
c© 2019 Wenyu Ren

REAL-TIME DATA OPERATIONS AND CAUSAL SECURITY ANALYSIS FOR
EDGE-CLOUD-BASED SMART GRID INFRASTRUCTURE

BY

WENYU REN

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2019

Urbana, Illinois

Doctoral Committee:

Professor Klara Nahrstedt, Chair
Professor Carl A. Gunter
Professor Tarek F. Abdelzaher
Associate Professor Suleyman Uludag

ABSTRACT

The electric power grids are one of the fundamental infrastructures of modern society and

are among the most complex networks ever made. Recent development in communications,

sensing and measurement techniques has completely changed the traditional electric power

grid and has brought us the intelligent electric power grid known as Smart Grid. As a critical

cyber-physical system (CPS), Smart Grid is an integration of physical components, sensors,

actuators, control centers, and communication networks.

The key to orchestrate large scale Smart Grid is to provide situational awareness of the

system. And situational awareness is based on large-scale, real-time, accurate collection and

analysis of the monitoring and measurement data of the system. However, it is challenging

to guarantee situational awareness of Smart Grid. On the one hand, connecting a growing

number of heterogeneous programmable devices together introduces new security risks and

increases the attack surface of the system. On the other hand, the tremendous amount of

measurements from sensors spanning a large geographical area can result in a reduction of

available bandwidth and increasing network latency. Both the lack of security protection

and the delayed sensor data impede the situational awareness of the system and thus limit

the ability to efficiently control and protect large scale Smart Grids in time-critical scenarios.

To target the aforementioned challenge, in this thesis, I propose a series of frameworks

to provide and guarantee situational awareness in Smart Grid. Taking an integrated ap-

proach of edge-cloud design, real-time data operations, and causal security analysis, the

proposed frameworks enhance security protection by anomaly detection and managing as

well as causal reasoning of alerts, and reduce traffic volume by online data compression. Ex-

tensive experiments by real or synthetic traffic demonstrate that the proposed frameworks

achieve satisfactory performance and bear great potential practical value.

ii

To my parents and my grandparents, for their love and support.

iii

ACKNOWLEDGMENTS

First and foremost, I would like to express my sincere gratitude to my advisor Professor

Klara Nahrstedt for her invaluable guidance and continuous support of my Ph.D. study. She

offered me such a great opportunity to join her group and her guidance helped me in every

aspect of my research and the writing of this thesis. Having learned so much from her, I

could not have imagined having a better advisor.

Besides my advisor, I would like to thank my other committee members, Professor Carl

A. Gunter, Professor Tarek F. Abdelzaher, and Associate Professor Suleyman Uludag for

their constructive suggestions and insightful comments. Their precious inputs allowed me

to greatly improve my research as well as my thesis. I am sincerely honored to have them

on my doctoral committee.

I would like to thank the professors, researchers, and lab mates who gave me help and

advice during my Ph.D. study. To name a few, I would like to thank Professor King-Shan

Lui, Tim Yardley, Steve J. Granda, Hongyang Li, Shannon Chen, Haiming Jin, Phuong V.

Nguyen, Dongjing He, Scott(He) Huang, Zhenhuan Gao, Siting Chang, Tuo Yu, Tarek Elga-

mal, Tianyuan Liu, Bo Chen, Zhe Yang, and Hongpeng Guo for their advice, collaboration

and contribution in various research projects.

I am also grateful to all my friends who helped, encouraged, and supported me during my

Ph.D. study. I feel so fortunate to have them by my side. Unfortunately, it is impossible

to mention all of them so that I may only able to list some names in UIUC: Lihong Zhao,

Pengkun Yang, Dan Tao, Yi Liu, Shiyan Zhang, Shengmei Xu, Siyang Xie, Lingyu Ma,

Lufan Wang, Qiang Ning, and Chuchu Fan.

A very special gratitude goes out to the (DOE) Department of Energy (under Award

Number DE-OE0000676 and DE-OE0000780) for their financial support and assistance.

Last but most importantly, I would like to express my deepest gratitude to my father

Duoli Ren, my mother Liping Wei, my grandfather Sigen Ren, and my grandmother Ling

Shao for supporting me spiritually and financially. This thesis would not have been possible

without their love.

iv

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION . 1
1.1 Motivation and Challenges . 1
1.2 Thesis Statement . 4
1.3 Thesis Overview . 5
1.4 Thesis Contribution . 7
1.5 Thesis Organization . 8

CHAPTER 2 BACKGROUND . 10
2.1 Electric Power System . 10
2.2 SCADA and WAMS . 11
2.3 Modbus and DNP3 . 13

CHAPTER 3 OLAF: OPERATION-LEVEL TRAFFIC ANALYZER FRAME-
WORK FOR SCADA SYSTEM . 18
3.1 Introduction . 18
3.2 Related Work . 19
3.3 Preliminaries . 20
3.4 Design Overview . 21
3.5 Performance Evaluation . 27
3.6 Conclusion . 30

CHAPTER 4 ISAAC: INTELLIGENT SYNCHROPHASOR DATA REAL-TIME
COMPRESSION FRAMEWORK FOR WAMS 31
4.1 Introduction . 31
4.2 Related Work . 33
4.3 Preliminaries . 33
4.4 Design Overview . 37
4.5 Performance Evaluation . 43
4.6 Conclusion . 46

CHAPTER 5 EDMAND: EDGE-BASED MULTI-LEVEL ANOMALY DETEC-
TION FOR SCADA NETWORKS . 47
5.1 Introduction . 47
5.2 Related Work . 48
5.3 Network Architecture and Design Decision 49
5.4 Framework Design . 50
5.5 Discussion . 59
5.6 Performance Evaluation . 59
5.7 Conclusion . 62

v

CHAPTER 6 CAPTAR: CAUSAL-POLYTREE-BASED ANOMALY REASON-
ING FOR SCADA NETWORKS . 63
6.1 Introduction . 63
6.2 Related Work . 64
6.3 Preliminaries . 66
6.4 Design Overview . 77
6.5 Performance Evaluation . 92
6.6 Conclusion . 96

CHAPTER 7 CONCLUSIONS AND DISCUSSION 97
7.1 Conclusions . 97
7.2 Discussion . 99

CHAPTER 8 LESSONS LEARNED AND FUTURE DIRECTIONS 102
8.1 Lessons Learned . 102
8.2 Future Research Directions . 103

REFERENCES . 105

vi

CHAPTER 1: INTRODUCTION

As one of the fundamental infrastructures of modern society, electric power grids are

among the most complex networks every made [1]. Over the past years, electric power grids

have transformed from mostly isolated local systems to interconnected large-scale networks

to deliver electricity from producers to consumers over long distances [2, 3, 4, 5]. The

growing number of nodes, the increasing extent of interconnectedness, the rising variety of

distributed resources, controls and loads, all contribute to the complexity of electric power

grids.

Recent development in communications, sensing and measurement techniques has com-

pletely changed the traditional electric power grid. Technologies related to the Internet

of Things (IoT) in the fourth industrial revolution have brought us the intelligent electric

power grid known as Smart Grid. As a “digital upgrade” of the traditional electric power

grid, Smart Grid employs computer, communication, monitoring, control, and self-healing

technology for the following purposes [1, 6]:

• Facilitate the interconnection and operation of various distributed generating sources;

• Enhance distributed generation load balancing by grid energy storage;

• Provide the consumers with greater choice of supply and minimize their cost;

• Reduce the environmental impact;

• Increase the reliability and security of electric power delivery.

As a critical cyber-physical system (CPS), Smart Grid is an integration of physical com-

ponents, sensors, actuators, control centers, and communication networks. The states of the

physical components are measured and monitored by the sensors and the required operations

of physical components are carried out by actuators. Via the communication networks, the

control centers receive measurements from sensors and send commands to actuators, ensuring

the grid operates in desired states [7].

1.1 MOTIVATION AND CHALLENGES

It is hard to orchestrate large scale Smart Grid which is a heterogeneous, widely dispersed,

yet globally interconnected system. The key to monitor and control Smart Grid is to provide

situational awareness of the system. NIST states that “the goals of situational awareness

1

are to understand and ultimately optimize the management of power-network components,

behavior, and performance, as well as to anticipate, prevent, or respond to problems before

disruptions arise” [8]. Situational awareness is based on large-scale, real-time, accurate

collection and analysis of the monitoring and measurement data of the system [9].

Providing situational awareness of Smart Grid is challenging. On the one hand, connecting

a growing number of heterogeneous programmable devices together introduces new security

risks and increases the attack surface of the system. To make things worse, those devices are

mostly resource constrained and thus do not have the capability of providing strong security

protection by themselves. On the other hand, the tremendous amount of measurements from

sensors spanning a large geographical area can result in a reduction of available bandwidth

and increasing network latency. This in turn would hamper the timely analysis of the data

and slow down the notification of time-critical events [10, 11]. Both the lack of security

protection and the delayed sensor data impede the situational awareness of the system and

thus limit the ability to efficiently control and protect large scale Smart Grids in time-critical

scenarios.

The Supervisory Control And Data Acquisition system (SCADA) and the Wide Area

Monitoring System (WAMS) are two of the most commonly used control and monitoring

systems for Smart Grid. There are different challenges in providing situational awareness in

these two systems and both systems deserve our attention.

• SCADA: The main challenge to guarantee situational awareness in SCADA is the

lack of security protection. Smart Grid provides the traditional electric power grids

with new functionalities and transforms the closed legacy control networks to open IP-

based networks. However, new security risks are also introduced to the system at the

same time. In the past, the electric power grids were considered to be secure due the

limited connectivity of the system and the proprietary controls by each company. This

is not true anymore since Smart Grid largely increases the connectivity of the system.

Nowadays, SCADA systems have much higher exposure and larger attack surface.

However, many devices and protocols in SCADA are not designed with security in

mind and lack the vital security protection capabilities. The situational awareness of

the system will definitely suffer if security breaches occur and are not treated quickly

and properly. So, the major concern in SCADA is the security protection of it.

• WAMS: The main challenge to guarantee situational awareness in WAMS is the huge

and increasing volume of data. In Smart Grid, WAMS has been widely accepted to

provide real-time monitoring, protection, and control. WAMS is a more advanced

technology than SCADA which is deployed to monitor selected critical nodes at this

2

moment. However, we are seeing rapid increasing deployment of WAMS and there is

no sign that this trend will stop soon. Security in WAMS is less of a problem since

it uses more advanced devices and protocols. However, since WAMS requires data

to be captured and sent at very fast rate, the data volume in WAMS is much larger

than in SCADA and delay is a much bigger problem. The huge and rapidly increasing

data volume in WAMS imposes a heavy burden on the communication and storage

systems and could become the bottleneck for many real-time Smart Grid applications.

The delayed or dropped measurement data due to network congestions will certainly

hamper the situational awareness of Smart Grid.

Figure 1.1: Triangle of situational awareness in Smart Grid

In this thesis, we argue that there are three necessary requirements to provide situational

awareness to Smart Grid. As shown in Figure 1.1, the three requirements include real-time

data operations, causal security analysis, and edge-cloud design. The three requirements

form a triangle and the situational awareness of Smart Grid can only be achieved when all

three of them are considered.

Measurement and monitoring data of Smart Grid is generated, gathered, and sent to

the control center of Smart Grid for analysis all the time. For the data to be useful, one

important requirement is that the data operations in the system must be conducted in

real time. Since the term situational awareness is defined as “up-to-the-minute cognizance

or awareness required to move about, operate equipment, or maintain a system” [12], the

timely acquisition and analysis of sensor data is critical to guarantee situational awareness

of the grid. Also, real-time event processing is essential for Smart Grid, and cyber-physical

applications, running in the control centers, are usually subject to strict latency constraints.

Therefore, data operations in Smart Grid are time sensitive and we should always keep time

overhead and latency in mind for the rest of this thesis.

3

Besides guaranteeing the timeliness of data, the security of Smart Grid is also vital for the

situational awareness of Smart Grid. And as we mentioned before, the goal of situational

awareness is more than just to know the state of the system but also to understand why

the system is in that state. In terms of security, knowing what anomalies are happening in

the system is not enough. Understanding why they happen is also of critical importance. If

only intrusion detection is deployed and the causes and consequences of the events are not

identified, it is hard or impossible for the operator to quickly digest the events and react

to them. Even if the events related to attacks are detected quickly, the entire system could

still suffer when the true reasons for the events remain unexplained and the operator fails to

resolve the attacks promptly. Therefore, to guarantee situational awareness of Smart Grid,

it is necessary to provide causal security analysis of the system which includes not only the

detection but also the reasoning of anomalies.

To provide situational awareness, another novel paradigm called edge computing (also

known as fog computing) [10, 13, 14] also needs be exploited. Edge computing is an ar-

chitecture that uses networking edge devices to carry out computing services closer to end

devices. By bringing more computing power to the outer edges of the network, which are

closer to the data sources, edge computing is able to process and analyze the massive data

from different kinds of end devices faster. This, in turn, can help to reduce the amount

of data to be transmitted to the data centers and to provide services with faster response

as well as greater quality [15]. For Smart Grid, the control centers host the cloud and the

substations include the edges. By using an edge-cloud design in Smart Grid, inspection and

preliminary analysis of SCADA traffic can be placed close to end devices to provide timely

information to power grid operators. The huge data volume in WAMS can also be reduced if

data compression operation is placed at the edge. Therefore, an edge-cloud design is essential

in providing situational awareness to Smart Grid by helping to achieve a faster actuation

and response of the Smart Grid system to events, a better utilization of the communication

bandwidth, and an increase of reliability and scalability [16].

1.2 THESIS STATEMENT

I claim that the following thesis statement is true.

To provide Smart Grid with situational awareness, we need an integrated approach of

edge-cloud design, real-time data operations, and causal security analysis.

4

1.3 THESIS OVERVIEW

In this thesis, I design four frameworks, deployed in Smart Grid, to achieve the objective

of situational awareness. In this section, I give an overview of each of them and explain how

they help to achieve the objective.

1.3.1 OLAF: Operation-Level Traffic Analyzer Framework for SCADA System

As we mentioned in Section 1.1, the current SCADA systems in Smart Grid are facing

increasing security risks. They are primarily protected at the perimeter level with firewalls

at the boundary of the networks but are not equally protected against internal attacks. To

provide end-to-end security against both external and internal attacks, both the end host

devices and the network need to be secured. However, the end host devices in SCADA

such as Programmable Logic Controllers (PLCs) and Remote Terminal Units (RTUs) are

resource-constrained devices which do not have the ability to provide security analysis and

protection by themselves [17]. Therefore, in the current architecture, the control centers are

responsible for both the device status analysis and network traffic analysis. Data from the

measurement devices is transmitted to the control center for processing and analysis. As

the number of deployed measurement devices grows, it is increasingly harder for the current

architecture to provide up-to-date situational awareness to the power grid operators.

To address the above problem in Smart Grid SCADA networks, my approach in this

work [18] is the design of an edge-based, extensible, and efficient operation-level traffic

analyzer, called OLAF. OLAF is able to collect, aggregate and analyze the statistics in

network packets from both the flow level for network traffic analysis and the operation level

for device status analysis. I deploy OLAF close to the end hosts in the edge of SCADA

network to provide the operators with more up-to-date situational awareness of the whole

system and warn them of potential breaches more promptly. This work has been published

in IEEE SmartGridComm 2016 [18].

1.3.2 ISAAC: Intelligent Synchrophasor Data Real-Time Compression Framework for
WAMS

As stated in 1.1, WAMS have been widely accepted to provide real-time monitoring,

protection, and control of power systems. WAMS’s capability to support real-time decision-

making applications is based on the emerging and development of Phasor Measurement Units

(PMUs). Since PMUs have very high sampling rates and usually multiple data channels, the

volume of measurements collected is huge. And we can surely expect a multi-fold expansion

5

in the already large volumes of data in WAMS due to the higher sampling rate of modern

PMUs, the increase in the number of PMUs and measurements per PMU. The huge and

rapidly increasing data volume in WAMS imposes a heavy burden on the communication and

storage systems and could become the bottleneck for many real-time smart grid applications.

If not handled carefully, the huge data volume in the communication system could result in

frequent and severe congestion. The situational awareness of the system could suffer a lot

from the extremely long delays or high packet loss rates that follow the congestion.

In this work, I propose an Intelligent Synchrophasor dAta reAl-time Compression frame-

work, named ISAAC, to be deployed at the edge of WAMS. Combining the Principal Com-

ponent Analysis (PCA) and Discrete Cosine Transform (DCT), ISAAC has the capability

of largely improving the efficiency of communication and storage systems via data com-

pression while maintaining strong data fidelity. This work has been published in IEEE

SmartGridComm 2017 [19].

1.3.3 EDMAND: Edge-Based Multi-Level Anomaly Detection for SCADA Networks

As discussed in Section 1.3.1, I proposed a light-weighted operation-level traffic analyzer,

named OLAF, to provide preliminary analysis of SCADA. However, that is not enough to

guarantee situational awareness and a more thorough monitoring and analysis are required.

Based on different analysis granularity, data in SCADA network traffic generally can be

divided into three levels: transport level, operation level, and content level. Transport level

data refers to statistics in IP headers and transport protocol headers. Operation level data

refers to operation statistics in ICS protocols. Content level data refers to measurement

statistics from field devices. Monitoring and event detection of only one or two of the three

levels is not enough to detect and reason about attacks in all three levels. Also, data in each

level has its own characteristics, which requires distinct methods to deal with.

In this work, I develop an edge-based multi-level anomaly detection framework for SCADA

networks, named EDMAND. EDMAND is located inside the remote substations, which are

the edges of the SCADA network. It contains a multi-level anomaly detector to monitor

all three levels of network traffic data passing by. Appropriate anomaly detection methods

are applied based on the distinct characteristics of data in various levels. The concept

of confidence is introduced into the anomaly detection process and confidence scores are

assigned to generated alerts. Also, the generated alerts are aggregated and prioritized to

benefit further analysis before being sent back to control centers. This work has been

published in IEEE SmartGridComm 2018 [20].

6

1.3.4 CAPTAR: Causal-Polytree-based Anomaly Reasoning for SCADA Networks

To promote the security of SCADA systems, intrusion detection systems (IDSs) are in-

creasingly deployed by SCADA operators. The main objective of IDSs is to monitor the

system, detect suspicious activities caused by intrusion attempts, and report alerts to the

system operators. However, as we mentioned in Section 1.1, only knowing what anomalies

are happening in system without understanding why they happen is definitely not enough to

guarantee situation awareness. Traditional IDSs continuously generate tremendous number

of alerts without further comprehending them. Drowned in an ocean of unstructured alerts

mixed with false positives, SCADA operators are almost blind to see any useful information.

Due to the high volume and low quality of the alerts, it becomes a nearly impossible task for

the operators to figure out the complete pictures of the attacks and take appropriate actions

in a timely manner.

Therefore, there is a need for an efficient system to aggregate redundant alerts from IDSs,

correlate them in an intelligent manner, and discover attack strategies based on domain

knowledge. My previous work EDMAND, located at the edges of the SCADA network,

detects anomalies in multiple levels of the network, and sends aggregated and prioritized

meta-alerts to the control center. In this work, I present a causal-polytree-based anomaly

reasoning framework for SCADA networks, named CAPTAR. CAPTAR resides in the control

center of the SCADA network and takes the meta-alerts from EDMAND as input. CAPTAR

correlates the alerts using a naive Bayes classifier and matches them to predefined causal

polytrees. Utilizing Bayesian inference on the causal polytrees, CAPTAR is able to reveal

the attack scenarios from the alerts and produces a high-level view of the security state of the

protected SCADA network. I am planning to submit this work to IEEE SmartGridComm

2019.

1.4 THESIS CONTRIBUTION

The contributions of this thesis are as follows:

• Before I proposed OLAF, all the security analysis for SCADA networks happened in

the control center. Although edge-computing was already a popular paradigm at that

time, not many works had applied it to the Smart Grid domain. OLAF is one of the

earliest works to introduce the concept of edge-computing as well as smart edge devices

into Smart Grid. It is also one of the first works to place anomaly detection at the

edge of SCADA networks. By pushing security analysis to the edge, faster detections

can be achieved for anomalies and reactions can also be performed more promptly.

7

• At the time I was developing ISAAC, issues caused by the huge data volume in WAMS

had not drawn much attention from researchers yet. Of all works that focus on alleviat-

ing the burden from the data volume, most of them only worry about storage problems

and use offline compression to solve them. ISAAC is one of the first works that identify

the problem that huge data volume could cause on communication networks and use

online compression to target the problem. The challenges and requirements of online

compression in WAMS are different from those of offline compression and ISAAC is

the first work to discuss and target them.

• In EDMAND, we divide network traffic data in SCADA into three levels: transport,

operation, and content levels. Previous works mostly focus on only one or two of the

three levels of data. In EDMAND, we cover all three levels and apply appropriate

anomaly detection mechanisms to data in each level based on their distinct character-

istics, which is necessary to see the whole picture of the attack. Also, EDMAND is one

of the first works to introduce the concept of confidence into the anomaly detection

process and assign confidence scores to generated alerts.

• Before CAPTAR, most works in the area of SCADA security stop at anomaly detection.

The true reasons that caused the anomalies are left unexplained. In CAPTAR, we go

one step further than that and use alert correlation and causal reasoning to understand

the causes of the anomalies. Attack scenarios can be revealed from the alerts and a

high-level view of the security state of the SCADA network can be produced. This

prevents the operator from being overwhelmed in the huge number of low-quality alerts

and provides situational awareness that is explainable.

1.5 THESIS ORGANIZATION

Chapter 2 introduces some background knowledge about Smart Grid to be used in the

rest of this thesis. In each of Chapter 3-6, I will describe in more details one of the four

aforementioned works, describing its design and elaborating on the evaluation performance.

To be more specific,

• In Chapter 3, to provide end-to-end security for SCADA systems in Smart Grid against

both external and internal attacks and enhance up-to-date situational awareness, I

propose an edge-based, extensible, and efficient operation-level traffic analyzer, called

OLAF.

8

• In Chapter 4, to alleviate the burden of huge and rapidly increasing data volume in

WAMS and prevent the impairment of situational awareness by frequent and severe

congestion, I propose an intelligent synchrophasor data real-time compression frame-

work, named ISAAC.

• In Chapter 5, to provide Smart Grid SCADA systems with more comprehensive situ-

ational awareness, I develop an edge-based multi-level anomaly detection framework,

named EDMAND, to monitor and detect anomaly of all transport, operation, and

content levels of SCADA network traffic.

• In Chapter 6, to offer explainable situational awareness to Smart Grid, I present a

causal-polytree-based anomaly reasoning framework for SCADA, named CAPTAR, to

correlate alerts from EDMAND in an intelligent manner and discover attack strategies

based on domain knowledge.

In Chapter 7, I conclude this thesis and have a discussion of the generalization about this

thesis. Finally, I share some lessons learned and provide some directions of future research

in Chapter 8.

9

CHAPTER 2: BACKGROUND

In this chapter, I will introduce some background knowledge about Smart Grid which

will be used in the following chapters of this thesis. In Section 2.1, I describe the basic

structure of the electric power system. Two commonly used systems in Smart Grid, namely

SCACA and WAMS, are briefly introduced in Section 2.2. Then two popular industrial

control protocols, Modbus and DNP3, are mentioned in Section 2.3.

2.1 ELECTRIC POWER SYSTEM

As a cyber-physical system, Smart Grid consists of both physical and cyber parts. The

physical part of Smart Grid is the electric power system. As it is shown in Figure 2.1, the ba-

sic structure of the electric power grid has four main components: generation, transmission,

distribution, and customer.

Figure 2.1: Basic structure of the electric power system [21]

In the generating stations, also referred to as power plants or power stations, electricity

is produced at lower voltages (10kV to 25kV). Most generating stations burn fossil fuels

such as coal, oil, and natural gas and use generators to turn mechanical power into electrical

power. Others use nuclear power, and there is an increasing trend of using renewable sources

such as solar, wind, hydro power, geothermal, etc. Near the generating stations, step-up

transformers increase the voltage of electricity from the generating stations for transmission.

In the transmission component, electricity is transmitted in bulk from generating stations

to substations over transmission lines. Transmission lines are usually operated at high volt-

ages (i.e., 115kV or above) to reduce the energy loss over long distances. Compared with

10

low-voltage transmission, high-voltage transmission allows for less energy loss from conductor

heating and delivers a larger proportion of the generated power to the substations, and thus

achieves economic power transmission. Transmission lines are interconnected at switching

stations and substations to form a network called a power grid.

The distribution component is the final stage of electric power delivery which distributes

electricity from the transmission system to individual customers. Distribution substations

use step-down transformers to lower the transmission voltage to intermediate voltage levels

(2kV to 35kV). The primary distribution system feeds larger industrial and commercial

customers. It also carries the intermediate voltage power to small substations closer to

residential end customers. At these substations, voltage is again lowered by transformers

to a service voltage (i.e., 120V or 240V) and then electricity is carried by the secondary

distribution system to customers for residential use.

2.2 SCADA AND WAMS

What makes Smart Grid different from traditional power grids is its cyber part. The cyber

part has several systems that are widely deployed, including the Supervisory Control And

Data Acquisition system (SCADA), the Wide Area Monitoring System (WAMS), and the

Advanced Metering Infrastructure (AMI). Among these three systems, SCADA and WAMS

are responsible for the generation, transmission and distribution components whereas the

AMI is responsible for the customer component. In this thesis, I focus on SCADA andWAMS

since they are more critical systems and are highly related to the situational awareness of

Smart Grid.

A SCADA system is a common industrial control system which is used to collect data from

sensors located at remote sites and to issue commands from a central site for control pur-

pose. The simplified architecture of a typical SCADA system is shown in Figure 2.2. The

major components in SCADA system include the Master Terminal Units (MTUs) in the

control centers, field controllers in the remote substations and the communication network

that connects them. The MTU, also referred to as SCADA server or supervisory controller,

is the core of the SCADA system. It is a server responsible for communicating between

the field controllers and the human-machine interface (HMI) software running on operator

workstations. The field controllers mainly consist of Remote Terminal Units (RTUs) and

Programmable Logic Controllers (PLCs). Further connected to sensors and actuators, these

controllers are responsible for transmitting telemetry data to the MTU and controlling con-

nected actuators by messages from the MTU [22]. The communication network connects

the MTU to RTUs and PLCs by radio, wire, or optical fiber connections. Industrial control

11

protocols are used in the communication network and two of the most commonly used ones

will be introduced in Section 2.3.

