
Forwarding fault detection in
Wireless Community

Networks

Ester López Berga

PhD Thesis in Computer Architecture
by the Universitat Politècnica de Catalunya

Advisor: Leandro Navarro Moldes

Barcelona, Spain 2017

Abstract

The most important service a Wireless community network (WCN) offers
is connectivity. However, WCN’s connectivity is fragile because of their

intrinsic characteristics: inexpensive hardware that can be easily accessed;
decentralized management, sometimes by non-experts, and open to everyone;
making it prone to hardware failures, misconfigurations and malicious attacks.
The goal of this thesis is to increase routing robustness in WCN using forward-
ing fault detection, so that we can find and fix problematic routers. Forwarding
fault detection can be explained as a four-step process: first, nodes monitor
and summarize the traffic on the network; then, those traffic summaries are
shared among peers, so that, by analyzing the relevant ones, we can asses the
behavior of a given node. Finally, when we find a faulty router, a response
mechanism is triggered to solve the issue.

On this thesis we focus on the first three subproblems. First, on monitoring,
we study and characterize the distribution of the error of sketches, a traffic
summary function that is resilient to packet dropping, modification and
creation and that has better statistical guarantees than sampling. Second,
we propose KDet, a traffic summary dissemination and detection protocol
that, unlike previous solutions, is resilient to collusion and false accusation
without the need of knowing a packet’s path. KDet is a solution adapted to
WCN, because it can be deployed without the need of modifying its current
network stack. Finally, we consider the case of nodes with unsynchronized
clocks, and we propose a traffic validation mechanism based on sketches that
is capable of discerning between faulty and non-faulty nodes even when the
traffic summaries are misaligned, i.e. they refer to slightly different intervals
of time.

iii

Resumen

El servicio más importante ofrecido por una red comunitaria es la conectivi-
dad. Sin embargo, las redes comunitarias son especialmente vulnerables a

errores en la retransmisión de paquetes de red, puesto que están formadas por
equipos de gama baja, de fácil acceso; están gestionados de manera distribuida
y no siempre por expertos, y además están abiertas a todo el mundo; con lo
que de manera habitual presentan errores de hardware o configuración y son
sensibles a ataques maliciosos. Para mejorar la robustez en el enrutamiento
en estas redes, proponemos el uso de un mecanismo de detección de routers
defectuosos, para aśı poder corregir el problema. La detección de fallos de
enrutamiento se puede explicar como un proceso de cuatro pasos: el primero es
monitorizar el tráfico existente, manteniendo desde cada punto de observación
un resumen sobre el tráfico observado; después, estos resumenes se comparten
entre los diferentes nodos, para que podamos llevar a cabo el siguiente paso:
la evaluación del comportamiento de cada nodo. Finalmente, una vez detec-
tados los nodos maliciosos o que fallan, debemos actuar con un mecanismo
de respuesta que corrija el problema. Esta tesis se concentra en los tres
primeros pasos, ya que podemos utilizar simplemente una notificación para el
mecanismo de respuesta. Respecto a los resumenes de tráfico, presentamos un
estudio y caracterización de la distribución de error de los sketches, una estruc-
tura de datos que es capaz de resumir el tráfico y es resistente a la pérdida,
manipulación y creación de paquetes; además, tiene mejor resolución que el
muestreo. Para cada tipo de sketch, definimos una función de distribución que
caracteriza el error cometido, de esta manera somos capaces de determinar
con más precisión el tamaño del sketch requerido bajo unos requisitos de falsos
positivos y negativos. Después proponemos KDet, un protocolo de disemi-
nación de resumenes de tráfico y detección de nodos erróneos que, a diferencia
de protocolos propuestos anteriormente, no require conocer el camino de cada
paquete y es resistente a la confabulación de nodos maliciosos. KDet puede
ser desplegado sin modificar los sistemas y protocolos de red ya existentes,
algo imprescindible en el contexto de las redes comunitarias. Por último,
consideramos el caso de nodos con relojes desincronizados, y proponemos un
mecanismo de detección basado en sketches, capaz de discernir entre los nodos
erróneos y correctos, aún a pesar del desalineamiento de los sketches (es decir,
a pesar de que se refieran a intervalos de tiempo ligeramente diferentes).

iv

Contents

List of Publications vii

1 Introduction 1

1.1 Problem statement . 3

1.2 Methodology . 5

1.3 Thesis organization . 6

2 State of the art 7

2.1 Traffic Summary functions . 9

2.2 Summary dissemination and distributed detection 13

2.3 Traffic Validation mechanism 19

2.4 Response . 22

2.5 Filling the gaps . 22

3 Contributions 23

3.1 Tight bounds for sketches in Traffic Validation 23

3.2 KDet: a distributed detection protocol 25

3.3 Traffic Validation for misaligned summaries 27

v

vi

4 Traffic Summary Functions 29

4.1 Sampling . 30

4.2 Sketches characterization . 32

4.3 Empirical Evaluation . 38

4.4 Discussion . 56

4.5 Conclusions . 59

5 Distributed Detection 61

5.1 Background . 62

5.2 Problem statement . 67

5.3 System Model . 68

5.4 The KDet detection protocol 71

5.5 Validation . 74

5.6 Analysis . 76

5.7 Simulation . 80

5.8 Discussion . 91

5.9 Conclusions . 93

6 Traffic Validation Mechanisms 95

6.1 Misaligned Traffic Validation 96

6.2 Conclusions . 102

7 Conclusions 105

Bibliography 109

A KDet algorithms 117

List of Publications

[P1] Ester Lopez and Leandro Navarro. Local Detection of Forwarding Faults
in Wireless Community Networks. In XXIII Jornadas de Concurrencia
y Sistemas Distribuidos, pages 1–15, 2015. (page 27, 34, 50)

[P2] Ester Lopez and Leandro Navarro. Tight bounds for Sketches in Traffic
Validation. 14th IEEE International Conference on Networking, Sensing
and Control, 2017. (page 23)

[P3] Ester Lopez and Leandro Navarro. Coordinated Detection of Forwarding
Faults in Wireless Community Networks. Journal of Network and
Computer Applications, pages 1-–20, 2017 (under review). (page 26)

[P4] Ester López and Leandro Navarro. KDet: Coordinated detection of
forwarding faults in wireless community networks. In Proceedings of the
2015 IEEE Trustcom/BigDataSE/ISPA - Volume 01, TRUSTCOM ’15,
pages 734–741, Washington, DC, USA, 2015. IEEE Computer Society.
(page 26)

[P1] Ester Lopez and Leandro Navarro. Byzantine Failure Detection in
Wireless Mesh Routing. In XXII Jornadas de Concurrencia y Sistemas
Distribuidos, pages 1–15, 2014. (page)

vii

viii

Other Publications

The following are other publications written during the duration of
the thesis that relate to wireless community networks but not to the
forwarding fault detection problem:

[P5] Axel Neumann, Ester López, and Leandro Navarro. Evaluation of mesh
routing protocols for wireless community networks. Elsevier Computer
Networks, 93(P2):308–323, December 2015.

[P6] Axel Neumann, Ester Lopez, and Leandro Navarro. An evaluation of
bmx6 for community wireless networks. In Proceedings of the 2012
IEEE 8th International Conference on Wireless and Mobile Computing,
Networking and Communications (WiMob), WIMOB ’12, pages 651–658,
Washington, DC, USA, 2012. IEEE Computer Society.

[P7] Axel Neumann, Ivan Vilata, Xavier Leon, Pau Escrich Garcia, Leandro
Navarro, and Ester Lopez. Community-lab: Architecture of a community
networking testbed for the future internet. In Proceedings of the 2012
IEEE 8th International Conference on Wireless and Mobile Computing,
Networking and Communications (WiMob), WIMOB ’12, pages 620–627,
Washington, DC, USA, 2012. IEEE Computer Society.

Chapter 1
Introduction

Wireless community networks (WCN) are experiencing an exponential growth
thanks to the popularization of non-expensive WiFi devices, open software
solutions for mesh networks and because Internet access has become a key
element for individual and collective participation in society. WCN are IP-
based network infrastructures built by citizens that support and provide
services to the community behind it. They grow organically, as the needs
of the community arise; most of the time, there is no network planning
involved, but when a new user decides to join the network, a new link is set
up, connecting that new user with the closest existing one. To date, these
networks have presence all over the world, some of them with thousands of
nodes[56].

But as one can imagine, keeping these networks up and running is not a mere
trifle; WCN are more vulnerable to failures than commercial networks because
of their intrinsic characteristics:

• They are built using inexpensive hardware installed outdoors, which can
result in hardware failures because of the rough conditions and, because
of their location, they can be physically tampered, allowing an adversary
to launch an attack from inside the network.

• Each node belongs and is usually managed by the user that registered it.
As a consequence, the network nodes are managed in a decentralized way
and sometimes by inexperienced people, making nodes misconfiguration
more likely.

1

2

0

10000

20000

30000

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

Year

W
o
rk

in
g
 n

o
d
e
s

Guifi.net growth chart

Figure 1.1: Guifi.net growth.

• Finally, the network is open to everyone, so, again, a malicious user
could run faulty routing protocols to compromise the network.

As an example, in Guifi.net, users experience from time to time what is known
as a “pollo de rutas” (from Spanish a mess of routes), which means that
the routing tables become corrupted and connectivity is broken. The cause
may be a faulty route announcement, routing table overflow because of low
memory, hardware issues, software bugs, etc. In such occasions, usually an
experienced user logs into the involved nodes hopping from one node to the
next using a layer 2 version of ssh, and checking that everything is working
properly, until the failure is localized and fixed. Evidently, such mechanism is
slow and requires somebody with quite a lot of experience to be able to find
and fix the fault.

As we can see, developing monitoring tools that automate the process of
detecting failures and localizing them would be extremely practical for WCN’s
users, reducing and easing the process of finding faults, and as such, it would
have a considerable impact on their quality of service. However, increasing

3

the routing robustness on such networks is specially challenging because of
the following:

• WCN are incredibly heterogeneous in terms of hardware and software.

• They run different routing protocols [6], not only from one network to
another, but even within the same network is common to find several
routing protocols interacting at different levels.

• The nodes have limited capacity, so the proposed solutions should have
low cost in terms of computation and memory;

• Since we are talking about wireless networks, the solutions should be
also optimized in terms of network bandwidth.

• Finally, because of their decentralized management, the best solution
should be one that can be installed as an independent daemon, that can
give useful feedback, even when it is not running in all the nodes of the
network. This decoupling is also know as the unbundled management
architectural principle [43].

Hence, the goal of this thesis is to find ways to improve the routing robustness
of WCN by studying in depth the different parts involved in the location of
forwarding faults, providing solutions that match the requirements of WCN.

1.1 Problem statement

End-to-end connectivity is achieved by properly routing network packets.
WCN networks use proactive routing protocols, and therefore, routing can be
divided in two different steps; first, the routing protocol must learn the path
between every pair of network nodes within the network; then, when there
is a packet that needs to be forwarded, nodes must properly choose the next
hop, using the information learnt by the routing protocol.

In normal operation, none of these steps is a challenge as there are many
different mesh routing protocols like OLSR, BMX6 or B.A.T.M.A.N that are
able to find the best path between nodes and build the routing table that
will be used for packet forwarding afterwards; however, connectivity may

4

be impaired in both steps, either by participating incorrectly in the routing
protocol (causing the routes learnt to be incorrect) or by not following the
rules imposed by the routing table. Solutions that focus on the first part
are “control-plane solutions”, as they ensure that the information shared
through control messages is truthful; and solutions that focus on the second
part are “data-plane solutions”, as they rely on the data traffic instead. And,
although both steps need to be secured against failures, because control-plane
solutions depend on the specific routing protocol being used, it is out of the
scope of this thesis; however, there are already some solutions that work on
ensuring the veracity of the path learned for the different routing protocols,
like SEMTOR [37] (for BMX6), secure BGP [26] (for BGP) or S-RIP [57] (for
RIP).

An alternative approach, also from the control-plan perspective, is to focus
on increasing the network resilience, by means of sending packets with some
redundancy such as robust flooding [41, 42] or intrusion-tolerant overlays [38].

Regardless, for the case of WCN, focusing on the problem from the data-plane
perspective is more suitable, because it allows us to withdraw any assumption
regarding the routing protocols and deploy our protocol as an independent
daemon, without any need of modifying the network stack. Moreover, if
there is any problem on the routes learned through the routing protocol, the
forwarding fault protocol will still be able to detect that some packets are not
being delivered. Another reason to focus on detection rather than in resilience,
is that in WCNs, network bandwidth is a scarce commodity, and resilient
solutions require redundancy, for instance, by sending packets through several
paths or repeatedly.

Thorough this thesis, we divide the problem of forwarding fault detection
into four different steps, inspired in Mizrak’s division [36]. Consider, without
any loss of generality, the network on Figure 1.2; we have several monitors
(A, B and C) that monitor a network area, M, to determine if its forwarding
behavior is faulty or not using only data-plane information, i.e. the actual
data traffic being forwarded. The four steps that any fault detection protocol
will go through are:

Traffic Summarization First of all, the monitors will need to keep track of
the traffic sent and received to M. Because keeping all the packets seen

5

Figure 1.2: Example network

is very expensive, monitors must use a summary function that keeps the
relevant information about the data streams but requires less space.

Summary dissemination Then, the traffic summaries need to be shared
between the monitors, so that at least one network entity has all the
relevant summaries and can evaluate the behavior of M.

Traffic Validation is the mechanism that determines the behavior of M.
Once collected all the traffic summaries, we need to determine whether
M is faulty or not, by examining the information available. Usually,
traffic validation will be based on the conservation of the flow principle:
traffic entering a network area must be approximately equal to the traffic
leaving that network area, not considering the traffic that is destined or
originated from that network area [10].

Response Finally, if we detect any faulty behavior, we must react, so that
faulty nodes do not disrupt the network connectivity.

We address each of these sub-problems on a chapter of this thesis, except for
the case of response, which is briefly addressed on Chapter 2, as it is considered
out of the scope of this thesis.

1.2 Methodology

Thorough this thesis we use mathematical derivations, experimental evalua-
tions, OMNeT++ simulations and theoretical proofs to analyze, compare and

6

evaluate different solutions proposed for each sub-problem of forwarding fault
location. On each case, we choose the technique that is more suitable for the
problem at hand; but what remains constant on every step of this thesis is
that we strive for making all our results reproducible. We do so by sharing
the necessary code to reproduce our experiments, the scripts to reproduce the
figures and, whenever reasonable, the csv files obtained from our experiments.
Besides, when possible, we use data from the real world.

1.3 Thesis organization

The rest of this thesis is organized as follows:

• Chapter 2 lists and describes previous solutions that have been proposed
by the literature, and breaks them down into the different sub-problems
that we have introduced.

• Chapter 3 summarizes the thesis contributions.

• Chapter 4 focuses on the traffic summary functions. More specifically,
we focus on sampling and sketches and we describe the accuracy of both
solutions.

• Chapter 5 presents a summary dissemination protocol for networks
without a link-state routing protocol resistant to collusion and false
accusation.

• Chapter 6 discusses traffic validation mechanisms and describes a traffic
validation mechanism that does not require time synchronization.

• Chapter 7 concludes and summarizes the findings of this thesis.

Chapter 2
State of the art

As we know, network connectivity is the result of a cooperative effort: it
takes the collaboration of every router in the path for a packet to reach its
destination. As a consequence, if one of those routers fails to properly forward
traffic, network connectivity will be hindered. Because network connectivity
depends on the cooperation of every node in the network, it is fragile and
mechanisms to protect it should be designed and deployed.

The first effort in increasing routing robustness was proposed by Perlman
on her thesis [41]: robust flooding. Robust flooding relies on buffering and
flooding packets to ensure that resources are fairly allocated and that if
there is a correct path between two nodes, then they can communicate. Her
solution increases connectivity resilience by means of redundancy (packets are
sent repetitively and through multiple paths); however, her proposal requires
changes in the network stack that we do not see feasible in WCN, because
they require the modification of hundreds of nodes that are not managed by a
single entity. Obenshain et al. solution [38] also focuses on resiliency, but it
avoids modifying the network stack by using an overlay for critical traffic. The
intrusion-tolerant overlay that they propose uses redundancy at the network
level, by using several ISPs, and at the overlay level, by forwarding the overlay
messages either through several paths or using constrained flooding. Still, this
overlay cannot be used to forward all traffic, but just priority traffic, as it is
too costly in terms of network overhead and it is more oriented to traditional
networks, than WCN.

7

8

If we consider the problem from a bottom-up perspective and the current
way networks operate, we can see that network connectivity resilience comes
from securing the two mechanisms involved in packet delivery: first, routers
need to discover the proper path to a packet’s destination; and, second, they
have to forward the packet as dictated by the routing protocol. Ensuring
correct path discovery is usually called control-plane solutions, as they focus
on the control plane, and always depend on the routing protocol. Examples
of solutions proposed in the literature are JiNao [59] for OSPF, Whisper [52]
and S-BGP [26] for BGP, LT-OLSR [23] for OLSR and SEAD [24] based on
DSDV.

On the other hand, we have data-plane solutions, that guarantee that the
forwarding process is working properly. As Perlman, we can use redundancy to
ensure that packets reach their destination, or, to keep the network bandwidth
consumption low, we can focus on the problem from the detection perspective:
nodes are monitored, evaluated and a response mechanism is triggered when
a problem is detected. This is the approach taken by this thesis, and we
divide the forwarding fault detection problem into several pieces, that will be
addressed one by one on its different chapters.

The first piece of the puzzle is traffic monitoring and summarization.
To detect traffic anomalies, traffic must be monitored at different points of
the network and compared to determine the network behavior. Monitoring
can be done by special nodes strategically placed on the network, but for
convenience it may be the network nodes themselves that monitor incident
paths or neighboring nodes. The unit being monitored can be a link, a path,
a node or a set of nodes, and for every unit a summary of the traffic going
through it will be kept. Because not all the traffic information is kept, the
capabilities of the detection mechanism will be highly influenced by the traffic
summary function used. We review the different traffic summary functions
and their characteristics in section 2.1.

Then we need a mechanism to compare the different traffic summaries and
determine whether the monitored unit is behaving as expected or not. This is
what we call the Traffic Validation (TV) mechanism, since it validates the
traffic for that unit. We discuss TV functions in section 2.3.

9

But because monitored information is local, we need to share it so that the TV
function can be applied. How this information is shared and who validates the
traffic is determined by the distributed detection protocol (section 2.2).

Finally, we need a response mechanism to react when a failure is detected.
Different response mechanisms are presented in section 2.4.

2.1 Traffic Summary functions

Traffic summary functions are used by traffic monitors to retain relevant
information about the traffic at a certain network point without needing to
keep a copy of the whole traffic. In our case, because the goal is to detect
forwarding faults, the relevant information will be the one that allows us to
detect such failures. Mizrak et al. [35] divide these failures into 5 different
threats:

• Packet loss: the faulty network area drops a subset of the packets that
should be forwarded.

• Packet fabrication: the faulty network area creates new packets with an
IP it does not own.

• Packet modification: the faulty network area modifies or corrupts the
packets that should forward. A specific example of packet modification
is reducing more than expected the TTL field, which could lead to falsely
detecting some other network areas as faulty.

• Packet reordering: the faulty network area may send the packets it
forwards in a different order than received.

• Time behavior: the faulty network area may introduce different delays
to a subset of the packets it should forward.

The strength of a traffic summary function relates to the capability of detecting
each of these failures and its accuracy relates to how accurately it allows to
measure such failures; and because traffic summary functions keep just some
information about the traffic, they compromise their strength and/or their
accuracy, as we will see in the examples below.

10

The simplest summary function is counting the number of packets going
through the monitored point. Solutions like WATCHERS [10] or AudIt [5]
keep counters for flows of different granularity to detect packet loss and packet
fabrication. Of course, because counters keep very little information about
the traffic being examined, they allow us to detect only packet loss or packet
fabrication and only when they do not happen at the same time, but they are
very precise. On the other side of the spectrum we have packet fingerprinting,
used in many solutions like Mizrak et al. [36], but also all the solutions based
on acknowledging every packet [8, 17, 15, 19], which consists on keeping a small
value per packet (its digest), e.g. the result of applying to a hash function
to it. In this case, as long as the hash function is second pre-image resistant,
we would be capable of detecting any type of attack if the fingerprints are
exchanged in a timely fashion, and all but time behavior anomalies if they are
exchanged grouped together at the end of an interval.

In some cases, packet fingerprinting is too costly because the summary is not
small enough, so the network overhead when sharing the digests is too high.
In those cases, we can keep only a random sample of those fingerprints as
traffic summary. Sampling has been proposed by Goldberg et al. [20], Desai
et al. [18] and Zhang et al. [60] among others. The most important point
on a sampling summary mechanism is the strategy that selects the sampled
packets. The sampling strategy must make sure that the monitored area
cannot predict which packets will be sampled or it could modify its behavior
based on whether a packet will be sampled. Goldberg et al. [20] sampling
strategy is to sample based on a secret key that is not known by the monitored
area. As a consequence, it will have to keep a copy of all the fingerprints if it
wants to be able to detect false accusation (more on false accusation in section
2.2), and tight time synchronization is needed since the key changes between
intervals. The synchronization required will depend on the interval and the
needed accuracy [21]. Desai et al. [18] propose a hash-based delay sampling
technique, which keeps all the fingerprints into a buffer, until a packet with a
hash below a threshold is received. This packet is called the initiator, and its
hash will be used to determine which packets in the buffer will be shared. In
this case, every node involved needs to keep the fingerprints of every packet
for a given interval, but we only require loose synchronization (e.g. using
NTP is enough). But hash-based delay sampling will only work to monitor
network paths, because every node involved needs to receive the same set of

11

packets, to be sure that the initiator packet is received by everyone. Sampling
techniques will allow us to detect packet drop, modification and fabrication,
and depending on the sampling probability, packet reordering. But because
the sampling probability is likely to be small, so will be the probability of
detecting packet reordering.

