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A growing number of clinical observations have indicated that microbes are involved

in a variety of important human diseases. It is obvious that in-depth investigation

of correlations between microbes and diseases will benefit the prevention, early

diagnosis, and prognosis of diseases greatly. Hence, in this paper, based on known

microbe-disease associations, a prediction model called NBLPIHMDA was proposed

to infer potential microbe-disease associations. Specifically, two kinds of networks

including the disease similarity network and the microbe similarity network were first

constructed based on the Gaussian interaction profile kernel similarity. The bidirectional

label propagation was then applied on these two kinds of networks to predict potential

microbe-disease associations. We applied NBLPIHMDA on Human Microbe-Disease

Association database (HMDAD), and compared it with 3 other recent published methods

including LRLSHMDA, BiRWMP, and KATZHMDA based on the leave-one-out cross

validation and 5-fold cross validation, respectively. As a result, the area under the

receiver operating characteristic curves (AUCs) achieved by NBLPIHMDA were 0.8777

and 0.8958 ± 0.0027, respectively, outperforming the compared methods. In addition,

in case studies of asthma, colorectal carcinoma, and Chronic obstructive pulmonary

disease, simulation results illustrated that there are 10, 10, and 8 out of the top 10

predicted microbes having been confirmed by published documentary evidences, which

further demonstrated that NBLPIHMDA is promising in predicting novel associations

between diseases and microbes as well.

Keywords: microbe-disease association, bidirectional label propagation, leave-one-out cross validation, 5-fold

cross validation, COPD

1. INTRODUCTION

With the development of sequencing technologies, studies on microbes in soils, oceans, human
bodies and other places have received increasing attention from the scientific community (Methé
et al., 2012). Human microbiota, i.e., the collection of microbes existing in human tissues and
biological fluids, includes various species such as archaea, eukaryotes, bacteria, and viruses. It is
known that all parts of human body contain microbes, the number of which is more than 10 times
the number of cells in a human body (Turnbaugh et al., 2007; Sender et al., 2016). Fortunately, the
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vast majority of microbes are harmless to human body, some of
which are even indispensable for our metabolism, growth, and
development. For example, there are parasitic microbes involving
in the physiological mechanisms of the human body and playing
a vital role in the process of energy acquisition and storage,
salvage of energy, and nutrient, resistance to pathogens and
foreignmicroorganisms, immune responses, and other metabolic
processes (Guarner and Malagelada, 2003). As a result, human
health will be greatly affected by the human microbiota, and the
disorder and imbalance of them will sometimes lead to diseases.

The microbiota has been living and evolving in human
body since the emerging of human beings, and they have
gradually formed a close symbiotic relationship. The dynamic
balance of microbiota and human diseases has become a hot
topic recently. For example, a few studies indicate that the
host’s diet affects the activity and structure of microbiota in
the human gut. Long-term high-fat diets can cause changes in
the intestinal microbiota, resulting in an increase in intestinal
deoxycholic acid concentration (DCA), which may promote the
development of liver cancer (David et al., 2013). In addition,
researchers also found that smoking creates a microenvironment
in which a dangerous microbiota is produced, and reducing
the niche saturation of the microbiota will increase the risk of
diseases (Mason et al., 2014).

The microbiota can also be affected by genes (Khachatryan
et al., 2008; Turnbaugh et al., 2008; Goodrich et al., 2014), seasons
(Davenport et al., 2014), hygiene and antibiotics (Donia et al.,
2014), and so on. With the advent of high-throughput methods
and advanced analytical techniques, the collective genome of
microbes (human microbiome) inhabiting the human body has
become a key player in human health and diseases. Based on the
high-resolution molecular analysis, a few researchers found that
the disorder of microbiota in the gastrointestinal tract is closely
associated with several idiopathic diseases, such as diabetes,
obesity, inflammatory bowel disease, cancer, kidney stones, and
neurodegenerative diseases (Shah et al., 2016). For example,
according to the study of inflammatory bowel disease, the
intestinal flora is found to be able to regulate the inflammatory
response by regulating regulatory T cells (Singh et al., 2001).
In addition, as pointed out by Christopher et al., microbiota
that produces lactic acid and butyl hydrochloric acid such as
Akkermansia and Prevotella can induce the synthesis of intestinal
mucin, which may contribute to intestinal health (Brown et al.,
2011). Furthermore, microbiota has been reported to play an
important role in autoimmune diseases such as type 1 diabetes.
For example, a population of dysfunctional microbes were found
in subjects immunized with type 1 diabetes (Murri et al., 2013).

