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A message passing framework 
with multiple data integration 
for miRNA‑disease association 
prediction
Thi Ngan Dong1*, Johanna Schrader1, Stefanie Mücke2 & Megha Khosla3

Micro RNA or miRNA is a highly conserved class of non‑coding RNA that plays an important role in 
many diseases. Identifying miRNA‑disease associations can pave the way for better clinical diagnosis 
and finding potential drug targets. We propose a biologically‑motivated data‑driven approach for 
the miRNA‑disease association prediction, which overcomes the data scarcity problem by exploiting 
information from multiple data sources. The key idea is to enrich the existing miRNA/disease‑protein‑
coding gene (PCG) associations via a message passing framework, followed by the use of disease 
ontology information for further feature filtering. The enriched and filtered PCG associations are then 
used to construct the inter‑connected miRNA‑PCG‑disease network to train a structural deep network 
embedding (SDNE) model. Finally, the pre‑trained embeddings and the biologically relevant features 
from the miRNA family and disease semantic similarity are concatenated to form the pair input 
representations to a Random Forest classifier whose task is to predict the miRNA‑disease association 
probabilities. We present large‑scale comparative experiments, ablation, and case studies to showcase 
our approach’s superiority. Besides, we make the model prediction results for 1618 miRNAs and 3679 
diseases, along with all related information, publicly available at http:// softw are. mpm. leibn iz‑ ai‑ lab. 
de/ to foster assessments and future adoption.

Proteins are responsible for essential biological functions inside living organisms. Disruptions in proteins’ 
expressions are directly associated with various disease  conditions1. Therefore, to fully characterize diseases, it 
is essential to investigate the regulatory network of protein-coding genes (PCGs). Among the major regulators 
for PCGs is a highly conserved class of non-coding RNAs with an approximate length of 22 nucleotides. These 
micro RNAs (miRNAs) regulate the expression of PCGs by binding to the transcribed mRNAs of PCGs, leading 
to the cleavage or the destabilization of the mRNAs and repressing their translation into  proteins2.

The binding between the miRNAs and their target mRNAs is facilitated by complementary base pairing 
between the so-called seed region of the miRNAs and the matching sequence in the mRNAs found most often 
in the 3’UTR 3. Each miRNA can have hundreds of target mRNAs. Also, each mRNA can be regulated by more 
than one miRNA. Though this complicated regulatory network is yet not fully understood, it is estimated that 
about one-third of all PCGs is regulated by at least one  miRNA4. These ubiquitous regulatory functions are also 
responsible for the multitude of cell processes influenced by miRNAs: cell development, maturation, differentia-
tion, and apoptosis as well as cell signaling, cellular interactions, and homeostasis5–8. Consequently, the mutation 
of miRNAs or changes in their expression can have diverse consequences that can be hard to predict. Recent 
studies indicate that miRNAs could serve as potential biomarkers in certain diseases such as cancers or immune-
related  diseases9–15. Identifying potential associations between miRNAs and diseases can further help in clinical 
diagnosis and finding potential drug targets.

While biological experiments are usually expensive and time-consuming, computational approaches, espe-
cially data-driven machine learning (ML)  approaches16–19, can assist wet-lab experiments by predicting a potential 
set of associations. Early  works20–25 focus on learning effective miRNA/disease representations from the set of 
known association data. The feature extraction process usually involves the computation of hand-crafted simi-
larities. For instance, Wang et al.20 propose the use of miRNA functional and disease semantic similarities. Chen 
et al.26 employ Gaussian Interaction Profile (GIP) kernel  similarities27, which are calculated directly from the 

OPEN

1L3S Research Center, Leibniz University of Hannover, Hannover, Germany. 2Hannover Unified Biobank 
(HUB), Hannover Medical School, Hannover, Germany. 3Delft University of Technology (TU Delft), Delft, 
Netherlands. *email: dong@l3s.de

http://software.mpm.leibniz-ai-lab.de/
http://software.mpm.leibniz-ai-lab.de/
http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-022-20529-5&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2022) 12:16259  | https://doi.org/10.1038/s41598-022-20529-5

www.nature.com/scientificreports/

miRNA-disease association data, to construct a scoring system for miRNA disease association prediction. Some 
other methods which rely on pre-calculated similarities include  RWRMDA22,  NetCBI28,  RLSMDA29,  IMCMDA30, 
Nimgcn31, and VGAE-MDA32.

More recent approaches integrate multiple such similarity features to extract useful representations and build 
the learning models.  HGIMDA33 employs a heterogeneous network from miRNA functional, disease semantic, 
miRNA, and disease GIP similarities to build the learning model.  NNMDA34 proposes a weighted mechanism 
to combine five different miRNA similarities and two disease similarities.  NCMCMDA35 incorporates an addi-
tional neighborhood constraint to extract the final miRNA/disease representation from the integrated input 
similarities.  DBNMDA36 and  SAEMDA37 first construct the miRNA-disease pair representation from multiple 
miRNA/disease pre-calculated similarities. Then the two approaches employ restricted Boltzmann  machines36 
or stacked  autoencoders37 to learn an unsupervised low-dimensional pair representation from the constructed 
input.  EDTMDA38 utilizes multiple decision trees with different feature extraction strategies for effective miRNA-
disease association prediction. Other similar models include  MSFSP39, the model by Wei et al.40,  LMTRDA41, 
MDA-SKF42, and  SCMFMDA43.

Besides the data leakage problem, as already discussed in our previous  work44, similarity-based techniques 
are biased toward the well-studied miRNAs and  diseases18. Ultimately, the input features are derived from some 
hard-coded heuristics and assumptions, which might work effectively on the observed association set but usually 
do not generalize well to unseen miRNAs or  diseases18,20. Moreover, the hard-coded heuristics cannot fully exploit 
the potential of the available information, for example, with respect to the association patterns or the motif/
frequent subgraphs inside the miRNA-disease bipartite graph constructed from the known association set. For an 
in-depth review of previous works on miRNA-disease association prediction, we refer the reader to Chen et al.45.

Graph representation learning techniques acquired state-of-the-art performance on several machine learning 
 problems46,47. They have already been applied for the miRNA-disease association prediction problem by recent 
 works16,22,24,25,34,48. Chen et al.22 employ random walk with restart over the miRNA functional similarity network 
to extract useful representations that are later used as features for the prediction model. Xuan et al.49 exploit the 
k nearest neighbors information. Li et al.50 use Deepwalk to learn miRNA and disease representations for the 
downstream prediction task. Chen et al.51 utilize global network similarity.  MMGCN52 employs a multi-view 
multichannel attention graph convolutional network approach. Yu et al.53 develops MDPBMP—a meta-path-
based model over the miRNA-disease-gene heterogeneous network.

Nevertheless, a majority of the proposed models operate on the similarity network(s) constructed from hand-
crafted similarity measures instead of directly learning from the raw miRNA-disease association data. Therefore, 
they cannot fully exploit the existing information, especially the structure patterns inside the raw association 
bipartite graph. A recent  work19 proposes the use of a structural deep network embedding (SDNE) model to 
mine the network information directly from the miRNA-disease association graph. Nonetheless, new miRNAs 
or new diseases appear as isolated nodes for which SDNE cannot learn any useful representations. Therefore, the 
existing models still have limited prediction capability for new miRNAs or new diseases.

Other works focus more on information integration to overcome the data scarcity problem. NEMII19 adds 
miRNA family and disease semantic similarities to enrich the miRNA-disease pair representations.  MMGCN52 
proposes a multi-attention mechanism to combine multiple similarity-based measures.  NNMDA34 employs a 
heterogeneous network that is constructed over five different miRNA similarities and two disease similarities 
for feature learning and association prediction. Ji et al.48 incorporate information from multiple domains, for 
example, miRNA-lncRNA and miRNA-PCG interactions, miRNA-drug associations, disease-lncRNA, disease-
PCG associations, and disease-drug associations, to build a heterogeneous information network for feature 
extraction. Though promising, with respect to the added side information, current works either employ the 
whole raw dataset(s) or apply naive filtering steps based on the association confidence score deposited in the 
databases. Such naive filtering does not ensure the quality of the integrated data. Subsequently, the quality of 
the trained model suffers.

