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Abstract

Identifying disease-gene associations can help improve the understanding of disease mechanisms, which

has a variety of applications, such as early diagnosis and drug development. Although experimental tech-

niques, such as linkage analysis, genome-wide association studies (GWAS), have identified a large number

of associations, identifying disease genes is still challenging since experimental methods are usually time-

consuming and expensive. To solve these issues, computational methods are proposed to predict disease-gene

associations.

Based on the characteristics of existing computational algorithms in the literature, we can roughly divide

them into three categories: network-based methods, machine learning-based methods, and other methods.

No matter what models are used to predict disease genes, the proper integration of multi-level biological

data is the key to improving prediction accuracy. This thesis addresses some limitations of the existing

computational algorithms, and integrates multi-level data via artificial intelligence techniques. The thesis

starts with a comprehensive review of computational methods, databases, and evaluation methods used in

predicting disease-gene associations, followed by one network-based method and four machine learning-based

methods.

The first chapter introduces the background information, objectives of the studies and structure of the

thesis. After that, a comprehensive review is provided in the second chapter to discuss the existing algorithms

as well as the databases and evaluation methods used in existing studies. Having the objectives and future

directions, the thesis then presents five computational methods for predicting disease-gene associations.

The first method proposed in Chapter 3 considers the issue of non-disease gene selection. A shortest

path-based strategy is used to select reliable non-disease genes from a disease gene network and a differential

network. The selected genes are then used by a network-energy model to improve its performance. The

second method proposed in Chapter 4 constructs sample-based networks for case samples and uses them to

predict disease genes. This strategy improves the quality of protein-protein interaction (PPI) networks, which

further improves the prediction accuracy. Chapter 5 presents a generic model which applies multimodal deep

belief nets (DBN) to fuse different types of data. Network embeddings extracted from PPI networks and gene

ontology (GO) data are fused with the multimodal DBN to obtain cross-modality representations. Chapter

6 presents another deep learning model which uses a convolutional neural network (CNN) to integrate gene

similarities with other types of data. Finally, the fifth method proposed in Chapter 7 is a nonnegative

matrix factorization (NMF)-based method. This method maps diseases and genes onto a lower-dimensional

manifold, and the geodesic distance between diseases and genes are used to predict their associations. The

method can predict disease genes even if the disease under consideration has no known associated genes.

In summary, this thesis has proposed several artificial intelligence-based computational algorithms to

address the typical issues existing in computational algorithms. Experimental results have shown that the

proposed methods can improve the accuracy of disease-gene prediction.
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Introduction

1.1 Background

Complex diseases are caused by the malfunctioning of a group of genes, known as disease-associated genes, or

simply disease genes. Identifying these genes is critical for scientists to decipher the mechanism of diseases,

which is beneficial to disease diagnosis and drug development [1]. However, this issue is still challenging

since experimentally identifying disease genes is time-consuming and expensive. On the one hand, scientists

need to conduct a few experiments to determine whether a gene is disease-associated, which might require

years of efforts [2]. On the other hand, experimental techniques such as genome-wide association studies

(GWAS) usually identify hundreds of candidates, and scientists have to determine the priority of validations

to maximize the yield of their experiments. Therefore, computational methods which prioritize disease genes

are valuable for disease-gene identification.

Currently, many algorithms have been proposed to predict disease genes. Despite their success, different

methods all have their pros and cons. Artificial Intelligence (AI) tries to harness the power of techniques

like machine learning and deep learning to solve problems by analyzing and learning from vast datasets at

speeds and capacities not possible for humans alone. Its flexibility in data integration is also valuable for

disease-gene prediction since the key to accurate prediction is to properly fuse multi-levels of biological data.

Thus, this thesis mainly focuses on machine learning-based methods, especially deep learning models, which

can characterize the non-linear relationships among different types of data.

In our studies, we first develop algorithms to solve common issues existing in developing machine learning-

based methods, such as the selection of negative data and the quality control of protein-protein interaction

(PPI) networks. Then, several deep learning models are applied to fuse multi-level of biological data and

extract cross-modality features. These features characterize both linear and non-linear relationships among

different modalities, which could advance the prediction of disease-gene associations.

1.2 Motivations and objectives

The overall objective of our studies is to combine multiple types of data with deep learning models to

improve the accuracy of disease-gene prediction. Before applying deep learning models to this area, a few

1



issues should be addressed.

First, considering that we use supervised models to predict disease-gene associations, both positive and

negative instances are required to train the models. However, disease-gene prediction is a positive-unlabeled

learning problem, in which only positive instances (disease genes) are available [3]. A set of negative instances

(non-disease genes) have to be defined before training the models. Thus, developing a strategy to select

negative data is fundamental to our research.

Second, PPI networks are widely used in existing algorithms since they reveal the functional similarities

of proteins, which are critical for disease-gene prediction. However, PPI networks obtained from online

databases contain many false positives and false negatives [4], and directly using them in the algorithm

would limit the accuracy of the prediction. Meanwhile, protein interactions are tissue-specific and dynamic,

universal static networks downloaded from public databases cannot reveal true protein interactions in the

samples. Therefore, a strategy should be developed to purify the static PPI networks and improve their

quality.

After solving these two issues, the next step is to properly fuse multiple types of data to achieve accurate

prediction. Specifically, deep learning models which use nonlinear activation functions are applied in our

studies to capture the nonlinear relationships among various types of data. Multimodal deep belief nets

(DBNs), a fundamental deep learning architecture which has been successfully applied to fuse image and

text data [5], is first applied to learn latent representations from different types of biological data. In addition,

convolutional neural networks (CNNs), which use the same filter for similar inputs, could also be applied for

representation learning since they allow to leverage the functional similarities of genes.

Finally, since most supervised algorithms require known disease genes as positive data to train the model,

they cannot be applied to diseases with only a few associated genes or no known disease genes. However, the

nonnegative matrix factorization (NMF)-based methods are not limited by this problem, and a few NMF-

based models have successfully been used to predict disease genes [6, 7]. Unfortunately, existing methods still

perform badly for diseases with no known associated gene. A better method should be proposed to improve

their accuracy. In the meantime, it is interesting to compare NMF-based methods with deep learning-based

methods to find out their specialties.

Based on these motivations, this study has the following objectives:

Objective 1: Review existing computational algorithms for predicting disease-gene associations.

Objective 2: Develop a new strategy to select non-disease genes and combine it with network energy-

based model to predict disease genes.

Objective 3: Develop a method to improve the quality of PPI networks and apply it to predict disease

genes.

Objective 4: Use a multimodal DBN to integrate different types of data and extract cross-modality

features to predict disease genes.

Objective 5: Apply the CNN model to integrate different types of data based on gene similarities.
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Objective 6: Present an NMF-based method which can accurately predict disease genes for diseases

both with many known associated genes and no known associated genes. Then compare it with the deep

learning-based methods.

1.3 Organization of the thesis

This is a manuscript-style thesis. The main content is presented in the form of published or submitted

manuscripts that I have written during my Ph.D. study. An introduction is given at the beginning of each

chapter to describe the connection of the manuscript to the context of the thesis. All manuscripts have been

reformatted to maintain consistency. The reference lists of all publications have been unified, and there is

only one bibliography at the end of the thesis.

The remainder of the thesis is organized as follows. Chapter 2 reviews the existing computational

methods, databases, and evaluation methods used in disease-gene prediction. Chapter 3 proposes a method

to select non-disease genes from OMIM data and clinical expression data and combines it with network

energy-based model to predict disease genes. Chapter 4 proposes a strategy to improve the quality of

PPI networks by constructing sample-based networks and use them with an ensemble strategy to predict

disease genes. Chapter 5 presents a deep learning-based algorithm which applies multimodal DBN to predict

disease genes. Chapter 6 proposes another deep learning-based method which uses CNN model to leverage

functional similarity data. Chapter 7 presents an NMF-based method which uses manifold learning to predict

disease genes. Prior information is added to the association matrix to improve the accuracy of the algorithm

in predicting associated genes for diseases with no known disease genes. Finally, Chapter 8 summarizes

the work presented in this thesis and discusses several future directions for this research. The copyright

permissions of the manuscripts are included in Appendix B.
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2

Predicting disease-associated genes: computational methods, databases,

and evaluations

Prepared as: Ping Luo, Bo-Lin Chen, Bo Liao, and Fang-Xiang Wu. Predicting disease-associated genes:

computational methods, databases, and evaluations. WIREs: Data Mining and Knowledge Discovery, under

revision, 2019. PL reviewed the existing literature, and FXW supervised the study. PL and FXW wrote the

manuscript. All authors read, revised and approved the final version of the manuscript.

This chapter presents a literature review about computational algorithms, databases and evaluation

methods used in predicting disease genes. The review classifies existing algorithms into three categories:

network-based methods, machine learning-based methods and other methods. The pros and cons of different

types of methods are discussed, as well as several perspectives to improve them. Commonly used databases

and evaluation methods are also discussed so that researchers can easily develop their own algorithms.

Objective 1 of the thesis is fulfilled in this chapter.

Abstract

Complex diseases are associated with a set of genes (called disease genes), the identification of which can

help scientists uncover the mechanisms of diseases and develop new drugs and treatment strategies. Due

to the huge cost and time of experimental identification techniques, many computational algorithms have

been proposed to predict disease genes. Although several review publications in recent years have discussed

many computational methods, some of them focus on cancer driver genes while others focus on biomolecular

networks, which only cover a specific aspect of existing methods. In this review, we summarize existing

methods and classify them into three categories based on their characteristics. Then, the state-of-the-art

algorithms, biological data and evaluation methods used in the computational prediction are discussed.

Finally, we highlight the limitations of existing methods and point out some future directions for improving

these algorithms. This review could help investigators understand the principles of existing methods, and

thus develop new methods to advance the computational prediction of disease genes.
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2.1 Introduction

Deciphering the associations between diseases and genes is critical for us to understand the modular nature

of complex diseases, which has many applications, such as diagnosis, treatment, and prevention of diseases.

Usually, genes whose malfunctioning causes diseases are known as disease-associated genes, or simply disease

genes. A few experimental techniques can be used to identify these genes, such as linkage analysis [8],

genome-wide associations studies (GWAS) [9], and RNA interference (RNAi) [10]. Among these techniques,

linkage analysis and GWAS are most frequently used. The former is successful in identifying genes associated

with Mendelian diseases (single gene diseases), while the latter is superior to the former in predicting genes

associated with complex diseases (non-Mendelian diseases) [11]. Despite their achievements, these techniques

usually select genetic loci corresponding to hundreds of candidate genes, whose further validation is time-

consuming and expensive. Thus, many computational algorithms have been proposed to predict or prioritize

disease genes so that scientists can optimize the in-depth experimental validation and maximize the yield of

their experiments.

An intuitive strategy for computational methods is to analyze the results of GWAS and predict disease

genes from the previously mentioned hundreds of candidates. This results in a group of post-GWAS analysis

algorithms. However, not all disease-associated variants can be identified by GWAS [12], and GWAS data are

not always available for all kinds of diseases. Thus, computational methods have also used many other types

of data, such as protein-protein interaction (PPI) networks, gene expression profiles, pathways, gene ontology

(GO) terms, to predict disease genes. The authors of [2] have classified various existing types of data into

five categories. Among them, the mutation data are most promising. Newly developed algorithms for cancer

driver gene prediction also tend to focus on analyzing somatic mutations rather than other types of data.

Unfortunately, large scale mutation data are usually unavailable for diseases other than cancer. Therefore,

in this review, we focus on computational algorithms and data sources that can be used to predict associated

genes for all kinds of diseases. Algorithms specifically designed for predicting cancer driver genes can be

found in [13].

Based on the principles used in the classification, existing methods can be divided into various categories.

In [11], the authors have classified computational methods based on three criteria: “type of evidence”, “scope

of application” and “type of prediction”. With these criteria scientists can quickly find the methods they

need based on their objectives and data at hand. However, methods in each category might vary a lot in

terms of their core models, which is inconvenient for researchers who want to improve current models and

develop new algorithms. In this review, instead of using these criteria, we focus on the characteristics of

computational algorithms and classify them into network-based methods, machine learning-based methods,

and other methods. Figure 2.1 shows the details of the classification. We believe that such a classification

can help researchers capture the core ideas behind existing algorithms, which might assist them in developing

new effective algorithms.
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Figure 2.1: Classification of existing computational methods for disease gene prediction.

In the rest of this review, we first discuss existing computational disease gene prediction methods. Then,

a few types of frequently used data are described in Section 2.3, as well as the strategies developed for

analyzing them. After that, Section 2.4 introduces some evaluation methods. Finally, we conclude with

a discussion of the limitations of existing methods and perspectives for developing new algorithms in the

future.

2.2 Computational methods

2.2.1 Network-based methods

Based on the ‘guilt by association’ assumption, genes associated with each other may have similar func-

tions [14]. Therefore, various types of biomolecular networks which characterize associations among genes

have been used to predict disease genes. Very briefly, network-based algorithms can be divided into four

groups: distance-based methods, random walk-based methods, network energy-based methods, and network

centrality-based methods.
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Distance-based methods

Distance-based methods were the first to be developed to predict disease genes. These methods use the

length of the shortest path (distance) in biomolecular networks to determine if a gene is disease-associated.

Unknown genes (genes that have not been identified as being associated with a certain disease) with a

distance smaller than a threshold are predicted as disease-associated. For instance, George et al. developed

a method known as CPS which predicted a gene as disease-associated if it was in a disease-related pathway

and close to the known disease genes [15]. Snel et al. combined PPI network with disease-associated loci to

predict a gene as disease-associated if it was located within these loci, and its neighbors contained known

disease genes [16]. Franke et al. used the distance to calculate similarity scores with the Gaussian kernel,

and unknown genes with higher similarity scores were predicted as disease-associated [17].

These methods only use local topological structures, and their accuracy is limited. Random walk-based

methods have shown that the global topological structure is more valuable for disease gene prediction than

local information [18]. Nevertheless, the distance-related evidence is still valuable and has been used to

extract features with many machine learning-based methods [19].

Random walk-based methods

To improve the distance-based methods, the random walk is applied to predict disease genes. Even since the

first random walk with restart (RWR) algorithm was proposed in [18], it has become one of the state-of-the-

art algorithms for disease gene prediction. As a kind of information flow-based algorithm, random walk-based

methods propagate the prior information from each node to its nearby nodes in an iterative manner for a

predefined number of steps or until convergence. The final value of a node is influenced by the values of its

direct neighbors, which in turn are affected by their neighbors. This value also represents the probability of

each node being associated with the disease under consideration. Due to its superiority, random walk-based

methods have been applied in many other areas as well, including gene function prediction [20] and drug

target prediction [21].

Given a disease d, let P0 denote the prior information where P0(i) = 1 represents gene i is known to be

associated with d and P0(i) = 0 otherwise. The random walk can be performed by the following equation

Pt+1 = WPt = W tP0, (t ≥ 0) (2.1)

where W is the column normalized adjacency matrix of the PPI network. If W is a stochastic matrix, this

process is equivalent to a random walk on the network. Furthermore, if we allow the random walk to restart

in every step with a probability r, we can obtain the RWR algorithm as follows:

Pt+1 = (1− r)WPt + rP0 (2.2)

where Pt in the steady state would contain the probability of each gene being disease-associated.
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Figure 2.2: Schematic example of a random walk. The network contains 50 nodes (genes), in which
15 of them are disease-associated. Their corresponding entries in P0 are equal to 1. The random walk
is performed with a restart probability of r = 0.5, and it reaches a stead state when t = 17.

Figure 2.2 illustrates the process of a random walk which is performed on a randomly generated network

with 50 nodes, 15 of which are disease-associated. With a restart probability r = 0.5, the random walk

reaches the steady state (Pt+1 − Pt < 10−6) after 17 rounds of iterations. From the color of the nodes we

can find that the prior information is propagated to the other 35 nodes during the iteration process.

Köhler et al. first used RWR to predict disease genes in [18]. They also proposed a diffusion kernel

method which was the continuous-time analog of RWR. The diffusion kernel of a network was defined by

K = e−βL, where L = D − A was the Laplacian matrix, D was a diagonal matrix containing the degrees of

the nodes, A was the adjacency matrix of the network. P was then computed by P = KP0.

RWR and diffusion kernel captured the global topological properties of the network and were superior to

the distance-based algorithms. However, Köhler et al. only performed RWR on top of a PPI network, and P0

only contained information of known disease-gene associations. To improve the accuracy of the prediction,

many researchers started to combine RWR with other types of data.

One strategy is to enhance P0 with information obtained from other types of data. For instance, PRINCE

used a logistic function to calculate P0 based on the similarity of diseases [22]. If a gene was associated with

a disease which was similar to the disease under consideration, its prior probability would be close to 1.

Another strategy is to enrich the PPI network with extra information. For instance, Erten et al. and Le et

al. weighted the PPI network with reliabilities calculated from other data sources [23, 24]. Magger et al.

built a tissue-specific network and performed PRINCE on it [25].

These methods improved the accuracy of disease-gene prediction. However, they only used PPI networks.

To further leverage the potential of random walks, researchers begun to use heterogeneous networks to

improve the prediction accuracy.

Heterogeneous networks are networks with multiple types of nodes and edges. The first RWR on het-

erogeneous (RWRH) network algorithm was proposed by Li et al. and the network was constructed by

combining PPI network, disease gene associations and disease similarity network [26]. RWRH performed

much better than the RWR algorithm, and many studies were then conducted to improve it. For instance,
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Luo et al. constructed the heterogeneous network based on a curated PPI network and improved the predic-

tion accuracy [27]. Jiang constructed three disease similarity networks and nine gene similarity networks and

combined them into 27 heterogeneous networks. Then, RWR was applied on these networks respectively,

and a weighted Fisher’s method was used to combine all the propagated values to prioritize disease genes

[28]. Valdeolivas et al. constructed a multiplex heterogeneous network in which the same nodes in different

heterogeneous networks are connected with each other. This strategy allowed the random walk to transit

between different networks, which significantly improved the accuracy of the prediction [29].

Note that heterogeneous networks allow different types of nodes, researchers can also integrate other

omics data to construct the network. For instance, Lei et al. constructed a triple heterogeneous network

by incorporating long non-coding RNA (lncRNA) into the network. Specifically, lncRNA-lncRNA similarity

network, gene-lncRNA associations and lncRNA-disease associations were fused to the traditional heteroge-

neous networks [30].

Network centrality-based methods

Centrality characterizes the importance of nodes and edges in a network, which has been widely used in

social network analysis [31, 32] and essential protein prediction [33, 34, 35]. However, genes that transcribed

to essential proteins are usually not disease-associated [36], and directly applied network centrality to predict

disease genes is difficult.

The most successful centralities used in disease gene prediction are feedback centralities, such as Katz

centrality and PageRank. These centralities of one node depends on the centralities of its neighbors, which

further depends on the centralities of their neighbors. The process of feedback is similar to RWR. In fact,

RWR is also known as personalized PageRank [37]. Therefore, methods that use feedback centrality also use

similar strategies as random walk-based methods to predict disease genes. For instance, Singh-Blom et al.

built a heterogeneous network and used Katz centrality to characterize the possibilities of every disease-gene

pairs being associated [38]. Ganegoda et al. also used Katz centrality in their study [39], except that they

replaced the PPI network by a tissue-specific network.

Centrality-based methods improve the disease-gene prediction to some extent. However, compared to

directly being used to predict disease genes, Centralities are more likely to be used to extract topological

features in machine learning-based methods [38, 40, 41, 42, 43].

Network energy-based methods

The network energy-based method was first proposed in [44]. The authors formulated the disease gene

prediction problem as a network labeling problem in which disease genes were labeled as 1 while non-disease

genes (genes not associated with the disease) were labeled as 0.

Given h genes in a biomolecular network, a set of binary labels x = (x1, x2, . . . , xh) of these genes,

(xi ∈ {0, 1}), is known as a configuration of the biomolecular network, and the set X = {x1,x2, . . . ,x2h} of
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all possible configurations is a random field. The probability of the configuration x of a random field X can

be calculated by the Boltzmann distribution [45]

P (x) =
1

Y
· exp(−κH(x)) (2.3)

where H(x) is the Hamiltonian (energy) of the configuration x, κ is a parameter, and Y is called the partition

function and defined as Y =
∑

x∈X exp(−κH(x)). From this equation we can find that the true configuration

of the network should have the maximum probability and thus the minimum energy.

Let x[−i] be the set of binary labels of all genes except for gene i in the network. Adopting the Ising

model to calculate the Hamiltonian, the following equation can be obtained

P (xi = 1|x[−i], θ̃) =
eα+βNi0+γNi1

eα+βNi0+γNi1 + 1
(2.4)

where θ̃ = (α, β, γ) are model parameters. Ni0 and Ni1 are the numbers of neighbors with labels 0 and 1

of gene i, respectively. Details of the derivation can be found in [46]. Parameter θ̃ can be estimated by

maximizing the posterior distribution of P (x1, . . . , xn|xn+1, . . . , xn+m) where xn+1, . . . , xn+m are the labels

of the m known disease genes. Furthermore, if M networks are available, (2.4) can be generalized as follows

P (xi = 1|x[−i], θ) =
exp(V (i))

exp(V (i)) + 1
(2.5)

where

V (i) = α+

M∑
m=1

[βm ·Nm
i0 + γm ·Nm

i1 ],

µ = (α, βm, γm) (m = 1, . . . ,M) are model parameters. Nm
i0 and Nm

i1 are the numbers of neighbors with

labels 0 and 1 of gene i in the m-th network, respectively.

Network energy-based model can be used to integrate multiple biomolecular networks to predict disease

genes. In [46], the authors integrated five biomolecular networks and estimated θ with Gibbs sampling. Later

on, they combined graph kernel with their model and proposed a kernel-based algorithm. This strategy

allowed the algorithm to use the information between genes and their indirect neighbors since kernel brought

similarity information into the network [47]. Having noticed that Eq. (2.4) followed a logistic model where

φi = (1, Ni0, Ni1) was the feature vector and θ̃ was the weight parameter. Parameter θ̃ could be estimated by

a convex optimization problem which was much faster than the original Gibbs-based methods. Ni0 and Ni1

could also be extended to extract more similar features. Thus, Chen et al. proposed a fast algorithm based

on this new strategy and extracted additional features N l
i0 and N l

i1 which were the number of the l-order

neighbors of gene i [48]. This algorithm improved their original running time by more than 20 folds and the

performance for more than 10% in terms of the area under the receiver operating characteristic curve.

2.2.2 Machine learning-based methods

Machine learning-based methods formulate disease gene prediction as a binary classification problem where

disease genes are predicted as 1 and non-disease genes are predicted as 0. Based on whether known disease
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genes are used in the prediction, machine learning-based methods can be divided into unsupervised methods

and supervised methods.

Unsupervised methods

Unsupervised methods identify patterns in dataset without knowing the labels of instances. For disease gene

prediction, most unsupervised methods use clustering algorithms to predict disease-associated modules from

biomolecular networks. These modules are subnetworks consisting of genes associated with the diseases.

The first widely used algorithm, Weighted Gene Correlation Network Analysis (WGCNA), used hierarchical

clustering on top of co-expression networks to search disease-associated modules [49]. WGCNA provided

an easy-to-use R package, and many studies have used it to identify disease-associated genes [50, 51]. In

addition to co-expression networks, researchers also combined co-expression and PPI networks to find disease

modules. For instance, Wu et al. weighted a protein functional interaction network with Pearson correlation

coefficient (PCC) and applied Markov clustering on this network to predict disease genes [52]. This method

allowed the clustering algorithm to leverage the topological properties within the PPI networks.

Although successful, these algorithms mainly used co-expression data to find disease-associated modules,

and only a small amount of genes (< 20%) in the detected modules are disease-associated [53]. To improve

the efficiency, differential co-expression (also known as “guilt by rewiring”) [54] was applied to predict disease

modules.

Usually, genes that are differentially co-expressed in different groups of samples are more likely to be

disease-associated [55, 56]. Methods based on this assumption construct differential networks in which edges

are weighted by the variation of co-expression and apply clustering algorithms on these networks to predict

disease genes. For instance, DiffCoEx built an adjacency change matrix based on the co-expression networks

of two conditions (case and control). Then, the topological overlap was used to construct a dissimilarity

network, and hierarchical clustering was used to find out modules that were differentially co-expressed with

the same sets of genes [57]. Another example is EW dmGWAS, which weighted the edges of a PPI network

with differential co-expression and nodes of the network with P -values obtained from GWAS data. A seed-

growth approach was then used to find subnetworks with the locally maximum proportion of low-P -values

and highly rewired edges [58].

Unsupervised methods can be applied to predict disease genes even if a disease has no known associated

genes. Since known disease-gene associations are not used in the prediction, their accuracy is usually worse

than supervised methods. However, unsupervised methods are still widely used in analyzing biological data,

especially gene expression data. One reason is that these algorithms are user-friendly, and do not require

complicated data preprocessing. Another reason is that large numbers of gene expression data are available

for applying unsupervised methods. Biclustering algorithms and differential co-expression analysis have

successfully identified many tissue-specific and cell-type-specific disease-related modules.
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Figure 2.3: Classic pipeline of supervised machine learning-based methods.

Supervised methods

Supervised methods train a classifier/regressor based on the known disease-gene associations. Figure 2.3

shows the pipeline of most supervised methods. First, the features are either extracted from a fused dataset

(e.g. PPI network weighted by gene expression or GWAS data) or concatenated from feature subsets ex-

tracted from each type of data. Then, a classifier/regressor, such as biased SVM, logistic regressor and

random forest, is trained with these features and used for future prediction. Based on the key ideas of

the methods, supervised methods can be further divided to feature-based, deep learning-based and matrix

factorization-based methods.