As disease-associated flora can provide important insights
into the understanding of the formulation and development
of diseases, a few related large-scale projects including the
Human Microbiome Project (HMP) (Turnbaugh et al., 2007)
and the Earth Microbiome Project (EMP) (Gilbert et al.,
2010) have been launched to entangle the relationship between
microbial flora and diseases. In addition, many useful databases
have also been developed to curate disease-related microbial
information. For example, Ma et al. sorted out the confirmed
microbe-disease association from published literatures through

large-scale text mining, and established the Human Microbe-
Disease Association Database (HMDAD) (Ma et al., 2016). These
datasets can be served as valuable sources for predicting novel
microbe-disease associations.

Traditional microbial identification are performed mainly
by independent culture methods and quantitative methods,
which are costly and labor intensive. This presents the need
for more effective computational methods to scale down the
potential microbe-disease associations for further experimental
validation. In fact, similar computational models have been
successfully implemented in many other related fields such as
drug-target interaction prediction (Chen et al., 2012), gene-
disease association prediction (Zou, 2016; Meng et al., 2017;
Zeng et al., 2017; Zhu et al., 2018), lncRNA-disease association
prediction (Chen et al., 2016c; Yu et al., 2018), miRNA-disease
relationship prediction (Zeng et al., 2015, 2018; Tang et al.,
2017; You et al., 2017), protein structure prediction, and so
on. For the first time, Chen et al. proposed the KATZHMDA
model for measuring the human microbe-disease association
based on KATZ method (Chen et al., 2016a). KATZHMDA first
constructed a heterogeneous network composed of the microbe-
disease association network, the disease similarity network and
the microbe similarity network, and introduced the concept of
variable step number to predict microbe-disease associations,
which achieves reliable prediction performance. Subsequently,
Shen et al. adopted a random walk with restart algorithm to score
each candidate microbe-disease pair on a heterogeneous network
composed of the Spearman correlation-based microbe network,
the symptom-based disease network and the microbe-disease
association network (Shen et al., 2016). Huang et al. proposed a
path-based computational model called PBHMDA, which adopts
a special depth-first search algorithm to traverse all possible paths
between microbes and diseases in the heterogeneous network
(Huang et al., 2017b). Wang et al. put forward a semi-supervised
model of Laplacian regularized least squares (LRLSHMDA),
which utilizes Laplace’s regular least squares classification
combined with topological information of the known microbe-
disease association network to train an optimal classifier (Wang
et al., 2017). Based on the Gaussian kernel similarity and
symptom-based similarity, Huang et al. presented NGRHMDA
combining the neighbor-based collaborative filtering model and
the bipartite graph-based prediction model (Huang et al., 2017a).
Shen et al. developed Bi-Random Walk based on Multiple Path
with different length of path (BiRWMP) to predict microbe-
disease associations (Shen et al., 2018).

In this paper, we have proposed a novel computational model
called NBLPIHMDA based on the bidirectional label propagation
to predict potential microbe-disease associations. NBLPIHMDA
first calculates the disease similarity matrix and the microbe
similarity matrix by introducing the Gaussian interaction
profile kernel similarity, based on which a disease similarity
network and a microbe similarity network are constructed
simultaneously. After that, the edge weights of nodes in these two
networks are calculated by using the Gaussian interaction profile
kernel similarity. Finally, the bidirectional label propagation
is performed on these two weighted networks to obtain the
correlation score matrix between diseases and microbes. The
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final prediction results are obtained by integrating these two
correlation score matrices. The leave-one-out cross validation
(LOOCV) and 5-fold cross validation (5-fold CV) are adopted to
evaluate the predictive performance. As a result, NBLPIHMDA
can achieve the area under the receiver operating characteristic
(ROC) curves (AUCs) of 0.8777 and 0.8958 ± 0.0027,
respectively. In addition, case studies on asthma, colorectal
carcinoma and Chronic obstructive pulmonary disease (COPD)
further demonstrate that NBLPIHMDA can be considered as
an effective tool to discover reliable pathogenic microbes in
the future.

