be

of equal mass under the prior as we did previously to obtain the maximum entropy

discretisation.

One method to resolve this issue is to simply sample from the prior, and then

divide the latent dimensions into buckets which assign a roughly equal number of

samples to each bucket. This is equivalent to performing a Monte Carlo integration

of Equation 2.13. This is the method utilised by Bit-Swap [Kingma et al., 2019]. We

refer to this method as static discretisation, since the buckets are estimated once

and then constant for the coding of any data points.

We propose using a different method, namely to simply make the discretisation

scheme itself conditional in the same manner as the prior. Instead of discretising

according the marginal priors pθ(zl), we discretise according to the conditional priors

pθ(zl|zl+1:L). Specifically, for each latent layer l, we partition each dimension into

intervals which have equal probability mass under the conditional pθ(zl | zl+1:L).

This directly generalises the maximum entropy discretisation scheme we described

previously, and we refer to this method as dynamic discretisation since the buckets

are dynamic dependent on the values of the latents we seek to code.

It is worth considering the merits and drawbacks of these two contrasting ap-

proaches. Static discretisation has the advantage that it can be used with any

factorisation of the prior - all that has to be done is sampling and then bucket

estimation. It does require this bucket estimation step to be performed however,

which adds an extra step of computation to the coding process, although it only has

to be performed once. There is also no guarantee that the estimated buckets will

be appropriate for all latents that may be encountered. For example if the prior is

multi-modal then it is possible that some modes will not be seen during the bucket

estimation step, which will result in poor compression rates at test time if these

modes are observed.

In contrast, dynamic discretisation has the advantage that it will always accurately

reflect the prior since it is exact11, and does not rely on an approximation of the

11Note that the process of assigning the buckets for a given density may not be exact, given that
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marginals. It is also much simpler to calculate than the static discretisation, since

usually the CDFs for the conditional prior can be used directly to solve for the bucket

locations. However, the dynamic discretisation must be calculated for each latent to

be coded, which adds to the overhead at run-time.

Algorithm 5: HiLLoC encode
Data :D
Model : pθ(z1:L), pθ(x|z1:L), qϕ(z1:L|x)
Require :ANS stack with sufficient data encoded
while D ≠ ∅ do

pick x0 ∈ D;
decode z0L with qϕ(zL|x0);
for l = L− 1 to 1 do

decode z0l with qϕ(zl|z0l+1:L,x
0);

encode x0 with pθ(x|z01:L);
for l = 1 to L− 1 do

encode z0l with pθ(zl|z0l+1:L);

encode z0L with pθ(zL);
D ← D \ x0;

Send :ANS stack (serialised into bitstream), N := |D|

Algorithm 6: HiLLoC decode
Model : pθ(z1:L), pθ(x|z1:L), qϕ(z1:L|x)
Require :ANS stack with data encoded (deserialised), N
D ← ∅;
for n = 1 to N do

decode z0L with pθ(zL);
for l = L− 1 to 1 do

decode z0l with pθ(zl|z0l+1:L);

decode x0 with pθ(x|z01:L);
for l = 1 to L− 1 do

encode z0l with qϕ(zl|z0l+1:L,x
0);

encode z0L with qϕ(zL|x0);
D ← D ∪ x0;

Output :D

Note that in the above considerations, we made the assumption that latent

samples came from the prior, which for BB-ANS will not be true - they will be

not all CDFs have analytic forms. However, this is a negligible source of error compared to the
Monte Carlo integration used for static discretisation.
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sampled from the posterior qϕ(z|x). However, as discussed in Section 2.3.3.1, since

the posterior is generally close to the prior for a trained model, we can ignore this

difference in practice.

An important consideration though, is that we must use the same discretisation

when coding the latents according to both the prior and posterior. Thus if the prior

and posterior have different structures, we cannot use dynamic discretisation, which

is another drawback of the method. As an example, consider a prior and a posterior

structured as:

pθ(z1:L) = pθ(zL)
L−1∏
l=1

pθ(zl|zl+1:L) (2.14)

qϕ(z1:L|x) = qϕ(z1|x)
L∏
l=2

qϕ(zl|zl−1:1) (2.15)

The first step of BB-ANS would be to decode z1 according to the posterior, but we

would not be able to calculate the discretisation required, as the prior over z1 is

conditioned on all the other latents, which we do not have values for yet.

As such, dynamic discretisation enforces that we have the same structure for the

posterior as the prior. This is generally referred to in the context of hierarchical latent

variable models as having a top-down posterior qϕ(z) = qϕ(zL)
∏L−1

l=1 qϕ(zl|zl+1:L), as

opposed to a bottom-up posterior as defined in Equation 2.15.

We show an example graphical model for Bit-Swap and HiLLoC, which demon-

strates the difference between top-down and bottom-up posteriors, as well as the

Markov nature of the Bit-Swap model requirement, in Figure 2.4. We also summarise

the resulting HiLLoC codec in Algorithms 5 and 6.

2.5.4 Vectorised lossless compression

We did not address the exact nature of how the ANS entropy coding was performed

in the proof-of-concept experiments in Section 2.4, but the implementation was a

simple Python implementation which ran in loops over the dimensions of the data

being coded.

This is sufficient for the small scale experiments which we ran earlier, but is too
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x0 ∼ pθ(x | z0) z0 ∼ pθ(z)

Vectorised
ANS
coder

...

Figure 2.5: Visualisation of the process of pushing images and latents from a VAE
to the vectorised ANS stack. The ANS stack head is shaped such that images and
latents can be pushed and popped in parallel, without reshaping. Beneath the
shaped top of the stack is the flat message stream output by ANS.

slow to run on high-dimensional images and latents that we seek to code as we use

larger models and look to compress larger images. As such, we rewrite the ANS

compression to be implemented in a vectorised fashion. This is not fully parallel,

but instead using primarily Numpy [Harris et al., 2020] operations on vectors rather

than scalars, which is significantly faster than using loops in the Python interpreter.

As such, we effectively reshape the top of the ANS stack (which is the location

to which data is pushed or popped, to use the standard language of stacks) to be

the same shape as the data we are seeking to code. Each dimension of the data

is then coded via ANS on each individual ANS sub-stack on the reshaped stack.

After the coding is performed these sub-stacks can be concatenated into a regular

ANS stack or bitstream. To ensure the overhead is low while doing this, the BitKnit

technique [Giesen, 2015] is used. BitKnit uses the fact that the values at the top of

the sub-stacks are not uniformly distributed to reshape the stack head more efficiently

than simply concatenating. As discussed in Giesen [2015], elements of the top of the

sub-stacks have a probability mass roughly

p(h) ∝ 1/h. (2.16)

Equivalently, the length of h is approximately uniformly distributed. More detailed

discussion and an empirical demonstration of this is given by Bloom [2014]. An



2.6. Larger Scale Experiments 65

efficient way to form the final output message at the end of decoding, is to fold the

stack head vector by repeatedly encoding half of it onto the other half, until only a

scalar remains, using the above distribution for the encoding. We implement this

technique and use it for our experiments. The number of (vectorised) encode steps

required is logarithmic in the size (i.e. the number of elements) of the stack head.

Some of the overhead from vectorisation also comes at the start of encoding, when,

in existing implementations, the elements of the stack head vector are initialised to

copies of a fixed constant. Information from these copies ends up in the message and

introduces redundancy which scales with the size of the head. This overhead can be

removed by initialising the stack head to a vector of length 1 and then growing the

length of the stack head vector gradually as more random data is added to the stack,

by decoding new stack head vector elements according to the distribution (2.16).

We visualise the vectorised coding process in Figure 2.5. Note that we use a

different shaped head for the latent and the image, since in theory the respective

coding can be performed in parallel.

2.6 Larger Scale Experiments

We now present experiments to verify that the HiLLoC method is indeed a strong

image compression system, which can effectively compress images from different

sources and of different sizes.

We implement HiLLoC with a ResNet VAE (RVAE), as discussed in Section 2.5.1.

We give a detailed description of the model architecture in Section 1.3.4.2.

In all experiments we used an RVAE with 24 stochastic hidden layers. The RVAE

utilises skip connections, which have been shown to be important to be able to

effectively train deep models [He et al., 2016, Maaløe et al., 2019]. As discussed in

Section 2.5.2, if we were using the Bit-Swap method we would not be able to use

skip connections, and training such deep models would be more challenging.

We trained the RVAE on the ImageNet 32 training set, then evaluated the

RVAE ELBO and HiLLoC compression rate on the ImageNet 32 test set. To test

generalisation, we also evaluated the ELBO and compression rate on the tests sets of
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Figure 2.6: A selection of images from the ImageNet dataset and the compression
rates achieved on the dataset by PNG, WebP, FLIF, Bit-Swap and the HiLLoC
codec (with ResNet VAE) presented in this thesis.

ImageNet 64, CIFAR-10 and full size ImageNet. For ImageNet 32, ImageNet 64 and

CIFAR-10 we report compression rates on the entire test set, and so do not require

using an auxiliary codec and or patching as described in Section 2.5.2. For full size

ImageNet, we do use the described method, since we only compress 2000 random

images from the test set (thus the initial bits cost is amortised over fewer images).

The results are shown in Table 2.2.

2.6.1 Scaling up the model size

Table 2.2: Compression performance of HiLLoC with RVAE compared
to other codecs. Rates measured in bits/dimension (raw data is 8
bits/dimension). For HiLLoC we display compression rate and theoret-
ical performance (ELBO). All HiLLoC results are obtained from the same
model, trained on ImageNet 32.

ImageNet 32 ImageNet 64 CIFAR-10 ImageNet

Generic PNG 6.39 5.71 5.87 4.71
WebP 5.29 4.64 4.61 3.66
FLIF 4.52 4.19 4.19 3.37

Discrete flow IDF12 4.18 3.90 3.34 -
IDF generalised13 4.18 3.94 3.60 -
LBB14 3.88 3.70 3.12 -

VAE Bit-Swap 4.50 - 3.82 3.5115

HiLLoC 4.20 3.90 3.56 3.15
HiLLoC (ELBO) (4.18) (3.89) (3.55) (3.14)
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Table 2.2 shows that HiLLoC achieves competitive compression rates on all

benchmarks, and state of the art on full size ImageNet images. We compare HiLLoC

to generic codecs, as well as learned results using both methods based on discrete

flows and VAEs (which HiLLoC falls under). The discrete flow models use similar

flow models to those discussed in this thesis, but with additional mechanisms to

account for the fact that we need to code discrete data (whereas flows naturally

parameterise continuous densities). In particular, IDF [Hoogeboom et al., 2019] uses

a quantisation operation and the straight-through-estimator, whereas LBB [Ho et al.,

2019b] uses a local latent variable model to quantise, and utilises bits-back coding.

The fact that HiLLoC can achieve state of the art compression on ImageNet

relative to the baselines, even under a change of distribution, is striking. This

provides strong evidence of its efficacy as a general method for lossless compression

of natural images. Naively, one might expect a degradation of performance relative

to the original test set when changing the test distribution—even more so when the

resolution changes. However, in the settings we studied, the opposite was true, in

that the average per-pixel ELBO (and thus the compressed message length) was

lower on all other datasets compared to the ImageNet 32 validation set.

In the case of CIFAR, we conjecture that the reason for this is that its images

are simpler and contain more redundancy than ImageNet. This theory is backed up

by the performance of standard compression algorithms which, as shown in Table

2.2, also perform better on CIFAR images than they do on ImageNet 32. We find

the compression rate improvement on larger images more surprising. We hypothesise

that this is because pixels at the edge of an image are harder to model because they

have less context to reduce uncertainty. The ratio of edge pixels to interior pixels is

lower for larger images, thus we might expect less uncertainty per pixel in a larger

image.

