57 research outputs found

    Ensemble Feature Learning-Based Event Classification for Cyber-Physical Security of the Smart Grid

    Get PDF
    The power grids are transforming into the cyber-physical smart grid with increasing two-way communications and abundant data flows. Despite the efficiency and reliability promised by this transformation, the growing threats and incidences of cyber attacks targeting the physical power systems have exposed severe vulnerabilities. To tackle such vulnerabilities, intrusion detection systems (IDS) are proposed to monitor threats for the cyber-physical security of electrical power and energy systems in the smart grid with increasing machine-to-machine communication. However, the multi-sourced, correlated, and often noise-contained data, which record various concurring cyber and physical events, are posing significant challenges to the accurate distinction by IDS among events of inadvertent and malignant natures. Hence, in this research, an ensemble learning-based feature learning and classification for cyber-physical smart grid are designed and implemented. The contribution of this research are (i) the design, implementation and evaluation of an ensemble learning-based attack classifier using extreme gradient boosting (XGBoost) to effectively detect and identify attack threats from the heterogeneous cyber-physical information in the smart grid; (ii) the design, implementation and evaluation of stacked denoising autoencoder (SDAE) to extract highlyrepresentative feature space that allow reconstruction of a noise-free input from noise-corrupted perturbations; (iii) the design, implementation and evaluation of a novel ensemble learning-based feature extractors that combine multiple autoencoder (AE) feature extractors and random forest base classifiers, so as to enable accurate reconstruction of each feature and reliable classification against malicious events. The simulation results validate the usefulness of ensemble learning approach in detecting malicious events in the cyber-physical smart grid

    Real-time data operations and causal security analysis for edge-cloud-based Smart Grid infrastructure

    Get PDF
    The electric power grids are one of the fundamental infrastructures of modern society and are among the most complex networks ever made. Recent development in communications, sensing and measurement techniques has completely changed the traditional electric power grid and has brought us the intelligent electric power grid known as Smart Grid. As a critical cyber-physical system (CPS), Smart Grid is an integration of physical components, sensors, actuators, control centers, and communication networks. The key to orchestrate large scale Smart Grid is to provide situational awareness of the system. And situational awareness is based on large-scale, real-time, accurate collection and analysis of the monitoring and measurement data of the system. However, it is challenging to guarantee situational awareness of Smart Grid. On the one hand, connecting a growing number of heterogeneous programmable devices together introduces new security risks and increases the attack surface of the system. On the other hand, the tremendous amount of measurements from sensors spanning a large geographical area can result in a reduction of available bandwidth and increasing network latency. Both the lack of security protection and the delayed sensor data impede the situational awareness of the system and thus limit the ability to efficiently control and protect large scale Smart Grids in time-critical scenarios. To target the aforementioned challenge, in this thesis, I propose a series of frameworks to provide and guarantee situational awareness in Smart Grid. Taking an integrated approach of edge-cloud design, real-time data operations, and causal security analysis, the proposed frameworks enhance security protection by anomaly detection and managing as well as causal reasoning of alerts, and reduce traffic volume by online data compression. Extensive experiments by real or synthetic traffic demonstrate that the proposed frameworks achieve satisfactory performance and bear great potential practical value

    Intelligent computing in electrical utility industry 4.0 : concept, key technologies, applications and future directions

    Get PDF
    Industry 4.0 (I-4.0) is referred to as ‘fourth industrial revolution’ towards incorporation of artificial intelligence and digitalization of industrial systems. It is meticulously associated with the development and advancement of evolving technologies such as: Internet of Things, Cyber-Physical System, Information and Communications Technology, Enterprise Architecture, and Enterprise Integration. Power systems of today face several challenges that need to be addressed and application of these technologies can make the modern power systems become more effective, reliable, secure, and cost-effective. Therefore, a widespread analysis of I- 4.0 is performed in this paper and a summary of the outcomes, future scope, and real-world application of I- 4.0 on the electrical utility industry (EUI) is reported by reviewing the existing literature. This report will be helpful to the investigators interested in the area of I- 4.0 and for application in EUI.Analytical Center for Government of the Russian Federation.https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6287639Electrical, Electronic and Computer Engineerin

