69 research outputs found

    Secure Chaotic Maps-based Group Key Agreement Scheme with Privacy Preserving

    Get PDF
    Abstract Nowadays chaos theory related to cryptography has been addressed widely, so there is an intuitive connection between group key agreement and chaotic maps. Such a connector may lead to a novel way to construct authenticated and efficient group key agreement protocols. Many chaotic maps based two-party/three-party password authenticated key agreement (2PAKA/3PAKA) schemes have been proposed. However, to the best of our knowledge, no chaotic maps based group (N-party) key agreement protocol without using a timestamp and password has been proposed yet. In this paper, we propose the first chaotic maps-based group authentication key agreement protocol. The proposed protocol is based on chaotic maps to create a kind of signcryption method to transmit authenticated information and make the calculated consumption and communicating round restrict to an acceptable bound. At the same time our proposed protocol can achieve members' revocation or join easily, which not only refrains from consuming modular exponential computing and scalar multiplication on an elliptic curve, but is also robust to resist various attacks and achieves perfect forward secrecy with privacy preserving

    Authentication Protocols for Internet of Things: A Comprehensive Survey

    Get PDF
    In this paper, a comprehensive survey of authentication protocols for Internet of Things (IoT) is presented. Specifically more than forty authentication protocols developed for or applied in the context of the IoT are selected and examined in detail. These protocols are categorized based on the target environment: (1) Machine to Machine Communications (M2M), (2) Internet of Vehicles (IoV), (3) Internet of Energy (IoE), and (4) Internet of Sensors (IoS). Threat models, countermeasures, and formal security verification techniques used in authentication protocols for the IoT are presented. In addition a taxonomy and comparison of authentication protocols that are developed for the IoT in terms of network model, specific security goals, main processes, computation complexity, and communication overhead are provided. Based on the current survey, open issues are identified and future research directions are proposed

    Design and Evaluation of Distributed Algorithms for Placement of Network Services

    Get PDF
    Network services play an important role in the Internet today. They serve as data caches for websites, servers for multiplayer games and relay nodes for Voice over IP: VoIP) conversations. While much research has focused on the design of such services, little attention has been focused on their actual placement. This placement can impact the quality of the service, especially if low latency is a requirement. These services can be located on nodes in the network itself, making these nodes supernodes. Typically supernodes are selected in either a proprietary or ad hoc fashion, where a study of this placement is either unavailable or unnecessary. Previous research dealt with the only pieces of the problem, such as finding the location of caches for a static topology, or selecting better routes for relays in VoIP. However, a comprehensive solution is needed for dynamic applications such as multiplayer games or P2P VoIP services. These applications adapt quickly and need solutions based on the immediate demands of the network. In this thesis we develop distributed algorithms to assign nodes the role of a supernode. This research first builds off of prior work by modifying an existing assignment algorithm and implementing it in a distributed system called Supernode Placement in Overlay Topologies: SPOT). New algorithms are developed to assign nodes the supernode role. These algorithms are then evaluated in SPOT to demonstrate improved SN assignment and scalability. Through a series of simulation, emulation, and experimentation insight is gained into the critical issues associated with allocating resources to perform the role of supernodes. Our contributions include distributed algorithms to assign nodes as supernodes, an open source fully functional distributed supernode allocation system, an evaluation of the system in diverse networking environments, and a simulator called SPOTsim which demonstrates the scalability of the system to thousands of nodes. An example of an application deploying such a system is also presented along with the empirical results

    Smart Pattern V2I Handover Based on Machine Learning Vehicle Classification

    Get PDF
    The mmwave frequencies will be widely used in future vehicular communications. At these frequencies, the radio channel becomes much more vulnerable to slight changes in the environment like motions of the device, reflections or blockage. In high mobility vehicular communications the rapidly changing vehicle environments and the large overheads due to frequent beam training are the critical disadvantages in developing these systems at mmwave frequencies. Hence, smart beam management procedures are desired to establish and maintain the radio channels. In this thesis, we propose that using the positions and respective velocities of the vehicles in the dynamic selection of the beam pair, and then adapting to the changing environments using machine learning algorithms, can improve both network performance and communication stability in high mobility vehicular communications

    Data Acquisition Applications

    Get PDF
    Data acquisition systems have numerous applications. This book has a total of 13 chapters and is divided into three sections: Industrial applications, Medical applications and Scientific experiments. The chapters are written by experts from around the world, while the targeted audience for this book includes professionals who are designers or researchers in the field of data acquisition systems. Faculty members and graduate students could also benefit from the book

    Particle Swarm Optimization

    Get PDF
    Particle swarm optimization (PSO) is a population based stochastic optimization technique influenced by the social behavior of bird flocking or fish schooling.PSO shares many similarities with evolutionary computation techniques such as Genetic Algorithms (GA). The system is initialized with a population of random solutions and searches for optima by updating generations. However, unlike GA, PSO has no evolution operators such as crossover and mutation. In PSO, the potential solutions, called particles, fly through the problem space by following the current optimum particles. This book represents the contributions of the top researchers in this field and will serve as a valuable tool for professionals in this interdisciplinary field

    Applications of graph-based codes in networks: analysis of capacity and design of improved algorithms