To demonstrate the effect of vectorisation we timed ANS of single images at

12Integer discrete flows, retrieved from Hoogeboom et al. [2019].
13Integer discrete flows trained on ImageNet 32. ImageNet 64 images are split into four 32×32

patches. Retrieved from Hoogeboom et al. [2019].
14Local bits back, retrieved from Ho et al. [2019b].
15For Bit-Swap, full size ImageNet images were cropped so that their side lengths were multiples

of 32.
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Table 2.3: Runtime of vectorised vs. serial ANS implementations. Times are
given to the nearest second for a variety of image sizes, and were computed
on a desktop with 6 CPU cores and a GTX 1060 GPU.

Image size
32× 32 64× 64 128× 128

serial ANS 99 380 1460
vectorised ANS 2 5 11

different, fixed, sizes, using a fully vectorised and a fully serial implementation. The

results are given in Table 2.3, which clearly shows a speedup of nearly three orders of

magnitude for all image sizes. We find that the run times for encoding and decoding

are roughly linear in the number of pixels, and the time to compress an average

sized ImageNet image of 500× 374 pixels (with vectorised ANS) is around 29s on a

desktop computer with 6 CPU cores and a GTX 1060 GPU. Although this is still

a long time, the vast majority of time is spent in neural network inference, since

we use a very deep model and are not exploiting batch parallelism. Reducing this

inference time will be motivation for the following chapter of this thesis.

2.7 Conclusion

In this chapter we demonstrated that it is possible to achieve lossless compression

with low overheads using latent variable models. To do this we utilised the bits-back

coding method, which describes at a high level how to use a latent variable model to

compress data at the rate of the negative ELBO. To materialise bits-back coding

into an actual codec, we showed that the choice of entropy coder is critical. In

particular, using asymmetric numeral systems (ANS), rather than the previously

used arithmetic coding (AC), reduces the overhead incurred from entropy coding

significantly, and makes the resulting coding rate suitable for practical usage. We

initially demonstrated that our resulting algorithm, bits-back coding with ANS

(BB-ANS) can achieve close to the theoretical bits-back coding compression rate in a

small-scale, proof-of-concept experiment.

We then explored how to expand BB-ANS beyond small-scale experiments to

effective compression of more complex and realistic datasets. To this end we used
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a more powerful, hierarchical latent variable model which raises many challenges

not present in the model used in the small-scale experiments. Namely how to

discretise the hierarchical latent space, how to initialise the ANS chain and ensuring

entropy coding itself is fast. We term the resulting codec that resolves these issues

as Hierarchical Latent Lossless Compression (HiLLoC).

We then verified HiLLoC experimentally, showing that it can achieve compression

rates competitive with state-of-the-art, hand-crafted image codecs on realistic image

datasets, even when tested on different datasets to the training data. As such,

this is a step towards replacing mainstream image codecs with learned compression

techniques.

One point worth considering is under what conditions learned codecs such as

HiLLoC fail. We find that generally HiLLoC performs relatively well when tasked

with coding realistic images (as demonstrated by our range of experiments). However,

if presented with something sufficiently different from the training set it will fail to

be effective. As a simple example, asking HiLLoC to compress a noise image will

result in the HiLLoC message size being much larger than the raw image.

One reason for this is simply that there can not exist universal lossless compressors

- that is, there is a simple argument to show by the pigeonhole principle that no

lossless codec can decrease all file sizes. But more importantly, learned codecs tend to

fail less gracefully than generic codecs. We suspect that this is a natural trade-off, as

specialisation in lossless compression must come at the expense of some generalisation.

One mitigation for these failure modes is to have an auxiliary codec that we fall back

to if we estimate the log-likelihood to be sufficiently low under the PGM underlying

HiLLoC.

In the next chapter we will turn our attention to the models that make up the

learned component of codecs such as HiLLoC, and examine how to make them more

computationally efficient. Since, for a codec to be viable as a replacement for existing

generic codecs, this is an important consideration.



Chapter 3

Binary neural networks for

probabilistic generative models

The work presented in this chapter was published in [Bird et al., 2021b].

In the previous chapter we described BB-ANS, a lossless compression system built by

combining a class of probabilistic generative model (PGM) and ANS. We considered

the computational efficiency of ANS and how it can be improved, but we did not

consider the efficiency of the PGM itself.

In this chapter, we detail a method that improves the computational efficiency

of PGMs by implementing the neural networks as binary neural networks, that is

neural networks with binary-valued weights.

3.1 Introduction

Although the application of binary neural networks for classification is relatively

well-studied [Courbariaux et al., 2015, M., 2018, Gu et al., 2018], there has been no

research that we are aware of that has examined whether binary neural networks

can be used effectively in unsupervised learning problems. Indeed, many of the

deep generative models that are popular for unsupervised learning do have high

parameter counts and are computationally expensive [Vaswani et al., 2017, Maaløe

et al., 2019, Ho et al., 2019a]. These models would stand to benefit significantly,

from an efficiency standpoint, from converting the weights and activations to binary
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values, which we call binarisation for brevity.

The need for computational efficiency in PGMs is particularly strong for the use

of PGMs in compression, which we explored in Chapter 2. In compression use cases

run-time is a key consideration of the codec, for example codecs for video streaming

are required to decode in real-time. Additionally, having a very large model can

defeat the whole purpose of compression to begin with, since both parties must

have access to the same codec, in other words the communication of the model may

outweigh the benefits it brings if the model is prohibitively large. Furthermore, the

nature of compression is that of a communication between a sender and receiver -

often in practice this is manifest in a client-server relationship. It is feasible that

the server may have high amounts of compute on hand, but the client devices are

often compute-constrained such as smartphones and personal computers. In such

scenarios, having lightweight codecs is crucial.

In this chapter we will detail our method to effectively binarise certain classes of

deep PGMs. Our specific contributions are:

• Describe a new normalisation technique, which we call binary weight normali-

sation, that is appropriate for binarising generative models. We also show that

fast binary kernels can still be used even when normalising.

• Motivate theoretically and practically which components of deep PGMs can be

effectively binarised. In particular, we specify that residual layers are natural

candidates for binarisation, whereas layers that feed directly into the model

output tend to be less amenable to binarisation.

• We demonstrate our methods and theories empirically. We validate that binary

weight normalisation is more effective than binary batch normalisation for

our models of interest, as well as examining the trade-offs between models

with binary and real-valued activations. Further, we show that it is possible

to increase the parameter count of the model using cheap binary weights,

to increase model performance without sacrificing too much computational

performance.
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3.2 Binary neural networks

Chapter 2 created codecs that utilise neural networks as the core of the flexible,

learned component. In this section we will describe how neural networks can be

implemented with binary-valued weights wB rather than the usual real-valued1

weights and activations [Courbariaux et al., 2015, Hubara et al., 2016, Rastegari

et al., 2016, M., 2018, Gu et al., 2018]. Such binary neural networks have improved

computational efficiency at the expense of flexibility (in terms of their space of

functions they can model). In this thesis, we use the convention of binary values

being in B := {−1, 1}.

3.2.1 Benefits and disadvantages of binary neural networks

The primary motivation for using binary neural networks is to decrease the memory

and computational requirements of the model. Clearly binary weights require less

memory to be stored: 32× less than the usual 32-bit floating-point weights.

Binary neural networks also admit significant speed-ups. A reported 2× speed-up

can be achieved by a layer with binary weights and real-valued inputs [Rastegari

et al., 2016]. This can be made an additional 29× faster if the inputs to the layer

are also constrained to be binary [Rastegari et al., 2016]. With both binary weights

and inputs, linear operators such as convolutions can be implemented using the

inexpensive XNOR and bit-count binary operations. A simple way to ensure binary

inputs to a layer is to have a binary activation function before the layer [Hubara

et al., 2016, Rastegari et al., 2016].

The primary disadvantage of binary neural networks is their loss of flexibility

versus real-valued weights. Theoretically we can say that a binary neural network with

a given architecture contain a strictly smaller hypothesis class than the equivalent

network with real-valued weights. This is due to the fact that the real-valued weights

contain the binary values in the range of values they can take (or at least, they

can be constructed to do so - the details will be the particular implementation of

floating-point numbers being used).
1We use real-valued throughout this thesis to be synonymous with “implemented with floating-

point precision”.
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Another disadvantage is that binary neural networks can be more difficult to

train than networks with real-valued weights. We discuss this in greater detail in

Section 3.2.2.

3.2.2 Optimisation of binary neural networks

Taking a trained model with real-valued weights and binarising the weights has been

shown to lead to significant worsening of performance [Alizadeh et al., 2019]. So

instead the binary weights are optimised. It is common to not optimise the binary

weights directly, but instead optimise a set of underlying real-valued weights wR

which can then be binarised in some fashion for inference. In this thesis we will

adopt the convention of binarising the underlying weights using the sign function (see

Equation 3.2). We also use the sign function as the activation function when we use

binary activations (see Equation 3.5, where αR are the real-valued pre-activations).

We define the sign function as:

sign(x) :=

−1, if x < 0

1, if x ≥ 0

(3.1)

Since the derivative of the sign function is zero almost everywhere2, the gradients of

the underlying weights wR and through binary activations are zero almost everywhere.

This makes gradient-based optimisation challenging. To overcome this issue, the

straight-through estimator (STE) [Bengio et al., 2013] can be used. When computing

the gradient of the loss L, the STE replaces the gradient of the sign function (or

other discrete output functions) with an approximate surrogate. A straightforward

and widely used surrogate gradient is the identity function, which we use to calculate

the gradients of the real-valued weights wR (see Equation 3.3).

It has been shown useful to clip the gradients when their magnitude becomes too

large [Courbariaux et al., 2015, Alizadeh et al., 2019]. Therefore we use a clipped

identity function for the gradients of the pre-activations (see Equation 3.6). This

avoids saturating a binary activation.

2Apart from at 0, where it is non-differentiable.
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Forward pass:

Backward pass:

After update:

Weights
wB = sign(wR) (3.2)
∂L
∂wR

:=
∂L
∂wB

(3.3)

wR ← clip(wR; [−1, 1]) (3.4)

Activations
αB = sign(αR) (3.5)
∂L
∂αR

:=
∂L
∂αB

1|αR|≤1 (3.6)

−

Table 3.1: The optimisation procedure when using the straight-through
estimator. Note that functions are applied element-wise on vectors in this
table.

Lastly, the loss value only depends on the sign of the real-valued weights. There-

fore, the values of the weights are generally clipped to be in [−1, 1] after each gradient

update (see Equation 3.4). This restricts the magnitude of the weights and thus

makes it easier to flip the sign.

Note that there are other techniques shown to benefit training binary neural

networks in certain circumstances, for example using two-stage training [Alizadeh

et al., 2019]. We do try some of these methods later in the thesis when using binary

neural networks, but empirically we do not find them to be useful for our particular

experiments. As such, only the previously listed techniques are the ones that we do

find essential for stable training.

3.3 Using binary neural networks in probabilistic

generative models

In this section we will describe the techniques required to successfully implement

portions of PGMs with binary neural networks.

3.3.1 Binary weight normalisation

It is important to apply some kind of normalisation after a binary layer. Binary

weights are often large in magnitude relative to the usual real-valued weights, and

can result in large outputs which can destabilise training [Sari et al., 2020]. Previous
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binary neural network implementations have largely used batch normalisation [Ioffe

and Szegedy, 2015], which can be executed efficiently using a shift-based imple-

mentation [Hubara et al., 2016]. Batch normalisation involves normalising a batch

at a given step in the network by the empirical mean and standard deviation per

dimension. An affine transformation, parameterised by a shift and scale, is then

applied.

However, it is common in generative modelling to use weight normalisation

[Salimans and Kingma, 2016] instead of batch normalisation. For example, it is

used in the Flow++ [Ho et al., 2019a] and state-of-the-art hierarchical VAE models

[Kingma et al., 2016, Maaløe et al., 2019]. Weight normalisation factors a vector of

weights w into a vector of the same dimension v and a magnitude g, both of which

are learned. The weight vector is then expressed as:

w = v · g

||v||
(3.7)

Where || · || denotes the Euclidean norm. This implies that the norm of w is g. Note

that the learned parameters are v, g, and w is the version of the weights used in the

model.