To this end, we propose a biologically-motivated data-driven approach that aims to counter the above chal-
lenges by jointly learning from multiple data sources. We refer to our approach as MPM. A crucial design decision 
of our approach includes modeling the biological relevance of miRNAs for a particular disease via the associ-
ated PCGs. We model each miRNA or disease as a directed network built from the miRNA-PCG, disease-PCG 
associations, and PCG-PCG functional interactions. MPM employs a message passing framework operating 
over the constructed networks to enrich the existing data with potential missing links or indirect connections.

To overcome the noisy data problem, we employ a feature selection strategy with a side-supervised task 
generated from the well-annotated MESH  ontology54. Feature selection at this stage allows us to reduce the tens 
of thousands of associated PCGs to only the one hundred most important PCGs. This enables us to control the 
quality and the quantity of the added PCG-related information without introducing any additional parameters. 
This is extremely important, especially in the context of learning from scarce data when over-parameterized 
models can easily overfit.

Next, we encapsulate the enriched and filtered PCG connections into the existing miRNA-disease bipartite 
network to overcome the isolated nodes problem in existing works. Since PCGs are important connections 
between miRNA and  diseases1, the patterns learned from the miRNA-PCG-disease interconnected networks 
should be a rich source of information for the miRNA-disease association prediction problem. At the same time, 
the newly introduced heterogeneous network will include biological connections between new miRNAs or new 
diseases and their associated PCGs. The learning signals will thus transfer from known miRNAs or known dis-
eases to the new miRNAs or new diseases via the PCGs. We employ the SDNE model to extract the patterns (or 
pre-trained embeddings) from the constructed heterogeneous network. Besides the structural features, the final 
miRNA-disease pair representation is further augmented with information from the miRNA family and disease 
semantic similarity and then fed as input to a Random Forest classifier to perform the association prediction task.
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In summary, we propose flexible information integration mechanisms at different stages of the model building 
process to overcome the data scarcity problem. In addition to fusing multiple knowledge sources, we propose 
a parameter-free mechanism to enrich and control the quality and quantity of the added data. Experimental 
results on 21 large independent test sets indicate that our proposed model significantly outperforms all bench-
marked models in both (i) the transductive setting where we test each model’s performance on the set of partially 
observed miRNAs and diseases, and (ii) the inductive setting where we test the models’ performance on the set 
of completely new miRNAs and diseases. The three case studies’ results indicate that our approach generates 
reasonable predictions, even for diseases with little known knowledge. The ablation studies’ results also support 
our design choices for the model architecture.

We share all the code, pre-processed, and standardized data at https:// git. l3s. uni- hanno ver. de/ dong/ mpm. 
In addition, we make the predicted association probabilities (confidence scores) for all 1618 miRNAs and 3,679 
diseases publicly available at http:// softw are. mpm. leibn iz- ai- lab. de/. To enable a smooth and comprehensive 
analysis, we also integrate the miRNA and disease pathway and functional enrichment analysis results into the 
website. Section 2.6 and Section 3 in the Supplementary File provide more details regarding our website and the 
integrated information sources.

Results
Compared models. We compare our model with six recently proposed methods: (i) Epmda16, Dbmda17, 
and Nimgcn31, which utilize hand-crafted features derived from known miRNA-disease associations, (ii) 
MuCoMiD18 and DimiG 2.055, which use graph convolution networks (GCNs) for feature extraction from 
various interaction networks (iii) NEMII19 which employs hand-crafted features as well as the latent features 
extracted using a graph embedding method. As an ablation study, we compare MPM with four of its simpler 
variants as summarized in Table 5. A detailed description of the compared models is provided in Section 1 in 
the Supplementary File. Details on hyperparameter settings and implementation for all models are provided in 
Section 2.6 in the Supplementary File.

Evaluation setup. The testing and evaluation data setup. We first construct the Hmdd2 and Hmdd3 
datasets from the HMDD v2.056 and HMDD v3.057 databases. While the K-fold cross-validation (K-fold CV) 
technique is widely used among existing works, it is insufficient to evaluate the models’ performance on com-
pletely new diseases, given the small size of the association datasets. Therefore, besides 5-fold CV evaluation 
on the Hmdd2 and Hmdd3 datasets, we here propose and employ two realistic testing setups: transductive and 
inductive to evaluate and compare models. The transductive testing setup aims at evaluating different models’ 
performances on a larger, independent test set which contains the newly discovered associations between the 
miRNAs and diseases that have already been observed with some previously known associations during the 
training phase. In this setup, we train each model on the Hmdd2 dataset and test it on the Held-out1 test set. 
Held-out1 contains only associations corresponding to the miRNAs and diseases that are observed in the 
Hmdd2 dataset. However, the known associations in Held-out1 do not appear in the training set Hmdd2. The 
inductive testing setup aims at evaluating models’ performance on completely new diseases and new miRNAs. In 
this setup, we conduct large-scale experiments on the 20 independent test sets to test each model’s performance 
on (i) a dataset with many new miRNAs (the Novel-miRNA test set), (ii) 18 complete test sets for new diseases, 
and (iii) a dataset with many new miRNAs and new diseases (the Held-out2 test set). For the evaluation with 
the Novel-miRNA and Held-out2 test sets, we train the benchmarked models with the Hmdd2 dataset. For 
the evaluation related to 18 new diseases, we train all models with all available association data for any disease 
other than the ones in the test sets. Details about the data sources, data pre-processing, and how we generate the 
training and testing data in both testing setups are presented in Section 2 in the Supplementary File. All datasets’ 
statistics are presented in Table 1 and Table 3 in the Supplementary File.

Evaluation metrics. For non-parametric metrics, we report the Area under the Receiver Operating Charac-
teristic (AUC), the Average Precision (AP) (which summarizes the Precision-Recall curve). We report the AP 
instead of the AUPR score because AP provides a better performance estimate than the AUPR, as discussed in 
our previous work  in44. AP is calculated as the discrete sum of the changes in the recall at different thresholds 
instead of linear interpolation as that of AUPR, which can be too optimistic in cases where the number of 
thresholds (unique prediction values) is  limited58,59. For threshold-based metrics, we report the Sensitivity (or 

Table 1.  The association data statistics where |nmd | , |nm| , |nd | refer to the number of associations, miRNAs and 
diseases respectively.

Dataset |nmd | |nm| |nd |

Hmdd2 4592 442 309

Hmdd3 10,494 742 545

Hmdd2 ∪ Hmdd3 10,980 742 591

Held-out1 4311 382 226

Held-out2 6388 697 509

Novel-miRNA 4734 638 227

https://git.l3s.uni-hannover.de/dong/mpm
http://software.mpm.leibniz-ai-lab.de/
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Recall, referred to as SN), Specificity (SP), Accuracy (ACC), Precision (Pre), F1, and Matthews correlation coef-
ficient (MCC) scores. Besides, for the new disease test sets, we also report the number of correctly predicted 
miRNA-disease associations among the top 100 highest predicted scores (denoted as Top100) generated by the 
benchmarked models. For all tables, bold font is used to highlight the best scores.