2. MATERIALS AND METHODS

We downloaded known microbe-disease associations from the
Human Microbe-Disease Association database (HMDAD on
http://www.cuilab.cn/hmdad), which contains 483 microbe-
disease associations including 39 diseases and 292 microbes
collected from 61 publications (Ma et al., 2016). After removing
redundant associations, we finally obtained 450 distinct microbe-
disease associations (Chen et al., 2016a). Based on these
associations, we constructed a 39× 292 dimensional adjacency
matrix A as our data source, where A(i, j)=1 if and only if there
is a known association between the disease i and the microbe
j, and A(i, j) = 0 otherwise. For convenience, we denote the
number of collected diseases by ND and the number of collected
microbes by NM .

2.1. Diseases Similarity Based on Gaussian
Interaction Profile Kernel Similarity
Based on the assumption that diseases related to similar microbes
tend to have more functional similarity and share similar
interaction and non-interaction patterns with microbes (Chen
et al., 2016a), we calculated the Gaussian interaction profile
kernel similarity between each pair of diseases by using the
Gaussian kernel for the interaction profiles of them. Specifically,
for any two given diseases di and dj, their Gaussian interaction
profile kernel similarity can be calculated as follows:

SD(di, dj) = exp(−γd

∥

∥IP(di)− IP(dj)
∥

∥

2
) (1)

Where the interaction profile IP(dt) indicates whether there is
an association between disease dt and each microbe, and it is
defined as a binary vector, i.e., the tth row of the adjacency
matrix A. ||IPdt || represents the norm of the binary vector IP(dt).
The parameter γd is used to control the kernel bandwidth,
which needs to be calculated by normalizing a new bandwidth
parameter γ

′
d according to the average number of associations

between each disease and microbes (Chen et al., 2016a). The
calculation formula is as follows:

γd = γ
′
d/(

1

ND

ND
∑

k=1

∥

∥IP(dk)
∥

∥

2
) (2)

Although it may be possible to set the new bandwidth parameter
γ
′
d to a better value by cross validation experiments, in this paper

we will set γ
′
d to 1 for the sake of simplicity. Hence, based on

above formulas, we can finally obtain a matrix SD, where SD(i, j)
represents the score of the Gaussian interaction profile kernel
similarity between diseases di and dj.

2.2. Microbes Similarity Based on Gaussian
Interaction Profile Kernel Similarity
Similar to the way presented in above section 3.1, based on
the assumption that microbes related to similar diseases tend
to show more functional similarity and share similar interaction
and non-interaction patterns with diseases (Chen et al., 2016a),
the Gaussian interaction profile kernel similarity between each
pair of microbes can be computed according to the following
formula (3) as well:

SM(mi,mj) = exp(−γm

∥

∥IP(mi)− IP(mj)
∥

∥

2
) (3)

Where the interaction profile IP(mt) indicates whether there is
an association between microbe mt and each disease, and it is
defined as a binary vector, i.e., the tth column of the adjacency
matrix A. The parameter γm utilized to control the kernel
bandwidth can be calculated by normalizing a new bandwidth
parameter γ

′
m as follows:

γm = γ
′
m/(

1

NM

NM
∑

k=1

∥

∥IP(mk)
∥

∥

2
) (4)

And in this paper, the new bandwidth parameter γ
′
m will be set

to 1 for the sake of simplicity as well. Hence, based on above
formulas, we can finally obtain another matrix SM, where SM(i, j)
represents the score of the Gaussian interaction profile kernel
similarity between microbesmi andmj.

2.3. Constructing Weighted Networks for
Diseases and Microbes
According to these two kinds of Gaussian interaction profile
kernel similarity score matrices SM and SD calculated above, it is
obvious that we can construct a microbe similarity network based
on SM and a disease similarity network based on SD, respectively.
Moreover, considering that the similarity values between any
two diseases or microbes calculated by the Gaussian kernel for
the interaction profiles will not be zero, therefore it is obvious
that both the newly constructed microbe similarity network and
disease similarity network will be fully connected networks.