    Get PDF
    The conception of turbo codes by Berrou et al. has created a renewed interest in modern graph-based codes. Several encouraging results that have come to light since then have fortified the role these codes shall play as potential solutions for present and future communication problems. This work focuses on both practical and theoretical aspects of graph-based codes. The thesis can be broadly categorized into three parts. The first part of the thesis focuses on the design of practical graph-based codes of short lengths. While both low-density parity-check codes and rateless codes have been shown to be asymptotically optimal under the message-passing (MP) decoder, the performance of short-length codes from these families under MP decoding is starkly sub-optimal. This work first addresses the structural characterization of stopping sets to understand this sub-optimality. Using this characterization, a novel improved decoder that offers several orders of magnitude improvement in bit-error rates is introduced. Next, a novel scheme for the design of a good rate-compatible family of punctured codes is proposed. The second part of the thesis aims at establishing these codes as a good tool to develop reliable, energy-efficient and low-latency data dissemination schemes in networks. The problems of broadcasting in wireless multihop networks and that of unicast in delay-tolerant networks are investigated. In both cases, rateless coding is seen to offer an elegant means of achieving the goals of the chosen communication protocols. It was noticed that the ratelessness and the randomness in encoding process make this scheme specifically suited to such network applications. The final part of the thesis investigates an application of a specific class of codes called network codes to finite-buffer wired networks. This part of the work aims at establishing a framework for the theoretical study and understanding of finite-buffer networks. The proposed Markov chain-based method extends existing results to develop an iterative Markov chain-based technique for general acyclic wired networks. The framework not only estimates the capacity of such networks, but also provides a means to monitor network traffic and packet drop rates on various links of the network.Ph.D.Committee Chair: Fekri, Faramarz; Committee Member: Li, Ye; Committee Member: McLaughlin, Steven; Committee Member: Sivakumar, Raghupathy; Committee Member: Tetali, Prasa

    Forwarding fault detection in wireless community networks

    Get PDF
    Wireless community networks (WCN) are specially vulnerable to routing forwarding failures because of their intrinsic characteristics: use of inexpensive hardware that can be easily accessed; managed in a decentralized way, sometimes by non-expert administrators, and open to everyone; making it prone to hardware failures, misconfigurations and malicious attacks. To increase routing robustness in WCN, we propose a detection mechanism to detect faulty routers, so that the problem can be tackled. Forwarding fault detection can be explained as a 4 steps process: first, there is the need of monitoring and summarizing the traffic observed; then, the traffic summaries are shared among peers, so that evaluation of a router's behavior can be done by analyzing all the relevant traffic summaries; finally, once the faulty nodes have been detected a response mechanism is triggered to solve the issue. The contributions of this thesis focus on the first three steps of this process, providing solutions adapted to Wireless Community Networks that can be deployed without the need of modifying its current network stack. First, we study and characterize the distribution of the error of sketches, a traffic summary function that is resilient to packet dropping, modification and creation and provides better estimations than sampling. We define a random process to describe the estimation for each sketch type, which allows us to provide tighter bounds on the sketch accuracy and choose the size of the sketch more accurately for a set of given requirements on the estimation accuracy. Second, we propose KDet, a traffic summary dissemination and detection protocol that, unlike previous solutions, is resilient to collusion and false accusation without the need of knowing a packet's path. Finally, we consider the case of nodes with unsynchronized clocks and we propose a traffic validation mechanism based on sketches that is capable of discerning between faulty and non-faulty nodes even when the traffic summaries are misaligned, i.e. they refer to slightly different intervals of time.Las redes comunitarias son especialmente vulnerables a errores en la retransmisión de paquetes de red, puesto que están formadas por equipos de gama baja, que pueden ser fácilmente accedidos por extraños; están gestionados de manera distribuida y no siempre por expertos, y además están abiertas a todo el mundo; con lo que de manera habitual presentan errores de hardware o configuración y son sensibles a ataques maliciosos. Para mejorar la robustez en el enrutamiento en estas redes, proponemos el uso de un mecanismo de detección de routers defectuosos, para así poder corregir el problema. La detección de fallos de enrutamiento se puede explicar como un proceso de 4 pasos: el primero es monitorizar el tráfico existente, manteniendo desde cada punto de observación un resumen sobre el tráfico observado; después, estos resumenes se comparten entre los diferentes nodos, para que podamos llevar a cabo el siguiente paso: la evaluación del comportamiento de cada nodo. Finalmente, una vez hemos detectado los nodos maliciosos o que fallan, debemos actuar con un mecanismo de respuesta que corrija el problema. Esta tesis se concentra en los tres primeros pasos, y proponemos una solución para cada uno de ellos que se adapta al contexto de las redes comunitarias, de tal manera que se puede desplegar en ellas sin la necesidad de modificar los sistemas y protocolos de red ya existentes. Respecto a los resumenes de tráfico, presentamos un estudio y caracterización de la distribución de error de los sketches, una estructura de datos que es capaz de resumir flujos de tráfico resistente a la pérdida, manipulación y creación de paquetes y que además tiene mejor resolución que el muestreo. Para cada tipo de sketch, definimos una función de distribución que caracteriza el error cometido, de esta manera somos capaces de determinar con más precisión el tamaño del sketch requerido bajo unos requisitos de falsos positivos y negativos. Después proponemos KDet, un protocolo de diseminación de resumenes de tráfico y detección de nodos erróneos que, a diferencia de protocolos propuestos anteriormente, no require conocer el camino de cada paquete y es resistente a la confabulación de nodos maliciosos. Por último, consideramos el caso de nodos con relojes desincronizados, y proponemos un mecanismo de detección basado en sketches, capaz de discernir entre los nodos erróneos y correctos, aún a pesar del desalineamiento de los sketches (es decir, a pesar del que estos se refieran a momentos de tiempo ligeramente diferentes)
    corecore