Sampling provides an estimation of the packet drop, modification or fabrication
percentage based on a subset of the data traffic, so the traffic summary function
now compromises the accuracy to reduce the memory and network bandwidth
required. Similarly, we can use other data structures that give us also a
probabilistic estimation about the traffic, but using all the packets as input
instead of just some: sketches. Sketches are a matrix of counters which are
updated every time a new packet arrives. Benefits of sketches compared with
sampling is that they are more accurate [20] and their size is bounded; the
drawback is that they cost slightly more to compute in terms of CPU, though
the cost of updating them is still reasonable. Sketches have been proposed
as traffic summary functions for traffic validation by Goldberg et al. [20] and
Zhang et al. [61]. Small sketches are vulnerable to second pre-image attacks,
and therefore should be based on a secret key. As before, this will imply
that we require tight time synchronization; and, in case of considering false
accusation, the monitored network area should keep the fingerprints of all the
packets forwarded during an interval. However, when the sketch is big enough
a key is no longer necessary and neither time synchronization nor storing all
fingerprints (just the sketch instead). Another difference between sketching
and sampling is that in some cases, we can share the packet fingerprint of
the sampled packets in a timely fashion, so time misbehavior can be detected;
whereas for sketches, they will be always shared after a period of time, so time
misbehavior cannot be detected.

Shu and Krunz [51] propose sharing a bitmap of the received packets signed
using homomorphic linear authentication (HLA) to ensure its truthfulness.
This approach is only valid for path monitoring and, moreover, it requires the
modification of data traffic, since packets should include an HLA signature.

Finally, very little has been proposed to study anomalies regarding time
behavior. AudIt [5] and DynaFL [61] propose to keep the average arrival time
to be able to determine if too much delay has been introduced for a given flow.

12

In ideal conditions, overhearing techniques are able to detect any type of attack
in wireless networks. Overhearing consists on nodes listenint in promiscuous
mode to ensure that neighbors forward the packets sent to them, and because
every node has complete information on the node it monitors, there is no need
of sharing traffic summaries. However, overhearing techniques are vulnerable
to stealthy attacks [27], where the faulty node could, for instance, forward
the packet to a non-existent neighbor or without sufficient power. Moreover,
they assume that nodes have a single antenna, which is not always the case in
WCNs.

Table 2.1 summarizes each traffic summary function discussed in terms of its
Standard Error (SE) and the type of attacks it can detect: packet dropping,
fabrication, modification, reordering and delay. In some cases, as we have
discussed, some failures may be detected depending on other factors of the
detection protocol (like when the summaries are shared), those are marked
with a “∼”.

SE Drop Fab. Mod. Order Delay

counters 0 3 3 7 7 7

fingerprinting 0 3 3 3 3 ∼

keyed sampling

√
p · (1− p)

#pkts · Psamp
3 3 3 ∼ ∼

delayed
sampling

√
p · (1− p)

#pkts · Psamp
3 3 3 ∼ 7

sketches
Pdrop√
2 ∗ size

3 3 3 7 7

bitmap +
HLA signatures

– 3 3 3 ∼ 7

average arrival
time

– 7 7 7 ∼ 3

Table 2.1: Precision and strengths of each summary function

On the other hand, Table 2.2 summarizes how costly the summary functions
are in terms of processing cost, network bandwidth; which types of network

13

areas they can monitor; whether they require or not time synchronization and
modifying the network stack.

CPU Bandwidth Area Sync Network stack

counters
very
low

constant
(low)

any loose unchanged

fingerprinting
very
low

proportional
(high)

any none unchanged

keyed sampling
very
low

proportional
(low)

any tight unchanged

delayed sampling
very
low

proportional
(low)

path loose unchanged

sketches low
constant

(low)
any none unchanged

bitmap +
HLA signatures

high
proportional

(high)
path none sign packets + id

average arrival
time

very
low

constant
(low)

path tight unchanged

Table 2.2: Cost summary for each summary function

2.2 Summary dissemination and distributed detec-
tion

As we have mentioned in the previous section, in the case of WCNs we cannot
use overhearing techniques, because they miss the traffic from directional
antennas or antennas using a different frequency. Therefore, we need a protocol
that determines how the traffic summaries are shared and who validates the
traffic for each node.

In the easiest scenario, let’s consider a single traffic flow from a source node to
a destination and assume that none of them is faulty regarding that traffic flow.
In this case, if we only involve the source and the destination in the detection
process, we don’t have to worry about faulty nodes interfering in the detection
other than by dropping the protocol messages. But, at the same time, we
cannot locate the fault with precision, just notice that the path is misbehaving

14

and assign the blame to the whole path. Solutions in the literature that take
this approach are:

• Stealth probing [7] uses a secure tunnel between the source and des-
tination to transmit data packets and either active or passive probes.
Then, the drop probability of the path is estimated by measuring how
many probes are acknowledged. Thanks to the tunnel, intermediate
nodes cannot discern which packets are probes and which ones are normal
data packets, so that the drop estimation can be reliably estimated.

• In Secure sketch PQM [20], the destination sends to the source an
sketch representing the traffic received at the end of every interval. Using
this sketch, the source is able to estimate the number of packets dropped,
modified and fabricated by the path and use it to determine if the path
is faulty or not.

• Symmetric Secure Sampling [20] uses sampling and the destination
acknowledges the reception of the sampled packets by sending a MAC
to the destination. By counting the missing ACKs, the source is able
to estimate the loss probability of the path and by comparing the
timestamps of when the packet was sent and the ACK received, the path
delay.

• Asymmetric secure sampling [20] proposes an alternative to sym-
metric secure sampling, for the case of a sever and several clients. In
such case, the server does not need to have a different key for each
client, but releases the salt at the end of the interval and it is the client’s
responsibility to monitor the quality of the path.

The two main difficulties of these approaches are how to ensure that nodes
in the path cannot avoid detection and cannot fake the summaries. For the
case of probing and sampling, the former means that nodes cannot discern
which packets are going to trigger an ACK on the destination, and that can be
achieved by using secure tunnels or a keyed sampling function. For the case of
sketches, nodes should not be able to find an alternative packet that will alter
the sketch the same way, which is achieved by using keyed hash functions on
the sketch. To avoid fake acknowledgments or sketches, they are computed
using a secret key only known by the source and destination.

15

In any case, these solutions are not very precise in pinpointing the source of
the fault. To be able to determine which node or link is the faulty one, the
detection protocol needs to involve and obtain the traffic summaries of the rest
of the nodes in the path. This approach is the one followed by the following
solutions:

• ODSBR [8] is an on-demand source routing that detects Byzantine
failures by receiving acknowledgments from the destination. When the
source does not receive enough ACKs, it triggers a probing mechanism
to detect the malicious link. It works as follows: the source sends a
probe to the node in the middle of the path, trying to figure out which
half is not working properly. This is done in an iterative fashion, until
the faulty link is found.

• In FL-PQM [9], every node in the path receives an acknowledgement
from the destination with certain probability, and acknowledgments for
different nodes are sent using MACs in an onion fashion. At the end
of each interval, the source will request each node a report with the
estimation of the drop probability between itself and the destination,
which is sent back to the source using again a set of MAC’d onion reports.
With these reports, the source will determine that a link is faulty if the
difference between the drop probability between two nodes is higher
than a threshold, or the reports are not received properly.

• In NACK [53] nodes in the path keep track of its next-hop node by re-
ceiving an acknowledgment from the next-next-hop. In parallel, because
NACK is based in DSR, the source receives acknowledgments from the
destination through a path that does not involve any of the nodes in the
normal data path. When the source fails to receive enough acknowledg-
ments, it requests each node in the path its 2-hops acknowledgments to
determine which node in the path is being faulty.

• Finally, PAAI-1 [60] uses delayed sampling, so that the source, after
the packet has supposedly arrived to the destination, sends a request
for the packet acknowledgment; then, every node in the path sends the
ACK using an onion report. To avoid nodes that forward packets only
when the probe is received, each packet has a timestamp, and correct
nodes only forward those packets with a recent timestamp.

16

Some of the solutions proposed, like ODSBR [8], PVM [3] or Distributed
probing [25], propose to have first a detection algorithm and when a fault
is detected, trigger the localization algorithm to find the faulty path. The
detection algorithm is a simple end-to-end exchange of ACKs, when more
ACKs that are expected are lost, the localization algorithm is triggered. But
as Just et al. [25] mentions, the probing technique cannot go from source
to destination, as it will alert the faulty node that a localization mechanism
has been triggered, and it may change its behavior to avoid detection. To
avoid that issue, the last three described protocols have every node run the
monitoring process in parallel, so that there is no way for the faulty node to
avoid detection.

In any case, all of these solutions keep the information local, i.e. only the
source knows that there was a failure and which one was the faulty link, but
in general, it would be in the network’s benefit if the rest of nodes can learn
about the failures from others’ experience. Solutions that have been proposed
to share the failure localization globally are:

• Hash-based delayed sampling [18] relies on a central authority which
collects the sampling summaries from each node in the path and deter-
mines which node is faulty by comparing them.

• Similarly, HLA-based detection [51], has a central authority that col-
lects traffic summaries (reception bitmaps and an HLA-based challenge)
from every node in a path when the source detects that there is a failure.

• Byzantine tomography [7] also relies on a central authority that
collects the results from Stealth probing and looks for the minimal set
of nodes that could explain such results, including the possibility that
the source and destination are providing a false report.

The main difficulty when dealing with global solutions is how false accusation
is solved. For instance, in Hash-based delayed sampling, because blame is
assigned to a node, its neighbors could send false reports, so that it ends
up being accused as faulty when it is not. HLA-based detection solves this
by assigning blame to a link and ensuring that the reports cannot be faked.
Finally, Byzantine tomography faces false accusation by also considering the

17

fact that the reports could be false, but no guarantees are made, so a non-faulty
node could end up being detected as faulty.

Solutions based on traffic flows can grow up to O(n2), being n the number of
nodes in the network, if the failure localization is to be shared with the rest of
the network, so if there is a central authority, O(n2) traffic summaries need to
be exchanged through the network. In that case, when a WCN has too many
nodes, the network bandwidth required would be too high. Additionally, it
assumes that paths are known and stable, two things that are not necessarily
true in WCNs, as not always a link state routing protocol is used and wireless
links are not that stable, so a path may change within the same traffic flow.

The next set of solutions that we present are based on aggregated traffic
statistics, that using conservation of the flow, make sure that the traffic
received and sent by a network node is consistent.

• In WATCHERS [10] every node keeps a set of counters of the packets
sent and received, as well as for the packets destined to and originated
from them. These counters are flooded through the network so that
everyone can check if a node is faulty. When a node receives a set of
counters from its neighbor that is not consistent with its own, disconnects
from that neighbor. In a second iteration, every node evaluates its
neighbors using the counters from their neighborhood and determines
whether the node is behaving properly or not based on the conservation
of the flow principle. But, because WATCHERS uses flooding to share
its counters, it can become too costly in wireless mesh networks.

• DAMON [50] proposes a hierarchical architecture that divides the
network into clusters, so that traffic summaries do not need to be
flooded: a monitoring agent on each cluster will collect the summaries
related to that cluster, pre-process it and forward it to to the sink agent,
which is ultimately responsible of analyzing the traffic summaries and
detecting the faulty nodes.

• DynaFL [61] relies in sketches instead of counters and shares its traffic
summaries with a central authority using a spanning tree and onion
reports. The central authority is then responsible of analyzing the reports
and finding the faulty neighborhoods. To avoid detecting a node as

18

faulty when it is actually its neighbor sending a false report, the central
authority does not accuse a node, but a node’s neighborhood.

• Catch [32] takes a more distributed approach by having nodes directly
disconnect from its faulty neighbors. Catch relies on anonymous packets
for estimating the link quality between one node and its neighbors; then,
using overhearing it estimates the forwarding probability for the normal
data-traffic. When these two values are too different, the neighbor will
be considered faulty and this discovery will be shared to the rest of the
faulty node’s neighbors by using another mechanism based on anonymous
messages.

• χ [36] is also distributed, but works slightly different. First, every node
in M ’s neighborhood will keep a fingerprint of every packet sent to M .
Once the interval is over, it will forward the fingerprints to M as a signed
report. If M sees that one of the reports is not truthful, it disconnects
from that node, signaling that it is protocol-faulty. Then it broadcasts
every other report to the rest of the neighbors, replacing the faulty
reports with its own. Finally, M ’s neighbors will validate M ’s behavior
by first comparing the traffic reports and, secondly, ensuring that it
has disconnected from neighbors that were accused as protocol-faulty in
previous iterations.

• Finally, Π2 and Πk+2 [35] do not monitor a single node, but a set of
overlapping path-segments. Later, by comparing the traffic summaries
between either all the nodes in the path (Π2) or between the end-points
(Πk+2), they are able to find which path-segment is faulty.

Because we are now dealing with aggregated traffic, two or more consecutive
nodes may collude to avoid detection. Consider the network of Figure 2.1,
node M could drop some packets and have later B report that it has received
them. Because traffic is aggregated, B could report that those packets are
part of the packets destined to itself, so that neither M nor B are detected
as faulty. Only Π2 and Πk+2 are resilient to collusion (up to k consecutive
colluding nodes), because they compare traffic summaries not only considering
a node and its neighborhood, but also for longer paths.

The main challenge that we will address in this thesis is to find a solution
that provides global fault localization, does not require path knowledge and

19

is resilient to false accusation and collusion, a combination of characteristics
that is not available in the previous solutions proposed in the literature.

Table 2.3 summarizes the solutions proposed in the literature. For every
solution, it notes how accurate the algorithm pinpoints the failure, whether or
not it requires network stack changes and knowledge about the path a packet
follows, if the traffic summaries kept relate to a single flow from source to
destination (S-D) or aggregates all the traffic. It also notes in the cases where
collusion or false accusation can happen whether the solution is resilient to
them; and finally whether the findings are kept locally, shared with the rest of
the network or the faulty node isolated by disconnecting from it.

2.3 Traffic Validation mechanism

Once the summaries have been shared, to decide whether a node, link or path
is faulty by comparing the information collected. Most of the mechanisms for
traffic validation are based in the conservation of the flow principle, which
states that the traffic flow entering a network area should be approximately
the same as the traffic flow leaving it, without considering the traffic destined
to or originated from that network area (see Figure 2.2). Some solutions based
on conservation of the flow are WATCHERS [10] or DynaFL [61], which take
all the counters (or sketches) related to a single node and determine if it is
dropping packets based on the difference between the incoming traffic and
outgoing traffic. Of course, because there are some reasons under which it is
licit for a router to lose packets, e.g. queue overflow or physic medium losses;
in such cases we expect conservation of the flow techniques to accommodate
some margin on the detection so that such losses are not detected as faulty.

Figure 2.1: Example of a network

20
A

c
c
u

ra
c
y

C
h

a
n

g
e
s

S
u

m
m

a
ry

C
o
llu

sio
n

A
c
c
u

sa
tio

n
P

a
th

S
c
o
p

e

S
te

a
lth

p
ro

b
in

g
P

ath
7

S
-D

–
–

3
L

o
cal

S
e
c
u

re
S

k
e
tch

P
Q

M
P

ath
3

S
-D

–
–

3
L

o
cal

S
e
c
u

re
sa

m
p

lin
g

P
ath

3
S

-D
–

–
3

L
o
cal

O
D

S
B

R
L

in
k

3
S

-D
–

3
7

L
o
cal

F
L

-P
Q

M
L

in
k

3
S

-D
–

3
7

L
o
cal

N
A

C
K

N
o
d

e
3

S
-D

–
7

7
L

o
cal

P
A

A
I-1

L
in

k
3

S
-D

–
3

7
L

o
cal

H
a
sh

b
a
se

d
d

e
la

y
e
d

sa
m

p
lin

g
N

o
d

e
3

S
-D

–
7

7
G

lob
al

H
L

A
L

in
k

7
S

-D
–

3
7

G
lob

al

B
y
z
a
n
tin

e
to

m
o
g
ra

p
h
y

L
in

k
7

S
-D

–
7

7
G

lob
al

W
A

T
C

H
E

R
S

N
o
d

e
3

A
ggreg

a
ted

7
3

3
G

lob
al

D
A

M
O

N
N

o
d

e
3

A
ggreg

a
ted

7
3

3
G

lob
al

D
y
n

a
F

L
N

eigh
b

orh
o
o
d

3
A

ggreg
a
ted

7
3

3
G

lob
al

C
a
tch

N
o
d

e
3

–
7

7
3

L
o
cal

d
iscon

n
ect

χ
N

o
d

e
3

A
ggreg

a
ted

7
3

3
L

o
cal

d
iscon

n
ect

Π
2

L
in

k
3

A
ggreg

a
ted

3
3

7
G

lob
al

T
a
b

le
2
.3:

C
h

aracteristics
of

d
issem

in
ation

solu
tion

s

21

Figure 2.2: Conservation of the flow principle

In some cases, because not all the packets have the same relevance, the faulty
routers may drop selectively traffic so that the drop percentage is within the
expected natural loss rate, while maximizing the damage. To solve this issue,
more complex statistical methods have been proposed. Mizrak et al. [36]
propose a model to predict congestion based on traffic rates and buffer sizes,
which allows estimating the probability of loosing each packet. Shu and
Krunz [51], because they have information about which packets were lost, use
the correlation between those losses to determine if the loss pattern corresponds
to normal operation or the router is faulty instead.

Though seemingly different, acknowledgement based solutions, like ODBSR [8]
or NACK [53], apply the same principle, just that instead of sharing the
monitored information once every interval, they share it continuously as a
response of the data traffic. But in the end, they estimate the percentage of
packet losses using a fingerprint (the acknowledgment) and expect it to be
below a threshold. For instance, ODBSR monitors end-to-end packet losses
and when delivery ratio goes below the acceptable rate (measured by counting
the acknowledgments received), it will start a detection mechanism that splits
the monitored path into halves to detect the failing link and assign blame to
a single link. But the principle is the same: most of the packets sent by the
source are supposed to be received by the destination.

22

2.4 Response

The final piece of the puzzle is how to react when a faulty node or link is
detected.

Some solutions, like AudIt [5], simply announce the discovered discrepancies,
so that they are further investigated by a human. Many other solutions
propose a more drastic solution: to remove the faulty link or node from the
routing fabric, like WATCHERS [10], RSR [17], DISA [28], Catch [32] or
NACK [53]. Others, incorporate the measurements to the routing protocol
as a part of its metric: ODSBR [8], CASTOR [19], AFC [33], EFW [39] and
EigenTrust-OLSR [44]. Finally, CONFIDANT [11] and DAMON [50] build a
reputation system with the measurements of the forwarding fault detector that
later interacts with the routing protocol to increase the routing robustness.

In the case of WCN, we believe that a simple mechanism as notifying the
owner of the faulty equipment and some network administrator should be
sufficient, and, therefore, we will not focus our attention in this topic in the
rest of the thesis.

2.5 Filling the gaps

In the rest of the thesis we will focus on each of the first three sub-problems.
For the traffic summary functions, we will study in depth the accuracy of
sketches compared with sampling, so that the network bandwidth consumption
can be minimized for some given constrains in terms of false positives and
false negatives. Then, for the part of traffic dissemination and distributed
detection we will propose a solution that can be deployed as an independent
daemon and does not require changes in the network stack. Moreover, it will
make no assumptions on the number of antennas used by the node, nor the
routing protocol used in the network. At the same time, it must be a solution
that is cheap in terms of CPU, memory and network bandwidth required,
but resistant to collusion and false accusation. Finally, we will propose a
mechanism that does not require time synchronization for traffic validation,
as many WCN nodes do not have a reliable clock.

Chapter 3
Contributions

This chapter presents the main contributions of this thesis. We discuss how
each contribution shows new light on the problem of detecting forwarding
faults and how they fill the gaps of existing solutions in the context of WCNs.
The contributions are later presented in detail in chapters 4, 5 and 6.

3.1 Tight bounds for sketches in Traffic Validation

Sketches have been proposed before [20, 61] as traffic summary function for
Traffic Validation because they are resilient to packet dropping, modification
and creation; and compared with sampling, they achieve more accurate predic-
tions for the same network bandwidth. However, none of the previous solutions
took into account that the digest of data packets, as a stream that is going to
be sketched has a very specific distribution: it is uniformly distributed, and
that with high probability the stream elements will be unique. So, the first
question that we asked ourselves was: Can we use this information to find
better bounds on the error of sketches when predicting the number of different
packets between two traffic flows? On Chapter 4 and paper [P2] we propose
three different random process for the three studied sketches, AGMS [4], Fast-
AGMS [16] and FastCount [55] that accurately describe the error made by the
sketches when estimating the number of different packets between two traffic
flows. The benefit of proposing a random process to describe the estimation
error is that it allows us to provide tighter bounds to the error, for instance,
using the bounds previously computed by Goldberg et al. [20], if the faulty
nodes drop 1% of the traffic and the non-faulty nodes 0.5% of the traffic

23

24

at worst and 107 packets are exchanged per interval, a Fast-AGMS sketch
needs at least 300 counters to guarantee that there will be less than 1% false
positives and negatives. However, using the random process that we propose,
we can optimize the size of the sketch to 128 counters, which implies that the
memory and the control overhead required to share the traffic summaries can
be reduced by more than half. In a wireless network, network bandwidth is a
scarce commodity, and therefore, having tools that allow us to optimize the
use of this network bandwidth is imperative.