MPM vs. existing works (SOTA). Tables 2 and 3 present the average performance scores for all bench-
marked models on our 21 large test sets in the transductive and inductive testing setups. Table 5 in the supple-
mentary file provides detailed results with all reported metrics for the benchmarked models on the 18 test sets for 
new diseases. In Table 2, we report the average AP and AUC scores corresponding to different positive:negative 
testing sample rates. We do not have the results for Epmda on the 18 test sets for new diseases because all pairs’ 
representations are zeros since new diseases appear as isolated nodes in the network for the topology-based 
feature extraction. Table 4 shows the results corresponding to the 5-fold CV results on the Hmdd2 and Hmdd3 

Table 2.  Results for all models on the three large independent test sets. The percentage of improvement over 
the state-of-the-art models are in italics. nr = 1 , nr = 5 , nr = 10 indicate that we test all models with the 
positive:negative rates of 1:1, 1:5, 1:10, respectively. Bold font is used to highlight the best scores.

Method

Held-out1 Novel-miRNA Held-out2

nr = 1 nr = 5 nr = 10 nr = 1 nr = 5 nr = 10 nr = 1 nr = 5 nr = 10

AUC AP AUC AP AUC AP AUC AP AUC AP AUC AP AUC AP AUC AP AUC AP

Nimgcn 0.542 0.554 0.541 0.207 0.542 0.118 0.532 0.549 0.53 0.202 0.53 0.115 0.513 0.517 0.513 0.176 0.512 0.097

Dbmda 0.657 0.622 0.656 0.256 0.656 0.149 0.644 0.621 0.645 0.261 0.645 0.153 0.638 0.617 0.638 0.257 0.638 0.15

Epmda 0.698 0.624 0.698 0.256 0.698 0.148 0.716 0.643 0.718 0.281 0.719 0.167 0.704 0.648 0.703 0.291 0.704 0.176

NEMII 0.838 0.831 0.838 0.542 0.838 0.395 0.865 0.857 0.866 0.597 0.866 0.452 0.859 0.853 0.859 0.581 0.858 0.435

MuCoMiD 0.832 0.826 0.832 0.534 0.832 0.385 0.827 0.819 0.827 0.519 0.827 0.37 0.811 0.812 0.812 0.514 0.811 0.368

DimiG 2.0 0.499 0.5 0.499 0.167 0.499 0.091 0.499 0.5 0.499 0.167 0.499 0.091 0.499 0.5 0.499 0.167 0.499 0.091

SOTA Improvement 1.2% 1.6% 1.2% 5.7% 1.2% 8.6% 0.5% 1.1% 0.5% 3.4% 0.5% 6.0% 0.5% 1.4% 0.5% 6.9% 0.5% 11.5%

MPM-no-MP 0.846 0.84 0.846 0.564 0.847 0.418 0.866 0.859 0.866 0.602 0.867 0.46 0.859 0.86 0.859 0.607 0.859 0.468

MPM-no-FS 0.814 0.809 0.814 0.503 0.814 0.357 0.823 0.818 0.823 0.519 0.823 0.373 0.814 0.819 0.814 0.533 0.814 0.391

MPM-no-MPFS 0.824 0.816 0.824 0.516 0.824 0.369 0.836 0.828 0.836 0.538 0.836 0.391 0.831 0.832 0.831 0.554 0.831 0.411

MPM-no-SDNE 0.837 0.83 0.837 0.546 0.837 0.401 0.842 0.834 0.842 0.552 0.843 0.408 0.846 0.847 0.846 0.581 0.846 0.439

MPM (ours) 0.848 0.844 0.848 0.573 0.848 0.429 0.869 0.866 0.87 0.62 0.87 0.479 0.863 0.865 0.863 0.621 0.862 0.485

Table 3.  The AP scores corresponding to the 18 complete test sets for new diseases average over 20 
experimental runs.

Disease MPM Nimgcn Dbmda NEMII MuCoMiD DimiG 2.0 MPM-no MPM-no MPM-no MPM-no

-MP -FS -MPFS -SDNE

D001749 0.785 0.089 0.340 0.77 0.446 0.103 0.77 0.567 0.589 0.58

D001943 0.824 0.160 0.507 0.827 0.414 0.205 0.811 0.679 0.693 0.654

D002289 0.802 0.108 0.303 0.800 0.278 0.132 0.795 0.662 0.678 0.589

D002292 0.684 0.082 0.238 0.653 0.285 0.087 0.67 0.51 0.525 0.531

D002294 0.669 0.186 0.241 0.608 0.384 0.064 0.646 0.529 0.531 0.493

D003110 0.659 0.069 0.242 0.600 0.271 0.078 0.619 0.487 0.54 0.515

D005909 0.736 0.123 0.369 0.712 0.418 0.109 0.726 0.597 0.63 0.523

D005910 0.759 0.112 0.246 0.731 0.409 0.117 0.767 0.642 0.66 0.626

D006333 0.669 0.180 0.300 0.651 0.395 0.088 0.671 0.578 0.602 0.566

D008175 0.764 0.115 0.437 0.749 0.375 0.138 0.751 0.615 0.62 0.611

D008545 0.724 0.108 0.355 0.706 0.365 0.117 0.715 0.58 0.598 0.558

D010051 0.792 0.114 0.400 0.760 0.388 0.118 0.782 0.505 0.654 0.579

D010190 0.749 0.088 0.366 0.744 0.373 0.098 0.761 0.589 0.622 0.598

D011471 0.733 0.116 0.395 0.653 0.330 0.135 0.738 0.618 0.633 0.569

D012516 0.713 0.262 0.323 0.658 0.349 0.098 0.699 0.546 0.585 0.55

D013274 0.837 0.132 0.503 0.835 0.249 0.161 0.811 0.657 0.693 0.643

D015179 0.806 0.134 0.463 0.797 0.340 0.171 0.785 0.645 0.693 0.614

D015470 0.655 0.158 0.259 0.625 0.290 0.069 0.653 0.509 0.513 0.497
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datasets. For each dataset, we randomly split the data according to 5 different random seeds and report the aver-
age performance.

In the three large independent test sets (ref. Table 2), MPM outperforms all benchmarked models (SOTA) 
on the Held-out1 (transductive setting), Novel-miRNA (with many new miRNAs), and Held-out2 (with 
new miRNAs and new diseases) test sets with a gain of up to 11.5% in AP score. The gains are more significant 
when more negative samples are added to the testing data. On the complete test sets for new diseases, MPM 
consistently acquires the highest Top100 scores in all test sets. Besides, MPM gains the highest AP scores in 
17 out of 18 datasets. In the 5-fold CV evaluation setup, MuCoMiD gains the highest performance in most 
reported metrics. MPM closely follows NEMII with slightly worse performance. Nonetheless, compared to the 
best-performing model (MuCoMiD), MPM attains an equal AP score in the Hmdd2 dataset and a 0.01 lower 
AP score in the Hmdd3 dataset.

In both transductive and inductive testing setups, we observe similar trends with large performance gaps 
among the state-of-the-art methods. In the three large independent test sets (Held-out1, Novel-miRNA, Held-
out2), DimiG 2.0 performs the worst, followed by Nimgcn, then Dbmda, Epmda, MuCoMiD, and then NEMII. 
In the 18 complete test sets for new diseases, regarding the AP scores, the order is slightly changed to Nimgcn, 
followed by DimiG 2.0, then Dbmda, MuCoMiD, and then NEMII. DimiG 2.0 is a recently proposed model that 
formulates the miRNA-disease association prediction problem as a semi-supervised node classification task with 
diseases as labels. The model can integrate information from four additional knowledge sources (miRNA-PCG, 
disease-PCG associations, PCG-PCG interactions, and disease ontology) but only performs training using the 
known disease-PCG association set. Though DimiG 2.0 can generate predictions for new miRNAs and new 
diseases, the large and sparse label set and the weak training signals lead to its limited predictive performance. 
With all AUC scores close to 0.5, the model does not perform better than a random guess.