Figure 2.2: Simplified architecture of SCADA

WAMS is a new advanced measurement technology to collect information. WAMSs ability

to support dynamic monitoring of the system conditions over large areas is allowed by the

emerging and development of a new data acquisition technology of phasor measurement.

A simplified architecture of WAMS is shown in Figure 2.3. Phasor Measurement Units

(PMUs) are installed in selected substations to measure the connected bus bars or power

lines. PMUs can measure frequency, current, and voltage at a rate of 30 Hz or higher.

The generated measurements are called synchrophasors, namely synchronized phasors, since

they contain both magnitudes and phase angles, and are precisely time-synchronized by the

GPS technology. The synchrophasor measurements from the PMUs are then transmitted

to Phasor Data Concentrators (PDCs), where they are correlated and fed out as a single

stream. The time-aligned measurements are forwarded via WAN to the control center and

usually further concentrated by the PDC there. Finally, the measurements are consumed by

the WAMS applications in the control center. The phasors measured by PMUs at the same

instant can be seen as a snapshot of the system condition. By comparing the snapshots with

each other, monitoring of the dynamic as well as steady state of the system is achieved.

Figure 2.3: Simplified architecture of WAMS

WAMS is a more advanced technology than SCADA. SCADA can only provide non syn-

chronous information of the steady state of system with low sampling rate while WAMS

allows us to monitor the dynamic state of system synchronously in more elaborate time

scale. Since WAMS requires data to be captured and sent at very fast rate, the data volume

in WAMS is much larger than in SCADA and delay is a much bigger problem in WAMS.

12

Nowadays, both SCADA and WAMS are utilized in Smart Grid. SCADA is used as the

major technology and WAMS is applied to selected critical nodes. Therefore, both SCADA

and WAMS are considered and discussed in this thesis.

2.3 MODBUS AND DNP3

In this section, I will briefly introduce two industrial control protocols commonly used in

SCADA: Modbus and DNP3. All our works for SCADA in the following chapters support

these two protocols. Note that common protocols used in WAMS include IEEE C37.118 and

IEC 61850. Since they do not affect the online data compression in WAMS which I focus

on, I will not describe protocols in WAMS in more details.

Figure 2.4: Modbus query–response cycle [23]

Modbus [24] is an application layer messaging protocol, which provides master-slave com-

munication between devices connected on different types of buses or networks. Usually, only

one device (the master) initiates queries while other devices (the slaves) respond by sending

the requested data or by taking the requested action [23]. In SCADA, MTU is a typical

master device and typical slaves include RTUs and PLCs. As it is shown in Figure 2.4, for

each Modbus transaction, the master originates a query message and expects a response

from a slave device. Similarly, a response message is constructed by the slave and returned

to the master when the slave receives a query. The master’s query consists of the device

address, a function code, any data to be sent, and an error check field. The function code

13

in the query tells the slave what kind of action to perform. Any additional information

required by the slave to perform the function is included in the data bytes. And the slave

is able to verify the integrity of the query by using the error check field in the message.

The response message from the slave shares the same structure of the query message. In a

normal response, the function code is just an echo of the query function code and the data

bytes contain the requested value such as register values or status. If there is an error, the

function code is set to an exception function code indicating an error response and the data

bytes contain an error code that further describes the error.

Modbus’s data model relies on a series of tables that have distinguishing characteristics.

The four primary tables are listed in Table 2.1. Modbus supports individual selection of

65536 data items for each of the primary tables. The function codes of Modbus can be

categorized into three types: public, user-defined, and reserved function codes. The public

function codes are well defined function codes which are guaranteed to be unique. Some of

the most commonly used public function codes are the read and write operations of primary

tables and are shown in Table 2.2. The user-defined function codes are not supported by

the specification and are implemented by users. There is no guarantee that the use of

user-defined function codes will be unique. The reserved function codes are used by some

companies for legacy products and are not available for public use.

Primary Tables Object Type Type of Comments

Discrete Input Single bit Read-Only
This type of data can be provided

by an I/O system.

Coils Single bit Read-Write
This type of data can be altered

by an application program.

Input Registers 16-bit word Read-Only
This type of data can be provided

by an I/O system.

Holding Registers 16-bit word Read-Write
This type of data can be altered

by an application program.

Table 2.1: Data model of Modbus [23]

DNP3 [25], which represents the Distributed Network Protocol Version 3, is a standards-

based communications protocol used between components in industrial control systems such

as SCADA. To be more specific, DNP3 is responsible for the exchanging of data and control

commands between master and outstation. The term outstation denotes remote computers

in the field and the term master represents computers in the control centers. In SCADA,

MTU is a typical master computer and typical outstation computers include RTUs and

PLCs. Using DNP3, the master station issues control commands to outstation computers

and outstation computers gather data for transmission to the master. As it is shown in

14

Code Name

01 Read Coils
02 Read Discrete Inputs
03 Read Holding Registers
04 Read Input Registers
05 Write Single Coil
06 Write Single Register
15 Write Multiple Coils
16 Write Multiple Registers
23 Read/Write Multiple Registers

Table 2.2: Commonly used public function codes in Modebus [24]

Figure 2.5, DNP3 is a layered protocol that is based on the Open Systems Interconnection

model (OSI model). DNP3 supports application layer, pseudo-transport layer, and data

link layer. The application layer bridges the DNP3 user’s code with the lower layers and

provides standardized functions and data formats for the efficient transmission of control

commands and data values. The pseudo-transport layer is responsible for disassembling large

application layer fragments into data-link-layer-sized units for transmission and reassembling

them back into the original application fragment on reception. The data link layer, lying

between the pseudo-transport layer and the physical media, provides station addressing,

data fragmentation, frame synchronization, link control, and error detection.

In Figure 2.5, the series of square blocks at the top of the outstation denotes the data

stored in its database and output devices. Each data type is structured as a separate array.

The binary input array contains states of physical or logical Boolean devices. The analog

input array contains analog input quantities that the outstation measured or computed.

The counter array contains ever increasing count values. The control output array contains

physical or logical on-off, raise-lower and trip-close points. The analog output array contains

physical or logical analog quantities such as those used for setpoints. As it is shown in Figure

2.5, the DNP3 master shares similar input data types including binary, analog and counter.

These values are used by the master for system state display, closed-loop control, alarm

notification, billing, etc.

Some of the most commonly used functions in DNP3 are listed in Table 2.3. For example,

let us consider read operations. The master’s user layer formulates its request for data

from the outstation by telling the application layer function code 1 to perform, and by

specifying the data types it wants from the outstation. The application layer then passes

the request down through the transport layer to the link layer that, in turn, sends the

message to the outstation. The link layer at the outstation checks the frames for errors

15

Figure 2.5: Master–outstation relationship and layering of DNP3 [26]

and passes them up to the transport layer where the complete message is assembled in the

outstation’s application layer. The application layer then tells its user layer what data were

requested. Responses work similarly, in that, the outstation’s user layer fetches the desired

data and presents it to the application layer. Data is then passed downward, across the

communication channel and upward to the master’s user layer. Some outstations are also

able to spontaneously transmits a response without having received a specific request for the

data. These unsolicited responses are utilized to transmits changes at outstations as soon

as possible rather than waiting for another master station polling cycle. Also, whenever the

master receives an application layer fragment from an outstation, it sends a confirmation to

the corresponding outstation.

16

In this thesis, I am considering Modbus on TCP. Therefore, both Modbus and DNP3 in

this thesis have a transport layer and an internet layer and rely on the TCP/IP protocol

suite.

Message Type Code Name Brief Description

Confirmation 0 CONFIRM

Master sends this to an outstation
to confirm the receipt of

an Application Layer fragment.

Request 1 READ
Outstation shall return the data

specified in the request.

Request 2 WRITE
Outstation shall store the data

specified in the request.

Response 129 RESPONSE

Master shall interpret this
fragment as a response to

a request sent by the master.

Response 130
UNSOLICITED
RESPONSE

Master shall interpret this fragment
as an unsolicited response that was
not prompted by an explicit request.

Table 2.3: Commonly used function codes in DNP3 [25]

17

CHAPTER 3: OLAF: OPERATION-LEVEL TRAFFIC ANALYZER

FRAMEWORK FOR SCADA SYSTEM

3.1 INTRODUCTION

As we mentioned in Section 1.1, for the Smart Grid SCADA systems nowadays, various

security mechanisms (e.g., firewalls and gateways) are applied to the boundary of the infras-

tructure to inspect and secure the information exchanged with external entities. However,

data within SCADA networks, gathered by the internal field measurement devices, is usually

not visible to the operators and not secured at the same security levels as communication

with external entities. Smart Grid wide-area networks connect Smart Grid substation field

networks with operational control centers, and these networks open possibilities for potential

attacks, unless they embed end-to-end security mechanisms and policies. Even if we secure

communication paths, insider attacks are possible due to spear phishing, USB, network-

based malware proliferation [17], etc. As a result, it is a must for the utilities to go beyond

guarding the external boundary of Smart Grid SCADA networks and begin inspecting and

protecting internal Smart Grid SCADA networks at all levels.

To provide end-to-end security in the network system, both the end host devices and the

network need to be secured. In general purpose network such as the Internet, the end hosts

usually have their own security analysis and protection mechanism. Therefore, the analyzers

designed for general purpose network [27, 28, 29, 30] only need to provide network analysis

capability, i.e., flow/packet or application level traffic analysis. In Smart Grid SCADA

network, the end hosts are control centers and field controllers such as Programmable Logic

Controllers (PLCs) and Remote Terminal Units (RTUs). Since the field controllers are

resource-constrained devices which do not have enough memory and computing resources to

support the addition of security capabilities [17], the control centers are usually responsible

for both the device status analysis and network traffic analysis. In the current architecture,

data, collected by the measurement devices, is transmitted to the control center for processing

and analysis. As the number of deployed measurement devices grows, it is increasingly

harder for the current architecture to satisfy the real-time needs of protection and control

applications. Therefore, the current Smart Grid SCADA networks cannot provide up-to-date

situational awareness to the power grid operators. However, supervising device functionality,

detecting networking anomalies and preventing potential problems in substations, all rely

on situational awareness. The lack of up-to-date situational awareness may result in huge

losses during security breaches.

Our approach to the problem in Smart Grid SCADA networks is the design of an edge-

18

based, extensible, and efficient operation-level traffic analyzer, called OLAF, that has the

capabilities of both flow-level network traffic analysis and operation-level device status anal-

ysis. OLAF is able to collect, aggregate and analyze the statistics in network packets from

both the flow level for network traffic analysis and the operation level for device status anal-

ysis. For network traffic analysis in the flow level, OLAF is able to track which two hosts

are communicating. For device status analysis in the operation level, the analyzer is able to

track status information of the utilized industrial control systems protocols (e.g., Modbus

and DNP3), ongoing operations (e.g., read or write), and the targets of those operations(e.g.,

indexes of coils or registers that carry values of the operation). OLAF collects, aggregates

and stores these meta data statistics in efficient data structure. Then, it inspects those

aggregated data to perform anomaly detection.

We deploy OLAF close to the end hosts in the edge of SCADA network to provide up-

to-date situational awareness of network traffic and operational device status to the power

operator. OLAF provides the situational awareness by promptly extracting, aggregating,

displaying and analyzing the control information in network packet headers as well as the

encapsulated data. By providing both network and device analysis ability close to field

controllers, we are able to give the power operator more up-to-date view of the whole system

and warn them of potential breaches more promptly.

This chapter is structured as follows: We review the related work in Section 3.2. In

Section 3.3, we introduce the network architecture of the Smart Grid control systems and

describe the design challenges and our approaches. In Section 3.4, we present an overview

of the analyzer design. Both time overhead and performance evaluation of OLAF is shown

in Section 3.5 and we conclude the chapter in Section 3.6.

3.2 RELATED WORK

Traffic analyzer is the main approach to provide network traffic analysis for general purpose

networks. There are many works [27, 28, 29, 30] aimed at designing network profiler and

traffic analyzer. However, to our knowledge, none of the existing analyzers for general

purpose networks provide operation-level device analysis. And operation-level device analysis

is crucial to Smart Grid SCADA networks, since compromised devices can send malicious

operations or fake measurement data which could cause huge damage to the entire system.

There are also works that build analyzers for SCADA systems. Different approaches

include traffic filtering systems [31, 32], Bloom-filter-based/model-base/machine-learning-

based intrusion detection [33, 34, 35, 36], SCADA Intelligence Gateway [37] and a fine

grained analysis of packet content [38]. Our work differs from theirs in that instead of just

19

extracting and analyzing all the features separately, we factor the features into multiple

levels and store our statistics in a tree structure. We have also designed a threshold-based

anomaly detection algorithm utilizing the tree structure. The tree structure not only allows

us to efficiently store and access the statistics, but also gives us the ability to easily change

the granularity of our analysis and inspection.

3.3 PRELIMINARIES

In this section, we first introduce the Smart Grid network architecture. Then we describe

the design problems of the analyzer together with our approaches.

3.3.1 Network Architecture

The simplified network architecture of Smart Grid SCADA system [17] is shown in Figure

3.1. The communications are between the MTU in the control center and field controllers

within the substations. The field controllers are PLCs and RTUs which are further connected

to sensor and actuators. They forward data measurements to control centers and receive

control commands from control centers. The control center, on the other hand, is responsible

for processing the forwarded data and issuing control commands.

Figure 3.1: Smart Grid SCADA network architecture and OLAF

To perform analysis of the Smart Grid SCADA network traffic and device status, our

analyzers are placed at the boundary of the WAN at both control center and substation

ends, as it is shown in Figure 3.1. To be more specific, the uplink of the substation switch

is connected to the input interface of the analyzer and the output interface is connected to

the input of the router, making the analyzer inline to all communications. A similar type

of connection is done also on the other side at the control center. Once the analyzers are

physically connected inline, all traffic that was previously being communicated now transits

through the analyzer and is subject to inspection and analysis.

20

3.3.2 Design Challenge

While designing the analyzer, there are many challenges we need to deal with. Two of

them are crucial to our analyzer and are discussed as follows:

• Extensibility1: As the Smart Grid SCADA networks evolve, smarter devices and new

industrial control protocols are deployed. Designing the analyzer to be easily extensible

to handle new operations of new devices using new protocols is of great importance.

The software design concept, modularity, is our approach to this problem. OLAF is

constructed by different modules with different functionalities (e.g., collection, aggre-

gation, analysis). To support the analysis of new operations from new protocols, we

can simply update corresponding modules or add new modules instead of redesigning

the entire analyzer.

• Efficiency : Since OLAF is going to deal with real-time traffic in the Smart Grid

SCADA network and provide prompt analysis and inspection of the packet, time ef-

ficiency is crucial to our analyzer. The collection of statistics needs to be done at

the communication line speed and the analysis also needs to be done fast enough to

be meaningful to power grid operators. To be efficient, the analyzer should collect

sufficient amount of statistics at the minimum cost. We achieve this by factoring the

statistics into multiple levels and adjusting the number of used levels according to

requirements of metadata accuracy as well as time and storage overhead.

3.4 DESIGN OVERVIEW

In this section, we present an overview of the analyzer system design. The modular struc-

ture of OLAF is shown in Figure 3.2. OLAF consists of 4 modules: (1)Statistics Collector,

(2)Statistics Aggregator, (3)Anomaly Detector, (4)Pattern-based Identity Recognizer.

Figure 3.2: Modular Structure of OLAF

1Here we only discuss the extensibility to new functionalities.

21

The Statistics Collector examines the network packets and collects the flow-level and

operation-level statistics needed by the network traffic and device status analysis. It then

provides the inputs for the Statistics Aggregator and the Pattern-based Identity Recognizer.

The Statistics Aggregator aggregates the statistics and sends them to the Anomaly Detector

for further analysis and anomaly detection. The Pattern-based Identity Recognizer identifies

the type of the traffic source and destination by monitoring certain request and response

patterns in the statistics provided by the Statistics Collector. The four modules will be

described in more detail in the following subsections.

3.4.1 Statistics Collector

For each network packet that goes into the collector, there are 6 levels of statistics we want

to collect, which are shown in Table 3.1. Levels 1-2 are flow-level statistics that are used for

network traffic analysis, while levels 3-6 are operation-level statistics that are used for device

status analysis. Note that not all 6 levels of statistics necessarily exist for each packet. For

example, a transport control packet (e.g., TCP ACK) does not have an industrial control

protocol (e.g., Modbus) header and only has the upper two levels (e.g., levels 1 and 2) of

the statistics. On the other hand, a Modbus request packet to read a specific register has all

6 levels of statistics. Another thing worth noticing is that the Unit ID (UID) is a protocol

specific additional address used to differentiate aggregated data or devices that do not have

IP addresses. For example, the substation could aggregate the measurement data from IEDs

and the control center will communicate with the substation instead of each IED to collect

those data. In this case, all the packets will have IP addresses of the control center and

the substation. To differentiate data from different IEDs, the power operator will assign

different additional addresses to each IED and use those as identifiers.

Level Subject
1 Sender of the packet
2 Receiver of the packet
3 Protocol that the packet uses for industrial control (e.g., Modbus or DNP3)
4 Unit ID (UID) that is used by the protocol to identify different devices
5 Function (e.g., read or write) that the packet conducts in its protocol
6 Target of the function (e.g., which coil or register)

Table 3.1: 5 levels of statistics

In the Statistic Collector, each packet header will go through three metadata extractors

in order. The three extractors will extract the statistics of levels {1, 2}, {3, 4, 5} and

22

6, respectively. The first extractor is a general one which extracts sender and receiver

information. The other two, on the other hand, are protocol and device specific and are

responsible for extracting {protocol, UID, function} and target, respectively. Currently, we

have extractors for two industrial control protocols, DNP3 and Modbus. An item gen event

will be triggered after the packet is processed by the last extractor, which contains all the

statistics extracted by the current and all former extractors. Consider an example of a

control center with IP 1.2.3.4 sending periodic Modbus read coils requests to a substation

with IP 4.3.2.1. The control center sends the request once per minute and tries to read

coil 1 from device with UID of 2. After the request packet header goes through the OLAF

collector, the extractors extract the sender of 1.2.3.4, the receiver of 4.3.2.1, the protocol

of Modbus, the UID of 2, the function of READ COILS, and target of 1. Note that if

new operations in new protocols need to be supported, only the last two extractors need

to be updated. All the other parts can remain exactly the same, which provides significant

extensibility to the analyzer.

A useful feature of our analyzer is that users can easily scale the number of levels of

statistics to collect. If the user is only interested in the flow-level information, the analyzer

can be configured into a general network analyzer by only collecting the upper two levels

of statistics. This can largely speed up the collector and make the analyzer more efficient,

since the packet needs to go through the first extractor only instead of all three in this

case. If operation-level statistics is required, the analyzer collects all 6 levels of statistics

and provides the capabilities of device status analysis and network traffic analysis.

3.4.2 Statistics Aggregator

The Statistics Aggregator aggregates the information of each packet and constructs a tree

structure Treenew to store the aggregated statistics. Each tree structure Treenew corresponds

to statistics aggregated over certain period of time Tp and each node corresponds to statistics

of a specific kind of packets. An example of the data structure is shown in Figure 3.3.

Each node (leaf and internal) in the tree includes the following fields: (1)Info string IS,

(2)Accumulated info string AIS, (3)Packet count PC, (4)Average byte AB, (5)Response

ratio RR (function level node only), (6)Response delay RD (function level node only). IS

is the value of the corresponding statistics level. For example, IS of sender level is its IP

address and IS of function level is the function name. AIS of a node, on the other hand,

is constructed by ISes of nodes on the path from the root to itself. And the node stores

statistical data of the kind of packets represented by its AIS. For example, the node labelled

“G1” in Figure 3.3 has an AIS of “S1−R1−P1−F1−G1” and therefore stands for packets

23

that sender S1 sends to receiver R1 using protocol P1 with function F1 performed on target

G1. The other four fields are data fields used to store statistical data of that kind of packets

corresponding to the node during that period Tp. PC is the total number of the packets,

while AB is the average size in bytes of the packets. RR and RD only exist for function

level nodes and are the ratio of responded request functions and the delay of the response,

respectively.

Figure 3.3: Statistics structure

In the workflow of the Statistic Aggregator, the item gen event is fed into an item counter,

which gets the information about the packet in the event and updates the corresponding

nodes’ date fields. There is also an aggregator which runs every period Tp, aggregating

the results during that period as well as constructing the statistics structure. After the

aggregator finishes the aggregation and construction, it triggers an aggre finish event which

includes the tree structure Treenew of that period. This event could be used for further

analysis of the statistics of the network traffic such as anomaly detection which will be

introduced in the following subsection.

3.4.3 Anomaly Detector

The Anomaly Detector is responsible for triggering alarms when anomalous traffic is seen

in the network. There are mainly two approaches for intrusion detection: specification-base

and anomaly-based. Although the anomaly-based approach has the ability to detect novel

attacks, the difficulty of modelling the normal behaviour and the high false positive rate

prevent it from widespread use. However, it is shown that the network traffic in SCADA

24

systems shows much more regularity than traffic in general purpose network [38]. There-

fore, the anomaly-based approach is ideal for intrusion detection in Smart Grid SCADA

networks. Our current anomaly detector uses the anomaly-based approach. Specifically, it

utilizes a threshold-based algorithm, named Normal Tree. The core idea of the algorithm

is constructing a ‘normal’ tree Treek which represents the normal traffic and using it as a

baseline. The next tree, constructed by the Statistic Aggregator, Treenew is then compared

to the baseline to detect any potential anomaly.

The algorithm has two phases: initialization phase and anomaly detection phase. In

the trusted initialization phase, which is the first k periods with total length of kTp, the

algorithm just merges the k trees and constructs the normal tree Treek. The structure of

the normal tree Treek is similar to Treenew except that we store a mean value µ and a

standard deviation value σ for each statistic field (PC, AB, RR, RD) in each node. So

each node has IS, AIS, (µPC, σPC), (µAB, σAB) (and additionally (µRR, σRR), (µRD, σRD)

for function level nodes).

Algorithm 3.1 Normal Tree Algorithm

procedure AnomalyDetect(Treenew, T reek, θ)
Traverse Treenew in pre-order.
for each node N in Treenew: do

if N also exists in Treek then

Use Equation 3.1 to calculate AS for each data field of N and compare them
with θ. Continue to traverse N ’s children.

else if N does not exist in Treek then

Assign AS = 1 to N instead of each data field and compare it with θ. Stop
traversing N ’s children.

end if

end for

Traverse Treek in pre-order.
for each node N in Treek: do

if N does not exist in Treenew then

Create a dummy node N with all data fields set to zero. Then use Equation 3.1
to calculate AS for each data field and compare them with θ. Stop traversing
N ’s children.

end if

end for

end procedure

In the anomaly detection phase, we compare Treenew with Treek. One node N in Treenew

is considered to be the “same” with another in Treek if they have the same AIS. To compare

the two same nodes in two trees, we assign anomaly scores to each data field of them. Suppose

25

the field in Treenew has a value of X and the corresponding field in Treek has value µ and

σ. Utilizing the Chebyshev’s inequality, we define anomaly score AS as follows:

AS(X, µ, σ) =




1− σ2

|X−µ|2
if |X − µ| > σ

0 otherwise
(3.1)

The anomaly score is in the range [0, 1] and a higher score represents more abnormal behavior.

The algorithm then compares the score with a predefined threshold θ and decides whether to

trigger an alarm or not. The anomaly detection phase of the algorithm is shown in Algorithm

3.1.

Consider our previous example of periodic read coils requests. Suppose this is the only

traffic in the network and the substation never responds. We choose Tp = 10min, k = 10 and

θ = 0.5. The normal tree Treek is represented by Root1− S1−R1− P1−U1− F1−G1. All

nodes have data fields (µPC, θPC) = (10, 0), (µAB, θAB) = (64, 0) and F1 has additional data

field (µRR, θRR) = (0, 0). Now suppose the control center starts to send write coil requests

instead of read coils requests to the same device and target at the same frequency. The next

Treenew is represented by Root2 − S2 − R2 − P2 − U2 − F2 − G2. The algorithm traverses

Treek and Treenew simultaneously in pre-order. It first finds that Root1 and Root2 have

the equal AIS and therefore are same nodes. The calculated AS for both PC and AB are

zeros, which are less than θ = 0.5. Hence the algorithm does not trigger any alarm and

continues to compare their children. Similarly, the algorithm compares S1 with S2, R1 with

R2, P1 with P2, U1 with U2 in order and triggers no alarm. Then the algorithm finds that

no node in Treek has the same AIS with that of F2, so it assigns AS = 1 to F2. Since

AS = 1 > 0.5 = θ, it triggers an alarm. The algorithm also finds that no node in Treenew

has the same AIS with that of F1, so it creates a dummy node F0 with all data fields set to

zero and compares F0 with F1. ASPC = ASAB = 1 > 0.5 = θ, hence the algorithm triggers

two alarms.

The most criticized issue with the anomaly-based approach is the high false positive rate.

There are three parameters in our analyzer that we can increase to reduce false positives:

period time Tp, number of training periods k, and the anomaly score threshold θ. But they

need to be carefully tuned since there are trade-offs and restrictions. Because we only detect

anomalies at the end of each period, the period time Tp decides the maximum anomaly

detection delay! We need to keep it small to provide prompt detection! A longer training

phase has a larger training cost, and makes it harder to keep the training set clean. Increasing

the threshold will make the detection algorithm less sensitive, which might decrease the

detection rate. OLAF also has a feedback loop between the anomaly detector and the power

26

grid operator. If the operator finds one alarm to be false positive, he or she can give feedback

to the detector so that the detector can adapt to avoid the same mistake. Our current naive

feedback mechanism just increases the standard deviation in the corresponding data field in

the normal tree. More sophisticated methods will be explored in the future work.