A. Feature-based

Feature-based methods focus on extracting features which characterize the functional similarities of genes.

Appropriate data integration is necessary for obtaining discriminative features.

As depicted in Figure 2.3, the features can be extracted from fused data or concatenated from individual

features extracted from each type of data. No matter which strategy is chosen, most feature-based methods

linearly combine different types of data. For instance, Wu et al. proposed CIPHER, which extracted shortest-

path based features from a heterogeneous network [19]. ProDiGe used kernels to calculate gene similarities

from each type of data and combined them together by the weighted average of these similarity profiles [3].

PUDI directly concatenated features extracted based on GO, protein domain and a PPI network [41].

Note that PPI networks were used to extract features in these algorithms. However, neither length of the
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shortest path or degree of the node can capture the topological properties of the entire network. To improve

these strategies, researchers started to use multiple types of centralities to extract both local and global

topological properties. For instance, Ramadan et al. extracted 13 topological features, most of which were

centrality indices, and trained a decision tree to predict disease genes [42]. Luo et al. used closeness centrality

and edge clustering coefficient to capture both global and local topological structures from a sample-specific

network [43] 1.

Methods using centrality-based features perform better than earlier developed algorithms; however, cen-

trality indices are not the best approach for learning network representations. Considering that many

algorithms have been developed to learn network embeddings, researchers started to use these algorithms to

extract features for disease gene prediction. For instance, Ata et al. proposed an algorithm (Metagraph+)

which constructed a metagraph by combining PPI networks and keywords that describe the mechanisms of

proteins [59]. In the metagraph, each protein was connected with other proteins and the keywords that de-

scribe itself. A matagraph embedding learning algorithm, SymISO [60], was used to extract representations

for each protein (gene). Moreover, researchers can also concatenate network embeddings with other types of

features to improve prediction accuracy. In [61], Ata et al. proposed N2VKO, which directly extracted fea-

tures from PPI networks by node2vec [62], and concatenated these embeddings with features extracted based

on UniProt annotations. They tested the features with several classifiers and demonstrated that N2VKO

performed better than many classic algorithms, such as RWRH, ProDiGe and Metagraph+.

Note that most algorithms extract features from PPI networks using all the known disease-gene asso-

ciations. However, Know-GENE proposed by Zhou et al. showed that features extracted with a subset of

disease genes were more discriminative than those extracted using all the disease genes [63]. These subset

of genes, defined as “Core genes”, were those residing in the largest interacting cluster formed by all the

disease genes. Researchers could use this strategy when developing new algorithms.

B. Deep learning-based

Similar to feature-based methods, deep learning-based methods also focus on feature extraction. However,

the non-linear activation functions in deep learning models enable an algorithm to learn the non-linear

relationships between different types of data, which is different from traditional feature-based methods. For

instance, Luo et al. proposed a method which used multimodal deep belief net (DBN) to combine features

extracted from different modalities [64] 2. Specifically, raw features learned based on gene ontology and PPI

networks were fused by a multimodal DBN to learn cross-modality representations, which were further used

to predict disease-gene associations. Their evaluation results showed that prediction using cross-modality

features were more accurate than original raw features.

In addition to DBN, convolutional neural network (CNN) was also used to predict disease genes. Different

1[43] is Chapter 4 from this thesis
2[64] is Chapter 5 from this thesis
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from image data, gene-related features do not contain spatial information. However, a model known as graph

CNN can solve this problem. In this model, the convolution is performed by aggregating information from

the neighbors of each node in a graph [65]. This graph can model any biomolecular networks that reveal

the functional similarity of genes. In [66], the authors used graph CNN to learn representations from a

heterogeneous network. Specifically, raw features extracted for diseases and genes were integrated into the

heterogeneous and further learned by graph CNN. Their evaluation results showed that the method performed

much better than most classic algorithms, such as inductive matrix completion (IMC) [6] and Katz [38].

C. Matrix factorization-based

Apart from feature-based methods, nonnegative matrix factorization (NMF) has also been used to predict

disease genes. Unlike most supervised methods, NMF-based methods can predict disease genes even if the

disease under consideration has no known associated genes. Given a disease-gene association matrix A, in

which A(i, j) = 1 if disease i and gene j are associated and A(i, j) = 0 otherwise. The general idea is to

find a low-rank matrix P = WHT , where W ∈ Rm×k and H ∈ Rn×k are of rank k � min(m,n), so that

P ≈ A. This problem can be solved by NMF, and matrix P contains the probabilities of every disease-gene

pairs being associated. During the factorization, additional information can be integrated into the objective

function so that the factorization is in concert with other biological evidence. A typical algorithm was the

IMC proposed by Natarajan and Dhillon. The algorithm leveraged gene-related and disease-related features

during the factorization, making it possible to integrate multiple types of data [6]. Another example was

the probability-based collaborative filtering model (PCFM) proposed by Zeng et al. which used alternating

least squares to solve the factorization [7]. In PCFM, disease similarities and gene similarities were used to

regularize the objective function, which was a common strategy used by many NMF-based studies.

In addition to classic NMF algorithms, manifold learning can also be used in disease gene prediction.

Different from NMF where entries in P denote the probabilities of diseases and genes being associated,

manifold learning mapped the diseases and genes onto a lower dimensional manifold and used the geodesic

distance between diseases and genes to predict their associations [67, 68] 3. Known disease-gene associations

are used in the mapping based on the assumption that distance between a disease and its associated genes

should be shorter than other non-disease genes. Thus, disease-gene pairs with smaller distance on the lower

dimensional manifold are more likely to be associated.

2.2.3 Other methods

Other than the methods discussed in Sections 2.2.2 and 2.2.1, there are also many algorithms that cannot

be classified into the previous two categories. One of them is ensemble-based methods which calculate a

few ranked lists based on different types of data and outputs the final prediction by fusing all the ranked

lists. Different models can be applied when the ranking is calculated on each type of data. A typical

3[68] is Chapter 7 from this thesis
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example is Endeavor, one of the most famous ensemble-based methods, which can analyze 75 data sources

and predict associated genes for six species. During its prediction, rankings obtained from each data source

were combined by order statistics [69, 70]. Another example was DADA, which proposed five statistical

adjustment methods to generate five raw rankings and used the best ranking of each gene as its final ranking

[71].

Another type of method is text-based, which used text mining to analyze existing literature and predict

disease genes. For different methods, the model might be completely different. For instance, DISEASES

calculated a score for each disease-gene pair according to their co-occurrence within the same abstracts and

the same sentences [72]. DigSee extracted ten linguistically motivated features and used a Bayesian classifier

to identify disease-gene association evidence [73, 74]. Although text-based methods cannot provide de novo

prediction (only documented genes can be predicted), their results are useful for disease gene databases, and

many databases have used text-based methods to collect disease-gene associations [72, 75, 76].

2.3 Biological data

As discussed in Introduction, various types of data have been used to predict disease genes. Figure 2.4

shows several types of widely used evidence in existing algorithms. Some of them characterize the functional

similarity of genes, while others directly provide disease-associated information.

2.3.1 Disease-gene associations

The known disease-gene associations are the most significant. These data can be used to predict new disease

genes and evaluate the prediction accuracy. Table 2.1 lists six databases that collect disease-gene associations.

The first five databases (OMIM, DisGeNET, GAD, CTD, and PsyGeNET) contain genes associated with

all kinds of diseases while the last one (COSMIC) mainly collects cancer-associated genes. Among these

databases, OMIM is the most frequently used one in the algorithms we reviewed. However, OMIM focuses

on Mendelian disorders, and genes associated with complex diseases are not comprehensively collected. An

alternative is DisGeNET, which collects disease-gene associations from seven data sources, including CTD

and PsyGeNET. This might be a better choice for studies on complex diseases.

In addition, although many algorithms are not specifically designed for cancer, researchers prefer to use

cancer to validate their methods. One of the reasons is that many wet-lab studies have been conducted on

various types of cancer, which is convenient for de novo validation. Another reason is that different types of

cancer are well studied, and the number of known cancer-related genes is larger than other diseases, which is

beneficial for training the model, especially for supervised learning methods. For methods that use cancer to

evaluate their performance, the Cancer Gene Census project in COSMIC contains the most comprehensive

cancer-related genes. Thus, algorithms should use their association data for the prediction.
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Figure 2.4: Eight types of evidence valuable for disease gene prediction. The five types of evidence
in the left blue circle characterize the functional similarity of genes, and the two types of evidence in
the right yellow circle contain disease-associated information. Gene expression in the middle contain
both types of information.

Non-disease genes

Along with disease-gene associations, many algorithms require non-disease genes to train their models or

evaluate their performance. Unfortunately, no databases contain non-disease genes, and computational

methods have to select a set of unknown genes as non-disease genes. The simplest strategy is to randomly

select a group of unknown genes as non-disease genes. The number of the selected genes varies depending

on the model used for prediction. For weighted models (e.g. biased SVM or weighted random forest), the

number of the non-disease genes is usually five to twenty fold higher than the known disease genes. For other

models, the size of the positive and negative data should be similar to avoid imbalanced samples. Although

the selected genes might be unidentified disease genes, the probability would be small since the number of

all disease genes is much less than that of unknown genes. Furthermore, the bootstrap aggregating which

improves the stability and accuracy of computational prediction [77] can be used by selecting several groups

of non-disease genes and performing the prediction in an ensemble manner.

Additionally, instead of randomly selecting a group of unknown genes, for supervised machine learning-

based methods, a better choice is to first define a set of highly potential non-disease genes [reliable negatives

(RNs)], then select a subset of genes from RN as negatives. For instance, Luo et al. calculated the similarities

of various diseases and used the associated genes of one disease as non-disease genes of the other one for
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Table 2.1: Some commonly used databases of disease-gene associations

Name URL Ref. Latest Update

OMIM https://www.omim.org [80] 01/01/2019

DisGeNET http://www.disgenet.org [81, 76] 01/14/2019

GAD https://geneticassociationdb.nih.gov [82] 08/18/2014

CTD http://ctdbase.org [83] 01/13/2019

PsyGeNET http://www.psygenet.org [84, 85] 09/02/2016

COSMIC https://cancer.sanger.ac.uk [86, 87] 11/13/2018

two dissimilar diseases [78] 4. This strategy collected a set of RN which enabled the training of a successful

model. However, note that the reasons of different genes not associated with a disease are different. Some

of these genes might be passenger genes while others might have completely no function for disease genesis.

A set of well defined non-disease genes might be linearly separable from the disease genes, resulting in high

prediction accuracy. However, this accuracy does not guarantee the successful prediction of all unknown

genes. To solve this issue, Yang et al. proposed a strategy in PUDI which classified unknown genes into

four categories: likely positives, likely negatives, reliable negatives, and weak negatives [41]. This strategy

allowed the model to be trained with different types of unknown genes, which would enhance its ability in

predicting new disease genes.

For network-based and other methods, the artificial linkage interval was frequently used to select non-

disease genes [3, 79]. This strategy selects 99 genes that surround a disease gene on the chromosome as

non-disease genes. During the prediction, each known disease gene and its 99 closest genes are regarded

as unknown. Since similar genes tend to cluster in chromosomal neighborhoods, if an algorithm is more

accurate in identifying disease genes from its neighbor genes, its performance should be better than the

competing algorithms.

2.3.2 PPI network

PPI networks are the most widely used data in all three types of algorithms. Usually, proteins are mapped to

their corresponding genes to form a gene interaction network. In this section, we will use genes and proteins

interchangeably. Right now, many databases are available for researchers to download PPI networks. Table

2.2 summarizes several databases and the date of their latest updates. The first four databases (BioGRID,

HPRD, MINT, and DIP) collect PPIs from published literature while the rest ten databases also collect

PPIs from other databases. Among these databases, INstruct curates the interactions and constructs a 3D

PPI network.

From Table 2.2, we can find that more than half of the databases have not been updated for at least one

4[78] is Chapter 3 from this thesis
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Table 2.2: Some commonly used databases of PPI networks

Name URL Ref. Latest Update

BioGRID https://thebiogrid.org [88] 12/25/2018

HPRD http://www.hprd.org [89] 04/13/2010

MINT https://mint.bio.uniroma2.it [90] 09/01/2013

DIP https://dip.doe-mbi.ucla.edu/dip/Main.cgi [91] 02/05/2017

INstruct http://instruct.yulab.org [92] 04/15/2013

STRING https://string-db.org [93] 01/19/2019

InWeb IM http://www.intomics.com/inbio/map [94] 09/12/2016

IntAct https://www.ebi.ac.uk/intact [95] 12/01/2018

PINA http://omics.bjcancer.org/pina [96] 05/21/2014

HIPPIE http://cbdm-01.zdv.uni-mainz.de/~mschaefer/hippie [97] 07/18/2017

HINT http://hint.yulab.org [98] Version 4

iRefIndex http://irefindex.org/wiki/index.php?title=iRefIndex [99] 01/22/2018

Mentha https://mentha.uniroma2.it [100] 01/28/2019

I2D http://ophid.utoronto.ca/ophidv2.204 [101] 07/10/2015

year. Meanwhile, since protein interaction is tissue-specific and dynamic, PPI networks downloaded from

these databases contain many false positives [4], which significantly affects the accuracy of the prediction,

especially for network-based methods. Many approaches have been proposed to improve the quality of the

downloaded PPI networks. One of them is to filter out PPIs with low confidence scores. A few databases,

such as STRING and InWeb IM, offer confidence scores which represent the reliability of the PPI. PPIs with

low confidence scores are usually collected from animal experiment or computational prediction, which can

be removed if users need a high-quality network.

2.3.3 Gene expression

Gene expression profiles are the second most popular data for disease gene prediction. Before the widespread

use of next-generation sequencing technologies, gene expression data measured by microarray or RNA-seq

are the most accessible data to enhance the prediction of disease genes. Although gene expression cannot

directly provide association information, the expression pattern of genes in different groups of samples helps

us identify disease genes.

Gene expression data can be used to extract features, weight the PPI networks, and build tissue-specific

networks. We can also use them to build independent networks, such as co-expression networks [48], reg-
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ulatory networks and differential co-expression networks [78] 5. The datasets of gene expression can be

obtained from many platforms, such as the Gene Expression Omnibus (GEO) [102, 103] and Genomic Data

Commons (GDC) Data Portal (previously known as TCGA) [104]. Similar to PPI networks, gene expression

data suffer from quality issues. No matter how the expression levels are measured (microarray or RNA-seq),

preprocessing should be performed to remove low-quality samples and non-expressed genes. Moreover, the

data have to be normalized before cross sample analysis, especially for RNA-seq data, which are usually not

normalized. Many algorithms have been proposed to normalize the raw RNA-seq count data, and details of

their comparison can be found in [105].

Among all the applications of gene expression, co-expression analysis is the most frequently used one.

Co-expression patterns, especially differential co-expression, reveal disease-associated properties, and many

algorithms have used them to predict disease genes [106]. However, both co-expression and differential co-

expression characterize only a part of the disease gene-related information. Neither of them can solve the

problem alone, and gene expression data should be integrated with other types of data when designing a

computational method.

2.3.4 Mutation data

Unlike other types of data which mainly provide functional similarity information, mutation data contain the

association information between diseases and mutations, which has accelerated the identification of disease

genes. Currently, mutation data are obtained from sequencing studies, such as GWAS, Whole Exome

Sequencing (WXS) and Target Sequencing (TS).

In typical GWAS, patients and normal controls are genotyped to identify disease-associated single nu-

cleotide polymorphisms (SNPs). For each SNP, a P -value calculated from statistical tests is used to represent

its likelihood of being disease-associated. These SNPs can be further mapped to their corresponding genes

to generate a group of candidate disease genes. Generally, an SNP is mapped to a gene if it is located within

the gene sequence or 20 kb upstream or downstream. If multiple SNPs are mapped to the same gene, the

most significant SNP (the one with the smallest P -value) would be chosen. Post-GWAS algorithms then

combine these candidate disease genes and their mapped P -values with other types of data, such as PPI

network, to select a subset of genes as disease genes.

Another type of data that can be obtained from GWAS are the expression quantitative trait loci (eQTL).

Mutations in these loci can modulate the expression of genes, which might lead to diseases. Based on the

distance between the loci and the genes, eQTL can be divided to cis (close to a gene) and trans (distal to

a gene or on different chromosomes). Studies have shown that trans eQTL are more important than cis

eQTL for their influence on gene expression [107, 108]. Since eQTL can provide additional disease-related

information, algorithms have combined SNPs and eQTL to improve the accuracy of disease gene prediction

5[78] is Chapter 3 from this thesis
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Table 2.3: Some commonly used databases of Pathways

Name URL Ref. Latest Update

KEGG https://www.genome.jp/kegg [119, 120, 121] 01/01/2019

Reactome https://reactome.org [122] 12/13/2018

WikiPathways https://www.wikipathways.org [123] 01/01/2019

Pathway Commons https://www.pathwaycommons.org [124] 01/28/2019

[109, 110].

Currently, several databases collecting GWAS data are available, such as GWAS catalog [111] and dbSNP

[112]. The most popular eQTL database is GTEx Portal. Researchers can also obtain eQTL data of specific

tissues from references [113, 114].

In WXS and TS studies, various types of somatic mutations [single nucleotide variants (SNVs), insertions

or deletions (indels), etc.] are identified, and computational algorithms can predict disease genes by analyzing

their frequency or functional impact. However, unlike GWAS which has been conducted for more than ten

years. WXS relies on the next generation sequencing technologies, and mutation data measured from these

studies are not always available for all kinds of diseases. Thus, somatic mutation data are not further

discussed in this review. Studies about analyzing somatic mutation data can be found in [13].

2.3.5 Pathway

It is well known that disease genes of the same or similar diseases may exist in the same biological module,

such as protein complexes [115], and pathways [116]. Therefore, pathways are also valuable for disease gene

prediction. Table 2.3 lists a few pathway databases that are commonly used in computational algorithms.

In earlier stages, some computational algorithms regarded unknown genes in the same pathway with the

known disease genes as candidates and identified real disease genes from them [15]. Later on, Chen et al.

extracted features from a pathway co-exist network in which two genes were connected if they belonged to the

same pathway [117, 118]. Currently, pathways are more commonly used to validate the do novo prediction

of the algorithms. The corresponding methods are discussed in Section 2.4.3.

2.3.6 Other types of data

Apart from the widely used data discussed in the previous sections, many other types of data are also useful

in predicting disease genes. One of them is ontology data, which includes gene ontology [125, 126] and

phenotype ontology [127, 128]. Ontology terms can be described by directed acyclic graphs (DAG) where

nodes represent terms while edges represent semantic relations. The major application of gene (phenotype)
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ontology in disease gene prediction is to calculate the similarities among genes (diseases) [129, 64] 6. A few

algorithms have been proposed to calculate the semantic similarities based on ontology data [130, 131]. We

can also extract features from gene ontology data and train machine learning models with them [41, 132].

Moreover, databases like MeSH, also contains disease terms in the form of DAG which can be used to

compute disease similarities [133].

Another type of data is subcellular localization, which represents where a protein resides in cells. There

are 11 compartments, and two proteins may not interact with each other if they are not localized in the

same compartment. Databases such as COMPARTMENTS [134] and LOCATE [135] contain experimentally

validated subcellular localization data. Based on our experience, directly using data obtained from these

databases and removing protein interactions if two proteins are not in the same compartments might not

improve the prediction accuracy, since subcellular localization information is still being identified. A better

choice is to weight the PPI networks with the currently available localization data using the strategy proposed

in [136, 79].

Finally, protein sequence and domain information are related to the protein functions, which is valuable

for disease gene prediction. However, due to their complexity, only a few algorithms have used them in the

prediction [137, 41].

2.3.7 Data integration

Each type of data discussed in previous sections characterizes its unique biological properties. To improve

the prediction accuracy, it is necessary to properly integrate different types of data so that their shortcomings

are compensated. Currently, network-based strategies are most commonly used in integrating multiple types

of data.

Network-based

A. Single network-based

Single network-based strategies focus on weighting the PPI network with additional information. Generally,

pair-wise measurements, such as correlation coefficients, subcellular localization and gene similarities, can

be used to weight the edges of the network, while single gene-related information, such as average expression

level, P -values mapped from GWAS data, can be used to weight the nodes of the network.

Additionally, PPI networks can be curated to improve its accuracy. A typical example is to construct

tissue-specific networks based on gene expression data. The key idea is to remove a protein interaction if one

of the two interacting genes is not expressed in the corresponding tissue. However, it is difficult to determine

whether a gene is expressed or not. Earlier method regarded a gene as expressed if its expression level was

higher than a threshold [138]. Later on, Ganegoda et al. calculated the PCC of all interacting genes and

6[64] is Chapter 5 from this thesis
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removed an edge if its corresponding PCC was lower than a threshold [39]. Ni et al. also used PCC of the

gene expression to construct a tissue-specific PPI network, except that they constructed the network using

the k-nearest-neighbor strategy where each gene in the PPI network was connected with its top k “nearest”

genes based on the PCC [139].

Although co-expression-based methods are better than those with a unified threshold, neither of them

are optimal. To make the obtained network more informative for disease gene prediction, Luo et al. proposed

an algorithm to construct sample-specific networks [43] 7. Specifically, a unique network was generated for

each disease (case) sample. A gene i was considered expressed in a case sample if its expression level was

higher than λ ·mean(cntl[i]), which was the mean expression levels of i in the control samples. λ was then

chosen by the grid search based on the performance of the algorithm. Although this strategy might remove

several true positive PPIs from the network, the remaining PPIs were closely related to the disease, which

should improve the prediction of disease genes. Results of the experiments showed that prediction based on

this strategy was more accurate than some previous ones, such as the subcellular localization-based method

[79].

Finally, researchers can also build functional interaction (FI) networks to replace the PPI network. In

an FI network, genes are connected if their functional similarities are above a defined threshold. Thus, the

connected genes do not need to physically interact. The functional similarities can be calculated from protein

interaction, gene expression, pathway and many other types of data [140].

B. Multiple network-based

Multiple network-based strategies construct a few biomolecular networks and combine them together. For

instance, a heterogeneous network is constructed by disease similarity network, PPI network and bipartite

network which represents disease-gene associations. Since disease similarity is used in a heterogeneous

network, evidence for estimating disease similarities can all be used to construct heterogeneous networks.

Meanwhile, heterogeneous networks can also be used to integrate multi-omics data. For instance, Lei et

al. constructed a triple heterogeneous network where lncRNA–lncRNA similarity network, gene–lncRNA

associations and lncRNA–disease association were fused into the network [30].

Feature-based

Feature-based strategies are used in machine learning-based methods. Raw features extracted from each

type of data can be fused by deep learning models such as DBN and graph CNN. Details of these models

are discussed in Section 2.2.2. Although the learning process is in a black box, the fused representations

improved the prediction accuracy according to existing studies.

7[43] is Chapter 4 from this thesis
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2.4 Evaluation methods

Many strategies have been used to evaluate the performance of computational algorithms; however, no gold

standard has been proposed. In this section, we present a two-step approach for researchers to evaluate their

own algorithms. The two steps consist of the minimum required strategies that should be used for evaluation.

In the meantime, we also introduce several other evaluation methods, and researchers are encouraged to use

them to further evaluate their algorithms.

2.4.1 Step 1: metrics

The first step to evaluate an algorithm is to compare it with other state-of-the-art methods using different

metrics. Since generating a probability (or a score) for each gene, rather than a binary label, is more helpful

for scientists to select potential disease genes, metrics such as the area under receiver operating characteristic

(ROC) curve (AUC) and the area under Precision–Recall (PR) curve (AUPR) are recommended to compare

different algorithms. ROC curve plots the true positive rate (TPR) versus the false positive rate (FPR) at

different thresholds, and PR curve plots precision against recall (also known as TPR) at different thresholds.

A larger area under the curve represents better overall performance. Due to the small size of input data,

computational methods usually use cross-validation to obtain the prediction results. 5-fold cross-validation

and leave-one-out are two commonly used approaches.

To calculate precision, recall and FPR, known disease genes are regarded as positives, while non-disease

genes are regarded as negatives. Given a threshold, these metrics can be calculated by

precision =
# of TPs

# of TPs + # of FPs

recall =
# of TPs

# of TPs + # of FNs

FPR =
# of FPs

# of FPs + # of TNs

(2.6)

where a TP (true positive) is a known disease gene predicted as positive; a FP (false positive) is a non-disease

gene predicted as positive; a TN (true negative) is a non-disease gene predicted as negative; a FN (false

negative) is a disease gene predicted as negative.

Usually, AUC is suitable for balanced datasets while AUPR is more useful for imbalanced datasets [11].

Considering that algorithms with high recall rate are more valuable (correctly predict true disease genes is

more useful), another metric known as “recall rates at different thresholds” can be used in concert with AUC

or AUPR to demonstrate the superiority of the algorithm. An algorithm with higher recall rate within the

top k (typically, k = 100) genes is superior to its competing algorithms.

Other than AUC and AUPR, researchers can also rank all the genes based on their probabilities and

calculate the “cumulative distribution function (CDF) of the rank”. CDF characterizes the number of

disease genes that are ranked in the top k genes of the predicted list as a function of k. Similar to “recall
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rates at different thresholds”, CDF of the rank also measures the algorithm’s ability in predicting true disease

genes with different thresholds.

In summary, researchers should choose one of the three metrics (AUC, AUPR, and CDF) to evaluate

their methods.