Nimgcn performs the worst compared to other supervised baselines because it only relies on the miRNA 
functional and disease semantic similarities to construct the networks for the feature learning. The miRNA 
functional similarity is heavily biased toward well-known diseases and cannot generalize well to new  diseases20. 
Also, new miRNAs appear as isolated nodes in the network and will get completely random representations. 
Therefore, Nimgcn ’s prediction capability is limited for the little-known or completely new miRNAs or diseases.

Regarding the input sources, Dbmda improves over Nimgcn by integrating another biologically-related infor-
mation source: the miRNA sequence similarity. Dbmda gains significantly better performance than Nimgcn but 
is still much lower than MuCoMiD, NEMII, and MPM in most test sets, suggesting that the miRNA sequence 
similarity does bring additional benefit, but the gains are not too significant.

Table 4.  Results for 5-fold cross-validation on the Hmdd2 and Hmdd3 datasets.

Dataset Method AUC AP Sensitivity Specificity Accuracy Precision F1 MCC

HMDD2

MPM 0.89 ± 0.01 0.9 ± 0.01 80.7 ± 1.2 81.5 ± 1.4 81.1 ± 1.0 81.3 ± 1.2 81.0 ± 1.0 62.2 ± 2.1

Nimgcn 0.88 ± 0.01 0.87 ± 0.01 70.2 ± 26.0 84.2 ± 6.4 77.2 ± 10.1 77.9 ± 17.6 71.0 ± 26.2 54.6 ± 19.9

Dbmda 0.72 ± 0.01 0.68 ± 0.01 66.9 ± 1.6 72.4 ± 1.8 69.7 ± 1.1 70.8 ± 1.3 68.8 ± 1.1 39.4 ± 2.1

Epmda 0.52 ± 0.02 0.61 ± 0.02 36.0 ± 48.0 64.0 ± 48.0 50.0 ± 0.0 18.0 ± 24.0 24.0 ± 32.0 0.0 ± 0.0

NEMII 0.9 ± 0.01 0.9 ± 0.01 81.4 ± 1.1 81.5 ± 1.6 81.4 ± 1.0 81.5 ± 1.3 81.4 ± 0.9 62.9 ± 2.0

MuCoMiD 0.91 ± 0.01 0.9 ± 0.01 83.0 ± 2.3 82.5 ± 2.2 82.8 ± 1.0 82.7 ± 1.6 82.8 ± 1.0 65.6 ± 1.9

DimiG 2.0 0.5 ± 0.01 0.51 ± 0.01 100.0 ± 0.0 0.0 ± 0.0 50.0 ± 0.0 50.0 ± 0.0 66.7 ± 0.0 0.0 ± 0.0

HMDD3

MPM 0.91 ± 0.0 0.91 ± 0.01 83.8 ± 0.8 82.0 ± 0.9 82.9 ± 0.6 82.3 ± 0.8 83.0 ± 0.6 65.8 ± 1.2

Nimgcn 0.89 ± 0.01 0.89 ± 0.01 84.6 ± 1.7 80.7 ± 2.1 82.7 ± 0.7 81.5 ± 1.5 83.0 ± 0.7 65.4 ± 1.4

Dbmda 0.76 ± 0.01 0.71 ± 0.01 71.6 ± 1.2 74.4 ± 1.1 73.0 ± 0.6 73.7 ± 0.7 72.6 ± 0.7 46.1 ± 1.1

Epmda 0.48 ± 0.01 0.59 ± 0.01 48.0 ± 50.0 52.0 ± 50.0 50.0 ± 0.0 24.0 ± 25.0 32.0 ± 33.3 0.0 ± 0.0

NEMII 0.91 ± 0.0 0.91 ± 0.01 84.1 ± 0.7 82.0 ± 1.0 83.0 ± 0.6 82.4 ± 0.8 83.2 ± 0.6 66.1 ± 1.2

MuCoMiD 0.92 ± 0.0 0.92 ± 0.01 85.2 ± 1.7 84.0 ± 1.2 84.6 ± 0.7 84.2 ± 0.9 84.7 ± 0.8 69.2 ± 1.5

DimiG 2.0 0.5 ± 0.0 0.5 ± 0.0 100.0 ± 0.0 0.0 ± 0.0 50.0 ± 0.0 50.0 ± 0.0 66.7 ± 0.0 0.0 ± 0.0

Table 5.  Simpler variants of MPM where ‘✓’ and ‘×’ denote the existence and non-existence of the 
corresponding components/modules.

Model Message Passing Feature Selection SDNE Random Forest classifier PCG associations

MPM-no-MP × ✓ ✓ ✓ ✓

MPM-no-FS ✓ × ✓ ✓ ✓

MPM-no-SDNE ✓ ✓ × ✓ ✓

NEMII19 × × ✓ ✓ ×

MPM-no-MPFS × × ✓ ✓ ✓
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Epmda proposes a topologically related feature extraction technique for miRNA-disease pair representation. 
Unlike most existing works, which focus on learning effective representations for miRNAs and diseases separately, 
Epmda learns the miRNA-disease pair representation directly as a property of the miRNA-disease heterogene-
ous network constructed from the miRNA and disease Gaussian Interaction Profile kernel similarities and the 
miRNA-disease known associations. Even though Epmda does not employ any additional information sources, its 
performance is still better than Nimgcn and Dbmda. This suggests that learning the pair representation directly 
from the heterogeneous network with raw miRNA-disease associations is a fruitful direction. Nonetheless, the 
edge perturbation score has at least O(n3) time complexity and cannot scale well to a large  network44. Besides, 
fine-tuning the network cycle length parameter is not a trivial  task44.

MuCoMiD proposes a multitask learning model that integrates five additional information sources to over-
come the data scarcity problem. Though promising, the model applies hard-threshold filtering to filter out 
redundant information in the additional information sources. The results reported in Tables 2 and 3 correspond 
to MuCoMiD ’s performance without the filtering step (since not all of our data have the interaction/association 
confidence scores available). The thresholds need to be fine-tuned for each dataset separately. For that reason, it 
requires considerable time and effort for parameter fine-tuning in order to employ MuCoMiD for a completely 
new dataset. This points to an important aspect of information integration which focuses on effectively control-
ling/managing the quality and quantity of the added knowledge sources. Nonetheless, MuCoMiD gains the 
highest performance in the 5-fold CV testing setup. Also, the method shows promising performance, which 
overcomes the problems associated with hand-crafted similarity-based methods in all testing setups.

NEMII learns structural embeddings directly from the miRNA-disease bipartite network constructed from 
the known miRNA-disease association data. Besides, the model is further informed by information from the 
miRNA family and disease semantic similarity. Though new miRNAs and new diseases get completely random 
representation from the structural embedding learning module, NEMII ’s performance on the 20 inductive 
testing datasets is still one of the highest, thanks to the biological information from the miRNA family and dis-
ease semantic similarity features. Overall, the effective feature extraction strategy, combined with the domain 
knowledge from the added side information sources, helped NEMII gain the highest performance scores among 
state-of-the-art methods on most testing datasets. These results support the exploitation of structural information 
from the miRNA-disease association data and the importance of information integration.

MPM improves over state-of-the-art methods with a parameter-free yet effective mechanism to control the 
quality and quantity of the added information sources. At the same time, it addresses the existing limitation in 
the NEMII model by integrating additional biological relations to the new miRNAs and new diseases. The learned 
signals from the well-studied miRNAs/diseases will be transferred to the diseases (with only scarce knowledge) 
via their associated PCGs. These improvements help MPM gain state-of-the-art performance on 20 out of the 21 
independent test sets in both transductive and inductive testing setups with a gain of up to 11.5% in AP score.