3.4.4 Pattern-based Identity Recognizer

The objective of the Pattern-based Identity Recognizer is to identify the device type of

the traffic source and/or destination by monitoring certain request and response patterns in

the traffic statistics.

The recognizer consists of a request-response coupler and a recognition rule matcher. The

request-response coupler analyzes the packet statistics in the item gen event. Based on

the statistics, it couples each pair of request and response and constructs a variable which

consists of the protocol and both the request and response function codes. For each pair of

request and response, this variable is checked by the recognition rule matcher to see whether

it matches the function pairs given by the recognition rules or not. If a match is found, the

identities of the requester and/or the responder are also given by the corresponding matched

rule and output by the matcher.

3.5 PERFORMANCE EVALUATION

In this section, we present the evaluation of OLAF in terms of time overhead and detection

ability. We use a network analysis framework, called Bro [39], to implement our analyzer.

All experiments run on a simulated Modbus trace set. The trace set was generated by a

traffic simulator created by domain expert from Information Trust Institute at Illinois. The

trace set includes a baseline traffic flow and some injected anomalies. In the baseline traffic,

one Modbus master (control center) sends periodic operations to 10 Modbus slaves (field

controllers). The valid operations in the baseline traffic and the frequencies of them are

shown in Table 3.2.

3.5.1 Time Overhead Evaluation

Since our analyzer is inline to all traffic going through, we need to evaluate its processing

time overhead to make sure it can handle real time traffic. We run OLAF on a 64-bit Ubuntu

machine with 8 Intel i7-2600 3.40GHZ CPUs and 3.7GiB memory. In each of the following

27

Operation Function code Frequency
Read Coils 01 Every 5 seconds

Read Discrete Inputs 02 Every 5 seconds
Read Holding Registers 03 Every 5 seconds
Read Input Registers 04 Every 5 seconds
Write Single Coil 05 Every 30 seconds

Write Single Register 06 Every 30 seconds
Write Multiple Coils 15 Every 5 minutes

Write Multiple Registers 16 Every hour

Table 3.2: Frequencies of valid operations in the baseline traffic

experiments, we run the corresponding modules on the same trace set for 5 rounds and take

the average.

For the Statistics Collector, we measure the processing time of each individual packet and

define it to be the total runtime of the collector. For the Traffic Statistics Counter, we are

interested in the item process time and the aggregation time. Item process time is the time

for the item counter to process the item gen event and update the corresponding date fields

and is measured per item seen event. Aggregation time, which is measured per aggregation

period, is the time for the aggregator to aggregate the data fields and construct the current

tree structure. For the Anomaly Detector, the time to run the Normal Tree algorithm for one

period is denoted by the anomaly detection time. Note that the total real-time processing

time of each packet is the sum of collector runtime and item process time. And since the

aggregation and anomaly detection is only done once for each aggregation period, they are

not subject to the real-time overhead requirement.

Figure 3.4 shows the above four kinds of time overhead with different number of levels

and aggregation period time. We can see that even if we collect statistics from all 6 levels,

the total real-time processing time of each packet is still below 350 µs. And this is short

enough for the packets to be processed in communication line speed. Moreover, Tp does

not affect the aggregation time and anomaly detection time much since the traffic follows

certain patterns. Most importantly, reducing the number of levels has a significant effect

on the decrease of the time overhead of different modules. Therefore, always using the least

necessary number of levels can save non-negligible amount of time and produces the highest

processing speed. In this way, efficiency can be achieved by the analyzer.

28

(a) Collector runtime (b) Item process time

(c) Aggregation time (d) Anomaly detection time

Figure 3.4: Time overhead with different levels and aggregation period

3.5.2 Detection Ability Evaluation

To evaluate OLAF’s anomaly detection ability, we inject anomalies in different levels to the

baseline traffic. The injected anomalies are listed in Table 3.3. We fix the period time Tp to

be 10 minutes and the anomaly detection phase to be 6 hours, and change the training phase

length k and anomaly score threshold θ. We also evaluate the analyzer in both feedback off

and on situations. OLAF is able to detect all nine anomalies in all cases, which means it

never miss any anomaly. And we define ratio of number of false alarms to number of total

node checked to be false alarm rate. The false alarm rate in different cases are listed in Table

3.4. We can see that increasing training time and anomaly score threshold both reduce false

positives. And the feedback loop also has a huge effect on decreasing the false positive rate.

29

Level Injected anomaly

Flow level

Add one new Modbus master to send a set of operations to one
Modbus slave
Drop one Modbus slave
Send a bunch of ICMP packets to one Modbus slave
Increase the response delay of one Modbus slave from 30ms to
200ms
Increase the packet drop rate of one Modbus slave from 0 to 30%

Operation level

Stop sending some operations to one Modbus slave
Send several new operations to one Modbus slave
Change the sending frequency of some operations for one Modbus
slave
Change the targets of one operation for one Modbus slave

Table 3.3: Injected anomalies

Training Time 4 hours 8 hours
Feedback Off On Off On

Threshold θ
0.9 4.16% 1.07% 3.01% 0.86%
0.99 2.35% 0.62% 0.10% 0.06%
0.999 2.26% 0.56% 0.05% 0.03%

Table 3.4: False alarm rate with different parameters

3.6 CONCLUSION

In this chapter, we present an extensible and efficient operation-level traffic analyzer frame-

work, called OLAF, for Smart Grid SCADA networks to provide network traffic analysis and

device status analyses. By collecting, aggregating and analyzing statistics in both flow level

and operation level on the communication within the internal network, OLAF increases the

situation awareness and security of the control system. Our results are strongly encouraging

to place the extensible and efficient analyzer in Smart Grid SCADA networks.

30

CHAPTER 4: ISAAC: INTELLIGENT SYNCHROPHASOR DATA

REAL-TIME COMPRESSION FRAMEWORK FOR WAMS

4.1 INTRODUCTION

Recently in Smart Grid, Wide-Area Monitoring Systems (WAMS) are becoming more and

more widely accepted because of their ability to monitor, protect and control power systems

over large areas in real time. WAMS’s capability to support real-time decision-making

applications is based on the high reporting rates and precise time synchronization provided

by the new data acquisition technology of phasor measurement. Allowed by the emerging

and development of Phasor Measurement Units (PMUs), frequency, current, and voltage

can be measured at a rate of 30 Hz or higher, much faster than in the conventional SCADA

systems, where samples are taken only every few seconds. The generated measurements are

called synchrophasors, namely synchronized phasors, since they contain both magnitudes

and phase angles, and are precisely time-synchronized by the Global Positioning System

(GPS) technology. The synchrophasors generated by PMUs over wide-area power systems

can serve as snapshots of the system status and can be further utilized for real-time wide-area

monitoring, protection, and control. For instance, PMU data can aid or gradually replace

the state estimation process which is a key function in supervisory control of power grids,

since the accurate status information of the grid can be directly acquired from the real-time

synchrophasors.

Since PMUs have very high sampling rates and usually multiple data channels, the volume

of measurements collected is huge. 100 PMUs of 20 measurements, each running at 30 Hz,

will generate over 50 GB of data per day [40]. 3500 data channels of 34 PMUs running

at 100 Hz in Southwest China produce over 120 GB of data per day [41]. As the scale of

power systems and WAMS grows, the number of PMUs is also growing rapidly to provide

finer-grained global state of the more volatile power systems. For instance, the deployment

of PMUs in North America has largely increased from only 200 research-grade PMUs in

2009 to almost 1700 production-grade PMUs in 2014 [42]. Besides the number of PMUs, the

number of measurements at each PMU is also growing as more grid parameters get included

for monitoring, from several synchrophasors to tens of them. Due to the higher sampling

rate of modern PMUs, the increase in the number of PMUs and measurements per PMU,

we can surely expect a multi-fold expansion in the already large volumes of synchrophasor

data in WAMS.

The synchrophasor data generated by PMUs need to be transmitted in the underlying

communication systems in real time and stored in control centers for archive purpose (his-

31

torian). The huge and ever-increasing volume of synchrophasor data introduces tremendous

storage and bandwidth capacity requirement for WAMS. Therefore, it is necessary to use

data compression techniques to lighten the heavy burden on the storage and communication

systems. Many works of power data compression focus on the compression for storage or

offline bulk transmission [43, 44, 45, 46, 47, 48, 49]. However, we argue that online data

compression for real-time transmission should be addressed as much, if not more, than offline

compression. If not handled carefully, the huge data volume in the communication system

could result in frequent and severe congestion. The WAMS applications and even the situ-

ational awareness of the entire system could suffer a lot from the extremely long delays or

high packet loss rates that follow the congestion.

The two main challenges for designing real-time compression frameworks in WAMS are as

follows:

• Delay : The data should be compressed in a real-time manner. In other words, the

delay matters. Most existing compression techniques use large sampling windows to

achieve better compression performance, which is a luxury that real-time compression

techniques cannot afford.

• Disturbance: The delay and accuracy requirements of data during disturbance1 are

different from those in normal status. Thus it is necessary to treat disturbance data

and normal data differently in compression, which requires the early detection of dis-

turbances to be incorporated into the compression framework.

In this work, we propose an intelligent synchrophasor data real-time compression frame-

work named ISAAC to be deployed at the edge of WAMS. Combining the Principal Compo-

nent Analysis (PCA) and Discrete Cosine Transform (DCT), ISAAC has the capability of

largely improving the efficiency of communication and storage systems via data compression

while maintaining strong data fidelity. A disturbance detector allows ISAAC to differentiate

normal and disturbance data and process them in different ways. Two core techniques, which

are the transformation matrix reuse in PCA and the self-adapt principal component number

selection, allows ISAAC to achieve a good compression ratio (CR) without introducing an

impractical delay.

The remainder of this chapter is organized as follows: Section 4.2 reviews the related work.

Section 4.3 provides some background and explains the two compression algorithms used by

our approach. Section 4.4 describes the design of ISAAC. Section 4.5 shows the performance

evaluation of time, CR, and accuracy and Section 4.6 concludes the chapter.

1Disturbances here means transients in measurements that may be caused by misoperations, faults,
topology changes, load and source dynamics.

32

4.2 RELATED WORK

Data compression techniques can be categorized into lossless compression and lossy com-

pression in general. There are many works [43, 44, 45] focusing on lossless compression of

power quality data, smart meter data, and PMU data. Our work, on the contrary, focuses

on lossy compression, since lossy compression has a potential to achieve a better CR com-

pared with lossless compression and it is acceptable as long as parameters of compression

algorithms are selected carefully to maintain information loss within required bound.

Among all the works using lossy compression techniques for PMU data, most of them

[46, 47, 48, 49] perform compression for storage or offline bulk transmission purpose, in which

cases the delay of the compressed data is not a concern. Therefore, they are able to use a

sampling window with the length of 10 seconds or longer to gather enough data and compress

the entire data block to achieve better CRs. For sampling window based approaches, the

earliest set of measurements in each window needs to wait for the entire window to be filled

before it can be compressed and sent. Hence, a window size of 10 seconds means a delay

of more than 10 seconds for the earliest set of measurements in each data block, which is

far beyond the delay constraints of most of the real-time WAMS applications [50, 51]. As a

result, compression techniques for PMU data storage or offline transmission are not directly

applicable to real-time PMU data compression purpose.

A semantics-aware real-time data transmission reduction method is proposed in [52]. Grid

applications consuming PMU data are modelled as continuous threshold queries and relevant

data are delivered only when the threshold condition is broken. The drawback of this

approach is not all applications can be modeled in their way and absence of detailed data

during normal status will definitely impair the system’s ability to conduct monitoring and

detailed analysis of the data.

Another real-time data compression technique is presented in [41], combining exception

compression with swing door trending compression. Each sequence of measurements of each

PMU is compressed separately by only keeping the data with essential and effective infor-

mation. The problem with this approach is that the correlation between multiple sequences

of measurements in multiple PMUs is not utilized. And since this technique needs to be

installed on each PMU, the deployment cost is high considering the large quantity of PMUs.

4.3 PRELIMINARIES

In this section, we first introduce the generic WAMS architecture and the phasor data

concentration. Then we introduce two compression techniques we use.

33

4.3.1 WAMS Architecture

A generic architecture of WAMS consists of four main components: (1) PMU, (2) Phasor

Data Concentrator (PDC), (3) WAMS Applications, (4) underlying Communication Network

to connect the above three [53]. A simplified, multi-layered architecture of WAMS is shown

in Figure 4.1. In Layer 1, the PMUs are installed in power system substations to measure

the connected bus bars or power lines. The synchrophasor measurements from the PMUs

are then transmitted via Local Area Networks (LAN) or Wide Area Networks (WAN) to

Layer 2, where they are concentrated and sorted by the PDCs. After that, the time-aligned

measurements are forwarded via WAN to the control center in Layer 3 and usually further

concentrated by the PDC there before finally consumed by the WAMS applications.

Figure 4.1: WAMS architecture

Our real-time compression technique, ISAAC, resides in the PDCs in Layer 2. We further

divide the architecture into two scenarios: (1) LAN-WAN scenario, where the Layer-2 PDC

locates in the substation and connects to the PMUs via LAN; (2) WAN-WAN scenario,

where the Layer-2 PDC collects measurements from multiple substations and connects to

the PMUs via WAN.

4.3.2 Phasor Data Concentration

As the key component of the WAMS architecture, PDC’s core function is to combine

synchrophasor measurements from more than one PMUs into a single time-synchronized

data stream for further processing [54]. More specifically, it collects and sorts measurements

from all connected PMUs according to their timestamps. Measurements with the same

34

timestamp are encapsulated into one packet and forwarded to the control center. Since not

all measurements arrive at the same time, PDC needs to wait and eventually timeout to

mitigate the delay. The entire process is called time alignment and can be categorized into

absolute-time-based and relative-time-based time alignment [54]. For real-time monitoring,

protection and control applications, time alignment to absolute time reference is preferred

since it can provide better delay guarantees. Therefore, we will only consider and introduce

time alignment to absolute time reference here.

An example of phasor data concentration with time alignment to absolute time is shown

in Figure 4.2. At a certain rate (e.g., 60Hz), measurements with timestamps are produced

by synchronized PMUs. The countdown to the timeout starts at the time specified by

each timestamp. As it is shown in the figure, there are two potential scenarios: (1) All

measurements with timestamp T1 arrive before the timeout and the complete data set is

forwarded before the timeout; (2) Not all measurement with timestamp T2 arrive before the

timeout and the incomplete data set without measurement from PMU3 is forwarded at the

end of the timeout. Note that the processing time of PDC is omitted in this example for

simplicity reason.

Figure 4.2: Example of phasor data concentration with time alignment to absolute time [55]

Phasor data concentration is only the core function of the PDC. Since the PDC is an edge

device that phasor measurements reach before they are further forwarded to the control

center, more and more functions are being placed at the PDC including data handling,

processing, and storage [54]. And it is also a perfect location to deploy our intelligent

synchrophasor data real-time compression framework.

35

4.3.3 Principal Component Analysis

As a commonly used linear dimensionality reduction technique, PCA [56] is a mathe-

matical procedure that uses an orthogonal transformation to convert a set of observations

of possibly correlated variables into a set of linearly uncorrelated variables called principal

components (PCs).

Consider an m× n data matrix X containing n set of samples from m PMUs2 expressed

as

X =




x11 x12 . . . x1n

x21 x22 . . . x2n

...
...

. . .
...

xm1 xm2 . . . xmn



. (4.1)

xij represents the jth measurement from the ith PMU. The PCA method starts by calcu-

lating the covariance matrix as C = XXT ∈ R
m×m. Since C is a square symmetric matrix,

it can be orthogonally (orthonormally) diagonalized as

C = EDET , (4.2)

where E is an m×m orthonormal matrix whose columns are the eigenvectors of C, namely

PCs, and D is an m×m diagonal matrix with the corresponding eigenvalues as the diagonal

entries. The eigenvalues can also represent the variance explained by each PC and are sorted

in descending order. PCA performs dimensionality reduction by preserving only a subset of

PCs which explain most of the variance of the original data. Assume the first r out of the

m PCs are selected. Let E(r) represent the left most r columns of E. The transformation

matrix is selected as P = E(r)T ∈ R
r×m and the dimension reduced matrix is expressed as

Y = PX ∈ R
r×n. Let λi represent the eigenvalue (variance), associated with the ith PC,

the total variance explained by Y is defined as

Γ(r) =

∑r
i=1 λi∑m
i=1 λi

. (4.3)

Usually, we want to select r s.t. Γ(r) is greater or equal to a variance threshold γ.

Although the core idea of dimensionality reduction by PCA is the same as above, there

are various implementations of the method. In this work, we use two implementations:

The first one (we name it PCA-D) utilizes the sklearn.decomposition.PCA [57] implementa-

2There are usually multiple measurements from each PMU. So the actual number of rows is larger than
the number of PMUs. But we assume m rows here for simplicity.

36

tion and cannot work with sparse matrix; the second one (we name it PCA-S) utilizes the

sklearn.decomposition.TruncatedSVD [57] implementation and can preserve the sparsity of

the matrix.

4.3.4 Discrete Cosine Transform

DCT [58] transforms a sequence of data points of length n to a domain of n cosine basis

functions. The transformed data are the coefficients of the basis functions. Some of the

coefficients have small magnitudes and thus can be discarded without sacrificing much ac-

curacy. We use DCT implemented in scipy.fftpack.dct [59] to further compress each row of

the dimension reduced matrix Y in the previous section. Similar to the previous section, let

ci represent the coefficient with the ith largest magnitude. If l out of all the n coefficients

are kept, the cumulative energy kept can be expressed as:

E(l) =

∑l
i=1 ci∑n
i=1 ci

(4.4)

Similar to Γ(r), E(l) is used to select proper l value. In this work, we select the smallest l

that satisfies E(l) > 0.8.

4.4 DESIGN OVERVIEW

In this section, we present an overview of the design of ISAAC. The workflow of ISAAC

is described in Figure 4.3. There are four main components utilized in ISAAC: (1) Buffer

which buffers all the measurements have not been sent, (2) Time Alignment Component

which time-aligns the most recent set of measurements with an absolute timeout, (3) Dis-

turbance Detector which decides whether there are disturbances happening, (4) Compressor

which compresses the input matrix based on PCA and DCT. Among the four components,

the buffer and the time alignment component are the built-in functions of PDCs. The dis-

turbance detector and the compressor, on the other hand, are the core parts of ISAAC and

are the focus of this section.

In Figure 4.3, ~xi is a column vector containing all the received measurements from all

PMUs corresponding to time index i. The buffer serves as the sampling window and buffers

all the received stream measurements with time index k or larger. ~xk represents the earliest

unsent data set and ~xn represents the earliest unprocessed data set. Periodically, the time

alignment component aligns the measurements in the buffer based on their timestamps

37

Figure 4.3: Workflow of ISAAC

and forwards ~xn to the disturbance detector3. The disturbance detector processes ~xn and

outputs the estimated status (normal or disturbance) of the system. In normal status,

ISAAC further compares the current window size from k to n with the maximum sampling

window size K. If n − k + 1 = K, all measurements buffered from k to n, i.e. matrix

[~xk, · · · , ~xn], are forwarded to the compressor and compressed. Otherwise, ISAAC waits

for more measurements (longer sampling window) to compress. In disturbance status, ~xn is

directly sent without compression. If there are buffered measurements besides ~xn, i.e. matrix

[~xk, · · · , ~xn−1] is not empty, then they are forwarded to the compressor for compression. If

the compressor is called, no matter in which status, the compressed results are sent. k is

updated to n+ 1 as long as something is sent, which means the measurements in the buffer

before but not including time index n + 1 are cleared. And n is always increased by one

after each period.

There are five kinds of measurements we consider in this work: Frequency (f), Voltage

Magnitude (vm), Voltage Angle (va), Current Magnitude (im), and Current Angle (ia).

The following two subsections describe the disturbance detector and the compressor in more

detail.

3There could be missing data points in ~xn and in the input matrix of the compressor. We fill in each
missing data point by its current mean and record it by a boolean. We omit this process in the workflow for
simplicity.

38

4.4.1 Disturbance Detector

The main purpose of the disturbance detector is to differentiate the normal status and

the disturbance status of the system. Intuitively, a higher delay and lower accuracy are

tolerable in normal status, whereas measurements should be collected as soon as possible

during disturbances and higher fidelity is necessary to preserve the important information

in the measurements. Since the requirements for delay and accuracy are different in the two

status, it is worth differentiating them and handle them in different ways. Our disturbance

detector implements a modified version of a relatively simple statistical change detection

algorithm [48] for computation power and delay consideration.

According to PRC-002-2 by NERC [60], the recommended disturbance triggering criteria

include: (1) frequency < 59.75 Hz or > 61 Hz, (2) rate of change of frequency < 0.03125

Hz/s or > 0.125 Hz/s, 3) Undervoltage trigger set no lower than 85% of the normal operating

voltage for a duration of 5 seconds. However, as it is pointed out in [61, 48], these values are

too conservative to detect all potential disturbances and preserve all critical information.

Similar to [61], we select stricter triggering criteria as percentage deviation of θvm = 1%

for voltage and θf = 0.1% for frequency. These values could be tuned if necessary without

affecting the algorithm itself.

Since the disturbance triggering criteria are based on frequency and voltage magnitude

only, the disturbance detector only processes those two kinds of measurements. The workflow

is shown in Figure 4.4. First of all, the current status is checked and there could be two

scenarios: (1) The system is in the normal status; (2) The system is in the disturbance status.

In the first scenario, for each i ∈ 1 . . .m, the deviation δi(n) = |xin − µi(n)| is calculated,

where µi(n) =
1
K

∑n−1
j=n−K xij is the current mean. If all the percentage deviations are smaller

than the triggering threshold, namely δi(n)/µi(n) < θ for all i ∈ 1 . . .m, no disturbance is

detected and the normal status remains. Otherwise, status is changed to disturbance and

the disturbance count is set to 1. In the second scenario, we assume a disturbance will last

for at least 3 periods. So if the disturbance count is smaller than 3, the disturbance status

remains and the count is increased by 1. Otherwise, for each i ∈ 1 . . .m, a special standard

deviation of the most recent 3 periods are calculated as σi(n) =
√

1
3

∑n
j=n−2(xij − µi(n))2.

If all the percentage standard deviations are smaller than the triggering threshold, namely

σi(n)/µi(n) < θ for all i ∈ 1 . . .m, the disturbance is considered over and the status is

changed back to normal. Finally, the detector outputs the current status in all cases.

Examples of using the disturbance detector for both frequency and voltage are shown in

Figure 4.5. Blue lines represent normal status and red lines represent disturbance status.

We can see that for both measurements, the disturbances can be detected quickly and

39

Figure 4.4: Workflow of the disturbance detector

the normal status is retained soon after the disturbances end. Note that the status here

describes the entire system, therefore it is shared among all the measurements. So as long

as one measurement (f or vm) in one of the PMUs contains disturbances, all the five kinds

of measurements from all PMUs for this PDC are considered in disturbance status.

5

(a) Frequency (b) Voltage

Figure 4.5: Example of disturbance detection

40

4.4.2 Compressor

The purpose of the compressor is to use a combination of PCA and DCT to compress the

input matrix in an intelligent way in order to reduce the data volume to send while keeping

the sampling window small and maintaining a certain accuracy for the reconstructed data. It

mainly uses two techniques to achieve that: the transformation matrix reuse in PCA and the

self-adapt PC number selection. The measurements of each kind are processed separately and

in parallel. Hence, there are actually five instances of the compressor running simultaneously,

each for one of the five kinds of measurements.

Figure 4.6: Workflow of the compressor

The workflow of the compressor is shown in Figure 4.6. Assume the input is an m × n

matrix X. The compressor first checks whether n is equal to the maximum window size K.

If n = K, it means the system is in normal status and the matrix is of standard size m×K.

The transformation matrix reuse module is then called. If n < K, it means the system is

in disturbance status and the self-adapt PC number selection module is called. These two

modules are explained as follows:

• Transformation Matrix Reuse: The intuition behind this module is that temporally

closed standard matrices could share very similar PCs, namely transformation matrix

P. We use Ppre to represent the latest transformation matrix calculated and sent to

41

the receiving side in previous iterations4. Whenever a new data block is ready to be

compressed, instead of recalculating and resending each time a new transformation

matrix, Ppre is tested for reuse. To be more specific, the module compresses X using

Ppre followed by DCT. Then it reconstructs X̃ by inverse DCT and inverse PCA based

on Ppre. The reconstruction accuracy is evaluated by the maximum relative error

defined as5:

∆(X, X̃) = max
i=1...m

j=1...n

|xij − x̃ij |

ξi
(4.5)

where ξi equals the current mean defined in 4.4.1 for f, vm, im and equals to 360 for

va and ia. If the maximum relative error is less or equal to the specified tolerance

represented as τ 6, Ppre can be reused and the compressor only outputs the compressed

data. Otherwise, Ppre cannot be reused and the self-adapt PC number selection module

is called.

• Self-adapt PC Number Selection:

While using PCA to perform dimensionality reduction, one needs to decide the number

of PCs to keep, represented as r. The trade-off here is that decreasing r will decrease the

size of the compressed data but increase the error of reconstructed data. The purpose

of the self-adapt PC number selection module is to select the proper r to minimize the

compressed data size while keeping the reconstructed error in a certain threshold τ .

Equation 4.3 and a variance threshold γ is used to select r. The module works in an

iterative way. The iteration starts after matrices D and P are calculated according to

equation 4.2 and γ is initialized as γ0. In each iteration, the smallest r that satisfies

Γ(r) ≥ γ is selected, where Γ(r) is defined in equation 4.3. The transformation matrix

is then selected as P = E(r)T . The compressed matrix Z is calculated by projecting

X by P followed by DCT. If size(P) + size(Z) < size(X), data size is reduced after

compression and the iterations continues. Otherwise, no size reduction is gained after

compression and the original matrix X is assigned to the result. After the size check,

X̃ is reconstructed by inverse DCT and inverse PCA. The maximum relative error is

calculated and compared with the tolerance. If ∆(X, X̃) ≤ τ , the current r satisfies

the required reconstruction accuracy and the compressed matrix Z and transformation

matrix P are assigned to the result. Otherwise, the variance threshold γ is increased

4
Ppre is only updated when a new P is calculated and actually sent.

5This is slightly different from the standard definition of maximum relative error
6τ has different values for different measurement kinds and τ should always be smaller than θ to prevent

reconstruction error from triggering disturbances.