Next, we focus on the implementation details: the sketch accuracy is usually
measured by the number of counters it has (i.e. its size) and the number of
packets that are being sketched, but there are a couple of implementation
parameters that may also influence its accuracy: (i) the size of the packet’s
digest and (ii) the implementation of the pseudo-random functions. So our
second question was: How does the digest size influence a sketch’s accuracy?
Do the different implementations for the pseudo-random functions affect the
sketch’s accuracy? And then, which implications do they have in the processing
time?

Regarding the digest size, from the processing time standpoint, the best would
be to keep it as small as possible, since using larger digests causes the pseudo-
random function to be more costly in terms of computation; specially if we
require operations of numbers bigger than the processor word size. But on the
other hand, as Chapter 4 shows, using a digest too small will cause too many
collisions, causing a bias that is proportional to N2. Our recommendation
respect the digest size is to use at least 32 bits in general, and if the number of
packets being estimated goes over one million, use 64 bits. In any case, because
the number of packets being estimated is the number of packets dropped, it
will rarely reach that limit.

On the other hand, we found that every tested pseudo-random function
provides the same error distribution, and therefore, even though FastCount
proposes to use a 4-way hash function, a 2-way hash function is enough in
the context of Traffic Validation. Same for the ξ functions, using BCH3 is
enough. This simplifies the implementation of the pseudo-random functions
and also provides better processing time, since 2-universal random functions
are faster to compute than 4-universal ones.

25

Our final concern regarding traffic summary functions, is that all the work
done related to measuring their accuracy was based under the assumption that
the number of packets per interval is fixed. However, if the network area being
monitored is not a path, there is no way of ensuring the number of packets
that there will be on each interval, because nodes do not have a unique view of
the traffic going through the network area. In such situations, the interval will
be determined by time and not number of packets. In such situation, because
we are not interested in the total number of packets dropped (or modified, or
created), but rather the proportion of packets that have been dropped, there
are two possible approaches that can be taken: (i) first, we can estimate both
the number of packets being dropped and the total of number transmitted
using the sketches (we will name this approach proportion); or (ii) second,
we can only estimate the number of packets being dropped, and share the total
number of packets being transmitted using an additional counter (dropped).
So the natural question that arises is: Which approach will provide more
accurate results? And how does the standard error of proportion change for
different sketch sizes and estimated values?

First, we find that the standard error of the prediction using the proportion
decreases with the

√
size, as for the dropped approach, but its relation with

the number of dropped packets is not lineal as for dropped, but proportional
to p∗

√
(1−p), because there is a correlation between the error on the estimation

of the dropped packets and the transmitted packets. The consequence is that
dropped will be a more reliable estimation when the percentage of dropped
packets is below 50%, and viceversa. And because, the number of dropped
packets for non-faulty nodes will be well below 50%, on the cases that the
detector will have more trouble detecting faulty routers, will be when their
drop probability is close to that of the non-faulty ones, and therefore, using
the dropped approach will be preferred.

3.2 KDet: a distributed detection protocol

Our next contribution relates to the traffic summary dissemination and dis-
tributed detection protocol. As we have seen in Chapter 2, in the case of
WCNs, our goal is to provide a distributed solution that:

26

• Detection results are available globally, not only to the source and
destination of a traffic flow.

• Does not rely in overhearing, because nodes may have several antennas.

• Does not require a specific routing protocol, in specific, it does not
require path knowledge.

• Is resilient to false accusation and collusion.

In Chapter 5, conference paper [P4] and journal paper [P3] we propose KDet,
a detection protocol that satisfies all the previous requirements. KDet is
a detection protocol based on boundaries, i.e. a set of nodes that act as
a boundary for the area being monitored (the core) and that assess their
behavior as faulty or not. It works in a distributed fashion, so every node
belongs to several boundaries and cores, so it is at the same time monitoring
and being monitored.

The main challenges while designing KDet were:

No false negatives How can we ensure that a faulty core cannot avoid being
detected as faulty?

No false positives How can we prevent false accusations? That is, how can
we make sure of the authenticity of the boundary reports and avoid that
non-faulty nodes are detected as faulty?

Completeness How do we determine which cores need to be monitored to
ensure that the detection protocol is complete? That is, if there is a set
of faulty nodes F , how can we ensure that they will be monitored and
detected?

To ensure that a faulty core will be detected as such, KDets relies on robust
flooding [41] within the core to share the reports of its boundary nodes which
are signed to avoid modification. At the end of the interval, if a boundary
node does not have all the traffic reports from its fellow boundary nodes, or
the traffic reports are not consistent (e.g. they do not satisfy the conservation
of the flow), their verdict will be to suspect the core. If during the next
intervals the boundary of that given core does not change, the core will be

27

detected as faulty. Because a faulty core has no way of modifying its boundary
reports, it does not matter what it does, that it will be eventually detected,
or disconnected from the network.

Then, to prevent false accusation, KDet involves the nodes in the core in the
detection process. While the core nodes are robustly flooding the reports
that relate to themselves, they compare these reports with its local traffic
summaries. If there is a discrepancy between the report and the local traffic
summaries, the core node will disconnect from the boundary node sending false
reports, effectively removing it from its boundary, and therefore, removing
that faulty node from the detection process.

Finally, KDet measures the strength of the adversary as the largest set of
connected faulty nodes, expressed by k. To ensure that any set of faulty nodes
will be detected even in the case of collusion, KDet requires that every set of
connected nodes of size k or smaller should be monitored. That way, we can
ensure that if there is a set of faulty nodes, there will be at least one boundary
composed of non-faulty nodes that will detect them as faulty.

3.3 Traffic Validation for misaligned summaries

Our final contribution relates to the fact that tight clock synchronization
in WCNs is difficult, because they rely on affordable equipment (so GPS or
atomic clocks are out of question), NTP cannot provide the desired precision
in this wireless environment and sometimes clocks are not properly configured.
As we have seen in the previous chapter, all the traffic validation mechanisms
proposed before, are either based on end-to-end measurements or require clock
synchronization, so that the traffic summaries shared are about the same
packets.

In Chapter 6 and conference paper [P1] we propose a traffic validation mech-
anism based on sketches, for the case of unsynchronized clocks: Misaligned
Traffic Validation (MTV). MTV relies on the fact that sketches can be used
not only to compute the second frequency moment of a data stream, but also
to estimate the intersection size between two different data streams. Consider
the simpler case, where we have a sketch that represents the incoming traffic
and outgoing traffic of a single node. If the period of time during which those
sketches are computed does not perfectly match, when comparing them, the

28

validation mechanism will assume that the node has dropped some packets
(those that were in the incoming sketch but not in the outgoing sketch) and
created some other packets (viceversa). MTV avoids making such assumption,
by comparing the incoming and outgoing sketch of each interval, with those
of the previous and next intervals using the intersection: to describe the
incoming traffic, we do not only consider the packets that are sketched on
the current interval incoming sketch, but also those that are present on the
next and previous intervals’ incoming sketches and that are in the current
outgoing sketch (obtained using the intersection). Similarly, we consider for
the outgoing traffic, not only the packets sketched on the outgoing sketch for
the current interval, but also those that intersect with the incoming sketch
on the previous and next interval outgoing sketches. By using this approach,
we can obtain a more reliable validation mechanism when the clocks are not
synchronized at the cost of using larger sketches, so that the intersection size
can be computed accurately.

Chapter 4
Traffic Summary Functions

This chapter focuses on the study of different traffic summary functions. As
we have previously established, the network monitors need to summarize the
traffic seen towards and from the monitored nodes so that later summaries
can be shared to assess the behavior of the network area being monitored.
Depending on the way we summarize the traffic, the accuracy and strength
of the detection protocol will vary. For instance, if we simply count the
number of packets that enter and leave the network and later compare such
counters [10], we will have a very accurate detection protocol, but it won’t be
very strong, since a faulty network can fool the detection protocol by simply
corrupting the packets. A stronger summary function is to select a sample
of the packets and keep its digest, later we can compare the set of digests to
determine the behavior of the network [20, 60]. Because we keep a digest for
the packets, now the detection protocol is robust against packet modification,
but because the digest is only kept for a proportion of the packets it will not
be as accurate. As we can see, characterizing the accuracy achieved by the
traffic summary function is fundamental, as it will determine the guarantees
given by a detection protocol, i.e. on one hand it will make it robust against
one type of failures and ineffective against others; on the other hand, it will
determine its accuracy in terms of false positive and negative ratios.

We have briefly mentioned in Chapter 2 how each of the proposed traffic
summary functions affect the strength of the detection protocol, so on this
chapter we will focus on studying the accuracy of two of the non-deterministic
traffic summary functions: sampling and sketching. In both cases, we will
consider that there may be two measurements of interest in the case of traffic

29

30

validation; either estimating the total number of different packets between
two traffic streams or estimating the proportion of such packets (e.g. the
number of different packets over the total number of packets sent). First, we
briefly describe how sampling works for traffic validation and characterize its
accuracy. Because sampling has been studied deeply before [20], we do not
go into much detail. Then, we study three different types of sketches, namely
AGMS, Fast-AGMS and FastCount [48], and how they can be characterized
as a random process when used to summarize traffic packets. Next, both
solutions are compared and studied in detail experimentally, and every factor
that influences its accuracy is listed and analyzed. To obtain the whole picture,
we include some numbers related to their cost, mainly in terms of CPU,
memory and network bandwidth consumption.

Overall, the goal of this chapter is to help in the process of designing, im-
plementing and deploying a detection protocol by giving all the necessary
information regarding the traffic summary functions that can be implemented.
Moreover, every piece of code used in this chapter is available online [30], and
can be used as starting point for a custom solution.

4.1 Sampling

Sampling is one of the simplest mechanisms for summarizing traffic. It consists
on keeping just a proportion of the traffic packets as a representation of the
whole traffic stream. This is usually achieved by obtaining a digest of the
packet, d = H(packet), and a function, Probe(d), determines whether the
packet should be sampled or not. A simple Probe function could be to compare
the digest with a threshold and store the digest if it is below the threshold,
drop it otherwise. However, because in such case, every node in the network
would know which packets are to be sampled and which are not, a faulty node
may behave differently depending on that fact. Therefore, the Probe function
should not only depend on the digest, but also on a secret key, unknown by
the monitored nodes, but known by the monitors, as they have to agree on
the same key so that the summaries are consistent. More details on how to
implement secure sampling and its accuracy bounds can be found in Goldberg
et al.’s paper [20].

31

0.00

0.05

0.10

−40 0 40 80

Error

P
ro

b
a

b
ili

ty

0

200

400

600

800

0 2500 5000 7500 10000

Packets

E
rr

o
r’
s
 9

9
%

 p
e

rc
e

n
ti
le

0

250

500

750

0.00 0.25 0.50 0.75 1.00

Sampling probability

E
rr

o
r’
s
 9

9
%

 p
e

rc
e

n
ti
le

Binomial distribution Experimental

Figure 4.1: Sampling error when estimating the total number of dropped
packets.

4.1.1 Mathematical approximation

When estimating the number of packets of a data stream, the distribution of
the estimation and the error follow a binomial distribution with the support
being x = {1 . . . N} ∗ 1/p and x = {1 . . . N} ∗ 1/p − N respectively; where
N is the number of packets and p is the sampling probability. On the other
hand, if we are estimating the proportion of packets dropped (or modified),
and the value being estimated is big enough, the error can be approximated
by a Gaussian variable centered in 0 and with deviation σ ≈

√
p̂ ∗ (1− p̂)/

√
n,

where p̂ is the proportion being estimated and n is the number of total sampled
packets.

Figure 4.1 shows the PMF of the error when estimating the total number
of packets different between two traffic streams and how the error declines
as the number of packets in the time interval increases (N) or the sampling
probability increases. Figure 4.2 shows instead the equivalent figures for the
case of estimating the ratio of dropped packets.

32

0.000

0.005

0.010

0.015

−0.04 0.00 0.04

Error

P
ro

b
a

b
ili

ty

0.00

0.25

0.50

0.75

0 2500 5000 7500 10000

Packets

E
rr

o
r’
s
 9

9
%

 p
e

rc
e

n
ti
le

0.0

0.1

0.2

0.3

0.4

0.5

0.00 0.25 0.50 0.75 1.00

Sampling probability

E
rr

o
r’
s
 9

9
%

 p
e

rc
e

n
ti
le

Theoric Experimental

Figure 4.2: Sampling error when estimating the ratio of dropped packets.

4.2 Sketches characterization

Sketches first appear in the context of relational databases as a solution to
estimate the size of joins in limited storage. A sketch is capable of summarizing
a data stream while still being able to provide accurate estimations of its
second frequency moment and the second frequency moment of the intersection
of two different streams. As data structure, a sketch can be seen as a matrix of
counters, with each row being a basic estimator, whose result is later averaged
with the other rows to improve its precision.

In the case of traffic validation, thanks to the fact that packets are mostly
unique [20], we can use sketches estimation of its second frequency moment
to measure the difference between the traffic entering and leaving a network
area, since the second and first frequency moment will be equivalent. Other
characteristics that make sketches ideal to the context of traffic summariza-
tion are that they can be updated online, that is, every time a new packet
arrives, and that they support linear combinations (so they can be added and
subtracted). In a simplified example, using Figure 4.3 as reference, sketches
for traffic validation would work as follows: let’s assume A, C and D are
monitoring a single node, B, by keeping an sketch that summarizes all the
traffic that has been sent to B and received by B. At the end of the interval,

33

Figure 4.3: Example network

A receives a copy of all the other sketches, and A sums all the sketches for the
incoming traffic and subtracts to the result all the sketches for the outgoing
traffic. Ideally, the resulting sketch should represent the empty sketch, i.e.,
its second frequency moment should be 0. Otherwise, its second frequency
moment will tell us how many packets are different from B’s incoming and
outgoing traffic. If we are interested in the ratio of different packets instead,
we also need to compute the second frequency moment of the incoming traffic,
so that we will have the number of sent packets and divide both estimations.
Alternatively, if we are monitoring a path from source S to destination D, the
source will sketch every packet sent to D, and the destination every packet
received from S. Then those two sketches will be compared as before. Finally,
if we are monitoring a network area, we will keep sketches at every neighboring
node, and only consider the traffic that is not destined or sent from the nodes
in that network area.

In the following subsections, we start by describing each sketch and proposing
a random process that has the same distribution for the estimation when
the stream elements being sketched are traffic packets (i.e. unique). We will
validate the proposed random processes on the following section and describe
the accuracy of an sketch as a function of its size and the value to be estimated.

As the reader has probably noticed, we use the same names for each sketch type
as Rusu and Alin [48], and we will do the same for the different pseudo-random

34

functions [47]. Other recurring parameters on the next sections will be the
number of packets being estimated, N , the number of columns, nc, and the
number of rows, nr.

4.2.1 AGMS Sketch

The AGMS sketch was proposed by Alon et al. [4] and it is inspired in the tug-
of-war game, i.e. each counter represents the result of a tug-of-war game, and
a ±1 4-wise independent variable (ξ)1determines on which team each packet
“plays”. When a new packet arrives, each counter is updated, simulating the
rope displacement on each assigned team:

ci = ci + ξi(e)

To estimate the second frequency moment we use:

F̂2 = 1
nc

∑nc
i=1 x[i]2

Which gives us an unbiased estimation with variance:

V ar[F̂2] = 2× (F 2
2−F4)
nc

To reduce the variance, several estimations are combined using the median,
reducing the variance of the error, as given by a combination of the Chernoff
and Chebyshev bounds [48]:

Prob(|F̂2 − F2| ≤
4√
nc
× F2) ≥ 1− 2−nr/2 (4.1)

Luckily, our data stream has very unique characteristics that will allow us
to provide an approximation to the probability mass function (PMF) of the
estimation, and therefore, find a better approximation for a given percentile
than the previous bounds. As we know, traffic packets are unique with high
probability and if we use a 2-way hash function with a sufficiently big output
space, so will be the digest generated [P1]. Considering that assumption,
after sketching N packets, the probability of obtaining k ‘+1’ from the ξ

1A ±1 function can be consider a special case of a hash function, where the output is
either +1 or −1 with the same probability. A k-wise hash or ±1 function means that it
guarantees that the result for any k keys is independent from each other [58]

35

function follows a binomial distribution with 0.5 success probability and N
trials. Therefore, the distribution of the counter value will also follow the
shape of a binomial distribution, but its support will be 2k −N , k ∈ [0, N].
When we square the value of the counter, negative values will overlap with
their corresponding positive value, doubling its probability, so the distribution
of the square value of the counter has the shape of half a binomial distribution,
with double probability, except for 0 (in case N is even), whose probability
does not double. The formula of its distribution is as follows:

f(c2;N) =

0.5N if c = 0 and N even

2×
(

N
(c+N)/2

)
× 0.5N if ∃k = c+N

2 such that k ∈ {0, 1, . . . , N}
0 otherwise

(4.2)

Finally, the PMF of the estimation will be the convolution of nc of such
distributions:

fAGMS(N̂ ;N, nc) =
∑
−→c ∈Rc

nc∏
i=1

f(c2
i ;N) : Rc =

{
−→c

∣∣∣∣∣ 1

nc

nc∑
i=1

c2
i = N̂

}
(4.3)

The PMF of the error will be the same, but with a different support: error =
N̂ −N . The error ranges from −N to N2 −N and the discrete step between
possible error values is 4/nc.

4.2.2 Fast-AGMS Sketch

The main drawback of the AGMS sketch is that when a new packet arrives,
every counter needs to be updated, which may slow down the sketch update
process for big sketches. To solve this problem, Cormode and Garofalakis
proposed the Fast-AGMS sketch [16] (which works as [14]). The Fast-AGMS
sketch improves the update time by updating a single counter on each row
of the sketch, chosen by a 2-way hash function, h; i.e., when a new packet, p,
arrives, the sketch is updated as follows:

ch(p)+ = ξ(p)

36

For the Fast-AGMS sketch, the second frequency moment is estimated as:

F̂2 =
∑nc

i=1 xk[i]2

Giving us again an unbiased estimator that has the same variance as the
AGMS sketch, and therefore, also the same theoretical bounds (formula 4.2.1)
if we combine several of them and average using the median.

To estimate the PMF of the Fast-AGMS’s estimation, we have to consider
that in this case, the number of packets affecting each counter is different, let’s
say ni. In this case, the PMF of the value of each counter has the same shape
as before, but now, it depends on the number of packets that were hashed
into that counter, ni, instead of the total number of packets. ni follows a
multinomial distribution, with each counter having the same probability of
being chosen, 1/nc. Putting all together, the distribution of the basic estimator
is:

fFAGMS(N̂ ;N, nc) =
∑
−→c ∈Rc−→n∈Rn

nc∏
i=1

f(c2
i ;ni) (4.4)

Rc =

{
−→c

∣∣∣∣∣
nc∑
i=1

c2
i = N̂

}
, Rn =

{
−→n

∣∣∣∣∣
nc∑
i=1

ni = N

}

As before, the error ranges from −N and N2 −N , but now the discrete step
between possible error values is 2.

4.2.3 FastCount Sketch

The last sketch studied, FastCount sketch, was proposed by Thorup and
Zhang [55]. The FastCount sketch proposes to increase by one a counter on
each row, using this time a 4-way hash function (h) instead of a 2-way hash
function to choose which one:

ch(p) = ch(p) + 1.

In this case, if we were to estimate F2 as before, we would end up with a
biased estimator so we need a more complex estimator:

37

F̂2 =
nc

nc− 1

∑
i∈[nc]

c2
i −

1

nc− 1
(
∑
i∈[nc]

ci)
2

The variance in this case is slightly higher:

V ar[F̂2] = 2× (F 2
2−F4)
nc−1

But for large values of nc the difference is negligible.

As for the Fast-AGMS, the PMF for the FastCount sketch will be intrinsically
related to the multinomial variable that determines the number of packets
hashed to each counter. But the challenge here is to properly determine the
support of the PMF. As shown in [54], the second moment estimation (or,
equivalently, N̂ in our case) can be expressed as:

N̂ = N +
∑
a6=b

vavbXa,b such that Xa,b =

{
1 if a ∼ b
− 1

nc−1 otherwise

And where, a ∼ b means that h(a) = h(b). In our case, because we assume
network packets to be unique, we can simplify the equation further:

N̂ = N +
∑
a6=b

Xa,b

The second term of the equation, the error, is determined by the number of
collisions, and the contribution of a packet, p, that colludes with other C
packets, is:

errorp = 1 · C − (N − 1− C) · 1

nc− 1

38

If the multinomial that determines the number of packets on each counter is
−→n , then we have ni packets colliding with other ni − 1 packets, and therefore,
the estimation in that case can be expressed as:

N̂ = N +

nc∑
i=1

ni ×
(

1 · (ni − 1)− (N − ni) ·
1

nc− 1

)

=
nc

nc− 1

nc∑
i=1

X2
i −

N2

nc− 1

Then, the PMF of the FastCount sketch is:

fFastCount(N̂ ;N, nc) =
∑
−→n∈Rn

N !

n1!n2! · · ·nnc!

1

ncN
(4.5)

Rn =

{
−→n :

nc∑
i=1

ni = N,

nc∑
i=1

n2
i =

nc− 1

nc
N̂ +

N2

nc

}

As for the other sketches, the error ranges between −N and N2 −N and, in
this case, the smallest difference between two possible values of the error is
2nc/(nc− 1).

4.3 Empirical Evaluation

Our next step is to characterize the error distribution of each of the three
sketches described and see if they match with the proposed PMFs. To do so,
on one hand we have implemented several functions to reproduce the PMFs
proposed in section 4.2; and, in the other hand, we have extended the code by
Rusu [46] to test the sketches with traffic capture (pcap) files. All the code
required to reproduce the results on this chapter can be found online [30].