2.4.2 Step 2: de novo study

As discussed in Section 2.3.1, a high accuracy might be the results of well selected non-disease genes. To

further demonstrate the performance of the algorithm, a de novo study should be conducted as the second

step to evaluate the proposed algorithm. Specifically, researchers should use their algorithms and search the

predicted disease genes against those known from existing literature. Usually, disease genes are not collected

into databases unless their associations have been proved by multiple studies. Thus, it is possible that a

gene has been identified as a disease gene by a few studies, but still has not been collected by the benchmark

dataset. If most of the genes in the top k (usually k = 10) predictions have been experimentally identified

as disease-associated, the algorithm would be a valuable one.

2.4.3 Other evaluation methods

The two-step approach provides the typically required evaluation methods to demonstrate the performance

of an algorithm. In many studies, researchers tend to use additional methods to further evaluate the per-

formance of their algorithms. For instance, pathway enrichment analysis (PWEA) identifies statistically

significant gene sets which represent functions, mechanisms, processes, etc. Given a set of predicted disease

genes, PWEA uses statistical tests to verify if a pathway is over-represented among input gene sets com-

pared to the whole genome [141]. Results of the analysis are a list of pathways, each of which with a P -value

represents its significance. The more significantly enriched disease-related pathways are found in the results,

the better the algorithm performs. Another method is to use databases, such as DisGeNET, to research

PubMed IDs of newly published articles that report the predicted disease-gene associations.

2.5 Perspectives and conclusions

In this review, we have discussed several types of computational methods for predicting disease genes.

Based on their characteristics, we roughly divide them into three groups: network-based methods, machine

learning-based methods, and other methods. For each type of method, we discussed those that are valu-

able for developing new algorithms. Note that a thorough comparison is not provided in this review since

different methods use different types of data, and a method with lower accuracy could still be valuable for

developing new algorithms. For instance, many NMF-based methods outperformed IMC in their evaluations.

However, with new disease and gene features, a modified IMC still performed much better than most NMF-

based methods [142]. Therefore, when developing new algorithms, researchers should incorporate different
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strategies properly and leverage the advantages of various types of methods. Despite the good performance,

existing algorithms might be improved in several ways to allow more accurate prediction.

For network-based methods, the state-of-the-art algorithms are those that use a random walk to predict

disease genes. The contribution of a path to the prediction score decreases exponentially with its length,

which might not be the best option for prediction. If we set different weights for different path lengths, the

random walk might be more controllable which might generate better predictions. Another issue is that

many algorithms are biased towards hub genes. Using P -value instead of original prediction scores could

solve this problem [129, 143]. Moreover, the performance of network-based methods depends highly on the

quality of the network. Although using multiple networks or heterogeneous networks can improve prediction

accuracy, most approaches still focus on genomics data. Researchers should develop more architectures that

can use multi-omics data to enhance the prediction.

For machine learning-based methods, the selection of negative data is a critical issue. A good non-

disease gene selection strategy might find a group of highly possible negative data, resulted in high AUC and

AUPR scores. However, the accuracy of the model in predicting new disease genes may not be satisfactory,

since passenger genes are not like those selected non-disease genes, which can be easily separated from

known disease genes. The two-step strategy which filters out those highly possible non-disease genes in the

first step might help researchers design a good model [117, 118]. Furthermore, a bootstrap strategy which

allows the model to be trained with multiple types of negative data should also improve the discriminative

power of the algorithms. In addition to negative data, machine learning-based algorithms might also be

biased toward hub genes. This issue is mainly raised by the features extracted from biomolecular networks.

Combining traditional features with novel representations, such as mutation-based features [144, 145] or

graph embeddings [146] should solve this issue. Last but not least, more and more studies have used deep

learning to solve biomedical issues [147]. Deep learning models can directly learn features from raw sequence

data and expression data, which might provide more valuable representations than traditional hand-craft

features. Meanwhile, newly developed models such as graph CNN also provide a new way for data integration,

and combining graph CNN with heterogeneous networks would allow us to learn representations from multi-

omics data.

Another problem lies in the need for a high-quality disease-gene association database for complex diseases.

Although many databases have been released, researchers tend to have divergence in determining whether

a gene is disease-associated or not. Association data downloaded from different databases vary a lot for

some complex diseases. Thus, an advanced database for complex diseases would be extremely valuable for

computational algorithms.

Finally, computational algorithms are developed to assist the experimental identification of disease genes;

however, most of them have not been used in wet-lab studies. The main reason is that most algorithms have

not been implemented as user-friendly software tools. Even if the authors have provided the source codes,

users still need to preprocess their data so that the algorithms can be performed. This issue is extremely
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critical when the algorithms require multiple types of data. Thus, implementing these algorithms to a

web tool or user-friendly software package would significantly improve their practicability in disease gene

discovery. For instance, Endeavour provided a web tool for users to predict disease genes using multiple

types of data [70]. Studies conducted for the identification of Autism-associated genes [148] and Parkinson’s

disease-associated genes [149] have used Endeavour to prioritize candidate genes. Similarly, WGCNA has also

been used to analyze expression data and identify disease-associated modules [50, 51]. Note that algorithms

that have not been developed to an online tool still contribute a lot to the prediction of disease genes. These

algorithms provide insights on how to analyze biological data and predict disease genes, which might be used

in other tools and areas.
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As discussed in Chapter 1, disease-gene prediction is a positive-unlabeled learning problem, where only

positive instances (disease genes) are available in benchmark datasets. To train and evaluate the models,

non-disease genes have to be selected as negative instances. Most algorithms randomly select a group of

unknown genes as non-disease genes, some of which might be real disease genes. A strategy should be

proposed to select a set of highly possible non-disease genes.

In this chapter, a shortest path-based strategy is proposed to combine OMIM data and clinical gene

expression data and select reliable non-disease genes. Applying these non-disease genes with energy-based

model shows that these negative instances can significantly improve the prediction accuracy. This chapter

fulfills Objective 2 of this thesis.

Abstract

Disease gene prediction is a challenging task that has a variety of applications such as early diagnosis and

drug development. The existing machine learning methods suffer from the imbalanced sample issue because

the number of known disease genes (positive samples) is much less than that of unknown genes which are

typically considered to be negative samples. In addition, most methods have not utilized clinical data from

patients with a specific disease to predict disease genes. In this study, we propose a disease gene prediction

algorithm (called dgSeq) by combining protein-protein interaction (PPI) network, clinical RNA-Seq data,

and Online Mendelian Inheritance in Man (OMIN) data. Our dgSeq constructs differential networks based

on rewiring information calculated from clinical RNA-Seq data. To select balanced sets of non-disease genes

(negative samples), a disease-gene network is also constructed from OMIM data. After features are extracted
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from the PPI networks and differential networks, the logistic regression classifiers are trained. Our dgSeq

obtains AUC values of 0.88, 0.83 and 0.80 for identifying breast cancer genes, thyroid cancer genes and

Alzheimer’s disease genes, respectively, which indicates its superiority to other three competing methods.

Both gene set enrichment analysis and predicted results demonstrate that dgSeq can effectively predict new

disease genes.

3.1 Introduction

Complex diseases are usually caused by the malfunction of a group of genes, known as disease-associated

genes or disease genes. Identifying these genes is critical for understanding the mechanisms of diseases.

Traditional methods such as GWAS and linkage analysis usually generate hundreds of candidate disease

genes, making the further validation time-consuming and expensive [11]. As a result, many researchers have

developed efficient computational methods to predict and prioritize candidate disease genes to reduce the

number of candidates while helping scientists optimize the in-depth wet lab validation.

Based on whether the algorithms require known disease-gene associations as input, existing algorithms

can be divided into two categories: undifferentiated and differentiated [11]. Undifferentiated algorithms

treat all the genes in the genome equally, and provide overall probabilities for all the genes involved in a

disorder. For instance, dmGWAS [150] and EW dmGWAS [58] first searched dense modules from a PPI

network weighted by GWAS and gene expression data. Then, genes in the top 1% of the ranked modules

were regarded as disease genes. MetaRankder 2.0 prioritized candidate genes by integrating five kinds of

heterogeneous data [151]. Text mining algorithms such as MeSHOP [152] and Genie [153] searched candidates

from biomedical literature and generated a list of ranked genes for a given specific disease. Those methods

are useful especially for disorders that have no known disease genes.

Differentiated algorithms analyze the known disease genes along with other biological data, and provide

more valuable information than undifferentiated algorithms. Many machine-learning-based and statistics-

based algorithms are differentiated. An example is the popular tool Endeavor, which prioritized candidate

genes according to the relationships between user submitted training genes and candidate genes in various

kinds of biological data. Another example is the network energy-based algorithms proposed by Chen et

al. [48, 117, 118], where genes are classified as being disease-associated or not according to the posterior

probabilities calculated by a formula derived from the Boltzmann distribution and their defined network

energy function.

Differentiated algorithms, especially machine learning-based algorithms, have gained success in the pre-

diction of various kinds of disease genes. However, since the number of known disease genes (positive samples)

is far less than that of unknown genes (negative samples), most machine learning-based algorithms have to

face an imbalanced classification problem. Moreover, no databases contain non-disease genes for a specific

disease. Thus, training an accurate machine learning model for predicting disease genes is usually difficult.
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To solve this imbalanced classification issue, one possible solution is to divide the individual diseases into

disease classes. Since the number of genes in each class is much more than that of a specific disease, training

a model with disease classes is possible. Algorithms such as the RWR of Köher et al. [18] and the MRF

method of Chen et al. [47] used this strategy. Another approach is to narrow down the non-disease genes

space. For instance, in their “two step” method [117], Chen et al. first removed the genes with low relevance

to the disease under consideration, then predicted disease genes from the remaining genes. This strategy

successfully predicted cancer-related genes; however, negative samples in the training set were still five times

higher than positive samples. As well, the method required individual diseases to be laboriously classified

into disease classes. Although Goh et al. classified disease genes into 22 classes in [154], their dataset was

out of date. Databases such as Online Mendelian Inheritance in Man (OMIN) [155] are updated daily and

require time and expertise to be classified.

In this study, we propose a strategy to reduce the number of non-disease genes. Unlike existing meth-

ods, our strategy selects non-disease genes for a specific disease rather than a disease class. The obtained

non-disease genes are directly selected from the latest OMIM dataset. No classification is needed in the

process, thus improving the accuracy and efficiency of the algorithm. Additionally, since the number of non-

disease genes in the training set is similar to the number of disease genes, our model avoids the imbalanced

classification problem.

In addition to non-disease gene selection strategy, we integrate PPI networks and RNA-Seq Data to

improve the prediction accuracy. Previous research has shown that the integration of PPI networks and gene

expression data is valuable for predicting essential proteins and protein function [156, 157]. In this work, we

integrate these two types of data by extending our previous study on ‘guilt by rewiring’ [158]. A network

is considered to be rewired if its edges (wires) are changed during a specific process. This phenomenon

is observed in many biomolecular networks, such as regulatory networks, protein-protein interaction (PPI)

networks and co-expression networks. Previous studies have shown that network rewiring is an important

implication for analyzing biological data. For instance, Hu et al. showed that besides differential expression,

rewiring information was very useful for analyzing gene expression data [159]. In our study, the rewiring

of co-expression network from control to case subjects is used to predict disease genes. In [160], Hou et al.

demonstrated that co-expression between disease genes were more frequently rewired than a random pair

of genes. The major reason behind this phenomenon is that disease genes are usually extensively expressed

in case subjects compared to control subjects (differential expression), while non-diseases may maintain a

stable expression level in different conditions. This difference raises the variance of the correlations between

genes, which is reflected on the co-expression network.

In [158], the rewiring information calculated from gene expression under different conditions (case and

control) was employed to weight the PPI network, and predicted disease genes through a logistic regression

model trained on the features extracted from the weighted PPI network. This strategy is usually useful,

except for non-disease genes with large degrees. Although the average weights (rewiring information) around
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these genes are less than real disease genes, they may have similar features as disease genes because of

their high degrees. To solve this problem, in this study, instead of weighting the PPI network with gene

expression data, we used the rewiring information computed from expression data to build an independent

scale-free differential network. This differential network, combined with the PPI network, is employed to

extract features for predicting disease genes. The new features extracted from two networks can reveal the

topological structure of PPI and the rewiring information of all genes at the same time, which can solve the

problems in the previous model. The challenges of the new model is to build a valuable differential network,

which is discussed in Section 3.2.2. It is noting that the expression data in [158] was measured by microarray,

which has been replaced by RNA-Seq by many databases because of its limitations. Thus, in this study, the

rewiring information is calculated from clinical RNA-Seq data instead. Experiments performed on Breast

Cancer (BC), Thyroid Cancer (TC) and Alzheimer’s disease (AD) reveal that our new algorithm is superior to

existing methods. An implementation of dgSeq is available at: https://github.com/luoping1004/dgSeq.

The rest of the paper is organized as follows. Section 3.2 describes the methods and materials used in

the study. Section 3.3 analyzes the experimental results of the algorithm and compares dgSeq with three

other competing algorithms. Section 3.4 draws some conclusions.

3.2 Methods and materials

The work flow of the algorithm is depicted in Fig. 3.1. First, the RNA-Seq data from case subjects (a)

and control subjects (b) are used to build a differential network by the strategy proposed in Section 3.2.2

(c). Then, a disease-gene network (d) is constructed with OMIM data, and labels of all the genes (e) are

determined by (c), (d) and benchmark disease genes. These labels are used to label the PPI network (f) and

differential network (c). After that, features of the known disease genes and non-disease genes are extracted

from (c) and (f). A logistic regression model (h) is trained by the extracted feature matrix (g) and its

corresponding labels (e). Finally, the probability of a gene being labeled as 1 (disease gene) (i) is calculated

in each round of the cross validation. Details of the algorithm are discussed in the following subsections

3.2.1–3.2.4. Subsections 3.2.5 and 3.2.6 explain the validation methods and data sources, respectively.

3.2.1 General model

Identifying disease genes from a biomolecular network can be formulated as a network labeling problem in

which disease genes are labeled as 1 while non-disease genes are labeled as 0. Let g1, g2, . . . , gh represent

all the h genes in the network. A set of binary labels x = (x1, x2, . . . , xh) of these h genes is known as a

configuration of the biomolecular network, and the set of all possible configurations X is a random field.

The probability distribution of the configuration x of a random field X can be calculated by Boltzmann

distribution [45]

P (x) =
1

Y
· exp(−κH(x)) (3.1)

30



(a)

(b)

(f) PPI network

Non‐disease

genes

Disease

genes

(h
) 

Lo
g

is
ti

c 
re

g
re

ss
io

n

(g)

(i) Probability

(c) Differential network (d) Disease‐gene network

(e) Labels

Figure 3.1: The work flow of dgSeq. (a)–(b). Clinical RNA-Seq data of the case and control subjects;
(c). Differential network constructed by (a) and (b); (d) disease-gene network constructed by OMIM
data; (e). Labels of all the genes determined by (c), (d) and benchmark disease genes; (f). PPI
network; (g). Feature matrix extracted from (c) and (f); (h). Logistic regression model trained with
(e) and (g); (i). The calculated probabilities of all the genes being labeled as 1 (disease gene).

where H(x) is the Hamiltonian (energy) of the configuration x, κ is a positive constant parameter, and Y is

called the partition function and defined as Y =
∑
x∈X exp(κH(x)).

Let x[−i] be the binary labels of all nodes except for node i in a network. Then, knowing the labels

(disease or non-disease) of other genes (that is, x[−i]), the probability that gene i is a disease gene is a

conditional probability P (xi = 1|x[−i]). By Bayes’ rule we have

P (xi = 1|x[−i]) =
P (xi = 1, x[−i])

P (xi = 1, x[−i]) + P (xi = 0, x[−i])
(3.2)

In (3.2), (xi = 1, x[−i]) is the configuration that gene i is a disease gene while (xi = 0, x[−i]) is the con-

figuration that gene i is a non-disease gene. The probability of both configurations can be calculated by

(3.1).

By adopting the Ising model to calculate the Hamiltonian in [46, 47, 48], the probability P (xi = 1|x[−i])

in (3.2) can be parameterized as follows

P (xi = 1|x[−i], µ̃) =
eα+βMi0+γMi1

eα+βMi0+γMi1 + 1
(3.3)

where µ̃ = (α, β, γ) are model parameters. Mi0 and Mi1 are the numbers of neighbors of node i with label
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0 and 1, respectively. Furthermore, if Z networks are available for determining disease genes, (3.3) can be

generalized as follows [46]

P (xi = 1|x[−i], µ) =
exp(V (i))

exp(V (i)) + 1
(3.4)

where

V (i) = α+

Z∑
z=1

[βz ·Mz
i0 + γz ·Mz

i1],

µ = (α, βz, γz) (z = 1, . . . , Z) are model parameters. Mz
i0 and Mz

i1 are the number of neighbors of node i

with labeled 0 and 1 in the z-th network, respectively. Clearly, (3.4) follows a logistic model

P (xi = 1|x[−i], µ) =
exp(µTϕi)

exp(µTϕi) + 1
(3.5)

where

ϕi = (1,M1
i0,M

1
i1, . . . ,M

z
i0,M

z
i1)T (3.6)

µ = (α, β1, γ1, . . . , βz, γz)T .

We can also have

P (xi = 0|x[−i], µ) = 1− P (xi = 1|x[−i], µ)

=
1

exp(µTϕi) + 1

(3.7)

which computes the probability of a gene being labeled as 0.

Given a known configuration, the parameters in µ can be estimated by the following likelihood function

µ̂ = arg max
µ

(

h∏
i=1

P (xi|x[−i], µ)) (3.8)

However, since the number of disease genes is far less than that of unknown genes, the parameter estimated

by (3.8) is inaccurate because of the sample imbalanced problem. To address this problem, we employ the

under sampling strategy which uses (3.9) to replace (3.8) in this study.

µ̂ = arg max
µ

(

2m∏
i=1

P (xi|x[−i], µ)) (3.9)

For the disease d under consideration, m is the number of known disease genes associated with d. Sndg

contains a set of non-disease genes. We perform the under sampling to randomly select m non-disease genes

from Sndg, and (3.9) estimates µ based on the features of the m disease genes and m non-disease genes.

The under sampling is performed 100 times and each time computes a µ which is then used to compute the

probabilities of unknown genes being labeled as 1. Finally, for each unknown gene, its average probability of

being labeled as 1 in the 100 runs is regarded as its probability of being disease-associated. The algorithm

for defining non-disease genes with d is discussed in Subsection 3.2.3.
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Maximizing the likelihood function in (3.9) is equivalent to maximizing the log likelihood function in

(3.10) as follows

µ̂ = arg max
µ
L(µ) (3.10)

where

L(µ) =

2m∑
i=1

ln(P (xi|x[−i], µ)) (3.11)

Substituting (3.5) and (3.7) into (3.11) yields

L(µ) =

2m∑
i=1

{xiµTϕi − ln[1 + exp(µTϕi)]} (3.12)

Since (3.12) is a concave function of µ [161], the optimization problem (3.10) can be solved by Python’s

library SciPy using the optimization function minimize() through searching the minimum solution of the

convex function −L(µ) [162].

3.2.2 Differential network construction

Not only are the expressions of disease genes in case subjects are significantly different from those in control

subjects, but also their correlations in case subjects should also be significantly different from those in control

subjects (rewiring). Actually, it is believed that a pair of disease genes are more frequently rewired than

a random pair of genes in the genome. To take the rewiring information into account, in this study the

differential networks are constructed with clinical RNA-Seq data.

Given two genes gi and gj with their corresponding v-dimensional expression values (gi1, gi2, . . . , giv) and

(gj1, gj2, . . . , gjv), respectively, their Pearson correlation coefficient (PCC) can be calculated as follows

r(gi, gj) =

∑v
q=1(giq − ḡi)(gjq − ḡj)√∑v

q=1(giq − ḡi)2
√∑v

q=1(gjq − ḡj)2
(3.13)

where ḡi and ḡj are the mean of the expression values of gi and gj , respectively.

For a pair of genes gi and gj , let rcaseij denotes the PCC between the expression of genes gi and gj in case

subjects, and rcntlij denotes their PCC in control subjects. Instead of Fisher’s test of difference used in our

previous study [158], we directly compute an absolute value

pij = |rcaseij − rcntlij | (3.14)

for all pairs of genes i and j (i, j ∈ [1, h], i 6= j), and obtain a correlation difference matrix

P =


p11 p12 . . . p1h

p21 p22 . . . p2h
...

...
. . .

...

ph1 ph2 . . . phh


which contains the rewiring information between the case and control subjects.
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Figure 3.2: Scatter plot of the log-log degree distribution of Gdif for BC .

Although matrix P could be used as an adjacency matrix to construct a differential network, this net-

work would contain too much noise since the process of producing clinical RNA-Seq data has various noisy

resources. To filter out the noisy edges which typically correspond to a small value in matrix P , we use the

k nearest neighbors (K-NN) algorithm [163] to determine whether an edge should be kept. Specifically, for

gene i, the largest k entries in the i-th row of the matrix P are kept while others are set to be zeros. Let pij

represent one of the k kept entries in row i. Then an edge is added between i and j for each of the k entries.

Finally, a differential network Gdif is built by adding edges for all the largest k entries in every row of the

matrix P .

For different values of k, the degree distribution of the constructed differential network is different. Then,

it is nontrivial to choose a reasonable k for constructing a meaningful differential network. Since many

biological networks are scale-free, such as the PPI network used in our study, it is believed that a scale-free

differential network would be more reasonable. We use different values of k to construct the networks, and

find that the differential networks are scale-free for all values of k from 3 to 9. However, the large value of k

may include more noisy edges while the small value may exclude more informative edges. In this study, we

use k = 5 in the experiments. More details about this threshold is discussed in the Results. Fig. 3.2 shows

the scatter plot of the log–log degree distribution for Gdif with k = 5 constructed based on BC’s clinical

RNA-Seq data. Apparently, Gdif is scale-free. The other differential network for TC is similar to Fig. 3.2.
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Figure 3.3: Sample disease gene network

3.2.3 Non-disease genes

Although no databases contain disease specific non-disease genes, we adopt a strategy to determine non-

disease genes. The strategy includes three steps. First, we build a disease-gene network (DGN) from OMIM

data and select a group of genes from DGN as potential non-disease genes. Second, another group of non-

disease genes are collected from the differential network Gdif . Third, two groups of candidate non-disease

genes are combined to form the final set of non-disease genes.

Select non-disease genes from DGN

A disease-gene network is built to select the initial group of non-disease genes. In this network, each node

represents either a disease or a disease-associated gene. Every disease node is connected with its associated

gene nodes, and two disease nodes are connected if they share at least one same disease-associated genes.

To illustrate, Fig. 3.3 depicts a sub network of DGN with 5 diseases (d1, d2, d3, d4, d5) and 5 disease genes.

d1 and d2, d2 and d3, d3 and d4, d4 and d5 are connected because they share at least one disease-associated

gene.

The length of the shortest path between two diseases in the DGN represents their relationships. Length

of 1 (d1 and d2) indicates two diseases have at least one same disease-associated gene. Length of 2 (d1 and

d3) indicates that there is some other disease to which both two diseases are connected. Length of 3 (d1 and

d4) indicates that the neighbors of two diseases are connected. If two diseases are neighbors, they may have

similar mechanisms. Thus, d1 and d3 may have similar mechanisms because both of them are connected

with d2. d1 and d4 may also have similar mechanisms because d2 and d3 are connected with each other.

Moreover, d1 and d4 are less likely to have similar mechanism compared to d1 and d2. Therefore, the longer
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of the shortest path between two diseases in DGN, the less possible they have similar mechanisms. If two

diseases di and dj have completely different mechanisms, their associated disease genes should have different

properties, which means the disease genes of one disease di can be regarded as the non-disease genes of

another disease dj .

To determine whether the distance between two diseases is enough to show that they have different

mechanisms, we need to set a threshold for the length of the shortest path. If we set the threshold to 4, in

a special situation, g12 would be a non-disease gene of d5 because the length of the shortest path from d1

to d5 is equal to 4. However, g12 is also a disease gene of d2 and the distance between d2 and d5 is only 3,

which means g12 should not be a non-disease gene of d5.

To address this problem, let di denotes the disease under consideration, G(d[−i]) denotes the set of genes

in DGN not associated with it. Instead of computing the length of the shortest path between each disease

and di, we compute the length of the shortest path (η) between each gene gk in G(d[−i]) and di. If η ≥ Γ1,

we consider gk as a potential non-disease gene for di. Γ1 is a predefined threshold, which is set as 5 in

this study. If there is no path between gk and di, we also select gk as a non-disease genes. These selected

candidate non-disease genes form a set S1.

Select non-disease genes from Gdif

After selecting non-disease genes from the DGN, we find out that the same strategy can also be employed

on the differential network.

Since disease genes are more frequently rewired, the value pji calculated by (3.14) corresponding to

disease gene i is more likely to be larger than those values corresponding to non-disease genes in the j-th

row. Therefore, compared with a non-disease gene, pji has more chance to be in the largest k entries of

the j–th row. In another word, a disease gene gi is more likely to be connected with other genes in Gdif

than a non-disease gene. Let G(di) denotes the set of m disease genes associated with di, compared to a

non-disease gene, a potential disease gene gk should be closer to the known disease genes in Gdif . Thus, if

the smallest distance of all the shortest paths between gene gk and the genes in G(di) is larger than or equal

to a predefined threshold Γ2, we consider gk as a non-disease gene. In this study, Γ2 is set as 4, and S2 is

used to denote the set that contains all the non-disease genes selected from Gdif .

