9 research outputs found

    Review of Electric Vehicle Charging Technologies, Configurations, and Architectures

    Full text link
    Electric Vehicles (EVs) are projected to be one of the major contributors to energy transition in the global transportation due to their rapid expansion. The EVs will play a vital role in achieving a sustainable transportation system by reducing fossil fuel dependency and greenhouse gas (GHG) emissions. However, high level of EVs integration into the distribution grid has introduced many challenges for the power grid operation, safety, and network planning due to the increase in load demand, power quality impacts and power losses. An increasing fleet of electric mobility requires the advanced charging systems to enhance charging efficiency and utility grid support. Innovative EV charging technologies are obtaining much attention in recent research studies aimed at strengthening EV adoption while providing ancillary services. Therefore, analysis of the status of EV charging technologies is significant to accelerate EV adoption with advanced control strategies to discover a remedial solution for negative grid impacts, enhance desired charging efficiency and grid support. This paper presents a comprehensive review of the current deployment of EV charging systems, international standards, charging configurations, EV battery technologies, architecture of EV charging stations, and emerging technical challenges. The charging systems require a dedicated converter topology, a control strategy and international standards for charging and grid interconnection to ensure optimum operation and enhance grid support. An overview of different charging systems in terms of onboard and off-board chargers, AC-DC and DC-DC converter topologies, and AC and DC-based charging station architectures are evaluated

    A Review of Power Converters for Ships Electrification

    Get PDF
    Fully electric ships have become popular to meet the demand for emission-free transportation and improve ships' functionality, reliability, and efficiency. Previous studies reviewed the shipboard power systems, the different types of shipboard energy storage devices, and the influences of the shore-to-ship connection on ports' electrical grid. However, the converter topologies used in the electrification of ships have received very little attention. This article presents a comprehensive topological review of currently available shore-to-ship and shipboard power converters in the literature and on the market. The main goal is to anticipate future trends and potential challenges to stimulate research to accelerate more efficient and reliable electric ships

    Application of DC-DC Converters at Renewable Energy

    Get PDF
    Photovoltaics usually produce low voltage at their outputs. So, in order to inject their power into utility grids, the output voltage of solar panels should be increased to grid voltage level. Usually, the boost DC-DC converters will be connected between solar panels and grid-connected inverters to boost the panels\u27 output voltage to more than 320 V (for 380/220 utilities). Various DC-DC converter topologies have been proposed in the past three decades to boost the photovoltaic panels\u27 output voltage which will be discussed in this proposal. In order to increase the life span of photovoltaic panels, the DC-DC converts should absorb continuous low ripple current from solar panels. Maximum power point tracking (MPPT) is an algorithm implemented in photovoltaic (PV) inverters by DC-DC technology to continuously adjust the impedance seen by the solar array to keep the PV system operating at, or close to, the peak power point of the PV panel under varying conditions, like changing solar irradiance, temperature, and humidity. In this research work, various topologies of DC-DC converters that are suitable for renewable energy applications along with the advantages and disadvantages of control methods and the stability of converters with related control methods are discussed

    Efficient, High Power Density, Modular Wide Band-gap Based Converters for Medium Voltage Application