Ablation studies. Here, we compare MPM with four of its simpler variants as summarized in Table 5.
MPM-no-MP is a variant of MPM without the message passing layer that takes the raw miRNA-PCG and 

disease-PCG associations as input to the feature selection and structural embedding learning modules. Similarly, 
MPM-no-FS is a variant of MPM without the feature selection module. The structural embedding learning mod-
ule encapsulates all enriched miRNA-PCG and disease-PCG associations output from the message passing layer 
into its heterogeneous network for learning node embeddings. MPM-no-MPFS is a variant of MPM without the 
message passing and the feature selection modules. The heterogeneous network input to SDNE simply integrate 
all raw miRNA-PCG, disease-PCG associations retrieved from  miRTarBase60 and  DisGeNET61. MPM-no-SDNE 
is a variant of MPM in which there is no structural embedding learning. Instead, the pair representation for 
a particular miRNA-disease pair is the concatenation of the enriched and filtered miRNA-PCG, disease-PCG 
associations, miRNA family, and disease semantic similarity features.

Table 2 presents the results for MPM and its variants on three large independent test sets. Table 3 reports the 
results for the 18 inductive testing datasets for new diseases. We observe that MPM supersedes all of its sim-
pler variants on the transductive testing set (Held-out1), two inductive testing sets with many new miRNAs 
(Novel-miRNA and Held-out2), and 15 out of 18 complete test sets for new diseases. The gains are the most 
significant on the three independent test sets (c.f. Table 2), especially when more negative testing samples are 
added. These results support the contribution of each added component. At the same time, they validate our 
choice of architecture.

Besides, among the simpler variants, we observe a considerable performance drop on the variants without the 
feature selection modules (MPM-no-FS and MPM-no-MPFS) or on the MPM-no-SDNE model. Without the 
feature selection module, the network employed for the embeddings generation contains too many PCG associa-
tion connections. As biological data usually contains many false positives, adding all PCG associations introduces 
additional noise and redundancy. Similarly, without the structural embeddings (MPM-no-SDNE), MPM only 
relies on the associated PCGs, miRNA, and disease semantic similarity features to generate predictions without 
the information about the miRNA/disease interaction patterns. The drop in performance observed in MPM ’s 
simpler variants further emphasizes the importance of our feature selection module for information filtering as 
well as the SDNE module for feature extraction from the raw association structural patterns.

An ablation study comparing Random Forest with six other binary classifiers is presented in Section 3.1 and 
Table 4 in the Supplementary File.

Case studies. Let H = Hmdd2 ∪ Hmdd3 denote the set of all known associations retrieved from the HMDD 
databases. We here present three case studies to showcase the application of MPM in realistic scenarios.
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MPM for a disease with scarce knowledge. Down syndrome or Trisomy 21 is a condition in which a child is born 
with an extra copy of their 21st  chromosome62. Down Syndrome’s patients usually suffer from mild-to-moderate 
learning  disabilities62. According to the data deposited in the HMDD 2.0 and HMDD 3.0 databases and two 
recent  works63,64, there are only 10 miRNAs known to be associated with the disease of our interest. We assume 
that Down Syndrome is a completely new disease and take similar steps as those presented in Section 2.4.2 in the 
Supplementary File to construct the training and testing data. In short, our training data consists of all known 
associations in H for all diseases other than the Down Syndrome. We test MPM on the complete test set consist-
ing of all possible combinations between the Down Syndrome and 1618 miRNAs.

How effective is MPM in restricting and prioritizing the search space for the potentially associated miR-
NAs? Table 6 presents the average predictions made by MPM after 20 experimental runs. Though we perform 
the search on a complete test set of 1618 testing samples, 3 known-to-associate miRNAs (marked as italics in 
Table 6 already appear in the top 4 highest predicted results. The other associated miRNAs appear at 33th, 38th, 
82th, 105th, 140th, 261th, and 1576th positions in the prediction list. With 3 appearing in the top 4 and 5 out 
of 10 known associations appearing in the top 38 of the generated prediction results, our method would signifi-
cantly help restrict and prioritize the search space for wet-lab experiments.

How effective is MPM  with some added domain knowledge? Since Down Syndrome relates to a redundant 
chromosome 21 copy, we retrieve the miRNA location information from  miRTarBase60 and present MPM ’s 
predicted results for all miRNAs located on chromosome 21 in Table 7. Italics is used to mark the associated 
miRNAs.

By restricting the miRNA search space, we have much more promising prediction results, with 4 out of 5 
associated miRNAs appearing at the top of the list. Adding more related domain information like chromosomal 
location, tissue expression profiles, etc., thus helps in restricting the miRNA search space to obtain more mean-
ingful prediction results. Nonetheless, we release predicted association probabilities for all 1618 miRNAs to 
encourage field experts’ assessments as well as to enable them to perform customized subset selection without 
the need to retrain/rerun the model.

MPM for a disease with many false positives. Parkinson disease (PD) is the second most common neurodegen-
erative disease  worldwide65. Existing human association studies for the Parkinson disease resulted in inconsist-

Table 6.  MPM ’s average prediction scores for Down Syndrome and all 1618 miRNAs. The associated miRNAs 
are marked as italics. The model training data does not contain the association data for Down Syndrome.

Rank miRNA Pred. Rank miRNA Pred.

. 82 hsa-mir-125b-2 0.579253110400618

2 hsa-mir-155 0.963881105523116 .

3 hsa-mir-146a 0.934014942433006 105 hsa-mir-99a 0.482246263067031

4 hsa-mir-16-1 0.895608127697913 .

. 140 hsa-mir-1246 0.404202397336283

33 hsa-mir-27b 0.689694528927961 .

. 261 hsa-let-7c 0.244887327696169

38 hsa-mir-27a 0.671913693062923 .

. 1576 hsa-mir-802 0.130087980984639

Table 7.  MPM ’s prediction results for Down Syndrome and the miRNAs that are located on chromosome 21. 
Italics is used to highlight the associated miRNAs. The model training data does not contain the association 
data for Down Syndrome.

Rank miRNA Pred. Rank miRNA Ped.

1 hsa-mir-155 0.963881105523116 11 hsa-mir-4760 0.172962854437391

2 hsa-mir-125b-2 0.579253110400618 12 hsa-mir-5692b 0.168364046134056

3 hsa-mir-99a 0.482246263067031 13 hsa-mir-6508 0.163143029370321

4 hsa-let-7c 0.244887327696169 14 hsa-mir-6070 0.16232917173827

5 hsa-mir-548x 0.239129159103197 15 hsa-mir-6815 0.159395572782035

6 hsa-mir-3648-1 0.206785057828119 16 hsa-mir-8069-1 0.155993241075239

7 hsa-mir-4759 0.200771150543586 17 hsa-mir-6724-1 0.153456269809843

8 hsa-mir-3197 0.19795748172893 18 hsa-mir-6501 0.152740622433185

9 hsa-mir-6130 0.194382789321313 19 hsa-mir-6814 0.145666592873055

10 hsa-mir-4327 0.176297567535453 20 hsa-mir-802 0.130087980984639
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ent findings with many “false positives” as reported  in66. In this case study, we take a closer look at the generated 
predictions from MPM for the Parkinson disease. We train MPM with all the available data in H . More specifi-
cally, besides the data for other diseases, the training data contains 61 known associations for Parkinson. Among 
those, there are 8 true positives (those that are confirmed as positives  in66) and 26 false  positives66 (those that are 
marked as positive in H but are confirmed as negative  in66).

We present the predicted association probabilities for all 12 true positive and 98 true negative miRNAs 
retrieved from the meta  analysis66 corresponding to the Parkinson disease in Table 8. Though the training 
data contains more than three folds of the false-positive associations (26 false positives vs. 8 true positives), we 
observe that all 12 true positives reported  in66 could be found in the top 50 predictions. Among those, 5 out 
of 12 appear in the top 8, while 8 out of 12 show up in the top 19 predictions. These results support that MPM 
acquires good performance in differentiating between the true positive and true negative miRNAs even with 
the noisy training data.