Generate non-disease gene set

Once we obtain S1 and S2 from DGN and Gdif , respectively, genes in the union of the two sets (Snon =

S1 ∪ S2) are regarded as non-disease genes, and labeled as 0. These genes, along with the m known disease

genes, are used to train the models (3.5) or (3.7). Genes contained in the intersection of the two sets

(Sndg = S1 ∩ S2) are considered to be non-disease genes with the highest possibilities. We randomly select

m genes from Sndg as the benchmark non-disease genes. These genes along with the m known disease genes

are used in the cross-validation.
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3.2.4 Feature extraction

Considering that we have two networks (PPI and Gdif ) in the study, feature vector (3.6) is specified as

follows

ϕi = (1,M1
i0,M

1
i1,M

2
i0,M

2
i1)T (3.15)

where M1
i0 and M1

i1 (M2
i0 and M2

i1) represent the numbers of neighbors of gi which are labeled as 0 and 1 in

the PPI network (Gdif ), respectively.

To extract features, we need to assign labels for all the genes in the two networks. As discussed in

the previous sections, disease genes are labeled as 1 while non-disease genes in Snon are labeled as 0. The

remaining genes are treated as unknown. As unknown genes could be disease genes with a small possibility,

in this study 0.01% of them (BC: 119, TC: 126, AD: 100) are randomly labeled as 1 while the others being

labeled as 0. Note that the information of unknown genes with such a labeling is used only for extracting

the features of known disease genes and non-disease genes in Snon, and yet the features of unknown genes

are not extracted and used for estimating the parameters in (3.9).

3.2.5 Validation methods and evaluation criteria

To investigate its performance, we perform the under sampling which randomly selects m non-disease genes

from Sndg 100 times, and run our algorithm 100 times respectively with the set of m disease genes and one

of 100 sets of m non-disease genes. For each pair of benchmark genes, the leave-one-out cross validation

(LOOCV) is employed to validate the algorithm. In each round of the LOOCV, one of the benchmark genes

(the validation gene) is regarded as unknown and labeled randomly as all the other unknown genes. This

strategy allows us to hide the information of the validation gene from the training genes. Then, parameters

in µ (Eq. 3.12) is calculated based on the features of the training genes extracted from the new labels, and

the probability of the validation gene being labeled as 1 is computed by (3.5).

The area under the receiver operating characteristic (ROC) curve (AUC) is employed as one of the

evaluation criteria. The ROC curve plots the true positive rate (TPR) verse the false positive rate (FPR)

at various thresholds. The TPR and FPR are defined as follows:

TPR =
TP

TP + FN
(3.16)

FPR =
FP

TN + FP
(3.17)

where TP , FP , TN , and FN are the numbers of true positive, false positive, true negative, and false

negative, respectively. In this study, a true positive is a disease gene identified as a disease gene, a false

positive is a non-disease gene identified as a disease gene, a true negative is a non-disease gene identified as

a non-disease gene, and a false negative is a disease gene identified as a non-disease gene.

The ROC curve features the TPR on the Y axis, and the FPR on the X axis. This makes the top left

corner of the plot an ideal point, with a FPR of 0 and TPR of 1, and it also means that a method with a
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larger AUC performs better. In this study, we obtain 100 AUC values from 100 runs, the average of which

is used as the AUC of the algorithm.

In terms of AUC, we compare dgSeq with the “two-step” (2Step) and “Rebalancing” (Re-Balanced)

algorithms [117, 118]. These two algorithms outperformed their competing methods in the identification of

cancer-related genes.

To further evaluate our algorithm, we compare dgSeq with Endeavor through gene set enrichment analysis

(GSEA). In a previous study that compared eight public available web-based tools, Endeavor was one of the

two best algorithms when all performance measures were considered [164]. In this study, we first use the

latest version of Endeavor to rank all the unknown genes. Then, for dgSeq, we also rank all the unknown

genes according to their probabilities of being labeled as 1. In each round of the 100 runs, we compute the

probability of each unknown gene being labeled as 1 by (3.5). The corresponding parameter vector µT is

calculated by (3.12) with the features of the 2m benchmark genes in each round. Finally, for each unknown

gene gi, we obtain 100 probabilities, the average of which is regarded as the probability of gene gi being

labeled as 1. The top 100 genes in the two lists are then analyzed and compared in terms of GSEA using

WebGestalt [165, 166, 167].

Finally, deSeq is also evaluated on predicting disease genes associated with Alzheimer’s disease.

3.2.6 Data sources

The BC-associated and TC-associated genes are collected from the Cancer Gene Census category (CGC,

http://cancer.sanger.ac.uk/census#) [87]. 35 BC-associated and 34 TC-associated genes are chosen as the

benchmark disease genes. The AD-associated genes are collected from MalaCards: The human disease

database (http://www.malacards.org/), which contains 182 ranked genes for AD. We select the top 50 as

AD-associated genes. Among these 50 genes, 43 of them appear in the PPI network, and are used as the

benchmark.

The cancer case and control gene expression data are downloaded from the Genomic Data Commons

(GDC) [104]. GDC measures the data by RNA-Seq technique, and provides three types of values: Fragments

Per Kilobase of transcript per Million mapped reads (FPKM), Upper Quartile normalized FPKM (UQ-

FPKM) and the raw mapping count. To facilitate cross-sample comparison, we use the UQ-FPKM values in

the study. In total, the data sets contain 1222 case subjects and 113 control subjects for BC, and 502 case

subjects and 58 controls subjects for TC. The AD RNA-Seq data are downloaded from Gene Expression

Omnibus (GSE53697) [168], which contains the raw mapping count files of 9 case subjects and 8 control

subjects. We normalize the data with DESeq2 [169], because DESeq2 was proved to be one of the best

algorithms for RNA-Seq data normalization [105]. During the preprocessing, genes not in the PPI network

or not expressed (expression values are 0) are removed from the data sets.

The PPI network is obtained from the InWeb InBioMap database (version 2016 09 12) [170], which

consists of 17,653 nodes and 625,641 interactions aggregated from eight source databases. We map proteins
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Figure 3.4: Sensitivity analysis of threshold k

in the network to their corresponding genes, and remove those genes that have no expression data from the

network. To simplify the network, proteins correspond to multiple genes are also removed from the PPI

network. As a result, the final PPI networks contain 16,945 nodes and 589,234 edges for BC, 16,837 nodes

and 587,537 edges for TC, 15056 nodes and 520,211 edges for AD.

The disease-gene association data used to build DGN are obtained from the OMIM database (Feb 17,

2017) [155]. The original data set consists of 4450 diseases and 3402 disease genes when we only consider

the diseases with known molecular basis. Then, the disease genes not in the PPI network are removed from

the data set, and finally the data set contains 3221 diseases and 3187 disease genes

3.3 Results and discussion

3.3.1 Threshold selection

In this study, we define three thresholds: Γ1, Γ2 and k. The first two thresholds are used to determine

whether a gene is a non-disease gene. We empirically set them as 5 and 4, respectively. The third threshold

k determines the minimum number of neighbors around each node in Gdif . This value controls the number

of edges in Gdif , which will further affect the selection of non-disease genes. We choose k from 3 to 9, and

perform a sensitivity analysis. Fig. 3.4 depicts the results of the analysis for all three disease data. We can

see that the AUC of dgSeq is varying with respect to the threshold k. We choose k = 5 in the study because

the algorithm performs best with this threshold in terms of AUC.

39



0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue
 P
os
iti
ve
 R
at
e

ROC curves for Breast Cancer

ROC curve of dgSeq (AUC = 0.88)
ROC curve of 2Step (AUC = 0.81)
ROC curve of Re-balanced (AUC = 0.83)

Figure 3.5: The ROC curves of three algorithms in predicting BC-related genes

3.3.2 The results of AUC values

Fig. 3.5, 3.6 and 3.7 show the ROC curve of the three algorithms in predicting BC-associated, TC-associated

and AD-associated genes with the same sets of benchmark genes, respectively. For BC, dgSeq obtains an

average AUC value of 0.88, whereas the two competing (2Step and Re-balanced) methods only achieve 0.81

and 0.83, respectively. For TC, the AUC values of the two competing algorithms are smaller than 0.80,

which is less than 0.83 from our dgSeq. For AD, dgSeq obtains an average AUC values of 0.80 while the

AUC values of the two competing algorithms are around 0.5. It is worth noting that the two competing

methods were developed to predict cancer-associated genes, which is the reason why their performance in

AD is almost like random. However, their principle allows them to predict non-cancer disease genes such as

AD. In a word, dgSeq outperforms the two competing methods in the experiments.

3.3.3 Enrichment analysis

To further evaluate our algorithm, we rank the unknown genes with dgSeq and perform GSEA on the top

100 genes regarded as potential new disease genes. We also perform the same analysis on the top 100 ranked

genes reported by Endeavor. The size of gene universe in GSEA is 26,533. The enriched pathways are ranked

by their corresponding P-values in ascending order, and the top 10 enriched pathways are listed in Tables

3.1, 3.2, 3.3 for BC, TC and AD, respectively.

Among the ten pathways in Table 3.1, candidate BC disease genes reported by dgSeq are enriched in

six cancer-related pathways: the “Thyroid hormone signaling pathway”, “TGF-beta signaling pathway”,
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Figure 3.6: The ROC curves of three algorithms in predicting TC-related genes

“Epstein-Barr virus infection”, “Pathway in cancer”, “Breast cancer” and “Hepatitis B”. The “Thyroid

hormone signaling pathway” contains multiple thyroid hormone receptor (TR) isoforms, the mutation of

which may lead to various kinds of cancers, such as thyroid cancer and breast cancer [171, 172]. “TGF-beta

signaling pathway” is related to breast cancer because TGF-β1 was found to be linked with increased tumor

progression and cancer invasiveness in late stages of breast cancer. Several drugs against TGF-β1 have also

been developed to treat breast cancer [173]. “Epstein-Barr virus infection” pathway affects the infection

of Epstein-Barr virus (EBV), which has strong connection with breast cancer [174]. Research has shown

that EBV may accelerate the development of malignant breast cancer [175]. “Pathways in cancer” has been

targeted for many drugs, as well as “Breast cancer” pathway. “Hepatitis B” pathway controls another kind

of virus infection which may cause breast cancer [176]. Interestingly, the “Longevity regulating pathway”

is enriched with 5 genes. Although this pathway is not directly related with breast cancer, longevity is a

well-known feature of cancer. Thus, we further analyze the 5 enriched genes and find that 4 of them (SIRT1,

HDAC1, HDAC2, RPS6KB1) have been studied as BC-related genes in previous studies [177, 178, 179].

However, candidate genes reported by Endeavor are only enriched in the “FoxO signaling pathway” with a

P-value of 9.98 × 10−1. Although this pathway is related with breast cancer, the P-value of the analysis is

much lager than the P-values of the pathways enriched by the top 100 genes reported by dgSeq.

From the results of GSEA for TC in Table 3.2, all the 10 pathways are cancer-related. Among these

pathways, the “PI3K-Akt signaling pathway” plays a pivotal role in many key cellular processes, and thyroid

cancer has been shown to be highly associated to this pathway in previous studies [180]. The “FoxO signaling

pathway” is also correlated with many cancers, and one of the genes on this pathway (FOXO3) is reported
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Figure 3.7: The ROC curves of three algorithms in predicting AD-related genes

to be a driver gene of thyroid cancer [181]. Similar to BC, the reported candidate genes are also enriched in

the “Prostate cancer” pathway and “Pathways in cancer”. Because thyroid cancer and prostate cancer also

have the same disease genes (BRAF), genes enriched in the “Prostate cancer pathway” might also be related

to thyroid cancer. “Viral carcinogenesis” pathway and “Epstein-Barr virus infection” pathway are virus-

related pathways which are responsible for various cancers, including thyroid cancer [182, 183]. Melanoma

is a severe tumor which has been proved to be related with thyroid cancer [184]. “Hippo signaling pathway”

regulates organ size and tissue homeostasis. Its fundamental importance make its malfunction leading to

many cancers, such as breast cancer [185]. Although thyroid cancer has not been proved to be related with

“Hippo signaling pathway”, its relationship with breast cancer make us believe that the genes enriched by

“Hippo signaling pathway” might also be related to thyroid cancer. Similar to prostate cancer, lung cancer

and thyroid cancer have two identical disease genes (STRN, KRAS), which make the genes enriched by “Non-

small cell lung cancer” pathway have possibilities to be related with thyroid cancer. Likewise, candidate TC

disease genes reported by Endeavor are only enriched by one pathway: “Colorectal cancer”. The P-value of

the analysis is 9.97× 10−1, which is still much larger than the average P-values of dgSeq’s results.

According to the pathways in Table 3.3, candidate AD disease genes reported by dgSeq are enriched

in seven AD-related pathways: “NOD-like receptor signaling pathway”, “Neurotrophin signaling pathway”,

“GnRH signaling pathway”, “Herpes simplex infection”, “cAMP signaling pathway”, “Inflammatory medi-

ator regulation of TRP channels” and “cGMP-PKG signaling pathway”. Amongt these seven pathways,

“NOD-like receptor signaling pathway” contains NOD-Like receptors which have been demonstrated to be

associated with many diseases, including AD [186]. Neurotrophins are small proteins critical for neuronal
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Table 3.1: Enriched KEGG pathways of candidate genes in the BC dataset

Enriched KEGG pathway Number of Genes P-value

dgSeq

Cell cycle 15 0

Thyroid hormone signaling pathway 10 9.96× 10−3

TGF-beta signaling pathway 9 7.91× 10−3

Epstein-Barr virus infection 12 2.2× 10−2

Pathways in cancer 18 2.2× 10−2

HTLV-I infection 9 3.82× 10−2

Longevity regulating pathway 5 5.54× 10−2

Breast cancer 11 7.28× 10−2

Hepatitis B 10 1.48× 10−1

Adherens junction 5 1.15× 10−1

Endeavor

FoxO signaling pathway 27 9.98× 10−1

growth, and Neurotrophin signaling via BDNF/TrkB-TK+ has strong connection with AD [187]. “GnRH

signaling pathway” is related to AD because GnRH affect Alzheimer’s disease through its marker Aβ protein

[188]. In addition, “Herpes simplex infection” has been implicated as a main factor in AD [189]. “cGMP-

PKG” and “cAMP/PKA” cooperate to control long-term memory which is affected by AD [190, 191]. Finally,

TRP channels mediate physiological responses and research showed that analyzing the connections between

TRP channels and AD may lead to new drugs [192]. Candidate genes reported by Endeavor are enriched

in five AD-related pathways: “Alzheimer’s disease”, “Prion diseases” [193], “Chemokine signaling pathway”

[194], “Phospholipase D signaling pathway” [195] and “VEGF signaling pathway” [196].

Although the number of enriched pathways of Endeavor is less than dgSeq, Endeavor performs better

than dgSeq in terms of the P-value. This result may be caused by the following two reasons. First, only

9 AD case subjects are contained in the data sets. Then, some of the disease genes may not contribute to

the disease in these subjects, and rewiring information obtained from these subjects are not comprehensive.

Disease genes that are not active in the case subjects may be predicted as non-disease genes, which affect

the overall performance of dgSeq. Second, unlike cancers, which have been found to be associated with vast

amount of rewiring in co-expression networks [197, 198], the expression level of genes in AD is much lower

than that of cancers, making dgSeq hard to capture valuable rewiring information from PCC. One possible

solution is to replace PCC with mutual information (MI) when computing the dependence between two

genes as MI can measure linear and nonlinear dependence at the same time, while PCC only measures linear

dependence. Thus, in the future we may use MI instead of PCC to improve the performance of dgSeq.
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Table 3.2: Enriched KEGG pathways of candidate genes in the TC dataset

Enriched KEGG pathway Number of Genes P-value

dgSeq

FoxO signaling pathway 12 0

PI3K-Akt signaling pathway 23 0

Prostate cancer 13 0

Pathways in cancer 21 1.92× 10−3

Viral carcinogenesis 23 5.65× 10−3

Epstein-Barr virus infection 21 1.09× 10−2

Melanoma 9 1.3× 10−2

Hippo signaling pathway 10 1.36× 10−2

Oocyte meiosis 14 1.57× 10−3

Non-small cell lung cancer 9 1.69× 10−2

Endeavor

Colorectal cancer 17 9.97× 10−1

3.3.4 Top 10 unknown genes

Table 3.4 lists the top 10 unknown genes in the ranked lists of BC and TC, respectively. We search these

top 10 unknown genes online, and find that most of them have been studied as disease genes in previous

research. For those not verified as disease genes, we leave their functions blank. From Table 3.4, we can see

that 8 out of 10 genes obtained from the BC data set, 6 out of 10 genes obtained from the TC data set and 6

out of 10 genes obtained from AD data set are potential disease genes which have been studied in literature.

This analysis reveals that the results of our algorithm are in concert with other existing studies, suggesting

that dgSeq is a valuable computational method for discovering new disease genes.

3.4 Conclusion

In this study, we have presented a disease gene prediction method which combines PPI network, clinical RNA-

seq data and OMIM data. The method first constructs a differential network based on rewiring information

computed from case and control clinical RNA-Seq data. A DGN is constructed based on OMIM database.

Then, the set of non-disease genes is selected from the DGN and the differential network according to the

shortest path theory. Finally, features of these non-disease genes and known disease genes are extracted from

the PPI network and the differential network, and used to train a logistic classifier, which is then employed

to predict disease genes.

Evaluations conducted on data sets of two cancers and Alzheimer’s disease reveal that our algorithm
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is overall more effective than previous methods. Further analysis on the top predicted disease genes have

also proved that dgSeq is powerful for predicting new disease genes. In the future, we would integrate more

omics data into the disease gene prediction method and improve the performance of dgSeq in predicting new

disease genes. We can also replace PCC with MI and extend the strategy for capturing network rewiring

information in different types of biomolecular networks to enhance dgSeq’s performance in various types of

diseases.
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Table 3.3: Enriched KEGG pathways of candidate genes in the AD dataset

Enriched KEGG pathway Number of Genes P-value

dgSeq

NOD-like receptor signaling pathway 7 1.21× 10−2

Neurotrophin signaling pathway 6 4.82× 10−2

HTLV-I infection 8 1.27× 10−1

Influenza A 5 1.33× 10−1

GnRH signaling pathway 6 3.05× 10−1

Herpes simplex infection 6 3.41× 10−1

cAMP signaling pathway 9 3.92× 10−1

Inflammatory mediator regulation of 6 3.98× 10−1

TRP channels

Epstein-Barr virus infection 11 4.41× 10−1

cGMP-PKG signaling pathway 6 4.43× 10−1

Endeavor

Th1 and Th2 cell differentiation 11 1.96× 10−3

Alzheimer’s disease 11 2.09× 10−3

Prion diseases 5 1.91× 10−2

Influenza A 7 1.98× 10−2

Chemokine signaling pathway 10 2.49× 10−2

Phospholipase D signaling pathway 6 2.66× 10−2

T cell receptor signaling pathway 12 2.68× 10−2

Leishmaniasis 5 3.37× 10−2

VEGF signaling pathway 10 3.57× 10−2

Endocrine resistance 19 3.91× 10−2
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Table 3.4: Top 10 unknown genes

Gene Name Function Reference

BC

UBB Potential disease gene [199]

SKP2 Potential Oncogene [200]

KAT5

HDAC1 Potential disease gene [178]

RARA Potential therapeutic target [201]

HDAC2 Potential disease gene [178]

HDAC3 Potential disease gene [178]

CDK8 Potential Biomarkers [202]

MED1 Potential therapeutic target [203]

SMARCC1

TC

HSP90AA1

XPO1 Potential disease gene [204]

YWHAB

MDM2 Oncogene [205]

MAX

PPP2CA Disease gene for many cancer [206]

EGFR Potential marker [207]

GRB2 Potential disease gene [208]

RB1 Potential disease gene [209]

UBE2I

AD

RNF32

MAST1 Potential disease gene [210]

CSNK1A1

HSPA5 Poteintial target [211]

PPP5C Potential disease gene [212]

PPP1CA Potential disease gene [212]

CAMK2A Disease gene [213]

RBBP4 Potential disease gene [214]

ATP5A1

H2AFX
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Ensemble disease gene prediction by clinical sample-based networks
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In addition to non-disease gene selection, another issue that limits the accuracy of computational predic-

tion is the quality of the PPI networks. Since PPI is dynamic and tissue-specific, directly using static PPI

networks might affect the performance of the algorithms. In this chapter, sample-based networks constructed

based on the clinical gene expression data are proposed. These networks consist of those significant genes

associated with the disease under consideration, which are more valuable than the original static networks.

Meanwhile, an ensemble strategy is used to guarantee that all the disease genes could be predicted. This

chapter fulfills Objective 3 of this thesis.

Abstract

Disease gene prediction is a critical and challenging task. Many computational methods have been developed

to predict disease genes, and protein-protein interaction (PPI) network is widely used to predict disease genes.

However, existing methods commonly use a universal static PPI network, which ignore the fact that PPIs

are dynamic, and PPIs in various patients should also be different. To address these issues, we develop an

ensemble algorithm to predict disease genes from clinical sample-based networks (EdgCSN). The algorithm

first constructs single sample-based networks for each case sample of the disease under study. Then, these

single sample-based networks are merged to several fused networks based on the clustering results of the

samples. After that, logistic models are trained with centrality features extracted from the fused networks,

and an ensemble strategy is used to predict the final probability of each gene being disease-associated.

EdgCSN is evaluated on breast cancer (BC), thyroid cancer (TC) and Alzheimer’s disease (AD) and obtains

AUC values of 0.970, 0.971 and 0.966, respectively, which are much better than the competing algorithms.

Subsequent de novo validations also demonstrate the ability of EdgCSN in predicting new disease genes.
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4.1 Background

Disease gene prediction is a critical yet challenging task. It helps us understand the mechanisms of diseases,

find therapeutic targets, and develop novel treatment strategies [215]. During the past decades, disease gene

prediction has gained great development. Many computational algorithms have been developed to predict

disease genes so that the cost and time for in-depth validation could be maximal reduced.

Among the various types of data that have been used to predict disease genes, protein-protein interactions

(PPIs) are the most widely used evidence. On the one hand, interacting proteins (genes) usually have similar

functions, which means algorithms can predict new disease genes based on their relationships with known

disease genes in the PPI network. On the other hand, due to the network property of PPIs, most network

analysis algorithms can be used to predict disease genes from PPI networks. For example, earlier methods,

such as RWR, performed the random walk on PPI networks to predict disease genes [18]. Gillis et al. used

degree centralities to rank all the genes [216].

However, PPIs are dynamic during the life time of cells, and not all PPIs exist in all the tissues. Static

PPI networks downloaded from online databases contain lots of false positives which limit the performance

of the methods that directly use them [217]. Thus, many studies integrate static PPI networks with disease-

related data, such as GWAS and gene expression data, to improve the prediction accuracy [218, 58, 219].

This leads to two types of approaches. The first type of approach weights PPI networks with disease-related

data, and predicts candidate genes from the weighted networks. For instance, Wang et al. searched dense

modules from a PPI network weighted by gene expression and GWAS data [58]. Our previous study trained

a regression model with features extracted from a PPI network weighted by differential co-expression [158].

The second type of approach constructs heterogeneous networks and combines them with PPI networks

to enhance the prediction. For example, Chen et al. combined gene co-expression networks and pathway

coexist networks with PPI networks to predict disease genes [117, 118]. Singh-Blom et al. trained a biased

SVM with features extracted from phenotype-phenotype networks and PPI networks [220] to predict disease

genes. Despite their success, the discussed approaches still use PPI networks with false positive interactions,

which contain inaccurate topological structures. PPI networks downloaded from different databases might

affect the prediction results.

To solve these issues, in our previous study, gene expression data of clinical samples have been used to

construct sample-specific PPI networks [43]. Each single sample-based network only contains the significant

PPIs associated with the disease under consideration, which reduces the false positive interactions. A

network that fuses all the single sample-based networks was used to predict the disease-associated genes,

so that disease genes that function in different patients could all be identified. In this study, to further

extend our research, an ensemble algorithm that predicts disease genes from clinical sample-based networks

(EdgCSN) is proposed. Meanwhile, Katz centrality is used instead of edge clustering coefficient to better

extract local structural information from the sample-based networks.
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4.2 Methods

Fig. 4.1 depicts the work flow of EdgCSN which is explained as follows. (a)-(b). A single sample-based

network is constructed for each case sample by combining clinical samples and the universal static PPI

network. (c). The case samples are clustered into a few groups and single sample-based networks of the

samples in the same group are fused to one network. (d). A logistic model is trained by the centrality

features extracted from each fused network, and the probability of each gene being disease-associated is

predicted. (e). The maximum probability of a gene calculated from all the logistic models is regarded as its

probability of being disease-associated. In the following subsections, details of the five steps in Fig. 4.1 are

first discussed. Then, the data sources and evaluation metrics are explained.

(a)

(c) Fused network

(d) Logistic regression

(e) Probability

Single sample-based network(b)

Figure 4.1: Work flow of the algorithm.

4.2.1 Sample-based networks

To obtain the most informative PPIs and remove the false positive ones, sample-based networks are used

in this study instead of the universal static PPI networks. In addition, since the real caustic genes of

different patients may not be the same, case samples are divided into different clusters so that patients with

distinct conditions are analyzed separately. Specifically, three steps are performed to obtain the sample-based

networks.
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1. A single sample-based network is constructed for each case sample;

2. Case samples are classified into different clusters;

3. Networks of the samples in the same cluster are fused together.

For the first step, we assume that a PPI exists in a single sample-based network Ns only if the two

interacted proteins are both activated in sample s. Concretely, a gene i in a case sample s is considered

being activated if

mcase[i, s] ≥ λ ∗mean(mcntl[i]) (4.1)

where mcase[i, s] is the expression value of gene i in sample s, and mean(mcntl[i]) is the mean expression

value of gene i over all control samples. To construct Ns, every edge (i, j) in the static PPI network is

validated and only the one with both i and j being activated is added to Ns. Then, S single sample-based

networks are constructed for the S case samples.