42

and a new iteration begins. Note that the P in result are recorded by Ppre only when

the compression succeeds and X is of standard size, namely n = K.

4.5 PERFORMANCE EVALUATION

In this section, we present the performance evaluation of ISAAC in terms of time, CR,

and accuracy. The experiments run on a dataset consisting of field synchrophasor data col-

lected from a microgrid at Illinois Institute of Technology (IIT) [62]. The dataset contains 18

hours of data (including disturbances) collected from 11 PMUs running at 60 Hz from 6 PM,

1/28/2014 to noon, 1/29/2014. The dataset includes 11 sequences of frequency measure-

ments, 94 sequences of voltage synchrophasors, and 119 sequences of current synchrophasors.

The parameter values used in ISAAC are shown in Table 4.1. Note that τf < θf and

τvm < θvm, so that reconstruction error won’t trigger disturbances. With the maximum

sampling window size K = 107 and arrival rate of 60 samples/second, the sampling window

of 10 samples has a length of 167 ms. All the parameter values are not fixed and can be tuned

by users to satisfy their own needs. Of the two WAMS architecture scenarios mentioned in

4.3.1, we choose the WAN-WAN scenario for experiments since it is likely to have a longer

communication delay and serves as a worse case for validation. We assume all the 11 PMUs

are connected to one PDC via WAN and the PDC is connected with a control center via

WAN. According to [63], the communication delay between a PMU and a PDC connected

by WAN follows a bimodal distribution containing two normal distributions. We assume the

communication delays between each pair of PMU and PDC and between PDC and control

center are all i.i.d. random variables following the same bimodal distribution with p = 0.5,

µ1 = 10 ms, σ1 = 1 ms, µ2 = 16 ms, σ2 = 3 ms, where p is the mixing factor. The absolute

timeout value of the PDC is set to 25 ms.

Parameter Value Parameter Value Parameter Value

K 10 τf 0.025% τim 4%
θf 0.1% τvm 0.2% τia 0.5%
θvm 1% τva 0.5% γ

0
0.5

Table 4.1: Default parameter values of ISAAC

The compression ratio is calculated by the raw data size divided by the compressed data

size. And the accuracy of reconstructed data is measured in terms of the maximum percent-

age error (MPE) and the normalized root-mean-square error (NRMSE). Assume the original

7A larger K will result in a higher compression ratio but also a higher delay. Here we choose K = 10 for
a trade-off.

43

data matrix is X ∈ R
m×t and the reconstructed matrix is X̃ ∈ R

m×t. MPE and NRMSE

can be calculated as

MPE = max
i=1...m

j=1...t

|xij − x̃ij |

µi
× 100% (4.6)

NRMSE =
1

m

m∑

i=1

√∑t
j=1(xij − x̃ij)2

t

/
µi , (4.7)

where µi =
∑t

j=1 xij/t for f , vm, im, and µi = 360 for va and ia.

There are two implementations of ISAAC, namely PCA-D/DCT and PCA-S/DCT. The

CR, MPE, NRMSE of each type of measurement for the two implementations are shown

in Table 4.2. It can be seen that good CRs can be achieved while maintaining satisfactory

reconstruction accuracy. The only exception is the current magnitude data, where it is hard

to compress without introducing relatively large MPE. This is due to the extremely noisy

current magnitude data we observe. In this case, it might not worth compressing current

magnitude data to avoid sacrificing data fidelity.

Measurement
PCA-D/DCT PCA-S/DCT

CR
MPE

NRMSE CR
MPE

NRMSE
(%) (%)

f 9.11 0.025 4.12E-5 5.21 0.025 3.01E-5
vm 20.36 0.202 3.36E-4 19.86 0.202 3.31E-4
va 20.58 0.500 1.20E-3 21.45 0.500 1.05E-3
im 2.72 6.937 5.02E-3 1.31 6.937 5.05E-3
ia 3.52 0.500 5.96E-4 1.47 0.500 6.87E-4

Table 4.2: CR, MPE, and NRMSE of two implementations

Figure 4.7 illustrates a comparison between original data (blue lines) and reconstructed

data (red lines) for two sample frequency and voltage measurement sequences, based on

the PCA-D/DCT implementation of ISAAC. As we can see from the figure, most noises

are discarded while critical changes and disturbances are preserved. We also evaluate the

performance of DCT alone on data compressed by PCA already. After compressing the data

by PCA-D, DCT can further reduce the data size by 34.2% for f and 14.2% for vm.

Based on the accuracy requirements of the WAMS applications, τ can be changed to

achieve different accuracy levels. With various τf , the CR, MPE, NRMSE of frequency

measurements based on the PCA-D/DCT implementation of ISAAC is shown in Table 4.38.

We can see that the CR and reconstruction error both decrease as τ decreases. Therefore,

8These results are based on one hour of data in the IIT dataset.

44

(a) Frequency

(b) Voltage

Figure 4.7: Original and reconstructed data

usually the largest τ that satisfies the accuracy requirements should be selected to maximize

the CR.

τf CR
MPE

NRMSE
(%)

0.001 18.31 0.1 1.52E-4
0.0005 14.27 0.05 6.42E-5
0.00025 8.37 0.025 4.20E-5
0.0001 3.44 0.01 2.37E-5
0.00005 1.79 0.005 1.32E-5

Table 4.3: CR, MPE, and NRMSE of frequency with various τf

To demonstrate ISAAC’s ability to satisfy the real-time requirements of WAMS appli-

cations, we also evaluate and processing time of different components and the end-to-end

data delay for both normal and disturbance status. The end-to-end delay is a sum of the

communication delay between PMU and PDC, PDC processing delay, communication delay

between PDC and control center, and the data reconstruction time. We run ISAAC on a

Mac with an Intel Core i7 1.7GHz CPU and 8GB memory. The average processing time of

45

the disturbance detector, compressor and data reconstruction (done at the control center) for

each period is shown in Table 4.4. It can be seen that the processing time is quite negligible

and should be even shorter on real PDCs which are much more powerful devices than our

Mac. The average and the maximum end-to-end delays of normal and disturbance status

are shown in Table 4.5. We can see that the end-to-end delays in disturbance status are

significantly smaller than delays in normal status, which is desirable by most of the WAMS

applications. And a maximum delay of 201 ms satisfies the delay requirements of real-time

WAMS applications [64, 65].

disturbance detector 0.12
compressor 4.75

reconstruction 0.46

Table 4.4: Avg. Processing Time (millisecond)

Status Avg Max

normal 107.1 201.4
disturbance 32.5 49.6

Table 4.5: End-to-End Data Delay
(millisecond)

4.6 CONCLUSION

In this chapter, I present ISAAC, an intelligent synchrophasor data real-time compression

framework for WAMS to be deployed in Layer 2 PDCs. Based a combination of PCA

and DCT techniques, ISAAC is able to mitigate the burden on communication and storage

systems laid by the huge synchrophasor data volume while satisfying the requirements of

real-time WAMS applications. A disturbance detector is utilized to identify disturbance data

and satisfy its stricter delay and accuracy requirements. The use of two techniques named

transformation matrix reuse in PCA and self-adapt PC number selection enables ISAAC

to achieve good compression ratios while maintaining satisfying delay and accuracy for the

reconstructed data. The performance of ISAAC is validated by experiments based on real

synchrophasor data.

46

CHAPTER 5: EDMAND: EDGE-BASED MULTI-LEVEL ANOMALY

DETECTION FOR SCADA NETWORKS

5.1 INTRODUCTION

As stated in 1.1, SCADA systems in Smart Grid are subject to a wide range of serious

threats in recent years and they could suffer from catastrophic consequences due to success-

ful attacks. Well-known malicious cybersecurity incidents in SCADA systems include the

Stuxnet worm attack [66] and the BlackEnergy malware [67]. These attacks exploited the

vulnerabilities of SCADA systems and the situation is expected to deteriorate further for

several reasons. First, the adoption of cutting-edge communication technologies contributes

to the increasing complexity and interconnection of SCADA systems, which potentially pro-

vides greater opportunity for attacks from malicious sources. Since corporate intranets can

be connected to the internet, SCADA systems connections with corporate intranets may

expose their communication weakness to threats of broader aspects. Second, devices in

SCADA systems are usually not built with cybersecurity in consideration and lack authen-

tication or encryption mechanisms. To make things worse, the enabling of remote access to

these devices via wireless technologies makes them easy to compromise. Third, most ICS

protocols lack authentication features and provide no protection for the network traffic. The

vulnerabilities of SCADA systems can be exploited from both outside by malicious attackers

and inside by disgruntled employees. Besides deliberate attacks, inadvertent events such as

natural disasters, device failures, and operator mistakes may also jeopardize SCADA systems

due to those vulnerabilities. Therefore, developing techniques to target those vulnerabilities

and provide security to SCADA systems is a pertinent topic of particular importance.

In general, two types of analysis are available to provide security for SCADA systems:

host-based and network-based. We focus on network-based analysis which monitors and

inspects network traffic due to its less intrusive nature. In [18], I propose a light-weighted

operation-level traffic analyzer named OLAF to provide preliminary analysis of SCADA.

That is not enough to guarantee situational awareness and a more thorough monitoring

and analysis and required. Based on different analysis granularity, data in SCADA network

traffic generally can be divided into three levels: transport level, operation level, and content

level. Transport level data refers to statistics in IP headers and transport protocol headers.

Operation level data refers to operation statistics in ICS protocols. Content level data refers

to measurement statistics from field devices. Among all network-based security analysis

approaches for SCADA systems, most existing solutions only focus on monitoring and event

detection of one or two levels of data, which is not enough to detect and reason about attacks

47

in all three levels. Also, data in each level has its own characteristics, which requires distinct

methods to deal with. In this work, we develop an edge-based multi-level anomaly detection

framework for SCADA networks, named EDMAND. EDMAND is located inside the remote

substations, which are the edges of the SCADA network. It contains a multi-level anomaly

detector to monitor all three levels of network traffic data passing by. Appropriate anomaly

detection methods are applied based on the distinct characteristics of data in various levels

and alerts are generated, aggregated, prioritized, and sent back to control centers when

anomalies are detected.

The contributions of this work are as follows:

• We divide traffic data into multiple levels and apply appropriate anomaly detection

mechanism to data in each level based on their characteristics.

• We introduce the concept of confidence into the anomaly detection process and assign

confidence scores to generated alerts.

• We aggregate and prioritize alerts to benefit further analysis.

The remainder of this chapter is organized as follows: Section 5.2 reviews the related work.

Section 5.3 introduces the network architecture of SCADA systems and two of our design

decisions. Section 5.4 gives an overview of the design of EDMAND. Section 5.6 shows the

performance evaluation of EDMAND and Section 5.7 concludes the chapter.

5.2 RELATED WORK

As we mentioned in the previous section, SCADA network traffic data can be categorized

into three levels but most existing network-based intrusion detection only take one or two

levels into consideration. [68, 69] focus on flow-level data while [70, 71, 72, 73, 74] analyze

ICS protocol functions. [75, 76] only concentrate on content-level and [77, 78] cover the flow

and operation levels. None of these approaches analyze all three levels of data and therefore

may fail to detect anomalies in levels not covered. Moreover, a sophisticated multi-step

attack may introduce anomalies in multiple levels of traffic data. The whole picture of the

attack can be seen only when all three levels of anomalies are detected.

[79] touches three levels of network traffic data by proposing an intrusion detection sys-

tem implementing intelligent packet inspection mechanism, tailored traffic flow analysis, and

unique packet tampering detection. However, the authors only use signature-based detec-

tion to detect malformed packets in the operation level and fail to take advantage of the

periodicity of operations. In the content level, it only checks consistency of data at multiple

48

locations of the system but leaves the statistics of out. As a result, this approach can only

deal with data tampering attacks in communication but fails to detect attacks such as fake

data due to compromised devices.

The most similar work to ours is [80]. The authors develop a multiattribute SCADA-

specific intrusion detection system. The system uses white lists and behavior-based rules to

analyze multiple attributes in transport, operation, and content levels to mitigate various

cyberattacks. However, without any method to filter and prioritize alerts, the operator can

easily be overwhelmed by false positives or low-priority alerts and miss the high-priority

ones. Also, in our framework, alerts in on one level will affect the alert triggering in the

other two levels, which is helpful in reducing false alerts.

5.3 NETWORK ARCHITECTURE AND DESIGN DECISION

In this section, we introduce the SCADA network architecture. Then we explain two

important design decisions we made for the framework.

5.3.1 Network Architecture

A simplified architecture of SCADA network is shown in Figure 5.1. The major compo-

nents in SCADA network include the Master Terminal Units (MTUs) in the control centers,

field controllers in the substations and the communication network that connects them. The

field controllers can be Remote Terminal Units (RTUs) or Programmable Logic Controllers

(PLCs), which further connect to and receive measurements from field devices such as sensors

or actuators. The MTU in the control center queries the field controllers for system updates

and may also issue control commands to them to change the control strategy. To avoid

further data collection time and achieve prompt anomaly detection, we deploy EDMAND

at the edge of the SCADA network. To be more specific, EDMAND is deployed in each

substation between the field controllers and the wide area network. EDMAND monitors all

traffic passing by and sends alerts back to control centers when anomalies are detected.

Figure 5.1: SCADA network architecture

49

5.3.2 Design Decision

We made two important decisions while designing our framework. The first one is to

divide traffic data into multiple levels and apply appropriate anomaly detection mechanisms

to data in each level based on their characteristics. As we mentioned previously, data in

SCADA traffic can be divided into three levels: transport level, operation level, and content

level. Data in each level have their own characteristics, which is taken into consideration

when we select anomaly detection mechanisms for each level.

The second design decision is to introduce the concept of confidence into the anomaly

detection process and assign confidence scores to generated alerts. We define an alert’s

confidence score CS ∈ [0, 1] to be the confidence that the alert is indeed an anomaly.

We calculate the confidence score by CS = MA × AS, where MA is the model accuracy

and AS is the anomaly score. The model accuracy measures the accuracy of our anomaly

detection model in describing normal behavior and serves as the weight of the anomaly

score. We assume that the majority of traffic data is normal data and therefore we can

build models with higher accuracy as more samples are observed. In this sense, we estimate

the model accuracy by a modified sigmoid function of observed sample number as MA =

2/(1 + e−n/N) − 1, where n is the observed sample number by the model and N = 100 is

a normalization factor. The anomaly score measures how far the current sample deviates

from the normal behavior described by the model. Different methods are used to calculate

the anomaly score for different data and they are introduced in the next section.

5.4 FRAMEWORK DESIGN

In this section, we present an overview of the modular design of EDMAND. As it is shown

in Figure 5.2, EDMAND consists of 3 main components: (1)Data Extractor, (2)Anomaly

Detector, (3)Alert Manager. The data extractor is implemented utilizing a network security

monitor called Bro [39]. The data extractor monitors the network traffic passing by and

forwards all three levels of network traffic data to the anomaly detector. The anomaly

detector contains three levels and each level uses appropriate method to detect anomalies

and generates alerts. After that, the alert manager aggregates similar alerts into meta-alerts.

Priorities are given to meta-alerts and the alert manager reports meta-alerts to the control

center with various frequencies according to their priorities. The anomaly detector and the

alert manager will be described in more detail in the following two subsections.

50

Figure 5.2: EDMAND architecture

5.4.1 Anomaly Detector

The structure of the multi-level anomaly detector is shown in Figure 5.3. There is a listener

which receives Bro data from the data extractor and feeds them to the three modules for

three levels. In each module, there is a parser that parses the Bro data corresponding to

that level and translates them to standard input data for the processor. The processors

implement various anomaly detection mechanisms to detect anomalies and generate alerts.

We will introduce the three modules for three levels of data respectively.

Figure 5.3: Multi-level anomaly detector structure

Transport-Level Module

In the transport-level module, two kinds of analysis at different time scales are applied. A

packet processor analyzes each packet for short-term analysis. A flow aggregator aggregates

packet statistics every period Tflow = 10min and forwards to a flow processor for long-term

analysis.

The input data to both processors consists of two kinds of fields: the index field which

describes the packet or flow related with the input data, and data fields which store statistics

for anomaly detection. As it is listed in Table 5.1, the index fields for both processors share

51

the same structure, which is a 4-tuple including originator(IP), responder(IP), transport

protocol, and port number. The packet processor has interarrival time IAT and packet size

PS as its data fields and the flow processor has packet count PC and average packet size

APS as its data fields. Each type of data field has two values, corresponding to statistics of

traffic in both directions.

Packet Processor Flow Processor

Index Field (originator, responder, transport protocol, port number)

Data Field
interarrival time (IAT) packet count (PC)

packet size (PS) average packet size (APS)
Mechanism 1D-DenStream Mean-STD

Table 5.1: Input fields and anomaly detection mechanism of packet processor and flow
processor

There are two types of anomalies for these two processors. The first type happens when

input data with new index field are seen and the anomaly score is set to 1 in this scenario.

The second type is abnormal value in data fields and we use various anomaly detection

mechanisms to detect anomalies of this type. We mentioned previously that one of the design

decision we made is to apply appropriate method to data with different characteristics. Since

packet statistics and flow statistics follow quite different distributions, different anomaly

detection mechanisms are utilized for the packet processor and flow processor. On the one

hand, since traffic in SCADA usually follows periodic patterns [81, 82, 83, 84], the packet

count PC and average packet size APS in a certain period usually follows a unimodal

distribution as long as the period is selected properly. Therefore, the mean and standard

deviation are good enough to characterize these data fields. We build models for these data

fields by calculating the exponentially-weighted mean and standard deviation. The anomaly

score AS is calculated as the square of the anomaly score we used in [18] as

AS(X, µ, σ) =





(
1− σ2

|X−µ|2

)2

if |X − µ| > σ

0 otherwise
, (5.1)

where µ and σ are the mean and standard deviation stored in the model and X is the data

field value of the current input (i.e., PC or APS for the flow processor). For convenience,

we call this anomaly detection mechanism Mean-STD in the rest of this chapter. On the

other hand, the interarrival time IAT and the packet size PS of each packet usually follow

multimodal distributions. Consider the following scenario, the control center is sending

periodic read requests to a field controller. Each request is followed by a response from

52

the field controller and then a confirmation from the control center. For packets from

the control center to the field controller, read requests and confirmations could have big

difference in packet size PS but both are considered as normal packets. For this reason,

the mean and standard deviation may not be able to characterize these data fields and we

utilize a clustering method instead. We use a modified 1D version of the DenStream in [85].

DenStream is an approach to cluster data in an evolving data stream and data is clustered

into potential core-micro-clusters and outlier micro-clusters. An alert is generated whenever

the new value point is added to an outlier micro-cluster and the anomaly score is calculated

as AS(w, µ, β) = 1 − (w − 1)/(βµ− 1), where µ and β are predefined parameters and w is

the weight of the outlier micro-cluster.

Operation-Level Module

The objective of the operation-level module of the anomaly detector is to detect anomalies

in operations (e.g., requests and responses) of ICS protocols such as Modbus and DNP3.

Similarly, the input data of the operation processor have an index field and a data field. We

use a 5-tuple of (originator(IP), responder(IP), ICS protocol, unit id, function code) as the

index field and interarrival time IAT as the data field. Here unit id is a ICS protocol specific

address which is used to differential devices that share the same IP address. Notice that the

IAT in operation level is different from the IAT in transport level. In operation level, the

IAT is the difference in timestamps of two consecutive same operations between one pair of

nodes (i.e., the two operations share the same index field). In transport level, the IAT is

the difference in timestamps of two consecutive packets of the same direction between one

pair of nodes which could be different operations or even non-ICS-protocol packets.

As it is shown in Table 5.2, there are mainly three types of anomalies in this level. The

first type includes invalid function code and wrong direction of operation. In normal status,

requests should only be sent by the control center and received by field controllers and

responses should be sent by field controllers and received by the control center. Wrong

direction here stands for unexpected scenarios such as requests initiated by field controllers

or responses sent by the control center. For an anomaly of the first type, an alert is generated

directly and a confidence scores of 1 is assigned. The second type of anomaly is the emerging

of new operation, which is identified when input with new field index is observed. In this case,

an anomaly score of 1 is given. The third type of anomalies includes scenarios of periodic

operation arriving too early, arriving too late, or disappearing1. In SCADA, the IAT of

1The disappearing of traffic or operation is sometimes called a passive anomaly and we use a timer to
detect it in both transport level and operation level.

53

the same operation follows a unimodal distribution since operations are usually periodic.

Therefore, the Mean-STD mechanism is used for anomaly detection and AS is calculated by

equation 5.1 where X is replaced by IAT in operation level.

Anomaly Mechanism

invalid function code
CS=1

wrong direction of operation
new operation AS=1
early operation

Mean-STDlate operation
missing operation

Table 5.2: Anomaly and detection mechanism in operation level

Content-Level Module

The content-level module of the anomaly detector is responsible for detecting anomalies in

measurement values such as frequencies and voltages which are included in responses to read

requests. The input data of the content processor have a 5-tuple of (measure source (IP),

ICS protocol, unit id, measurement type, measurement index) as the index field and the

measurement value itself as the data field. Depending on the measurement type, different

methods are applied for anomaly detection. Let us take DNP3 for example, where the three

measurement types are Binary, Analog, and Counter. Here we will discuss the first two

which are most commonly seen.

For the Binary measurement type, the intuition behind the detection method is that a

binary variable can only take two values (i.e., 0 or 1) and always one of them is normal

and the other is abnormal. Therefore, we can try to identify the normal value by simply

counting the 0s and 1s in observed samples. The normal value is 0 if the majority of the

observed values are 0s and vice versa. Whenever the abnormal value appears, we calculate

the anomaly score by one minus the entropy of observed samples as

AS(γ) =




1 + γ log2 γ + (1− γ) log2(1− γ) if 0 < γ < 1

1 if γ = 0 or 1

where γ =
number of 0s observed

number of samples observed
.

For the analog measurement type, we take the Smart Grid as an example. Frequency,

voltage, current, and power are four most common classes of analog measurements and they

54

usually have quite different characteristics. The two subfigures in Figure 5.4 show one day

of simulated frequency and current measurements from the Information Trust Institute’s

testbed [86]. We can see that ‘frequency’ is always around 60Hz and has a very small

relative standard deviation whereas ‘current’ varies a lot but follows a diurnal pattern.

Based on different analog classes’ characteristics, we develop a 2-step anomaly detection

method to analog measurements. In step 1, we further categorize analog measurements

into different analog classes (i.e., frequency, voltage, current, power) and use an appropriate

method for each class to detect anomalies in step 2. Notice that if the configuration files

of field controllers are available and the specification of each analog index is known to our

framework, step 1 can be neglected. Step 1 just provides analog class inference ability to

our framework when specification is not given.

(a) Frequency (b) Current

Figure 5.4: One day’s simulated measurement data of frequency and current

More specifically, in step 1 of our analog measurement anomaly detection, we utilize a

similar Bayesian inference method as in [87] and build an analog class inference model based

on the Bayesian network. Here we use a very simple Bayesian network with one root node

and three leaf nodes shown in Figure 5.5. Each leaf node has a conditional probability table

(CPT) representing the prior knowledge of the dependence between the child node and its

parent node whose elements are defined by CPTij = P (child state = j|parent state = i).

The root represents the analog class with four hypothesis states and the leaf nodes represent

directly observable evidences and each leaf node has several discrete states. The objective

of this model is to calculate the belief in hypotheses of the root, which is decided by the

likelihood propagated from its child nodes and ultimately the observed evidences at the leaf

nodes. We denote yk (k ∈ 1 . . . 3) as the observation at kth leaf node and xi (i ∈ 1 . . . 4) as

the ith analog class at the root node. Let P (xi) be the prior probability for the hypotheses of

the root. The prior probability and CPTs can either be acquired based on domain knowledge

or calculated based on training data. The believe in the analog class xi is represented by the

55

conditional probability of xi given the observation at all leaf nodes and can be calculated by

P
(
xi|y

1, y2, y3
)
= αP (xi)

3∏

k=1

P
(
yk|xi

)
,

where α = 1/P (y1, y2, y3) and can be calculated by
∑

i P (xi|y
1, y2, y3) = 1. If the believe

of xi is larger than a threshold θb = 0.7 , the inference model infers the analog measurement

as class xi. Since the analog class for the same series of measurements will not change in

normal status, the inference model stops analyzing for that series of measurements after its

class is successfully inferred.

Figure 5.5: Analog class inference model

After the analog classes are inferred, different anomaly detection methods are applied as

shown in Table 5.3. Mean and standard deviation are used for frequency and voltage. For

current or power, we divide 24 hours to multiple time slots and calculate mean and stan-

dard deviation in each of the slot throughout multiple days. For analog measurements not

belonging to any of the mentioned classes, the 1D-DenStream method for the flow processor

is utilized. Notice that this list of analog classes can be extended by incorporating prior

knowledge of other analog classes into the inference model and taking their characteristics

into consideration while selecting their anomaly detection methods.

Analog Class Mechanism

frequency
Mean-STD

voltage
current/power slotted Mean-STD

unknown 1D-DenStream

Table 5.3: Analog measurement class and detection mechanism

56

5.4.2 Alert Manager

The alerts generated by EDMAND’s multi-level anomaly detector which have confidence

score higher than a threshold θCS are forwarded into the alert manager. We use a dynamic

mechanism for θCS. The initial threshold is set at a upper bound value of θCS H = 0.95.

For every alert with CS above the current threshold, we calculate the new threshold as

θCS new = e−λ(θCS cur − θCS L) + θCS L where θCS L = 0.85 is a lower bound and λ = 0.05

is a parameter can be tuned. While we exponentially decrease the threshold to approach

the lower bound for triggered alerts, we also linearly increases the threshold to the upper

bound as time goes by. Keeping an high threshold in normal state helps to decrease false

alarms and decreasing the threshold when alarms are triggered helps to detect all anomalies

related to the attack and is useful against multi-step attacks. Since the alert from the three

levels share the same threshold, alerts in one level will lower the threshold, making it easier

to detect simultaneous anomalies in the other two levels if there are any.

