55 research outputs found

    A Bidirectional Label Propagation Based Computational Model for Potential Microbe-Disease Association Prediction

    Get PDF
    A growing number of clinical observations have indicated that microbes are involved in a variety of important human diseases. It is obvious that in-depth investigation of correlations between microbes and diseases will benefit the prevention, early diagnosis, and prognosis of diseases greatly. Hence, in this paper, based on known microbe-disease associations, a prediction model called NBLPIHMDA was proposed to infer potential microbe-disease associations. Specifically, two kinds of networks including the disease similarity network and the microbe similarity network were first constructed based on the Gaussian interaction profile kernel similarity. The bidirectional label propagation was then applied on these two kinds of networks to predict potential microbe-disease associations. We applied NBLPIHMDA on Human Microbe-Disease Association database (HMDAD), and compared it with 3 other recent published methods including LRLSHMDA, BiRWMP, and KATZHMDA based on the leave-one-out cross validation and 5-fold cross validation, respectively. As a result, the area under the receiver operating characteristic curves (AUCs) achieved by NBLPIHMDA were 0.8777 and 0.8958 ± 0.0027, respectively, outperforming the compared methods. In addition, in case studies of asthma, colorectal carcinoma, and Chronic obstructive pulmonary disease, simulation results illustrated that there are 10, 10, and 8 out of the top 10 predicted microbes having been confirmed by published documentary evidences, which further demonstrated that NBLPIHMDA is promising in predicting novel associations between diseases and microbes as well

    A message passing framework with multiple data integration for miRNA-disease association prediction

    Get PDF
    Micro RNA or miRNA is a highly conserved class of non-coding RNA that plays an important role in many diseases. Identifying miRNA-disease associations can pave the way for better clinical diagnosis and finding potential drug targets. We propose a biologically-motivated data-driven approach for the miRNA-disease association prediction, which overcomes the data scarcity problem by exploiting information from multiple data sources. The key idea is to enrich the existing miRNA/disease-protein-coding gene (PCG) associations via a message passing framework, followed by the use of disease ontology information for further feature filtering. The enriched and filtered PCG associations are then used to construct the inter-connected miRNA-PCG-disease network to train a structural deep network embedding (SDNE) model. Finally, the pre-trained embeddings and the biologically relevant features from the miRNA family and disease semantic similarity are concatenated to form the pair input representations to a Random Forest classifier whose task is to predict the miRNA-disease association probabilities. We present large-scale comparative experiments, ablation, and case studies to showcase our approach’s superiority. Besides, we make the model prediction results for 1618 miRNAs and 3679 diseases, along with all related information, publicly available at http://software.mpm.leibniz-ai-lab.de/ to foster assessments and future adoption

    Inferring Disease-Associated MicroRNAs Using Semi-supervised Multi-Label Graph Convolutional Networks

    Get PDF
    Disease; Gene Network; Biocomputational Method; Computer ModelingMicroRNAs (miRNAs) play crucial roles in biological processes involved in diseases. The associations between diseases and protein-coding genes (PCGs) have been well investigated, and miRNAs interact with PCGs to trigger them to be functional. We present a computational method, DimiG, to infer miRNA-associated diseases using a semi-supervised Graph Convolutional Network model (GCN). DimiG uses a multi-label framework to integrate PCG-PCG interactions, PCG-miRNA interactions, PCG-disease associations, and tissue expression profiles. DimiG is trained on disease-PCG associations and an interaction network using a GCN, which is further used to score associations between diseases and miRNAs. We evaluate DimiG on a benchmark set from verified disease-miRNA associations. Our results demonstrate that DimiG outperforms the best unsupervised method and is comparable to two supervised methods. Three case studies of prostate cancer, lung cancer, and inflammatory bowel disease further demonstrate the efficacy of DimiG, where top miRNAs predicted by DimiG are supported by literature

    A Novel Human Microbe-Disease Association Prediction Method Based on the Bidirectional Weighted Network

    Get PDF
    The survival of human beings is inseparable from microbes. More and more studies have proved that microbes can affect human physiological processes in various aspects and are closely related to some human diseases. In this paper, based on known microbe-disease associations, a bidirectional weighted network was constructed by integrating the schemes of normalized Gaussian interactions and bidirectional recommendations firstly. And then, based on the newly constructed bidirectional network, a computational model called BWNMHMDA was developed to predict potential relationships between microbes and diseases. Finally, in order to evaluate the superiority of the new prediction model BWNMHMDA, the framework of LOOCV and 5-fold cross validation were implemented, and simulation results indicated that BWNMHMDA could achieve reliable AUCs of 0.9127 and 0.8967 ± 0.0027 in these two different frameworks respectively, which is outperformed some state-of-the-art methods. Moreover, case studies of asthma, colorectal carcinoma, and chronic obstructive pulmonary disease were implemented to further estimate the performance of BWNMHMDA. Experimental results showed that there are 10, 9, and 8 out of the top 10 predicted microbes having been confirmed by related literature in these three kinds of case studies separately, which also demonstrated that our new model BWNMHMDA could achieve satisfying prediction performance