Now suppose we wish to binarise the parameters of a weight normalised layer.

We are only able to binarise v, since binarising the magnitude g (and a possible bias

b) could result in large outputs of the layer. However, g and b do not add significant

compute or memory requirements, as they are applied elementwise and are much

smaller than the binary weight vector.

Denote vR ∈ Rn as the set of real-valued parameters which we will optimise. Let

vB = sign(vR) be the binarised weight vector. Since every element of vB is one of

±1, we know that ||vB|| =
√
n 3. We then have:

wR = vB ·
g√
n

(3.8)

Where we have used wR to denote that the resulting weight vector is real-valued.

We refer to this as binary weight normalisation, or BWN. Importantly, this is

3||vB|| =
√∑

i(vB,i)
2 =

√∑
i 1 =

√
n
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faster to compute than the usual weight normalisation (Equation 3.7), since we do

not have to calculate the norm of vB. The binary weight normalisation requires only

O(1) FLOPs to calculate the scaling for vB, whereas the regular weight normalisation

requires O(n) FLOPs to calculate the scaling for v. For a model of millions of

parameters, this can be a significant speed-up. Binary weight normalisation also has

a more straightforward backward pass, since we do not need to take gradients of the

1/||v|| term.

Furthermore, convolutions F and other linear transformations can be implemented

using cheap binary operations when using binary weights, wB, as discussed in Section

3.2.14. However, after applying binary weight normalisation, the weight vector is real-

valued, wR, which would seem to prevent the speed-ups being obtained. Fortunately,

due to the properties of linear transformations, we can apply the normalisation factor

α = g/
√
n either before or after applying the convolution to input x.

F(x,vB · α) = F(x,vB) · α (3.9)

So if we wish to utilise fast binary operations for the binary convolution layer,

we need to apply binary weight normalisation after the convolution. This means

that the weights are binary for the convolution operation itself. This couples the

convolution operation and the weight normalisation, and we refer to the overall layer

as a binary weight normalised convolution, or BWN convolution. Note that the

above process applies equally well to other linear transformations.

3.3.1.1 Initialisation of BWN Layers

An important aspect of weight normalised layers is the initialisation. Since we are

normalising the weights, and not the output of a layer (like in batch normalisation),

at initialisation a weight normalised layer has an unknown output scale. To remedy

this, it is usual to use data-dependent initialisation [Salimans and Kingma, 2016], in

which some data points are used to set the initial g and b values such that the layer

output is approximately unit normal distributed.
4This applies when the inputs are real-valued or binary, but the speed-ups are far greater for

binary inputs
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This can be applied straightforwardly to BWN layers when training the model

end-to-end, that is initialising the model at random and training til convergence. It

is common, though, when training binary neural networks for classification, to use

two-stage training [Alizadeh et al., 2019]. This initialises the underlying weights vR

of binary layers with the values from a trained model with real-valued weights.

Consider what would happen if we were to try and initialise all the components

of a BWN layer with those from a trained layer with real-valued weights. The g and

b can be transferred directly, and it is logical to initialise the underlying weights vR

with the trained v values. So the magnitude of the overall weight vector w would

remain the same in the BWN layer as in the floating-point layer, since we normalise

the vB vector and apply the same g, b. This initialisation seems reasonable, but

fails in practice. We speculate that the reason that this fails is that, although the

magnitude of the weight vector remains the same after transfer, the direction can

be very different, since the sign function will change the direction of vR
5. Since we

apply the weight vector by taking products, the output from the initialised binary

layer is very different from the trained layer.

A more considered approach is to only initialise the underlying weights vR with

the values from the trained network, and initialise g and b with data-dependent

initialisation as normal. This way, the data-dependent initialisation can compensate

for the change of direction that occurs in the binarisation of v. This method does

train, but slower than initialising at random and training end-to-end. The only

difference between training end-to-end and using this reduced form of two-stage

training is the initial values v0 of the real-valued weights vR underlying vB. In the

random initialisation these are sampled from a Gaussian:

v0 ∼ N (vR; 0, 0.05
2) (3.10)

We can even normalise the trained real-valued weights such that they have the same

mean and variance as the Gaussian (within a weight tensor). This still results in

worse performance from the two-stage training. As a result, we simply use the

5Note that this effect is stronger in higher dimensional spaces.
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random initialisation in our experiments.

3.3.2 Choosing layers to quantise

We aim to binarise deep generative models, in which it is common to utilise residual

layers extensively. Residual layers are functions with skip connections:

gres(x) = gθ(x) + x (3.11)

Indeed, the models we target in this thesis, the ResNet VAE and Flow++ models,

have the majority of their parameters within residual layers. Therefore they are

natural candidates for binarisation, since binarising them would result in a large

decrease in the computational cost of the model. To binarise them we implement

gθ(x) in Equation 3.11 using binary weights and possibly activations.

Note that although we have already used the ResNet VAE in our HiLLoC codec

in Chapter 3, we choose also the Flow++ model since it is roughly representative of

the models used in discrete flows [Hoogeboom et al., 2019, Ho et al., 2019b], which

are a viable learned alternative to HiLLoC.

The motivation for using residual layers is that they can be used to add more

representative capability to a model without suffering from the degradation problem

[He et al., 2016]. That is, residual layers can easily learn the identity function by

driving the weights to zero. So, if sufficient care is taken with initialisation and

optimisation, adding residual layers to the model should not degrade performance,

helping to precondition the problem.

Degradation of performance is of particular concern when using binary layers.

Binary weights and activations are both less expressive than their real-valued coun-

terparts, and more difficult to optimise. These disadvantages of binary layers are

more pronounced for generative modelling than for classification. Generative models

need to be very expressive, since we wish to model complex data such as images.

Optimisation can also be difficult, since the likelihood of a data point is highly

sensitive to the distribution statistics output by the model, and can easily diverge.

This sensitivity of the objective to the output of the model is motivation for
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another choice we make in which layers to binarise - we do not binarise the “output

layers”, i.e. the layers responsible for outputting the distribution statistics themselves.

Fortunately, for most models of interest these output layers account for only a small

fraction of the total parameters. Further motivation for this choice is that these

output layers tend not to be residual layers, due to the restriction that residual layers

have the same input and output shape (so that the skip connection, i.e. input, can

be added to the output), and our input will often be of different shape than the

“hidden layers” (i.e not output layers).

Crucially, if we were to use a residual binary layer without weight normalisation,

then the layer would not be able to learn the identity function, as the binary weights

cannot be set to zero. This would remove the primary motivation to use binary

residual layers. In contrast, using a binary weight normalised layer in the residual

layer, the gain g and bias b can be set to zero to achieve the identity function. As

such, we binarise the ResNet VAE and Flow++ models by implementing the residual

layers using BWN layers.

3.3.3 Deep generative models with binary weights

We now describe the binarised versions of the ResNet VAE and Flow++ model,

using the techniques and considerations from Section 3.3. Note that, for both the

ResNet VAE and Flow++ models, we still retain a valid probabilistic model after

binarising the weights. In both cases, the neural networks are simply used to output

distribution parameters, which define a normalised density for any set of parameter

values.

3.3.3.1 ResNet VAE

As per Section 3.3.2, we wish to binarise the residual layers of the ResNet VAE.

The residual layers are constructed as convolutional residual blocks, consisting of

two 3× 3 convolutions and non-linearities, with a skip connection. This is shown

in Figure 3.1(a)-(b). To binarise the block, we change the convolutions to BWN

convolutions, as described in Section 3.3.1. We can either use real-valued activations

or binary activations. Binary activations allow the network to be executed much
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Figure 3.1: The residual blocks used in the binarised ResNet VAE and Flow++
models, using both binary and floating-point activations. The BWN Gate layer is
a binary weight normalised 1× 1 convolution followed by a gated linear unit. We
display the binary valued tensors with thick red arrows.

faster, but are less expressive. We use the ELU function as the real-valued activation,

and the sign function as the binary activation.

3.3.3.2 Flow++

As with the ResNet VAE, in the Flow++ model the residual layers are structured as

stacks of convolutional residual blocks. To binarise the residual blocks, we change

both the 3× 3 convolution and the gated 1× 1 convolution in the residual block to

be BWN convolutions. The residual block design is shown in Figure 3.1(c)-(d). We

have the option of using real-valued or binary activations.
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3.4 Experiments

We run experiments with the ResNet VAE and the Flow++ model, to demonstrate

the effect of binarising the models. We train and evaluate on the CIFAR-10 and

ImageNet 32 datasets. For both models we use the Adam optimiser [Kingma and

Ba, 2015], which has been demonstrated to be effective in training binary neural

networks [Alizadeh et al., 2019].

For the ResNet VAE, we decrease the number of latent variables per latent

layer and increase the width of the residual channels, as compared to the original

implementation. We found that increasing the ResNet blocks in the first latent layer

slightly increased modelling performance. Furthermore, we chose not to model the

posterior using IAF layers [Kingma et al., 2016], since we want to keep the model

class as general as possible.

For the Flow++ model, we decrease the number of components in the mixture

of logistics for each coupling layer and increase the width of the residual channels,

as compared to the original implementation. For simplicity, we also remove the

attention mechanism from the model, since the ablations the authors performed

showed that this had only a small effect on the model performance.

Note that we do not use any techniques to try and boost the test performance of

our models, such as importance sampling or using weighted averages of the model

parameters. These are often used in generative modelling, but since we are trying to

establish the relative performance of models with various degrees of binarisation, we

prefer to keep the experiments and comparisons simpler.

3.4.1 Density modelling

We display results in Table 3.2. We can see that the models with binary weights

and real-valued activations perform only slightly worse than those with real-valued

weights, for both the ResNet VAE and the Flow++ models. For the models with

binary weights, we observe better performance when using real-valued activations

than with the binary activations. These results are as expected given that binary

values are by definition less expressive than real values. All models with binary
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Figure 3.2: Test loss values during training of the ResNet VAE and Flow++ models
on the CIFAR dataset. Subfigures (a) and (b): models with binary weights and
either binary or real-valued activations. Compared to the model with real-valued
weights and activations, and a baseline with the residual layers set to the identity.
Subfigures (c) and (d): the effect of increasing the width of the residual channels,
and ablations.

weights perform better than a baseline model with the residual layers set to the

identity, indicating that the binary layers do learn. We display samples from the

binarised models in Figure 3.4.

Importantly, we see that the model size is significantly smaller when using binary

weights - 94% smaller for the ResNet VAE and 90% smaller for the Flow++ model.

These results demonstrate the fundamental trade-off that using binary layers

in generative models allows. By using binary weights the size of the model can be

drastically decreased, but there is a slight degradation in modelling performance.

The model can then be made much faster by using binary activations as well as
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weights, but this decreases performance further.

Note that in our experiments all models have the same inference speed, since

to our knowledge there are no readily usable implementations of efficient binary

convolutional kernels - the only ones we are aware of are research code which are not

easily transferable in modern machine learning frameworks.

3.4.2 Increasing the residual channels

Binary models are less expensive in terms of memory and compute. This raises the

question of whether binary models could be made larger in parameter count than

the model with real-valued weights, with the aim of trying to improve performance

for a fixed computational budget. We examine this by increasing the number of

channels in the residual layers (from 256 to 336) of the ResNet VAE. This increases

the number of binary weights by approximately 40 million, but leaves the number of

real-valued weights roughly constant6. The results are shown in Table 3.2 and Figure

3.2(c). We can see the increase the binary parameter count does have a noticeable

improvement in performance. The model size increases from 13 MB to 20 MB, which

is still an order of magnitude smaller than the model with real-valued weights (255

MB). It is an open question as to how much performance could be improved by

increasing the size of the binary layers even further. The barrier to this approach

currently is training, since we need to maintain and optimise a set of real-valued

weights during training. These get prohibitively large as we increase the model size

significantly.