Survival analysis for Precursor B-cell lymphoblastic leukemia. Precursor B-cell lymphoblastic leukemia (PBLL) 
is the most common type of Acute lymphoblastic leukemia that is characterized by a high number of B-cell 
lymphoblasts found in blood and bone marrow. According to the data deposited in the HMDD databases, there 
are 7 miRNAs known to be associated with PBLL. In this case study, we perform survival analysis on PBLL 
patients’ data.

miRNA expression and survival outcome. We download the miRNA expression and survival information for 
PBLL patients from TCGA Genomic Data Commons (GDC)67 using the GDC Data Transfer  Tool68. As a pre-
processing step, we remove the patients without survival information and retain only the records that have the 
Sample Type as Primary Tumor. For the patients that have only one sample, the miRNA expression values are 
taken as the read per million values. For each patient with more than one sample, each miRNA expression value 
is calculated as the average of all the available reads per million values. The final pre-processed data contains the 
miRNA expression profiles and survival outcomes for 167 PBLL patients. For each miRNA, we use  StepMiner69 
to compute a threshold that can robustly differentiate between the high and low expression levels. The computed 
thresholds are used to discretize the data so that the miRNA continuous expression values can be divided into 
high, intermediate, and low expression classes. We use the log-rank  test70–72 to assess the statistical significance 
of the survival difference between the high and low expression classes. The Kaplan-Meier analysis and log-rank 
test are performed using the lifelines73 package.

MPM prediction. We train MPM with all known associations deposited in the HMDD databases for all dis-
eases other than PBLL and generate MPM ’s prediction scores for all 1618 miRNAs.

Table 8.  The predicted association probabilities for the true positive (marked as italics) and true negative 
 miRNAs66 corresponding to the Parkinson disease.

Rank miRNA Pred. Rank miRNA Pred. Rank miRNA Pred. Rank miRNA Pred. Rank miRNA Pred.

1 hsa-mir-7-1 0.99 23 hsa-mir-127 0.96 45 hsa-mir-99a 0.92 67 hsa-mir-25 0.85 89 hsa-mir-149 0.62

2 hsa-mir-30d 0.99 24 hsa-mir-145 0.96 46 hsa-mir-19a 0.92 68 hsa-mir-23a 0.85 90 hsa-mir-1264 0.62

3 hsa-mir-19b-1 0.99 25 hsa-mir-195 0.96 47 hsa-mir-29c 0.92 69 hsa-mir-191 0.85 91 hsa-mir-744 0.61

4 hsa-mir-146a 0.99 26 hsa-mir-497 0.96 48 hsa-mir-1301 0.91 70 hsa-mir-140 0.84 92 hsa-mir-301b 0.6

5 hsa-mir-335 0.99 27 hsa-mir-338 0.96 49 hsa-mir-30b 0.91 71 hsa-mir-136 0.83 93 hsa-mir-154 0.59

6 hsa-mir-193a 0.99 28 hsa-mir-222 0.96 50 hsa-mir-152 0.9 72 hsa-mir-16-2 0.82 94 hsa-mir-184 0.55

7 hsa-mir-214 0.98 29 hsa-mir-221 0.96 51 hsa-mir-125b-2 0.9 73 hsa-mir-98 0.82 95 hsa-mir-223 0.54

8 hsa-mir-141 0.98 30 hsa-mir-22 0.96 52 hsa-mir-125a 0.9 74 hsa-mir-27b 0.81 96 hsa-mir-532 0.49

9 hsa-mir-151a 0.98 31 hsa-mir-299 0.96 53 hsa-mir-137 0.9 75 hsa-mir-345 0.81 97 hsa-mir-1296 0.48

10 hsa-mir-126 0.98 32 hsa-mir-424 0.95 54 hsa-mir-204 0.89 76 hsa-mir-142 0.8 98 hsa-mir-873 0.44

11 hsa-mir-7-2 0.98 33 hsa-mir-21 0.95 55 hsa-mir-224 0.89 77 hsa-mir-708 0.8 99 hsa-mir-125b-1 0.42

12 hsa-mir-146b 0.98 34 hsa-mir-17 0.95 56 hsa-mir-148b 0.89 78 hsa-mir-1249 0.78 100 hsa-mir-1298 0.35

13 hsa-mir-29b-2 0.98 35 hsa-mir-148a 0.94 57 hsa-mir-409 0.89 79 hsa-mir-190a 0.78 101 hsa-mir-939 0.34

14 hsa-mir-30a 0.98 36 hsa-mir-143 0.94 58 hsa-mir-504 0.89 80 hsa-mir-129-1 0.77 102 hsa-mir-488 0.29

15 hsa-mir-199b 0.98 37 hsa-mir-28 0.94 59 hsa-mir-186 0.89 81 hsa-mir-331 0.76 103 hsa-mir-330 0.24

16 hsa-mir-34c 0.98 38 hsa-mir-425 0.93 60 hsa-mir-448 0.88 82 hsa-mir-181c 0.75 104 hsa-mir-192 0.2

17 hsa-mir-132 0.98 39 hsa-mir-10b 0.93 61 hsa-mir-769 0.87 83 hsa-mir-150 0.73 105 hsa-mir-626 0.19

18 hsa-mir-451a 0.97 40 hsa-mir-29a 0.93 62 hsa-mir-1248 0.87 84 hsa-mir-489 0.72 106 hsa-mir-26b 0.16

19 hsa-mir-133b 0.97 41 hsa-mir-99b 0.93 63 hsa-mir-92a-2 0.87 85 hsa-mir-505 0.68 107 hsa-mir-577 0.16

20 hsa-mir-10a 0.97 42 hsa-mir-543 0.93 64 hsa-mir-328 0.86 86 hsa-mir-203a 0.67 108 hsa-mir-654 0.15

21 hsa-mir-16-1 0.97 43 hsa-mir-34b 0.93 65 hsa-mir-92a-1 0.86 87 hsa-mir-454 0.65 109 hsa-mir-378a 0.15

22 hsa-mir-30c-2 0.97 44 hsa-mir-431 0.92 66 hsa-mir-20a 0.85 88 hsa-mir-130a 0.64 110 hsa-mir-501 0.12
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Results. The Kaplan-Meier survival curve for PBLL patients is presented in Fig. 1. According to the log-rank 
test results, we identify 310 miRNAs associated with patients’ survival outcomes with a p-value < 0.05 . We refer 
to this set as L . We observe that none of the known-to-be-associated miRNAs (deposited in the HMDD data-
bases) appear in L . But from the top 10 miRNAs that have the highest prediction scores generated by MPM, 8 
already appear in L . Among the top 20 miRNAs that have the highest prediction scores, 13 already appear in L . 
Table 9 presents the top miRNAs that have the highest prediction scores that appear in L , along with their rank 
in MPM ’s prediction list. The full list of L and all MPM ’s prediction scores can be downloaded from https:// git. 
l3s. uni- hanno ver. de/ dong/ mpm/-/ tree/ master/ PBLL. Figure 2 shows the Kaplan-Meir survival curves of PBLL 
patients stratified by the top miRNAs that have the highest prediction scores generated by MPM. All things con-
sidered, for PBLL, MPM prediction results agree well with the survival analysis results. This further supports the 
applicability of MPM in identifying potential prognostic miRNAs for complex diseases.