    Dynamic Stability with Artificial Intelligence in Smart Grids

    Get PDF
    Environmental concerns are among the main drives of the energy transition in power systems. Smart grids are the natural evolution of power systems to become more efficient and sustainable. This modernization coincides with the vast and wide integration of energy generation and storage systems dependent on power electronics. At the same time, the low inertia power electronics, introduce new challenges in power system dynamics. In fact, the synchronisation capabilities of power systems are threatened by the emergence of new oscillations and the displacement of conventional solutions for ensuring the stability of power systems. This necessitates an equal modernization of the methods to maintain the rotor angle stability in the future smart grids. The applications of artificial intelligence in power systems are constantly increasing. The thesis reviews the most relevant works for monitoring, predicting, and controlling the rotor angle stability of power systems and presents a novel controller for power oscillation damping

    Dynamic stability with artificial intelligence in smart grids

    Get PDF
    Environmental concerns are among the main drives of the energy transition in power systems. Smart grids are the natural evolution of power systems to become more efficient and sustainable. This modernization coincides with the vast and wide integration of energy generation and storage systems dependent on power electronics. At the same time, the low inertia power electronics, introduce new challenges in power system dynamics. In fact, the synchronisation capabilities of power systems are threatened by the emergence of new oscillations and the displacement of conventional solutions for ensuring the stability of power systems. This necessitates an equal modernization of the methods to maintain the rotor angle stability in the future smart grids. The applications of artificial intelligence in power systems are constantly increasing. The thesis reviews the most relevant works for monitoring, predicting, and controlling the rotor angle stability of power systems and presents a novel controller for power oscillation damping

    The Role of Deep Learning in Advancing Proactive Cybersecurity Measures for Smart Grid Networks: A Survey

    Full text link
    As smart grids (SG) increasingly rely on advanced technologies like sensors and communication systems for efficient energy generation, distribution, and consumption, they become enticing targets for sophisticated cyberattacks. These evolving threats demand robust security measures to maintain the stability and resilience of modern energy systems. While extensive research has been conducted, a comprehensive exploration of proactive cyber defense strategies utilizing Deep Learning (DL) in {SG} remains scarce in the literature. This survey bridges this gap, studying the latest DL techniques for proactive cyber defense. The survey begins with an overview of related works and our distinct contributions, followed by an examination of SG infrastructure. Next, we classify various cyber defense techniques into reactive and proactive categories. A significant focus is placed on DL-enabled proactive defenses, where we provide a comprehensive taxonomy of DL approaches, highlighting their roles and relevance in the proactive security of SG. Subsequently, we analyze the most significant DL-based methods currently in use. Further, we explore Moving Target Defense, a proactive defense strategy, and its interactions with DL methodologies. We then provide an overview of benchmark datasets used in this domain to substantiate the discourse.{ This is followed by a critical discussion on their practical implications and broader impact on cybersecurity in Smart Grids.} The survey finally lists the challenges associated with deploying DL-based security systems within SG, followed by an outlook on future developments in this key field.Comment: To appear in the IEEE internet of Things journa

    CPS Attacks Mitigation Approaches on Power Electronic Systems with Security Challenges for Smart Grid Applications: A Review

    Get PDF
    This paper presents an inclusive review of the cyber-physical (CP) attacks, vulnerabilities, mitigation approaches on the power electronics and the security challenges for the smart grid applications. With the rapid evolution of the physical systems in the power electronics applications for interfacing renewable energy sources that incorporate with cyber frameworks, the cyber threats have a critical impact on the smart grid performance. Due to the existence of electronic devices in the smart grid applications, which are interconnected through communication networks, these networks may be subjected to severe cyber-attacks by hackers. If this occurs, the digital controllers can be physically isolated from the control loop. Therefore, the cyber-physical systems (CPSs) in the power electronic systems employed in the smart grid need special treatment and security. In this paper, an overview of the power electronics systems security on the networked smart grid from the CP perception, as well as then emphases on prominent CP attack patterns with substantial influence on the power electronics components operation along with analogous defense solutions. Furthermore, appraisal of the CPS threats attacks mitigation approaches, and encounters along the smart grid applications are discussed. Finally, the paper concludes with upcoming trends and challenges in CP security in the smart grid applications

    Efficiency and Sustainability of the Distributed Renewable Hybrid Power Systems Based on the Energy Internet, Blockchain Technology and Smart Contracts-Volume II

    Get PDF
    The climate changes that are becoming visible today are a challenge for the global research community. In this context, renewable energy sources, fuel cell systems, and other energy generating sources must be optimally combined and connected to the grid system using advanced energy transaction methods. As this reprint presents the latest solutions in the implementation of fuel cell and renewable energy in mobile and stationary applications, such as hybrid and microgrid power systems based on the Energy Internet, Blockchain technology, and smart contracts, we hope that they will be of interest to readers working in the related fields mentioned above
    • …
    corecore