    Identifying disease-associated genes based on artificial intelligence

    Get PDF
    Identifying disease-gene associations can help improve the understanding of disease mechanisms, which has a variety of applications, such as early diagnosis and drug development. Although experimental techniques, such as linkage analysis, genome-wide association studies (GWAS), have identified a large number of associations, identifying disease genes is still challenging since experimental methods are usually time-consuming and expensive. To solve these issues, computational methods are proposed to predict disease-gene associations. Based on the characteristics of existing computational algorithms in the literature, we can roughly divide them into three categories: network-based methods, machine learning-based methods, and other methods. No matter what models are used to predict disease genes, the proper integration of multi-level biological data is the key to improving prediction accuracy. This thesis addresses some limitations of the existing computational algorithms, and integrates multi-level data via artificial intelligence techniques. The thesis starts with a comprehensive review of computational methods, databases, and evaluation methods used in predicting disease-gene associations, followed by one network-based method and four machine learning-based methods. The first chapter introduces the background information, objectives of the studies and structure of the thesis. After that, a comprehensive review is provided in the second chapter to discuss the existing algorithms as well as the databases and evaluation methods used in existing studies. Having the objectives and future directions, the thesis then presents five computational methods for predicting disease-gene associations. The first method proposed in Chapter 3 considers the issue of non-disease gene selection. A shortest path-based strategy is used to select reliable non-disease genes from a disease gene network and a differential network. The selected genes are then used by a network-energy model to improve its performance. The second method proposed in Chapter 4 constructs sample-based networks for case samples and uses them to predict disease genes. This strategy improves the quality of protein-protein interaction (PPI) networks, which further improves the prediction accuracy. Chapter 5 presents a generic model which applies multimodal deep belief nets (DBN) to fuse different types of data. Network embeddings extracted from PPI networks and gene ontology (GO) data are fused with the multimodal DBN to obtain cross-modality representations. Chapter 6 presents another deep learning model which uses a convolutional neural network (CNN) to integrate gene similarities with other types of data. Finally, the fifth method proposed in Chapter 7 is a nonnegative matrix factorization (NMF)-based method. This method maps diseases and genes onto a lower-dimensional manifold, and the geodesic distance between diseases and genes are used to predict their associations. The method can predict disease genes even if the disease under consideration has no known associated genes. In summary, this thesis has proposed several artificial intelligence-based computational algorithms to address the typical issues existing in computational algorithms. Experimental results have shown that the proposed methods can improve the accuracy of disease-gene prediction

    Integrative Transcriptomic Analysis of Long Intergenic Non-Coding RNAs in Cancer.

    Get PDF
    Ph.D. Thesis. University of Hawaiʻi at Mānoa 2017

    Global characterization of the immune response to inoculation of aluminium hydroxide-based vaccines by RNA sequencing

    Get PDF
    xix, 195 p.En este trabajo se han analizado muestras correspondientes a un experimento de vacunación de larga duración. Múltiples ovejas fueron expuestas a varias vacunas compuestas de aluminio hidróxido como adyuvante en un periodo de 475 días, con el objetivo de estudiar el mecanismo de acción de dicho adyuvante en el sistema inmune y comprobar si es capaz de llegar a órganos distantes como el cerebro después de su inoculación. Para ello se extrajeron muestras de células mononucleares de sangre periférica y de la corteza del lóbulo parietal y se usaron para la preparación de librerías de secuenciación de ARN y microRNAs (Total RNA-seq y miRNA-seq). Las librerías se analizaron mediante herramientas bioinformáticas y se realizaron multiples análisis: 1. Expresión diferencial tanto para los datos de RNA-seq como para los de miRNA-seq; 2. Anotación de nuevos miRNAs en oveja; 3. Predicción de targets para los miRNAs y análisis de co-expresión con los datos de RNA-seq. Además, como las librerías de Total RNA-seq retienen el ARN no codificante, que esta pobremente anotado en oveja, dichos datos se usaron para la anotación de ARN circulares en oveja y se estudió si dichos ARN no-codificantes pudieran tener algún rol en la actividad del aluminio como adyuvante

    Global characterization of the immune response to inoculation of aluminium hydroxide-based vaccines by RNA sequencing

    Get PDF
    xix, 195 p.En este trabajo se han analizado muestras correspondientes a un experimento de vacunación de larga duración. Múltiples ovejas fueron expuestas a varias vacunas compuestas de aluminio hidróxido como adyuvante en un periodo de 475 días, con el objetivo de estudiar el mecanismo de acción de dicho adyuvante en el sistema inmune y comprobar si es capaz de llegar a órganos distantes como el cerebro después de su inoculación. Para ello se extrajeron muestras de células mononucleares de sangre periférica y de la corteza del lóbulo parietal y se usaron para la preparación de librerías de secuenciación de ARN y microRNAs (Total RNA-seq y miRNA-seq). Las librerías se analizaron mediante herramientas bioinformáticas y se realizaron multiples análisis: 1. Expresión diferencial tanto para los datos de RNA-seq como para los de miRNA-seq; 2. Anotación de nuevos miRNAs en oveja; 3. Predicción de targets para los miRNAs y análisis de co-expresión con los datos de RNA-seq. Además, como las librerías de Total RNA-seq retienen el ARN no codificante, que esta pobremente anotado en oveja, dichos datos se usaron para la anotación de ARN circulares en oveja y se estudió si dichos ARN no-codificantes pudieran tener algún rol en la actividad del aluminio como adyuvante
    corecore