Additionally, while implementing the label propagation
method (Zhu and Ghahramani, 2002) on the newly constructed
disease similarity network, for any given disease node di, we will
assign a initial label A(i, :) to di first, where A(i, :) represent the
ith row of the adjacency matrix A constructed in above section
2. And then, these label information can be propagated between
neighboring nodes in the disease similarity network, thereafter
each node can update its label information according to the
label information received from its neighboring nodes. However,
while updating its label information, it is reasonable to the node
that its label information should be updated according to these
neighboring nodes with high similarity to it rather than all of
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its neighboring nodes. And moreover, these neighboring nodes
with higher similarity to it should be assigned larger weights in
the process of updating as well. Hence, based on above analysis,
for any given disease node di, let Qd represent the set of disease
nodes other than di itself and these K disease nodes with the top
K lowest similarity to di, then we can a novel matrix SD∗ based
on above obtained matrix SD as follows:

SD∗(di, dj) =

{

SD(di ,dj)
∑

dk∈Qd
SD(di ,dk)

′ , if dj ∈ Qd

0, otherwise
(5)

Furthermore, in a similar way, while implementing the label
propagationmethod on the newly constructedmicrobe similarity
network, for any given microbe mi, we will assign a initial
label A(:, i) to mi first, where A(:, i) represent the ith column
of the adjacency matrix A constructed in above section 2. And
thereafter, let Qm represent the set of microbe nodes other than
mi itself and these K microbe nodes with the top K lowest
similarity to mi. then we can a novel matrix SM∗ based on above
obtained matrix SM as follows:

SM∗(mi,mj) =

{

SM(mi ,mj)
∑

mk∈Qm
SM(mi ,mk)

′ , if mj ∈ Qm

0, otherwise
(6)

Thus, according to above formula (5) and formula (6), we can
further construct a updated disease similarity network and a
updated microbe similarity network based on these two kinds of
newly obtained matrices such as SD∗ and SM∗. Thereafter, in this
way, we have built two novel weighted networks that are adapted
to label propagation.

2.4. NBLPIHMDA
As illustrated in the following Figure 1, the implementation
process of our prediction model NBLPIHMDA can be divided
into the following major steps.

Step 1: Firstly, we will implement the label propagation on the
updated disease similarity network, for each given disease node
di, supposing that its label information is updated by absorbing
the labels from its neighboring nodes with probability α and
retaining its previous label with probability 1−α, and in addition,
let L0

di
= A(i, :) denote the initial label of the node di, L

k
di

represent the label of di after k rounds of updating, then Lk
di
can

be calculated as follows:

Lkdi = α · SD∗(di, :) · A+ (1− α) · Lk−1
di

(7)

Moreover, as for all disease nodes, supposing that their label
vectors be Lk

d1
, Lk

d2
, · · · , Lk

dND
after k rounds of updating in the

updated disease similarity network, and for convenience, let
LDk = (Lk

d1
; Lk

d2
; · · · ; Lk

dND
), then, we can rewrite above formula

(7) into the following form of matrix:

LDk = α · SD∗ · A+ (1− α) · LDk−1 (8)

According to above (8), the labels of each disease node in the
updated disease similarity network can be updated iteratively.
And during the process of iterative updating, we will consider
the iteration to be convergent and stop the process of iterative
updating while the change between the updated label matrix LDk

and the former label matrix LDk−1 measured by the absolute
loss function is less than a predetermined threshold P. Thus,
supposing that the process of iterative updating stopped after n1
rounds of iterations, we can obtain a microbe-disease association
score matrixWLPD as follows:

WLPD = LD0 + LD1 + ...+ LDn1 (9)

Step 2: Next, we will implement the label propagation on the
updatedmicrobe similarity network, for each givenmicrobe node
mi, supposing that its label information is updated by absorbing
the labels from its neighboring nodes with probability α and
retaining its previous label with probability 1−α, and in addition,
let L0mi

= A(:, i) denote the initial label of the node mi, L
k
mi

represent the label ofmi after k rounds of updating, then Lkmi
can

be calculated as follows:

Lkmi
= (α · SM∗(mi, :) · A

T)T + (1− α) · Lk−1
mi

(10)

Moreover, as for all microbe nodes, supposing that their label
vectors be Lkm1

, Lkm2
, · · · , LkmNM

after k rounds of updating in

the updated disease similarity network, and for convenience,
let LMk = (Lkm1

, Lkm2
, · · · , LkmNM

), then, we can rewrite above

formula (10) into the following form of matrix:

LMk = (α · SM∗ · AT)T + (1− α) · LMk−1 (11)

Thus, supposing that the process of iterative updating stopped
after n2 rounds of iterations, then in a similar way, we
can obtain another microbe-disease association score matrix
WLPM as follows:

WLPM = LM0 + LM1 + ...+ LMn2 (12)

Finally, through combining these two kinds of score matrices
WLPD andWLPM obtained by bidirectional label propagation, we
can ultimately obtain a final microbe-disease association score
matrixW as follows:

W = β ·WLPM + (1− β) ·WLPD (13)

Here, β is a parameter with value between 0 and 1 for controlling
the weights ofWLPD andWLPM .

3. RESULTS

3.1. Performance Evaluation
We adopted LOOCV and 5-fold CV to evaluate the performance
of NBLPIHMDA. In the framework of LOOCV, each known
microbe-disease association was taken as the test sample in
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FIGURE 1 | The flowchart of NBLPIHMDA.

turn, while the remaining known associations were taken as the
training set. In addition, all microbe-disease pairs without known
associations would be considered negative samples. Thereafter,
based on the predicted scores, each test sample would be ranked
with all microbe-disease pairs that were not confirmed to be
associated. Samples with rankings above the given threshold were
predicted to be positive, whereas samples with rankings below the
given threshold were predicted to be negative. In addition, test
samples with rankings above the given threshold were considered
to be successful samples. Next, in the framework of 5-fold CV,
known microbe-disease associations were randomly divided into
five groups, and each group was selected as a test sample in
turn, while the remaining four groups were used as training
samples. In order to reduce the deviation caused by random
grouping, this process would be performed 100 times. Under the
setting of different thresholds, the ROC curve could be further
plotted by calculating the corresponding true and false positive
rates. In our experiments, sensitivity referred to the percentage of
positive samples with rankings above the given threshold, and the
specificity was the percentage of negative samples with rankings
below the given threshold. Subsequently, the AUC would be
further calculated to evaluate the performance. Obviously, the
AUC value of 1 represented a perfect prediction, while the
AUC value of 0.5 represented a random prediction. Thereafter,
simulation results show that NBLPIHMDA can achieve reliable
AUCs of 0.8777 and 0.8958 ± 0.0027 under the frameworks
of LOOCV and 5-fold CV, respectively, which indicated that

NBLPIHMDA has satisfactory prediction performances.
Additionally, we identified several important parameters in

NBLPIHMDA, such as the propagation probability α and the
weighting factor β and so on. Hence, it is necessary to evaluate

the impacts of these important parameters to the prediction

performance of NBLPIHMDA. And as for evaluating the effects
of the parameter α, we calculated the AUCs in framework of
LOOCV with α varying from 0.05 to 0.95. The simulation results
were shown in the following Figure 2, and as a result, it is obvious

that NBLPIHMDA can achieve the highest AUC of 0.8777 while
α = 0.2, which implies that while updating its label information, a
node should retain more of its previous label information. Next,
as for evaluating the effects of the parameter β , we calculated the
AUCs in framework of LOOCV with β varying from 0.05 to 0.95.
The simulation results were shown in the following Figure 2, and
as a result, it is obvious that NBLPIHMDA can achieve the best
prediction performance while β = 0.75, which means that the
weight assigned to WLPD should be greater than that of WLPM .
Through analysis, the reason that why the weight assigned to
WLPD should be greater than that of WLPM may be that the
number of collected microbes is much larger than the number
of diseases. Therefore, in NBLPIHMDA, we would set α = 0.2
and β = 0.75. And besides, according to our simulation results,
the other two parameters K and P would be set to 5 and 10−12,
respectively in this paper.