For the second step, hierarchical clustering is used to classify case samples into different clusters. Given

two samples s1 and s2, their pairwise distance is calculated by

dist(s1, s2) = 1− (s1 − s̄1) · (s2 − s̄2)

‖s1 − s̄1‖2‖s2 − s̄2‖2
(4.2)

where s1 (s2) is a vector of expression values of genes in sample s1 (s2), and s̄1 (̄s2) is the corresponding

average expression value. During the bottom-up process, the distance between two newly formed clusters u

and v is computed as follows

Distance(u, v) = max
p∈u,q∈v

(dist(p, q)) (4.3)

which is the maximum distance between samples in u and v. Let dmax denote the maximum distance among

clusters, 0.7 ∗ dmax is used as the threshold to select clusters from the resulted dendrogram.

For the third step, assuming all the S samples are classified into l clusters and the t-th cluster contains

St samples, we have S =
∑l
t=1 St. The objective is to fuse the networks of the samples in the same cluster

into one network. Although many network fusion methods have been published [221], most of them cannot

efficiently fuse complex PPI networks, especially when the number of networks to be fused is more than

1, 000. Thus, we propose a simple strategy which uses a threshold ε to determine whether an edge exists in

the fused networks. An edge (i, j) is considered as significant only if it appears in at least ε single sample-

based networks. Precisely, given a cluster with St samples, let fij be the number of times edge (i, j) appears

in the St single sample-based networks. When fij < ε, (i, j) is not included in the fused network, and when

fij ≥ ε, (i, j) is in the fused network. Finally, l fused networks are obtained for the l clusters, respectively.

4.2.2 Model design

Given a biomolecular network, if disease genes are labeled as 1 and non-disease genes are labeled as 0,

the disease gene prediction problem can then be formulated as a network labeling problem [46]. Let x =
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(x1, x2, . . . , xH) denote a set of binary labels of all the H genes in the biomolecular network. x is known as

the configuration of the network, and the set X of all possible configurations is a random field. Based on our

previous studies [47, 118, 158], a generalized model was proposed in [43] which predicted the probability of

a gene i being labeled as 1 by

P (xi = 1|x[−i], θ) =
exp(θφi)

1 + exp(θφi)
(4.4)

where θ is a parameter vector and φi is the feature vector of gene i extracted from the biomolecular network

labeled by a prior configuration x.

In [43], φi is a 7-dimensional feature vector which consists of a dummy feature (1) and three pairs of 0-1

centrality features: 0-1 degree centrality, 0-1 closeness centrality and 0-1 edge clustering coefficient. These

three 0-1 centrality indices have shown their ability in characterizing discriminative features for classifying

disease and non-disease genes. However, edge clustering coefficient can only capture the structural informa-

tion between genes and their direct neighbors, and the relations between genes and their k-th order (k ≥ 2)

neighbors cannot be obtained. Since proteins usually form a complex or functional module to achieve a

specific function [217], the k-th order neighbors should also be considered when the local structural infor-

mation is extracted. Previous study also showed that the indirect neighbors were useful for disease gene

prediction [48]. Thus, we replace edge clustering coefficient by Katz centrality in this study to leverage the

local structure information between nodes and their higher order neighbors.

Given a labeled network N = (V,E), V is the set of nodes and E is the set of edges, the 0-1 degree

centrality denoted by Cdi0 and Cdi1 are defined as follows

Cdi0 =
∑

(i,j)∈E

(1− xj), Cdi1 =
∑

(i,j)∈E

xj (4.5)

The 0-1 closeness centrality denoted by Cci0 and Cci1 are defined as

Cci0 =
1

n0 − 1

∑
j∈V,j 6=i

1

dsp(i, j)
(1− xj),

Cci1 =
1

n1 − 1

∑
j∈V,j 6=i

1

dsp(i, j)
xj

(4.6)

where dsp(i, j) is the length of the shortest path between node i and j, n0 and n1 are the number of nodes

labeled as 0 and 1, respectively

Katz centrality measures the relative influence of a node in the network [222]. It is defined by

Ci =

∞∑
k=0

n∑
j=1

αk(Ak)ji (4.7)

where A is the adjacency matrix of the network, k is the length of the path between i and j, α is a damping

factor penalizes the impact node j on i. The longer the path, the smaller the impact node j is on i.

When α is properly chosen, Eq. (4.7) will converge. However, when Katz centrality is used in this study,

we care more about the information conveyed by paths with short distance (less than 5). Study in link
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prediction also showed that k = 3 or k = 4 can yield satisfactory performance [223]. Thus, α and k are

chosen by grid search without the proof of convergence.

In previous studies, Katz centrality calculated from heterogeneous networks had been used to prioritize

disease genes [220]. However, results of directly using Katz centrality were not better than existing methods,

such as RWR [18]. To make Katz centrality suitable for disease gene prediction, we define the 0-1 Katz

centrality as follows:

Ci0 =

∞∑
k=0

n∑
j=1

αk(Ak)ji(1− xj),

Ci1 =

∞∑
k=0

n∑
j=1

αk(Ak)jixj

(4.8)

Similar to 0-1 degree and 0-1 closeness centrality, the 0-1 Katz centrality measures the importance of a

gene among disease genes and non-disease genes, respectively, which is more appropriate for disease gene

prediction. The new feature vector of each gene is then defined as

φi = (1, Cdi0, C
d
i1, C

c
i0, C

c
i1, Ci0, Ci1) (4.9)

4.2.3 Network labeling and benchmark selection

As discussed in the previous section, biomolecular networks are needed to be labeled by a prior configuration

so that disease genes can be predicted. In this study, we use the l fused networks to predict disease genes,

which means the known disease genes in these networks are labeled as 1 while other genes are labeled as 0.

Then, the feature vectors of all genes can be extracted by Eq. (4.9).

In addition, to train the logistic models used for prediction, we also need a set of non-disease genes,

which are used as negative instances. Unfortunately, no databases contain non-disease genes. Therefore, our

previous strategy proposed in [78] is used to select the non-disease genes used in the training.

In [78], a disease gene network (DGN) was constructed with the disease-gene association data downloaded

from OMIM [80]. In the DGN, each node is either a disease or a disease-associated gene. Diseases are

connected with their associated genes, and two diseases are connected if they share one or more associated

genes. Thus, diseases that are close to each other in the DGN have more chances to share similar disease

genes, which means they are more likely to have similar mechanisms. If the length of the shortest path

between two diseases is larger than a threshold η, they might not have similar mechanisms, and the disease

genes of one disease could be regarded as non-disease genes of the other disease. With this strategy, a group

of non-disease genes are obtained for the disease under study, and only non-disease genes that exist in all

the l fused networks are selected. η = 5 is chosen based on our previous experience.

Assuming m disease genes are known to be associated with the disease under study, we randomly select

m genes from the set of non-disease genes, and these 2m genes form a set of gold standard genes. This

process is performed 50 times and finally we obtain 50 sets of gold standard genes and regarded them as

benchmarks.
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4.2.4 Ensemble prediction

Given m disease genes and m non-disease genes, features of these genes extracted from the l fused networks

are used to train l logistic models, respectively. Equation (4.4) is then used to predict the probability of

each gene being disease-associated in each fused network.

For each gene, l
′
(1 ≤ l

′ ≤ l) probabilities are calculated. Considering that the caustic genes of different

samples might be different, the obtained probabilities only reveal the potential of the gene being disease-

associated in the corresponding clusters. Thus, for each gene, the ensemble strategy chooses the maximum

value of the l
′

probabilities as its probability of being disease-associated.

4.2.5 Datasets

In this study, datasets of breast cancer (BC), thyroid cancer (TC) and Alzheimer’s disease (AD) are used

to evaluate the algorithm. The BC-associated genes and TC-associated genes are obtained from the Cancer

Gene Census category (http://cancer. sanger.ac.uk/census#) [87]. In total, 35 BC-associated genes and 33

TC-associated genes are used as the benchmarks. The AD-associated genes are obtained from MalaCards:

The human disease database (http: //www.malacards.org/). The database contains 182 potential AD

associated genes ranked by their probability of being AD-associated in descending order. 39 of the first 50

genes exist in the static PPI network are used as benchmarks.

The gene expression data of BC and TC are downloaded from NCI Genomic Data Commons (GDC)

[104], which measures the data by RNA-Seq. We download the data normalized by FPKM (Fragments Per

Kilobase Million) and transform them to TPM (Transcripts Per Kilobase Million) by the strategy proposed

in [224]. The expression data of Alzheimer’s disease (AD) are downloaded from Gene Expression Omnibus

(GSE53697) [168], which are also measured by RNA-seq. The data normalized by RPKM (Reads Per Kilobase

Million) are downloaded and transformed to TPM with the same strategy used for the data downloaded from

GDC. TPM is chosen because it facilitates the comparison of the proportion of reads that are mapped to a

gene in each sample and is usually better than FPKM and RPKM in cross-sample comparison, which helps

us properly cluster all the samples. In total, the dataset of BC contains 1102 case samples and 113 control

samples; the dataset of TC contains 502 case samples and 58 control samples; the dataset of AD contains 9

case samples and 8 control samples.

After downloading the gene expression data, four steps are performed to control the genes used in our

study. (1). TPM values less than 1 are replaced by 0 because of the unreliability. (2). log2(TPM+1) is used

instead of the original TPM values. (3). Genes expressed in less than 10% of samples (case and control) are

removed. (4). Genes not existing in the PPI network are removed. In total, 14436 genes, 13959 genes and

13370 genes are left for BC dataset, TC dataset and AD dataset, respectively.

The static PPI network is downloaded from the InWeb InBioMap database (version 2016 09 12) [170].

The database consists of more than 600,000 protein interactions collected from eight source databases, which
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insures that valuable protein interactions are not missed during the construction of the sample-based PPI

networks. In this study, the proteins in the PPI network are mapped to their corresponding genes to form

a gene-gene interaction network. In the paper, the term “PPI network” is used to represent the gene-gene

interaction network because of simplicity.

4.2.6 Evaluation metrics

In this study, a disease gene is regarded as positive while a non-disease gene is regarded as negative. Given

a threshold Γ, a gene i with a probability pi ≥ Γ is predicted as positive, and otherwise it is predicted as

negative. For all genes in the benchmark, the true positives (TP), false positives (FP), true negatives (TN),

and false negatives (FN) are defined as follows

1. TP : a disease gene is predicted as a disease gene

2. FP : a non-disease gene is predicted as a disease gene

3. TN : a non-disease gene is predicted as a non-disease gene

4. FN : a disease gene is predicted as a non-disease gene

Then, we can calculate the true positive rate (TPR) and the false positive rate (FPR) of the prediction

results by the following equations

TPR =
TP

TP + FN
, FPR =

FP

TN + FP
(4.10)

To evaluate the algorithm, the receiver operating characteristic (ROC) curve is created by plotting the

TPR against FPR with various Γ. The area under the ROC curve (AUC) is also used to evaluate the overall

performance of the algorithm.

Since the number of genes used as benchmark is small, leave-one-out cross validation (LOOCV) is per-

formed to calculate the probabilities of genes in the benchmark being disease-associated. With the 50 sets

of gold standard genes, LOOCV is performed 50 times. In each round, the probabilities of the 2m genes

being disease-associated are calculated, as well as the AUC value. The average AUC value is then used to

evaluate the algorithm.

In addition, de novo validation is performed by ranking all the unknown genes in descending order by

their average probabilities calculated by the models trained with the 50 sets of gold standard genes. The top

10 unknown genes are analyzed from published literature to illustrate the ability of EdgCSN in predicting

new disease genes.
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4.3 Results

4.3.1 Clustering

Figs. 4.2, 4.3 and 4.4 show the dendrograms of the hierarchical clustering. BC and TC samples are divided

to three clusters and AD samples are divided to two clusters. Thus, three fused networks are constructed

for BC and TC, respectively, and two fused networks are constructed for AD.

Figure 4.2: Hierarchical clustering dendrogram for BC.

Figure 4.3: Hierarchical clustering dendrogram for TC.
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Figure 4.4: Hierarchical clustering dendrogram for AD.

4.3.2 Sensitivity analysis

The performance of our algorithm is affected by four hyperparameters: λ, ε, α and k. The first two control

the resulted fused networks. Based on our previous study, edges that exist in more than three networks

were significant [43]. Thus, ε = 3 is empirically chosen in this study. As for λ, since the RNA-seq data

are normalized by TPM rather than DESeq2 [169], λ is searched from a new set {1.0, 1.1, 1.2, 1.3, 1.5},

which is different from the one obtained in our previous study. The other two hyperparameters control the

information extracted by Katz centrality. To obtain the appropriate hyperparameters, α is searched from

{0.1, 0.2}, and k is searched from {1, 2, 3, 4}, respectively.

Tables 4.1, 4.2 and 4.3 show the results of the grid search for BC, TC and AD, respectively. EdgCSN

performs best for BC when λ = 1.1, α = 0.2, k = 2 with an AUC = 0.970; for TC when λ = 1.11, α = 0.1, k =

2 with an AUC = 0.971; for AD when λ = 1.0, α = 0.2, k = 2 with an AUC = 0.966. ‘-’ denotes that more

than 10% known disease genes are not contained in the fused networks constructed by the corresponding

hyperparameters.

All the three experiments obtain their best AUC values when k = 2, and a smaller or higher k would

significantly affect the performance of the algorithm. These results indicate that local structural information

contained within the second order neighborhood is valuable for disease gene prediction. Other disease gene

prediction algorithms that use topological structure of biomolecular networks could also further include these

information to improve their prediction.
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Table 4.1: Sensitivity analysis. The resulted AUC values obtained with different combinations of
hyperparameters for BC.

k

λ α 1 2 3 4

1.0 0.1 0.867 0.961 0.873 0.878

1.0 0.2 0.869 0.966 0.889 0.870

1.1 0.1 0.883 0.967 0.890 0.903

1.1 0.2 0.881 0.970 0.909 0.896

1.2 0.1 0.845 0.957 0.877 0.898

1.2 0.2 0.846 0.958 0.892 0.894

1.3 0.1 0.787 0.938 0.819 0.842

1.3 0.2 0.787 0.940 0.841 0.842

1.5 0.1 0.777 0.938 0.813 0.775

1.5 0.2 0.777 0.938 0.786 0.816

4.3.3 Comparison

EdgCSN is compared with three algorithms: the Re-balanced algorithm of Chen et al. [118], the AIDG

algorithm of Tang et al. [79], and our previous algorithm dgCSN [43]. Re-balanced method combined multiple

types of biomolecular networks to predict cancer-related genes, and AIDG used sub-cellular localization to

purify universal PPI networks. These algorithms have been shown better than many classical methods, such

as the RWR method [18], the DIR method [225] and the ToppNet [226].

The resulted ROC curves for BC, TC, and AD are depicted in Figs. 4.5, 4.6, 4.7, respectively. The

AUC values of EdgCSN for BC, TC and AD are 0.970, 0.971 and 0.966, respectively, which are much better

than those of the competing algorithms. For BC, our EdgCSN is 7% more accurate than the competing

algorithms, and for TC and AD, EdgCSN is 20% more accurate than the other three algorithms.

4.3.4 De novo validation

To validate the performance of EdgCSN in predicting new disease genes, unknown genes are ranked in

descending order by their average probabilities of being disease-associated predicted by the 50 sets of genes

in the benchmark. The top 10 predictions are further searched in existing literature to find out if they are

associated with the disease under study.

Table 4.4 shows the top 10 predictions of the three diseases. Functions of the genes that have not been

studied in existing literature are left blank. Most of the genes have been analyzed as disease-associated

in existing studies, especially for BC, where all the 10 genes have been studied in the existing literature.

For TC, although only 5 of the 10 genes have been studied, 3 of the 5 genes that have not been studied
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Table 4.2: Sensitivity analysis. The resulted AUC values obtained with different combinations of
hyperparameters for TC.

k

λ α 1 2 3 4

1.0 0.1 0.716 0.966 0.839 0.790

1.0 0.2 0.713 0.967 0.795 0.802

1.1 0.1 0.729 0.971 0.800 0.746

1.1 0.2 0.728 0.969 0.744 0.779

1.2 0.1 0.809 0.954 0.748 0.776

1.2 0.2 0.808 0.953 0.652 0.792

1.3 0.1 0.621 0.962 0.779 0.786

1.3 0.2 0.620 0.960 0.662 0.794

1.5 0.1 0.412 0.965 0.809 0.720

1.5 0.2 0.411 0.963 0.645 0.679

(‘CEP72’, ‘CEP131’ and ‘GPR83’) belong to the Centrosomal Protein family and G Protein-coupled Receptor

respectively. Many proteins belong to these families are closely related to cancers [227], which means ‘CEP72’,

‘CEP131’ and ‘GPR83’ might be predicted as being TC-associated in the future.

4.4 Discussion

Many algorithms have been proposed to predict disease genes, and most of them rely on PPI networks

to achieve the prediction. However, PPI is dynamic and tissue-specific, static PPI networks downloaded

from online databases contain many false positives, and directly using them would limit the accuracy of

disease gene prediction. Moreover, for patients with a specific disease, their disease states might be driven

by different subset of disease genes, and analyzing their data together might affect the identification of rarely

mutated disease genes .

Therefore, in this study, an ensemble algorithm is proposed to predict disease genes from clinical sample-

based networks. The algorithm first constructs single sample-based networks by combining clinical samples

and a universal static PPI network. A group of networks which contain disease-related PPIs are generated.

Then, case samples are divided into different clusters and networks belong to the samples in the same cluster

are merged together. This step allows patients with similar causing genes to be analyzed together. After

that, 0-1 centrality features extracted from the fused networks are used to train the logistic models that

calculate the probability of each genes being disease-associated in each fused network. Finally, an ensemble

strategy is performed by choosing the maximum probability obtained from different fused networks as the

final probability of a gene being disease-associated.
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Table 4.3: Sensitivity analysis. The resulted AUC values obtained with different combinations of
hyperparameters for AD.

k

λ α 1 2 3 4

1.0 0.1 0.808 0.964 0.809 0.763

1.0 0.2 0.809 0.966 0.764 0.705

1.1 0.1 0.665 0.956 0.757 0.685

1.1 0.2 0.665 0.957 0.596 0.636

1.2 0.1 0.564 0.938 0.809 0.605

1.2 0.2 0.563 0.939 0.608 0.596

1.3 0.1 0.508 0.914 0.810 0.674

1.3 0.2 0.508 0.914 0.608 0.614

In the experiments conducted on BC, TC and AD, our EdgCSN is much better than the competing

algorithms in terms of AUC scores. Further analysis of the top 10 unknown genes also illustrate that

EdgCSN is capable of predicting novel disease genes. Our study has provided insight into how clustering

patient samples might improve the prediction of disease genes.

4.5 Conclusions

Our EdgCSN use ensemble learning to predict disease genes from clustered sample-based networks. In the

future, the strategies used for clustering can be further improved. For instance, Eq. (4.2) uses the expression

data of all the genes to calculate the pairwise distances, and the results might be dominated by non-disease

genes. We could reduce the number of genes used for clustering and choose those differentially expressed

genes or marker genes that are associated with a specific subtype. These subsets of genes should improve

the clustering results as well as the final prediction.
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Figure 4.5: ROC curves for BC.
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Figure 4.6: ROC curves for TC.
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Figure 4.7: ROC curves for AD.
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Table 4.4: Top 10 unknown genes

Gene Name Function Reference

BC

CREBBP Potential disease gene [228]

NBN Potential disease gene [229]

PARP1 Potential biomarker [230, 231]

NCOR2 Potential biomarker [232]

RXRA Potential therapeutic target [233]

WRN Potential disease gene [234]

EXO1 Potential disease gene [235]

NCOA3 Potential disease gene [236]

RMI2 Potential disease gene [237]

TOPBP1 Potential therapeutic target [238]

TC

HRAS Potential disease gene [239]

HAUS7

CEP72

GTF2I Potential disease gene [240]

BCLAF1 Potential disease gene [241]

HAUS3

FGFR1OP Potential disease gene [242, 243]

CEP131

GPR83

ALMS1 Potential disease gene [244]

AD

MAP2 Potential disease gene [245]

DPYSL3

ERRFI1 Potential disease gene [246]

DAB2 Potential disease gene [247]

AMPH Potential disease gene [248]

SYN1 Potential disease gene [249]

SYT9 Potential disease gene [250]

AXIN1

PRNP Potential disease gene [251]

AAK1 Potential disease gene [252]
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5

Enhancing the prediction of disease-gene associations with multi-

modal deep learning

Prepared as: Ping Luo, Yuanyuan Li, Li-Ping Tian, and Fang-Xiang Wu. Enhancing the prediction of

disease-gene associations with multimodal deep learning. Bioinformatics, in press, 2019. PL, YL, LPT and

FXW discussed about the methods. PL implemented the algorithm, designed and performed the experiments.

FXW supervised this study. PL and FXW wrote the manuscript. All authors read, revised and approved

the final version of the manuscript.

The previous two chapters have proposed strategies to solve the two problems that exist in developing

machine learning-based methods. In this chapter, a deep learning-based method is proposed to fuse multiple

types of data. Specifically, multimodal DBN is used to combine raw features learned from PPI network and

GO data. The model can learn both linear and nonlinear relationships within different types of data, and

extract cross-modality features which are more valuable for disease-gene prediction. This chapter fulfills

Objective 4 of this thesis.

Abstract

Motivation: Computationally predicting disease genes helps scientists optimize the in-depth experimen-

tal validation and accelerates the identification of real disease-associated genes. Modern high-throughput

technologies have generated a vast amount of omics data, and integrating them is expected to improve the

accuracy of computational prediction. As an integrative model, multimodal deep belief net (DBN) can cap-

ture cross-modality features from heterogeneous datasets to model a complex system. Studies have shown

its power in image classification and tumor subtype prediction. However, multimodal DBN has not been

used in predicting disease-gene associations.

Results: In this study, we propose a method to predict disease-gene associations by multimodal DBN (dg-

MDL). Specifically, latent representations of protein-protein interaction networks and gene ontology terms

are first learned by two DBNs independently. Then, a joint DBN is used to learn cross-modality repre-

sentations from the two sub-models by taking the concatenation of their obtained latent representations

as the multimodal input. Finally, disease-gene associations are predicted with the learned cross-modality
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representations. The proposed method is compared with two state-of-the-art algorithms in terms of 5-fold

cross-validation on a set of curated disease-gene associations. dgMDL achieves an AUC of 0.969 which

is superior to the competing algorithms. Further analysis of the top-10 unknown disease-gene pairs also

demonstrates the ability of dgMDL in predicting new disease-gene associations. The Supplementary data

are available at https://doi.org/10.1093/bioinformatics/btz155.

5.1 Introduction

Ever since the discovery of the first disease gene in 1949 [2], thousands of genes have been identified to

be disease-associated. Identifying disease-gene associations helps us decipher the mechanisms of diseases,

find diagnostic markers and therapeutic targets, which further leads to new treatment strategies and drugs.

High-throughput technologies usually predict a few hundreds of candidate genes, and validating all these

candidates requires an extensive amount of cost and time. Thus, a commonly used approach is to first

computationally predict/prioritize candidate genes associated with the diseases under consideration, then

experimentally validate a subgroup of candidates based on the results of computational prediction so that

the yield of the experiments can be greatly improved.

Currently, various types of data have been used to predict disease-gene associations, and protein-protein

interaction (PPI) networks are the most widely used evidence. Previous algorithms tried to predict disease-

gene associations by directly using the topological structure of PPI networks [18, 22]. However, universal

PPI networks downloaded from online databases contain lots of false positives, and only using them cannot

further improve the prediction accuracy. Thus, researchers tend to combine more types of data with PPI

networks to predict disease-gene associations.

One strategy is to combine PPI networks with clinical data which capture the difference between patients

(case) and normal people (control). This resulted in a group of GWAS-based methods [218, 253, 254] and

gene expression (GE)-based methods [54, 58, 78]. GWAS-based methods first map the single-nucleotide

polymorphisms and their corresponding P -values to the human genome. Then, the mapped P -values are

combined with PPI networks and other evidence to predict disease-gene associations. GE-based methods

analyze the expression level of each gene in case and control subjects and identify differentially expressed genes

or rewired co-expressions, which are then combined with PPI networks to predict disease-gene associations.

Although algorithms based on clinical data are more accurate than the previous methods, their perfor-

mance is still limited by the amount and quality of the data. For diseases not well studied, the amount of

available data limits the performance of the algorithms. For other diseases like cancers, although projects

such as TCGA [255] have generated a large amount of omics data, not all disease-gene associations can be

successfully identified because of the following reasons. The tumorigenesis of most patients is associated

with several frequently mutated genes, and clinical data-based algorithms can easily identify the associations

between cancers and these genes. However, for other less mutated genes, the overwhelming abundance of
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frequently mutated genes would make the computational model believe that the less mutated ones are not

disease-associated. As a result, algorithms based on clinical data tend to generate results that do not include

less mutated genes. Therefore, the key issue now is to identify those critical but less mutated genes [256].