Alerts generated by different processors share the following common fields: index field,

alert type, timestamp, confidence score, statistical fields and abnormal data. Index field is

the same as the index field in the input data of the corresponding processor. Alert type is

the description of the anomaly. Statistical fields include statistics in the data field such as

current data value, mean, standard deviation, etc. Abnormal data is the original input data

of the processor which triggering the alert. As it is shown in Figure 5.6, the alert manager

consists of two components: the Alert Aggregator and the Alert Scheduler.

Figure 5.6: Alert manager structure

The objective of the alert aggregator is to aggregate alerts that share the same alert type

as well as the index field and have little difference in timestamps. The aggregated alert is

called the meta-alert. The meta-alert inherits all the fields from the alerts before aggregation

with each field type having its own aggregation rule listed in Table 5.4. Another count field

is added to store the number of alerts aggregated to this meta-alert. Whenever the alert

aggregator receives a new alert, it tries to aggregate it to existing meta-alerts. If there is no

meta-alert that this alert can merge to, a new meta-alert is created. In this way, consecutive

duplicate alerts about the same event are aggregated to one meta-alert, which prevents alert

flooding and simplifies further analysis of the alerts.

57

Alert Field Aggregation Rule

index field
shared by all of the aggregated alerts

alert type
timestamp keep minimum and maximum

confidence score keep maximum
statistical fields

inherit from the last alert aggregated
anomaly data

count number of aggregated alerts

Table 5.4: Meta-alert fields and aggregation rules

Every time a meta-alert is created or updated, it is forwarded to the alert scheduler, where

its priority score is calculated and its report frequency is decided. The alert priority com-

putation model in Figure 5.7 is similar to the analog class inference model. It is a Bayesian

network with one root node and five leaf nodes. The root represents the alert priority which

has two hypothesis states of low and high. Similarly, the leaf nodes represent observable ev-

idence and each has several discrete states. We denote yk (k ∈ 1 . . . 5) as the observation at

kth leaf node. We define the priority score PS as PS = P (Priority = high|y1, y2, y3, y4, y5)

which can be calculated in a similar way as the analog class inference model. The prior

probability of priority, CPTs at leaf nodes, and criteria to categorize observation are set by

domain knowledge or system requirements. For example, the critical operation set for DNP3

can be defined by the DNP3 critical request function codes in [88] or entered by utilities

according to their own needs.

Figure 5.7: Alert priority computation model

Different report mechanisms in Table 5.5 are applied to meta-alerts based on their priority

scores PS. After PS is calculated, the meta-alert is classified as high-priority or low-priority,

based on PS and a threshold θp = 0.7 as shown in Table 5.5. High-priority meta-alerts are

always reported immediately when first created and reported with a small period if they are

updated during that period. Low-priority meta-alerts are not reported immediately upon

creation and reported with a large period if they are updated during the period. In the

58

future, we plan to design a causality-based anomaly analyzer in the control center to further

correlate and analyze the received alerts.

High-Priority Low-Priority

Definition PS ≥ θp PS < θp
Report when first created yes no

Report period Th Tl(> Th)

Table 5.5: Meta-alert report mechanism

5.5 DISCUSSION

In this section, we want to briefly discuss the scalability and extensibility of EDMAND.

There are multiple substations in SCADA networks and each substation contains an ED-

MAND by default. So adding more substations will not cause any scalability issue of ED-

MAND. Increasing the number of end devices in each substation does increase the complexity

of the network traffic, and further increases the anomaly detection complexity of EDMAND.

However, the number of end devices in each substations is usually quite limited. For exam-

ple, Modbus’s unit id has a range of 0-247, which limits the number of end devices of each

substation. Even if the number of end devices at each substation is too many for EDMAND

to handle in real time, there is nothing to prevent us from deploying multiple EDMANDs in

each substation. Moreover, the packet analysis of EDMAND happens in parallel with the

packet passing and does not block the packets. Therefore, the original communication in

SCADA will not be affected by EDMAND.

The current prototype of EDMAND supports Modbus and DNP3 for SCADA networks.

To add support for other industrial control protocols, only the data extractor needs to be

extended. As long as the data extractor is equipped with the capabilities of parsing desired

protocols and the outputs follow a consistent format, the other components need not to be

changed to support those protocols.

5.6 PERFORMANCE EVALUATION

In this section, we evaluate the performance of EDMAND in two aspects: detection ability

and time overhead. The data extractor is implemented by Bro and the anomaly detector

as well as the alert manager are implemented in Python. The evaluation is based on a

simulated DNP3 traffic set which includes periodic baseline traffic and injected anomalies in

59

transport, operation, and content levels. The baseline traffic consists of 10 days of simulated

traffic of one control center sending read requests to two field controllers every 20 seconds.

Each read request is followed by a TCP acknowledgement as well as a response from the

field controller. After the response, which contains the requested measurements, is received

by the control center, the control center sends a confirmation which is again followed by

an acknowledgement from the field controller. The baseline traffic is generated based on

DNP3 specification [25], domain experts’ advices, and some example DNP3 traffic we have

generated by a testbed from Information Trust Institute at Illinois. Each field controller

contains 5 measurements: one binary measurement and four analog measurements including

frequency, voltage, current and power. Those measurements are also simulated data from

the testbed.

The analog class inference model correctly identifies all analog classes in the baseline traffic.

We inject various anomalies in the three levels listed in Table 5.6 to evaluate EDMAND’s

anomaly detection ability. EDMAND is able to detect all the anomalies injected with no

false alarms. This 0% false alarm rate has two reasons. The first one is that EDMAND

already filters out low-quality alerts by discarding alerts with low confidence scores. And

the second reason is that the simulated traffic is not as noisy as real-world SCADA traffic.

We consider to use real traffic with real attacks to evaluate EDMAND if we can get access

to real data in the future. All the injected anomalies generate 12135 alerts in total, and are

aggregated to 22 meta-alerts. We list in Table 5.6 some related works’ detection abilities

based on their description for anomalies which we injected. None of them are able to detect

all anomalies like EDMAND does.

We also create a simple multi-step attack scenario with simulated traffic. In step 1, the

attacker scans several ports in a given IP address range to find the target field device and

the ICS protocol which the SCADA system is using. In step 2, the attacker sends a write

request to the field device to compromise the device. In step 3, the compromised device

sends tampered data in responses to read requests from the control center. EDMAND is

able to detect all three steps of the attack where the three steps are detected in transport

level, operation level, and content levels, respectively. A framework, concentrating on one

or two levels of data analysis only, may not be able to see the whole picture of the attack.

One of our design decisions is to apply appropriate anomaly detection mechanisms to

data, based on their characteristics. We use the 1D-DenStream mechanism for the packet

processor since its data fields (i.e., interarrival time and packet size) follow multimodal

distributions. To validate this design decision, we use the Mean-STD mechanism instead

for the packet processor. We find that the modified packet processor is unable to detect

the padded response and the delayed TCP acknowledgement, and generates tons of false

60

Level Anomaly Detection Ability
ED [68] [73] [75] [77] [80]

T
ra
n
sp
or
t

add a new node to send several
packets to one field controller

Y Y N N Y Y

pad one response from a field
controller with more payload

Y Y N N Y Y

delay one TCP acknowledgement from
a field controller intentionally

Y Y N N N N

send lots of ICMP packets in a short
period to one field controller

Y Y N N Y Y

O
p
er
at
io
n

send one operation with invalid
function code to one field controller

Y N Y M Y Y

let one field controller send a control
command to the control center

Y N Y M Y Y

delay one response from a
field controller intentionally

Y M N N N Y

C
on

te
n
t

tamper with the binary value from one
field controller for a short period

Y N N Y N Y

introduce over voltage and under voltage
tripping to voltage measurements

Y N N Y N Y

introduce over current tripping to
current measurements

Y N N M N M

tamper with the frequency value from one
field controller for a short period

Y N N Y N Y

tamper with the power value from one
field controller for a short period

Y N N M N M

Table 5.6: Injected anomalies and detection ability comparison (ED=EDMAND, Y=yes,
N=no, M=maybe)

alarms. This proves that selecting appropriate anomaly detection mechanism according to

data characteristics is important. We also validate the alert priority computation model by

calculating priority scores of meta-alerts triggered by two anomalies. The first anomaly is

that the control center suddenly starts to send periodic write request (critical operation) to

the field controller, which is considered a critical node. The second anomaly is the delay of

one TCP acknowledgement from a field controller which is not a critical node. The meta-

alert for the first anomaly has a priority score of 0.995, which is higher than the score of

0.439 for the second anomaly. This is consistent with the fact that the first anomaly is more

critical than the second one.

To demonstrate EDMAND’s ability to satisfy the real-time requirements of anomaly de-

tection in SCADA systems, we also evaluate the time overhead of data analysis in the three

61

levels and the alert manager. We run our experiments on the Ubuntu 16.04 desktop with 12

Intel Xeon 3.60GHz CPUs and 16GB memory. The data extraction in Bro and the anomaly

detection for the three levels run in parallel. The total analysis time (data extraction time +

anomaly detection time) per packet is 3.87ms for transport level, 6.66ms for operation level,

and 1.94ms for content level. These time overheads are comparable with previous works

[33, 69] which also have a time overhead in the order of a few milliseconds per packet. Also,

since the common data collection interval in SCADA systems is seconds or even minutes

[89], several milliseconds overhead per packet is short enough for the packets to be processed

at communication line speed. The average time overhead of the anomaly manager for each

alert is 423ms. The rate of alerts varies a lot for different attacks. Usually, the rate of alerts

is far smaller than the rate of packets. For example, in [69], the man-in-the-middle attack

generates 4195 alerts per hour per RTU. EDMAND is able to handle all the alerts in real

time in this case. If there is a burst of alerts for some specific attacks, then most of the

alerts could be duplicates that contain redundant information. Therefore, dropping some of

them will not affect the further analysis of the alerts and can help EDMAND to process the

rest of the alerts in real time.

5.7 CONCLUSION

In this chapter, I present EDMAND, an edge-based multi-level anomaly detection frame-

work for SCADA systems. EDMAND resides in remote substations of SCADA systems and

monitors network traffic of flow level, operation level, and content level. Distinct data char-

acteristics are considered when selecting anomaly detection method for each level. When

anomalies are detected, EDMAND generates, aggregates, and prioritizes alerts and sends

them to control centers. The performance of EDMAND is validated by experiments.

62

CHAPTER 6: CAPTAR: CAUSAL-POLYTREE-BASED ANOMALY

REASONING FOR SCADA NETWORKS

6.1 INTRODUCTION

Nowadays, large-scale distributed critical infrastructure systems such as power grids and

refineries increasingly rely on digital industrial control systems (ICSs) for real-time monitor-

ing, data collection, and control. The Supervisory Control and Data Acquisition (SCADA)

system is the most commonly used ICS. Critical as they are, SCADA systems are subject

to a wide range of serious threats for reasons mentioned in Section 5.1. Therefore, securing

SCADA systems against various threats and vulnerabilities has become a major challenge.

To promote the security of SCADA systems, intrusion detection systems (IDSs) are in-

creasingly deployed by SCADA operators. As the name suggests, the main objective of

IDSs is to monitor the system, detect suspicious activities caused by intrusion attempts,

and report alerts to the system operators. Although IDSs play an undeniable role in the

protection of SCADA systems, they still suffer from some defects. The biggest issue with

traditional IDSs is that they continuously generate tremendous number of alerts without

further comprehending them. Drowned in an ocean of unstructured alerts mixed with false

positives, SCADA operators are almost blind to see any useful information. Due to the high

volume and low quality of the alerts, it becomes a nearly impossible task for the operators

to figure out the complete pictures of the attacks and take appropriate actions in a timely

manner.

To address the aforementioned problem of traditional IDSs and provide the SCADA op-

erators with explainable situational awareness, there is a need for an efficient system to

aggregate redundant alerts from IDSs, correlate them in an intelligent manner, and discover

attack strategies based on domain knowledge as well as causal reasoning. In Chapter 5,

we described our edge-based multi-level anomaly detection framework for SCADA, named

EDMAND. EDMAND resides at the edges of the SCADA network and detects anomalies in

multiple levels of the network. The triggered alerts are aggregated, prioritized, and sent to

the control center. In this chapter, we present a causal-polytree-based anomaly reasoning

framework for SCADA networks, named CAPTAR. CAPTAR resides in the control center

of the SCADA network and takes the meta-alerts from EDMAND as input (shown in Figure

6.1). CAPTAR correlates the alerts using a naive Bayes classifier and matches them to

predefined causal polytrees. Utilizing Bayesian inference on the causal polytrees, CAPTAR

is able to reveal the attack scenarios from the alerts and produces a high-level view of the

security state of the protected SCADA network.

63

Figure 6.1: Locations of EDMAND and CAPTAR

The remainder of this chapter is organized as follows: Section 6.2 reviews the related

work. Section 6.3 introduces the basic concept of Bayesian network, Bayesian inference, and

belief propagation. These concepts are utilized in the anomaly reasoning in this chapter.

Two canonical models which are used to build our causal polytrees are also introduced in

Section 6.3. Section 6.4 gives an overview of the design of CAPTAR. Section 6.5 shows

the performance evaluation of CAPTAR and Section 6.6 concludes the chapter. Since this

Chapter uses many difference notations, some of the most important notations are listed in

Table 6.1 for quick reference.

6.2 RELATED WORK

Various techniques have been used to measure the similarity of common features of alerts

to correlate them [90, 91, 92, 93]. However, alert correlation alone can only measure the

correlation strength between alerts and are not sufficient to recognize the whole picture of

the attack.

To fill the gap of alert correlation, many works have been proposed in the area of attack

plan recognition. Some works [94, 95] keep the state of the system and assume that the state

evolves towards a “worse” direction during attacks. There are also works [96, 97] that define

prerequisites and consequences of each attack step and construct chains or graphs based

on the matching of prerequisites and consequences. Bayesian networks are also utilized by

many papers [98, 96, 99, 100, 101] to correlate alerts or to represent and infer the causal

relationship between attack steps.

The closest previous work [87] to ours is the integration of alert aggregation, prioritization,

correlation, and attack plan recognition. Three alert correlation methods are proposed:

probabilistic-based, causal discovery-based, and temporal based methods. The attack plan

recognition step also uses causal polytrees to represent attack plans.

CAPTAR mainly differentiates from all previous works in two aspects. First, the alerts re-

ceived by CAPTAR are meta-alerts generated by EDMAND, which is our edge-based multi-

level anomaly detection framework for SCADA. EDMAND applies network-based rather

than host-based detection and it mainly takes the anomaly-based approach instead of the

64

Notation Description

X A node in the Bayesian network representing a random variable.
U A parent of X in the Bayesian network.
Y A child of X in the Bayesian network.
e
+
X Evidence contained in the sub-tree rooted at X .

e
−
X Evidence contained in the rest of the Bayesian network other than e

+
X .

πX(u) Causal support provided by parent U to X .
λY (x) Diagnostic support provided by child Y to X .

BEL(x) Belief at node X .
X̃ Auxiliary child node of X to simulate evidence of matched meta-alerts.

λX̃(x) Diagnostic support provided by X̃ to X .
I Inhibitory mechanism in “noisy-OR” model.
E Enabling mechanism in “noisy-AND” model.
q Probability that the inhibitory or enabling mechanism is active.

CS(a) Confidence score of meta-alert a.
AT Attack template.
ATS Attack template set.
SAT Set of consequence nodes of attack template AT .
AU Alert unit.
w Weight in the alert unit.
A Alert type in the alert unit.

CStotal Total confidence score of all matched meta-alerts of a node.
BELmax(AT) Maximum probability of existence of all consequence nodes in AT .

Cormax Maximum correlation score of a meta-alert in an attack template.
ATSmatch Attack template set containing alert matching results.

Xcor Exact match node with the highest correlation score for a meta-alert.
Xpot Set of potential nodes a meta-alert could match to.
K Maximum number of attack templates to keep for each kind of attack.
M Number of meta-alerts in the meta-alert database.
N Maximum number of nodes in any attack template.
L Number of attack templates in the attack template database.

Table 6.1: Table of notation for Chapter 6

signature-based approach. The alerts from EDMAND do not directly relate to each attack

step in the attack plan but instead relate to various network behaviors triggered by each

attack step. Therefore, mapping between alerts from EDMAND and underlying attack steps

is necessary for our anomaly reasoning. Second, we define the concept of confidence score

for each alert in EDMAND. In CAPTAR, the confidence scores of meta-alerts are utilized

to calculate the diagnostic support for each node in the causal polytrees during the belief

propagation. This allows each alert to carry more belief information instead of only a binary

state (exist/not exist).

65

6.3 PRELIMINARIES

An example workflow of EDMAND and CAPTAR is shown in Figure 6.2. After an

attacker launches an attack, each step of the attack could result in one or more anomalies

in the network traffic. These anomalies trigger meta-alerts in EDMAND. CAPTAR receives

the meta-alerts from EDMAND and tries to infer the attack steps that triggered them by

mapping meta-alerts to attack steps. Potential attack steps are structured as nodes in

causal polytrees whose nature are Bayesian networks. Bayesian inference is performed on

those causal polytrees to reason about the existence of attacks. In this section, we first

introduce the basic concept of Bayesian network. Then we describe inference in Bayesian

network followed by the belief propagation algorithm to conduct Bayesian inference. Finally,

we present two canonical models we use to build our causal trees: “noisy-OR” and“noisy-

AND” models.

Figure 6.2: An example workflow of EDMAND and CAPTAR

6.3.1 Bayesian Network

Before going into exactly what a Bayesian network is, it is first useful to review two

concepts in probability theory. The first concept is the chain rule of probability. It says that

if we have a set of n random variables, X1, X2, . . . , Xn, then the joint probability distribution

P (X1, X2, . . . , Xn) can be written as a product of n conditional probabilities:

P (X1, X2, . . . , Xn) = P (Xn|Xn−1, . . . , X2, X1) · · ·P (X2|X1)P (X1). (6.1)

The second concept is the conditional independence. We say that two random variables,

A and B, are conditionally independent given another random variable C if P (A|B,C) =

P (A|C). In other words, once we know C, learning B would not change our belief in A.

66

After recalling the chain rule of probability and the conditional independence, we can

introduce the basics of Bayesian network. A Bayesian network is a directed acyclic graph

(DAG) in which the nodes represent variables, the edges signify the existence of direct

causal influences between the linked variables, and the strengths of these influences are

expressed by conditional probabilities. Figure 6.3 illustrates a simple yet typical Bayesian

network. It describes relationships among the seasons of the year (X1), whether rain falls

(X2), whether the sprinkler is on (X3), whether the pavement would get wet (X4), and

whether the pavement would be slippery (X5). All variables in this figure are binary (taking

a value of either true or false) except for the root variable X1, which can take one of four

values: spring, summer, fall, or winter.

Figure 6.3: Bayesian network example

Each edge in the figure represents a direct causal influence from the head of the edge to the

tail. In Figure 6.3, X4 has a directed edge pointing to X5. This is because the fact that the

pavement is wet has a direct causal influence on whether the pavement is slippery. On the

contrary, the absence of a direct edge between two nodes implies conditional independence.

For example, the absence of a direct edge between X1 and X5 captures the understanding

that the influence of seasonal variations on the slipperiness of the pavement is mediated by

other conditions (e.g., the wetness of the pavement).

Each node in the Bayesian network is associated with a probability function that takes

(as input) a particular set of values for the node’s parent variables, and gives (as output)

the probability of the variable represented by the node. The most common form of this

probability function is a conditional probability table (CPT). CPT is a table defined for a

set of discrete and mutually dependent random variables to display conditional probabilities

of a single variable with respect to the others. An example CPT of X4 in Figure 6.3 is shown

in Table 6.2. It gives the conditional probabilities of P (X4|X2, X3).

An important property of Bayesian networks is the local (parental) Markov condition,

67

X2 X3 X4 = T X4 = F
F F 0.0 1.0
F T 0.8 0.2
T F 0.9 0.1
T T 0.99 0.01

Table 6.2: Conditional probability table of X4

which states that every node in a Bayesian network is conditionally independent of all its

non-descendants given its parent. In the above example, we have P (X5|X1, X2, X3, X4) =

P (X5|X4) since Slippery is conditionally independent of its non-descendants, Season, Sprin-

kler, and Rain, given its parent Wet. This property allows us to simplify the joint distribu-

tion, obtained using the chain rule, to a simpler form. Assume a Bayesian network has n

nodes X1, . . . , Xn in total. The joint distribution can be simplified as

P (X1, . . . , Xn) =

n∏

i=1

P (Xi|X1, . . . , Xi−1) =

n∏

i=1

P (Xi|Parents(Xi)), (6.2)

where Parents(Xi) is the set of direct parents of Xi. In the above example, we are able to

rewrite the joint distribution as

P (X1, X2, X3, X4, X5) = P (X1)P (X2|X1)P (X3|X1)P (X4|X2, X3)P (X5|X4). (6.3)

This property significantly reduces the amount of required computation in large Bayesian

networks since each node usually has fewer parents compared with the overall size of the

network.

6.3.2 Bayesian Inference

There are two kinds of inference over a Bayesian network. The first is to evaluate the

joint probability of a specific assignment of values for all or a subset of variables in the

network. For all variables, we simply factorize the joint probability using Equation 6.2 and

calculate the product using provided conditional probabilities. For a subset of variables, we

marginalize over the variables not in the subset by summing up probabilities over them and

get the marginal probability of the subset of variables we are interested in.

The second and more interesting inference is to evaluate P (x|e), that is, the probability of

some particular assignment of a subset of variables (x) given assignments of other variables

(evidence e). In the scenario we mentioned in Section 6.3.1, one example of this kind of

68

inference could be to evaluate P (X2 = T,X4 = T,X5 = T |X1 = spring). In this case,

{X2 = T,X4 = T,X5 = T} is our x and {X1 = spring} is our e. According to the definition

of conditional probability, we have P (x|e) = P (x, e)/P (e) = αP (x, e), where α = 1/P (e)

is a normalizing constant rendering
∑

x
P (x|e) = 1. Let Z represent the set of variables in

the network that is not in x and e, and z represents any particular value assignment of Z.

To get P (x, e), the marginal probability of {x, e} over Z needs to be calculated. Therefore,

we have

P (x|e) = α
∑

∀z∈Z

P (x, e, z). (6.4)

In the example, we can calculate P (X2 = T,X4 = T,X5 = T |X1 = spring) as

P (X2 = T,X4 = T,X5 = T |X1 = spring)

= α
∑

X3

P (X1 = spring)P (X2 = T |X1 = spring)P (X3|X1 = spring)

P (X4 = T |X2 = T,X3)P (X5 = T |X4 = T)

= αP (X1 = spring)P (X2 = T |X1 = spring)P (X3 = T |X1 = spring)

P (X4 = T |X2 = T,X3 = T)P (X5 = T |X4 = T)+

αP (X1 = spring)P (X2 = T |X1 = spring)P (X3 = F |X1 = spring)

P (X4 = T |X2 = T,X3 = F)P (X5 = T |X4 = T) (6.5)

6.3.3 Belief Propagation

Belief propagation via message passing [102] is an algorithm to conduct inference on

Bayesian networks. To make it clearer, we first illustrate the belief propagation rules in a

general tree-structured Bayesian network where a node might have several children and one

parent. In the next subsection, we will introduce the two canonical models which generalize

our causal trees to polytrees.

We illustrate the belief propagation by specifying the activities of a typical node X having

m children, Y1, Y2, . . . , Ym, and a parent U as shown in Figure 6.4. The belief in the various

values of X depends on two distinct sets of evidence: evidence from the sub-tree rooted at

X , and the evidence from the rest of the tree. In general, let us define e
−
X as the evidence

contained in the tree rooted at X and define e
+
X as the evidence contained in the rest of

the network. e
−
Yj

therefore represents the evidence from the sub-tree rooted at Yj where

j ∈ {1, . . . , m}. x ∈ {0, 1} is a particular value of X and u ∈ {0, 1} is a particular value

of U . The belief distribution of variable X can be calculated based on the following three

69

Figure 6.4: Fragment of a causal tree, showing different kinds of evidence and support of a
node X

kinds of parameters:

1. Causal Support: πX(u) = P (u|e+
X), contributed by parent of X .

2. Diagnostic Support: λYj
(x) = P (e−

Yj
|x), contributed by the Yj which is the j-th child

of X where j ∈ {1, . . . , m}.

3. Conditional Probability Table (CPT): P (x|u) that relates the variable X to its direct

parent U . Each entry P (x|u) in the table defines the probability of value x of node X

given certain value u of node U .

We utilize the tree-structured Bayesian network for our anomaly reasoning. Each node

represents an attack step in the entire attack plan and it has two states of exist (1) and not

exist (0). A direct edge from node U to node X means that attack step U is a direct prior

step of attack step X and needs to be launched before X . In this way, we are able to reason

about the probability of existence of the attack by calculating the belief of each attack step.

The belief propagation algorithm runs whenever new evidence is found in the tree. The

propagation starts from the node which receives the new evidence and the new belief prop-

agates along the edges of the tree until all nodes get updated. The local belief updating at

each node X can be executed by three steps in any order.

Belief Propagation Algorithm

70

Step 1 — Belief updating: Node X updates its belief measure based on the πX(u) mes-

sage from its parent and the messages λY1
(x), λY2

(x), . . . , λYm
(x) from each of its children

as shown in Figure 6.4.

BEL(x) = αλ(x)π(x), (6.6)

where

λ(x) =
∏

j

λYj
(x), (6.7)

π(x) =
∑

u

P (x|u)πX(u), (6.8)

and α is a normalizing constant rendering
∑

xBEL(x) = 1.

Step 2 — Bottom-up propagation: As shown in Figure 6.6, node X computes a new

message λX(u) based on its CPT and λ messages received from its children. Then X sends

λX(u) to its parent U .