Each experiment computes both the expected distribution and empirical
distribution of the estimation. The expected distribution is computed using the
proposed PMF when N was not too large and using Monte-Carlo techniques, as
otherwise the computing time in such cases was prohibitive. And the empirical
distribution is computed by initializing 100 sketches randomly and making

39

at least 100 predictions simulating the traffic summary process using a pcap
file. Because the used pcap files contain only the first bytes of each packet,
the missing bytes were generated randomly, but in any case, the important
information obtained by the pcap file is the moment a packet is transmitted and
its size, as the packet will be hashed, giving us a pseudo-random distribution
after that.

In our experimentation, we consider two different scenarios, a wired Internet
network, with high network bandwidth and pretty constant utilization; and a
Wireless Community Network, which has a low and variable network load. The
first scenario is represented by pcaps from the CAIDA dataset [12], whereas
the second uses captures from Guifi.net, one from a mesh router in qMp
Sants [45], and the other from one of Guifi.net’s proxies. These differences can
be clearly seen on Table 4.1.

CAIDA Sagunt Proxy

Duration 10.59 s 842 s 58.99 s
Packet rate ∼350 Kpackets/s 59 packets/s 168 packets/s

Bitrate 2120 Mbps 0.366 Mbps 1.52 Mbps
Mean arrival time 0.0028 ms 16.84 ms 5.95 ms

σ arrival time 0.0029 ms 97.73 ms 11.3 ms

Table 4.1: Characteristics of the traffic capture files

As mentioned before, using sketches for traffic validation allows us to measure
the difference between two different traffic flows, which using the Conservation
of the Flow principle [10], will allow us to determine the behavior of the
monitored entity. But we can make two different estimations: (i) the absolute
number of different packets between the incoming and outgoing traffic or (ii)
the proportion of different packets. We will address each case on the following
subsections, and, as we will see, there is actually a difference in the accuracy
between predicting one or the other.

4.3.1 Estimating the number of packets

In this subsection, we will focus on characterizing the error on the estimation
of the absolute number of different packets, i.e. between the incoming and
outgoing streams there will be a difference ofN packets, which will be estimated

40

by computing the second frequency moment of the difference between the
sketches that represent each traffic stream. Given that sketches support linear
combinations, for this scenario we do not need to emulate the incoming and
outgoing traffic streams, but just update the sketch with the different packets
between the traffic streams. The number of such packets will be referred
through this section as number of sketched packets or N .

When studying the accuracy of a sketch there are many variables that influence
it. First of all, the packets will be reduced to a digest of B bits. A digest
too small will cause collision between the sketched packets, and therefore
overestimating the number of packets. A digest too big will require pseudo-
random functions that accept a bigger input space and, therefore, will be
slower, i.e. more costly in terms of CPU. Then we have the pseudo-random
functions themselves. AGMS and Fast-AGMS require a 4-wise independent
±1 function (ξ) and Fast-AGMS and FastCount require a 2 and 4-way hash
respectively. In this section, we will study the impact on accuracy of choosing
an implementation or another for those functions, while later, in section 4.3.3,
we will see the impact they have on the CPU cost. Next, if we are averaging
the result of several estimators, using the mean or the median will affect on
the quality of the prediction. Which will be the best for the case of traffic
validation? And finally, the two evident variables that influence the accuracy
of the result, as predicted by their expected PMF, are the sketch size (number
of columns and rows) and the value being estimated.

Digest size
To study the effect of the digest size we have considered a sketch of 256 columns
and 1 row and measured the error on the estimation when the expected number
of different packets is 100. Figure 4.4 shows the experimental and expected
PMF of the error as a histogram with bins of similar size, so that the results
are comparable. As we can see, if we use digests of size 16 bits or more the
error is centered in 0 and the distribution can be properly estimated using
our proposed mathematical approximation. However, if we only take 8 bits,
the distribution is no longer centered in 0 since there are more collisions than
expected. A collision between 2 packets when creating their digest will cause,
from the sketch’s perspective, the same effect of having two instances of the
same element. When sketched elements are not unique anymore, we cannot

41

AGMS FAGMS FastCount

0.000

0.025

0.050

0.075

0.100

0 20 40 0 20 40 0 20 40

Error

P
ro

b
a

b
ili

ty

Estimation Experimental (8 bits) Experimental (16 bits) Experimental (32 bits) Experimental (64 bits)

Figure 4.4: PMF of the error for different digest sizes.

rely on the fact that F2 = F1, being F2 an overestimation of F1, as we are
using the square of the number of instances.

This is further investigated in Figure 4.5, that shows the bias of the estimator
as the number of sketched packets increases, for a sketch of the same charac-
teristics as before and digests of different sizes. As we can see, for digests of
8 and 16 bits, the tendency soon becomes proportional to N2, whereas for
32 and 64 bits the bias is proportional to N up to N = 105. We recommend
using digests with as many bits as necessary so that the output space of the
digests is at least three orders of magnitude bigger than the expected number
of dropped or corrupted packets in the benign case, so that the bias is kept
within the linear region. If the number of different packets is overestimated
on the faulty case, it is alright, because it will only further differentiate the
benign and faulty nodes.

Pseudo-random function
Next, we study the effect on the sketch accuracy of the different possible
implementations for the hash and ξ functions. For the ξ functions we consider
those proposed by Rusu and Dobra [47]: 3 and 5-wise independent BCH
schemes (bch3 and bch5 respectively), 3-wise independent extended hamming
(eh3) and 2 and 4-wise independent hash functions based on the Carter-
Wegman trick (cw2 and cw4). On the other hand, for the hash functions

42

~2

~1

1e−01

1e+02

1e+05

100 10000

Number of packets

E
rr

o
r

b
ia

s

Digest size

8

16

32

64

Figure 4.5: Bias of the estimation as the number of packets increases.

we will also consider cw2 and cw4 and tabulated hashing [55]. Figure 4.6
shows the PMF of the error using each of the proposed implementations for
the ξ function, for AGMS and Fast-AGMS sketches of size 16 by 16 and a
digest size of 32 bits, when predicting N = 10000. As we can see, every
implementation provides equivalent results in both of the sketches, so choosing
the best pseudo-random function will be a matter of their computational and
memory cost. For the hash functions (Figure 4.7), we can see similar results:
every hash tested follows the expected PMF.

Number of packets
Our following experiment studies how wide is the distribution of the error
of the sketch’s estimation as a function of the number of sketched packets.
Here we show how the 99 percentile of the absolute error increases with the
number of packet, but similar results are found for different percentiles [31]. In
Figure 4.8 we see the 99 percentile for sketches of 1 row and 256 columns and
a digest size of 32 bits when predicting different values experimentally and as
given by the proposed model, as well as the Chebyshev bounds and the bounds
by Goldberg et al. [20] for the Fast-AGMS. As predicted by the bounds, the
relationship is approximately linear, but we can predict with greater precision
the 99 percentile using the random process described in the previous section
than the known bounds.

43

AGMS FAGMS

0.00

0.02

0.04

−1000 0 1000 −1000 0 1000

Error

P
ro

b
a
b
ili

ty

Estimation

Experimental (bch3)

Experimental (bch5)

Experimental (cw2)

Experimental (cw4)

Experimental (eh3)

Figure 4.6: PMF of the error for different ξ implementations.

FAGMS FastCount

0.00

0.02

0.04

−1000 0 1000 −1000 0 1000

Error

P
ro

b
a
b
ili

ty

Estimation Experimental (cw2) Experimental (cw4) Experimental (tab)

Figure 4.7: PMF of the error for different hash implementations.

44

AGMS FAGMS FastCount

10

1000

100 10000 100 10000 100 10000

Number of Sketched packets

E
rr

o
r’
s
 9

9
%

 p
e

rc
e

n
ti
le

Estimation Chebyshev’s bounds Goldberg’s bounds Experimental

Figure 4.8: 99 percentile of the error vs. the number of packets

Number of columns
Similarly, Figure 4.9 shows the 99 percentile when varying the number of
columns. In this case, the relationship is approximately proportional to
1/
√

nc (1/
√

nc− 1 for FastCount), i.e. we need four times the number of
columns to reduce by two the 99 percentile of the error. Again, our proposed
random process predicts with great accuracy the 99 percentile of the error.
For example, if we use the scenario proposed by Goldberg et al. [20] (α = β/2;
τ = (β − α)/(β + α)), our solution predicts 128 columns are good enough,
instead of more than 1024 that the other bounds give us.

Average function

Before studying the effect of increasing the number of rows, we need to
consider whether is better to use the mean or the median to average each row
estimation. Figure 4.10 shows the PMF of the error for sketches of size 32 by
32 and an estimation of 10,000 packets. As we can see, the median produces a
biased estimation with a higher deviation, and therefore either the mean or a
trimmed version of the mean should be preferred. The results were consistent
for different sketch sizes and, for every sketch the mean provided the best
results in terms of bias and deviation [31].

45

AGMS FAGMS FastCount

10

100

10 100 1000 10 100 1000 10 100 1000

Sketch Columns

E
rr

o
r’
s
 9

9
%

 p
e

rc
e

n
ti
le

Estimation Chebyshev’s bounds Goldberg’s bounds Experimental

Figure 4.9: 99 percentile of the error vs. the number of columns

AGMS FAGMS FastCount

0.00

0.05

0.10

−2000 −1000 0 1000 2000 −2000 −1000 0 1000 2000 −2000 −1000 0 1000 2000

Error

P
ro

b
a

b
ili

ty

mean median trimmean

Figure 4.10: PMF of each sketch for a 32 by 32 sketch using different average
functions.

46

AGMS FAGMS FastCount

100

1000

10 1000 10 1000 10 1000

Sketch Rows

E
rr

o
r’
s
 9

9
%

 p
e

rc
e

n
ti
le

Estimation Chebyshev’s bounds Experimental

Figure 4.11: 99 percentile of the error vs. the number of rows

Number of rows

Figure 4.11 shows how the 99 percentile of a sketch of 32 columns is reduced
when the number of rows, i.e. the number of basic estimators, is increased. As
for the number of columns, the percentile decreases proportionally to 1/

√
(nr).

We used linear regression, to estimate the relation between different percentiles
and the standard deviation of each of the sketches (N/

√
2size for AGMS

and Fast-AGMS, N/
√

2nr(nc− 1) for FastCount) and found that they can be
approximated with great precision using a Gaussian distribution with the given
deviation and mean 0 [31], as long as the number of packets is relatively high.
Therefore, the AGMS and Fast-AGMS provide slightly better approximation
than the FastCount sketch when estimating the number of packets dropped
by a network area.

Sketch’s aspect ratio
Increasing the number of rows increases the sketch’s accuracy; however, it
also increases the cost in terms of memory and computational cost. Besides,
compared with increasing the number of columns, for FastCount and Fast-
AGMS and sketches of the same size, the one with more rows will be more
costly in terms of CPU, since it will have to update more counters (one per

47

100 packets 10000 packets

0.11

0.12

0.13

0.14

0.15

0.16

1e−01 1e+01 1e+03 1e−01 1e+01 1e+03

Aspect ratio (columns/rows)

E
rr

o
r’
s
 9

9
%

 p
e

rc
e

n
ti
le

Sketch type

AGMS

FAGMS

FastCount

Figure 4.12: 99 percentile of the error vs. the sketch aspect ratio

row); and in terms of network bandwidth, because, on average, counters will
reach a higher maximum value. Therefore, the question that arises is: what is
the ideal aspect ratio of the sketch?

Figure 4.12 shows the 99 percentile of the relative error of a sketch of size
1024 as its aspect ratio varies. As we can see in the figure, AGMS and Fast-
AGMS are not influenced much by the aspect ratio, but for the FastCount,
we need at least as many columns as rows to obtain better results. After
studying the results in more detail [31], we conclude that for the case of many
packets, a single row sketch provides the best compromise, since it has the
same accuracy than other aspect ratios, but better processing time and less
network bandwidth requirement. On the other hand, because when there is a
single row and just a few packets, the support for the error is just a small set
of values, so the percentile values will highly depend on the percentile itself,
so if we have some specific requirements, in some situations the single row will
perform better and in others worse.

48

4.3.2 Estimating the ratio of dropped packets

Usually, we will be more interested in the probability that a packet will not
be successfully transmitted through a network area, rather than the absolute
number of packets that differ between the incoming and outgoing flow. When
the network area monitored is a link or a path, monitors can exchange the
sketches when they reach a certain number of sent packets, making both
estimations equivalent. However, in the general case, a single node will not
know the total number of packets, and therefore, after sharing the sketches,
both the number of dropped (or modified) packets and the total number of
sent packets will need to be estimated. As we will see, under this second
scenario, the accuracy of the prediction is slightly different from the previous
case, since now we have to make two estimations and then divide them to
obtain the proportion of dropped packets. First, we study the effect on the
accuracy of the actual ratio of dropped packets and the total number of sent
packets. However, as mentioned previously, in the general case, monitors are
more likely to share their sketches based on a time bound, rather than on a
given number of sketched packets, since none of the monitors has a global
view of the total traffic for a given network area; thus, our last experiment
will compare the accuracy of each sketch for different time intervals and for
each of the given pcaps.

Ratio of dropped packets

In this scenario, we assumed that 104 packets were sent per interval and a vary-
ing proportion of packets were dropped. Figure 4.13a shows the 99 percentile
of the error of a 32 by 32 sketch. We compare two ways of estimating the pro-
portion of dropped packets, proportion and dropped. Proportion estimates two
different numbers: first the number of different packets (F̂2(input)−F̂2(ouput))

and then the total number of sent packets (F̂2(input)) and then divides them.
Dropped assumes that the total number of packets is known, and, therefore, it
only needs to estimate the number of different packets. This is equivalent to
the problem in the previous section. For the case of the FastCount, the number
of total packets could be obtained directly from summing all the counters in
a row for the sketch of the input’s flow. For the AGMS and Fast-AGMS, an
additional counter could be shared.

49

As we see in Figure 4.13a, the second method behaves as we showed on the
previous section: as the ratio increases, so does the error and the relation
is linear. However, if we must estimate both quantities, the error increases
at first, but then, as the rate is bigger than 60%, the error decreases. This
is due to the fact that the estimation of the number of different packets
and total packets becomes correlated as the proportion of dropped packets
increases, and therefore, the estimation is more precise; e.g. if the estimation
overestimated the total number of packets, it is more likely to overestimate also
the estimation for the number of dropped packets. Hence, if we are considering
drop probabilities below 50%, using the second method will provide more
accurate results; in contrast, if the drop probability is above 50%, the first
will provide more accurate estimations. In any case, the differences between
sketches is almost indistinguishable, though in almost every case the FastCount
sketch performed slightly worse than the others.

Number of total packets

Now we assume that the percentage of dropped packets is fixed, 10%, but we
increase the total number of packets sent. Figure 4.13b shows the 99 percentile
of the error when predicting the drop probability, for a sketch of 32 by 32,
and using the two strategies presented before. As expected, because the drop
probability is below 50%, dropped obtains better results. In both cases, we see
that the 99 percentile of the error grows until it stabilizes once the number of
packets is big enough. As before, the difference between the different types of
sketches is almost indistinguishable.

Time interval

But, as we said before, monitors will usually exchange traffic summaries after
some elapsed time, rather than after an specific number of sent packets. For
this case, as Figure 4.14 shows, we have studied the accuracy of each sketch
type on three different networks using the three mentioned pcaps assuming
a dropping probability of 10% and sketches of size 16 by 16. As we can
see, longer intervals lead to higher precision, since for short intervals, the
actual drop probability varies highly from one interval to the next one, so
intervals with higher drop probability will cause the higher deviation on the

50

0.00

0.03

0.06

0.09

0.00 0.25 0.50 0.75

Number of incoming packets

E
rr

o
r’
s
 9

9
%

 p
e

rc
e

n
ti
le

Method Dropped Proportion

SketchType AGMS FAGMS FastCount

(a) vs. ratio of dropped packets

0.000

0.005

0.010

0.015

100 10000

Number of incoming packets
E

rr
o

r’
s
 9

9
%

 p
e

rc
e

n
ti
le

Method Dropped Proportion

Sketch type AGMS FAGMS FastCount

(b) vs. the total packets

Figure 4.13: 99 percentile of the error

error (Figure 4.13a). This can be alleviated by averaging the estimated drop
probability through several intervals, though, as we showed in [P1]. The figure
is annotated with the average number of packets per interval, so to reach the
minimum value for the 99 percentile, we need at least as many packets so that
we will drop around 30 packets (e.g. in this case, around 300 sent packets). The
time interval will then vary for each network accordingly to their network load.

4.3.3 Cost analysis

In this last section, we will study the trade-off between accuracy and cost.
As we have seen, larger sketches will provide more reliable estimations at the
price of higher requirements in terms of memory, network overhead and CPU
consumption.

Memory and network overhead
To study the cost in terms of memory and network overhead, we have considered
the same scenario as in the previous experiments. We assume that the memory
required for a sketch will be proportional to its size, and each counter will take
64 bits. On the other hand, when transmitting the sketch over the network,

51

CAIDA Proxy qMp

38
190370 3700 36000 360000

2.9 8.8
17

84

16
37

62
290 590

0.000

0.025

0.050

0.075

0.100

0.125

0.001 0.100 0.01 0.10 0.1 1.0 10.0

Time interval (s)

E
rr

o
r’
s
 9

9
%

 p
e

rc
e

n
ti
le

AGMS FAGMS FastCount Sampling

Figure 4.14: 99 percentile of the error vs. time interval

we assume that it will be compressed so that every counter uses only the
necessary bits to code the largest value in the sketch.

Additionally, as baseline, we also measure the cost in memory and network
overhead that a sampling mechanism would have, depending on its sampling
probability. For sampling, we assume that the sampling digest has 32 bits [36].

Figure 4.15a shows the 99 percentile of the error for sketches of different sizes
and sampling with different probabilities. We used the CAIDA pcap, a time
interval of 5 ms and packets were randomly dropped with probability 0.1.
As before, we considered estimating the drop probability by estimating both
the number of dropped packets and the total number of packets (ratio) or
only the dropped packets (drop). In this case, the latter will provide better
estimations since the drop probability is below 50%. As the figure shows, the
difference in the accuracy between sketches of the same size is negligible, and
compared with sampling, sketches provide a better compromise when their
size is smaller than 16 by 16 or the sampling probability is below 50%. In any
case, the memory costs are always reasonably small, so, probably, it will not
be the critical variable when choosing the optimal size of the sketches for a
given network.

52

In comparison, Figure 4.15b, shows the 99 percentile of the error as a function
of the network overhead. And in this case, the difference between sketches is
bigger: for smaller sketches FastCount causes a higher network overhead, as
its expected biggest value will always be bigger than the one for Fast-AGMS
and AGMS, whose counters are not always increased by one, but randomly
increased or decreased by each packet. However, as the size of the sketch
increases, AGMS causes a higher overhead, because AGMS requires that every
counter is updated, not only one for row, and therefore, the largest value will
tend to be higher for AGMS.

Compared with sampling, in this case, sketches provide a better trade-off than
before thanks to its compression into less bits, and only when the sketches
are higher than 64 by 64, sampling provides a better compromise. As we can
see, the network overhead is considerable and in most of the cases will be
the decisive factor that will determine the size of the sketches (or sampling
probability if using sampling). To reduce the network overhead, we could
reduce the size of the sketches, obtaining less accurate predictions or increase
the time interval, delaying the detection. The best approach will depend on
the network.

The effect of the time interval is different for sketches and sampling. For
sketches, a longer time interval reduces the network overhead, because we
only need to send one sketch each interval; however, for sampling, a longer
interval does not reduce the network overhead, since it is determined by the
average network load and the sampling probability; but a longer time interval
produces better estimations than shorter intervals.

Figure 4.14, shows also the accuracy of sampling when adapting its sampling
probability so that it has a network overhead similar to the sketches’ one. As
we can see, for very short time intervals, sampling should be preferred, as even
using sampling with 100% sampling probability would cause less overhead
than sketches, but as the interval increases, sketches provide better results,
than sampling.

Processing time

The last cost that we have to consider is the cost in terms of CPU: the router
should be able to process the packets faster than they arrive. There are

53

0.5

32x32

64x64

(a) vs. memory requirements

0.5

128x12864x64

(b) vs. network overhead

Figure 4.15: Sketch accuracy

three main factors that influence the CPU cost: the digest size, the pseudo-
random function used as ξ and hash functions and the size of the sketch. The
experiments on this subsection measured the time it takes to execute each
operation on an Intel i5-3470 @ 3.20GHz, and assume that SHA256 is used to
obtain the packet’s digest.

In Figure 4.16a we can see the cost of executing the pseudo-random function,
depending on the digest size. As the digest size increases, because we can’t
perform arithmetic operations with a single machine instruction anymore, the
cost increases significantly. For hashes based on the Carter and Wegman trick,
because their need to be over a bigger prime, the cost increases from digests
of 32 bits, whereas for the other ξ functions, the increase begins for 128 bits.
Tabulated hashing is capable of obtaining really fast results for any digest
size. Results between the different ξ function, are quite similar for small digest
sizes, and only for bigger digest sizes, we see how bch3 outperforms the other
two. For hash functions, tabulated hashing produces the fastest results but it
requires more memory [55].

Figure 4.16b shows the cost of updating each sketch without considering the
computation of the packet’s digest. We assume a digest’s size of 32 bits and use
tabulated hashing as hash function and bch3 as ξ function. As expected, the

54

0

1

2

3

4

5

6

7

8

9

10

8 16 32 64 128

Digest size

T
im

e
 (

µ
s
)

CW2

CW4

Tabulated

BCH3

BCH5

EH3

(a) Pseudo-random functions

0.001

0.010

0.100

100 1000 10000

Sketch size
D

u
ra

ti
o

n
 (

m
s
)

Sketch type

AGMS

FAGMS

FastCount

(b) Sketch update

Figure 4.16: Measurements of the processing time

cost increases proportionally to the sketch size for AGMS and proportionally
to the number of rows for the FastCount and Fast-AGMS sketches.