One interesting avenue is to train the binary weights directly, rather than using

real-valued weights as a proxy [Gupta et al., 2015, Li et al., 2017], which could

potentially alleviate the memory bottleneck during training.

3.4.3 Ablations

We perform ablations to verify our hypothesis from Section 3.3.2 that we should

only binarise the residual layers of the generative models. We attempt to binarise
6There will be a slight increase, since we use real-valued weights to map to and from the residual

channels.
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all layers in the ResNet VAE using BWN layers, using both binary and real-valued

activations. The results are shown in Figure 3.2(d). As expected, the loss values

attained are significantly worse than when binarising only the residual layers.

To examine the performance of the binary weight normalisation (BWN), we

perform an ablation against using the more widely used batch normalisation [Ioffe

and Szegedy, 2015]. We simply place a batch normalisation operation after every

layer, instead of using BWN. Note that this still permits the use of fast binary

operations, since the weights and activations are binary valued. We train the Flow++

model with binary weights and both binary and real-valued activations, comparing

the two normalisation schemes. The results are shown in Figure 3.3. We can see that

BWN is slightly better for the model with binary activations, and significantly better

for the model with real-valued activations. Importantly, we have found BWN to be

more stable than batch normalisation, which can often result in training instabilities.

Indeed, to obtain the results we present when using batch normalisation, training was

restarted many times. Binary batch normalisation also generally requires two-stage

training, which we use to improve the stability of training, but it is still less stable

than using BWN. BWN is also both faster to compute and simpler, not relying on

retaining running averages of batch statistics.

It is also worth noting, that it is not possible to train these binary weighted

generative models without any form of normalisation, since training is too unstable.

This is not surprising, since the binary weights themselves are large in magnitude

and can result (in particular with binary activations) in very large layer outputs.

3.5 Conclusion

In this chapter we considered the problem of computational efficiency in probabilistic

generative models (PGMs), a widely-used class of models with many applications

- for example as use as the backbone of learned lossless codecs, as per Chapter 2.

Despite their wide usage, such models have had little attention with regards to their

computational efficiency, with work on efficiency instead much more widely studied

on models for supervised learning.
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To explore increasing computational efficiency in PGMs, we focused on using

binary-valued weights in the neural networks (termed binary neural networks) of

PGMs. Binary neural networks have been shown to be effective at drastically

decreasing computational requirements in neural networks for supervised learning,

but have never been explored for PGMs.

Using binary neural networks in the class of PGMs that we are interested in is

not as immediately obvious as the for the classification examples common in the

binary neural network literature, where in some cases the entire network can be

implemented in binary weights (which we refer to as binarising). We showed that

such attempts do not work in for the PGMs we are interested in. Instead, we showed

that the choices of which layers of the neural network to binarise is crucial, and

architecture dependent. We identified a particular set of layers which, by their design,

are natural candidates for binarisation - the residual layers. These layers also often

make up the majority of models parameters, which makes storing and executing

them efficiently particularly valuable.

Furthermore, we showed that a popular form of normalisation used in PGMs,

weight normalisation, has a very simple and practically effective analogue in the case

of binary neural networks, which we term binary weight normalisation (BWN).

We verified that both of our contributions, namely the choice of which layers

to binarise and using our normalisation scheme, result in an effective method to

reduce the computational demands of PGMs. We showed this by taking two powerful

PGMs, that are representative of a wide class of models, and showing that we could

reduce their space (and potentially time) requirements by a significant margin with

a relatively small impact on modelling performance.
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(a) Flow++ (1-bit weights + 1-bit activations)

(b) Flow++ (1-bit weights + 32-bit activations)

Figure 3.3: Training loss values achieved when using binary weight normalisation
and batch normalisation for the training of binary weighted Flow++ models. We
run training with 5 different seeds and plot the mean as the solid line and one
standard deviation within the shaded region.
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(a) ResNet VAE
(32-bit weights, 32-bit

activations)

(b) Flow+
(32-bit weights, 32-bit

activations)

(c) ResNet VAE
(1-bit weights, 32-bit

activations)

(d) Flow++
(1-bit weights, 32-bit

activations)

(e) ResNet VAE
(1-bit weights, 1-bit

activations)

(f) Flow++
(1-bit weights, 1-bit

activations)

Figure 3.4: Samples from the ResNet VAE (left) and Flow++ (right) models
trained on CIFAR. We provide samples from the models with (a)/(b) real-valued
weights and activations, (c)/(d) binary weights and real-valued activations, (e)/(f)
binary weights and activations.



Chapter 4

Scene Compression

The work presented in this chapter was published in [Bird et al., 2021a].

In Chapter 2 we established a method for lossless compression, BB-ANS, which

utilises probabilistic generative models (PGMs) and demonstrated its usefulness on

the task of image compression. In Chapter 3 we showed that PGMs themselves

can be implemented effectively by using binary weights, which drastically reduces

the model size and can also theoretically be used to decrease the run-time of such

models. In this chapter we will somewhat combine these concepts, by studying how

to compress generative models for 3D scene data. Since such models can be used

to reconstruct a 3D scene, this amounts to performing lossy compression of the 3D

scene data itself, which is a relatively unexplored topic in the literature.

4.1 Introduction

The ability to render 3D scenes from arbitrary viewpoints can be seen as a big step

in the evolution of digital multimedia, and has applications such as mixed reality

media, graphic effects, design, and simulations. Often such renderings are based on

a number of high resolution images of some original scene, and it is clear that to

enable many applications, the data will need to be stored and transmitted efficiently

over low-bandwidth channels (e.g. to a mobile phone for augmented reality).

Traditionally, the need to compress this data is viewed as a separate need from

rendering. For example, light field images (LFI) consist of a set of images taken
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from multiple viewpoints. To compress the original views, often standard video

compression methods such as HEVC [Sullivan et al., 2012] are repurposed [Jiang

et al., 2017, Barina et al., 2019]. Since the range of views is narrow, light field images

can be effectively reconstructed by blending a smaller set of representative views

[Astola and Tabus, 2018, Jiang et al., 2017, Zhao et al., 2018, Bakir et al., 2018, Jia

et al., 2019]. Blending based approaches, however, may not be suitable for the more

general case of arbitrary-viewpoint 3D scenes, where a very diverse set of original

views may increase the severity of occlusions, and thus would require storage of a

prohibitively large number of views to be effective.

A promising avenue for representing more complete 3D scenes is through neural

representation functions, which have shown a remarkable improvement in rendering

quality [Mildenhall et al., 2020, Sitzmann et al., 2019, Liu et al., 2020, Schwarz et al.,

2020]. In such approaches, views from a scene are rendered by evaluating the repre-

sentation function at sampled spatial coordinates and then applying a differentiable

rendering process. Such methods are often referred to as implicit representations,

since they do not explicitly specify the surface locations and properties within the

scene, which would be required to apply some conventional rendering techniques

like rasterisation [Akenine-Möller et al., 2019]. However, finding the representation

function for a given scene requires training a neural network. This makes this class

of methods difficult to use as a rendering method in the existing framework, since it

is computationally infeasible on a low-powered end device like a mobile phone, which

are often on the receiving side. Due to the data processing inequality, it may also be

inefficient to compress the original views (the training data) rather than the trained

representation itself, because the training process may discard some information that

is ultimately not necessary for rendering (such as redundancy in the original views or

noise). We give a more thorough background on the above methods (both blending

and implicit representations) used to model 3D scene data in Section 4.2.

We propose to apply neural representation functions to the scene compression

problem by compressing the representation function itself. We use the NeRF model

[Mildenhall et al., 2020], a method which has demonstrated the ability to produce

high-quality renders of novel views, as our representation function. To reduce
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Figure 4.1: Overview of cNeRF. The sender trains an entropy penalised neural
representation function on a set of views from a scene, minimising a joint rate-
distortion objective. The receiver can use the compressed model to render novel
views.

redundancy of information in the model, we build upon the model compression

approach of Oktay et al. [2020], applying an entropy penalty to the set of discrete

reparameterised neural network weights. The compressed NeRF (cNeRF) describes

a radiance field, which is used in conjunction with a differentiable neural renderer to

obtain novel views (see Figure 4.1). To verify the proposed method, we construct

a strong baseline method based on the approaches seen in the field of light field

image compression. cNeRF consistently outperforms the baseline method, producing

simultaneously superior renders and lower bitrates. We further show that cNeRF can

be improved in the low bitrate regime when compressing multiple scenes at once. To

achieve this, we introduce a novel parameterisation which shares parameters across

models and optimise jointly across scenes.

4.2 Models for 3D scene data

So far in Chapter 3 and Chapter 3, we have considered classes of models that

approximate the unconditional probability of data, i.e. pθ(x) where x is some from

data medium such as an image. However, not all tasks are appropriately modelled in

this way. One such example is the task of rendering a 3-dimensional (3D) scene from
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an arbitrary viewpoint.

As a motivating example, we can image a virtual reality application where we

wish to “look around” in some digitally-rendered scene. Since we wish the views

to change smoothly as we alter the viewpoint, we need to be able to render an

appropriate image from any possible viewpoint.

We can see this is a conditional modelling task, that is we have to map from some

viewpoint/pose1 v to an image x. In this context, the act of storing or transmitting

a “scene” refers to storing or transmitting some system that allows the receiver to

render the scene from any viewpoint. Thus when we now speak of “compressing a

scene” we mean reducing the size of this system.

One observation we can make is that, since we need to be able to render from an

arbitrary viewpoint, this makes lossless compression challenging. If we were to do so,

it would mean that we would require that the system can render an extremely large2

set of views without any reconstruction error. Although theoretically possible, we do

not know of any effective system for doing this.

Thus we consider instead lossy compression for a scene. One consequence is

that we are not constrained to probabilistic models, which are a requirement to

permit lossless compression via entropy coding. Instead, we can simply model

the function mapping from poses v to images x as a regression task, minimising

some reconstruction error for a given model size. Indeed, there have been recent

advancements in learning such rendering functions, which we now review.

4.2.1 Blending approaches to novel view synthesis

If the range of views is narrow, i.e. the difference in location and viewing direction is

narrow, then light field images can be effectively reconstructed by blending a smaller

set of representative views [Astola and Tabus, 2018, Jiang et al., 2017, Zhao et al.,

2018, Bakir et al., 2018, Jia et al., 2019].

1Note that “view” and “pose” are somewhat synonymous, and both refer to the location and
viewing direction of the camera that has taken the image, which we assume to be a perfect pinhole
camera.

2We don’t use the term infinite, since we can imagine some minimum distance between rendered
viewpoints which makes the set of possible view finite.
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4.2.1.1 Local light field fusion

We now describe the specific blending based approach that we will use as a benchmark

in this thesis, Local Light Field Fusion (LLFF) [Mildenhall et al., 2019].

LLFF is a learned approach in which a novel view is rendered by promoting

nearby views to multi-plane images (MPIs), which are then blended together. The

model consists of two learned components: a component which promotes images

with dimension H ×W × 3 to MPIs with dimension H ×W ×D× 3 where D is the

number of planes in the MPIs. A 3D convolutional neural network then takes the

MPIs for the neighbouring views and predicts blending weights and opacities with

which to recombine the blended MPI into a 2D image.

4.2.2 Scene representation functions

Blending based approaches, as described in Section 4.2.1 may not be suitable for

the more general case of arbitrary-viewpoint 3D scenes, where a very diverse set of

original views may increase the severity of occlusions.

A promising avenue for representing more complete 3D scenes is through neural

representation functions, which have shown a remarkable improvement in rendering

quality [Mildenhall et al., 2020, Sitzmann et al., 2019, Liu et al., 2020, Schwarz

et al., 2020]. In such approaches, views from a scene are rendered by evaluating

the representation function at sampled spatial coordinates and then applying a

differentiable rendering process. Such methods are often referred to as implicit

representations, since they do not explicitly specify the surface locations and properties

within the scene, which would be required to apply some conventional rendering

techniques like rasterisation [Akenine-Möller et al., 2019]. However, finding the

representation function for a given scene generally requires training a neural network.