λX(u) =
∑

x

λ(x)P (x|u), (6.9)

Figure 6.5: Bottom-up propagation

Step 3 — Top-down propagation: As shown in Figure 6.5, node X computes new π

messages and sends them to its children. The new πYj
(x) message for its j-th child Yj is

calculated as

πYj
(x) = απ(x)

∏

k 6=j

λYk
(x). (6.10)

Boundary conditions are established as follows:

1. Root nodes: If X is a node with no parents, we set π(x) equal to the prior probability

P (x).

71

Figure 6.6: Top-down propagation

2. Anticipatory nodes: If X is a childless node that has not been instantiated, we set

λ(x) = 1 for x ∈ {0, 1}

3. Evidence nodes: In our anomaly reasoning, evidence for a node X is obtained when

meta-alerts are matched to the node. We will discuss the matching mechanism in

Section 6.4.4. When evidence is obtained for X , we add a dummy auxiliary child node

X̃ to X as shown in Figure 6.7 and simulate the evidence by letting X̃ provide a

diagnostic support message λX̃(x) to X . We will describe our way to calculate λX̃(x)

in Section 6.4.2. This auxiliary node X̃ is not updated during the belief propagation

using the 3 steps mentioned. It only changes the way X calculates its own λ(x).

Therefore, if evidence of X is obtained, Equation 6.7 needs to be rewritten as

λ(x) = λX̃(x)
∏

j

λYj
(x). (6.11)

6.3.4 The “noisy-OR” and“noisy-AND” Models

In Section 6.3.3, we illustrate the belief propagation algorithm in a general tree-structured

Bayesian network where a node has at most one parent. However, this structure lacks the

ability to represent nodes that might have multiple causes (i.e., node may have multiple

parents). In this subsection, we introduce two canonical models which allow us to generalize

our causal trees to causal polytrees. A polytree is a directed acyclic graph whose underlying

undirected graph is a tree. An example polytree is shown in Figure 6.8. The difference

between a polytree and a normal tree is that a node could have multiple parents in a polytree.

The two canonical models contain structures similar to logical OR-gate and AND-gate with

72

Figure 6.7: Auxiliary child X̃ of X representing evidence received by X

noises and are thus called “noisy-OR” and “noisy-AND” models. The characteristics of these

two typical structures enable us to conduct the belief updating more efficiently in polytrees.

Figure 6.8: Polytree example

The “noisy-OR” Model

The “noisy-OR” model [102] is based on the noisy OR-gate structure shown in Figure 6.9.

Each node represents an event (attack step in our anomaly reasoning) with binary state 0

or 1. For a node X with n parents U = {U1, U2, . . . , Un}, its value can be seen as the output

of a logical OR-gate. Each input to the OR-gate is the output of an AND-gate representing

the conjunction of Ui and the negation of its specific inhibitory mechanism Ii. The inhibitors

I1, . . . , In represent exceptions or abnormalities that interfere with the normal relationship

between U and X . We use qi to represent the probability that the i-th inhibitor is active.

Assume all inputs are 0 except Ui = 1. X will only be 1 if and only if the inhibitor Ii

associated with Ui remains inactive. That is,

P (X = 1|Ui = 1, Uk = 0 k 6= i) = 1− qi. (6.12)

73

Figure 6.9: The noisy OR-gate

Therefore, ci = 1− qi represents the degree to which the single cause Ui = 1 can endorse the

consequent event X = 1. Let

u = (u1, u2, . . . , un) ui ∈ {0, 1} (6.13)

represent any assignment of values to parent set U . Note that both u and U are vectors

since X could have multiple parents. Let Tu = {i : Ui = 1} represent the subset of parents

that are 1. In the “noisy-OR” model, a link matrix P (x|u) is used to relate X to its parent

set U and can be written as

P (x|u) =





∏
i∈Tu

qi if x = 0

1−
∏

i∈Tu
qi if x = 1.

(6.14)

Having the link matrix P (x|u), we can follow similar belief propagation algorithm de-

scribed in Section 6.3.3. Assume X has m children, Y1, Y2, . . . , Ym. As it is shown in Figure

6.10, the local belief updating at X can be also executed by three steps in any order.

Belief Propagation Algorithm in “Noisy-OR” Model

Step 1 — Belief updating: Node X updates its belief measure based on the π1X , . . . ,

πnX from its parents and the λY1
(x), . . . , λYm

(x) from its children:

BEL(x) =




αλ0

∏
i(1− ciπiX) if x = 0

αλ1

[
1−

∏
i(1− ciπiX)

]
if x = 1,

(6.15)

74

Figure 6.10: Belief propagation in causal polytree

where

λ(x) =
∏

j

λYj
(x) =




λ0 if x = 0

λ1 if x = 1
, (6.16)

πiX = P (ui = 1), (6.17)

and α is a normalizing constant rendering
∑

xBEL(x) = 1.

Step 2 — Bottom-up propagation: Node X computes new λX(ui) messages and sends

them to its parents U . The new λX(ui) message for its i-th parent Ui is calculates as

λX(ui) =




β
[
λ0qiΠ

′
i + λ1(1− qiΠ

′
i)
]

if ui = 1

β
[
λ0Π

′
i + λ1(1− Π′

i)
]

if ui = 0,
(6.18)

where

Π′
i =

∏

k 6=i

(1− ckπkX), (6.19)

and β is a normalizing constant.

Step 3 — Top-down propagation: Node X computes new πYj
(x) messages and sends

them to its children. The new πYj
(x) message for its j-th child Yj is calculated as

πYj
(x) = α

BEL(x)

λYj
(x)

. (6.20)

75

Figure 6.11: The noisy AND-gate

The “noisy-AND” Model

The “noisy-AND” model [102] is based on the noisy AND-gate structure shown in Figure

6.11. The value of a node X with n parents U = {U1, U2, . . . , Un} can be seen as the output

of a logical AND-gate. Each input to the AND-gate is the output of an OR-gate representing

the conjunction of Ui and the its specific enabling mechanism Ei. We use qi to represent the

probability that the i-th enabler is active. Assume all inputs are 1 except Ui = 0. X will be

0 if and only if the enabler Ei associated with Ui remains inactive. That is,

P (X = 1|Ui = 0, Uk = 1 k 6= i) = qi. (6.21)

Let ci = 1− qi and use Fu = {i : Ui = 0} to represent the subset of parents that are 0. The

link matrix P (x|u) can be written as

P (x|u) =




1−

∏
i∈Fu

qi if x = 0
∏

i∈Fu
qi if x = 1.

(6.22)

Assume X has m children, Y1, Y2, . . . , Ym. The three steps of local belief updating at X

are listed as follows.

Belief Propagation Algorithm in “Noisy-AND” Model

Step 1 — Belief updating: Node X updates its belief measure based on the π1X , . . . ,

πnX from its parents and the λY1
(x), . . . , λYm

(x) from its children:

BEL(x) =




αλ0

{
1−

∏
i

[
1− ci(1− πiX)

]}
if x = 0

αλ1

∏
i

[
1− ci(1− πiX)

]
if x = 1,

(6.23)

76

where

λ(x) =
∏

j

λYj
(x) =




λ0 if x = 0

λ1 if x = 1
, (6.24)

πiX = P (ui = 1), (6.25)

and α is a normalizing constant rendering
∑

xBEL(x) = 1.

Step 2 — Bottom-up propagation: Node X computes new λX(ui) messages and sends

them to its parents U . The new λX(ui) message for its i-th parent Ui is calculates as

λX(ui) =




β
[
λ0(1− Π′

i) + λ1Π
′
i

]
if ui = 1

β
[
λ0(1− qiΠ

′
i) + λ1qiΠ

′
i

]
if ui = 0,

(6.26)

where

Π′
i =

∏

k 6=i

[
1− ck(1− πkX)

]
, (6.27)

and β is a normalizing constant.

Step 3 — Top-down propagation: Node X computes new π messages and send them

to its children. The new πYj
(x) message for its j-th child Yj is calculates as

πYj
(x) = α

BEL(x)

λYj
(x)

. (6.28)

6.4 DESIGN OVERVIEW

As we mentioned in Section 6.1, CAPTAR resides in the control center of the SCADA

network and its inputs are meta-alerts sent by EDMAND at the edge of the network. In this

section, we present a design overview of CAPTAR. The main architecture of CAPTAR is

shown in Figure 6.12. CAPTAR consists of 4 components: (1)Meta-alert Database, (2)Attack

Template Database, (3)Alert Correlator, (4)Causal Reasoning Engine.

The meta-alert database is used to store the meta-alerts from EDMAND. These meta-

alerts serve as evidence to our causal reasoning of anomalies. The attack template database

stores the potential attack templates which are causal polytrees created by domain experts.

These attack templates are Bayesian networks mentioned in Section 6.3.1 and contain the

“noisy-OR” and “noisy-AND” models mentioned in Section 6.3.4. They represent the prior

domain knowledge we have on potential attack plans and are used as the underlying Bayesian

77

Figure 6.12: CAPTAR architecture

networks for the belief propagation mentioned in Section 6.3.3. One important step to reason

about the anomalies is to match meta-alerts to nodes (attack steps) in our attack templates.

And to do that, we need to evaluate whether one meta-alert is correlated with other meta-

alerts. The alert correlator takes two meta-alerts as inputs and outputs a correlation score

which is used to decide whether the two input meta-alerts are correlated or not. The core

component of CAPTAR is the causal reasoning engine which interacts with all other three

components. When the causal reasoning engine is started, it fetches copies of the attack

templates in the database and conducts alert matching as well as belief propagation on

them. The meta-alerts are retrieved from the meta-alert database and the alert matching is

done using the alert correlator. Whenever the belief of an attack is high enough, the engine

outputs the causal polytree corresponding to that attack with matched alerts. The operator

can further analyze the believes and matched alerts in the causal polytree to understand

each step of the attack.

In the following subsections, we will introduce the meta-alert, the attack template, the

alert correlator, and the causal reasoning engine in more detail.

6.4.1 Meta-alert

Meta-alerts are generated by EDMAND in Chapter 5 and sent to the control center where

CAPTAR resides. Each meta-alert is the aggregation of similar alerts and the aggregation

rules are mentioned in Table 5.4. Each meta-alert has several fields which are listed in Table

6.3. The fields that will be used in CAPTAR are alert id, alert type, index field, timestamp,

confidence score. Alert id is a string that is unique for each meta-alert. The received

78

meta-alerts from EDMAND will be first stored in the meta-alert database (implemented by

MongoDB). The alert id serves as the key to locate and retrieve the meta-alert from the

database. Alert type is a name that briefly describes the meta-alert. The current prototype

of EDMAND generates 24 types of alerts from the transport, operation, and content levels. A

complete list of the alert types is shown in Table 6.4. For simplicity reason, we assign an alert

type index to each alert type and we will use the index to represent the corresponding alert

type. Index field of the meta-alert contains additional information that helps to describe the

meta-alert, such as IP addresses, protocol, service, etc. This field is later used by the alert

correlator to correlate meta-alerts. Timestamp field simply contains a pair of timestamps

(start time, end time). They are the timestamps of the earliest and the latest alerts that have

been aggregated to the meta-alert. Confidence score field in the meta-alert represents the

confidence that the meta-alert is an anomaly indeed. It is the maximum of the confidence

scores of all the aggregated alerts for this meta-alert. As we mentioned in Section 5.3.2,

the confidence score (CS) for alert is calculated by CS = MA × AS, where MA is the

model accuracy and AS is the anomaly score. As stated in Section 6.3.3, if meta-alerts are

matched to a node X in our causal polytree, an auxiliary child node X̃ is added to X . The

confidence scores of the matched meta-alerts are used to calculate the diagnostic support

message λX̃(x) that X̃ provides to X . The way to calculate λX̃(x) will be introduced in

Section 6.4.2.

Alert Field Description

alert id a unique id for retrieving a meta-alert from the database
alert type a name that describes the meta-alert (see Table 6.4)

index field
a set of auxiliary information that helps to describe

the meta-alert (refer to Table 5.1)
timestamp a start time and an end time for the meta-alert

confidence score the confidence that the meta-alert represent an anomaly
statistical fields

more detailed information about the last alert aggregated
anomaly data

count number of alerts aggregated by the meta-alert

Table 6.3: Meta-alert fields and description

6.4.2 Attack Template

As we mentioned in Section 6.3, we utilize causal polytrees to reason about anomalies

in SCADA networks. We call these special causal polytrees attack templates and use AT s

to represent them. Attack templates represent and store the prior domain knowledge we

79

Index Alert Type Alert Level

0 PACKET_IAT

Transport: Packet

1 PACKET_BYTES

2 NEW_ORIG

3 NEW_RESP

4 NEW_PROTOCOL

5 NEW_SERVICE

6 PACKET_AB_TOO_MANY

Transport: Flow

7 PACKET_AB_TOO_FEW

8 PACKET_BA_TOO_MANY

9 PACKET_BA_TOO_FEW

10 MEAN_BYTES_AB_TOO_LARGE

11 MEAN_BYTES_AB_TOO_SMALL

12 MEAN_BYTES_BA_TOO_LARGE

13 MEAN_BYTES_BA_TOO_SMALL

14 OPERATION_TOO_LATE

Operation

15 OPERATION_TOO_EARLY

16 OPERATION_MISSING

17 INVALID_FUNCTION_CODE

18 RESPONSE_FROM_ORIG

19 REQUEST_FROM_RESP

20 NEW_OPERATION

21 BINARY_FAULT

Content22 ANALOG_TOO_LARGE

23 ANALOG_TOO_SMALL

Table 6.4: Alert type

have for attacks. When an attack is launched, the triggered meta-alerts from EDMAND

are matched to the corresponding attack template and the belief propagation mentioned in

Section 6.3.3 is conducted on it. An example attack template for the data integrity attack

is shown in Figure 6.13. Each node X in an attack template AT is an attack step with zero,

one, or multiple parents and children. Each parent represents a prior cause attack step that

can lead to the current one and each child represents a posterior consequence attack step

that the current one can lead to. If there are multiple parents, they follow either the “noisy-

OR” or the “noisy-AND” model in Section 6.3.4. The prior probability at each node, the

probabilities qis of the inhibitory or enabling mechanisms in “noisy-OR” and “noisy-AND”

models are all specified by domain experts (e.g. power grid/SCADA security administrator)

when the attack template is created. Also, each attack template AT contains one or more

sink nodes (shaded node in Figure 6.13). Denote the set of sink nodes as SAT . Nodes in

SAT represent the final targets of the entire attack and we call them consequence nodes.

80

Each consequence node has domain knowledge associated with such as attack consequence,

severity, and potential countermeasure.

Figure 6.13: An example of an attack template (causal polytree) using the “noisy-OR” model

Each attack step (each node) has two binary states: not exist (0) and exist (1). However,

the attack steps cannot be observed directly. We can only infer the existence of each attack

step by the alerts it triggers in EDMAND. Each attack step could trigger meta-alerts that

belong to multiple1 alert types mentioned in Section 6.4.1. Multiple meta-alerts can match

to one alert type of an attack step. As we mentioned in Section 6.3.3, these alerts are

treated as evidence to each attack step node. We create a structure, called alert unit table,

to store the matched meta-alerts at each attack step. An example of the alert unit table

is shown in Table 6.5. Each row in the table is an alert unit (AU), which represents one

proportion of evidence. Let us assume there are k alert units in the table. Each alert unit

AU i consists of a weight wi and a list of alert types Ai1, Ai2, . . . , Aini
, where ni is the number

of alert types in AU i. Therefore, AU i = {wi, Ai1, Ai2, . . . , Aini
}. As we mentioned in Section

6.4.1, our current prototype of EDMAND can generate 24 types of alerts. Ai1, Ai2, . . . , Aini

are represented by the alert type indexes in Table 6.4 for simplicity reason. wi represents

how much the observation of one or more of the following alert types Ai1, Ai2, . . . , Aini
can

prove the existence of the attack step and
∑

i wi = 1. Alert types in the same alert unit

express the same aspect of the attack step. Each alert type Aij in the alert unit table can

contain multiple meta-alerts from EDMAND of the same corresponding alert type. For

example, in the “data integrity attack” attack step in Figure 6.13, the alert unit table

contains one alert unit {1, 21, 22, 23}. Since there is just one alert unit, its weight is 1. The

three alert types are 21, 22, and 23, which represent BINARY_FAULT, ANALOG_TOO_LARGE, and

ANALOG_TOO_SMALL. These three types of content-level meta-alerts all represent the actual

tampering of the measurement data and are therefore included in the same alert unit.

1It is also possible that one attack step triggers no alerts in EDMAND. In this case, we can only infer
the existence of this attack step by the existence of its parents and children.

81

Alert Unit Weight Alert Types

AU 1 w1 A11, A12, . . . , A1n1

AU 2 w2 A21, A22, . . . , A2n2

...
...

...
AU k wk Ak1, Ak2, . . . , Aknk

Table 6.5: Alert unit table for each attack step

As we mentioned in Section 6.3.3, if meta-alerts are matched to a node X and stored

in its alert unit table, an auxiliary child node X̃ is added to X . The confidence scores

of the matched meta-alerts are used to calculate the diagnostic support message λX̃(x)

that X̃ provides to X . To calculate λX̃(x), we utilize the confidence score of each meta-alert

mentioned in Section 6.4.1. For each alert type Aij in the alert unit table, we assume there are

mij meta-alerts aij1, aij2, . . . , aijmij
matched to it (the matching mechanism will be described

in Section 6.4.4). The confidence scores of them are CS (aij1),CS(aij2), . . . ,CS (aijmij
). Let

CS (Aij) be the confidence score of the alert type Aij and it is calculated as

CS (Aij) =





∏mij

l=1 CS(aijl)∏mij

l=1 CS (aijl) +
∏mij

l=1(1− CS (aijl))
if mij > 0

Pmiss if mij = 0,

(6.29)

where Pmiss is a probability of missing meta-alerts and can be predefined by experience or

calculated if training data is available. After we have confidence score calculated for every

alert type in one alert unit AU i, we can write the confidence score of the alert unit CS (AU i)

as

CS (AU i) =
ni

max
j=1

CS (Aij). (6.30)

The final total confidence score of the attack step CS total is calculated by

CS total =

k∑

i=1

wiCS (AU i). (6.31)

The diagnostic support λX̃(x) provided by all the matched alerts to the attack step X is

written as

λX̃(x) =




1− CS total if x = 0

CS total if x = 1
. (6.32)

Attack templates are created by domain experts and stored in the attack template database

before we start the anomaly reasoning. At the beginning of the reasoning, the causal reason-

82

ing engine will fetch copies of the original attack templates and create an attack template set

ATS. Then the engine conducts alert matching as well as the belief propagation mentioned

in Section 6.3.3 on them. Each attack template AT in ATS originates from one attack

template in the database. And multiple attack templates in ATS could correspond to the

same attack (same attack template in the database). For each attack step X in an attack

template AT , BELX(1) represents the probability of existence of this attack step. The way

to calculate BELX(1) is introduced in Section 6.3. Since consequence nodes in SAT stand for

final targets of the entire attack represented by AT , the maximum probability of existence

of all consequence nodes in AT , denoted by BELmax(AT), can represent the inferred success

possibility of the attack and is calculated as

BELmax(AT) = max
X∈SAT

BELX(1). (6.33)

6.4.3 Alert Correlator

Figure 6.14: Alert correlation model

CAPTAR’s anomaly reasoning consists of meta-alert matching and belief propagation.

Meta-alert matching is the process of matching meta-alerts to attack steps (in attack tem-

plates) that trigger them. And the most important step of alert matching is to decide

whether two meta-alerts are correlated or not. Therefore, the alert correlator is designed for

this purpose. The alert correlator is a naive Bayes classifier whose graphical representation

is a Bayesian network in Figure 6.14 with one root node X and three leaf nodes Y1, Y2, and

Y3. The root node X represents the hypothesis that “the two input meta-alerts are corre-

lated” and has two states: “yes” (1) and “no” (0). Each leaf node Yj (j ∈ {1, 2, 3}) stands

for one type of observable evidence that helps to evaluate the hypothesis and has several

discrete states. Depending on whether two meta-alerts are correlated or not, the distribution

of states at the evidence nodes will be different. Therefore, based on the observed states at

83

the evidence nodes, one can infer the probability that two meta-alerts are correlated. We

consider three kinds of observable evidence while correlating two meta-alerts: time difference

(Y1), IP similarity (Y2), and whether they share the same service (Y3).

• Time difference: The state of Y1 depends on the closeness in the time axis of the two

meta-alerts and we use Tdiff to represent that. As we described in Section 6.4.1, each

meta-alert from EDMAND has a start time and an end time. If the two meta-alerts

overlap, we assign 0 to Tdiff . Otherwise, we calculate Tdiff as the difference between

the end time of the earlier meta-alert and the start time of the latter one. Y1 has four

corresponding states according to Tdiff :

Y1 =





0 if Tdiff ≤ 60seconds

1 if 60seconds < Tdiff ≤ 1hour

2 if 1hour < Tdiff ≤ 1day

3 if Tdiff > 1day

. (6.34)

• IP similarity: The state of Y2 depends on the similarity of IP addresses related to the

two meta-alerts. Each meta-alert could have one or two related IP addresses. Content-

level alerts have one measure source IP while transport and operation level alerts have

two IPs for originator and responder. For every pair of IP addresses (IPa, IP b), where

IPa relates to one input meta-alert and IP b relates to the other, we calculate the

similarity of them as follows:

SIM (IPa, IP b) =





3 if IPa and IP b are exactly the same

2 if
IPa and IP b are not the same but

within the same 8-bit block

1 if
IPa and IP b are not within the same 8-bit

block but within the same 16-bit block

0 if
IPa and IP b are not within the same

16-bit block

(6.35)

The maximum similarity of all such IP pairs is selected as the state of Y2. Therefore,

Y2 has four states of {0, 1, 2, 3} and Y2 = max(IPa,IPb) SIM (IPa, IP b).

• Same service: Y3 evaluates whether the two meta-alerts share the same service (i.e.,

the same industrial control protocol). There are two states of Y3: “yes” (1) and “no”

84

(0). A “no” is also specified if any of the input meta-alerts does not have a related

service.

Let x (x ∈ {0, 1}) represent the state of the root node in Figure 6.14. Let yj (j ∈ {1, 2, 3})

represent the state at each leaf node Yj and ŷj represent the already observed state. There

is a conditional probability table (CPT) at each leaf node Yj which relates Yj to X . As we

stated in Section 6.3.3, each entry P (yj|x) in the table defines the probability of state yj of

node Yj given certain state x of node X . Since X is a root node with no parent, we set pi(x)

to be the prior probability P (x) according to the boundary condition mentioned in Section

6.3.3. P (x) varies depending on the alert types of the two input meta-alerts. There is a

predefined prior probability for each pair of alert types based on domain knowledge. And

since the state of Yj is already observed as ŷj, we have

λ(yj) =




1 if yj = ŷj

0 otherwise.
(6.36)

According to the bottom-up propagation step in the belief propagation, the diagnostic sup-

port provided by Yk to X is λYj
(x) =

∑
yj
λ(yj)P (yj|x) = P (ŷj|x). Therefore, the belief at

root X can be calculated as

BEL(x) = αλ(x)π(x) = απ(x)
3∏

j=1

λYj
(x) = αP (x)

3∏

j=1

P (ŷj|x), (6.37)

where α is a normalizing factor rendering
∑

xBEL(x) = 1. We say two meta-alerts are

correlated if BEL(1) > 0.5 for X . Let a and b be the two input meta-alerts for the alert

correlator. We define the Correlate procedure of the alert correlator as follows:

Correlate(a, b) =




BEL(1) if BEL(1) > 0.5

−1 otherwise,
(6.38)

6.4.4 Causal Reasoning Engine

The causal reasoning engine is the core component of CAPTAR and it interacts with

all other three components. When the causal reasoning engine starts, it fetches copies of

attack templates AT s from the attack template database and creates an attack template set

ATS. Then it runs an anomaly reasoning algorithm to perform alert matching and belief

propagation on the attack templates in the attack template set. The meta-alerts used in

85

the alert matching are retrieved from the meta-alert database and the alert correlator is

also used to correlate meta-alerts during the matching process. The belief propagation is

introduced in Section 6.3.

The anomaly reasoning algorithm is shown in Algorithm 6.1. The AnalyzeAlert pro-

cedure in this algorithm is called whenever CAPTAR receives a new meta-alert or an update

to an existing alert. The procedure takes the meta-alert a and the current attack template

set ATS in the causal reasoning engine as inputs. The output is a new attack template

set ATSnew with the meta-alert a matched to some of the attack templates inside and be-

lief propagation performed. The procedure has two cases. If a is an update to an existing

meta-alert, then some attack templates in ATS might already have a matched. For each

AT of those attack templates, the algorithm gets the node X in AT that a is matched to.

Since the meta-alert is updated, the procedure recalculates the total confidence score CStotal

(presented in Section 6.4.2) of X . The diagnostic support λx̃(x) from all the matched alerts

is also recalculated. Since the evidence contained at X changes, a belief propagation in AT

from node X is initiated. In this case, the ATS with the updated attack templates are

directly assigned to ATSnew for output. If a is a newly detected meta-alert, the algorithm

iterates over the entire set ATS. For each attack template AT in ATS, it matches the

meta-alert a to nodes in AT and performs a belief propagation if there is a successful match.

This process is included in the procedure called MatchAlert. This procedure takes a and

AT as inputs and outputs a set of attack templates ATSmatch. The attack templates in

ATSmatch are copies of AT with a matched and belief propagation performed. Since it is

possible that a can match to multiple nodes in AT , ATSmatch could contain multiple copies.

If a cannot be matched to AT , ATSmatch will just contain the original AT . After we get

ATSmatch from MatchAlert(a, AT), the attack templates in ATSmatch are all added to

ATSnew. After each run of the algorithm, namely each call of procedureAnalyzeAlert,

the attack template set ATS in the causal reasoning engine is replaced by ATSnew. The

engine then checks BELmax(AT) (defined in Section 6.4.2) of every attack template AT in

the new attack template set. If it finds BELmax(AT) > θBEL for any AT , it will output that

attack template AT for operator’s further analysis. Here θBEL is a predefined threshold and

we use θBEL = 0.8 for our CAPTAR prototype.