An integrated, easy‑to‑use website for comprehensive analyses. We provide an easy-to-use web-
site to query the predictions generated by our proposed model on 1618 miRNAs and 3679 diseases at http:// 
softw are. mpm. leibn iz- ai- lab. de/. It is important to note that the model is trained only from the data correspond-
ing to only a few hundred miRNAs and a few hundred diseases. We offer a large computational prediction capa-
bility for thousands of available diseases and miRNAs through the website. All the results corresponding to the 
pathway and the enrichment analysis for all miRNAs and diseases are also generated and integrated to enable a 
comprehensive analysis by the field experts. Besides, the users can also (i) search for miRNAs in the same family 
or related diseases (i.e., parents/children in the disease ontology) through the provided search capabilities, (ii) 
analyze pathways and GO processes for an input miRNA or disease, and (iii) query the list of miRNAs or diseases 
associated with a particular pathway. A detailed user guide with some screenshots of the website is provided in 
Section 3 in the Supplementary File.

Conclusion and future outlook
We propose a message passing framework with multiple data sources integration, MPM, for the problem of 
predicting miRNA-disease associations. MPM exploits information from multiple data sources to enrich and 
filter the raw biologically relevant features without introducing additional parameters. Besides detecting new 
associations of the partially observed miRNAs or diseases, MPM can successfully generate predictions for new 
diseases (which has no prior observed association in the training data). Our case studies further support (i) 
the reliability of MPM for predicting associations for diseases with scarce knowledge and (ii) its robustness in 

Figure 1.  The Kaplan survival curve of PBLL patients.

Table 9.  The top miRNAs with the highest prediction scores that appear in L—the list of associated miRNAs 
output from the survival analysis.

Rank miRNA Pred. Rank miRNA Pred. Rank miRNA Pred. Rank miRNA Pred.

2 hsa-mir-17 0.98 17 hsa-mir-145 0.93 37 hsa-mir-130a 0.84 58 hsa-mir-200c 0.75

3 hsa-mir-20a 0.98 18 hsa-mir-143 0.92 38 hsa-mir-125a 0.83 61 hsa-mir-149 0.75

4 hsa-mir-155 0.98 19 hsa-mir-26a-1 0.92 40 hsa-mir-204 0.83 62 hsa-mir-100 0.74

5 hsa-mir-16-1 0.97 23 hsa-mir-31 0.91 45 hsa-mir-122 0.81 63 hsa-mir-200b 0.74

6 hsa-mir-150 0.97 24 hsa-mir-181a-2 0.9 46 hsa-mir-25 0.81 64 hsa-mir-192 0.74

7 hsa-mir-34a 0.96 25 hsa-mir-19b-1 0.9 47 hsa-mir-15b 0.81 71 hsa-mir-16-2 0.73

9 hsa-mir-146a 0.95 27 hsa-mir-22 0.89 48 hsa-mir-148a 0.8 72 hsa-mir-98 0.73

10 hsa-mir-18a 0.95 29 hsa-mir-92a-1 0.86 51 hsa-mir-132 0.79 73 hsa-mir-107 0.72

14 hsa-mir-19a 0.94 31 hsa-mir-106b 0.85 54 hsa-mir-106a 0.78 75 hsa-mir-335 0.72

15 hsa-mir-15a 0.94 33 hsa-mir-181b-1 0.85 56 hsa-mir-378a 0.76 76 hsa-mir-26b 0.72

https://git.l3s.uni-hannover.de/dong/mpm/-/tree/master/PBLL
https://git.l3s.uni-hannover.de/dong/mpm/-/tree/master/PBLL
http://software.mpm.leibniz-ai-lab.de/
http://software.mpm.leibniz-ai-lab.de/
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ranking the true positives higher when many false positives are present in the training data. In addition, MPM 
generated predictions for the PBLL disease agree quite well with the results retrieved from survival analysis on 
the publicly available miRNA expression data. Besides the proposed machine learning model, we also make 
the generated predictions more accessible to non-expert users by encapsulating all the generated and related 
domain information into a publicly available website. By releasing such a user-friendly interface, we aim to foster 
assessments and future adoption.

Future outlook. In our opinion, the potential future directions for miRNA-disease association prediction 
tools include enhancement of model interpretability, input data quality, and user experience. For example, one 
can employ post-hoc explanation  techniques74 to generate instance-level explanations. Nevertheless, domain 
expertise will be required to translate these explanations into biological rationales. In addition, one can also 
focus on input data or feature enhancements that include but are not limited to data filtering, additional data 
integration, and robust or credible negative sample selection strategies.

Works that focus on user experience enhancement should provide a user-friendly interface like a portable 
application or a publicly available website. Besides, some of the nice-to-have features of the tool would include 
(i) automation of data/results filtering with different filtering criteria, (ii) comparison of the generated predic-
tions from different models, (iii) the possibility to train the model on the fly with user-customized input data, 
and (iv) allowing configurable model parameters. Besides, integrating more related biological information like 
the miRNA tissue expression profile, miRNA chromosomal location, clinical disease phenotype, etc., to support 
hypothesis testing or provide biological insights for a meaningful prediction subset selection would be useful 
but challenging to incorporate.

Potential applicability to miRNA-small molecule drug association prediction. Small molecule drugs are organic 
compounds with low molecular weights of around 900 Daltons. Small molecules form the majority of existing 

Figure 2.  Kaplan–Meyer survival curves of PBLL patients stratified by the top miRNAs with the top highest 
prediction scores.
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drugs and can be rapidly diffused across cell  membranes75. Identification of miRNA-small molecule drug associa-
tions can help in disease therapy development. One of the first machine learning-based models for miRNA-small 
molecule drug association prediction is proposed by Jamal et al.76. The authors present a traditional machine 
learning approach that represents each miRNA-small molecule drug pair as a concatenated feature vector of 
miRNA and small molecule drug integrated similarities. The feature representations are then used as input to 
the Random Forest based binary classifier. More recent methods usually involve the use of graph representation 
learning  techniques77–84, kernel  methods85 and matrix  factorization86. A recent review about miRNA-small mol-
ecule drug association can be found  in75.

One shared characteristic of existing works is the utilization of small molecule drug and miRNA pre-calcu-
lated similarities. Though these works usually combine various similarities to mitigate bias and lack of informa-
tion, they still suffer from issues related to the use of pre-calculated similarities, such as being hard to update 
and  maintain18. Graph-based methods additionally encapsulate raw miRNA-small molecule drug associations in 
the constructed network but the number of known associations is usually too small compared to the similarity 
connections. This prevents the model from learning informative association patterns. Overall, it is essential to 
perform task specific information filtering to remove noise and balance the amount of side information added.

Our model architecture can be easily adapted for the miRNA-small molecule drug association prediction 
problem. The types of input information as utilized by our model are also available for this problem. Firstly, one 
can extract small molecule drug similarity features based on side  effects87, functional  consistency88, chemical 
 structure89, and indication  phenotype87. Secondly, we can retrieve small molecule drug-targeted genes from 
public databases like  DrugBank90. Finally, each small molecule drug is also assigned to one or more ATC  codes91, 
which incorporate information such as its anatomical distribution, therapeutic effects, and structural charac-
teristics. Such ATC codes are also organized into a hierarchy with different levels of granularity, like the disease 
ontology in our case. Nevertheless, there are still some open questions and considerations regarding (i) the 
choice of similarity features, (ii) the biological rationale(s) for adding PCG associations as intermediate con-
necting points, and (iii) the most suitable supervised problem for performing feature selection (for example, 
should one use drug first level ATC code classification?). Answering such questions would require an in-depth 
understanding of the problem. Compared with the existing approaches, one advantage of our proposed model 
is that it offers a parameter-free information filtering mechanism to filter out redundant connections. High-
quality input enables us to learn meaningful association patterns from the input network. Also, to the best of 
our knowledge, the SDNE method employed by MPM has never been used in existing works for miRNA-small 
molecule drug association prediction.

Methods
MPM treats the miRNA-disease association prediction problem as a binary classification task where the label 
for an input pair (m, d) is 1 if there is a known association between miRNA m and disease d and 0 otherwise. A 
schematic diagram of MPM with its main components is presented in Fig. 3. We use gray for the model’s com-
ponents/modules, blue and violet for miRNA and disease-related components, respectively.