To address the problems of existing methods, a generic model which combines different types of non-

clinical data would be more valuable. On the one hand, this model predicts disease-gene associations using

evidence that can reveal the intrinsic properties of diseases and genes, such as disease similarities, gene

similarities, PPI networks, gene ontology (GO) terms, protein domains etc. Integrating such multiple types

of information could complement the shortage of previous PPI-based algorithms. On the other hand, since

clinical data is not used in the prediction, the results are less likely to be affected by the frequency of the

disease-associated mutations.

Methods based on matrix factorization (MF) are generic models and can leverage the disease similarities

and gene similarities to predict disease-gene associations [6, 257, 258]. However, MF-based algorithms usually

need too much time to converge and most of them can only use limited types of data, which limits their

performance. Since studies have shown that integrating multiple types of data could enhance the prediction

of disease-gene associations [46, 48, 118, 70], a good generic model should be able to integrate multiple types

of data with a unified framework so that the advantages of multi-view data can be properly utilized.

Currently, many algorithms have been proposed to integrate multi-view biological data. Among these

algorithms, multimodal deep learning reveals great potential in capturing cross-modality features to uncover

the mechanisms of biological systems [259]. Deep learning algorithms, such as deep belief net (DBN) [260],

have been applied to drug repositioning [261] and cancer subtype prediction [262]. Although these studies

have shown the abilities of deep learning in analyzing biological systems, no studies have used deep learning

in disease gene prediction because of two reasons. First, if deep learning is used to predict the disease genes

of a specific disease, the number of known disease genes would be too small to train a deep model. Second, if

DBN is used to extract features from the biological data, Gaussian units have to be used in the visible layer

so that the model can accept real-valued data. The corresponding restricted Boltzmann machine (RBM) in

the DBN is a Gaussian-Binary RBM (GBRBM), which is hard to train [263, 264]. More attention is needed

to choose appropriate hyperparameters.

To solve the above issues, in this study, instead of predicting associated genes for a specific disease,

we build a generic model to predict disease-gene associations for all known diseases. This strategy greatly

increases the number of positive samples, making it possible to train a deep network. Meanwhile, the

Gaussian visible layer is used to learn latent features from original real-valued features. To leverage the

advantage of deep learning in data fusion and improve prediction accuracy, multimodal DBN is used to fuse

different modalities and obtain joint representations. Specifically, two sub-models are first trained based on

PPI networks and GO terms, respectively. Then, a joint DBN is used to combine the two sub-models to

learn cross-modality representations.

In the rest of the paper, Section 5.2 describes the details of the algorithm and the experiments. Section
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5.3 discusses the results of the evaluation. Section 5.4 draws some conclusions.

5.2 Materials and methods

5.2.1 RBM

RBM is a graphical model which consists of a visible layer and a hidden layer. In this model, every unit in one

layer is connected to every unit in another layer, and there are no within layer connections. Fig. 5.1 shows an

example RBM with four visible units and five hidden units. RBM can characterize the distribution of input

data, and the learned probabilities of hidden units can be used as features to characterize raw data. When

data is binary, the corresponding RBM is a Binary-Binary RBM (BBRBM), and the probability distribution

is defined by the following likelihood function:

P (v) =
∑
h

P (v, h) =
∑
h

e−E(v,h)

Z
(5.1)

where E(v, h) = −bT v− cTh−hTWv is the energy function. Z =
∑
v

∑
h e
−E(v,h) is known as the partition

function. W is the weight matrix that connects visible and hidden units. b and c are the biases of visible

and hidden layers, respectively.

RBM can be learned by using the stochastic gradient descent (SGD) on the empirical negative log-

likelihood of training data, which results in the following gradients for a BBRBM [265]

−∂ log p(v)

∂Wij
= Ev[p(hi|v) · vj ]− v(i)j · sigm(Wi · v(i) + ci) (5.2)

−∂ log p(v)

∂ci
= Ev[p(hi|v)]− sigm(Wi · v(i)) (5.3)

−∂ log p(v)

∂bj
= Ev[p(vj |h)]− v(i)j (5.4)

where sigm denotes the sigmoid function sigm(x) = 1/(1 + exp(−x)). These equations compute the expec-

tations over all possible configurations of input data, which is difficult. A feasible solution is to estimate the

expectations with a fixed number of samples. Several sampling techniques have been developed to calculate

the gradients [266, 267, 268]. In this study, we choose the contrast divergence (CD) because of its simplicity.

Details of the algorithms can be found in [266].

Visible 

layer

Hidden 

layer

Figure 5.1: Schematic example of an RBM.
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For GBRBM, the energy function becomes:

E(v, h) =
∑
i∈vis

(vi − ai)2

2σ2
i

−
∑
j∈hid

bjhj −
∑
i,j

vi
σi
hjwij (5.5)

where σi is the standard deviation of the Gaussian noise for visible unit i. Since learning the variance is

difficult with CD, we use the same strategy as in [269] which normalizes each feature to have zero mean and

unit variance. The variance in Eq. (5.5) is then set to 1, and the resulted learning procedures remain the

same except for that when CD is performed, the reconstructed value of a Gaussian visible unit changes from

sigm(WTh+ b) to (WTh+ b).

5.2.2 Multimodal DBN

Multimodal DBN was originally proposed to learn joint representations from image and text data [5]. In

this study, multimodal DBN is used to learn cross-modality features with raw features extracted based on

PPI networks and GO terms. Fig. 5.2 gives a schematic multimodal DBN for predicting disease genes.

The left and right subnetworks denote two DBNs which model PPI-based features and GO-based features,

respectively. The top network is a DBN that models the joint distribution and a sigmoid activation function

as the output layer for decision making.

According to [270], each DBN in Fig. 5.2 can be regarded as a stack of RBMs and trained in a greedy

layer-wise manner. Starting from the visible layer, every pair of adjacent layers form an RBM, which can

be trained by the approach discussed in Section 5.2.1. In this study, the visible layers in the two sub-models

use Gaussian units, and the corresponding RBMs formed by vp, h
1
p and vg, h

1
g are GBRBM. All the rest

RBMs formed by adjacent hidden layers are BBRBM. Once an RBM is trained, the activation probabilities

of its hidden layer are used as the input data to train the next RBM, and the DBN can be trained in this

layer-wise manner. After training the two sub-DBNs, their output (hidden probabilities of the top layers)

are concatenated, and the resulted representations are used as the input to train the joint DBN.

The whole model is trained in an unsupervised way, and the resulted multimodal DBN can be further

analyzed by many approaches. In this study, we add an output layer with a sigmoid function to predict the

probability of each disease-gene pair being associated using the cross-modality representations learned by

the joint DBN.

5.2.3 Raw feature extraction

The input data of the multimodal DBN is the raw features of disease-gene pairs. These features are ex-

tracted from disease similarity networks and gene similarity networks. Specifically, for each sub-model, a

disease similarity network and a gene similarity network are first constructed. Then, features of diseases

and genes are extracted from their corresponding similarity networks, respectively, by node2vec [62], which

is an algorithm that can learn features for nodes in networks. This algorithm performs random walk on
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a network and captures both local topological information and global structural equivalent properties to

extract features. We choose node2vec because it can generate independent features which are suitable for

the input of the multimodal DBN. In addition, experiments have shown that features obtained by node2vec

are more informative than those of other algorithms in classification task [62].

The following two sections discuss the strategies used to construct similarity networks based on PPI

networks and GO terms.

Similarity networks in PPI-based sub-model

In the PPI-based model, gene-gene interaction network mapped from the PPI network is regarded as the

gene similarity network. This strategy is chosen because interacting proteins may have similar functions

and protein interactions can reflect the functional similarities between the corresponding genes. Meanwhile,

instead of constructing another gene similarity network, the topological structure of the PPI network is also

valuable when extracting features with node2vec.

The disease similarity network NPPI
d is constructed according to the disease module theory. A disease

module in an interactome is a subgraph consisting of genes associated with the disease [271]. Let M1 =

(V1, E1) denote the disease module of disease d1 in the interactome (gene-gene interaction network). V =

{g11, g12, . . . , g1n1
} is a set of disease genes associated with d1, and E1 is a set consisting of their interactions.

M2 = (V2, E2) is another disease module with similar definition. According to [272], the similarity between

two disease modules M1 and M2 can be calculated as follows:

simppi(M1,M2) =

∑
1≤s≤n1

FM2
(g1s) +

∑
1≤t≤n2

FM1
(g2t)

n1 + n2
(5.6)

where FM (g) = avg(
∑
gi∈M sim(g, gi)) measures the relations between gene g and disease module M , which

is the sum of the transformed similarities between g and the genes in disease module M . Given two genes

g1 and g2 in the PPI network, their transformed similarity is calculated by

sim(g1, g2) =

1, g1 = g2

e−sp(g1,g2), otherwise

where sp(g1, g2) is the length of the shortest path between g1 and g2 in the PPI network. The larger the

transformed similarity, the closer the relationship between g1 and g2.

After calculating the similarities between modules M1 and M2, the similarities between diseases d1 and

d2 can be obtained by normalizing the module similarities as follows:

SIMd
ppi(d1, d2) =

2 ∗ simppi(M1,M2)

simppi(M1,M1) + simppi(M2,M2)
(5.7)

Finally, NPPI
d is constructed by k nearest neighbors (KNN) algorithm [163]. Specifically, edges are added

to NPPI
d for each disease and its top-k most similar diseases obtained by Eq. (5.7). These edges are weighted

by the similarity scores of their two connected diseases. In this study, k = 10 is chosen according to our

previous experience [78].
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Similarity networks in GO-based sub-model

Similar to the construction of NPPI
d , the GO-based similarity networks are also built by KNN algorithm,

except that the similarities between diseases and genes are calculated based on GO instead of PPI network.

GO database provides a set of vocabularies to describe gene products based on their functions in the cell.

Three types of ontologies are defined in GO: biological process, cellular component and molecular function.

All the GO terms exist as directed acyclic graphs (DAGs) where nodes represent terms while edges represent

semantic relations. In this study, we use the approach developed by [130] to measure the semantic similarities

of GO terms and genes.

Let DAGA = (TA, EA) represent GO term A, where TA contains all the successor GO terms of A in the

DAG, and EA contains the semantic relations between A and other terms in TA. Each term t in TA has an

S-value related to A: SA(t) = 1, if t = A

SA(t) = max{we ∗ SA(t
′
)|t′ ∈ children of t}, otherwise

(5.8)

where we is the weight of the edge (semantic relations) in the DAG. Two types of semantic relations are used

in the DAG: ’is a’ and ’part of’, and the corresponding we is set as 0.8 and 0.6, respectively, as recommended

in [130].

Given DAGA = (TA, EA) and DAGB = (TB , EB) for two GO terms A and B, the semantic similarity of

these two terms is computed by:

SGO(A,B) =

∑
t∈TA∩TB

(SA(t) + SB(t))∑
t∈TA

SA(t) +
∑
t∈TB

SB(t)
(5.9)

The semantic similarity of one GO term t
′

and a set of GO terms GO = {t1, t2, . . . , tl} is defined as:

simgo(t
′
, GO) = max

1≤i≤l
(SGO(t

′
, ti)) (5.10)

Then, the functional similarity of two genes g1 and g2, annotated by GO term set GO1 = {t11, t12, . . . , t1n1
}

and GO2 = {t21, t22, . . . , t2n2}, is calculated by:

SIMg
go(g1, g2) =∑

1≤i≤n1
simgo(t1i, GO2) +

∑
1≤j≤n2

simgo(t2j , GO1)

n1 + n2

(5.11)

The similarity of two diseases d1 and d2, associated with two sets of genes V1 = {g11, g12, . . . , g1n1
},

V2 = {g21, g22, . . . , g2n2}, is defined as:

SIMd
go(d1, d2) =∑

1≤i≤n1
SG(g1i, DG2) +

∑
1≤j≤n2

SG(g2j , DG1)

n1 + n2

(5.12)

where SG(g
′
, DG) = max1≤i≤l(SIM

g
go(g

′
, gi)).
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Sub-model input construction

After obtaining the similarity networks, features are extracted by node2vec. Let φpi denote the extracted

feature vector of disease i, and ϕpj denote the extracted feature vector of gene j in the PPI-based model.

Their concatenation, ψpij = (φpi , ϕ
p
j ), is the feature vector of disease-gene pair (i, j) in the PPI-based model,

which is then used as the input of the PPI-based sub-DBN. Similarity, ψgoij is constructed and used as the

input of the GO-based sub-DBN.

5.2.4 Evaluation metrics

The area under Receiver Operating Characteristics (ROC) curve (AUC) is used to evaluate the algorithms.

ROC curve plots the true positive rate [TP/(TP+FN)] versus the false positive rate [FP/(FP+TN)] at

different thresholds, and a larger AUC score represents better overall performance. In this study, a true

positive (TP) is a known disease-gene association (positive sample) predicted as a disease-gene association,

while a false positive (FP) is a non- disease-gene association (negative sample) predicted as a disease-gene

association. A false negative (FN) is a positive sample predicted as negative while a true negative (TN) is

a negative sample predicted as negative.

Considering that negative samples are not included in existing databases, we combine our previous study

in [78] and the idea of reliable negatives in [41] to collect a subset of unknown samples as potential negative

samples (PN). Taking the PPI-based model as an example, let ψpavg denote the average feature vector of all

positive samples. For each unknown sample u, we calculate the Euclidean distance dpu between u and ψpavg.

The average distance is then denoted as dpavg. If dpu > dpavg, sample u is considered as a reliable negative

sample. With this approach, two sets of reliable negative samples are collected from the PPI-based model

and GO-based model, respectively. disease-gene pairs in the intersection of the two sets are regarded as PN.

In our experiment, 4432 samples (the same as the number of positive samples) are randomly selected from

PN as negative samples and the dataset contains 8864 samples in total. This random selection is performed

three times to generate three sets of data.

The proposed method is evaluated in three steps. First, the whole dataset is randomly split into three

subsets: training set (80%), validation set (10%) and testing set (10%). The optimized hyperparameters are

determined based on the average AUC obtained from 10 randomly split validation sets. The average AUC

obtained from testing sets with the optimized hyperparameters is used to evaluate the overall performance

of the model. Second, dgMDL is compared with two newly developed algorithms: PBCF [257] and Know-

GENE [63] in 5-fold cross-validation. PBCF is an MF-based algorithm and Know-GENE uses the boosted

regression to predict disease-gene associations. Both of them are generic models which use similar types of

data as dgMDL does. For each set of data, the cross-validation is run for five times to remove the influence

of the random splitting. Associations left for testing are not used to calculate disease similarities. Third,

unknown disease-gene pairs are ranked by their probabilities of being associated predicted by dgMDL. The
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top-10 pairs and top-10 unknown lung cancer-related genes are further studied in existing literature to

evaluate the performance of dgMDL in predicting new disease-gene associations.

5.2.5 Hyperparameters

In this study, several hyperparameters affect the accuracy of the prediction. For the multimodal DBN, the

numbers of hidden layers and the number of nodes in each hidden layer determine the architecture of the

model. In our experiments, the model is found to be insensitive to the number of hidden nodes. Thus, we set

the number of hidden nodes in the sub-modal and the joint-model to 256 and 512, respectively. In addition,

since the performance of the model becomes stable when the numbers of hidden layers are larger than 2, we

set the numbers of hidden layers to be 3 in both the sub-DBN and the joint-DBN.

Another three hyperparameters [learning rate (lr), batch size (bs) and number of epochs (ne)] determine

whether the model is well trained. For lr, 0.01 is recommended for training BBRBM in [273]. In our study,

we find that 0.01 is small enough to train the BBRBM. A smaller or adaptive lr barely changes the prediction

accuracy. Thus, lr used for training BBRBM is set to 0.01. Meanwhile, it is recommended that lr used for

training GBRBM should be one or two orders of magnitude smaller than that for BBRBM. Thus, we search

lr of the GBRBM from {0.001, 0.0005, 0.0002, 0.0001}. For bs, a recommended value is usually equal to the

number of the classes, and it would be better if each mini-batch contains at least one sample from each class.

Considering that we only have two classes in this study and using a bs equals to two can hardly guarantee

the recommendation, bs is searched from {2, 4, 8, 10}. For ne, we fix it to 30 because the performance of

dgMDL becomes stable after being trained for 30 epochs. Table S1 in the Supplementary gives the average

AUC obtained from the validation sets with different combinations of lr and bs. The optimized lr for the

GBRBM and bs are 0.0005 and 4, respectively.

For node2vec, the hyperparameters include: dimension of features (d); return parameter (p); in-out

parameter (q); number of walks (r); length of walk (l) and context size (k). The corresponding default

values recommended in [62] are 128, 1, 1, 10, 80 and 10, respectively. Although these hyperparameters

should be changed for networks with different numbers of nodes and edges, searching all of them with

brute force would be time-consuming. In our study, we do test different combinations of d, p, q and l, but

the results are all worse than the ones obtained with the default values. To determine the real optimized

hyperparameters used in node2vec, one might need a large amount of time on the grid search, which is not

the key issue of the deep learning model. Therefore, the default values of node2vec are used in our study.

5.2.6 Data sources

The disease-gene association data are downloaded from the Online Mendelian Inheritance in Man (OMIM)

database [274]. The latest Morbid Map at OMIM contains nearly seventy-five hundred entries sorted alpha-

betically by disease names, thirty-nine hundred genes and more than sixty-one hundred diseases. Each entry

represents an association between a gene and a disease. Different entries are labelled with different tags
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[‘(3)’, ‘[ ]’ and ‘?’] indicating their reliabilities. To get the most reliable entries, in this study three steps are

performed to preprocess the originally downloaded dataset. The first two steps are similar to the approach

used in [154]. From the website of OMIM, diseases with tag ‘(3)’ indicate that the molecular basis of these

diseases is known, which means the associations are reliable. Entries with ‘[ ]’ represent abnormal laboratory

test values while entries with ‘?’ represent provisional disease-gene associations. At the first step, entries

with the tag ‘(3)’ are selected while others are abandoned. At the second step, we classify these disease

entries into distinct diseases by merging disease subtypes based on their given disorder names. For instance,

14 entries of ‘46XX sex reversal’ are merged into disease ‘46XX sex reversal’, and the 9 complementary terms

of ‘Renal cell carcinoma’ are merged into ‘Renal cell carcinoma’. During the classification, string match is

first used to classify adjacent entries, and then the classified results are manually verified. At the third step,

475 diseases are removed because each of them is associated with only one gene which is not associated with

any other diseases. As a result, we obtain the final dataset consisting of 4432 associations between 1154

diseases and 2909 genes. All these disease-gene associations are included in Supplementary Table S2.

The PPI network is obtained from the InWeb InBioMap database (version 2016 09 12) [170], which

consists of more than 600,000 interactions collected from eight databases. The proteins in the network are

mapped to their corresponding genes to form a gene-gene interaction network. In total, there are 17429

genes in the network. GO data are downloaded from the GO database [125, 126]. For genes that have no

ontology information, the values of their features in the GO-based model are all 0.

5.3 Results

5.3.1 Overall performance

Fig. 5.3 shows the average AUC obtained with the hidden representatives learned from different layers

of the model. The raw feature vectors and the activation probabilities learned in each hidden layer are

used to predict disease-gene associations in the testing set. The blue bars and purple bars show the AUC

scores obtained from the PPI-based DBN and GO-based DBN, respectively. AUC scores obtained from the

joint DBN are shown by the red bars. Clearly, the accuracy of the prediction improves when the model

is continuously trained, which shows that the multimodal DBN successfully learns valuable information in

different stages of the training and improves the prediction of disease-gene associations.

5.3.2 Comparison with other algorithms

Fig. 5.4 shows the ROC curves of dgMDL (red), Know-GENE (blue) and PCFM (orange) obtained with 5-

fold cross-validation, respectively. dgMDL achieves an AUC of 0.969 which is the best among three competing

algorithms. The AUC of Know-GENE is 0.941, which is slightly worse than that of dgMDL. PCFM ranks

the 3rd with an AUC of 0.791.
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5.3.3 Prediction of new disease-gene associations

To further evaluate dgMDL, we rank the unknown disease-gene pairs according to their probabilities of being

associated calculated by the model. Since known disease genes are more likely to be associated with other

diseases, we rank the unknown pairs of diseases and existing disease genes in this study. Meanwhile, we also

rank the unknown pairs by Know-GENE and PCFM for comparison. Table 5.1 lists the top-10 ranked pairs

of dgMDL, Know-GENE, and PCFM, respectively. For dgMDL, 8 out of the 10 pairs have been studied in

existing literature. While for Know-GENE and PCFM, only 3 of the 10 pairs have been studied.

In addition to the top-10 prediction, we test the ability of dgMDL in predicting new associated genes for

a specific disease. Table 5.2 lists the top 10 unknown genes associated with lung cancer. 9 out of 10 pairs

have been studied in existing literature. All these results demonstrate that dgMDL is valuable in predicting

new disease-gene associations.

5.4 Conclusion

Integrating multiple types of data with machine learning model is a challenging task, especially for predicting

disease genes where the number of known associations is limited. In this study, we have proposed a method

to predict disease-gene associations with the cross-modality features obtained by multimodal DBN. The deep

learning model learns joint representations from raw features extracted from PPI-based similarity networks

and GO-based similarity networks. Results show that the proposed method is overall more accurate than

the competing algorithms. Further analysis of the top-10 disease-gene pairs and top-10 lung cancer-related

genes also reveal the potential of dgMDL in predicting new disease genes. The current model integrates two

types of data. It is possible that a gene is not included in any of these data, and its associations cannot be

correctly predicted. In the future, more types of data should be integrated by the multimodal DBN, such as

disease-disease associations, protein domain and sequence information, to solve this issue and improve the

prediction accuracy.
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Table 5.1: Top-10 associations predicted by dgMDL, Known-GENE and PCFM

Disease Gene Supporting Evidence

dgMDL

Deafness PIK3CD [275]

Deafness PIK3CA

Deafness PIK3R1 [276]

Diabetes AR [277]

Deafness PTPN11 [278]

Diabetes SMAD4 [279]

Cataract AR

Diabetes GATA3 [280]

Mental retardation SMAD4 [281]

Deafness STAT3 [282]

Know-GENE

Acne inversa familial NLRP12

Basal cell nevus syndrome HGF

Bladder cancer somatic PIK3CA [283]

Bladder cancer somatic NRAS

Cardiofaciocutaneous syndrome EGFR

Complement factor I deficiency C3 [284]

LADD syndrome PIK3CA

Meckel syndrome B9D1 [285]

Nevus epidermal somatic ERBB2

Nevus epidermal somatic RET

PCFM

Mental retardation CLCN7

Mental retardation PDE3A

Mental retardation RBM12

Mental retardation BPTF [286]

Mental retardation TAP1

Mental retardation LAMTOR2 [287]

Mental retardation DYSF

Mental retardation TPRKB

Mental retardation HERC1 [288]

Mental retardation RORC
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Table 5.2: Top-10 susceptible lung cancer-associated genes

Gene Supporting Evidence

PTPN11 [289]

PIK3R1 [290]

HRAS [291]

GATA3 [292]

PIK3CD

JAK2 [293]

STAT3 [294]

C5 [295]

SIK1 [296]

PPM1D [297]
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deepDriver: predicting cancer driver genes based on somatic muta-

tions using deep convolutional neural networks

Prepared as: Ping Luo, Yulian Ding, Xiujuan Lei, and Fang-Xiang Wu. deepdriver: Predicting cancer

driver genes based on somatic mutations using deep convolutional neural networks. Frontiers in Genetics,

10:13, 2019. PL, YD, XL and FXW discussed about the methods. PL implemented the algorithm, designed

and performed the experiments. FXW supervised this study. PL and FXW wrote the manuscript. All

authors read, revised and approved the final version of the manuscript.

The previous chapter use multimodal DBN to fuse different types of data, the model would become

complex when fusing several types of data. A convolutional layer and pooling layer should help to reduce the

dimension of the learned representations. Thus, in this chapter, the CNN model is applied to fuse different

types of data and predict disease genes. This chapter fulfills Objective 5 of this thesis.

Abstract

With the advances in high-throughput technologies, millions of somatic mutations have been reported in the

past decade. Identifying driver genes with oncogenic mutations from these data is a critical and challenging

problem. Many computational methods have been proposed to predict driver genes. Among them, ma-

chine learning-based methods usually train a classifier with representations that concatenate various types

of features extracted from different kinds of data. Although successful, simply concatenating different types

of features may not be the best way to fuse these data. We notice that a few types of data characterize

the similarities of genes, to better integrate them with other data and improve the accuracy of driver gene

prediction, in this study, a deep learning-based method (deepDriver) is proposed by performing convolution

on mutation-based features of genes and their neighbors in the similarity networks. The method allows the

convolutional neural network to learn information within mutation data and similarity networks simultane-

ously, which enhances the prediction of driver genes. deepDriver achieves AUC scores of 0.984 and 0.976 on

breast cancer and colorectal cancer, which are superior to the competing algorithms. Further evaluations of

the top 10 predictions also demonstrate that deepDriver is valuable for predicting new driver genes.
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6.1 Introduction

Cancer is driven by various types of mutations, such as single nucleotide variants (SNVs), insertions or

deletions (Indels) and structural variants. Identifying driver genes whose mutations cause cancer could help

us decipher the mechanism of cancer, which is beneficial to the development of novel drugs and therapies.