Before we introduce more details of the MatchAlert procedure, there are one concept

and another procedure we need to describe first. The concept is called happens before and

the procedure’s name is FindCorrelation. Happens before is a relationship between

two meta-alerts. We say meta-alert a happens before meta-alert b if the start time of a

is at least Thb earlier than the start time of b, where Thb = 10s is a predefined threshold.

The procedure FindCorrelation is shown in Algorithm 6.2. It takes a meta-alert a

86

Algorithm 6.1 Anomaly Reasoning Algorithm

Input:

a - meta-alert to be analyzed
ATS - attack template set

Output:

ATSnew - new attack template set
procedure AnalyzeAlert(a,ATS)

ATSnew ← ∅
if a is an update of an existing meta-alert then

for each AT in ATS that has a as a matched alert do
recalculate CStotal and λx̃(x) of the matched node X
start a new belief propagation in AT from node X

end for

ATSnew ← ATS

else

for each AT in ATS do

ATSmatch ←MatchAlert(a, AT)
add ATSmatch to ATSnew

end for

end if

return ATSnew

end procedure

and a node X in the attack template as inputs and outputs a correlation score Cormax.

The objective of this procedure is to find whether the given node, its parents and children

have any matched alert that correlates with the given alert. The procedure does so by

iterating through every matched alert b of X , parents of X and children of X . For each b,

it calls the alert correlator and uses the Correlate procedure to correlate a and b. The

maximum result from Correlate(a, b) is stored in Cormax. If any correlation is found,

Cormax contains the highest correlation score. Otherwise, Cormax = 0. There are two

exceptions while correlating alerts from parents and children. For any matched alert b of

X ’s parents, there is a conflict if a happens before b. a is to be matched to X and X ’s parents

are attack steps that should lead to X . If there is an attack, the attack steps represented

by X ’s parents should be launched before X . That means a could not happens before b.

Therefore, a should not be matched to X and the procedure outputs −1 in this case. For

any matched alert b of X ’s children, the procedure outputs −1 if b happens before a for

similar reasons.

After describing the happens before concept and the FindCorrelation procedure, we

can start looking at the MatchAlert procedure which is shown in Algorithm 6.3. It takes

a meta-alert a and an attack template AT as inputs and outputs a set ATSmatch containing

87

Algorithm 6.2 Find Correlation Procedure

Input:

a - meta-alert to find correlation with
X - a node in the attack template whose alert unit table contains the alert type of a

Output:

Cormax - maximum correlation
procedure FindCorrelation(a,X)

Cormax ← 0
for each matched alert b of X do

Cormax ← max(Cormax,Correlate(a, b))
end for

for each parent U of X do

for each matched alert b of U do

if a happens before b then
return −1

end if

Cormax ← max(Cormax,Correlate(a, b))
end for

end for

for each child Y of X do

for each matched alert b of Y do

if b happens before a then

return −1
end if

Cormax ← max(Cormax,Correlate(a, b))
end for

end for

return Cormax

end procedure

attack templates generated after matching. The objective of this procedure is to try to match

meta-alert a to the attack template AT . It iterates over every node X in AT whose alert

unit table contains alert type of a. It calls the procedure FindCorrelation to correlate a

with X . If the result is greater than 0, it means a finds correlation in X . If the result is 0,

it means a finds no correlation in X but it can be matched to X . We add X to a potential

node set Xpot. If the result is less than 0, it means a could not be matched to X due to

conflicts. If a finds correlation in any node in AT , this means we have good reason to believe

a is triggered by the attack represented by the current attack template AT . Therefore, we

match a to the node Xcor with the highest correlation score and start a belief propagation

from Xcor. In this case, the output will be a set containing only the updated AT with a

matched. If a finds no correlation in AT but Xpot is not empty, this means there is no proof

88

that a is triggered by AT but there are attack steps in AT that could potentially trigger

a and the attack steps are included in Xpot. Therefore, the procedure iterates over Xpot

explores every possibility. For every node X in Xpot, it creates a new copy ATmatch of AT .

Note that this copy contains not only the nodes of AT but also all already matched alerts

of AT . It then matches a to X ’s counterpart in ATmatch and starts a belief propagation

in ATmatch from that node. By doing this, the procedure takes every potential match of

a in AT into consideration and the final output will contain the original AT as well as all

updated copies of it. Finally, if there is no node in AT that a could match to, the output

will just contain the original AT .

Algorithm 6.3 Match Alert Procedure
Input:

a - meta-alert to be matched
AT - attack template

Output:

ATSmatch - attack template set after matching
procedure MatchAlert(a, AT)

ATSmatch ← {AT}, Xcor ← None, Xpot ← ∅, Cormax ← 0
for each node X in AT whose alert unit table contains alert type of a do

Cor ← FindCorrelation(a,X)
if Cor > 0 then

if Cor > Cormax then

Cormax ← Cor , Xcor ← X
end if

else if Cor = 0 then

add X to Xpot

end if

end for

if Xcor is not None then

match a to Xcor and start the belief propagation of AT from Xcor

else

for each node X in Xpot do

ATmatch ← copy of AT
match a to X in ATmatch and start a belief propagation of ATmatch from X
add ATmatch to ATSmatch

end for

end if

return ATSmatch

end procedure

In the description of the MatchAlert procedure, we mentioned that the procedure will

explore every potential match of a and create multiple copies of the original attack template

89

AT if no exact match can be found. This will increase the number of attack templates in the

attack template set ATS. To prevent the number of attack templates from exploding, we

set a maximum limit K for the number of attack templates to keep for each kind of attack.

Attack templates with lower BELmax(AT) will be dropped when the number exceeds the

limit. Also, attack templates will also be dropped from the set if they have not been updated

for a long time.

The attack templates, output by the causal reasoning engine, represent attacks of high

probability of existence in the SCADA network. The operators can not only understand

the origin of the attacks by examining the belief of each attack step and the corresponding

alerts, but also evaluate the attack consequences and take countermeasures by utilizing the

domain knowledge contained in the consequence nodes.

Example Run for the Anomaly Reasoning Algorithm

We use an example to better illustrate the anomaly reasoning algorithm. Consider the

attack template AT in Figure 6.15. Let us assume this is the only attack template in the

database. At the beginning of the anomaly reasoning, the causal reasoning engine fetches AT

from the database and creates the attack template set ATS = {AT} as shown in Figure

6.16. Now the attacker first launched a man-in-the-middle attack. CAPTAR receives an

OPERATION_TOO_LATE meta-alert a1 from EDMAND. This meta-alert a1 is first stored in

the meta-alert database and then fed into the causal reasoning engine. Upon receiving this

meta-alert a1, the engine calls the anomaly reasoning algorithm. It finds that a1 is a new

meta-alert, so the procedure MatchAlert is called to match a1 to the only attack template

AT in ATS. The MatchAlert procedure finds that node X1 is the only node whose

alert unit tables contains alert type OPERATION_TOO_LATE. Therefore, it calls the procedure

FindCorrelation with a1 and X1 as inputs. The procedure FindCorrelation tries to

find any meta-alert in X1 and X3 that correlates with meta-alert a1. However, since X1

and X3 have no matched alert yet, the procedure finds no correlation and returns 0 in this

case. Since no correlation of a1 in the attack template AT is found and X1 is the only

node that a1 can match to, a copy ÂT of the attack template AT is created, and the meta-

alert a1 is matched to X̂1 in the copy ÂT . A belief propagation is performed on ÂT . The

MatchAlert procedure returns both AT and ÂT . Finally, both AT and ÂT are added to

ATSnew to replace ATS.

Now the attacker intercepts and tampers with some binary data. CAPTAR receives a

meta-alert a2 with alert type of BINARY_FAULT from EDMAND as shown in Figure 6.17.

a2 is first stored in the meta-alert database and then forwarded to the causal reasoning

90

Figure 6.15: Example attack template AT

Figure 6.16: Algorithm run upon receiving meta-alert a1

engine. The anomaly reasoning algorithm again finds that a2 is a new meta-alert, so the

procedure MatchAlert is called to match a2 to both AT and ÂT . Matching a2 to AT

is similar to matching a1 to AT and there is no correlation of a2 in the attack template

AT . Matching a2 to ÂT is a bit different. The procedure finds that node X̂3 is the only

node whose alert unit tables contains alert type BINARY_FAULT. Therefore, the procedure

FindCorrelation is called with a2 and X̂3 as inputs. Since X̂1 is the parent of X̂3 and a1

is a matched alert to X̂1. The procedure sends both a2 and a1 to the alert correlator and

finds that they are correlated. Therefore, it returns the correlation score of a1 and a2. Since

the FindCorrelation procedure finds one correlation of a2 in the attack template ÂT , a2

is matched to X̂3 and a belief propagation is performed on ÂT . After this run, the attack

template set ATS contains the original AT and updated ÂT .

Later, EDMAND sends another updated BINARY_FAULT meta-alert â2 to CAPTAR as

shown in Figure 6.18. The anomaly reasoning algorithm finds that â2 is an update to an

existing meta-alert a2. Also, it finds that ÂT in ATS contains a2. Therefore, it replaces

a2 with â2 in ÂT and starts new belief propagations in ÂT . After this run, the causal

reasoning engine finds that BELmax(ÂT) exceeds the predefined threshold. Therefore, the

91

Figure 6.17: Algorithm run upon receiving meta-alert a2

engine outputs ÂT to the operator. The operator can see from ÂT that there is a data

integrity attack going on and the attacker first launched a man in the middle attack (MITM)

to achieve that. The two matched alerts a1 and â2 can also be used for more detailed analysis

by the operator.

Figure 6.18: Algorithm run upon receiving meta-alert â2

6.5 PERFORMANCE EVALUATION

In this section, we evaluate the anomaly reasoning ability of CAPTAR via three simu-

lated attack scenarios. We implement a prototype of CAPTAR and reuse our prototype

of EDMAND described in Chapter 5. The baseline traffic is 14 days of simulated DNP3

traffic of one control center communicating with 10 remote terminal units (RTUs). More

details of the baseline traffic can be found in Section 5.6. We create three attack templates

representing three common attacks in SCADA networks: TCP SYN flood, data integrity

attack, and command injection.

92

• TCP SYN flood : The attack template for TCP SYN flood is shown in Figure 6.19. The

attacker starts by an IP address scan to find out the active IP addresses in the subnet.

Then the TCP SYN flood is conducted by sending a succession of SYN requests to the

target with spoofed source addresses.

Figure 6.19: TCP SYN flood

• Data integrity attack : The attack template for data integrity attack is shown in Figure

6.20. The attacker first either launches a man-in-the-middle attack or compromises

some field devices. The measurement data sent back to the control center are then

tampered to mislead the control system.

Figure 6.20: Data integrity attack

• Command injection: The attack template for command injection is shown in Figure

6.21. The attacker first either launches a man-in-the-middle attack or conducts an IP

address scan followed by a service scan. Malicious control commands are then injected

into the packets to attack the substations.

In our evaluation, we launch the above three attacks in our simulated SCADA network.

CAPTAR together with EDMAND are able to identify and differentiate all three attacks.

Moreover, the output of CAPTAR gives the operator a better idea of the likelihood of each

attack step even if there is no direct alert representation of the step. For example, the attack

93

Figure 6.21: Command injection

step of “compromised node” in the data integrity attack has no detectable alert by EDMAND

(for now). However, CAPTAR can still infer the high chance of existence of a compromised

node if it sees the existence of the “data integrity attack” consequence node and the absence

of the “man in the middle” node. Notice that the expressiveness of attack templates can be

improved by increasing the number of meta-alert types that can be triggered by EDMAND.

CAPTAR can also reason about alerts not from EDMAND as long as they are preprocessed

to follow the same format.

We now briefly calculate the time complexity of the anomaly reasoning algorithm. We start

by estimating the time complexity of the FindCorrelation procedure. Let us assume M

to be the number of meta-alerts in the database. In the worst case, the FindCorrelation

needs to correlate the input meta-alert with all other meta-alerts. Since the time complexity

of correlating a pair of meta-alerts is constant, the FindCorrelation procedure has a

O(M) time complexity. Let us assume the maximum number of nodes in any attack template

is N and L is the number of attack templates in the database. In the MatchAlert

procedure, the first ‘for’ loop needs to go over every node in the template in the worst case,

which has a time complexity of O(MN). The belief propagation is O(N), and Npot has N

nodes in the worst case. So the rest of the procedure has a time complexity of O(N2). The

total time complexity of MatchAlert is therefore O(MN+N2). In the anomaly reasoning

algorithm, the maximum attack template number is KL. It can be easily derived that the

time complexity of the algorithm is O(KLN(M + N)). Usually, we have M ≫ N , so the

anomaly reasoning algorithm has an estimated time complexity of O(KLMN) in the worst

case. K and N are usually less than 10. L should be several dozens. M is also limited

to dozens or hundreds due to the alert aggregation and removing of stale meta-alerts from

the database. Therefore, the total time complexity of the algorithm is reasonable. And

notice that the frequency CAPTAR runs the anomaly reasoning algorithm is decided by the

94

frequency that EDMAND sends meta-alerts. As mentioned in 5.4.2, EDMAND sends meta-

alerts in a periodic manner only if there are updates to those meta-alerts in the latest period.

So the sending rate of meta-alerts by EDMAND is also limited. Therefore, CAPTAR is able

to satisfy the real-time anomaly reasoning need for those meta-alerts.

To give a better understanding of the time overhead of CAPTAR, we measure the time

to run the FindCorrelation procedure, the belief propagation, and the anomaly reason-

ing algorithm for the three attack scenarios on a Ubuntu 16.04 desktop with 12 Intel Xeon

3.60GHz CPUs and 16GB memory. For each attack scenario, we run CAPTAR on the en-

tire traffic set including the corresponding attack and calculate the average and standard

deviation in millisecond of the time overheads for FindCorrelation, belief propagation,

and the anomaly reasoning algorithm. We also record the sample number, which is the

number of time FindCorrelation, belief propagation, and the anomaly reasoning algo-

rithm have been performed. The results are shown in Table 6.6. We can see that the time

overheads are definitely small enough to satisfy the real-time reasoning requirement of the

meta-alerts. Note that the average time to run the FindCorrelation procedure and the

anomaly reasoning algorithm varies a lot across different attack scenarios. This is because

the time overheads of FindCorrelation and the anomaly reasoning algorithm depend on

the number of meta-alert M as we described previously. And those three attack scenarios

generate 104(TCP SYN flood), 7(data integrity attack), and 26(command injection) meta-

alerts respectively. This results in the different time overheads of FindCorrelation and

the anomaly reasoning algorithm for them. Another fact is that all the time overheads have

relatively high standard deviation. This is mainly due to the change to meta-alert number

in the meta-alert database during the attack. As the attack continues, the number of meta-

alerts in the database increases, and so do the time overheads for FindCorrelation, belief

propagation, and the anomaly reasoning algorithm.

Attack
FindCorrelation Belief Propagation Anomaly Reasoning
avg std num avg std num avg std num

TCP SYN flood 7.60 4.58 64 0.21 0.12 64 41.39 28.90 122
Data integrity attack 0.48 0.37 4 0.10 0.04 4 19.76 48.72 12
Command injection 2.65 1.61 25 0.14 0.02 25 13.95 34.52 40

Table 6.6: Average(avg in ms), standard deviation(std in ms), and sample number(num)
of time overhead for FindCorrelation, belief propagation, and the anomaly reasoning
algorithm

95

6.6 CONCLUSION

In this chapter, we propose a causal-polytree-based anomaly reasoning framework for

SCADA networks, named CAPTAR. CAPTAR takes the meta-alerts from EDMAND and

performs alert correlation and attack plan recognition. Experiments using a prototype of

CAPTAR and simulated traffic show that CAPTAR is able to detect and differentiate various

attack scenarios in a real-time manner. The generated reasoning results can provide the

operators with a high-level view of the security state of the protected SCADA network.

96

CHAPTER 7: CONCLUSIONS AND DISCUSSION

In this chapter, I first conclude this thesis by summarizing each work I have done. After

that, I will discuss how domain specific is this thesis and how it can be generalized to a

broader domain.

7.1 CONCLUSIONS

In this thesis, I use an integrated approach of edge-cloud design, real-time data operations,

and causal security analysis and propose four frameworks to help to guarantee the situational

awareness of Smart Grid. One of them protects situational awareness in WAMS by using on-

line data compression to reduce the huge and increasing volume of data in the communication

networks to avoid congestions. The other three of them use anomaly detection and causal

anomaly reasoning to enhance security of SCADA systems and thus guarantee situational

awareness. Note that although I focus only on WAMS and SCADA systems in Smart Grid

in this thesis, the proposed frameworks could potentially be utilized to help with situational

awareness of similar industrial control systems in other large-scale distributed critical in-

frastructure systems (e.g., oil/gas pipelines and refineries, water distribution and treatment)

after minor adaptations.

7.1.1 OLAF: Operation-Level Traffic Analyzer Framework for SCADA System

The current SCADA systems in Smart Grid are facing increasing security risks. To provide

end-to-end security against both external and internal attacks, both the end host devices

and the network need to be secured. In the current architecture, the control centers are

responsible for both the device status analysis and network traffic analysis. Since the control

center needs to wait for the data from measurement devices before doing any processing and

analysis, it is increasingly hard to provide up-to-date situational awareness as the number

of deployed measurement devices grows. To address this issue, in Chapter 3, I propose

OLAF, an edge-based, extensible, and efficient operation-level traffic analyzer. OLAF resides

in substations of SCADA systems and is able to provide preliminary but more prompt

situational awareness by performing network traffic analysis and device status analysis at

the edge. Experimental results are encouraging by showing strong anomaly detection ability

and low time overhead of OLAF.

97

7.1.2 ISAAC: Intelligent Synchrophasor Data Real-Time Compression Framework for
WAMS

The huge and rapidly increasing data volume in WAMS imposes a heavy burden on the

communication and storage systems and could result in frequent and severe congestion if

not handled carefully. The situational awareness of the system could suffer a lot from the

extremely long delays or high packet loss rates that follow the congestion. In Chapter

4, I propose ISAAC, an intelligent synchrophasor data real-time compression framework

for WAMS to be deployed at the edge of WAMS. Based on a combination of PCA and

DCT techniques, ISAAC is able to mitigate the burden on communication systems laid by

the huge synchrophasor data volume while satisfying the requirements of real-time WAMS

applications. A disturbance detector is utilized to identify disturbance data and satisfy its

stricter delay and accuracy requirements. ISAAC can achieve good compression ratios while

maintaining satisfying delay and accuracy for the reconstructed data. The performance of

ISAAC is validated by experiments based on real synchrophasor data.

7.1.3 EDMAND: Edge-Based Multi-Level Anomaly Detection for SCADA Networks

The light-weighted operation-level traffic analyzer, named OLAF, in Chapter 3 provides

preliminary analysis of SCADA. That is not enough to guarantee situational awareness and

a more thorough monitoring and analysis is required. Based on different analysis granularity,

data in SCADA network traffic generally can be divided into three levels: transport level,

operation level, and content level. Monitoring and event detection of only one or two of the

three levels is not enough to detect and reason about attacks in all three levels. In Chapter

5, I develop EDMAND, an edge-based multi-level anomaly detection framework for SCADA

networks. EDMAND resides in remote substations of SCADA systems and monitors network

traffic at flow level, operation level, and content level. Distinct data characteristics are taken

into consideration when selecting anomaly detection method for each level. When anomalies

are detected, EDMAND generates, aggregates, and prioritizes alerts and sends them to

control centers. Moreover, the concept of confidence score is introduced into the anomaly

detection process and confidence scores are assigned to generated alerts. The performance

of EDMAND is validated by synthetic DNP3 traffic with various anomalies injected.

7.1.4 CAPTAR: Causal-Polytree-based Anomaly Reasoning for SCADA Networks

My work EDMAND, described in Chapter 5, resides at the edges of the SCADA network,

detects anomalies at multiple levels of the network, and sends aggregated and prioritized

98

meta-alerts to the control center. However, only knowing what anomalies are happening in

the system without understanding why they happen is definitely not enough to guarantee

situational awareness. There is a need for an efficient system to correlate the alerts in an

intelligent manner and match temp to potential attack(s) based on domain knowledge to

discover attack strategies. In Chapter 6, I present a causal-polytree-based anomaly reasoning

framework for SCADA networks, named CAPTAR. CAPTAR takes the meta-alerts from

EDMAND and performs alert correlation and attack plan recognition. Experiments, using

a prototype of CAPTAR and simulated traffic, show that CAPTAR is able to detect and

differentiate across various attack scenarios in real time. The generated reasoning results can

provide the operators with a high-level view of the security state of the protected SCADA

network.

7.2 DISCUSSION

The four frameworks in this thesis (OLAF, ISAAC, EDMAND, CAPTAR) are designed

to provide situational awareness to Smart Grid and are domain specific. Quite an amount

of domain-specific knowledge is utilized during the development of the frameworks. For

example, one important prerequisite that allows EDMAND to use statistics such as mean

and standard deviation to perform anomaly detection is that the traffic in SCADA net-

works is mostly periodic. The same approach cannot work for the Internet which has much

more irregular and bursty traffic. Also, the characteristics of measurement data utilized

by EDMAND to do content-level anomaly detection is only valid for this specific domain.

CAPTAR is designed specifically for Smart Grid as well with the parameters in the alert

correlator set by domain experts and attack template database containing typical attacks

for this domain.

Although the four frameworks in this thesis are designed specifically for Smart Grid, the

contribution of this thesis is more than proposing approaches to provide situational awareness

to Smart Grid. Some methodologies used by this thesis can be applied to broader contexts.

For example, ISAAC identifies the different compression requirements for normal traffic and

traffic with disturbances, and applies different compression methods. The the compression

technique of reusing the transformation matrix in Principal component analysis can also be

generalized to other domains. EDMAND benefits from the idea of dividing data to multiple

levels by different analysis granularity and applying appropriate mechanism to each level.

Introducing the concept of confidence score to anomaly detection and assigning confidence

scores to alerts is another valuable design decision that can be used by other domains. The

way to differentiate data measurements into different classes using Bayesian inference is not

99

limited to the specific scenarios. Actually, both the meta-alert priority score calculation in

EDMAND and the alert correlation in CAPTAR reuse the same concept. By using causal

reasoning, CAPTAR is able to combine weak indications (indirect evidence) of anomalies,

represented by meta-alerts, and derive stronger indications. The causal polytrees utilizing

“noisy-OR” and “noisy-AND” models, the auxiliary child to represent indirect evidence, and

the belief propagation on those polytress can all be adapted to different use cases. And the

anomaly reasoning algorithm is also not domain-specific. All these methodologies are not

limited to the specific domain of Smart Grid and can be applied to broader domains.

For example, the aforementioned methodologies can be generalized to the domain of In-

ternet of Things (IoT). Providing situational awareness in IoT is also of great importance.

Security and data volume are issues in IoT as well. To adapt frameworks in this thesis to

the domain of IoT, several changes need to be made on the frameworks and some major

ones are listed as follows.

• The parsers and data extractors in this thesis only support several communication

protocols in Smart Grid (e.g. Modbus, DNP3). They need to be modified to support

communication protocols in IoT.

• The attack templates in CAPTAR correspond to attacks commonly seen in SCADA

networks. However, the common attacks in SCADA might not be the same with the

common attacks in IoT. New attack templates for the IoT domain need to be created

by experts.

• In EDMAND, the different characteristics of data traffic in different levels are utilized

to select appropriate anomaly detection mechanisms. The characteristics of traffic in

IoT are different from those in SCADA. The new characteristics need to be reconsidered

to select appropriate anomaly detection mechanisms for IoT domain.

• The ontology of alerts in this thesis is domain-specific. The alerts have fields (even

protocol specific fields) typical to SCADA and the alert types are also defined by

domain knowledge. The ontology needs to be adapted to IoT domain and alert types

need to be redefined to reflect common anomalies in IoT.

• Various domain specific parameters in the frameworks need to be reset by experts from

IoT domain. For example, in the alert correlator of CAPTAR, the prior probabilities

of different alert types and the elements in the conditional probability table are all

domain-specific and have new values in the IoT domain.

100

• The adapted frameworks also need to meet the time overhead requirements in IoT

which are different from those in Smart Grid. For example, the current time overheads

of EDMAND and CAPTAR are good enough for SCADA networks. If IoT applica-

tions have stricter time requirements, the anomaly detection and anomaly reasoning

algorithms might need to be simplified or performed in a more efficient manner to

guarantee lower time overheads.

101

CHAPTER 8: LESSONS LEARNED AND FUTURE DIRECTIONS

In this chapter, I first share some of the lessons I learned while working on this thesis.

Then some preliminary thoughts of potential future research directions are given.

8.1 LESSONS LEARNED

My Ph.D. study was a tough but fruitful journey. I have learned a lot from all the research

I have done as well as working on this thesis and I want to share several lessons I have learned.

The first lesson is that getting access to real world traffic for cyber-physical systems

such as the Smart Grid is challenging. Since cyber-physical systems are usually critical

infrastructures, utilities are not willing to share their traffic traces due to security and

privacy concerns. Acquiring normal traffic is very hard and getting access to real traffic

with attacks is almost impossible. Therefore, sometimes researchers have no alternative but

to use and work with simulated data. Developing better simulators and techniques that help

utilities to share their data in secure manner could be topics worth exploring.

The second lesson is that learning and understanding domain knowledge, and collaborat-

ing with domain experts is beneficial and necessary for delivering impactful research results.

Developing approaches to provide situational awareness for Smart Grid requires a good un-

derstanding of cyber systems (e.g., SCADA, WAMS), devices (e.g., PMUs, MTUs, RTUs),

communication protocols (e.g., Modbus, DNP3), measurement characteristics, domain spe-

cific attacks, etc. Knowing the physical model and physical laws in Smart Grid can also

help with identifying the normal and abnormal behaviors in the system. Working closely

with domain experts ensures that research has practical value and can be deployed in real

systems.

The third lesson is that extending the breadth of knowledge is of great importance to do

interdisciplinary research. For example, in my thesis, there is an integration of knowledge

from various areas including system design, data analytic, security, compression techniques,

real-time systems, edge computing, Bayesian inference, causal analysis, etc. Applying well-

known techniques from other domains and adapting them to my own research area was a

good way to come up with novel research ideas.