4.2.2.1 Neural radiance fields

We now describe one of the most successful approaches utilising a scene representation

function, which we will use in this thesis, neural radiance fields (NeRF) [Mildenhall

et al., 2020]. This approach uses a neural network to model a radiance field. The
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radiance field itself is a learned mapping gθ : R5 → (R3,R+), where the input is a

3D spatial coordinate p = (x, y, z) ∈ R3 and a 2D viewing direction d = (ω, ϕ) ∈ R2.

The NeRF model also makes use of a positional encoding into the frequency domain,

applied elementwise to spatial and directional inputs

γ(p) = (sin(20πp), cos(20πp), ..., sin(2L−1πp), cos(2L−1πp)) (4.1)

This type of encoding has been shown to be important for implicit models, which take

as input low dimensional data which contains high frequency information [Tancik

et al., 2020, Sitzmann et al., 2020].

The network output is an RGB value c = (r, g, b) ∈ R3 and a density element

σ ∈ R+. To render a particular view, the RGB values are sampled along the relevant

rays and accumulated according to their density elements. In particular, the color

c(r) of a ray r = {o + td : t ≥ 0}, in direction d from the camera origin o, is

computed as

c(r) =
K∑
i=1

Ti(1− exp(−σiδi))ci, where Ti = exp
(
−
∑i−1

j=1 σjδj

)
, (4.2)

where (ci, σi) is the output of the mapping evaluated at (pi,d), where pi = o+ tid,

ti is the distance of sample i from the origin along the ray, and δi = ti+1 − ti is the

distance between samples. The color c(r) can be interpreted as the expected color

of the point along the ray in the scene closest to the camera, if the points in the

scene are distributed along the ray according to an inhomogeneous Poisson process.

Since in a Poisson process with density σi, the probability that there are no points

in an interval of length δi is exp(−σiδi). Thus Ti is the probability that there are

no points between t1 and ti, and (1− exp(−σiδi)) is the probability that there is a

point between ti and ti+1. The rendered view x̂ comprises pixels whose colors c(r)

are evaluated at rays emanating from the same camera origin o but having slightly

different directions d, depending on the camera pose v.

The learned radiance field mapping gθ is parameterised with two multi-layer
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perceptrons (MLPs)3, which Mildenhall et al. [2020] refer to as the “coarse” and

“fine” networks, with parameters θc and θf respectively. The input locations to the

coarse network are obtained by sampling regularly along the rays, whereas the input

locations to the fine network are sampled conditioned on the radiance field of the

coarse network. The networks are trained by minimising the Euclidean distance from

their renderings to the ground truth image:

L =
N∑

n=1

∥x̂c
n(θc;vn)− xn∥22︸ ︷︷ ︸
Lc(θc)

+
N∑

n=1

∥∥x̂f
n(θf ;vn,θc)− xn

∥∥2

2︸ ︷︷ ︸
Lf (θf ;θc)

(4.3)

Where || · ||2 is the Euclidean norm and the x̂n are the rendered views. Note that the

rendered view from the fine network x̂f
n relies on both the camera pose vn and the

coarse network to determine the spatial locations to query the radiance field. We

drop the explicit dependence of Lf on θc in the rest of the thesis to avoid cluttering

the notation. During training, generally only a batch of pixels is rendered rather

than the full image.

4.3 Entropy penalised neural representation func-

tions

In this section we will describe our method to perform scene compression via an

entropy penalised neural representation function.

4.3.1 Compressed neural radiance fields

To achieve a compressed representation of a scene, we propose to compress the

neural scene representation function itself. In this thesis we use the NeRF model

as our representation function. To compress the NeRF model, we build upon the

model compression approach of Oktay et al. [2020] and jointly train for rendering as

well as compression in an end-to-end trainable manner. It is possible to use other

3Often also referred to as feed-forward or dense networks, but we shall use MLP in this thesis.
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approaches based on model distillation, quantisation or pruning to compress the

model. However, the approach of Oktay et al. [2020] is appealing as it allows us to

smoothly vary the trade-off between rate and distortion, whereas in many competing

model compression approaches this is not possible.

The model compression work of Oktay et al. [2020] reparameterises the model

weights Θ into a latent space as Φ. The latent weights are decoded by a learned

function F , i.e. Θ = F(Φ). The latent weights Φ are modeled as samples from

a learned prior q, such that they can be entropy coded according to this prior.

To minimise the rate, i.e. length of the bit string resulting from entropy coding

these latent weights, a differentiable approximation of the information content

I(Φ) = − log2(q(Φ)) of the latent weights is penalised. The continuous Φ are

quantised before being applied in the model, with the straight-through estimator

[Bengio et al., 2013] used to obtain surrogate gradients of the loss function.

Following Ballé et al. [2017], uniform noise is added when learning the continuous

prior q(Φ + u) where ui ∼ U(−1
2
, 1
2
) ∀ i. This uniform noise is a stand-in for the

quantisation, and results in a good approximation for the self-information through

the negative log-likelihood of the noised continuous latent weights. After training, the

quantised weights Φ̃ are obtained by rounding, Φ̃ = ⌊Φ⌉, and transmitted along with

discrete probability tables obtained by integrating the density over the quantisation

intervals. The continuous weights Φ and any parameters in q itself can then be

discarded.

We now consider how to apply this model compression technique to NeRF, with

the resulting combination referred to subsequently as cNeRF. Combining the rate-

distortion trade-off with the fine and coarse networks of NeRF, as described in

Section 4.2.2.1, results in the full objective that we seek to minimise:

L(Φ,Ψ) = Lc(Fc(Φ̃c)) + Lf (Ff (Φ̃f ))︸ ︷︷ ︸
Distortion

+λ
∑

ϕ∈Φ
I(ϕ)︸ ︷︷ ︸

Rate

(4.4)

where Ψ denotes the parameters of F as well any parameters in the prior distribution

q, and we have explicitly split Φ into the coarse Φc and fine Φf components such that

Φ = {Φc,Φf}. λ is a trade-off parameter that balances between rate and distortion.
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A rate–distortion (RD) plot can be traced by varying λ to explore the performance of

the compressed model at different bitrates. The distortion is generally the Euclidean

distance between the rendering and the true image, as defined in Section 4.2.

4.3.2 Compressing a single scene

When training cNeRF to render a single scene, we have to choose how to parameterise

and structure F and the prior distribution q over the network weights. Since the

networks are MLPs, the model parameters for a layer l consist of the kernel weights

and biases {Wl,bl}. We compress only the kernel weights Wl, leaving the bias

uncompressed since it is much smaller in size. The quantised kernel weights W̃l are

mapped to the model weights by Fl, i.e. Wl = Fl(W̃l). Fl is constructed as an

affine scalar transformation, which is applied elementwise to W̃l:

Fl(W̃l,ij) = αlW̃l,ij + βl (4.5)

We take the prior to be factored over the layers, such that we learn a prior per

linear kernel ql. Within each kernel, we take the weights in W̃l to be i.i.d. from the

univariate distribution ql, parameterised by a small MLP, as per the approach of

Ballé et al. [2017]. Note that the parameters of this MLP can be discarded after

training (once the probability mass functions have been built).
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4.3.3 Compressing multiple scenes

While the original NeRF model is trained for a single scene, we hypothesise that

better rate–distortion performance can be achieved for multiple scenes, especially if

they share information, by training a joint model. For a dataset of M scenes, we

parameterise the kernel weights of model m, layer l as:

Wm
l = Fm

l (W̃m
l , S̃l)

= αm
l W̃

m
l + βm

l 1+ γlS̃l (4.6)

Where 1 is a matrix of ones. Compared to Equation 4.5, we have added a shift,

parameterised as a scalar linear transformation of a discrete shift S̃l , that is shared

across all models m ∈ {1, ...,M}. S̃l has the same dimensions as the kernel Wm
l , and

as with the discrete latent kernels, S̃l is coded by a learned probability distribution.

The objective for the multi-scene model becomes:

L(Φ,Ψ) =
M∑

m=1

[
Lm
c (Fm

c (Φ̃m
c , Φ̃

s
c)) + Lm

f (Fm
f (Φ̃m

f , Φ̃
s
f )) + λ

∑
ϕ∈Φm

I(ϕ)

]
+ λ

∑
ϕ∈Φs

I(ϕ)

(4.7)

where Φs is the set of all discrete shift S̃ parameters, and the losses, latent weights and

affine transforms are indexed by scene and model m. Note that this parameterisation

has more parameters than the total of the M single scene models, which at first

appears counter-intuitive, since we wish to reduce the overall model size. It is

constructed as such so that the multi-scene parameterisation contains the M single

scene parameterisations - they can be recovered by setting the shared shifts to zero.

If the shifts are set to zero then their associated probability distributions can collapse

to place all their mass at zero. So we expect that if there is little benefit to using the

shared shifts then they can be effectively ignored, but if there is a benefit to using

them then they can be utilised. As such, we can interpret this parameterisation as

inducing a soft form of parameter sharing.
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4.4 Experiments

4.4.1 Datasets

To demonstrate the effectiveness of our method, we evaluate on two sets of scenes

used by Mildenhall et al. [2020]:

• Synthetic. Consisting of 800 × 800 pixel views taken from either the upper

hemisphere or entire sphere around an object rendered using the Blender

software package. There are 100 views taken to be in the train set and 200 in

the test set.

• Real. Consisting of a set of forward facing 1008× 756 pixel photos of a complex

scene. The number of images varies between 20 and 62 per scene, with 1/8 of

the images taken as the test images.

Since we are interested in the ability of the receiver to render novel views, all

distortion results (for any choice of perceptual metric) presented are given on the

test sets.

4.4.2 Architecture and optimisation

We maintain the same architecture for the NeRF model as Mildenhall et al. [2020],

consisting of 13 linear layers and ReLU activations. For cNeRF we use Adam [Kingma

and Ba, 2015] to optimise the latent weights Φ and the weights contained in the

decoding functions F . For these parameters we use initial learning rate of 5× 10−4

and a learning rate decay over the course of learning, as per Mildenhall et al. [2020].

For the parameters of the learned probability distributions q, we find it beneficial

to use a lower learning rate of 5× 10−5, such that the distributions do not collapse

prematurely. We initialise the latent linear kernels using the scheme of Glorot and

Bengio [2010], and the decoders F near the identity.
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4.4.3 Building a baseline

To understand how effective cNeRF is, it is necessary to compare to a reasonable

baseline method. Since we are, to our knowledge, the first to study this problem of

scene compression, no such baseline yet exists.

To build our baseline method, we follow the general methodology exhibited in

light field compression and take the compressed representation of the scene to be a

compressed subset of the views. The receiver then decodes these views, and renders

novel views conditioned on the reconstructed subset. We use the video codec HEVC

to compress the subset of views, as is done by Jiang et al. [2017]. To render novel

views conditioned on the reconstructed set of views, we choose the Local Light Field

Fusion (LLFF) approach of Mildenhall et al. [2019]. LLFF is a state-of-the-art

learned approach in which a novel view is rendered by promoting nearby views to

multiplane images, which are then blended. We refer to the full baseline subsequently

as HEVC + LLFF.

There exist a number of design choices and hyperparameters with this baseline,

which we refer to subsequently as HEVC + LLFF. The number of views we compress

from a scene has a direct impact on both the compressed size and the quality of

the reconstructions. More compressed views corresponds to a higher compressed

size, although the marginal compressed size of an image may decrease given that

most images will be coded as residual frames with HEVC. On the other hand, more

compressed views will generally result in higher quality renderings from LLFF, since

it essentially interpolates known views to render new ones. Another factor is the

order that we choose to compress the views using HEVC, since there is (usually) no

explicit time ordering in the views themselves. Intuitively, if we pick the compression

ordering such that the views appear more like a natural video, then we expect HEVC

compression to improve.