Finally, Figure 4.17 shows the cost of updating a sketch of 16 by 16. For Fast-
AGMS, we assume that cw2 was used as hash function; however, tabulated
hashing could be used instead, and it would show the same cost for computing
the hash as in FastCount. In terms of CPU requirements, the best option
is FastCount using tabulated hashing, and its cost is comparable to that of
Fast-AGMS if we also use tabulated hashing. However, tabulated hashing
requires additional memory, e.g. for 32 bits hashing, each independent hash
required 512 KB; and for 64 bits, 3.5 MB. In the case were such additional
memory cost is not reasonable, the size of the sketch becomes relevant, and
AGMS with bch3, bch5 or eh3 can have a cost close to that of Fast-AGMS
and FastCount.

55

AGMS FAGMS (cw2) FastCount

9 10

109 407

10 10 10

16

35

10 9

28

3

0

25

50

75

100

bc
h3

bc
h5 cw

2
cw

4
eh

3
bc

h3
bc

h5 cw
2

cw
4

eh
3

cw
2

cw
4

ta
b

Random generator

D
u

ra
ti
o

n
 (

µ
s
)

Operation

Packet’s hash

Digest’s hash

Digest’s ξ

Figure 4.17: Time execution of each sketch update operation

56

4.4 Discussion

4.4.1 To key or not to key

A sketch is updated by first computing the packet’s digest using a hash
function, H, and then applying a set of hash and ξ functions over the packet’s
digest. It is imperative that the network area being monitored is not capable
of predicting an alternative packet that alters the sketch in the same way, i.e.
the sketch update process must be second pre-image resistant, otherwise, it
can change the packet with its alternative, effectively disturbing the traffic,
but avoiding detection.

There are two approaches to make sketching robust to second pre-image
attacks: we can use a keyed hash function and keep the key secret from the
monitored network area; or we can make sure that the cost of obtaining an
alternative packet is too high in terms of CPU and memory. The first approach
has been proposed by Goldberg et al. [21] and its benefits are twofold: on one
hand, we can use faster implementations for the hash function that computes
the packets digest, Hk, which as we have seen, is the bottleneck when using
tabulated hashing. On the other hand, we can also use smaller sketches, since
the adversary has no way of knowing beforehand how the sketch will look like.
The main drawbacks of this approach are that, first, monitors for a network
area need to synchronize and design a mechanism for obtaining the keys for
each period; and, second, that if we want the entities being monitored be
able to detect false reports, (i.e. be able to study the resulting sketches and
determine if they are truthful), they need to keep a copy of all the traffic for
an interval, and then, after the key is released, process all that traffic and
compute the resulting sketch to compare it with the reported sketch. This
requirement will be typically unreasonable in terms of memory, so if false
report detection is required, this approach is not viable.

For the second approach, we first need that H is second pre-image resistant,
since two packets with the same digest will update the sketch in the same way.
Using an unkeyed cryptographic hash function ensures that the hash is second
pre-image resistant, but if we limit the number of bits we take, we may still be
vulnerable to brute force attacks, e.g. if we only use 32 bits, we can fit packets
that produce any possible digest in 80 GB (assuming they are 20 B). Next,
this digest is going to be used to update the sketch, and if the sketch is too

57

small, the possible ways in which the sketch can be updated may be lesser, and,
therefore, ease finding a collision. For example, if we have a FastCount sketch
of 256 columns and one single row, simply knowing 256 precomputed packets
that hash each to one column will allow us to change any given packet for the
precomputed one that falls in the same column. In more detail, the number
of different ways a sketch can be updated is ncnr for FastCount, (2nc)nr for
Fast-AGMS and 2nc+nr for AGMS. So, the weakest point of the sketching
process will be the minimum between number of possible digests (2bits) and
the possible ways of updating an sketch; therefore, the bits of the digest, and
columns and rows of the sketch, should be chosen in such a way that the
cost of a brute force attack is disproportionate for the considered scenario.
In contrast, this approach allows us to have loose synchronization between
monitors as we will see later in chapter 6 and to detect false accusation easily
by having every node compute the sketch online. However, the sketch update
is slower because of the use of a cryptographic hash, longer digests and bigger
sketches; and more memory and network bandwidth is consumed because the
sketches are bigger.

Finally, we can apply a hybrid solution, using a key for the process after
obtaining the packet’s digest, for example by xor’ing the digest with a key or
using a keyed hash function [21], but still using a second pre-image resistant
hash. This will alleviate the memory constrains for the false report detection,
since now the monitored entity only needs to keep the packets’ digests, instead
of the whole packets and will also allow the use of smaller sketches, reducing
the network overhead. Still, the CPU cost of the initial hash function cannot
be avoided.

4.4.2 Choosing the proper sketch

As we have seen, there are many factors that influence the precision of the
sketches, on this section we will go through them and present a summary of
the results obtained in Section 4.3.

• Sketch type: in most of the cases, Fast-AGMS is the sketch to go for,
since it provides slightly better precision than FastCount and better
network bandwidth requirements. However, if the processing time is the
most critical factor, FastCount may be chosen instead.

58

• Sketch size: the size of the sketch will be determined by the detection
requirements and network characteristics, i.e. what is the expected
behavior of non-faulty routers? and how many false positives and false
negatives are we willing to tolerate? Using that information we can then
determine for a given percentile which is the max error that should the
estimation give us.

• Digest size: choosing the proper size is especially important when
we are estimating the proportion of packets, because in such case, the
estimation for faulty behavior is underestimated [31]. In any case, in
most of the cases, using a 32 bits digest size should be enough.

• Aspect ratio: the aspect ratio will depend mainly on whether we are
using keyed or not keyed functions. If we are using keys, a single row
sketch will give us a better trade-off between cost and precision; its
PMF will not fit as well the Gaussian approximation, but we can use
the proposed random processes to compute its PMF and give accurate
predictions about the error for a given percentile. On the other hand, if
we are not using keys, using square sketches will provide a more secure
sketching process, and a reasonably good sketch accuracy and processing
time cost.

• Pseudo-random functions: as we have seen, all the analyzed pseudo-
random functions provide the same accuracy. In terms of processing
time, tabulated hashing gives the best results, but it requires way more
memory. Depending on which is more important, memory or processing
time, cw2 or tabulated hashing should be chosen as hash function. For
ξ, bch3 provides the better results.

• Time interval: finally, choosing the proper time interval will allow
to fine tune the trade-off between network bandwidth requirement and
responsiveness. Moreover, the time interval should be small enough, so
that packet repetition is kept at bay.

As a final remark, between estimating the proportion of packets or the total
number of packets, we have seen that in the expected case (packet drop should
certainly be below 50%), the latter provides a better estimation, so it would
be always better to provide the additional counter with the total number of

59

packets per sketch; and the estimation method could be chosen using the
estimation itself, i.e. when the estimation is below 50%, estimate only the
total number of packets different and use the counter with the total number
of packets, on the other hand, when the estimation is above 50%, estimate
both numbers using the sketch.

4.5 Conclusions

This chapter describes AGMS, Fast-AGMS and FastCount as random processes
for the case of traffic validation. Thanks to this representation as a random
process we are able to provide tighter bounds on their error, allowing us a
dramatic reduction in the memory requirements for given specifications in
false positives and negatives. Furthermore, we have measured the effects of
each of the parameters involved on the sketch’s accuracy and its cost in terms
of CPU, memory and network overhead. One remarkable difference between
sketches for traffic validation and for other applications is that, because of the
characteristics of data traffic, we do not require pseudo-random functions as
strong as on the other cases, e.g. bch3 and cw2 perform just as well as bch5
and cw4. Another important remark is that when estimating a proportion
below 50%, knowing the total number of packets increases the prediction
accuracy. Also, we should notice, that even though for sketches of the same
size, AGMS tends to produce better results, when comparing the network
bandwidth required, Fast-AGMS outperforms AGMS, and so does FastCount
for bigger sketches.

We believe an important point to further study is finding a better function that
reduces a variable length packet into a fixed size digest. As we have discussed
in section 4.4, we require a hash function that is second pre-image resistant,
but using traditional cryptographic hash functions can be too costly in terms
of CPU for networks with high packet-rate, because they were specifically
designed to be sufficiently slow. Other hash functions should be studied, to
see which fits better for the problem at hand.

Chapter 5
Distributed Detection

In the previous chapter, we have described how monitors can summarize
the traffic that enters and leaves a network area and characterized their
accuracy and precision. In this chapter, we will address the next step to locate
forwarding faults: how the traffic information is shared among peers to be
able to detect those network areas that are faulty, as a single monitor does
not have complete information.

If we consider the example in Figure 5.1 it is clear that a single monitor
does not have complete information. Imagine that we want to determine the
behavior of the network area M . A, B, C and In the only case that monitors
could determine M ’s behavior would be in the context of wireless networks, if
M was a single node and its neighbors used overhearing techniques. However,
in the ase of WCNs, if we have supernodes, that is no longer the case, because
the use of several antennas, with different frequencies or orientation, as the
monitor will not be able to overhear all of M ’s traffic. Moreover, there are
some attacks to which overhearing is not resilient [28].

As a consequence, we need a dissemination mechanism that will share the
traffic summaries from each monitor, so that at least one entity has the global
view of the forwarding behavior of M , and can determine M ’s behavior.

As we will see in the following sections, the main challenges that a traffic
summary dissemination protocol needs to face are false accusation and collusion.
False accusation refers to the fact that some monitors may lie, and alter the
traffic summaries for M , causing M to be falsely detected as faulty. Collusion

61

62

Figure 5.1: Example network

is when M and some of its monitors (A for instance) collude, so that A will
send false traffic summaries, allowing M not to be detected despite of its faulty
behavior.

On this chapter, we propose a traffic summary dissemination and distributed
detection protocol, KDet, capable of handling false accusation and collusion
and that doesn’t require knowing the path a packet follows, so that it is
compatible with both distance-vector and link-state routing protocols. We
propose two different ways of implementing KDet and compare the memory
and network overhead of each implementation, and then propose a fish-eye
approach to reduce the network overhead of KDet, at the cost of delayed
detection.

5.1 Background

As mentioned in the introduction, and following the example in Figure 5.1, if
nodes A, B, C and D have only their partial view of the traffic going through
M , they will have to collaborate by sharing their traffic summaries in order to
determine whether M is behaving properly or not. The way they share their
traffic summaries is what we call the dissemination and distributed detection
sub-problem in forwarding fault detection, and it is the focus of this chapter.

63

Because distributed detection is not easy, some solutions propose to skip this
part of the problem altogether by means of using overhearing techniques [32,
39, 49]. Overhearing tries to make the most of the radio medium by actively
listening to the monitored nodes transmissions, making sure they retransmit
the packets sent to them. However, there are some cases when overhearing is
not well suited, e.g. if a node has several directional antennas, its neighbors
won’t be able to listen to all the traffic it is forwarding as they will only receive
the traffic sent by the antenna pointed towards them; the same would happen
if the node has two antennas, one operating at 2.4 GHz and the other at
5.0 GHz. Besides, there are several attacks that can be implemented to avoid
detection when using overhearing techniques [28], like sending packets to a
non-existent neighbor or without enough power. Considering these caveats,
forwarding fault detection in WCNs should not rely in overhearing techniques.

As we have seen in Chapter 2, the solutions proposed in the literature can
be classified in those that keep a summary per flow and those that aggregate
the traffic (by neighbor for instance) to reduce the number of summaries.
Because the number of summaries grows with O(n2), flow-based solutions
tend to keep their findings local, i.e. only the source of the traffic flow knows
which node or link is failing. Moreover, they usually rely on a routing protocol
that allows them to know the path between the source and destination, which
is not the case of WCNs, as they sometimes use distance-vector protocols.
Finally, flow-based solutions tend to assume that traffic flows have a stable
path, whereas in wireless networks, paths may fluctuate as the link quality
fluctuates.

There are two main challenges that need to be addressed when we consider
aggregated traffic and a global scope. First, the detection protocol needs to be
resilient to false accusation, i.e. if a node emits a false report about a neighbor,
the neighbor should not be detected as faulty. Second, the detection protocol
should be resilient to collusion, that is, a neighbor node should not be able
to claim that the packets dropped by the monitored node were received and
targeted for itself, so forwarding to the next hop is not expected.

The only approach presented in the literature that considers aggregated traffic
summaries and faces collusion are Π2 and Πk+2 [35]. But understanding why
the other are vulnerable to collusion attacks will help us to better understand

64

the solution proposed in this chapter, so follows an example that discusses
showcases them.

WATCHERS [10] has every node (N) monitor each of its neighbors (M) by
keeping a set of counters. Concretely, for every destination, N keeps track
of how many packets it has sent and received from M and how many of
those packets originate from M . Periodically, those counters are exchanged by
flooding them through the network. Once N receives all the counters from
M and its neighbors, it can start the detection process. First, it will do a
preliminary check by making sure that it has received M ’s counters and just a
single version of them, if M fails this preliminary checking, N will detect M as
faulty and as response, it will disconnect from M . Then, it will validate each
of M ’s links by comparing the counters announced by M and the node at the
other end. If a link fails this validation, it will be added to the check-set; and
N will expect M to disconnect from the other end-point of the link on the next
iteration, or it will detect M as faulty. The final check consists on comparing
the whole set of M ’s neighbors counters, using conservation of the flow, i.e. for
every destination M is expected to have received the same number of packets
it sends to others if we do not consider those that originate from M . The main
problem with WATCHERS is that because it only distinguishes packets by
destination, a faulty node may drop as many packets towards a destination as
it sends itself to that destination if it has a colluding neighbor. Consider the
network in Figure 5.2. Let’s assume that M and C are two faulty colluding
nodes and that there is a traffic flow from S to D of 100 packets and another
one from M to D of 50 packets. Node A will forward D’s traffic towards M ,
but M instead of forwarding S’s packets, drops half of them. During the
reporting period, M will announce that through its link to C it has sent 100
packets destined to D, and none of them were originated from itself, C, because
it is also malicious will corroborate its story, saying it has indeed received
100 packets from C destined to D; and neither of them will be found guilty,
because none of the neighbors of C will keep enough information to remember
that part of those packets iare from M instead of from S. WATCHERS is
also vulnerable to other attacks described by Hughes et al. [22]. On the other
hand, WATCHERS is not vulnerable to false accusation because counters are
flooded through the network and if a node announces counters that are false,
the accused node will disconnect from it.

65

Figure 5.2: Example networks to showcase collusion

In a different manner, DynaFL [61] and χ [36] are also vulnerable to collusion.
Both of them propose similar approaches: every node M is monitored by its
neighbors, who keep traffic summaries of the traffic sent, S→M , and received
from M , SM→; in the case of DynaFL, a sketch, and a set of fingerprints for
χ. The most important fact about those traffic summaries is that they do not
include the traffic information about the packets destined to or originated from
M , so that they can be compared afterwards to decide whether M is behaving
properly or not. So let’s we consider the network in Figure 5.2, where node S
wants to send two packets to D (p1 and p2), but M drops them and there is
an additional packet from another side of the network destined to M (p3). In
this situation, the traffic summary in A regarding the traffic sent to M will
only consist of p1 and p2, because p3 is destined to M . If C is a colluding
node, it could report that it has actually received p1 and p2 “pretending” that
they were destined to itself (remember that the summaries are a sketch or
hashes of the packet, so no information about the destination is included, so
C cannot be found out), effectively helping M to avoid collusion. At the same
time, C is not found faulty because M doesn’t report p1 and p2 in S→C , as
if those packets were destined to C. The fact that traffic summaries have
aggregated information instead of per flow information is what allows M and
C to collude to avoid detection.

The difference between DynaFL and χ is who performs the actual detection.
In DynaFL, traffic summaries are collected by a central trusted authority,
who compares and then determines which nodes are faulty. Because S→M

and SA→ are not comparable as they refer to different subsets of traffics (one
includes p3 and the other doesn’t), one could see how a malicious node could

66

lie, and the central authority wouldn’t be able to discern whether a node is
falsely accused or it is faulty. DynaFL solves false accusation by accusing the
whole neighborhood (i.e. including the reporter and reportee) instead of only
the node being monitored, so that if A sends a fake traffic summary about B,
it will also be part of the nodes detected as faulty).

χ proposes a different approach that solves false accusation without the need
of losing precision on its detection. In χ every neighbor will send its traffic
summaries to the other neighbors through the node M being monitored,
which allows M to make sure those are the expected traffic summaries by
comparing them with a local version and disconnecting from nodes that are
falsely accusing M . Finally, when the neighbors receive all the summaries,
the behavior of M is examined by the neighbors themselves. The paper does
not go into further details about how that information is later shared with
the rest of the network nodes, but in any case, as long as the neighbors are
able to detect the faulty nodes, they could disconnect from them and prevent
them from disrupting the network.

Going back to Πk+2 and Π2, they propose to monitor all monitors all the path
segments of length 3 to k + 2 (where k is the maximum number of adjacent
faulty routers in the network), either just by the end-points (Πk+2) or by
every node in the path (Π2). Πk+2, detects the whole path segment as faulty
when their traffic summaries are not consistent, and by including the reporters
themselves as part of the path segment, false accusation is avoided. In Π2,
false accusation is solved by using consensus among all the nodes in the path.
In addition, by monitoring every path segment of the given lengths, any set
of faulty routers will be covered by one of the monitored paths and therefore
detected. The main drawback of this approach is that a node needs to know
the next k + 1 hops a packet will follow to include it in the proper summary.

In summary, several solutions have been proposed to detect forwarding faults;
however, none of them are capable of solving the problems of false accusation
and collusion of several faulty nodes, except Πk+2 and Π2. Our work presents
a solution that covers false accusation and collusion, but in contrast with
Πk+2 it does not require path knowledge. Additionally, because KDet is path
independent and a data-plane solution, it can be deployed as an independent
daemon on the routers without the need for modifying existing network
processes.

67

5.2 Problem statement

KDet’s goal is to solve the problem of forwarding fault detection under the
assumption of a reliable traffic validation function. As a failure detector,
KDet’s correctness can be expressed in terms of accuracy and completeness.
The definitions of accuracy and completeness we use are based on those
presented by Mizrak et al. [34]:

• a–Accuracy : A failure detector is a-accurate if whenever a correct router
detects a set of routers as faulty (S), then, there is at least one router (r)
in S that is faulty, and |S| ≤ a.

• a-Completeness : A failure detector is a-complete if, whenever a router r
is faulty, then, eventually all correct routers will suspect a set of routers
(S) such that r ∈ S and |S| ≤ a.

Additionally, the goal of KDet is to provide such solution in the context of
WCNs, and, therefore, their characteristics must be considered when defining
KDet. For instance, Guifi.net is a large network with over 30,000 operational
nodes, born in the Osona area and currently extending through Spain and
beyond. Guifi.net uses BGP for inter-areas routing and a mix of several
routing protocols (OSPF, BMX6, and OLSR, among others) for intra-areas
routing. Another example is FunkFeuer, a smaller WCN with around 600
nodes deployed in seven regions of Austria. There, the mesh backbone relies
solely on OLSR for routing. Both of them commonly feature the use of
supernodes: nodes that group together several devices and antennas to have a
broader reach. Therefore, KDet:

• Cannot rely on a given routing protocol, i.e. should be based on data
traffic, not control traffic.

• Must consider nodes with several antennas.

• Must scale up to thousands of nodes.

68

Figure 5.3: Examples of cores and boundaries

5.3 System Model

In this section, we introduce some concepts that will be used through the
rest of the chapter, the assumptions that have been made and why they are
reasonable, and we conclude with a list of assumptions.

5.3.1 Network model

We assume that the networks on which KDet runs are similar to WCNs, so no
assumption is made regarding the network routing protocol, and nodes may
have one or several antennas. However, we assume that only bidirectional
links are considered, which is already implicit for the vast majority of routing
protocols in WCN (OLSR, BMX6, etc.), which discard unidirectional links. We
also assume that adjacent nodes agree on the traffic they have exchanged, which
is reasonable given that 802.11 acknowledges received packets for unicast traffic.
In KDet every router takes both the role of monitor and suspect. Monitoring
works by defining a set of connected routers that are being monitored (the
core) by a group of monitors (the boundary). In KDet, the boundary of a core
is the set of nodes that the core is directly connected. Figure 5.3 shows for
the same network some cores and boundaries as example.

We also assume the existence of three supporting services provided by the
network in a reliable way. First, we assume the presence of a public-key infras-
tructure, more specifically a mechanism to verify the authenticity of KDet’s
messages. This is easily achieved in a WCN, as they could obtain a certificate
when they join the network or, alternatively, a lightweight mechanism could
be SEMTOR [37], which is part of the experimental BMX7 routing protocol,
developed as an evolution of BMX6, and used in several WCNs. A reliable

69

neighborhood discovery mechanism must exist, something like the connec-
tivity maps used on several WCNs [6]. As a side note, keeping an updated
vision of the neighborhood is easier than maintaining updated path informa-
tion [29]. Finally, for the sake of simplicity, we also assume the existence of a
set of trusted authorities (TA) responsible for collecting KDet’s reports
and making them publicly available. This role could be assigned to network
monitoring servers (e.g. graph servers in Guifi.net) and we assume that every
node in the network is capable of communicating securely with those TA that
are responsible for monitoring its behavior. Possible ways to implement the
communication mechanism with the TA are the intrusion-tolerant overlay by
Obenshain et al. [38] or using the spanning tree proposed by Zhang et al. in
DynaFL [61].

Finally, we make two assumptions about timing: there is a known bound for
the packet delay between two network nodes, and network changes (e.g. a
node joins the network) happen on a larger time scale than the protocol’s
convergence, which is reasonable because membership changes in a mesh
network are infrequent.