3.2. Comparison With Other Methods
In this section, in order to attest the superior performance
of our computational model NBLPIHMDA, we compared
NBLPIHMDA with some state-of-the-art prediction methods
such as KATZHMDA (Chen et al., 2016a), LRLSHMDA
(Wang et al., 2017), and BiRWMP (Shen et al., 2018) under
the frameworks of LOOCV and 5-fold CV, respectively.
Here, KATZHMDA adopted the KATZ method and Gaussian
interaction profile kernel similarity to infer potential microbe-
disease associations by introducing the variable step number
into a heterogeneous network. LRLSHMDA combined the
Laplace’s regular least squares classification with topological
information of known microbe-disease association network
to infer novel microbe-diseases associations. BiRWMP was
a random walk based computational model for potential
microbe-disease association prediction, and while comparing
NBLPIHMDA with BiRWMP, in order to maintain consistency
and accurate contrast, we replaced the Spearman correlations
and symptom-based similarity of diseases adopted in BiRWMP
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FIGURE 2 | The AUCs achieved by NBLPIHMDA in LOOCV with different values of the parameters α and β, (A) β = 0.75, (B) α = 0.2.

FIGURE 3 | ROC curves and AUCs achieved by NBLPIHMDA, LRLSHMDA, BiRWMP, and KATZHMDA under LOOCV and 5-fold CV, respectively, (A) ROC curves

and AUCs in LOOCV, (B) ROC curves and AUCs in 5-fold CV.

with the Gaussian interaction profile kernel similarity. And as
illustrated in the following Figure 3 and Table 1, simulation
results show that NBLPIHMDA can achieve reliable AUCs
of 0.8777 and 0.8958 ± 0.0027 in LOOCV and 5-fold CV,
respectively, which are not only superior to the AUCs of 0.8382
and 0.8637 achieved by KATZHMDA and BiRWMP in LOOCV,
but also superior to the AUCs of 0.8301 ± 0.0033 and 0.8522
± 0.0054 achieved by KATZHMDA and BiRWMP in 5-fold CV
simultaneously. While comparing with LRLSHMDA, although
the AUC of 0.8777 achieved by NBLPIHMDA in LOOCV is
not as good as the AUC of 0.8909 achieved by LRLSHMDA
in LOOCV, however, the AUC of 0.8958 ± 0.0027 achieved by
NBLPIHMDA in 5-fold CV is much better than the AUC of
0.8794 ± 0.0029 achieved by LRLSHMDA in 5-fold CV. Hence,
it is obvious that the prediction performance of NBLPIHMDA
outperforms that of these state-of-the-art prediction models
mentioned above.

TABLE 1 | The AUCs achieved by NBLPIHMDA, LRLSHMDA, BiRWMP, and

KATZHMDA under the framework of LOOCV and 5-fold CV.

Method LOOCV 5-fold CV

NBLPIHMDA 0.8777 0.8958 ± 0.0027

LRLSHMDA 0.8909 0.8794 ± 0.0029

BiRWMP 0.8637 0.8522 ± 0.0054

KATZHMDA 0.8382 0.8301 ± 0.0033

3.3. Case Study
We selected three diseases of widespread concern such as
colorectal carcinoma, asthma, and COPD for case studies to
investigate their pathogenic mechanism from the perspective
of microbes. Interestingly, there are 10, 10, and 8 out of
the top 10 predicted microbes could be validated, respectively
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for the three diseases by literature mining. The rankings of
all potential microbe-disease pairs and the top ten related
microbes of all diseases predicted by NBLPIHMDA are listed in
Supplementary Tables 1, 5, respectively.

Asthma, a common chronic inflammatory pulmonary tracheal
disease, affects more than 300 million people worldwide. Asthma
usually occurs in childhood and is accompanied by a recurrent
cough, wheezing, chest tightness, and dyspnea. Currently, there
is no cure for asthma. Asthma is generally thought to be
caused by a combination of genetic and environmental factors.
In recent years, more and more studies have shown that
microbes play an important role in the pathogenesis of asthma.
Consequently, we conducted a case study of Asthma on our
calculation model. And as illustrated in the following Table 2 and
Supplementary Table 2, all of these top 10 predicted microbes
interrelated with Asthma were verified to be correlative. For
example, the colonization of Clostridium difficile (Ranking fist
in the prediction list) at 1 month of neonatal age was closely
related to asthma and eczema that occurred at 6–7 years of
age (van Nimwegen et al., 2011). Compared with non-asthmatic
healthy people, the increase of Firmicutes (Ranking second in
the prediction list) mainly composed of streptococcal OTUs
in patients with severe asthma is abnormally significant, and
Actinobacteria (Ranking fifth in the prediction list) was found
to have a lower proportion in asthmatic patients (Zhang et al.,
2016). Clostridium coccoides (Ranking third in the prediction
list) was confirmed to be significantly associated with a positive
Asthma Predictive Index (API), and early fecal colonization
with a Clostridium coccoides subcluster XIVa species could be
an early indicator of asthma later in life (Vael et al., 2011). An
increase in sensitivity to Staphylococcus aureus (Ranking fourth
in the prediction list) enterotoxins in smokers with asthma could
be considered as a marker of eosinophilic inflammation and
exacerbation of asthma (Nagasaki et al., 2017). Long-term asthma
patients have lower levels of Bifidobacteria (Ranking eighth in the
prediction list) compared with patients who have recently been
diagnosed with asthma (Hevia et al., 2016). The colonization of
Bacteroides (Ranking tenth in the prediction list) at three weeks
of infants was proved to be positively correlated with the positive
asthma predictive index at 3 years of age, which may serve as the
early indicator of asthma (Vael et al., 2008).