Last but not the least, accessing and identifying the limits of my work was very helpful in

finding new research directions. For example, after I developed OLAF, I found that OLAF

was not able to detect any anomaly in measurement data. Also, sometimes the frequency

of alerts was too high, which meant difficulty for operators to learn useful information from

102

the alerts. Those limits of OLAF actually inspired the development of both EDMAND and

CAPTAR. Another example is that although EDMAND’s time overhead is good enough for

SCADA networks, it is still too large for systems with much higher data sampling frequencies

such as WAMS. Therefore, developing anomaly detection mechanisms and data structures

with higher time efficiency might be an interesting future research direction.

8.2 FUTURE RESEARCH DIRECTIONS

The complexity of Smart Grid keeps growing as new technologies are introduced to it.

Therefore, operating Smart Grid will become increasingly challenging and guaranteeing sit-

uational awareness will be even more important. In this thesis, I am only able to cover a

limited part of the problem and there are many other aspects that remain to be explored.

Some potential future research directions that are highly related to this thesis are as follows.

First, I mainly focus on the anomaly detection and anomaly reasoning on SCADA net-

work traffic in OLAF, EDMAND, and CAPTAR. The physical model of the system can also

provide potentially useful information for the detection and reasoning of anomalies. Taking

the physical model and constraints into consideration could help with the analysis of mea-

surement data and system state. Therefore, one direction of future research is to utilize a

hybrid approach of cyber and physical models to provide comprehensive security analysis of

Smart Grid.

Second, after the attack plan is recognized as discussed in CAPTAR, the operator of

SCADA networks still needs to decide how to react to it. It is beneficial if some potential

consequences and responses could be provided together with the inferred attack. Therefore,

how to give useful suggestions for countermeasures to attacks, given the inferred attack plan

and current state of the system, could be an interesting research problem.

Third, various mechanisms to help to create attack templates could be explored. Specifica-

tion language could be designed to help domain experts to transfer their domain knowledge

into attack templates. Also, the structural causal models and various tools mentioned in

[103] could be utilized to find the causal relationship of attack steps from existing attack

traces.

Fourth, due to the reasons I mentioned in Section 8.1, real traffic is hard to acquire. Some

frameworks in this thesis are evaluated by simulated traffic. If in the future access to real

traffic or even real attack traces could be obtained, it is worth evaluating those frameworks

again by real traffic data. If further collaboration with utilities can be achieved, deploying

those frameworks to real systems and evaluating the real-time performance of them could

be pretty interesting.

103

Fifth, as I discussed in Section 7.2, frameworks in this thesis have the potential to be

generalized to broader areas. Therefore, adapting those frameworks and reapplying them

to other domains such as general IoT networks and data center networks could inspire new

research projects.

Last but not least, SCADA and WAMS are used together in many Smart Grids today.

The interdependency of these two complex systems could create entirely new security and

managing problems. For example, the high data rate in WAMS introduces stricter time

requirements for security protection mechanisms and more time-efficient approaches need to

be developed. Targeting those new problems by considering these two systems as a whole is

worth researchers’ attention.

104

REFERENCES

[1] S. M. Amin, “Smart grid: Overview, issues and opportunities. advances and chal-
lenges in sensing, modeling, simulation, optimization and control,” European Journal
of Control, vol. 17, no. 5-6, pp. 547–567, 2011.

[2] M. Amin, “Security challenges for the electricity infrastructure,” Computer, vol. 35,
no. 4, pp. supl8–supl10, 2002.

[3] M. Amin, “North America’s electricity infrastructure: Are we ready for more perfect
storms?” IEEE Security & Privacy, vol. 99, no. 5, pp. 19–25, 2003.

[4] M. Amin and J. Stringer, “The electric power grid: Today and tomorrow,” MRS
bulletin, vol. 33, no. 4, pp. 399–407, 2008.

[5] S. M. Amin, “US grid gets less reliable [The Data],” IEEE Spectrum, vol. 48, no. 1,
pp. 80–80, 2011.

[6] T. Vijayapriya and D. P. Kothari, “Smart grid: an overview,” Smart Grid and Renew-
able Energy, vol. 2, no. 04, p. 305, 2011.

[7] A. A. Cardenas, S. Amin, and S. Sastry, “Secure control: Towards survivable cyber-
physical systems,” in Distributed Computing Systems Workshops, 2008. ICDCS’08.
28th International Conference on. IEEE, 2008, pp. 495–500.

[8] C. Greer, D. A. Wollman, D. E. Prochaska, P. A. Boynton, J. A. Mazer, C. T. Nguyen,
G. J. FitzPatrick, T. L. Nelson, G. H. Koepke, A. R. Hefner Jr et al., “Nist framework
and roadmap for smart grid interoperability standards, release 3.0,” Tech. Rep., 2014.

[9] A. Mavridou and M. Papa, “A situational awareness architecture for the smart grid,”
in Global Security, Safety and Sustainability & e-Democracy. Springer, 2011, pp.
229–236.

[10] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing and its role in the
internet of things,” in Proceedings of the first edition of the MCC workshop on Mobile
cloud computing. ACM, 2012, pp. 13–16.

[11] A. Botta, W. De Donato, V. Persico, and A. Pescapé, “On the integration of cloud
computing and internet of things,” in Future Internet of Things and Cloud (FiCloud),
2014 International Conference on. IEEE, 2014, pp. 23–30.

[12] N. R. Council et al., Modeling human and organizational behavior: Application to
military simulations. National Academies Press, 1998.

[13] P. Garcia Lopez, A. Montresor, D. Epema, A. Datta, T. Higashino, A. Iamnitchi,
M. Barcellos, P. Felber, and E. Riviere, “Edge-centric computing: Vision and chal-
lenges,” ACM SIGCOMM Computer Communication Review, vol. 45, no. 5, pp. 37–42,
2015.

105

[14] S. Yi, C. Li, and Q. Li, “A survey of fog computing: concepts, applications and issues,”
in Proceedings of the 2015 Workshop on Mobile Big Data. ACM, 2015, pp. 37–42.

[15] J. Lin, W. Yu, N. Zhang, X. Yang, H. Zhang, and W. Zhao, “A survey on internet
of things: architecture, enabling technologies, security and privacy, and applications,”
IEEE Internet of Things Journal, 2017.

[16] F. Cicirelli, G. Fortino, A. Guerrieri, G. Spezzano, and A. Vinci, “Edge enabled devel-
opment of Smart Cyber-Physical Environments,” in Systems, Man, and Cybernetics
(SMC), 2016 IEEE International Conference on. IEEE, 2016, pp. 003 463–003 468.

[17] K. Stouffer, J. Falco, and K. Scarfone, “Guide to industrial control systems (ICS)
security,” NIST special publication, vol. 800, no. 82, pp. 16–16, 2011.

[18] W. Ren, S. Granda, T. Yardley, K.-S. Lui, and K. Nahrstedt, “OLAF: Operation-level
traffic analyzer framework for Smart Grid,” in Smart Grid Communications (Smart-
GridComm), 2016 IEEE International Conference on. IEEE, 2016, pp. 551–556.

[19] W. Ren, T. Yardley, and K. Nahrstedt, “ISAAC: Intelligent Synchrophasor Data Real-
Time Compression Framework for WAMS,” in Smart Grid Communications (Smart-
GridComm), 2017 IEEE International Conference on. IEEE, 2017.

[20] W. Ren, T. Yardley, and K. Nahrstedt, “EDMAND: Edge-Based Multi-Level Anomaly
Detection for SCADA Networks,” in 2018 IEEE International Conference on Commu-
nications, Control, and Computing Technologies for Smart Grids (SmartGridComm).
IEEE, 2018, pp. 1–7.

[21] B. Liscouski and W. Elliot, “Final report on the august 14, 2003 blackout in the
united states and canada: Causes and recommendations,” A report to US Department
of Energy, vol. 40, no. 4, p. 86, 2004.

[22] G. Clarke, D. Reynders, and E. Wright, Practical modern SCADA protocols: DNP3,
60870.5 and related systems. Newnes, 2004.

[23] I. Modicon, “Modicon modbus protocol reference guide,” North Andover, Mas-
sachusetts, pp. 28–29, 1996.

[24] Specification, Modbus Application Protocol, “V1. 1b3,” Hopkinton: Modbus Organi-
zation, Inc., April, vol. 26, 2012.

[25] “IEEE Standard for Electric Power Systems Communications-Distributed Network
Protocol (DNP3),” IEEE Std 1815-2012 (Revision of IEEE Std 1815-2010), pp. 1–
821, Oct 2012.

[26] K. Curtis, “A DNP3 protocol primer,” DNP User Group, vol. 2005, 2005.

[27] T. McGregor, H.-W. Braun, and J. Brown, “The NLANR Network Analysis Infras-
tructure,” Communications Magazine, IEEE, vol. 38, no. 5, pp. 122–128, May 2000.

106

[28] W. Erhard, M. Gutzmann, and H. Libati, “Network traffic analysis and security mon-
itoring with UniMon,” in High Performance Switching and Routing, 2000. ATM 2000.
Proceedings of the IEEE Conference on, 2000, pp. 439–446.

[29] D. Keim, F. Mansmann, J. Schneidewind, and T. Schreck, “Monitoring Network Traffic
with Radial Traffic Analyzer,” in Visual Analytics Science And Technology, 2006 IEEE
Symposium On, Oct 2006, pp. 123–128.

[30] M. Rahman, Z. Khalib, and R. Ahmad, “A portable network traffic analyzer,” in
Electronic Design, 2008. ICED 2008. International Conference on, Dec 2008, pp. 1–6.

[31] I. N. Fovino, A. Coletta, A. Carcano, and M. Masera, “Critical state-based filter-
ing system for securing SCADA network protocols,” IEEE Transactions on industrial
electronics, vol. 59, no. 10, pp. 3943–3950, 2012.

[32] B.-K. Kim, D.-H. Kang, J.-C. Na, and T.-M. Chung, “Abnormal traffic filtering mecha-
nism for protecting ICS networks,” in 2016 18th International Conference on Advanced
Communication Technology (ICACT). IEEE, 2016, pp. 436–440.

[33] S. Parthasarathy and D. Kundur, “Bloom filter based intrusion detection for smart grid
SCADA,” in Electrical & Computer Engineering (CCECE), 2012 25th IEEE Canadian
Conference on. IEEE, 2012, pp. 1–6.

[34] S. Cheung, B. Dutertre, M. Fong, U. Lindqvist, K. Skinner, and A. Valdes, “Using
model-based intrusion detection for SCADA networks,” in Proceedings of the SCADA
security scientific symposium, vol. 46. Citeseer, 2007, pp. 1–12.

[35] J. M. Beaver, R. C. Borges-Hink, and M. A. Buckner, “An evaluation of machine
learning methods to detect malicious SCADA communications,” in Machine Learning
and Applications (ICMLA), 2013 12th International Conference on, vol. 2. IEEE,
2013, pp. 54–59.

[36] L. A. Maglaras and J. Jiang, “Intrusion detection in SCADA systems using machine
learning techniques,” in Science and Information Conference (SAI), 2014. IEEE,
2014, pp. 626–631.

[37] B. Panja, J. Oros, J. Britton, P. Meharia, and S. Pati, “Intelligent gateway for SCADA
system security: A multi-layer attack prevention approach,” in 2015 IEEE Interna-
tional Conference on Computational Intelligence and Virtual Environments for Mea-
surement Systems and Applications (CIVEMSA). IEEE, 2015, pp. 1–6.

[38] D. Hadziosmanovic, D. Bolzoni, S. Etalle, and P. Hartel, “Challenges and opportunities
in securing industrial control systems,” in Complexity in Engineering (COMPENG),
2012. IEEE, 2012, pp. 1–6.

[39] V. Paxson, “Bro: a system for detecting network intruders in real-time,” Computer
networks, vol. 31, no. 23, pp. 2435–2463, 1999.

107

[40] M. Patel, S. Aivaliotis, E. Ellen et al., “Real-time application of synchrophasors for
improving reliability,” NERC Report, Oct, 2010.

[41] F. Zhang, L. Cheng, X. Li, Y. Sun, W. Gao, and W. Zhao, “Application of a real-time
data compression and adapted protocol technique for WAMS,” IEEE Transactions on
Power Systems, vol. 30, no. 2, pp. 653–662, 2015.

[42] “Synchrophasor technology fact sheet,” October 2014. [Online]. Available:
https://www.naspi.org/File.aspx?fileID=1326

[43] R. Klump, P. Agarwal, J. E. Tate, and H. Khurana, “Lossless compression of syn-
chronized phasor measurements,” in Power and Energy Society General Meeting, 2010
IEEE. IEEE, 2010, pp. 1–7.

[44] M. Ringwelski, C. Renner, A. Reinhardt, A. Weigel, and V. Turau, “The hitchhiker’s
guide to choosing the compression algorithm for your smart meter data,” in Energy
Conference and Exhibition (ENERGYCON), 2012 IEEE International. IEEE, 2012,
pp. 935–940.

[45] J. Kraus, P. Štěpán, and L. Kukačka, “Optimal data compression techniques for smart
grid and power quality trend data,” in Harmonics and Quality of Power (ICHQP),
2012 IEEE 15th International Conference on. IEEE, 2012, pp. 707–712.

[46] J. Ning, J. Wang, W. Gao, and C. Liu, “A wavelet-based data compression technique
for smart grid,” IEEE Transactions on Smart Grid, vol. 2, no. 1, pp. 212–218, 2011.

[47] M. Wang, J. H. Chow, P. Gao, X. T. Jiang, Y. Xia, S. G. Ghiocel, B. Fardanesh,
G. Stefopolous, Y. Kokai, N. Saito et al., “A low-rank matrix approach for the analysis
of large amounts of power system synchrophasor data,” in System Sciences (HICSS),
2015 48th Hawaii International Conference on. IEEE, 2015, pp. 2637–2644.

[48] P. H. Gadde, M. Biswal, S. Brahma, and H. Cao, “Efficient Compression of PMU Data
in WAMS,” IEEE Transactions on Smart Grid, vol. 7, no. 5, pp. 2406–2413, Sept 2016.

[49] J. C. S. de Souza, T. M. L. Assis, and B. C. Pal, “Data Compression in Smart Dis-
tribution Systems via Singular Value Decomposition,” IEEE Transactions on Smart
Grid, vol. 8, no. 1, pp. 275–284, 2017.

[50] M. Chenine, K. Zhu, and L. Nordstrom, “Survey on priorities and communication
requirements for PMU-based applications in the Nordic Region,” in PowerTech, 2009
IEEE Bucharest. IEEE, 2009, pp. 1–8.

[51] D. E. Bakken, A. Bose, C. H. Hauser, D. E. Whitehead, and G. C. Zweigle, “Smart
generation and transmission with coherent, real-time data,” Proceedings of the IEEE,
vol. 99, no. 6, pp. 928–951, 2011.

108

[52] K. Khandeparkar, K. Ramamritham, R. Gupta, A. Kulkarni, G. Gajjar, and S. Soman,
“Timely Query Processing in Smart Electric Grids: Algorithms and Performance,”
in Proceedings of the 2015 ACM Sixth International Conference on Future Energy
Systems. ACM, 2015, pp. 161–170.

[53] C. Martinez, M. Parashar, J. Dyer, and J. Coroas, “Phasor data requirements for real
time wide-area monitoring, control and protection applications,” EIPP White Paper,
vol. 26, p. 8, 2005.

[54] “IEEE Guide for Phasor Data Concentrator Requirements for Power System Protec-
tion, Control, and Monitoring,” IEEE Std C37.244-2013, pp. 1–65, May 2013.

[55] A. Moga and T. Locher, “Scalable and reliable monitoring for power systems,” in 2015
IEEE International Conference on Smart Grid Communications (SmartGridComm),
Nov 2015, pp. 259–264.

[56] I. Jolliffe, Principal component analysis. Wiley Online Library, 2002.

[57] scikit-learn developers, “sklearn.decomposition module,” http://scikit-
learn.org/stable/modules/classes.html#module-sklearn.decomposition.

[58] K. R. Rao and P. Yip, Discrete cosine transform: algorithms, advantages, applications.
Academic press, 2014.

[59] scipy community, “scipy.fftpack.dct,” https://docs.scipy.org/doc/scipy-
0.14.0/reference/generated/scipy.fftpack.dct.html.

[60] North American Electric Reliability Corporation (NERC), “Prc-002-2 disturbance
monitoring and reporting requirements,” April 2017.

[61] M. Biswal, S. M. Brahma, and H. Cao, “Supervisory Protection and Automated Event
Diagnosis Using PMU Data,” IEEE Transactions on Power Delivery, vol. 31, no. 4,
pp. 1855–1863, Aug 2016.

[62] R. W. G. C. for Electricity Innovation, “Microgrid Project at IIT,”
http://iitmicrogrid.net/microgrid.aspxl.

[63] K. Zhu, M. Chenine, L. Nordström, S. Holmström, and G. Ericsson, “An empirical
study of synchrophasor communication delay in a utility TCP/IP network,” Inter-
national Journal of Emerging Electric Power Systems, vol. 14, no. 4, pp. 341–350,
2013.

[64] M. Chenine, K. Zhu, and L. Nordstrom, “Survey on priorities and communication
requirements for PMU-based applications in the Nordic Region,” in PowerTech, 2009
IEEE Bucharest. IEEE, 2009, pp. 1–8.

[65] D. E. Bakken, A. Bose, C. H. Hauser, D. E. Whitehead, and G. C. Zweigle, “Smart
generation and transmission with coherent, real-time data,” Proceedings of the IEEE,
vol. 99, no. 6, pp. 928–951, 2011.

109

[66] N. Falliere, L. O. Murchu, and E. Chien, “W32. stuxnet dossier,” White paper, Syman-
tec Corp., Security Response, vol. 5, no. 6, p. 29, 2011.

[67] D. U. Case, “Analysis of the cyber attack on the Ukrainian power grid,” Electricity
Information Sharing and Analysis Center (E-ISAC), 2016.

[68] L. A. Maglaras and J. Jiang, “Intrusion detection in scada systems using machine
learning techniques,” in Science and Information Conference (SAI), 2014. IEEE,
2014, pp. 626–631.

[69] R. Udd, M. Asplund, S. Nadjm-Tehrani, M. Kazemtabrizi, and M. Ekstedt, “Exploiting
bro for intrusion detection in a SCADA system,” in Proceedings of the 2nd ACM
International Workshop on Cyber-Physical System Security. ACM, 2016, pp. 44–51.

[70] I. N. Fovino, A. Coletta, A. Carcano, and M. Masera, “Critical state-based filter-
ing system for securing SCADA network protocols,” IEEE Transactions on industrial
electronics, vol. 59, no. 10, pp. 3943–3950, 2012.

[71] Y. Yang, K. McLaughlin, T. Littler, S. Sezer, B. Pranggono, and H. Wang, “Intrusion
detection system for IEC 60870-5-104 based SCADA networks,” in Power and Energy
Society General Meeting (PES), 2013 IEEE. IEEE, 2013, pp. 1–5.

[72] J. M. Beaver, R. C. Borges-Hink, and M. A. Buckner, “An evaluation of machine
learning methods to detect malicious SCADA communications,” in Machine Learning
and Applications (ICMLA), 2013 12th International Conference on, vol. 2. IEEE,
2013, pp. 54–59.

[73] H. Lin, A. Slagell, C. Di Martino, Z. Kalbarczyk, and R. K. Iyer, “Adapting bro into
scada: building a specification-based intrusion detection system for the dnp3 proto-
col,” in Proceedings of the Eighth Annual Cyber Security and Information Intelligence
Research Workshop. ACM, 2013, p. 5.

[74] H. R. Ghaeini and N. O. Tippenhauer, “Hamids: Hierarchical monitoring intrusion
detection system for industrial control systems,” in Proceedings of the 2nd ACM Work-
shop on Cyber-Physical Systems Security and Privacy. ACM, 2016, pp. 103–111.

[75] W. Gao, T. Morris, B. Reaves, and D. Richey, “On SCADA control system com-
mand and response injection and intrusion detection,” in eCrime Researchers Summit
(eCrime), 2010. IEEE, 2010, pp. 1–9.

[76] J. Nivethan and M. Papa, “A SCADA Intrusion Detection Framework that Incorpo-
rates Process Semantics,” in Proceedings of the 11th Annual Cyber and Information
Security Research Conference. ACM, 2016, p. 6.

[77] S. Cheung, B. Dutertre, M. Fong, U. Lindqvist, K. Skinner, and A. Valdes, “Using
model-based intrusion detection for SCADA networks,” in Proceedings of the SCADA
security scientific symposium, vol. 46. Citeseer, 2007, pp. 1–12.

110

[78] N. Saunders, B. Khanna, and T. Collins, “Real-time situational awareness for critical
infrastructure protection,” in Smart Grid Communications (SmartGridComm), 2015
IEEE International Conference on. IEEE, 2015, pp. 151–156.

[79] J. Verba and M. Milvich, “Idaho national laboratory supervisory control and data
acquisition intrusion detection system (SCADA IDS),” in Technologies for Homeland
Security, 2008 IEEE Conference on. IEEE, 2008, pp. 469–473.

[80] Y. Yang, K. McLaughlin, S. Sezer, T. Littler, E. G. Im, B. Pranggono, and H. Wang,
“Multiattribute SCADA-specific intrusion detection system for power networks,” IEEE
Transactions on Power Delivery, vol. 29, no. 3, pp. 1092–1102, 2014.

[81] N. Goldenberg and A. Wool, “Accurate modeling of Modbus/TCP for intrusion detec-
tion in SCADA systems,” International Journal of Critical Infrastructure Protection,
vol. 6, no. 2, pp. 63–75, 2013.

[82] N. Erez and A. Wool, “Control variable classification, modeling and anomaly detection
in Modbus/TCP SCADA systems,” International Journal of Critical Infrastructure
Protection, vol. 10, pp. 59–70, 2015.

[83] S. Ponomarev and T. Atkison, “Industrial control system network intrusion detection
by telemetry analysis,” IEEE Transactions on Dependable and Secure Computing,
vol. 13, no. 2, pp. 252–260, 2016.

[84] R. R. R. Barbosa, “Anomaly detection in SCADA systems: a network based ap-
proach,” 2014.

[85] F. Cao, M. Estert, W. Qian, and A. Zhou, “Density-based clustering over an evolving
data stream with noise,” in Proceedings of the 2006 SIAM international conference on
data mining. SIAM, 2006, pp. 328–339.

[86] “Cyber-Physical Experimentation Environment for RADICS.” [On-
line]. Available: https://iti.illinois.edu/research/energy-systems/cyber-physical-
experimentation-environment-radics-ceer

[87] X. Qin, “A probabilistic-based framework for infosec alert correlation,” Ph.D. disser-
tation, Georgia Institute of Technology, 2005.

[88] “IEEE Standard for Electric Power Systems Communications-Distributed Network
Protocol (DNP3),” IEEE Std 1815-2012 (Revision of IEEE Std 1815-2010), pp. 1–
821, Oct 2012.

[89] M. Hadley and K. Huston, “Secure scada communication protocol performance test
results,” Pacific Northwest National Laboratory (August 2007), 2007.

[90] A. Valdes and K. Skinner, “Probabilistic alert correlation,” in International Workshop
on Recent Advances in Intrusion Detection. Springer, 2001, pp. 54–68.

111

[91] F. Cuppens, “Managing alerts in a multi-intrusion detection environment,” in acsac.
IEEE, 2001, p. 0022.

[92] S. Staniford, J. A. Hoagland, and J. M. McAlerney, “Practical automated detection of
stealthy portscans,” Journal of Computer Security, vol. 10, no. 1-2, pp. 105–136, 2002.

[93] A. Siraj and R. B. Vaughn, “Multi-level alert clustering for intrusion detection sensor
data,” in NAFIPS 2005-2005 Annual Meeting of the North American Fuzzy Informa-
tion Processing Society. IEEE, 2005, pp. 748–753.

[94] S. Zhang, J. Li, X. Chen, and L. Fan, “Building network attack graph for alert causal
correlation,” Computers & security, vol. 27, no. 5-6, pp. 188–196, 2008.

[95] L. Briesemeister, S. Cheung, U. Lindqvist, and A. Valdes, “Detection, correlation,
and visualization of attacks against critical infrastructure systems,” in 2010 Eighth
International Conference on Privacy, Security and Trust. IEEE, 2010, pp. 15–22.

[96] Y. Zhai, P. Ning, P. Iyer, and D. S. Reeves, “Reasoning about complementary intrusion
evidence,” in 20th Annual Computer Security Applications Conference. IEEE, 2004,
pp. 39–48.

[97] Z. Zali, M. R. Hashemi, and H. Saidi, “Real-time attack scenario detection via intrusion
detection alert correlation,” in 2012 9th International ISC Conference on Information
Security and Cryptology. IEEE, 2012, pp. 95–102.

[98] A. Valdes and K. Skinner, “Adaptive, model-based monitoring for cyber attack
detection,” in International Workshop on Recent Advances in Intrusion Detection.
Springer, 2000, pp. 80–93.

[99] F. Xuewei, W. Dongxia, H. Minhuan, and S. Xiaoxia, “An approach of discovering
causal knowledge for alert correlating based on data mining,” in 2014 IEEE 12th
International Conference on Dependable, Autonomic and Secure Computing. IEEE,
2014, pp. 57–62.

[100] F. Kavousi and B. Akbari, “A Bayesian network-based approach for learning attack
strategies from intrusion alerts,” Security and Communication Networks, vol. 7, no. 5,
pp. 833–853, 2014.

[101] A. A. Ramaki, M. Amini, and R. E. Atani, “RTECA: Real time episode correlation
algorithm for multi-step attack scenarios detection,” computers & security, vol. 49, pp.
206–219, 2015.

[102] J. Pearl, Probabilistic reasoning in intelligent systems: networks of plausible inference.
Elsevier, 2014.

[103] J. Pearl, “The Seven Tools of Causal Inference with Reflections on Machine Learning,”
Technical Report, Communications of Association for Computing Machinery, Tech.
Rep., 2018.

112