5.3.2 Threat model

In our threat model. we consider two different type of faulty nodes: t-faulty (t
as in traffic) and p-faulty nodes (p as in protocol). A t-faulty node misbehaves
in the traffic forwarding process, e.g., it may drop or corrupt packets instead
of forwarding them. A p-faulty node does not participate properly in the
detection protocol; for instance, it could provide false traffic summaries or
simply not participate in the protocol. A faulty node is either p-faulty, t-faulty
or both; and a core or boundary is p-faulty, t-faulty or faulty when at least
one of its nodes is p-faulty, t-faulty or faulty, respectively.

No assumptions are made regarding how p-faulty nodes participate in the
detection protocol. For instance, they may send false traffic summaries to
avoid the detection of a colluding node, or corrupt the reports instead of
flooding them.

As Mizrak et al. [34], we measure the strength of the adversary as the largest
set of connected faulty nodes, expressed by k. For example, in Figure 5.2,
k = 2.

70

Because the failure detector is defined in terms of intervals of time, we assume
that the misbehavior of faulty routers lasts long enough to be detected.

5.3.3 Traffic Validation function

KDet is a distributed detection algorithm independent of the mechanism used
to summarize and validate traffic. Still, to achieve detection we need a traffic
summary function and a validation mechanism for network areas. We will
use S(·) to represent that summary function and S to represent the summary
itself. If there is more than one summary involved, we will use S←l

traffic for the
summary of some traffic being sent through link l (and S→l

traffic would be the
summary of the received traffic). Depending on the implementation strategy
(Section 5.6), it should be possible to add and subtract traffic summaries.
Luckily many summary functions have defined + and − operations, such as
sketches [48, 20, 61], counters [10], fingerprinting [36] or sampling [20]; so they
can be used for KDet. Moreover, we assume that traffic summary functions
are second-preimage resistant, i.e. faulty nodes cannot modify the packets in
such a way that they would produce the same resulting summary.

For traffic validation we assume that there is a validation function, V(Sin, Sout),
that evaluates a core given the summaries of the traffic entering and leaving
that area. V equals true when the behavior of the core is as expected and false
when it is under-performing. We assume that whenever there is a t-faulty node
in the evaluated core the validation function will classify it as faulty (i.e. V =
false). Most solutions proposed in the literature are based on the conservation
of the flow principle, i.e. traffic flow entering a network area should be
approximately the same as the traffic flow leaving it, without considering the
traffic destined to or originated from that network area [10, 61, 21]. Mizrak
et al. [36] proposes a validation function based on the probability of losing a
packet based on the node congestion, as estimated with the traffic rate and
buffer size. Shu and Krunz [51] use the correlation between packet losses to
determine if the loss pattern corresponds to normal operation or the router is
faulty instead.

5.3.4 Summary of assumptions

In summary (and for future reference), the assumptions made are:

71

1. Bidirectional links that agree on the traffic exchanged.

2. Public key infrastructure.

3. Neighbor discovery mechanism.

4. Trusted Authorities reliably connected with monitor routers.

5. Known bound for packet delay.

6. Misbehaving behavior is long enough to be detected.

7. Summary function is second pre-image resistant.

8. There is a validation function that properly detects t-faulty behavior.

5.4 The KDet detection protocol

KDet implements a detection protocol that monitors a set of nodes from its
boundary with the rest of the network. KDet’s main goals are that if the core
is faulty, the boundary can detect it, and if the boundary falsely accuses the
core, the core can detect that. This is achieved by designing KDet to satisfy
two principles:

Detection If the core is t-faulty and there is no p-faulty node in the boundary,
the core is detected as faulty.

No false accusation If the core is not faulty, then it is never detected as
faulty.

The first principle is enforced through the boundary protocol and the second
principle is attained by detecting false accusation through the core protocol
and delegating detection to the coordinated detection phase.

5.4.1 Boundary protocol

The goal of the boundary protocol is to determine the forwarding behavior
of the core. This is achieved by, first, monitoring the traffic entering and
leaving the core and, later, using the traffic validation function to test the

72

core’s behavior. More formally, every node in the boundary monitors each
link (i) with the core and keeps a summary of the incoming traffic.

S→i
core(T) = S (trafficin(T)− trafficto(T))

and a summary for the outgoing traffic:

S←i
core(T) = S (trafficout(T)− trafficfrom(T))

Where trafficin is the traffic sent through link i during period T ; trafficto is
the part of that traffic destined to nodes in the core. Similarly, trafficout is
the received traffic from link i, and trafficto is the part of that traffic whose
source is a node in the core.

At the end of the period, each boundary node creates a report with the traffic
summaries and a nonce, signs it, and shares it with the rest of the boundary
nodes by robustly flooding [41] it through the core:

R(T) = signed(S→i
core(T)∀i ∈ links, S←i

core(T)∀i ∈ links, T)

After waiting a reasonable amount of time, each node expects to have the report
of every other node in the boundary. The timeout can be easily computed
as there is a known bound for the network delays (5). After that timeout,
if any report is missing, or its signature is not valid, the core is suspected.
Otherwise, the boundary node evaluates the behavior of the core using the
validation function:

Vcore(T) = V
(∑
∀i
S→i

core(T),
∑
∀i
S←i

core(T)

)
Then, every node emits its verdict by sharing with the corresponding TA a
signed core evaluation, which consists of Vcore(T), a bitmap indicating which
reports have been received (received reports) and a nonce:

V(T) = signed(Vcore(T), received reports, T)

5.4.2 Core protocol

In parallel, nodes in the core look for p-faulty nodes on the boundary by
checking the reports and core evaluation, and disconnect from nodes detected
as p-faulty. A correct boundary node behavior is characterized by:

73

1. There is a single and consistent report for each interval.

2. Vcore(T) is consistent with the exchanged reports.

To assess the behavior of a boundary node B, every node in the core C,
connected to it (via link i) will go through the steps that follow:

1. At the end of the monitoring interval, C expects a report from B. In
case there is no report, its signature is not valid, or there is more than
one version, C will consider B p-faulty.

2. C will compare the traffic summaries in the report related to the link
i, S→i

core(T) and S←i
core(T), with its own local version, and if they are not

the same, B is considered p-faulty as well.

3. C compares the Vcore(T) announced by B with the one that results
from combining the reports that have been exchanged (available to any
node in the core because of robust flooding) and that received reports
announces the summaries that C has sent to B as received (because of
robust flooding, C knows about all the reports that have been sent to
B). Again, if the results do not match, B will be considered p-faulty.

4. If in any case B is considered p-faulty, then C disconnects from it.

5.4.3 Coordinated detection

At the end of each interval, the TA gathers V(T) for each core from every
node in the boundary. V(T) consists of a bitmap indicating which reports
were received, received reports and Vcore(T) . If there is any missing report
or Vcore(T) = false the TA will add the core to the list of suspected cores
(core ∈ suspected(T)). Then, if in the next intervals, the core is still suspected
and every core node is still connected to the same nodes in the boundary, the
core is detected as faulty (core ∈ detected(T ′)). Formally:

core ∈ suspected(T1) ∧ core ∈ suspected(T2) ∧
T1 < T2 ∧ boundary(core, T1) ⊆ boundary(core, T2)

⇒⇒⇒ core ∈ detected(T ′)

74

Where boundary(core, T2) ⊆ boundary(core, T1) implies that for every link
existing between the core and the boundary at time T2 the same link also
exists at time T1.

5.4.4 Core and boundary selection

Finally, to ensure that KDet is k-accurate and k-complete, we need to properly
define the cores (and its boundaries) that will be monitored. This is achieved
by monitoring every possible set of connected nodes of size ≤ k.

C = {c
∣∣ |c| ≤ k ∧ connected(c)}

5.5 Validation

To prove the correctness of KDet we will first prove that, no matter what
faulty nodes do, KDet’s principles are always satisfied or the faulty nodes are
disconnected from the network. Then, we will use those principles to prove
that KDet is k-accurate and k-complete under the assumption of k being the
maximum number of directly connected faulty routers.

We can re-state the first principle as:

core ∈ faulty ∧ boundary ∈ correct

⇒⇒⇒ ∃t
∣∣ core ∈ detected(t) ∨ core ∈ disconnected(t)

Because the core is faulty, if every traffic summary is available, the traffic
validation function will detect the core (assumption 8):

Vcore(T) = V
(∑
∀i
S→i

core(T),
∑
∀i
S←i

core(T)

)
= false

A core node could consider dropping some of the traffic summaries within a
report, but because the reports are sent signed, that would cause the signature
to be invalid and the report would be marked as not received. Therefore, core
nodes can either robustly flood the boundary reports as expected and become
suspected because Vcore(T) = false or not flood them and become suspected

75

because received reports will indicate that some reports were not received. In
any case, the core cannot avoid being suspected; and once the core is suspected,
its only way of avoiding detection is by modifying its boundary, so that:

boundary(core, T1) ⊆ boundary(core, T2)

That is, on each interval, it needs to reduce its boundary by, at least, one link.
However, because the number of links are finite, eventually the core will be
disconnected from the rest of the network, or detected.

Lemma 1: Eventually, every faulty core is either detected or it stops being
part of the network.

Similarly, the second principle is equivalent to:

core /∈ faulty⇒ core /∈ detected

A core can only be detected if it is first suspected and, moreover, its boundary
does not change; therefore, we only need to prove that whenever a correct core
is suspected, its boundary changes.

A core is suspected if there is a boundary node that claims either that not
every report was received or that reports were received but Vcore(T) = false.
In the first case, if boundary node B claims that it has not received the report
from boundary node B′, since the core is not faulty and we use robust flooding,
it can either be because B′ has not sent the report or because B is lying about
not receiving the report. In any case, core nodes will know which one of the
two nodes is p-faulty (steps 1 and 3 of the core protocol) and disconnect from
it, changing the boundary as expected. In the second case, because the core is
not faulty we know that the traffic summaries satisfy:

Vcore(T) = V
(∑
∀i
S→i

core(T),
∑
∀i
S←i

core(T)

)
= true

Thus, if boundary node B announces Vcore(T) = false, either one of the
traffic summaries has been modified or B is lying about Vcore. If a node is
misreporting the traffic summaries, the node in the core at the other end of

76

the link will notice it and disconnect from it (step 2 of the core protocol) . If
B is lying about Vcore, every neighbor in the core will detect the inconsistency
and disconnect from B (step 3 of the core protocol). Therefore, in any case
the boundary changes when the core is suspected and so a correct core is never
detected.

Lemma 2: A correct core is never detected as faulty.

Now, let’s consider the set of monitored cores as defined in section 5.4.4.
Thanks to Lemma 1, we can prove that KDet is k-accurate, since every time a
correct router detects a core as faulty (core ∈ detected) it has to be a faulty
core or it will contradict Lemma 2. Furthermore, given the definition of C,
such core will always have a size below k.

If the faulty nodes set of sets is F = {f1 ∪ f2 ∪ · · · ∪ fN} such that for every
fi, |fi| ≤ k and there is no link between fi and fj if i 6= j (because we
assume k). Then, there will be a core ci for every fi, such that ci = fi by the
construction of C and ci will have a correct boundary, because there are no
direct connections with any other fj . Therefore, applying Lemma 2, every fi
will be detected and since |ci| = |fi| ≤ k, KDet is k-complete.

5.6 Analysis

The previous section proves KDet’s accuracy and completeness; here we will
study what is the cost to achieve it. KDet’s cost is mainly determined by the
memory required to store the state of the protocol and the network overhead
required to share traffic summaries.

5.6.1 State size

The size of the state is determined by the number of summaries a node needs
to keep. Given a summary function that supports the + and − operations, a
node can follow two strategies to save the required summaries:

1. For every monitored core and every link, i, that connects to that core,
keep a summary, Si

core, of the traffic traversing the core.

77

2. Keep a summary of the incoming and outgoing traffic of every link,
Si = S→i − S←i; and additionally, for each link, the traffic related to
every node k hops away, Si

n = S→i
to(n) − S

←i
from(n), so that a core’s traffic

summary can be computed as:

Si
core =

∑
∀n∈core

Si
n (5.1)

For small values of k, the number of cores to monitor will be small, and
therefore, option 1 will be preferred. Conversely, as k grows bigger, the
number of cores grows exponentially, and 2 becomes a better choice. In further
detail, if N is the number of nodes in the network, and R is the maximum
number of links per node, then the number of cores a node monitors is bounded
by O(Rk) and the number of summaries O(Rk+1), since it can have up to R
links to a core. In contrast, the second strategy keeps a summary per link and
at most another per node, that is, the number of summaries will be bounded
by O(min(Rk+1), RN), since for every link there will be at most Rk or N
nodes at k hops. Compared with other strategies, Mizrak et al. [34] showed
that WATCHERS cost is O(R ∗N) and Πk+2, O(min(Rk+1, N)); therefore, if
we choose the optimal strategy based on our network, our solution will have a
tendency that is between WATCHERS and Πk+2.

5.6.2 Network overhead

In the decision on how to propagate the traffic summaries, a node could take
two similar options:

1. Robustly flood within every monitored core their traffic summaries for
each link connected to it (Si

core).

2. Robustly flood every summary maintained following the second strategy
presented before (Si for every link i and Si

n for every node n in its k-hop
neighborhood) with TTL = k + 1, so that they will reach every node
that is also a part of the boundary of a monitored core.

Again, we expect the same behavior: a smaller k implies less cores to monitor
and then strategy 1 causes less network overhead; whereas a larger k implies

78

an exponential growth in the number of cores and therefore strategy 2 is
more convenient. If we assume messages are flooded using broadcast, the
first strategy will cause, that every summary stored will be sent by its owner
and the k nodes in the core it relates to (overhead ∈ O(kNRk+1)). Instead,
the second strategy will broadcast every summary as many times as nodes k
hops away plus one, i.e. overhead ∈ O(min(N2R2k+1, N3R)). Equivalently,
for Πk+2 every summary is sent through the monitored path, which is at most
k + 1 hops long, so its overhead will be bounded by O(min(kNRk+1, kN2));
and for WATCHERS, every summary is flooded, so it will be sent by every
network node, O(R ∗N3). So as before, the solution proposed, if chosen to
optimized the overhead will be within the bounds of Πk+2 and WATCHERS.

5.6.3 Example

However, the given trends are only an upper bound to the actual space and
overhead consumed by the protocols. Figures 5.5a and 5.5b show which would
be the real cost of each detection protocol for the guifi.net Barcelones area
network (Figure 5.4) [1], a network with 113 nodes and 134 links; assuming
there is traffic between every pair of nodes.

Figure 5.5a shows the state size stored by each node for the guifi.net Barcelones
area [1] assuming summaries of 500B [61, 20], the lines show us the average cost
for each value of k. As expected, the cost of the first strategy is exponential,
and for any k bigger than 2 the second strategy already outperforms the first
one. The second strategy has a state cost that is just slightly worse than Πk+2,
and in any case always below 1MB, which sounds reasonable. Similar results
have been found for different network topologies [29].

Figure 5.5b shows the data (MB) to be sent through each link due to traffic
summaries for every protocol period. As we can see, here the strategy 1
outperforms 2 whenever k is smaller than 4, because the second strategy floods
traffic summaries indiscriminately, whereas KDet-1 only floods it within the
respective cores. We observe also that now the difference between KDet-2 and
Πk+2 is considerable because KDet requires flooding within cores, but Πk+2

does not, since its monitored units are paths. This difference in cost is caused
by the fact that KDet behaves independently from the routing protocol and
therefore cannot consider the complete path of a packet. For this case, we
can see that at most around 10MB of data needs to be shared per link, so for

79

Figure 5.4: State size

(a) State size (b) Network overhead

Figure 5.5: Protocols’ cost

80

instance if we want to keep the overhead below 250kbps, the interval should
be longer than 6 minutes. In any case, in a WCN, there will not be traffic
between every pair of nodes, but mostly between every node and a selected
proxy. In those cases, as we will see in the following section, network overhead
is kept well below the limits that we have shown. Moreover, to alleviate the
effect of such overhead, techniques such as LEDBAT [2] can be used to avoid
clogging the network links with the protocol’s traffic.

5.7 Simulation

In the previous sections, we have studied the KDet protocol from a theoretical
and analytical point of view and set bounds on its performance. However,
the actual performance and precision of KDet will depend on the network
traffic, the traffic summary function and validation mechanism chosen to work
together with the detection protocol.

To achieve a more realistic view of the behavior of the whole detection mech-
anism we have implemented a simplified version of KDet with sketches as
summary function and conservation of the flow as validation mechanism in
OMNeT++ and studied its detection accuracy and network overhead.

5.7.1 Simulation model

Our simulated network consists of a set of network nodes, a clock, a graph
server and a trusted authority (see Figure 5.6). The clock ticks every interval,
so that every other module knows when an interval is over and does the
required actions. The graph server keeps track of the network graph and
replies queries related to it. It also keeps the nodes updated on which are the
cores that need to monitor.

Lastly, network nodes are implemented by extending the AdHocHost module
from the INET framework. Network nodes are divided into proxies and hosts:
hosts send and receive traffic from the proxies; and they are randomly placed
so that the network is a single connected component. A WCN node extends
the AdHocHost by including the following modules: a traffic generator, a
packet dropper, a topology announcer and the KDet protocol module. The
traffic generator can use either IPvXTrafGen to generate traffic or a text file,

81

Figure 5.6: Simulation network model

Figure 5.7: Simulation WCN Node

which is useful because we had some traffic captures from a Guifi.net proxy
that we have used for the experiments of shorter duration.

The packet dropper is responsible for implementing the malicious behavior by
dropping a preconfigured percentage of the packets being forwarded.

Then, the topology announcer, as expected, is responsible of monitoring the
node’s neighborhood and updating the graph server when there is a change.

Finally, the KDet protocol is composed by several submodules: the monitor,
the robust flooding module and the detector. Both the monitor and the
detector have two different implementations, each implementing one of the two
strategies explained before on section 5.4. The monitor uses network hooks to

82

Figure 5.8: Simulation KDet module

monitor the traffic sent to and received from a node’s neighbor, and updates
the required traffic summaries depending on the strategy it implements. Then,
periodically, the monitor creates the required reports and sends them to the
flooder so that they are shared with the corresponding nodes. Moreover, if
the node is faulty, the report is marked as bogus, so that they cannot be
taken into account to determine the behavior of the core it relates to. The
flooder is an application-layer implementation of the robust flooding protocol
proposed by Perlman [41]. To conclude, the detector gathers every received
report and evaluates each monitored core by using conservation of the flow.
Then, the detector sends an evaluation to the Trusted Authority with its
findings: which reports were received and which were not, and the estimated
core’s drop probability.

5.7.2 Experiments

In our first experiments, we will measure the precision of the detector in terms
of false positive and negative ratio, i.e. how likely is a faulty node to avoid
detection and for a non-faulty node be detected as faulty, depending on the
sketch size and time interval. Even though we haven measured the precision
of sketches in the previous chapter, because we do not know a priori which
will be the drop probability of non-faulty nodes (α), we cannot estimate the
probability of a false positive or a false negative.

Sketch Size

83

Our first experiment simulated a network of 50 nodes and 3 proxies. Each
node would connect to one of the nodes and exchange traffic with it with an
average of 1 packet per second. Of these 50 nodes, 5 were faulty and dropped
10% of the traffic. The KDet protocol was run with k=1, i.e. assuming no
collusion and with a time interval of 60 seconds.

Figure 5.9 shows KDet’s ROC curve, showing that even though bigger sketches
produce more accurate predictions, as soon as the sketch is bigger than 1 by
32, the benefits of increasing the sketch size are not noticeable. With a sketch
of size 32 columns or bigger, we achieve more than 99% detection rate and 1%
of false positives.

On the other hand, as one can expect, bigger sketches imply more overhead
and memory requirements, as can be seen in figures 5.10 and 5.11, respectively.
We assume that sketches are represented as a matrix of numbers, represented
by the same number of bits, which is determine by the value of the highest
value in the matrix. Evidently, the traffic overhead grows for bigger sketches,
since they must share bigger matrices; and those with the same size, but more
columns and less rows, cost less because statistically they will require less
bits. For the needed memory, because we store the data in a data type of
fixed length (a double), the ratio between columns and rows does not affect
the memory required. In any case, using the smaller sketch that satisfies our
requirements is the best option. For instance, if we choose a sketch of 32
columns, we would require less than 0.05 kbps of control traffic and 4 KB
memory per node, both well below the bounds found in the previous section.

Protocol interval

Then we measured the precision using different time intervals, using a sketch of
64 columns and 1 row; and the rest of the simulation parameters as before. As
we can see in Figure 5.12, longer intervals lead to better accuracy, because rare
isolated events (like a packet lost because of collision) are averaged with normal
events, so that the behavior of a node can be better measured. Comparing
Fast-AGMS and FastCount, there is almost no difference between both of
them These results are in line with the findings presented in Chapter 4.

In terms of overhead, as expected, the longer the interval, the less control
traffic. And Fast-AGMS requires more bits because its ±1 function implies

84

Figure 5.9: ROC curve for different sketch sizes

Figure 5.10: Traffic overhead for different sketch sizes

85

Figure 5.11: Memory requirements for different sketch sizes

that we need a bit to code the sign of the counter values and with the given
parameters and the traffic on the network, there will not be many packets per
counter, so the likelihood of a Fast-AGMS counter of reaching a value as high
as those in the FastCount sketch is high (there are little combinations and 64
counters), and one additional bit when the number is so small represents a
great increase in the number of required bits.