Colorectal carcinoma, also known as colon cancer, is the
third most common cancer, whose symptoms may include blood
in the stool, abdominal pain, diarrhea, weight loss, prolonged
fatigue, and flagging spirit. The prevalence of colorectal cancer is
increasing year by year, about 4 to 5%. The risk is mainly caused
by age, lifestyle, and genetic history. The gut microbiota also
plays a related role, and disorder of the intestinal flora may affect
the chronic inflammation mechanism and induce colon cancer.
Hence we conducted a case study of Colorectal Carcinoma
on our calculation model. And as illustrated in the following
Table 3 and Supplementary Table 3, all of these top 10 predicted
microbes interrelated with Colorectal Carcinoma were verified
to be correlative. For example, infection with Helicobacter
pylori (Ranking third in the prediction list), particularly CagA-
positive flora, increased the risk of Colorectal cancer and gastric
adenocarcinoma (Shmuely, 2001). By 16S rRNA gene denaturing

TABLE 2 | The top 10 predicted microbes associated with asthma.

Rank Microbe Evidence

1 Clostridium difficile PMID: 21872915

2 Firmicutes PMID: 23265859

3 Clostridium coccoides PMID: 21477358

4 Staphylococcus aureus PMID: 17950502

5 Actinobacteria PMID: 23265859

6 Clostridia PMID: 21477358

7 Lachnospiraceae Ciaccio et al. (2014)

8 Bifidobacterium PMID: 26840903,PMID: 24735374

9 Lactobacillus Gutkowski et al. (2011), PMID:

20592920

10 Bacteroides PMID: 18822123, PMID: 29161087

TABLE 3 | The top 10 predicted microbes associated with colorectal carcinoma.

Rank Microbe Evidence

1 Proteobacteria PMID: 24603888

2 Clostridium difficile PMID: 19807912

3 Helicobacter pylori PMID: 11774957

4 Clostridium coccoides PMID: 19807912

5 Staphylococcus aureus PMID: 7074582

6 Actinobacteria PMID: 24316595

7 Lachnospiraceae PMID: 29985435

8 Bifidobacterium PMID: 9111222

9 Haemophilus PMID: 22761885

10 Lactobacillus PMID: 15828052

gradient gel electrophoresis and ribosomal gene interval analysis
(RISA), it was found that the abundance of Clostridium difficile
(Ranking second in the prediction list) and C. coccoides (Ranking
fourth in the prediction list) in colorectal cancer patients was
significantly increased compared with healthy controls, which
means that C. cerevisiae might have a potential effect on the
induction of colorectal cancer (Leu et al., 2009). Protein a-
containing Staphylococcus aureus (Ranking fifth in the prediction
list) was used as an immunosorbent to perform in vitro
immunoadsorption therapy on the plasma of patients with
metastatic colorectal carcinoma and has produced good effects
(Ishikawa et al., 2005). Bifidobacterium lactis (Ranking eighth in
the prediction list) could prevent colorectal carcinoma by up-
regulating the apoptosis reaction of colon carcinogens (Ray et al.,
1982). The ingestion of Lactobacillus casei (Ranking tenth in the
prediction list) had been shown in a large randomized clinical
trial to reduce the incidence of moderate or severe heterogeneity
tumors and to inhibit the atypia of colorectal tumors as a
preventive measure (Scanlan et al., 2008).