    Get PDF
    Recent advances in semiconductor technology have accelerated developments in medium-voltage direct-current (MVDC) power system transmission and distribution. A DC-DC converter is widely considered to be the most important technology for future DC networks. Wide band-gap (WBG) power devices (i.e. Silicon Carbide (SiC) and Gallium Nitride (GaN) devices) have paved the way for improving the efficiency and power density of power converters by means of higher switching frequencies with lower conduction and switching losses compared to their Silicon (Si) counterparts. However, due to rapid variation of the voltage and current, di/dt and dv/dt, to fully utilize the advantages of the Wide-bandgap semiconductors, more focus is needed to design the printed circuit boards (PCB) in terms of minimizing the parasitic components, which impacts efficiency. The aim of this dissertation is to study the technical challenges associated with the implementation of WBG devices and propose different power converter topologies for MVDC applications. Ship power system with MVDC distribution is attracting widespread interest due to higher reliability and reduced fuel consumption. Also, since the charging time is a barrier for adopting the electric vehicles, increasing the voltage level of the dc bus to achieve the fast charging is considered to be the most important solution to address this concern. Moreover, raising the voltage level reduces the size and cost of cables in the car. Employing MVDC system in the power grid offers secure, flexible and efficient power flow. It is shown that to reach optimal performance in terms of low package inductance and high slew rate of switches, designing a PCB with low common source inductance, power loop inductance, and gate-driver loop are essential. Compared with traditional power converters, the proposed circuits can reduce the voltage stress on switches and diodes, as well as the input current ripple. A lower voltage stress allows the designer to employ the switches and diodes with lower on-resistance RDS(ON) and forward voltage drop, respectively. Consequently, more efficient power conversion system can be achieved. Moreover, the proposed converters offer a high voltage gain that helps the power switches with smaller duty-cycle, which leads to lower current and voltage stress across them. To verify the proposed concept and prove the correctness of the theoretical analysis, the laboratory prototype of the converters using WBG devices were implemented. The proposed converters can provide energy conversion with an efficiency of 97% feeding the nominal load, which is 2% more than the efficiency of the-state-of-the-art converters. Besides the efficiency, shrinking the current ripple leads to 50% size reduction of the input filter inductors

    Design and Advanced Model Predictive Control of Wide Bandgap Based Power Converters

    Get PDF
    The field of power electronics (PE) is experiencing a revolution by harnessing the superior technical characteristics of wide-band gap (WBG) materials, namely Silicone Carbide (SiC) and Gallium Nitride (GaN). Semiconductor devices devised using WBG materials enable high temperature operation at reduced footprint, offer higher blocking voltages, and operate at much higher switching frequencies compared to conventional Silicon (Si) based counterpart. These characteristics are highly desirable as they allow converter designs for challenging applications such as more-electric-aircraft (MEA), electric vehicle (EV) power train, and the like. This dissertation presents designs of a WBG based power converters for a 1 MW, 1 MHz ultra-fast offboard EV charger, and 250 kW integrated modular motor drive (IMMD) for a MEA application. The goal of these designs is to demonstrate the superior power density and efficiency that are achievable by leveraging the power of SiC and GaN semiconductors. Ultra-fast EV charging is expected to alleviate the challenge of range anxiety , which is currently hindering the mass adoption of EVs in automotive market. The power converter design presented in the dissertation utilizes SiC MOSFETs embedded in a topology that is a modification of the conventional three-level (3L) active neutral-point clamped (ANPC) converter. A novel phase-shifted modulation scheme presented alongside the design allows converter operation at switching frequency of 1 MHz, thereby miniaturizing the grid-side filter to enhance the power density. IMMDs combine the power electronic drive and the electric machine into a single unit, and thus is an efficient solution to realize the electrification of aircraft. The IMMD design presented in the dissertation uses GaN devices embedded in a stacked modular full-bridge converter topology to individually drive each of the motor coils. Various issues and solutions, pertaining to paralleling of GaN devices to meet the high current requirements are also addressed in the thesis. Experimental prototypes of the SiC ultra-fast EV charger and GaN IMMD were built, and the results confirm the efficacy of the proposed designs. Model predictive control (MPC) is a nonlinear control technique that has been widely investigated for various power electronic applications in the past decade. MPC exploits the discrete nature of power converters to make control decisions using a cost function. The controller offers various advantages over, e.g., linear PI controllers in terms of fast dynamic response, identical performance at a reduced switching frequency, and ease of applicability to MIMO applications. This dissertation also investigates MPC for key power electronic applications, such as, grid-tied VSC with an LCL filter and multilevel VSI with an LC filter. By implementing high performance MPC controllers on WBG based power converters, it is possible to formulate designs capable of fast dynamic tracking, high power operation at reduced THD, and increased power density

    Hybrid power management for fuel cell-supercapacitor powered hybrid electric vehicle