Value of k

Our next experiment considers collusion, and to detect it, we run KDet with
a variable value for the parameter k. Figure 5.14 shows the ROC curve for
different values of k. We define the true positive ratio as the proportion of
faulty nodes that have been detected in at least one of the cores they belong
to. On the other hand, we define the false positive ratio as the proportion
of cores that are detected as faulty when they are not. In this case, we have
a network of 50 nodes, with 10% of them being faulty; which makes the
maximum possible number of faulty nodes connected 5. As we can see, if we

86

Figure 5.12: ROC curve for different intervals

Figure 5.13: Traffic overhead for different intervals

87

Figure 5.14: ROC curve for different k values

use k = 1 or k = 2, there are many faulty nodes that are not detected, because
the likelihood of two or three faulty nodes being connected is not negligible.
But for k = 4, KDet is capable of finding every faulty node.

We study the cost of each of the two implementations presented. Figure 5.16
shows the network overhead for the first strategy, that is based on core
monitoring and the second, based on link monitoring. As our analysis showed,
the cost of the second implementation approach scales way better as k increases,
but in any case, for the given k values, the overhead is reasonable (always
below 5 Kbps per node). On the other hand, for the memory (Figure 5.17), we
have a constant cost for the second implementation and again an exponential
one for the first. This is due to how the simulation model was implemented,
which saved a sketch for every source and destination per link, even though in
some cases it was not required, because such nodes where more than k hops
away. Again, the cost seems reasonable, as each node is required to save at
most 150 KBs.

88

Figure 5.15: Proportion of nodes detected for different k values

Figure 5.16: Traffic overhead for different k values

89

Figure 5.17: Memory for different k values

Network size

Finally, our last experiment shows how the network traffic is bounded if k
is kept fixed, even though the network size increases. Figures 5.18 and 5.19
show the reports and kbps each node transmits as the network size increases,
when the protocol’s interval is 10 minutes, k = 2 and the sketch size is 1
row and 64 columns. As we can see, as the network size increases, both the
number of reports and kbps stabilize, since the number of hosts reachable with
k + 1 hops remains constant. A surprising result is that for the given data
traffic (1 packet/s each node), the kbps of the Core-based implementation is
lower than for the Link-based. This is because most of the cores won’t have
almost any traffic, and therefore, it’s sketch can be represented with very little
bits. On the other hand, the number of reports is higher for the Core-based
implementation.

90

0.03

0.04

0.05

0.06

100 200 300

Network size

R
e
p
o
rt

s
 s

e
n
t
p
e
r

s
e
c
o
n
d

Implementation

Core−based

Link−based

Figure 5.18: Number of reports exchanged for different network sizes

0.005

0.006

0.007

100 200 300

Network size

k
b
p
s

Implementation

Core−based

Link−based

Figure 5.19: Network overhead per node for different network sizes

91

5.8 Discussion

In this section, we discuss further some of the aspects of the proposed im-
plementations for KDet, the limitations imposed by the Traffic Validation
mechanisms and a simple way of reducing its network overhead.

5.8.1 KDet Implementations

We have hinted two possible implementation strategies for KDet in section
5.6. However, the implications of using one instead of the other go beyond
the costs in terms of state size and overhead presented in that section.

To recap, in terms of local storage, the first strategy keeps track of every core
and keeps at every moment its summaries updated, while the second strategy
keeps several summaries for each link: one for the total traffic going through it
and then one for each traffic stream from (or to) the set of nodes that belong
to a monitored core. When we follow the first strategy, whenever a packet is
sent (or received) through a link, it will cause the update of several summaries,
because it will relate to several cores (whenever k is bigger than 1), and, as we
have seen, the number of summaries grows exponentially with k, making the
process of updating the summaries a computation hog. However, if we were to
follow the second strategy, each packet will only update two summaries (the
one related to the link and the one related to the source -or destination) and,
therefore, will be able to keep up even when k is high and the traffic rate is
high. In consequence, the second strategy should be preferred.

Then, in the flooding process we face again the same decision: if we used the
second strategy, we can first obtain the core summary as in equation 5.1 and
then flood that summary through the core (strategy 1) or simply flood every
summary with TTL = k + 1 and compose the core traffic summary when it
reaches the other boundary nodes. Now, in terms of computation, the second
strategy will be more costly, because not only one node needs to compute the
traffic summary, but every node in the boundary, even the sender itself, must
do so. Nevertheless, for big values of k, the second strategy is less costly in
terms of overhead, as we have seen, and it is also simpler in terms of flooding
because it only needs to consider the TTL and not to which core it belongs.
Thus, there is not a strategy that is clearly better, but it will depend on the
situation (value of k) and priorities (CPU vs. overhead).

92

Regarding the cores, they can be easily computed locally. Every node looks
up on the connectivity map its neighbors up to k hops starting from itself.
Without considering the node itself, each of these paths is a core that needs to
be monitored, and every neighbor of the core’s node that is not already part
of the core is the boundary that monitors it.

5.8.2 Limitations

KDet is based on the conservation of the flow principle, and as such, when
the principle is not satisfied by the network itself, it will not work properly.

An example of such situation is multicast traffic. However, as mentioned by
Mizrak et al. [34], multicast traffic is not common. In fact, we have studied
some traffic captures from Guifi.net and seen that the only multicast traffic is
from the routing protocols and, accordingly, with TTL = 1 and should not be
forwarded.

Another example is that networks, especially wireless networks, are likely
to lose some traffic even without faulty routers, hence the comparison of
traffic summaries should allow for some difference as long as it is within a
reasonable margin. The consequence is that accuracy and completeness should
be expressed in probabilistic terms (as suggested by Goldberg et al. [20]).

5.8.3 Fish-eye KDet

We have seen that the main drawback of KDet is that, as k increases, it
requires more and more network bandwidth, a resource that is quite scarce
in wireless networks. To overcome that drawback, we have proposed using
techniques as LEDBAT, so that traffic summaries are exchanged with low
priority compared with the normal data-traffic. Another possibility is to use a
technique similar to that used in OLSR to reduce its control overhead [40],
fish-eye relies on the fact that only nodes close by need to know that there
has been a network change, whereas nodes far away, only need an update less
frequently, so TC messages are propagated with different TTLs, so most of
the time only reach nearby nodes, but from time to time, they flood thorough
all the network.

93

In our case, one could consider that a single node failure is more likely than two
or more nodes colluding to avoid detection, so we could share and evaluate fre-
quently the cores of size 1, and for the rest of the nodes use a longer interval. For
the first implementation, since the traffic summaries are already divided by core,
no additional memory is required. But for the second implementation, traffic
summaries should keep two copies: one for the smaller interval and another
for the long interval; otherwise, colluding nodes could avoid detection by only
dropping packets during the time that there is no traffic summary exchanged.

5.9 Conclusions

In this chapter, we have focused in the summary dissemination and distributed
detection sub-problem of forwarding fault detection. Because none of the
previous solutions tackled both false accusation and collusion when the traffic
paths are unknown, we have proposed KDet, a detection protocol that does so.
KDet is tailored to the requirement of WCNs, but we believe that it can be
used in other types of networks, especially in crowdsourced networks, which
share some of the critical characteristics of community networks. We have
proven KDet’s correctness and studied its performance compared with Πk+2

and WATCHERS from an analytical point of view, which showed that by
choosing the proper value of k and detection interval, the cost of KDet is
reasonable for a WCN. KDet, even though it has a higher cost than Πk+2,
comes with two advantages over Πk+2: it can be deployed as an independent
daemon on the routers, without the need of a link-state routing protocol, and
it gives a more accurate prediction of the failing areas.

Because the analytic results are based on traffic between every pair on a
network, which will not be the case for WCN, we have also measured KDet’s
accuracy, memory and bandwidth consumption by simulation, using OM-
NeT++. Our results showed that the cost of KDet is kept within reasonable
bounds (less than 5 Kbps of network bandwidth and at most 150 KBs of
memory) and it detects perfectly faulty cores when k is chosen properly.

In case the network bandwidth needs to be reduced any further, we propose
an approach based on the OLSR fish-eye mechanism that shares summaries
with different frequencies based on the core size, so that faulty nodes that do
not collude (the most likely scenario) are detected fast; but still collusion is
detected, though it may take a little longer.

Chapter 6
Traffic Validation Mechanisms

Finally, we focus on the Traffic Validation sub-problem, i.e. the mechanism
that using the different traffic summaries decides whether a node or area is
forwarding traffic properly or not. The traffic validation mechanism is based
on the simple principle that although a faulty node may behave in many
different ways, a correct router will have the expected behavior: packets are
correctly forwarded, with low corruption and drop probabilities. Based on
this principle Bradley et al. described the Conservation of the Flow principle
that correct nodes (or network areas) are assumed to follow: traffic entering
a network area should be (approximately) the same as traffic leaving, except
traffic destined to and generated by it [10]. We have seen in Chapter 2 that
most of the solutions that have been proposed simply measure the number
or proportion of packets that differ between the traffic entering and leaving a
network area and they classify the behavior of the network area by using a
threshold. Of course, how we measure the number of different packets between
the traffic entering and leaving depends on the way traffic is summarized.
But as we have seen, any solution based on monitoring something else than a
path (e.g. a router or a set of nodes) requires loose synchronization so that
the traffic summaries relate to the same traffic packets. On this chapter we
propose a traffic validation mechanism using sketches that does not require
clock synchronization: Misaligned Traffic Validation (MTV).

95

96

6.1 Misaligned Traffic Validation

Many of the proposed solutions rely on GPS clocks to keep the network nodes
loosely synchronized, however, because equipment costs in WCN should be
kept low, using GPS clocks in WCN is not feasible. In this context, we study
how we can make the most of sketches’ properties to avoid requiring clock
synchronization, but still be able to detect when the difference between the
incoming and outgoing traffic of a network node is too different to be due to
natural causes.

To better understand how MTV works, first we will describe a simple mech-
anism for traffic validation assuming synchronized clocks, and then we will
build over that solution for when there is no clock synchronization; also, for
the sake of simplicity we will assume that the area being monitored is a single
node (M), though MTV can be applied also to network areas with several
nodes.

6.1.1 Sketches for Traffic Validation

Consider the node being monitored, M , and their neighborhood, Neigh(M),
then by conservation of the flow we would expect in ideal conditions:

⋃
i∈Neigh(M)

Ti→M =
⋃

i∈Neigh(M)

Ti←M

Where Ti→M is the traffic from neighbor i to M without considering the
traffic destined to M and Ti←M is traffic from M to i without considering the
traffic coming from M , in both cases from i’s perspective. Of course, since
networks suffer of packet losses due of congestion, collision, etc. both sides of
the equation will not be exactly the same, but approximately.

In any case, because keeping a copy of all the traffic exchanged through M
and later sharing it is really expensive, we need a traffic summary function to
represent T, and in our case we propose to use sketches because they satisfy
the following properties: (i) a sketch can be computed online, updating its
counters every time a new packet arrives; (ii) in a distributed fashion, where
each monitoring node can compute the sketch of the portion of traffic it sees
and the global sketch can be computed by combining each local sketch; and

97

finally, (iii) a sketch has relatively low requirements in terms of processing,
memory and network overhead. A sketch consists mainly in a matrix of
counters that are updated as packets arrive; and as such they can be linearly
combined: every neighbor will keep a sketch for the monitored node’s incoming
and outgoing traffic and then all of them will be combined to obtain the sketch
that represents the difference between the global incoming and outgoing traffic:

Sdiff =
∑

i∈Neigh(M)

S(Ti→M)−
∑

i∈Neigh(M)

S(Ti←M)

Where S(T) is the sketch of the traffic flow T. Then, since sketches provide
a good estimation for the second frequency moment of the traffic flow it
summarizes, we know that:

||Sdiff ||2 ≈ ||T∗→M − T∗←M ||2 ≤ ||T∗→M − T∗←M ||

Ideally, we would like the inequality to be an equality, which happens when
the elements of T are unique. This is typically the case for network packets, as
the IP protocol has an id field [20]. In the case there are duplicate elements
sketched on Sdiff the second frequency moment will be an overestimate of the
difference between incoming and outgoing traffics. We will see in section 4.3
that this is a rare event, and so sketches can be used effectively for traffic
validation.

In any case, there are a couple of considerations in order to use sketches for
traffic validation:

• Input space: the original space of all possible packets is terribly big
(I = {28×1500} for Ethernet v2 and bigger with Jumbo Frames). As a
result, computing the sketch over this space is very expensive in terms
of computation, and therefore we require a space reduction function. In
this work we use the last bytes of SHA-256 to reduce the space to a
reasonably sized one.

• Changeless elements: to be able to compare the sketches produced in
two different neighbors of M , the elements sketched need to be the same.
That implies that layers below the IP layer must be removed and that the

98

TTL must be adapted by either having the sender reduce it by 2 before
sketching the packet or simply setting its value to 0. Also, networks that
perform packet fragmentation cannot use sketches for fault location.

In essence, every node will keep a sketch of the traffic of each neighbor.
Whenever a node receives a packet, it will remove its lower layers and adapt
the TTL field as required. Then it will generate digest of fixed size using a
cryptographically secure hash function and use the digest as the element to
sketch (a more detailed description of this process is available in Chapter 4).
Finally it will update the sketch of the source neighbor if that packet was not
originated from it. Something similar will be done every time a message is sent.

Then, using a dissemination protocol (Chapter 5), those traffic summaries will
be shared, so that there is an entity capable of evaluating M . A simple traffic
validation function uses ||Sdiff ||2 as an estimation of the number of dropped
packets, and determines that M is faulty if it is above a threshold:

TV (M, t) =

{
OK if diff(t) = ||Sdiff(t)||2 < threshold

Faulty otherwise

However, in most of the cases, we are interested in the proportion of dropped
packets, not the absolute number. And to improve the precision of the estima-
tion when the interval is too short, we will average the last W measurements:

l̂oss(t) =
diff(t)

num pkts(t)

l̂ossW =

−W∑
t=0

l̂oss(t) · num pkts(t)/

−W∑
t=0

num pkts(t)
?
< threshold

6.1.2 Traffic Validation without clock synchronization

The previously proposed traffic validation mechanism measures the difference
between the traffic flows captured by the sketches, but if the neighbors do not
agree on the packets that are to be captured, the measured difference will be

99

bigger than expected. Consider, for instance, that node M is connected to node
A and B, and the traffic perspective from A and B is as shown in figure 6.1a.
In this case, because of the lack of synchronization, ||Sdiff ||2 = |{a3, b1, b4}| = 3,
however, M is forwarding packets properly.

To overcome this problem, we propose to use the sketches sent on the previous
and next interval. Consider Sin(t) the sketch as result of summing every sketch
related to the incoming traffic at time interval t and Sout(t) the one related to
the outgoing traffic. As we have seen, some packets from Sin(t) may not be on
Sout(t), but on Sout(t− 1) or Sout(t+ 1). Similarly, some of the packets from
Sout(t), from a neighbor’s perspective may have been sent during interval t− 1
or t+ 1, so we obtain:

d̂iff = ||Sin(t)− Sout(t)||2 − Sin(t) · Sout(t− 1)− Sin(t) · Sout(t+ 1)

− Sout(t) · Sin(t− 1)− Sout(t) · Sin(t+ 1)

Where Si · Sj refers to sketches i and j inner product.

(a) Correct nodes (b) Faulty node

Figure 6.1: Example packets with unsynchronized clocks.

This estimation is reliable as long as M behaves properly, but if it does not,
it could replace some packets for others sent previously and avoid detection.
Consider for instance the scenario on figure 6.1b, d̂iff = |{a2, a3, b4, b3, b1}| −
|{b2}| − |{a1, a2, a3}| − |{b2}| − |{}| = 0. Therefore, we cannot discount every
packet in the previous and next sketches, but only the ones that are not
duplicated from the current sketch:

100

d̂iff(t) = ||Sin(t)− Sout(t)||2

− Sin(t) · Sout(t− 1)− Sin(t) · Sout(t+ 1)

− Sout(t) · Sin(t− 1)− Sout(t) · Sin(t+ 1)

+ Sin(t) · Sin(t− 1) + Sin(t) · Sin(t+ 1)

+ Sin(t) · Sin(t− 1) + Sout(t) · Sout(t+ 1)

6.1.3 Evaluation

Our evaluation is based on a traffic capture from a wireless node member of
the qMp Sants WCN [13]. Its main characteristics are summarized in table
6.1.3. At the moment of the capture, the node (M) was connected to three
other nodes, two of them, A and B, had really good link quality (loss below
10−6) and another, node C, with bad link quality (50% packet loss measured
with MTR). Because qMp Sants is an ad-hoc network, the routing protocols
will rarely use the link with low quality (less than 0.1% of the traffic is routed
through C). The traffic is quite variable in terms of packets per second.

Using Goldberg et al.’s definition [20], we use α is an upper bound on the
percentage of packets lost by a non-faulty node, whereas β is the percentage
of dropped packets that if exceeded by a router, it will be considered faulty.
The α of this traffic capture is 0.058 (given by the periods with most traffic
from C); therefore, for a β of 0.1, threshold should be 0.73 [20].

On each experiment, we replay the traffic capture, simulating the loss on each
link and compute the expected sketches on each of the nodes with the given
experiment parameters. Then we combine them using traffic validation with
and without intersection to see how well each mechanism fares on the detection
of faulty routers.

6.1.3.1 Experiment 1: Comparing each TV function

Our first scenario compares how traditional TV and TV using the intersection
perform when the clocks of the nodes are not synchronized. To do so, we
have advanced the clock of Aand delayed the clock of B a proportion of the
interval (10%). Because our traffic capture is not too long, the intervals are

101

Number of packets 50000

Duration 842.2 seconds

Average packets per second 59 p/s

Average bytes per second 45746.6 B/s

Duplicated packets 60

relatively short (10 seconds at most), so we average the measurements for 10
intervals (W = 10). Regarding the sketch, this scenario considers a FastCount
sketch [55] with 1024 columns and a single row.

In Figure 6.2 we can see the probability density function of the estimated drop
probability for faulty and non-faulty nodes and which should be the detection
threshold computed using logistic regression. As we can see, when we use the
normal TV mechanism, because intervals are misaligned by 10%, nodes that
drop no traffic tend to have an estimation of 20% of different packets between
incoming and outgoing flows, because there is a 10% of the incoming packets
that are not in the outgoing sketch and an additional 10% of packets on the
outgoing sketch that is not in the incoming sketch. If we use the intersection,
the number of different packets is still overestimated, but not as much as for
the normal case: the optimal threshold is below the real drop probability of
faulty nodes.

So, if we were to use the optimal threshold, faulty and non-faulty nodes could
still be distinguished using any of the TV mechanisms, as shown in Figure 6.3a;
though TV using the intersection still produces better results that without
using it. However, in real life, we cannot expect to know which is the skew
between the different neighbors, or even if there are many neighbors, each with
its own clock skew, depending on the interval and the traffic going through
the network, the optimal threshold will keep changing; so we cannot rely on
a threshold optimized to a given clock skew. So in Figure 6.3b we show the
proportion of detected nodes using the threshold computed using Goldberg’s
approach (0.073). As we can see, now, using normal TV will cause every
non-faulty node as faulty, especially as the interval grows, but if we use MTV,
we can predict the behavior of the node more accurately.

102

(a) Using normal TV (b) Using misaligned TV

Figure 6.2: Estimated probability density function of l̂ossW

Finally, on Figure 6.4 we can see that in the case that clocks are synchronized,
both mechanisms to estimate the proportion of dropped packets give accurate
results, so there is no detriment of using MTV when the clocks are synchronized.

6.1.3.2 Experiment 2: Measuring the cost of MTV

In this second experiment, we will analyze the effect of the sketch size on the
quality of the prediction, as well as its overhead. As we know from the previous
chapters, using larger sketches will cause a greater network overhead when
sharing them; however, in the case of MTV, to provide accurate predictions we
need greater sketches, as we can see in Figure 6.5a, because MTV still tends
to overestimate the proportion of dropped packets, we need sketches bigger
than for the case of synchronized clocks. And the overestimation worsens as
the interval grows larger, so there is a compromise between the prediction
accuracy and the traffic overhead as seen in Figure 6.5b.

6.2 Conclusions

In this chapter, we have proposed a mechanism that allows us to compare
sketches for traffic validation even though they are misaligned. However, when

103

(a) With optimized thresholds (b) With Goldberg’s threshold

Figure 6.3: Proportion of nodes detected

clocks are not synchronized, estimating the proportion of dropped packets
is more costly than in the case of synchronized clocks, as we require bigger
sketches because the computation of the intersection is less accurate.

104

Figure 6.4: Proportion of nodes detected with synchronized clocks

(a) Proportion of nodes detected (b) Traffic overhead per sketch

Figure 6.5: Effect of the sketch sizes

Chapter 7
Conclusions

This thesis has presented how the problem of forwarding fault detection could
be implemented and deployed in a WCN by focusing on each of its sub-problems
and proposing solutions for each of them that are suitable for WCN.

Our first challenge was to model the error of sketches for traffic validation,
which we faced by considering the specific characteristics of the input space
(the digest of traffic packets). Thanks to these characteristics we were able
to describe the estimation of the sketch as a simpler random process and,
therefore, be able to provide tighter bounds on the sketch accuracy. Using these
bounds, we can determine the size of the sketch in a much more precise way,
saving memory, processing power and network bandwidth, scarce resources in
a WCN.

Our second challenge was to design a traffic summary dissemination and
distributed detection mechanism adapted to WCN. There are 2 main con-
siderations that need to be taken into account: (i) in WCN it is usual for
a node to have several antennas, in many cases directional, so we cannot
rely on techniques based on overhearing; (ii) there is not a single routing
protocol that is used for WCN, and some of them even combine two or more;
the implication is that we cannot rely on a single routing protocol and more
specifically, we cannot rely on a link-state routing protocol, so the path from
node to node is not known. Additionally, it is desirable that the distributed
detection protocol can be deployed as an independent daemon, but that their
results are shared globally, so that every node in the network can benefit
from the detection process. Considering these concerns, we proposed KDet, a

105

106

distributed detection protocol based on logical boundaries between the nodes
monitoring and being monitored, so that the monitors need to compare the
traffic entering and leaving the boundary. To avoid false accusation, KDet
involves the nodes being monitored in the detection process, so that they can
disconnect from those nodes that are creating false reports. And to be able
to detect faulty nodes even under the assumption of collusion, KDet defines
different sets of boundaries with different sizes, so that there will be always a
boundary surrounding the faulty nodes that is being monitored by a set of
non-faulty nodes, so there is no way they can avoid detection.