COPD is a progressive obstructive pulmonary disease, which
means it will get worse over time. It usually occurs in people
over the age of 40, and the risk is the same for men and
women. Smoking is the most common habit in patients with
COPD. Besides, factors such as air pollution and genes will
also increase the risk of COPD. Although treatment can be
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TABLE 4 | The top 10 predicted microbes associated with COPD.

Rank Microbe Evidence

1 Clostridium difficile PMID: 15655746

2 Helicobacter pylori PMID: 15733502

3 Firmicutes PMID: 24591822

4 Clostridium coccoides unconfirmed

5 Staphylococcus aureus PMID: 7074582

6 Actinobacteria PMID: 26852737

7 Clostridia PMID: 26852737

8 Lachnospiraceae unconfirmed

9 Bifidobacterium PMID: 26317628

10 Bacteroides PMID: 29709671

used to slow down the progression of the disease, there is no
cure yet, and it is even more necessary to step up research
on the pathogenesis of COPD. Therefore, in this section,
COPD is selected as a case for study. And as shown in
following Table 4 and Supplementary Table 4, 8 out of the top
10 predicted microbes associated with COPD were confirmed
to be relevant. For instance, through the study, it was found
that the serumHelicobacter pylori-specific IgG in COPD patients
was significantly higher than that in the healthy control group,
which implies that Helicobacter pylori (Ranking second in the
prediction list) infection is closely related to COPD (Mammen
and Sethi, 2016). In addition, there is evidence that IgE antibodies
to Staphylococcus aureus (Ranking fifth in the prediction list)
enterotoxin in patients with COPD are significantly higher than
that in healthy subjects, suggesting that an immune response to
this superantigen, S. aureus enterotoxin, may be a potential cause
of chronic inflammation in COPD (Gencer et al., 2005). The
increase of Actinomyces (Ranking sixth in the prediction list)
and Proteobacteria was found to aggravate the deterioration of
the pathogenesis of COPD (Rohde et al., 2004). Bifidobacterium
breve (Ranking ninth in the prediction list) can serve as an
anti-inflammatory agent to inhibit the expression and release
of inflammatory mediators in COPD by inhibiting the activity
of NF-kB induced by cigarette smoke which is the main cause
of COPD (Mortaz et al., 2015).

4. DISCUSSION

There are numerous microbial communities inhabited in the
human body, which is critical to human health. The relationship
between human microbiome and diseases received much
attention from both medical and bioinformatics community
recently. However, traditional methods to detect their association
is costly and labor-intensive. Thus, we proposed here a new
computational model called NBLPIHMDA to infer potential
microbe-disease associations. NBLPIHMDA first combined
known microbe-disease associations in HMDAD and the
Gaussian interaction profile kernel similarity to construct disease
similarity network and microbe similarity network. It then
conducted tag transmission on these two networks to obtain
the predicted score of each microbe-disease pair. Under the

framework of LOOCV and 5-fold CV, the AUCs reached 0.8777
and 0.8958± 0.0027, respectively, In addition, the case studies of
asthma, colorectal carcinoma and COPD further demonstrated
that NBLPIHMDA could provide valuable insights into the
pathogenesis research.

It worth’s noting that NBLPIHMDA has certain limitations.
First of all, the HMDAD only curated hundreds of known
associations between 39 diseases and 292 microbes, which is
relatively small. The problem will be partially solved in the
future when more associations between diseases and microbes
are discovered. In addition, the Gaussian interaction profile
kernel similarity of diseases and microbes is calculated based on
the known microbe-disease associations, which will bias toward
diseases with more known associations and microbes with more
known associations. We believe that the bias can be reduced by
integrating other effective similarity methods, such as disease
semantic similarity, symptom-based disease similarity, and
microbe functional similarity. The advancement of association
prediction research in various fields of computational biology
would also provide valuable insights into the development of
microbe-disease association prediction, such as miRNA-disease
association prediction (Chen and Huang, 2017; Chen et al.,
2018a,b,c), lncRNA-disease association prediction (Chen and
Yan, 2013), drug-target interaction prediction (Chen et al.,
2015), and synergistic drug combinations (Chen et al., 2016b).
Therefore, we will introduce some reliable technologies and
optimization strategies in the future work to further improve
the quality of the heterogeneous network and the prediction
performance of NBLPIHMDA.
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