With the advances in next-generation sequencing technologies, massive amounts of cancer genomic data

have been published, which elevate the identification of driver genes. Currently, many computational methods

have been proposed, and they can be divided into several types. A typical kind of method is those based

on the mutation frequency. These methods find “significantly mutated genes” (SMG) whose mutation rates

are significantly higher than the background mutation rate and judge them as driver genes. For instance,

OncodriveCLUST finds positions with mutation rates higher than the background mutation rate and predicts

driver genes from clusters generated based on these seed positions [298]. MutsigCV identifies SMGs by

building a patient-specific background mutation model with gene expression data and DNA replication time

data [299]. However, due to the heterogeneity of tumors, constructing a reliable background mutation model

is difficult [13], which limits the performance of frequency-based methods. Another type of methods predicts

driver genes by network analysis. For example, DawnRank predicts driver genes by ranking the genes in

a gene interaction network (GIN) with PageRank algorithm [300]. SCS uses network control strategy to

find driver mutations that can drive the regulation network from the normal state to disease states [301].

Considering that GINs are downloaded from online databases, such as BioGrid [302] and HPRD [89], which

contain many false positives, network-based methods need more accurate GIN to improve their prediction

accuracy.

As the increasing number of experimentally validated driver genes, researchers start to use machine

learning algorithms to predict new driver genes. These methods usually train a classifier with features

characterizing the functional impact of mutations. For instance, CHASM trains a random forest classifier

with 86 predictive features [303]. CanDrA trains an SVM with 95 features obtained from ten functional

impact-based algorithms, such as SIFT [304] and CHASM. Since the number of driver genes is much smaller

than that of passenger genes, selecting gold-standard driver genes (positive data) and a set of high-quality

nonfunctional passenger genes (negative data) is difficult for machine learning-based methods. However, with

reasonable downsampling, these methods can also achieve better performance than other types of algorithms.

Tokheim et al. propose a random forest algorithm (known as 20/20+) and compare it with seven classical

driver gene prediction algorithms (ActiveDriver [305], MuSiC [306], MutsigCV [299], OncodriveCLUST [298],

OncodriveFM [307], OncodriveFML [308] and TUSON [256]) in [144]. Results show that 20/20+ performs

best among the eight algorithms, which demonstrate that machine learning models are able to predict driver

genes given the limited known driver-disease associations.

At present, most machine learning-based methods use random forest and SVM as the classifier. To

improve the prediction accuracy, various kinds of features extracted from different types of data are used
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to train the classifier. Despite the increase of the dimensionality, simply concatenating all these features

may not be the best approach to integrate different types of data. Considering that several types of data

can be used to characterize the similarities of genes, if we construct similarity networks with these data and

combine them with other predictive features, the prediction accuracy of the algorithms should be improved

compared to that obtained from a simple feature concatenation. Thus, in this study, a deep learning-based

method is proposed to predict driver genes by combining similarity networks with features that characterize

the functional impact of mutations (deepDriver). Specifically, candidate driver genes are predicted by a

convolutional neural network (CNN) trained with mutation-based feature matrix constructed based on the

topological structure of a similarity network. The algorithm leverages the similarity of gene expression

patterns and the functional impact of mutations simultaneously, which can better fuse these two types of

data and improve the prediction accuracy. To our knowledge, this is the first time that CNN is combined

with similarity network to predict driver genes.

In the rest of the paper, Section 6.2 describes the methods and the materials used in the study. Section

6.3 analyzes the results of the evaluation. Section 6.4 draws some conclusions.

6.2 Material and methods

6.2.1 General model

CNN is successful in many areas, such as image classification and speech recognition. The key component

of a CNN is the convolutional (CONV) layer, which helps the model to learn local and global structures

from the input data. In an image classification problem, these structures include edges, curves, corners, etc.

While in a driver gene prediction problem, traditional input data contain distinct features that characterize

different properties of genes, which cannot be directly applied to CNN.

We notice that pixels in a small region share the same filters because they have similar grayscale. In

a gene similarity network (GSN), genes and their neighbors also have similar properties. If we reconstruct

the traditional input data with GSN so that features of similar genes are close to each other, CNN can then

be applied to these reconstructed data. Instead of edges and curves learned from the images, topological

structures of the similarity networks are learned by CNN with this strategy. In addition, the strategy allows

CNN to learn the similarities of genes and the properties of the original input data simultaneously, which

can improve the accuracy of driver gene prediction.

Fig. 6.1 depicts a schematic example of a 1-dimensional CNN, which is used in our study. The model

consists of five kinds of layers: Input layer, CONV layers, pooling layers, Fully-Connected (FC) layers, and

Output layer. Given a feature matrix φi ∈ R2k×nf constructed by the feature vectors of gi and its k neighbors

where nf is the dimension of the feature vectors of gi, the output of a CONV layer corresponds to the input
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φi and the filter wj is calculated as follows

A(i, j) = f(wjφi + bj) (6.1)

where bj denotes the bias corresponds to wj , f is an activation function which is ReLU in this study. wjφi

is still the dot product of wj and φi except that the calculation is restricted to be local spatially. Each

CONV layer is followed by a pooling layer, and the CONV-POOL pattern is repeated for several times. The

final structure of the model used for driver gene prediction is determined by grid search, and the results are

discussed in Section 6.3.2. The construction of φi is discussed in the next section.

6.2.2 Network-based convolution

The convolution is performed by combining mutation-based features with gene similarity networks. Many

approaches can be used to calculate the similarities of genes. In this study, to characterize the relationships

between genes in the disease states, Pearson correlation coefficient (PCC) defined by the following equation

is used to calculate the similarities.

r(gi, gj) =

∑v
q=1(eiq − ēi)(ejq − ēj)√∑v

q=1(eiq − ēi)2
√∑v

q=1(ejq − ēj)2
(6.2)

where ei = (ei1, ei2, . . . , eiv) denotes the expression values of gi in v tumor samples, and ēi is the mean of

ei. An undirected network N is constructed by k-nearest neighbors (kNN) algorithm [163] in which every

gene is connected to genes that have the k largest PCC scores with itself.

After obtaining N , the construction of φi used in the convolution is depicted by Fig. 6.2. Assuming we

have obtained a feature vector xi for each gene gi, and gs1, gs2, . . . , gsk are the k nearest neighbors of gi in

N , where pcc(gi, gs1) > pcc(gi, gs2) > · · · > pcc(gi, gsk). Feature matrix φi ∈ R2k×nf is built as depicted by

the figure. In φi, features of similar genes are close to each other so that they can share the same filters in

the CONV layer.

6.2.3 Mutation-based features

For each gene of a specific disease, twelve features are extracted from the mutation datasets. Table 6.1

lists the names and descriptions of these features. Among them, the first eight ones measure the fraction

of a specific type of mutation among all the mutations. The tenth and eleventh feature measure the rate of

missense mutations and non-silent mutations to silent mutations, respectively. The last two features measure

the positional clustering of different types of mutations and are calculated as follows

Ei =
−
∑
i pj log2 pj
log2m

(6.3)

For the normalized missense entropy, m is the total number of missense mutations of gi, and pj = κj/m

where κj is the number of missense mutations in the j-th codon. For the normalized mutation entropy,
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m is the total number of all types of mutations of gi. Different mutations are binned together based on

their types, except for that missense mutations are binned based on their codon positions, different silent

mutations are divided into their own bins. Inactivating mutations (nonsense, translation start site, nonstop,

splice site) are grouped into a single bin.

These twelve features have been used in many machining learning-based methods [309, 144]. To demon-

strate the superiority of our model, we did not use any other features proposed by specific methods. In

addition, during the implementation of the competing methods (SVM, 20/20+), only these twelve features

are used to train their models.

6.2.4 Data sources

In this study, deepDriver was evaluated on three types of cancer: breast invasive carcinoma (BRCA), colon

adenocarcinoma (COAD) and lung adenocarcinoma (LUAD). The mutation data and gene expression data of

these three diseases were downloaded from the NCI Genomic Data Commons (GDC) [104]. For the mutation

data, quality control was applied by filtering out hypermutated samples (> 1, 000 intragenic somatic variants)

[309]. In total, 228,046, 168,746 and 287,667 somatic variants were obtained for BRCA, COAD, and LUAD,

respectively. For gene expression, datasets of 1,102 BRCA, 478 COAD and 551 LUAD primary tumor

samples measured by RNA-Seq were downloaded. We chose the data normalized by FPKM and converted

the values to TPM by the method proposed in [224]. Three steps were then performed to remove the genes

that are barely expressed in tumor samples. First, TPM values less than 1 were considered unreliable and

replaced by 0. Second, log2(TPM + 1) was applied to all TPM values. Third, genes expressed in less than

10% of all tumor samples were removed.

Gene ids were standardized to the gene names provided by HUGO Gene Nomenclature Committee

(downloaded Aug 1, 2018) [310]. Only genes that have both mutation and expression data are kept. Finally,

13,777 genes for BRCA, 11,282 genes for COAD and 13,731 genes for LUAD passed the quality control.

The driver genes were collected from two sources—the Cancer Gene Census category (CGC) [87] and the

genes published in [311]. Genes in CGC were divided into two tiers, and we used genes in Tier 1 as driver

genes because strong evidence has proved their oncogenic role in cancer genesis. It is of note that both

oncogene and tumor suppressor gene (TSG) are regarded as driver gene in this study. In total, 37 driver

genes for BRCA, 42 driver genes for COAD and 12 driver genes for LUAD were collected from CGC. The

Bailey et al.́s dataset [311] contains 299 driver genes associated with 33 types of cancer. In total, 29 driver

genes for BRCA, 20 driver genes for COAD and 20 driver genes for LUAD were collected. These driver genes

as well as a few sets of non-disease genes were regarded as “ground truth” in the evaluation. Details of the

non-disease genes are discussed in next section.

To validate the performance of the algorithm, the structure of the model was first determined by the

grid search using the driver genes of BRCA and COAD collected from CGC. Then, the optimal model was

directly applied to LUAD without fine-tuning the hyperparameters. Similarly, when the model was trained
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with the driver genes published in [311], the optimal hyperparameters were used without fine-tuning.

6.2.5 Evaluation metrics

The algorithm was evaluated in two steps. In the first step, deepDriver was compared with 20/20+ and

SVM in terms of the AUC (area under the receiver operating characteristic (ROC) curve) scores obtained

from 10-fold cross-validation. ROC curve plots the false positive rate (FPR) against the true positive rate

(TPR) at different thresholds. FPR and TPR are defined as follows

FPR =
FP

FP + TN

TPR =
TP

TP + FN

(6.4)

where TP , FP , TN , and FN are the numbers of true positives, false positives, true negatives, and false

negatives, respectively. In this study, a true positive is a driver gene predicted as a driver gene, a false

positive is a passenger gene predicted as driver gene, a true negative is a passenger gene predicted as a

passenger gene, and a false negative is a driver gene predicted as a passenger gene. The larger the AUC is,

the better the performance of the algorithm is.

Since the number of passenger genes is much larger than that of the driver genes, a method is needed to

solve the imbalanced issue. Currently, two types of methods can be used to solve the imbalanced problem:

data level methods and classifier level methods [312]. In this study, a data level method, downsampling,

was used to reduce the size of the passenger genes. Specifically, a subset of passenger genes was randomly

selected from all the passengers so that the numbers of positive samples (driver genes) and negative samples

(passenger genes) are equal. This approach was run for five times which generated five sets of data. During

the cross-validation, for each set of data, all the positive and negative samples were randomly split into ten

groups, and the CNN model was validated for ten rounds. In each round, one group of samples were used

as the testing data while the rest nine groups of samples were used as the training data.

Additionally, since passenger genes are barely reported in existing literature, in this study, genes that

have not been reported as cancer driver genes (unknown genes) were regarded as passenger genes. This

strategy was used because of the following two reasons. First, the numbers of the selected passenger genes

and the undiscovered driver genes are both much less than that of the unknown genes. Potential driver genes

only have a small change to be selected as passenger genes [256]. Second, the final results were obtained by

taking the average predictions of the five sets of data. This bagging strategy would improve the stability

and accuracy of the results and reduce the impact of a potential driver gene selected as a passenger gene.

Finally, the 10-fold cross-validation was run for five times for each dataset to reduce the influence of random

shuffling, and the average AUC score was used to evaluate the performance of the algorithms.

In the second step, all the unknown genes were ranked by their probabilities of being driver genes, and

the top 10 predictions were searched from the existing literature to check whether our predictions are in

concert with existing studies. We also ranked the unknown genes by SVM, 20/20+ and OncodriveCLUST
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and compared their results with those of deepDriver in terms of the number of genes having been analyzed

in existing literature.

6.2.6 Implementation

The algorithm was implemented using Keras [313] with TensorFlow [314] as the backend engine. We have

tested the program on both CPU and GPU versions of TensorFlow and the model can be efficiently trained

with or without the help of GPU. A reference implementation is available at cnnhttps://github.com/

luoping1004/deepDriver.

6.3 Results

6.3.1 Hyperparameters

In this study, the architecture of CNN is determined by the following hyperparameters.

1. The number of the CONV layers (ncl)

2. The number of the FC layers (nfl)

3. The number of the nodes in the CONV layers (ncn)

4. The number of the nodes in the FC layers (nfn)

These hyperparameters were determined by grid search, with ncl searched from {1,2,3,4}, nfl searched from

{1,2,3}, ncn searched from {12,24,48} and nfn searched from {24,48,96}. The optimal values of ncl, nfl, ncn

and nfn are 2, 1, 24 and 48, respectively. In addition, zero padding was used in the CONV layers except the

first one. The size of the filters, the window size of the pooling layers and the stride sizes used in the CONV

layers and the pooling layers were all empirically set to 2.

The number of neighbors used by kNN algorithms was also determined by grid search. We searched k

from {3,5,7,9,11,13,15}, and finally, k = 9 and k = 7 were chosen for BRCA and COAD, respectively. In

fact, the AUC scores were all above 0.950 when 7 ≤ k ≤ 15. Based on our previous study, k = 7 is enough

to generate high-quality similarity networks [78]. Thus, k = 7 was used when the dataset of LUAD was

analyzed by our deepDriver. Meanwhile, for other types of cancer not discussed in this study, k = 7 is also

recommended when the similarity network is constructed.

For 20/20+, a random forest of 200 trees was used based on the suggestions of [144]. For SVM, the

model was implemented with a linear kernel and RBF kernel. The penalty parameter C was searched from

{0.1, 0.01, 0.001, 1, 10, 100, 1000}, and γ was searched from {1/12, 0.001, 0.0001, 0.00001}. Finally, for

BRCA and COAD, SVM performed the best with an RBF kernel, when C = 1, γ = 0.0001; for LUAD, SVM

performed the best with an RBF kernel, when C = 1000, γ = 0.00001.
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6.3.2 Cross-validation

Fig. 6.3, Fig. 6.4 and Fig. 6.5 show the results of the ROC curves and the corresponding AUC scores

of deepDriver, 20/20+ and SVM on BRCA, COAD and LUAD, respectively. According to the figures,

deepDriver achieved AUC scores of 0.984, 0.976 and 0.998 on BRCA, COAD and LUAD, respectively, which

were at least 15.1% higher than those of the two competing algorithms, especially for COAD and LUAD

where the AUC scores of the competing algorithms were less than 0.750.

To further demonstrate that the model was not overfitted, the learning curves were plotted using the

datasets of the three types of cancer. For each type of cancer, 80% of the total samples were used as training

data while the rest 20% samples were left to test the performance of the model. Fig. 6.6, Fig. 6.7 and Fig.

6.8 show the results of the learning curves. The AUC scores obtained from the testing set improved with

the increase of the number of the training samples, which demonstrates that the model is not overfitted. In

the meantime, the AUC scores obtained with a small amount of samples also demonstrate that the model is

able to produce meaningful results even if the number of the known driver genes is less than 10.

In addition to the driver genes collected from CGC, our deepDriver was also validated using the driver

genes published in [311]. As discussed in Section 6.2.4, the optimal hyperparameters obtained from the first

set of drivers were directly used to evaluate the model. Fig. 6.9 depicts the resulted ROC curves. Our

deepDriver obtained AUC scores of 0.985, 0.941 and 0.970 on BRCA, COAD, and LUAD, respectively.

6.3.3 De novo study

To further evaluate the performance of deepDriver, the unknown genes were ranked by their probabilities of

being driver genes predicted by the model. Similar to the cross-validation, 5 sets of data were used to train

the model and the unknown genes were ranked by the average probabilities. Meanwhile, we also ranked the

unknown genes using the three competing algorithms and compared their results with those of deepDriver

in terms of the number of genes that have been studied as drivers in existing literature.

Table 6.2 shows the top 10 predicted driver genes of deepDriver. 6 out of the 10 genes have been studied

in existing literature or databases as potential driver genes of BRCA. The ninth gene ’DST’ was found to

have the potential to drive ductal carcinoma in situ to breast cancer [315]. 5 out of the 10 genes have been

studied as driver genes of COAD in the existing literature. Meanwhile, among the rest 5 genes, ’AMER1’

and ’ADAMTSL3’ were found to be frequently mutated in COAD [316, 317]. ’LAMA3’ were predicted as

biomarkers which could be used to diagnose COAD in the early stage [318]. ’KMT2A’ belongs to the KMT2

family which is related to COAD [319]. 4 out of 10 genes have been studied as driver genes of LUAD. The

tenth gene ’HERC2P3’ contains a microsatellite locus that can precisely discriminate LUAD samples and

non-tumor samples [320]. As for three competing algorithms, Table 6.3, 6.4 and 6.5 show their prediction

results. In summary, deepDriver performed better than the three competing algorithms in predicting new

cancer drivers. Its prediction results were in concert with existing studies which further reveal the value of
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deepDriver in predicting cancer driver genes.

6.4 Conclusion

In this study, we proposed an algorithm to predict cancer driver genes with CNN. The method combined

CNN with similarity networks so that the functional impact of mutations and similarities of gene expression

can be learned simultaneously, which improve the accuracy of driver gene prediction. Experiments performed

on BRCA, COAD and LUAD then showed that deepDriver was superior to the competing algorithms in

terms of both cross-validation and de novo prediction.

In the future, similarity networks calculated by different strategies and predictive features extracted by

other algorithms can both be used to improve the prediction accuracy. Meanwhile, the algorithm can be

applied to the pancancer dataset to predict generic cancer driver genes. Since the total number of cancer

driver genes is much higher than that of a specific type of cancer, candidate driver genes can also be further

classified into TSG and oncogene on the pancancer dataset.
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Table 6.1: 12 features extracted from mutation data.

No. Name Description

1 Silent fraction Fraction of silent mutations

2 Nonsense fraction Fraction of nonsense mutations

3 Splice site fraction Fraction of splice site mutations

4 Missense fraction Fraction of missense mutations

5 Recurrent missense fraction Fraction of recurrent missense mutations

6 Frameshift indel fraction Fraction of frameshift indel mutations

7 Inframe indel fraction Fraction of Inframe indel mutations

8 Lost start and stop fraction Fraction of Lost start and stop mutations

9 Missense to silent Ratio of missense to silent mutations

10 Non-silent to silent Ratio of non-silent to silent mutations

11 Normalized missense position entropy See Section 6.2.3

12 Normalized mutation entropy See Section 6.2.3
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Table 6.2: Top 10 predictions of deepDriver

Gene Names Reference

BRCA

PTEN [321]

HCFC1 [322, 323]

UTRN [324]

ZNF517

STAG2 [322, 323]

ZFP36L1 [325]

ZNF91

VPS13C

DST

FBXW7 [326]

COAD

AMER1

SOX9 [327]

NRAS [328]

MTOR [329]

ATM [330]

ADAMTSL3

ELMO1 [331]

TG

LAMA3

KMT2A

LUAD

XIST [332]

MALAT1 [333]

STK11 [334]

USH1C

HSP90AB2P

BNIP3P1

EEF1A1P9

UBE2MP1

SMAD4 [335]

HERC2P3

88



Table 6.3: Top 10 predictions of 20/20+

Gene Names Reference

BRCA

KMT2C [336]

PTEN [321]

ANKRD12

NF1 [337]

ANKHD1-EIF4EBP3

ARID4B

MCM7

MYO6

MLLT4 [323]

CEP128

COAD

ATM [330]

SOX9 [327]

LAMA3

ADAMTSL3

ELMO1 [331]

OLFM1

BRINP1

ACVR1B

CNOT1

PCDH7

LUAD

LRRIQ1

HECTD4

EPB41L3 [338]

NF1 [339]

CEP350

PRKDC

APC

MYH9

POSTN

FN1
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Table 6.4: Top 10 predictions of SVM

Gene Names Reference

BRCA

VPS13C

UTRN [324]

HCFC1 [322, 323]

MLLT4 [323]

ZNF91

STAG2 [322, 323]

FBXW7 [326]

MALAT1

NRK

BAZ2B

COAD

ATM [330]

NRAS [328]

MTOR [329]

SOX9 [327]

ADAMTSL3

ELMO1 [331]

AMER1

KMT2B

FBN2

KMT2A

LUAD

XIST [332]

MALAT1 [333]

USH1C

SNRPN

STK11 [334]

SMAD4 [335]

POLA1

MAGEE1

BRAF

CTNNB1
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Table 6.5: Top 10 predictions of OncodriveCLUST

Gene Names Reference

BRCA

ACTN4 [340]

AFF2

ATP2B3

AVPR1B

CASR

CMYA5

DIS3L

EPB41L2

FBXW8

KCND3

COAD

AKAP12 [341]

C3orf20

COL1A2 [342]

DOK1 [343]

FNDC1

MSRB3

NCOA2 [344]

NPHS1

NRAP

PCDHB13
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Figure 6.1: Schematic 1-D CNN. In this study, each CONV layer is followed by a pooling layer and
the CONV-POOL pattern is repeated for several times. The final structure of the model is determined
by grid search.
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Figure 6.2: Construction of φi. Given the feature vectors of gi and its k nearest neighbors
gs1, gs2, . . . , gsk, a feature matrix φi is constructed by arranging the 2k vectors into a 2k×nf matrix,
which is then used in the convolution.
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Figure 6.3: ROC curves of the three algorithms obtained on the dataset of BRCA. The red, green
and magenta lines depict the ROC curves of deepDriver, 20/20+ and SVM, respectively. The AUC
value of deepDriver is 0.984, which is at least 15.1% higher than that of the other two algorithms.
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Figure 6.4: ROC curves of the three algorithms obtained on the dataset of COAD. The red, green
and magenta lines depict the ROC curves of deepDriver, 20/20+ and SVM, respectively. The AUC
value of deepDriver is 0.976, which is at least 25.5% higher than that of the other two algorithms.
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Figure 6.5: ROC curves of the three algorithms obtained on the dataset of LUAD. The red, green
and magenta lines depict the ROC curves of deepDriver, 20/20+ and SVM, respectively. The AUC
value of deepDriver is 0.998, which is at least 24.9% higher than that of the other two algorithms.
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Figure 6.6: Learning curve for BRCA.
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Figure 6.7: Learning curve for COAD.
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Figure 6.8: Learning curve for LUAD.
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Figure 6.9: ROC curves of deepDriver obtained from the second sets of driver genes.
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7

Identifying disease-gene associations with graph-regularized manifold

learning

Prepared as: Ping Luo, Qianghua Xiao, Pi-Jing Wei, Bo Liao, and Fang-Xiang Wu. Identifying disease-

gene associations with graph-regularized manifold learning. Frontiers in Genetics, 10:270, 2019. PL, QX,

PJW, BL and FXW discussed about the methods. PL implemented the algorithm, designed and performed

the experiments. FXW supervised this study. PL and FXW wrote the manuscript. All authors read, revised

and approved the final version of the manuscript.

In previous chapters, a few supervised models are used to predict disease genes. If the models have to be

trained separately for different diseases, the corresponding methods cannot be applied for diseases with only

a few or no known associated genes, since the number of the instances is not enough to train the models.

To solve this issue, we can extract features for both diseases and genes and predict disease-gene associations

instead of associated genes for a specific disease. The number of the positive instances is then equals to

the number of all known disease-gene associations, which is large enough to train the model. For instance,

algorithms proposed in Chapter 5 has used this strategy. Additionally, we can also use NMF-based methods

to solve this issue. These methods define disease-gene prediction as a matrix completion problem. Each

entry in the association matrix is regarded as the probability of a disease-gene pair being associated.

In this chapter, we also propose an NMF-based method. However, unlike existing methods which use

matrix completion to solve the problem, we map the diseases and genes onto a lower dimensional manifold

and use their geodesic distance to determine whether they are associated. Our assumption is that the

distance among a disease and its associated genes should be smaller than that among the disease and other

genes. This chapter fulfills Objective 6 of this thesis.

Abstract

Complex diseases are known to be associated with disease genes. Uncovering disease-gene associations is

critical for diagnosis, treatment, and prevention of diseases. Computational algorithms which effectively

predict candidate disease-gene associations prior to experimental proof can greatly reduce the associated

cost and time. Most existing methods are disease-specific which can only predict genes associated with a
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specific disease at a time. Similarities among diseases are not used during the prediction. Meanwhile, most

methods predict new disease genes based on known associations, making them unable to predict disease genes

for diseases without known associated genes. In this study, a manifold learning-based method is proposed

for predicting disease-gene associations by assuming that the geodesic distance between any disease and its

associated genes should be shorter than that of other non-associated disease-gene pairs. The model maps

the diseases and genes into a lower dimensional manifold based on the known disease-gene associations,

disease similarity and gene similarity to predict new associations in terms of the geodesic distance between

disease-gene pairs. In the 3-fold cross-validation experiments, our method achieves scores of 0.882 and 0.854

in terms of the area under of the receiver operating characteristic (ROC) curve (AUC) for diseases with more

than one known associated genes and diseases with only one known associated gene, respectively. Further

de novo studies on Lung Cancer and Bladder Cancer also show that our model is capable of identifying new

disease-gene associations.