Finally, our last challenge was to study whether we could propose a traffic
validation mechanism that did not require the nodes to have synchronized
clocks. Thanks to the fact that we can compute the intersection between two
sketches, we have proposed misaligned traffic validation, which considers not
only the traffic summary from the current time interval, but also the previous
and the next, so that traffic validation is possible even when the sketches are
not perfectly synchronized.

In conclusion, we have shown that it is possible to deploy a forwarding fault
detection protocol adapted to Wireless Community Networks, which would
increase the routing robustness of the network and ease its administration.
But the results found on this thesis are not only applicable on the context
of WCN. Our results on chapter 4 regarding the distribution of the error
in sketches can be applied on any network monitoring solution regardless of
the network type. KDet (chapter 5) is also suitable for any kind of network;
and in the case of a network of networks, if the desired detection granularity
was an administration domain or ISP, we can simplify it by setting the cores
appropiately, so that each of them covers the subnetworks of interest. Lastly,
MTV (chapter 6) is only useful to context of WCNs, as wired network’s won’t
usually have issues to sync their clocks with enough precision.

Future directions

Considering the contributions proposed in this thesis and with all the insight
gained during the process, we believe that the following directions can be of
interest:

107

• Regarding sketches for traffic validation, we have seen that the com-
putation of the digest is one of the steps that costs more in terms of
processing power for the whole process. Given that the only requirement
of the hash is that it is resistant to second pre-image attacks, it would be
interesting to find and propose alternatives that have better processing
cost.

• Development and fine tuning an implementation in a Community Net-
work to provide accurate and precise indications of anomalies that result
in more resilient networks. Evaluation of the trade-offs of this mechanism
in realistic conditions. Also, consider some kind of interaction between
the routing protocol and the detection protocol, so that the detection
thresholds can be adapted with the routing information.

• Consider the second implementation mechanism of KDet and the possi-
bility of computing the intersection of different sketches. We envision
that they can be used to maintain a map of the traffic flows going through
the network, so that anomalies, such as traffic hijacking attacks can be
detected.

Bibliography

[1] Guifi.net Barcelones area. http://guifi.net/en/node/2435. Accessed:
2015-08-11. (page 78)

[2] Low Extra Delay Background Transport (LEDBAT). http://tools.

ietf.org/html/rfc6817. Accessed: 2015-03-08. (page 80)

[3] A. M. Abdalla, I. a. Saroit, A. Kotb, and A. H. Afsari. Misbehavior nodes
detection and isolation for MANETs OLSR protocol. Procedia Computer
Science, 3:115–121, jan 2011. (page 16)

[4] N. Alon, P. B. Gibbons, Y. Matias, and M. Szegedy. Tracking join
and self-join sizes in limited storage. In Proceedings of the eighteenth
ACM SIGMOD-SIGACT-SIGART symposium on Principles of database
systems - PODS ’99, pages 10–20, New York, New York, USA, 1999.
ACM Press. (page 23, 34)

[5] K. Argyraki, P. Maniatis, O. Irzak, S. Ashish, and S. Shenker. Loss
and delay accountability for the internet. In Proceedings - International
Conference on Network Protocols, ICNP, pages 194–205. IEEE, oct 2007.
(page 10, 11, 22)

[6] J. Avonts, B. Braem, and C. Blondia. A questionnaire based examination
of community networks. In IEEE International Conference on Wireless
and Mobile Computing, Networking and Communications, 2013. (page 3,
69)

[7] I. Avramopoulos and J. Rexford. Stealth Probing : Efficient Data-
Plane Security for IP Routing. In Proceedings of the Annual Conference
on USENIX ’06 Annual Technical Conference, pages 25—-25. USENIX
Association, 2006. (page 14, 16)

109

http://guifi.net/en/node/2435
http://tools.ietf.org/html/rfc6817
http://tools.ietf.org/html/rfc6817

110

[8] B. Awerbuch, R. Curtmola, D. Holmer, C. Nita-Rotaru, and H. Rubens.
ODSBR: An on-demand secure Byzantine resilient routing protocol for
wireless ad hoc networks. ACM Transactions on Information and System
Security, 10(4), 2008. (page 10, 15, 16, 21, 22)

[9] B. Barak, S. Goldberg, and D. Xiao. Protocols and Lower Bounds for
Failure Localization in the Internet. Lecture Notes in Computer Science,
2008. (page 15)

[10] K. Bradley, S. Cheung, N. Puketza, B. Mukherjee, and R. Olsson. De-
tecting disruptive routers: a distributed network monitoring approach.
IEEE Network, 1998. (page 5, 10, 17, 19, 22, 29, 39, 64, 70, 95)

[11] S. Buchegger and J.-Y. Le Boudec. Performance analysis of the CONFI-
DANT protocol. In Proceedings of the 3rd ACM international symposium
on Mobile ad hoc networking & computing - MobiHoc ’02, page 226, New
York, New York, USA, 2002. ACM Press. (page 22)

[12] The CAIDA UCSD anonymized internet traces 2013 - [29-05-
2013]. http://www.caida.org/data/passive/passive_2013_dataset.
xml. (page 39)

[13] L. Cerdà-Alabern, A. Neumann, and P. Escrich. Experimental evaluation
of a wireless community mesh network. In Proceedings of the 16th ACM
international conference on Modeling, analysis & simulation of wireless
and mobile systems. ACM, 2013. (page 100)

[14] M. Charikar, K. Chen, and M. Farach-Colton. Finding frequent items
in data streams. Theoretical Computer Science, 312(1):3 – 15, 2004.
(page 35)

[15] M. Conti, E. Gregori, and G. Maselli. Towards reliable forwarding for
ad hoc networks. In PERSONAL WIRELESS COMMUNICATIONS,
PROCEEDINGS, volume 2775, pages 790–804, 2003. (page 10)

[16] G. Cormode and M. Garofalakis. Sketching streams through the net: Dis-
tributed approximate query tracking. Proceeding VLDB ’05 Proceedings
of the 31st international conference on Very large data bases, pages 13–24,
2005. (page 23, 35)

http://www.caida.org/data/passive/passive_2013_dataset.xml
http://www.caida.org/data/passive/passive_2013_dataset.xml

111

[17] C. Crepeau, C. R. Davis, and M. Maheswaran. A Secure MANET Routing
Protocol with Resilience against Byzantine Behaviours of Malicious or
Selfish Nodes. In 21st International Conference on Advanced Information
Networking and Applications Workshops (AINAW’07), pages 19–26. IEEE,
2007. (page 10, 22)

[18] V. Desai, S. Natarajan, and T. Wolf. Packet forwarding misbehavior
detection in next-generation networks. IEEE International Conference
on Communications, 2012. (page 10, 16)

[19] W. Galuba, P. Papadimitratos, M. Poturalski, K. Aberer, Z. Despotovic,
and W. Kellerer. Castor: Scalable Secure Routing for Ad Hoc Networks.
2010 Proceedings IEEE INFOCOM, pages 1–9, mar 2010. (page 10, 22)

[20] S. Goldberg, D. Xiao, E. Tromer, B. Barak, and J. Rexford. Path-
quality monitoring in the presence of adversaries. ACM SIGMETRICS
Performance Evaluation Review, June 2008. (page 10, 11, 14, 23, 29, 30,
32, 42, 44, 70, 78, 92, 97, 100)

[21] S. Goldberg, D. Xiao, E. Tromer, B. Barak, and J. Rexford. Path-Quality
Monitoring in the Presence of Adversaries: The Secure Sketch Protocols.
IEEE/ACM Transactions on Networking, PP:1–13, 2014. (page 10, 56,
57, 70)

[22] J. J. R. Hughes, T. Aura, and M. Bishop. Using conservation of flow
as a security mechanism in network protocols. In IEEE Symposium on
Security and Privacy, 2000. (page 64)

[23] Y. Jeon, T.-H. Kim, Y. Kim, and J. Kim. LT-OLSR: Attack-tolerant
OLSR against link spoofing. 37th Annual IEEE Conference on Local
Computer Networks, pages 216–219, oct 2012. (page 8)

[24] D. Johnson and a. Perrig. SEAD: secure efficient distance vector routing
for mobile wireless ad hoc networks. Proceedings Fourth IEEE Workshop
on Mobile Computing Systems and Applications, pages 3–13, 2002. (page 8)

[25] M. Just, E. Kranakis, and T. Wan. Resisting malicious packet dropping
in wireless ad hoc networks. Ad-Hoc, Mobile, and Wireless Networks,
pages 151–163, 2003. (page 16)

112

[26] S. Kent, C. Lynn, and K. Seo. Secure Border Gateway Protocol (S-BGP).
IEEE Journal on Selected Areas in Communications, 18(4):582–592, apr
2000. (page 4, 8)

[27] I. Khalil and S. Bagchi. Stealthy Attacks in Wireless Ad Hoc Networks:
Detection and Countermeasure. IEEE Transactions on Mobile Computing,
10(8):1096–1112, aug 2011. (page 12)

[28] I. Khalil, S. Bagchi, N. AbuAli, and M. Hayajneh. Disa: Detection
and isolation of sneaky attackers in locally monitored multi-hop wireless
networks. Security and Communication Networks, 6(12), 2013. (page 22,
61, 63)

[29] E. López. KDet: additional information. http://dsg.ac.upc.edu/

esterl/KDet. Accessed: 2015-03-31. (page 69, 78)

[30] E. López. Scripts and code for sketches for Traffic Validation. http:

//esterl.github.io/sketches-evaluation/scripts, 2015. (page 30,
38)

[31] E. López. Sketches Evaluation. http://esterl.github.io/

sketches-evaluation/reports, 2015. (page 42, 44, 46, 47, 58)

[32] R. Mahajan, M. Rodrig, D. Wetherall, and J. Zahorjan. Sustaining
Cooperation in Multi-Hop Wireless Networks. In Proceedings of NSDI,
pages 231–244, 2005. (page 18, 22, 63)

[33] R. Matam and S. Tripathy. AFC: An effective metric for reliable routing
in wireless mesh networks. IEEE International Conference on Trust,
Security and Privacy in Computing and Communications, 2013. (page 22)

[34] A. Mizrak, K. Marzullo, and S. Savage. Fatih: Detecting and Isolating
Malicious Routers. In International Conference on Dependable Systems
and Networks, 2005. (page 67, 69, 77, 92)

[35] A. T. Mizrak, Y.-C. C. Cheng, K. Marzullo, and S. Savage. Detecting
and isolating malicious routers. IEEE Transactions on Dependable and
Secure Computing, 3(3):230–244, jul 2006. (page 9, 18, 63)

[36] A. T. Mizrak, S. Savage, and K. Marzullo. Detecting Malicious Packet
Losses. IEEE Transactions on Parallel and Distributed Systems, Feb.
2009. (page 4, 10, 18, 21, 51, 65, 70)

http://dsg.ac.upc.edu/esterl/KDet
http://dsg.ac.upc.edu/esterl/KDet
http://esterl.github.io/sketches-evaluation/scripts
http://esterl.github.io/sketches-evaluation/scripts
http://esterl.github.io/sketches-evaluation/reports
http://esterl.github.io/sketches-evaluation/reports

113

[37] A. Neumann, B. Braem, L. Cerda-Alabern, P. Escrich, C. Barz, J. Kirch-
hoff, J. Niewiejska, and H. Rogge. D4.3 experimental research on testbeds
for community networks. Technical report, CONFINE Project. (page 4,
68)

[38] D. Obenshain, T. Tantillo, A. Babay, J. Schultz, A. Newell, E. Hoque,
Y. Amir, and C. Nita-rotaru. Practical Intrusion-Tolerant Networks.
Technical report, Distributed Systems and Networks Lab, 2016. (page 4,
7, 69)

[39] S. Paris, C. Nita-Rotaru, F. Martignon, and A. Capone. Efw: A cross-
layer metric for reliable routing in wireless mesh networks with selfish
participants. In INFOCOM, 2011 Proceedings IEEE, April 2011. (page 22,
63)

[40] G. Pei, M. Gerla, and T.-W. Chen. Fisheye state routing: a routing
scheme for ad hoc wireless networks. In Communications, 2000. ICC
2000. 2000 IEEE International Conference on, volume 1, pages 70–74
vol.1, 2000. (page 92)

[41] R. Perlman. Network layer protocols with byzantine robustness. PhD
thesis, Massachusetts Institute of Technology, 1988. (page 4, 7, 26, 72,
82)

[42] R. Perlman. Routing with Byzantine Robustness. Technical report, Sun
Microsystems, Inc., 2005. (page 4)

[43] L. Peterson, T. Anderson, D. Culler, and T. Roscoe. A blueprint for
introducing disruptive technology into the internet. SIGCOMM Comput.
Commun. Rev., 33(1):59–64, Jan. 2003. (page 3)

[44] F. S. Proto, A. Detti, C. Pisa, and G. Bianchi. A Framework for Packet-
Droppers Mitigation in OLSR Wireless Community Networks. IEEE
International Conference on Communication, 2011. (page 22)

[45] qMp Sants. http://dsg.ac.upc.edu/qmpsu, 2015. (page 39)

[46] F. Rusu. Sketches for Size of Join Estimation. http://faculty.

ucmerced.edu/frusu/Projects/Sketches/sketches.html, 2014. Ac-
cessed: 2014-04-30. (page 38)

http://dsg.ac.upc.edu/qmpsu
http://faculty.ucmerced.edu/frusu/Projects/Sketches/sketches.html
http://faculty.ucmerced.edu/frusu/Projects/Sketches/sketches.html

114

[47] F. Rusu and A. Dobra. Pseudo-random number generation for sketch-
based estimations. ACM Transactions on Database Systems, 32(2):11–es,
jun 2007. (page 34, 41)

[48] F. Rusu and A. Dobra. Statistical analysis of sketch estimators. Proceed-
ings of the 2007 ACM SIGMOD international conference on Management
of data - SIGMOD ’07, page 187, 2007. (page 30, 33, 34, 70)

[49] L. Sánchez-Casado, G. Maciá-Fernández, and P. Garćıa-Teodoro. An
Efficient Cross-Layer Approach for Malicious Packet Dropping Detection
in MANETs. In 2012 IEEE 11th International Conference on Trust,
Security and Privacy in Computing and Communications, pages 231–238.
IEEE, jun 2012. (page 63)

[50] N. Saxena, M. Denko, and D. Banerji. A hierarchical architecture for de-
tecting selfish behaviour in community wireless mesh networks. Computer
Communications, 34(4):548–555, apr 2011. (page 17, 22)

[51] T. Shu and M. Krunz. Detection of malicious packet dropping in wireless
ad hoc networks based on privacy-preserving public auditing. Proceedings
of the fifth ACM conference on Security and Privacy in Wireless and
Mobile Networks - WISEC ’12, page 87, 2012. (page 11, 16, 21, 70)

[52] L. Subramanian, V. Roth, and I. Stoica. Listen and whisper: Security
mechanisms for BGP. Proc. First Symposium on Networked Systems
Design and Implementation, 2004. (page 8)

[53] H.-M. Sun, C.-H. Chen, and Y.-F. Ku. A novel acknowledgment-based
approach against collude attacks in MANET. Expert Systems with Appli-
cations, 39(9):7968–7975, jul 2012. (page 15, 21, 22)

[54] M. Thorup and Y. Zhang. Appendix for “tabulation based 4-universal
hashing with applications to second moment m. thorup and y. zhang.
appendix for “tabulation based 4-universal hashing with applications to
second moment estimation”, 2003. (page 37)

[55] M. Thorup and Y. Zhang. Tabulation based 4-universal hashing with
applications to second moment estimation. Proceedings of the Fifteenth
Annual ACM-SIAM Symposium on Discrete Algorithms, pages 615–624,
2004. (page 23, 36, 42, 53, 101)

115

[56] D. Vega, R. Baig, L. Cerdà-Alabern, E. Medina, R. Meseguer, and
L. Navarro. A technological overview of the guifi.net community network.
Computer Networks, 93, Part 2:260 – 278, 2015. Community Networks.
(page 1)

[57] T. Wan, E. Kranakis, and P. C. Oorschot. Applied Cryptography and
Network Security: Second International Conference, ACNS 2004, Yellow
Mountain, China, June 8-11, 2004. Proceedings, chapter S-RIP: A Se-
cure Distance Vector Routing Protocol, pages 103–119. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2004. (page 4)

[58] Wikipedia. K-independent hashing — Wikipedia, the free encyclopedia,
2017. [Online; accessed 21-May-2017]. (page 34)

[59] S. Wu, H. Chang, F. Jou, and F. Wang. JiNao: Design and implementation
of a scalable intrusion detection system for the OSPF routing protocol.
ACM Transactiom on Computer Systems, VoL, pages 0–23, 1999. (page 8)

[60] X. Zhang, A. Jain, and A. Perrig. Packet-dropping adversary identification
for data plane security. In Proceedings of 2008 ACM CoNEXT Conference
- 4th International Conference on Emerging Networking EXperiments and
Technologies, CoNEXT ’08, 2008. (page 10, 15, 29)

[61] X. Zhang, C. Lan, and A. Perrig. Secure and scalable fault localization
under dynamic traffic patterns. In Proceedings - IEEE Symposium on
Security and Privacy, pages 317–331, 2012. (page 11, 17, 19, 23, 65, 69,
70, 78)

Appendix A
KDet algorithms

This appendix includes the pseudo-code of the boundary and core protocols
run by KDet.

117

118

Algorithm 1 Boundary protocol

1: procedure Boundary monitoring(packet)
2: l = get link(packet)
3: if packet.next hop ∈ core.nodes ∧ packet.destination /∈ core.nodes

then
4: update(S→l

core(T), packet)

5: if packet.previous hop ∈ core.nodes ∧ packet.source /∈ core.nodes then
6: update(S←l

core(T), packet)

7: procedure Boundary reporting(period, core)
8: T = now() - (now() % period) .Beginning of the current period
9: while True do

10: if now() < T + period then
11: reports =
12: for all link ∈ get links(core, self) do .For all links to core
13: reports = reports ∪ get report(link)

14: robustly flood(sign(reports, T))
15: clear reports(core)
16: T = T + period

17: procedure Boundary evaluation(T)
18: for all received report do
19: if signature(report)==OK ∧ report.node ∈ boundary then
20: reports ← reports ∪ {report}
21: for all node ∈ boundary do
22: if ∃ report ∈ reports | report.node==node then
23: received[node] ← true
24: else
25: received[node] ← false

26: send TA sign(evaluation(Vcore(reports), received), T)
27: reports.clear()

119

Algorithm 2 Core protocol

1: procedure Core protocol(core, boundary)
.Receive and process reports from the boundary

2: for all received report do
3: if signature(report)!=OK ∨ report.node /∈ boundary then
4: drop report
5: else
6: if ∃r2 ∈ boundary-reports | report.node == r2.node then
7: if report != r2 then
8: p-faulty ← p-faulty ∪ report.node

9: else
10: robustly-flood(report)

.Compare reports from neighbors with local versions
11: for all node ∈ neighborhood ∧ boundary do
12: if ∃ report ∈ boundary-reports | report.node == node then
13: if report != local-reports[report.node] then
14: p-faulty ← p-faulty ∪ {node}
15: else
16: p-faulty ← p-faulty ∪ {node}

.At the end of the interval, retrieve evaluations
17: evaluations = TA.getEvaluations(core)
18: for all evaluation ∈ evaluation do
19: if evaluation.node ∈ neighborhood then
20: if !is-consistent(evaluation.bitmap, boundary-reports) then
21: p-faulty ← p-faulty ∪ {evaluation.node}
22: if evaluation.validation != Vcore(boundary-reports) then
23: p-faulty ← p-faulty ∪ {evaluation.node}

.Disconnect from p-faulty nodes
24: for all node ∈ p-faulty do
25: disconnect from node

	List of Publications
	Introduction
	Problem statement
	Methodology
	Thesis organization

	State of the art
	Traffic Summary functions
	Summary dissemination and distributed detection
	Traffic Validation mechanism
	Response
	Filling the gaps

	Contributions
	Tight bounds for sketches in Traffic Validation
	KDet: a distributed detection protocol
	Traffic Validation for misaligned summaries

	Traffic Summary Functions
	Sampling
	Mathematical approximation

	Sketches characterization
	AGMS Sketch
	Fast-AGMS Sketch
	FastCount Sketch

	Empirical Evaluation
	Estimating the number of packets
	Estimating the ratio of dropped packets
	Cost analysis

	Discussion
	To key or not to key
	Choosing the proper sketch

	Conclusions

	Distributed Detection
	Background
	Problem statement
	System Model
	Network model
	Threat model
	Traffic Validation function
	Summary of assumptions

	The KDet detection protocol
	Boundary protocol
	Core protocol
	Coordinated detection
	Core and boundary selection

	Validation
	Analysis
	State size
	Network overhead
	Example

	Simulation
	Simulation model
	Experiments

	Discussion
	KDet Implementations
	Limitations
	Fish-eye KDet

	Conclusions

	Traffic Validation Mechanisms
	Misaligned Traffic Validation
	Sketches for Traffic Validation
	Traffic Validation without clock synchronization
	Evaluation
	Experiment 1: Comparing each TV function
	Experiment 2: Measuring the cost of MTV

	Conclusions

	Conclusions
	Bibliography
	KDet algorithms