We alter the quantisation parameter (QP) of HEVC to explore the rate distortion

frontier, fixing the rest of the hyperparameters to sensible values. The QP determines

the level of quantisation used in the coding procedure, with higher values leading to

smaller compressed size and lower quality. We study the effects of the QP, the number

of transmitted images and the compression order in our ablations in Section 4.5.1.
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Figure 4.5: Rate–distortion curves for both the cNeRF and HEVC + LLFF
approaches, on two synthetic (left) and two real (right) scenes. We include
uncompressed NeRF, which is the rightmost point on the curve and a fixed size
across scenes. We truncate the curves for HEVC + LLFF, since increasing the
bitrate further does not improve PSNR. See Figure 4.9 for the full curves.
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Ground truth 32 bits per parameter 6.64 bpp 1.83 bpp

Ground truth 32 bits per parameter 4.57 bpp 1.15 bpp

Ficus

Room

Figure 4.6: Renderings of the synthetic Ficus scene and real Room scene from
the uncompressed NeRF model, at 32 bits per parameter (bpp), and from cNeRF
with λ ∈ {0.0001, 0.01}.

4.4.4 Results

4.4.4.1 Single scene compression

To explore the frontier of achievable rate–distortion points for cNeRF, we evaluate

at a range of entropy weights λ for four scenes – two synthetic (Lego and Ficus) and

two real (Fern and Room). To explore the rate–distortion frontier for the HEVC

+ LLFF baseline we evaluate at a range of QP values for HEVC. We give a more

thorough description of the exact specifications of the HEVC + LLFF baseline and

the ablations we perform to select the hyperparameter values in Section 4.5.1. We

show the results in Figure 4.5. We also plot the performance of the uncompressed

NeRF model – demonstrating that by using entropy penalisation the model size

can be reduced substantially with a relatively small increase in distortion. For
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these scenes we plot renderings at varying levels of compression in Figure 4.2 and

Figure 4.6. The visual quality of the renderings does not noticeably degrade when

compressing the NeRF model down to bitrates of roughly 5-6 bits per parameter (the

precise bitrate depends on the scene). At roughly 1 bit per parameter, the visual

quality has degraded significantly, although the renderings are still sensible and easily

recognisable. We find this to be a surprising positive result, given that assigning

a single bit per parameter is extremely restrictive for such a complex regression

task as rendering. Indeed, to our knowledge no binary neural networks have been

demonstrated to be effective on such tasks.

Although the decoding functions F (Equation 4.5) are just relatively simple scalar

affine transformations, we do not find any benefit to using more complex decoding

functions. With the parameterisation given, most of the total description length

of the model is in the coded latent weights, not the parameters of the decoders or

entropy models. We give a full breakdown in Table 4.5.

Figure 4.5 shows that cNeRF clearly outperforms the HEVC + LLFF baseline,

always achieving lower distortions at a (roughly) equivalent bitrate. Reconstruction

quality is reported as peak signal-to-noise ratios (PSNR). The results are consistent

with earlier demonstrations that NeRF produces much better renderings than the

LLFF model [Mildenhall et al., 2020]. However, it is still interesting to see that this

difference persists even at much lower bitrates. To evaluate on the remaining scenes,

we select a single λ value for cNeRF and QP value for HEVC + LLFF. We pick

the values to demonstrate a reasonable trade-off between rate and distortion. The

results are shown in Table 4.1. For every scene the evaluated approaches verify that

cNeRF achieves a lower distortion at a lower bitrate. We can see also that cNeRF is

consistently able to reduce the model size significantly without seriously impacting

the distortion. Further, we evaluate the performance of cNeRF and HEVC + LLFF

for other perceptual quality metrics in Table 4.2 and 4.3. Although cNeRF is trained

to minimise the squared error between renderings and the true images (and therefore

maximise PSNR), cNeRF also outperforms HEVC + LLFF in both MS-SSIM [Wang

et al., 2003] and LPIPS [Zhang et al., 2018]. This is significant, since the results

of Mildenhall et al. [2020] indicated that for SSIM and LPIPS, the LLFF model
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had a similar performance to NeRF when applied to the real scenes. We display a

comparison of renderings from cNeRF and HEVC + LLFF in Figure 4.4.

4.4.4.2 Multi-scene compression

For the multi-scene case we compress one pair of synthetic scenes and one pair of

real scenes. We train the multi-scene cNeRF using a single shared shift per linear

kernel, as per Equation 4.6. To compare the results to the single scene models,

we take the two corresponding single scene cNeRFs, sum the sizes and average the

distortions. We plot the resulting rate–distortion frontiers in Figure 4.7. The results

demonstrate that the multi-scene cNeRF improves upon the single scene cNeRFs

at low bitrates, achieving higher PSNR values with a smaller compressed size. This

meets our expectation, since the multi-scene cNeRF can share parameters via the

shifts (Equation 4.6) and so decrease the code length of the scene-specific parameters.

At higher bitrates we see no benefit to using the multi-scene parameterisation, and

in fact see slightly worse performance. This indicates that in the unconstrained rate

setting, there is no benefit to using the shared shifts, and that they may slightly

harm optimisation.

4.5 Ablations

4.5.1 HEVC + LLFF specification

There are many hyperparameters to select for the HEVC + LLFF baseline. The first

we consider is the number of images to compress with HEVC. If too many images are

compressed with HEVC then at some point the performance of LLFF will saturate

and an unnecessary amount of space will be used. On the other hand, if too few

images are compressed with HEVC, then LLFF will find it difficult to blend these

(de)compressed images to form high quality renders. To illustrate this effect, we run

an ablation on the Fern scene where we vary the number of images we compress with

HEVC, rendering a held out set of images conditioned on the reconstructions. The

results are displayed in Figure 4.8. We can clearly see the saturation point at around
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Figure 4.7: Rate–distortion curves for comparing the multi-scene model with a
single shared shift to the single scene models. The models are shown for two
synthetic (left) and two real scenes (right).

10 images, beyond which there is no benefit to compressing extra images. Thus when

picking the number of images to compress for new scenes, we do not use more than

4 per test image (which corresponds to compressing 12 images in our ablation).

The second effect we study is the order in which images are compressed with

HEVC, which affects the performance as HEVC is a video codec and thus sensitive

to image ordering. It stands to reason that the more the sequence of images resemble

a natural video, the better coding will be. As such, we consider two orderings: firstly

the “snake scan” ordering, in which images are ordered vertically by their camera

pose, going alternately left to right then right to left. The second is the “lozenge”
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Figure 4.8: Test performance of the HEVC + LLFF baseline across different
number of images compressed with HEVC. The decompressed images are used by
LLFF to reconstruct the test views.

ordering [Jiang et al., 2017], in which images are ordered by the camera pose in a

spiral outwards from their centre. Both orderings appear sensible since they always

step from a given camera pose to an adjacent pose. We compare results compressing

and reconstructing a set of images using HEVC across a range of Quantisation

Parameter (QP) values for the Fern scene in Table 4.4. The difference between the

two orderings is very small. Since snake scan is simpler to implement, we use this in

all our experiments.

The effect of changing QP is demonstrated in Figure 4.9, and we select QP=30

for the experiments in which we choose one rate–distortion point to evaluate, since

it achieves almost the same performance as QP=20 and QP=10 with considerably

less space.

QP Snake scan Lozenge
10 50.9 50.8
20 42.5 42.4
30 33.9 33.8
40 26.7 26.8
50 22.6 22.5

Table 4.4: PSNR values from compressing and reconstructing a set of images
from the Fern scene, with two different orderings on the images.
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Figure 4.9: Full rate–distortion curves for HEVC + LLFF, with labels showing the
effect of the QP parameter. To avoid clutter, only the Lego QP labels are given,
and the other scenes are similarly ordered from QP=10 on the right to QP=50 on
the left.

Entropy weight λ Rate (KB) Overhead (KB)
1× 10−2 119 23
1× 10−3 293 27
1× 10−4 673 34
1× 10−5 1061 42

Table 4.5: Breakdown of the cNeRF size across four entropy weights trained
on the Lego scene. The size is divided into the size of the coded latent
weights (the rate) and everything else (the overhead). The overhead consists
of description lengths of the probability tables built from the prior q, the
parameters of the decoding functions F and any bias parameters.

4.6 Conclusion

In this chapter we considered the problem of how to compress the data from a 3D

scene. Although there is growing amounts of 3D scene data being generated and

transmitted, this is still a relatively unstudied topic within learned compression. In

particular we focused on a codec which can be used to render a scene from an arbitrary

viewpoint, which is a significantly more challenging problem than communicating a

fixed set of renderings, which has many parallels with video compression.

To compress such a system, we utilised recent advances in scene representation

functions - learned models which can be used to render a scene from any angle. We

use the Neural Radiance Field (NeRF) model, which has been demonstrated to be
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an effective model for a range of scenes. By using a scene representation function,

we showed that the task of compressing the scene is condensed into compressing the

representation function itself. Since in NeRF the model is parameterised via a neural

network, this becomes a task of compressing a neural network.

To this end, we introduced compressed NeRF (cNeRF), which uses a state-of-the-

art method in learned model compression to compress the neural network within

NeRF. Since the model is optimised for a given rate-distortion trade-off, we can

change the trade-off parameter to satisfy a range of constraints on bit-rate.

To explore how effective cNeRF is, we constructed a baseline that does not

utilise scene representation functions. Specifically, we combined a well-known video

codec, HEVC, with a state-of-the-art method for blending views to render from a

new viewpoint. We then demonstrated that cNeRF always achieves a superior rate-

distortion trade-off to this baseline across a range of real and synthetic scene data.

Furthermore, we explored how cNeRF performs at a variety of rate-distortion trade-

offs. Surprisingly, our results showed that cNeRF can produce visually appealing

reconstructions even at extremely low bit-rates.
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This thesis has the intention of making advances in the field of learned compression

and the associated methods. We now conclude with a consideration of how the

research presented works towards this goal.

In Chapter 2 we presented a novel method to use latent variable models as the

backbone of a lossless compression system. By pairing the well-known bits-back

coding argument with the modern ANS entropy coder, resulting in a method we call

BB-ANS [Townsend et al., 2019], we showed that we could losslessly compress data

at close to the theoretical compression rate as given by the bits-back coding. As a

proof-of-concept, we demonstrated that a small latent variable model can be used to

compress the simple MNIST dataset as well as a suite of generic benchmark codecs.

Previous attempts at implementing bits-back coding have suffered from unavoid-

able overheads [Frey, 1997], which made them impractical. In contrast, BB-ANS has

no significant overheads. Thus it is an important step into furthering research into

learned lossless compression, as it opens up the widely used class of latent variable

models as possible lossless compressors. Many of the improvements into better latent

variable models (as measured by modelling performance) can now be translated into

improvements in learned lossless compression, simply by using BB-ANS. For example,

a new class of variational diffusion models [Kingma et al., 2021] has been developed

since we published our papers on BB-ANS. These new models were immediately

applied to lossless compression using a derivative scheme of BB-ANS, demonstrating

state-of-the-art compression rates.

We also showed in Chapter 2 how to make steps towards making BB-ANS an

effective generic image codec. We implemented BB-ANS using a large, hierarchical

latent variable model, which results in strong compression performance. Further, by
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training the model on ImageNet [Deng et al., 2009] we demonstrate that the resulting

codec can be robust to small shifts in image distribution, and different image sizes

than those used during training. Clearly this is an important step towards developing

learned, generic compressors. The hierarchical latent variable model introduces some

practical considerations when used in conjunction with BB-ANS. To address these,

we then showed how to handle the discretisation of the hierarchical latent space, how

to initialise the bits-back chain without incurring a significant overhead and how to

use a vectorised ANS coder to increase coding speed on large images. We termed

the resulting method HiLLoC, and demonstrated that it can compress data from

the CIFAR [Krizhevsky, 2009] and ImageNet datasets at rates superior to the best

generic codecs available at the time, and also superior to Bit-Swap [Kingma et al.,

2019], the main competing method that utilises bits-back coding.