7.1 Introduction

Complex diseases are caused by a group of genes known as disease genes. Identifying disease-gene associations

is of critical importance since it helps us unravel the mechanisms of diseases, which has many applications

such as diagnosis, treatment and prevention of disease. With the advances in high-throughput experimental

techniques, a large amount of data that indicate associations between diseases and their associated genes have

been generated, which could accelerate the identification of disease-associated genes. However, it is expensive

and time-consuming to experimentally prove an association between a gene and a disease. Computational

methods that translate the experimental data into legible disease-gene associations are necessary for in-depth

experimental validation.

Currently, many algorithms have been developed to predict disease-gene associations, and they can be

briefly divided into two categories: the machine learning-based methods and the network-based methods. The

typical machine learning-based methods extract gene-related features and train models that can discriminate

disease genes and passenger genes [3, 78, 41, 220, 345]. Since the features are extracted for genes, these

algorithms are usually single-task algorithms which once can only predict disease genes for a specific disease.

Thus, for diseases that have a few or no known associated genes, the number of the genes would be too small

to train the model. In the meantime, the relationships among diseases are usually not used in the prediction

since only one disease is considered at a time. Matrix completion methods, as a type of machine learning

methods, can solve the above two issues by jointly predicting disease-gene associations and leveraging the

similarities among diseases during the calculation [6, 7]. However, matrix completion methods generally do

not have the global optimal solutions and could take a very long time to converge to even a local optimal

solution. Network-based methods are based on the assumption that genes close related in the network are

associated with the same diseases. Centrality indices, random walk and network energy are used in many
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methods to predict disease-gene associations [18, 22, 47, 44]. Although most network-based methods are not

affected by the above two issues, their performance is strongly affected by the quality of networks, and they

usually perform worse than machine learning-based methods on diseases with many known associated genes

[117, 118].

In this study, we propose a manifold learning-based method (dgManifold) to predict disease-gene associ-

ations. In our dgManifold, genes and diseases are regarded as points in the same high-dimensional Euclidean

space. Our assumption is that diseases and their associated genes should be consistent in some lower di-

mensional manifold, and the geodesic distance between a disease and its associated genes should be shorter

than that of other non-associated disease-gene pairs. Although the Euclidean distance between diseases and

genes in the high-dimensional space may not reflect their true geodesic distance, we can map the diseases

and genes into a low-dimensional manifold based on the experimentally verified disease-gene associations

[346, 347]. Then, the true geodesic distance between all the disease-gene pairs can be calculated. In the

meantime, the mapping process is regularized by two affinity graphs, disease similarity network and gene

similarity network, so that the learned representations with the similarity information can further increase

the prediction accuracy. Additionally, since our dgManifold is a supervised method, and it is difficult (if

possible) to learn valuable representations for diseases that only have a few or no known associated genes. A

prior information vector calculated with the disease similarities and known disease-gene associations should

be combined with the original association data to solve this issue. Similar strategies have been applied to

calculate the initial probabilities used in the random walk, which have improved the accuracy of predicting

miRNA-disease associations. [348, 349, 350].

In the rest of the manuscript, Sections 7.2 describes our algorithm as well as the data sources and

evaluation metrics used in the study. Section 7.3 discusses the evaluation results. Section 7.4 draws some

conclusions.

7.2 Methods and material

7.2.1 General model

Given n diseases and m genes, the associations among them can be represented by a matrix A ∈ Rn×m

in which aij = 1 if disease i is associated with gene j, and otherwise aij = 0. Intuitively, each disease

can be represented by a binary m-dimensional row vector while each gene can be represented by a binary

n-dimensional column vector. However, in these high-dimensional spaces, it is hard to calculate the actual

distance between a disease and a gene.

If we map the diseases and genes into the same manifold with a lower dimensionality and assume that

the distance between a disease and its associated genes should be as short as possible on this manifold,

predicting disease-gene associations can be solved by computing this mapping based on known disease-gene

associations, which can be mathematically formulated as: finding k-dimensional representatives of diseases
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r1, . . . , rn and k-dimensional representatives of genes q1, . . . ,qm such that the following objective function

is minimized

Ok =

n∑
i=1

m∑
j=1

aij‖ri − qj‖2. (7.1)

However, without any constraints, the objective function (7.1) is not well defined. To illustrate this, if

k-dimensional vectors r+i and q+
j for i = 1, . . . , n and j = 1, . . . ,m minimize the objective function (7.1),

then εr+i and εq+
j can further minimize the objective function when 0 ≤ ε < 1. Especially, when ε = 0, any

k-dimensional vectors r+i and q+
j can minimize the objective function. Therefore, to make the optimization

problem well defined, the following constraints are added

n∑
i=1

rir
T
i = Ik and

m∑
j=1

qjq
T
j = Ik. (7.2)

where Ik is the k × k identity matrix. As a results, the learned representations are unique with these

constraints.

To insure that the mapped representations of diseases and genes are in concert with their intrinsic

properties, two affinity graphs, disease similarity network and gene similarity network are used to regularize

the objective function (7.1), and the new objective function is as follows

Ok =

m∑
j=1

n∑
i=1

aij‖ri − qj‖2 +
α

2

n∑
i=1

n∑
j=1

sdij‖ri − rj‖2 +
β

2

m∑
i=1

m∑
j=1

sgij‖qi − qj‖2 (7.3)

where Sd and Sg are the adjacency matrices of the disease similarity network and the gene similarity network,

respectively. α and β are the regularization coefficients.

Note that

Ok =

n∑
i=1

(

m∑
j=1

aij)r
T
i ri +

m∑
j=1

(

n∑
i=1

aij)q
T
j qj − 2

n∑
i=1

m∑
j=1

aijr
T
i qj

+α

n∑
i=1

(

n∑
j=1

sdij)r
T
i ri − α

n∑
i=1

n∑
j=1

sdijr
T
i rj

+β

m∑
i=1

(

m∑
j=1

sgij)q
T
i qi − β

m∑
i=1

m∑
j=1

sgijq
T
i qj

=

n∑
i=1

Arir
T
i ri +

m∑
j=1

Acjq
T
j qj − 2

n∑
i=1

m∑
j=1

aijr
T
i qj

+α

n∑
i=1

Sdi r
T
i ri − α

n∑
i=1

n∑
j=1

sdijr
T
i rj

+β

m∑
j=1

Sgj q
T
j qj − β

m∑
j=1

m∑
i=1

sgijq
T
i qj

=

n∑
i=1

(Ari + αSdi )rTi ri +

m∑
j=1

(Acj + βSdj )qTj qj

−2

n∑
i=1

m∑
j=1

aijr
T
i qj − α

n∑
i=1

n∑
j=1

sdijr
T
i rj − β

m∑
j=1

m∑
i=1

sgijq
T
i qj

(7.4)
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where Sdi =
∑n
j=1 s

d
ij , S

g
i =

∑m
j=1 s

g
ij , Ari =

∑m
j=1 aij , Acj =

∑n
i=1 aij . Let

L11 = diag[Ar1 + αSd1 , Ar2 + αSd2 , . . . , Arn + αSdn]− αSd,

L22 = diag[Ac1 + βSg1 , Ac2 + βSg2 , . . . , Acm + βSgm]− βSg,
(7.5)

the objective function (7.3) can be simplified as

Ok =

n∑
i=1

n∑
j=1

L11rTi rj +

m∑
i=1

m∑
j=1

L22qTi qj − 2

n∑
i=1

m∑
j=1

aijr
T
i qj (7.6)

Furthermore, let

ri =


xi1

xi2
...

xik

 , qj =


yj1

yj2
...

yjk

 , zt =



x1t
...

xnt

y1t
...

ymt


=

 xt

yt

 , (7.7)

Ar = diag[Ar1, . . . , Arn], Ac = diag[Ac1, . . . , Acm],

Ld = diag[Sd1 , . . . , S
d
n]− Sd, Lg = diag[Sg1 , . . . , S

g
m]− Sg,

(7.8)

L =

Ar + αLd −A

−AT Ac + βLg

 , (7.9)

objective function (7.6) can be simplified as

Ok =

k∑
t=1

n∑
i=1

n∑
j=1

L11xitxjt +

k∑
t=1

m∑
i=1

m∑
j=1

L22yityjt − 2

k∑
t=1

n∑
i=1

m∑
j=1

aijxityjt

=

k∑
t=1

[xTt L
11xt + yTt L

22yt − 2xTt Ayt]

=

k∑
t=1

[xTt yTt ]

 L11 −A

−AT L22

xt

yt


=Tr(ZTLZ)

(7.10)

where Z = (z1, . . . , zk). Therefore, minimizing the objective function (4) with constraints (2) is equivalent

to minimize the following function

Qk = Tr(ZTLZ) (7.11)

with constraints

ZTZ = XTX + Y TY = 2Ik (7.12)

According to [351], minimizing objective function (7.11) with constraints (7.12) can be solved by

Z∗ = (u0,u1, . . . ,uk−1) (7.13)

102



where u0,u1, . . . ,uk−1 are k eigenvectors correspond to the k smallest eigenvalues of L. Meanwhile, the

smallest eigenvalue is 0, and entries in the corresponding eigenvector u0 are identical to each other, which

does not contribute to the calculation of the geodesic distance. Thus, let Ẑ denote the matrix by removing

the fist column of Z∗. The first n rows of Ẑ are the obtained (k−1)-dimensional representations of diseases,

and the rest m rows of Ẑ are the learned representations of genes. The geodesic distance between a disease

i and gene j can be calculated by

gdistij = ‖r̂i − q̂j‖2. (7.14)

7.2.2 Similarity network

Gene similarity

In this study, the learning process is regularized by similarity networks, and the similarities of genes are

calculated based on the Gene Ontology (GO). GO database provides a set of vocabularies to describe the

function of genes and gene products [125, 126]. The GO terms and their relationships are manifested as

a directed acyclic graph (DAG) where nodes represent terms while edges represent semantic relationships.

Many algorithms have been proposed to calculate the similarities of genes using ontology data, and the

approach proposed by [130] is used in this study.

Let DAGh = (Th, Eh) denote GO term h, where Th contains all the successor GO terms of h in the

DAG, and Eh contains the semantic relationships between h and other terms in Th. Each term t in Th has

a τ -value related to h: τh(t) = 1, if t = h

τh(t) = max{we ∗ τh(t
′
)|t′ ∈ children of t}, otherwise

(7.15)

where we is the weight of the edge (semantic relationships) in the DAG. Two types of semantic relationships

(“is a” and “part of ”) are used in the DAG, and the corresponding we is set to 0.8 and 0.6, respectively, as

recommended in [130].

Given DAGh = (Th, Eh) and DAGb = (Tb, Eb) for GO terms h and b, their similarity can be computed

by

sgo(h, b) =

∑
t∈Th∩Tb

(τh(t) + τb(t))∑
t∈Th

τh(t) +
∑
t∈Tb

τb(t)
(7.16)

Then, the similarity of one GO term t
′

and a set of GO terms GO = {t1, t2, . . . , tl} is defined as

SGO(t
′
, GO) = max

1≤i≤l
(SGO(t

′
, ti)) (7.17)

Finally, the functional similarity of two genes g1 and g2 is calculated by

sgg1,g2 =

∑
1≤i≤n1

SGO(t1i, GO2) +
∑

1≤j≤n2
SGO(t2j , GO1)

n1 + n2
(7.18)

where GO1 = {t11, t12, . . . , t1n1
} and GO2 = {t21, t22, . . . , t2n2

} are two sets of GO terms that describe g1

and g2, respectively.
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Disease similarity

The similarities among diseases are also calculated with the ontology data. Instead of GO, the Human

Phenotype Ontology (HPO) [127] is used to characterize human diseases. The HPO provides a vocabulary

of phenotypic terms related to human diseases. Each term represents a clinical abnormality, and all the

terms are structured as a DAG, in which every term is related to their parent terms by “is a” relationships.

Although diseases are not directly described by the HPO, the annotation file provided by HPO contains

terms associated with every disease, and thus Eq. 7.17, 7.18 can be used to compute the similarities of

diseases. When we calculate the similarities of phenotypic terms based on the DAG, we in Eq. 7.15 is set to

0.7 as recommended in [352].

7.2.3 Prior information

For diseases with only a few associated genes, the limited information would affect the performance of any

computational algorithms. This problem is especially serious for diseases with no known associated genes.

To solve this problem, we add some prior information for diseases with no known associations.

Specifically, given a disease i
′
, pi′ is added to the i

′
-th row of the matrix A as prior information so that

the shortage of known information can be alleviated. The j-th entry of pi′ is calculated by

pi′ j =

( n∑
i=1,i6=i′

sd
ii′
aij

)
/

( n∑
i=1,i6=i′

aij

)
(7.19)

In our experiments, when cross-validation is used to evaluate the algorithm, the prior information is

added to the i-th row of matrix A as long as one of the associated genes of disease i is left to test the model.

Meanwhile, in the de novo study, prior information is also added to the diseases used for evaluation.

7.2.4 Data sources

The disease-gene association data are downloaded from the Online Mendelian Inheritance in Man (OMIM)

database [274] in August 2018. The Morbid Map at OMIM contains nearly seventy-five hundred entries

sorted alphabetically by disorder names. Each entry represents an association between a gene and a disease.

Different entries are labeled with different tags (‘(3)’, ‘[]’ and ‘?’) which indicate their reliabilities. To

obtain a reliable association dataset, based on [154], three steps were performed to preprocess the originally

downloaded data. First, entries with the tag ‘(3)’ are selected while others are abandoned. We adopt this

strategy because diseases with tag ‘(3)’ indicate that the molecular basis of these diseases is known and the

associations are reliable, while entries with ‘[]’ represent abnormal laboratory test values, and entries with ‘?’

represent provisional disease-gene associations. Second, disease entries are classified into distinct diseases by

merging disease subtypes based on their given disorder names. For instance, 17 entries of “Leigh syndrome”

are merged into disease “Leigh syndrome”, and the 19 complementary terms of “Lung cancer somatic” are

merged into “Lung Cancer”. Third, 74 diseases are removed because they are not annotated by any HPO
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terms. During the classification, string match was used to classify adjacent entries, followed by a manual

verification. Finally, we obtain a dataset consisting of 4,770 associations between 1,537 diseases and 3320

genes. Among the 1,537 diseases, 917 have only one associated gene (single-gene disease), while the rest

diseases have at least two associated genes (multiple-gene disease).

The ontology data of genes and phenotypes are downloaded from the GO database [125, 126], and the

HPO database [127], respectively. The PPI network used in the competing algorithms is downloaded from

the InWeb InBioMap database (version 2016 09 12) [170].

7.2.5 Evaluation metrics

In this study, the algorithm is evaluated in two steps. In the first step, our dgManifold is compared with two

competing algorithms: PCFM [7] and Katz [220]. PCFM is a matrix completion method which integrates

disease similarities and gene similarities to predict disease-gene associations. Katz is a classic network-based

method which uses Katz centrality to rank the disease-gene associations. We choose these two algorithms

because they are all multi-task algorithms which can predict all disease-gene associations as our dgManifold

does. The AUC (area under of the receiver operating characteristic (ROC) curve) scores calculated from

3-fold cross-validation are used to compare these three algorithms.

ROC curve plots the true positive rate [TP/(TP+FN)] verses the false positive rate [FP/(FP+TN)] at

different thresholds, and a larger AUC represents better overall performance. In this study, a true positive

(TP) is a known disease-gene association (positive sample) predicted as a disease-gene association, while a

false positive (FP) is a non-disease-gene association (negative sample) predicted as a disease-gene association.

A false negative (FN) is a positive sample predicted as negative while a true negative (TN) is a negative

sample predicted as negative. Since negative samples are not included in existing databases, we randomly

select a set of unknown disease-gene pairs as negative samples. The number of negative samples is equal to

that of positive samples. Considering that the selected negative samples may have small possibilities to be

a real disease-gene association, the random selection was run for five times to generate 5 sets of negative

samples. The final AUC score is the average score obtained from the 5 sets of samples.

During the cross-validation, the known disease-gene associations are split into 3 groups, and the algorithm

is run for 3 rounds. In each round, one group of associations is regarded as unknown (aij = 0), while the rest

two groups of associations are used to train the model. The prior information is recomputed during every

round of the cross-validation. Considering that single-gene diseases would have no known associated genes

if they are left for testing the model during the cross-validation, predicting disease genes for these diseases

is similar to predict disease genes for a completely new disease. Thus, the three algorithms are compared

on multiple-gene diseases and single-gene diseases separately. Additionally, to show the effect of the prior

information, the AUC scores of our method without prior information are also calculated.

In the second step, the model is trained with all the known associations, and the geodesic distance

between every unknown disease-gene pairs is calculated. To find out whether our new predictions are in
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concert with existing experimental studies, the top-10 predictions of two diseases, Lung Cancer and Bladder

Cancer, are searched from the existing literature. In our dataset, Lung Cancer has 16 associated genes, and

Bladder Cancer has 4 associated genes. We choose these two types of cancer because they are experimentally

well studied which could better prove our results.

7.3 Results

7.3.1 Model parameters

In our study, several parameters affect the performance of the model. To obtain the optimal parame-

ters, the grid search is conducted by searching k from {20, 30, 50, 100, 500, 800, 1000, 1200, 1500} and α from

{0, 0.01, 0.02, 0.05, 0.1, 0.2, 0.5}. β is set to be equal to α. The AUC score is used to determine whether

the selected parameters are optimal. Finally, for multiple-gene diseases, the model performs best when

k = 30, α = β = 0.2, and for single-gene diseases, the optimal parameters are k = 30, α = β = 0.1.

7.3.2 Cross-validation

Fig. 7.1 and Fig. 7.2 show the resulted ROC curves and AUC scores of the three competing algorithms

on multiple-gene diseases and single-gene diseases, respectively. For multiple-gene diseases, our dgManifold

achieves AUC score of 0.882 with prior information and 0.873 without prior information, while the AUC

scores of Katz and PCFM are 0.742 and 0.636, respectively. For single-gene diseases, the AUC score of our

dgManifold is 0.854 when prior information is used and 0.485 with no prior information, while the AUC

scores of Katz and PCFM are 0.455 and 0.322, respectively. These results show that our method is superior

to the competing methods in terms of the AUC scores.

It is worth noting that the AUC scores of all three algorithms are less than 0.5 when they are applied to

single-gene diseases. This is mainly because that single-gene diseases have no known associated genes during

the cross-validation, and algorithms can only use disease similarities and association data of other diseases

to perform the prediction. These data are not enough to generate accurate results, especially for supervised

algorithms. Thus, prior information is necessary for the algorithm. In fact, the results of our experiments

have shown that the prior information is beneficial to the prediction of disease-gene associations, especially

when the diseases have no known associated genes.

7.3.3 De novo study

In addition to AUC scores, we evaluate the performance of our dgManifold in predicting new disease-gene

associations. Specifically, Lung Cancer and Bladder Cancer are selected, and prior information corresponded

to these two diseases is added to matrix A. Then, all known disease-gene associations are used to train the

model (k = 30, α = β = 0.2), and the geodesic distance between all the unknown disease-gene pairs is
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calculated. For each of the two selected diseases, the unknown disease-gene pairs are ranked based on the

geodesic distance in ascending order, and the top-10 predictions are searched from existing literature.

Table 7.1 shows the results of de novo studies. 5 out of 10 predicted genes have been experimentally

confirmed as associated with Lung Cancer. Among these genes, KCNK9 is a potential therapeutic target

[353]. HTRA1 contributes to the tumor formation by inhibiting the TGF-beta pathway [354]. ATP6AP1

and MYL2 are two potential biomarkers [355, 356]. Mutation of C282Y allele in HFE is associated with

Lung Cancer [357]. Although SEMA4A is not proved to be associated with Lung Cancer yet, it is related

to Lung Inflammation and Colorectal Cancer, and its role in Lung Cancer genesis might be discovered in

the future [358]. For Bladder Cancer, 3 out of 10 genes have been experimentally verified. Among them,

SMAD3 mediates epithelial-mesenchymal transition which affects the invasion and migration of Bladder

Cancer [359]. DMP1 is a tumor suppressor gene of Bladder Cancer [360]. CALR is potential biomarker

[361]. These results show that our predictions are in concert with existing reports, and thus our dgManifold

is valuable for predicting new disease-gene associations.

7.4 Conclusion

In this study, we have proposed dgManifold to predict disease-gene associations with manifold learning. Our

dgManifold assumes that the distance between diseases and their associated genes should be shorter than

that of other non-associated disease-gene pairs and maps the diseases and genes into a lower dimensional

manifold based on known disease-gene associations, disease similarity and gene similarity. The prediction of

new associations can be achieved by sorting the geodesic distance between unknown disease-gene pairs. The

cross-validation results show that our model outperforms the competing algorithms in terms of AUC scores

for both multiple-gene diseases and single-gene diseases. The further de novo studies also demonstrate that

our dgManifold is valuable in predicting new disease-gene associations.

Note that dgManifold is only regularized by disease similarities and gene similarities at the current version,

and the prior information is also obtained from the disease similarities. In the future, we can improve our

method by regularizing the objective function with more types of data and computing the prior information

with clinical evidences.
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Figure 7.1: ROC curves of the three competing algorithms on multiple-gene diseases.
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Figure 7.2: ROC curves of the three competing algorithms on single-gene diseases.
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Table 7.1: Top 10 predictions for lung cancer and bladder cancer

Gene symbol Reference

Lung Cancer

SEMA4A

KCNK9 [353]

MYL2 [356]

DENND5A

HTRA1 [354]

GABRA1

ATP6AP1 [355]

KCTD17

HFE [357]

BCS1L

Bladder Cancer

PDYN

DKC1

SMAD3 [359]

MCC

DMP1 [360]

MGP

CALR [361]

CASQ2

SOX18

GATM
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8

Summary and future work

8.1 Summary

Disease-gene prediction is a critical yet challenging issue. The appropriate integration of multi-level biological

data is the key to improving prediction accuracy. This thesis aims at fusing multiples types of data with

multimodal deep learning to advance the performance of existing algorithms. In the meantime, several issues

that limit the accuracy of prediction are also addressed. In total, six objectives are proposed in Chapter 1,

and Chapters 2 to 7 have achieved these objectives.

Chapter 2 comprehensively reviews the computational algorithms for disease-gene prediction and achieves

Objective 1. Classic and state-of-the-art algorithms, databases and evaluation methods are summarized in

this chapter, and several future perspectives are discussed for designing new algorithms.

Chapter 3 designs a strategy to select negative data and applies the network energy-based model on both

a PPI network and a differential co-expression network to predict disease genes.

Chapter 4 first proposes an approach to construct sample-specific networks using static PPI network and

clinical gene expression data. Then, an ensemble strategy is used to predict disease genes from all the single

sample-based networks with centrality-based features.

Chapter 5 presents a method that uses node2vec to extract raw network embeddings from different

modalities (PPI networks and GO data in this study) and fuse them with multimodal DBN. The latent

representations learned by the model then significantly improve the prediction accuracy.

Chapter 6 presents a strategy to fuse raw features (mutation-based features) and similarity information

by a CNN model and use it to predict cancer driver genes.

Chapter 7 proposes an NMF-based method by using manifold learning to map diseases and genes onto

a lower-dimensional manifold. The mapping process is based on the known disease-gene associations and

regularized by disease similarities and gene similarities. After the mapping, the geodesic distance between

each disease-gene pair is used to prioritize disease genes.

With our proposed algorithms, the accuracy of computational disease gene prediction has been greatly

improved, and biochemists can combine the results of our prediction with their experiments to accelerate the

identification of disease genes. Meanwhile, the proposed models could be applied to other areas to enhance

the biological analysis. For instance, algorithms proposed in Chapters 5, 6 and 7 can be used to address
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linkage prediction problems, such as the prediction of protein interactions, drug-target associations, and

mRNA-disease associations, etc.

Note that our methods are not optimal. For instance, the algorithm proposed in Chapter 3 should combine

different expression with differential co-expression instead of only using the latter information. Hierarchical

clustering used in Chapter 4 should be compared with other algorithms to improve the clustering accuracy.

Dropout should be added to the models proposed in Chapters 5 and 6 to improve their stability. Therefore,

more efforts should be done to improve the performance of our algorithms in the future.

8.2 Future work

Based on the studies proposed in this thesis, several future directions for disease-gene prediction are proposed

as follows:

1. Using multi-omics data to predict disease genes.

Multi-omics data characterize different stages of cellular activities, and analyzing omic data is believed

to improve the accuracy of computational prediction. However, for disease gene prediction, most

algorithms still focus on genomic data, and only a few algorithms have used multi-omics data in their

studies [30]. Therefore, new methods should apply other omic data (transcriptomic, proteomic, etc.)

in their studies to discover the appropriate approaches to apply these data for disease-gene prediction.

2. Developing algorithms for personalized prediction.

Complex diseases might be associated with many disease genes; however, only a subset of malfunc-

tioning genes would lead to a disease, and the same disease on different patients might be caused

by different sets of genes. Therefore, predicting patient-specific disease genes should be useful for

personalized treatment. A previous study had used deep Boltzmann machine to predict personalized

mutations [362]. The results are promising, and the accuracy could be further improved with more

available samples.

3. Comparing the state-of-the-art methods, and developing a software package to implement these meth-

ods.

In Chapter 2, we address that many algorithms have not been applied in real disease-gene prediction

studies since they are not easy to use. Moreover, metrics alone cannot reveal the true prediction power

of an algorithm, and a comprehensive study should be conducted to address the performance of the

existing state-of-the-art methods. Therefore, a study should be proposed to compare the state-of-the-

art methods and implement the best ones by a user-friendly package or web tool.
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