    Get PDF
    Fuel cell (FC) with a combination of supercapacitor (SC) based hybrid electric vehicles have been regarded as a potential solution in the future transportation system. This is due to their zero-emission, enhancement of transient power demand, ability to absorb the energy from the regenerative braking, high efficiency, and long mileage. Nevertheless, the nonlinear output characteristics of the FC system are a feeble point owing to internal constraints such as membrane water content and cell temperature. Hence it is essential to extricate as much power as possible from the stack to avert excessive fuel usage and low system efficiency. Conversely, despite the advantages of the SC as an auxiliary energy storage system, the series connection of SC cells causes a cell imbalance problem due to uneven cell characteristics that occur during the manufacturing process and its ambient conditions. This discrepancy of cell voltages in a supercapacitor module leads to reduce the stack’s efficiency and its lifetime. Furthermore, the above limitations of the power sources and initial state of SC’s charge affect the power management’s distribution of power among the multiple sources. Therefore, the aim of this thesis is to propose a hybrid power management for fuel cell-supercapacitor powered hybrid electric vehicles to solve the three identified problems. Firstly, this thesis focuses on a maximum power point tracking (MPPT) controller with a modified 4-leg interleaved boost converter (M-FLIBC) topology for the FC system. The effectiveness of the proposed IBC with a controller for the FC is compared with the two additional controllers couples with the conventional FLIBC topology. Next, a global modular balancer for voltage balancing of multiple supercapacitor cells is connected in series for an HEV system. The global modular balancing architecture is proposed based on forward conversion, which integrates cell balancing, module balancing, and operating for different frequencies. Thus, greatly reducing the volume and implementation complexity. Finally, the thesis evaluates hybrid power management (HPM) for effective power sources distribution, in order to reduce hydrogen consumption and enhance the vehicle's fuel economy. In this case, an equivalent circuit model of SC is developed for the energy storage system. The combination of an extended Kalman filter (EKF) and traditional coulomb counting (CC) method is used to estimate the SC state of charge in improving the effectiveness of the HPM. To evaluate the fuel economy under realistic driving conditions, the combined environmental protection agency (EPA) test cycles for a city and highway are considered. The outcome of performance comparison of the different controllers based on MPPT technique in terms of voltage, current, power, settling time, and efficiency of the FC indicates that the radial basis function network (RBFN) based MPPT controller with the M-FLIBC outperforms the PID and Fuzzy based controllers. With respect to controlling of SC in HEV environment, the proposed topology of SC presents effective voltage balancing with a lower component count, able to operate at different frequencies, i.e., 10 to 70 kHz, as well opens to unlimited stackable modular numbers of SC cells for the HEV performance analysis. Ultimately, with all the proposed control topologies and combined EKF-CC based power management for the FC-SC in Series HEV, the vehicle's fuel economy is increased to 93.38 km/kg as compared to traditional CC based power management of 86.53 km/kg, besides it improves the vehicle’s acceleration within 0-100 km/h in 9.0 seconds respectively. Finally, the research shows that the hybrid power management of FC and SC powered HEV leads to improved performance of the vehicle in terms of the key measures. Suggestions for future research are also highlighted

    Power Electronic Converter Configuration and Control for DC Microgrid Systems

    Get PDF

    Battery Management in Electric Vehicles: Current Status and Future Trends

    Get PDF
    Lithium-ion batteries are an indispensable component of the global transition to zero-carbon energy and are instrumental in achieving COP26's objective of attaining global net-zero emissions by the mid-century. However, their rapid expansion comes with significant challenges. The continuous demand for lithium-ion batteries in electric vehicles (EVs) is expected to raise global environmental and supply chain concerns, given that the critical materials required for their production are finite and predominantly mined in limited regions worldwide. Consequently, significant battery waste management will eventually become necessary. By implementing appropriate and enhanced battery management techniques in electric vehicles, the performance of batteries can be improved, their lifespan extended, secondary uses enabled, and the recycling and reuse of EV batteries promoted, thereby mitigating global environmental and supply chain concerns. Therefore, this reprint was crafted to update the scientific community on recent advancements and future trajectories in battery management for electric vehicles. The content of this reprint spans a spectrum of EV battery advancements, ranging from fundamental battery studies to the utilization of neural network modeling and machine learning to optimize battery performance, enhance efficiency, and ensure prolonged lifespan
    corecore