In Chapter 3 we considered how to make the underlying models used in learned

compression more computationally efficient. The neural network based architectures

that are prevalent in modern methods can have run-times and space requirements

that make them prohibitive for use in certain applications. Compression can be one

such application, since codecs have to be reasonable in time and space requirements

in order to be viable to run in a widespread fashion, for example utilising edge devices

such as personal phones.

In order to make the models used in learned compression more computationally

efficient, we investigated the possibility of implementing them using binary neural

networks. Binary neural networks are a research topic that has been explored recently

as they drastically reduce the space requirements of neural networks (versus using

the usual range of floating-point precision such as 32-bit), and can also be used to

achieve large speed-ups via the implementation of efficient kernels that exploit the

binary precision.

However, there has not been, to our knowledge, any research into applying

binary neural networks for unsupervised learning, which encompasses the class of

methods used for learned compression. As such, we explored implementing two

modern, powerful probabilistic generative models - Flow++ [Ho et al., 2019a] and

the ResNet VAE [Kingma et al., 2016] - using binary neural networks. We showed
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that a simple and fast variant of weight normalisation, which we term BWN, is

superior to the previously developed batch normalisation used for binary neural

networks [Hubara et al., 2016]. We also motivate implementing only certain parts

of the neural network architecture. In particular we demonstrate, theoretically and

empirically, that only implementing the residual layers [He et al., 2016] is an effective

measure. We demonstrate that on CIFAR and ImageNet, our proposed methods

result in a greater than 90% saving in space requirement, with only a small amount

of performance degradation.

Lastly, in Chapter 4 we considered how to apply learned compression to a different

data domain, namely that of images of 3D scenes. The applications for such 3D

data, such as virtual and augmented reality, are relatively new. As such, research

into learned compression for 3D data is largely unexplored. Given the growth of

technologies that utilise this data, and that the data itself can have very large space

requirements, research into effective compression of 3D scene data has the potential

to be valuable.

In order to investigate learned compression for 3D scene data, we explored the

possibility of compressing a neural scene representation function, in particular using

the successful NeRF method [Mildenhall et al., 2020]. Since the learned component

of NeRF is a neural network, and the NeRF model can render arbitrary views from

a scene, the act of compressing the scene data is translated into compressing the

neural network component of NeRF.

The uncompressed NeRF model does not provide perfect reconstructions of

rendered views, thus the compressed version also has some reconstruction error. We

are therefore performing lossy compression on the scene data, not lossless as we

explored earlier in this thesis. We utilised a recent method in model compression

[Oktay et al., 2020] to compress the neural network, which allows the rate-distortion

trade-off to be optimised explicitly. We refer to the overall approach as cNeRF, and

demonstrated its effectiveness on two sets of scene data, one synthetic and one real.

Our approach is able to reach bitrates of around 1 bit per parameter (of the neural

network used in NeRF), whilst still providing visually appealing renderings.

To validate our method, we constructed a baseline method that does not use a
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scene representation function, instead blending neighbouring views to construct the

rendering at a specified viewpoint. This relies on the communication of a diverse

range of baseline views, which we do via the HEVC codec [Sullivan et al., 2012]. We

also use the modern, learned LLFF method [Mildenhall et al., 2019] to blend the

baseline views. We showed in our experiments that cNeRF consistently outperforms

the baseline in terms of rate-distortion trade-off.

There are many possible avenues for future work to further the results and

methodologies of this thesis, and we highlight a select few below:

• Improved latent variable models for lossless compression: we utilised

the ResNet VAE [Kingma et al., 2016] model with HiLLoC, which when

we developed the method showed near state-of-the-art performance. Since

then there has been much research into latent variable probabilistic generative

models, and one of the benefits of BB-ANS and HiLLoC is that improvements in

the underlying models can be realised as improvements in lossless compression

performance using these models. As such, further improvements to the models

may push learned lossless compression to be an attractive alternative to more

traditional codecs. A prominent example of this is the recently developed class

of variational diffusion models [Kingma et al., 2021], which were immediately

realised into a state-of-the-art lossless codec using BB-ANS.

• Improved quantisation schemes for generative models: we explored

using binary precision to for neural networks used in probabilistic generative

models. Although binary precision does offer very large space savings and

potential execution time speed-ups, it is an extreme quantisation. To mitigate

this fact, we find it necessary to not implement the full neural network using

binary weights, but just certain components (in our case the residual layers).

As such, it would be interesting to explore using less extreme quantisation

schemes, for example 4 or 8-bit precision [Wang et al., 2018, Sun et al., 2020],

or a level of quantisation which is learned. This might allow quantisation of

greater portions of the generative models without degradation of performance.

• A unified model for scene data compression: our method, cNeRF, for
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compressing data from a 3D scene relied on the powerful NeRF method, which

uses a scene representation function to render an arbitrary view from a scene.

However, the downside of the method is that it has to be trained for each

scene, so cannot generalise to unseen scenes quickly. Ideally, we would like a

generic method to have the rendering capabilities of NeRF and also the ability

to generalise to new scenes without training (or perhaps just a fast fine-tuning

phase). Such a method could be used for the compression of scene data without

onerous training requirements, and indeed there has been some recent research

into such methods [Wang et al., 2021, Müller et al., 2022].

The purpose of this thesis is to work towards learned compression methods that

are practical and applicable to compressing the large amounts of data being produced

in the modern world. Hopefully, with further efforts in this area, these methods can

move from research projects to reality for end-users.



Bibliography

T. Akenine-Möller, E. Haines, and N. Hoffman. Real-time rendering. CRC Press,

2019.

M. Alizadeh, J. Fernández-Marqués, N. D. Lane, and Y. Gal. An empirical study

of binary neural networks’ optimisation. International Conference on Learning

Representations (ICLR), 2019.

P. Astola and I. Tabus. WaSP: Hierarchical warping, merging, and sparse prediction

for light field image compression. European Workshop on Visual Information

Processing (EUVIP), 2018.

J. Ba, J. Kiros, and G. Hinton. Layer normalization. ArXiv e-prints, arXiv:1607.06450,

2016.

N. Bakir, W. Hamidouche, O. Déforges, K. Samrouth, and M. Khalil. Light field image

compression based on convolutional neural networks and linear approximation.

2018 25th IEEE International Conference on Image Processing (ICIP), 2018.

J. Ballé, V. Laparra, and E. P. Simoncelli. End-to-end optimized image compression.

International Conference on Learning Representations (ICLR), 2017.

D. Barina, T. Chlubna, M. Solony, D. Dlabaja, and P. Zemcik. Evaluation of 4D

light field compression methods. International Conference in Central Europe on

Computer Graphics, Visualization and Computer Vision (WSCG), 2019.

Y. Bengio, N. Léonard, and A. Courville. Estimating or propagating gradients through

stochastic neurons for conditional computation. ArXiv e-prints, arXiv:1308.3432,

2013.



BIBLIOGRAPHY 121

T. Bird, J. Ballé, S. Singh, and P. A. Chou. 3D scene compression through entropy

penalized neural representation functions. Picture Coding Symposium (PCS),

2021a.

T. Bird, F. H. Kingma, and D. Barber. Reducing the computational cost of deep

generative models with binary neural networks. International Conference on

Learning Representations (ICLR), 2021b.

C. M. Bishop. Pattern Recognition and Machine Learning (Information Science and

Statistics). Springer-Verlag, 2006.

C. Bloom. Understanding ANS - 9 . http://cbloomrants.blogspot.com/2014/

02/02-10-14-understanding-ans-9.html, 2014. Accessed: 2019-05-22.

D.-A. Clevert, T. Unterthiner, and S. Hochreiter. Fast and accurate deep network

learning by exponential linear units (ELUs). International Conference on Learning

Representations (ICLR), 2016.

M. Courbariaux, Y. Bengio, and J. David. BinaryConnect: Training deep neural net-

works with binary weights during propagations. Conference on Neural Information

Processing Systems (NeurIPS), 2015.

Y. Dauphin, A. Fan, M. Auli, and D. Grangier. Language modeling with gated

convolutional networks. International Conference on Machine Learning (ICML),

2017.

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet: a large-scale

hierarchical image database. IEEE/CVF Conference on Computer Vision and

Pattern Recognition (CVPR), 2009.

L. Dinh, D. Krueger, and Y. Bengio. NICE: Non-linear independent components

estimation. Workshop contribution at International Conference on Learning Rep-

resentations (ICLR), 2015.

L. Dinh, J. Sohl-Dickstein, and S. Bengio. Density estimation using real NVP.

International Conference on Learning Representations (ICLR), 2017.

http://cbloomrants.blogspot.com/2014/02/02-10-14-understanding-ans-9.html
http://cbloomrants.blogspot.com/2014/02/02-10-14-understanding-ans-9.html


BIBLIOGRAPHY 122

J. Duda. Asymmetric numeral systems. ArXiv e-prints, arXiv:0902.027, 2009.

P. Elias. Universal codeword sets and representations of the integers. IEEE Transac-

tions on Information Theory, 21(2):194–203, 1975. doi: 10.1109/TIT.1975.1055349.

B. Frey. Bayesian networks for pattern classification, data compression, and channel

coding. PhD thesis, University of Toronto, 1997.

K. Fukushima. Cognitron: A self-organizing multilayered neural network. Biological

Cybernetics, 20(3-4), 1975.

J.-L. Gailly and M. Adler. GNU gzip. https://www.gnu.org/software/gzip/,

1992. Accessed: 2022-11-22.

F. Giesen. rANS in practice. https://fgiesen.wordpress.com/2015/12/21/

rans-in-practice/, 2015. Accessed: 2019-05-22.

X. Glorot and Y. Bengio. Understanding the difficulty of training deep feedforward

neural networks. International Conference on Artificial Intelligence and Statistics

(AISTATS), 2010.

S. W. Golomb. Run-length encodings. IEEE Trans Info Theory, 12(3):399, 1966.

I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,

A. Courville, and Y. Bengio. Generative adversarial nets. Conference on Neural

Information Processing Systems (NeurIPS), 2014.

J. Gu, C. Li, B. Zhang, J. Han, X. Cao, J. Liu, and D. Doermann. Projection

convolutional neural networks for 1-bit CNNs via discrete back propagation. The

Thirty-Third AAAI Conference on Artificial Intelligence (AAAI), 2018.

S. Gupta, A. Agrawal, K. Gopalakrishnan, and P. Narayanan. Deep learning

with limited numerical precision. International Conference on Machine Learning

(ICML), 2015.

C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers, P. Virtanen, D. Cour-

napeau, E. Wieser, J. Taylor, S. Berg, N. J. Smith, R. Kern, M. Picus, S. Hoyer,

https://www.gnu.org/software/gzip/
https://fgiesen.wordpress.com/2015/12/21/rans-in-practice/
https://fgiesen.wordpress.com/2015/12/21/rans-in-practice/


BIBLIOGRAPHY 123

M. H. van Kerkwijk, M. Brett, A. Haldane, J. F. del Río, M. Wiebe, P. Pe-

terson, P. Gérard-Marchant, K. Sheppard, T. Reddy, W. Weckesser, H. Ab-

basi, C. Gohlke, and T. E. Oliphant. Array programming with NumPy. Na-

ture, 585(7825):357–362, Sept. 2020. doi: 10.1038/s41586-020-2649-2. URL

https://doi.org/10.1038/s41586-020-2649-2.

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition.

IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),

2016.

G. Hinton and D. van Camp. Keeping neural networks simple by minimizing the

description length of the weights. Conference on Computational Learning Theory

(COLT), 1993.

J. Ho, X. Chen, A. Srinivas, Y. Duan, and P. Abbeel. Flow++: Improving flow-

based generative models with variational dequantization and architecture design.

International Conference on Machine Learning (ICML), 2019a.

J. Ho, E. Lohn, and P. Abbeel. Compression with flows via local bits-back coding.

Conference on Neural Information Processing Systems (NeurIPS), 2019b.

M. Hoffman and M. Johnson. ELBO surgery: yet another way to carve up the

variational evidence lower bound. Workshop in Advances in Approximate Bayesian

Inference, NeurIPS, 2016.

E. Hoogeboom, J. W. T. Peters, R. van den Berg, and M. Welling. Integer discrete

flows and lossless compression. Conference on Neural Information Processing

Systems (NeurIPS), 2019.

I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio. Binarized neural

networks. Conference on Neural Information Processing Systems (NeurIPS), 2016.

D. Huffman. A method for the construction of minimum-redundancy codes. Proceed-

ings of the IRE, 40(9):1098–1101, 1952.

https://doi.org/10.1038/s41586-020-2649-2


BIBLIOGRAPHY 124

S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network training by

reducing internal covariate shift. International Conference on Machine Learning

(ICML), 2015.

C. Jia, X. Zhang, S. Wang, S. Wang, and S. Ma. Light field image compression using

generative adversarial network-based view synthesis. IEEE Journal on Emerging

and Selected Topics in Circuits and Systems, 2019.

X. Jiang, M. Le Pendu, and C. Guillemot. Light field compression using depth image

based view synthesis. 2017 IEEE International Conference on Multimedia Expo

Workshops (ICMEW), 2017.

D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. International

Conference on Learning Representations (ICLR), 2015.

D. P. Kingma and M. Welling. Auto-encoding variational bayes. International

Conference on Learning Representations (ICLR), 2014.

D. P. Kingma, T. Salimans, R. Jozefowicz, X. Chen, I. Sutskever, and M. Welling.

Improved variational inference with inverse autoregressive flow. Conference on

Neural Information Processing Systems (NeurIPS), 2016.

D. P. Kingma, T. Salimans, B. Poole, and J. Ho. Variational diffusion models.

Conference on Neural Information Processing Systems (NeurIPS), 2021.

F. H. Kingma, P. Abbeel, and J. Ho. Bit-Swap: recursive bits-back coding for

lossless compression with hierarchical latent variables. International Conference

on Machine Learning (ICML), 2019.

P. Kingma, D. and P. Dhariwal. Glow: Generative flow with invertible 1x1 convolu-

tions. Conference on Neural Information Processing Systems (NeurIPS), 2018.

A. Krizhevsky. Learning multiple layers of features from tiny images. 2009.

Y. LeCun, B. Boser, J. Denker, D. Henderson, R. Howard, W. Hubbard, and L. Jackel.

Handwritten digit recognition with a back-propagation network. Conference on

Neural Information Processing Systems (NeurIPS), 1989.



BIBLIOGRAPHY 125

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to

document recognition. In Proceedings of the IEEE, volume 86, pages 2278–2324,

1998.

H. Li, S. De, Z. Xu, C. Studer, H. Samet, and T. Goldstein. Training quantized nets:

A deeper understanding. Conference on Neural Information Processing Systems

(NeurIPS), 2017.

L. Liu, J. Gu, K. Z. Lin, T.-S. Chua, and C. Theobalt. Neural sparse voxel fields.

Conference on Neural Information Processing Systems (NeurIPS), 2020.

M. M. Training wide residual networks for deployment using a single bit for each

weight. International Conference on Learning Representations (ICLR), 2018.

L. Maaløe, M. Fraccaro, V. Liévin, and O. Winther. BIVA: a very deep hierarchy

of latent variables for generative modeling. Conference on Neural Information

Processing Systems (NeurIPS), 2019.

D. Mackay. Information Theory, Inference and Learning Algorithms. Cambridge

University Press, 2003.

B. Mildenhall, P. Srinivasan, R. Ortiz-Cayon, N. K. Kalantari, R. Ramamoorthi,

R. Ng, and A. Kar. Local light field fusion: Practical view synthesis with prescrip-

tive sampling guidelines. ACM Transactions on Graphics (TOG), 2019.

B. Mildenhall, P. Srinivasan, M. Tancik, J. T. Barron, R. Ramamoorthi, and R. Ng.

NeRF: Representing scenes as neural radiance fields for view synthesis. European

Conference on Computer Vision (ECCV), 2020.

T. Müller, A. Evans, C. Schied, and A. Keller. Instant neural graphics primitives with

a multiresolution hash encoding. ACM Trans. Graph., 41(4):102:1–102:15, July

2022. doi: 10.1145/3528223.3530127. URL https://doi.org/10.1145/3528223.

3530127.

K. P. Murphy. Machine learning : a probabilistic perspective. MIT Press, 2022.

https://doi.org/10.1145/3528223.3530127
https://doi.org/10.1145/3528223.3530127


BIBLIOGRAPHY 126

D. Oktay, J. Ballé, S. Singh, and A. Shrivastava. Scalable model compression

by entropy penalized reparameterization. International Conference on Learning

Representations (ICLR), 2020.

M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi. XNOR-Net: ImageNet

classification using binary convolutional neural networks. European Conference on

Computer Vision (ECCV), 2016.

D. J. Rezende and S. Mohamed. Variational inference with normalizing flows.

International Conference on Machine Learning (ICML), 2015.

D. J. Rezende, S. Mohamed, and D. Wierstra. Stochastic back-propagation and

variational inference in deep latent gaussian models. International Conference on

Machine Learning (ICML), 2014.

R. Salakhutdinov and I. Murray. On the quantitative analysis of deep belief networks.

International Conference on Machine Learning (ICML), 2008.

T. Salimans and D. P. Kingma. Weight normalization: A simple reparameterization

to accelerate training of deep neural networks. Conference on Neural Information

Processing Systems (NeurIPS), 2016.

E. Sari, M. Belbahri, and V. P. Nia. How does batch normalization help binary

training? ArXiv e-prints, arXiv:1909.09139, 2020.

K. Schwarz, Y. Liao, M. Niemeyer, and A. Geiger. GRAF: Generative radiance

fields for 3D-aware image synthesis. Conference on Neural Information Processing

Systems (NeurIPS), 2020.

C. Shannon. A mathematical theory of communication. Bell System Technical

Journal, 27:379–423,623–656, 1948.

V. Sitzmann, M. Zollhöfer, and G. Wetzstein. Scene representation networks: Con-

tinuous 3D-structure-aware neural scene representations. Conference on Neural

Information Processing Systems (NeurIPS), 2019.



BIBLIOGRAPHY 127

V. Sitzmann, J. Martel, A. Bergman, D. Lindell, and G. Wetzstein. Implicit neu-

ral representations with periodic activation functions. Conference on Neural

Information Processing Systems (NeurIPS), 2020.

J. Sneyers and P. Wuille. FLIF: Free lossless image format based on MANIAC

compression. IEEE International Conference on Image Processing (ICIP), 2016.

C. K. Sønderby, T. Raiko, L. Maaløe, S. K. Sønderby, and O. Winther. Ladder

variational autoencoders. Conference on Neural Information Processing Systems

(NeurIPS), 2016.

G. J. Sullivan, J. Ohm, W. Han, and T. Wiegand. Overview of the high efficiency

video coding (HEVC) standard. IEEE Transactions on Circuits and Systems for

Video Technology, 2012.

X. Sun, N. Wang, C. Chen, J. Ni, A. Agrawal, X. Cui, S. Venkataramani, E. M.

Kaoutar, V. Srinivasan, and K. Gopalakrishnan. Ultra-low precision 4-bit training

of deep neural networks. Conference on Neural Information Processing Systems

(NeurIPS), 2020.

M. Tancik, P. Srinivasan, B. Mildenhall, S. Fridovich-Keil, N. Raghavan, U. Singhal,

R. Ramamoorthi, J. T. Barron, and R. Ng. Fourier features let networks learn high

frequency functions in low dimensional domains. Conference on Neural Information

Processing Systems (NeurIPS), 2020.

J. Townsend, T. Bird, and D. Barber. Practical lossless compression with latent vari-

ables using bits back coding. International Conference on Learning Representations

(ICLR), 2019.

J. Townsend, T. Bird, J. Kunze, and D. Barber. HiLLoC: Lossless image compression

with hierarchical latent variable models. International Conference on Learning

Representations (ICLR), 2020.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser,

and I. Polosukhin. Attention is all you need. Conference on Neural Information

Processing Systems (NeurIPS), 2017.



BIBLIOGRAPHY 128

C. S. Wallace. Classification by minimum-message-length inference. In Proceedings of

the International Conference on Advances in Computing and Information (ICCI),

pages 72–81, 1990.

N. Wang, J. Choi, D. Brand, C.-Y. Chen, and K. Gopalakrishnan. Training deep neu-

ral networks with 8-bit floating point numbers. Conference on Neural Information

Processing Systems (NeurIPS), 2018.

Q. Wang, Z. Wang, K. Genova, P. P. Srinivasan, H. Zhou, J. T. Barron, R. Martin-

Brualla, N. Snavely, and T. Funkhouser. IBRNet: Learning multi-view image-based

rendering. IEEE/CVF Conference on Computer Vision and Pattern Recognition

(CVPR), 2021.

Z. Wang, E. P. Simoncelli, and A. C. Bovik. Multiscale structural similarity for

image quality assessment. The Thrity-Seventh Asilomar Conference on Signals,

Systems Computers, 2003.

Welch. A technique for high-performance data compression. Computer, 17(6):8–19,

1984. doi: 10.1109/MC.1984.1659158.

I. Witten, R. Neal, and J. Cleary. Arithmetic coding for data compression. Commu-

nications of the ACM, 30(6):520–540, 1987.

R. Zhang, P. Isola, A. A. Efros, E. Shechtman, and O. Wang. The unreasonable

effectiveness of deep features as a perceptual metric. IEEE/CVF Conference on

Computer Vision and Pattern Recognition (CVPR), 2018.

Z. Zhao, S. Wang, C. Jia, X. Zhang, S. Ma, and J. Yang. Light field image compression

based on deep learning. IEEE International Conference on Multimedia and Expo

(ICME), 2018.

J. Ziv and A. Lempel. A universal algorithm for sequential data compression. IEEE

Transactions on Information Theory, 23(3):337–343, 1977. doi: 10.1109/TIT.1977.

1055714.



BIBLIOGRAPHY 129

J. Ziv and A. Lempel. Compression of individual sequences via variable-rate coding.

IEEE Transactions on Information Theory, 24(5):530–536, 1978. doi: 10.1109/

TIT.1978.1055934.


	Introduction
	Background
	The machine learning paradigm and neural networks
	Notation
	Probabilistic generative modelling
	The data domain
	Classes of PGMs
	Latent variable models
	Model architectures

	Compression
	Lossless compression
	Lossy compression


	Lossless compression with latent variable models
	Introduction
	Bits back coding with ANS
	Bits back coding
	Arithmetic coding versus asymmetric numeral systems
	Combining bits back coding and ANS
	Chaining BB-ANS

	Practical considerations for BB-ANS
	Initial data in the ANS stack
	Non-uniform random bits in the stack
	Discretising a continuous latent space

	Proof-of-concept experiments
	Compressing MNIST with a VAE

	Scaling up BB-ANS
	Model selection
	Starting the bits back chain when using hierarchical latent variable models
	Dynamic discretisation
	Vectorised lossless compression

	Larger Scale Experiments
	Scaling up the model size

	Conclusion

	Binary neural networks for probabilistic generative models
	Introduction
	Binary neural networks
	Benefits and disadvantages of binary neural networks
	Optimisation of binary neural networks

	Using binary neural networks in probabilistic generative models
	Binary weight normalisation
	Choosing layers to quantise
	Deep generative models with binary weights

	Experiments
	Density modelling
	Increasing the residual channels
	Ablations

	Conclusion

	Scene Compression
	Introduction
	Models for 3D scene data
	Blending approaches to novel view synthesis
	Scene representation functions

	Entropy penalised neural representation functions
	Compressed neural radiance fields
	Compressing a single scene
	Compressing multiple scenes

	Experiments
	Datasets
	Architecture and optimisation
	Building a baseline
	Results

	Ablations
	HEVC + LLFF specification

	Conclusion

	Conclusion
	Bibliography