The message passing framework/module. The data sources. Table 10 provides the statistics for our 
employed data sources. In the following, we describe each source in detail and present the information corre-
sponding to how we utilize it.

The protein functional interaction network. rotein coding genes (PCGs) are essential connections between 
miRNAs and  diseases1. miRNAs can affect the PCG transcriptions, resulting in protein expression changes, 
which can then lead to diseases. Therefore, besides the knowledge about the protein-protein interactions as 
already exploited  in18, the knowledge related to whether a particular protein regulates/inhibits/catalyzes/acti-
vates another protein is also very important for the miRNA-disease association prediction task. We refer to the 
multi-relational protein-protein interaction network, where an edge corresponds to a protein functional relation 
as protein functional interaction network.

A pictorial example of the protein functional interaction network is presented in Fig. 4. Different relations 
are depicted using different colors. Since regulation, inhibition, catalyze, and activation are one-way relations, 
we model the protein functional interaction network as a directed graph. We retrieve the protein functional 
interaction network  from92 (version 2020). We generate a directed graph from the given data as follows. Each 
PCG is represented as a node; a protein-protein binding interaction is modeled as two directed edges. Each rela-
tion, i.e., inhibits, activates, regulates, and catalyzes, is represented by a directed edge between the corresponding 
nodes. Overall, our protein functional interaction network consists of 423,672 directed links between 23,611 
PCGs. Some PCG nodes might be isolated in the generated network because we only include experimentally 
verified interactions.

Modelling miRNAs using the protein functional interaction networks. We obtain the experimentally validated 
miRNA-PCG interactions from the miRTarBase  database60 (release 8.0). We then model each miRNA as a net-
work of PCGs built up from the protein functional interaction network. There is a directed link between two 
nodes if there is a directed link between the corresponding nodes in the functional interaction network. Each 
PCG node in the network has a feature vector of one dimension. The feature value of a PCG node is set to 1 if 
there is a known interaction between it and the current miRNA, and 0 otherwise.

Modelling diseases using the protein functional interaction networks. We obtain the disease-PCG associa-
tions from the  DisGeNET61 database, which contains one of the largest publicly available collections of genes 
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associated with human diseases. As above, we then model each disease as a network that contains all PCGs from 
the protein functional interaction network. There is a directed link between two nodes if there is a directed link 
between the corresponding nodes in the functional interaction network. Each PCG in the network has a feature 
vector of one dimension. The feature value of a PCG node is set to be the normalized confidence score of the cor-
responding association between the PCG and the current disease if there exists one, and 0 otherwise.

Figure 3.  MPM’s architecture. MPM consists of a message passing layer (section “The message passing 
framework/module”) , a feature selection with a side supervised task (section “The feature selection module”), 
a Structural Deep Embedding network (section “The structural embedding learning”), and a binary classifier 
(section “The classification module”).

Table 10.  Statistics for the side data sources. |E| denotes the number of interactions/associations. 
|Vm|, |Vd |, |Vp| represent the number of miRNAs, diseases, and PCGs, respectively.

Network |E| |Vm| |Vd | |Vp|

miRNA-PCG 345,357 1618 – 23,611

Disease-PCG 510,782 – 3679 23,611

Protein functional interactions 423,672 23,611
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The message passing framework for feature enrichment. The message passing module is responsible for further 
enriching the input representations via a simple message passing technique. It takes as input the miRNAs and 
diseases modeled using the protein functional interaction networks with the corresponding node features as 
described in the previous section.

miRNA-target or disease-PCG association data might be incomplete due to the lack of biological experiments 
or other technical limitations. Moreover, the data acquisition methods might fail to detect indirect PCG associa-
tions. Our message passing strategy allows us to infer such indirect or missing miRNA-PCG and disease-PCG 
connections. In particular, at each iteration, a message passing step is performed in which only weights of the 
nodes with unknown associations (i.e., nodes with initial 0 weights) with miRNAs/diseases are updated. Formally, 
the inferred weight for a particular node i whose original weight is 0 at iteration t is calculated in accordance 
with its parents and their degrees as follows:

where Par(i) denotes the set of parent nodes of node i, wt−1(j) is the weight of node j calculated at iteration t − 1 , 
din(i) and dout(j) denote the in-degree and the out-degree of nodes i and j, respectively. We provide an example 
of how the proposed message passing layer/framework works in Fig. 5. The results presented in section “Results” 
correspond to the output from the message passing framework after one iteration. We choose one iteration as it 
acquires the best performance on all inductive test datasets.

The feature selection module. The disease category. The MESH  ontology54 is a well-organized vocabu-
lary produced by the National Library of Medicine, where diseases are classified into different categories. MESH 
ontology can be visualized as a tree where each layer in the tree represents one level of granularity. The upper-
most level represents the most general category. We obtain the disease category information from the MESH 
database. We assign a label to each disease that corresponds to its second-level category for “Infection” related 
diseases and its first-level category for the rest. We group all categories which have less than ten members into 
one common “Others” category to make the label space less sparse. In the end, each disease is assigned one of 
the 28 categories.

(1)wt(i) =
1

√

din(i)

∑

j∈Par(i)

wt−1(j)
√

dout(j)

Figure 4.  An example of the protein functional interaction network with the various relation types highlighted 
by different colors.

Figure 5.  An example of how a message passing framework functions. The numbers inside the circles indicate 
nodes’ IDs. ‘w’ indicates the node feature weight (as described in section “The message passing framework/
module”). In the first iteration, new weights for nodes 4, 6, 7 are calculated according to equation (1). Only the 
weight for node 6 gets updated during the second iteration.
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Feature selection with a side-supervised task. To remove redundant and noisy miRNA/disease-PCG associa-
tions, we employ another source of information (the disease categories as described in section  “The feature 
selection module”) as input to our feature selection module. The rationale driving the feature selection step is 
that PCGs that are important for differentiating between diseases of different classes should also be indicative of 
the disease conditions and should, therefore, be important factors for the miRNA-disease association prediction 
problem.

Formally, we are given the set of diseases D , their associated categories C , and their inferred (up to t hop(s)) 
PCG association profiles DPt . We are interested in finding the top K most important PCG features predictive 
of the disease category.

As suggested  in93,94,  ReliefF95,96 is a competitive feature selection method for biological datasets. For that 
reason, we employ ReliefF to select the K most important PCGs. ReliefF estimates each feature’s importance 
according to the relationship of n random samples to their nearest neighbors. For a given sample, the algorithm 
selects k nearest samples from the same class (hits) and k nearest samples from each of the other classes (misses). 
The feature importance is then quantified as to how well it can differentiate between the misses and the hits 
samples. The results presented in section “Results” correspond to K = 100 as it acquires the best performance 
on all inductive testing datasets.

The structural embedding learning. Network construction. Let PK denote the set of K most informa-
tive PCGs for the disease category prediction task obtained as output from the feature selection module. Let Ap 
denote the adjacency matrix generated from the subset of PCG-PCG interactions for all PCGs in PK . Similarly, 
let Amp be the adjacency matrix generated from the subset of miRNA-PCG associations for all PCGs in PK . Adp 
denotes the adjacency matrix generated from the subset of disease-PCG associations for all PCGs in PK . Let Amd 
be the adjacency matrix constructed from the known miRNA-disease associations. We construct an undirected 
network Gmdp from the training miRNA-disease associations and the filtered sets of miRNA-PCG, disease-PCG 
associations, and PCG-PCG interactions. The adjacency matrix for Gmdp is then given as follows:

where Zm ∈ R
nm×nm and Zd ∈ R

nd×nd are the matrices of all zeros; nm and nd are the number of miRNAs and 
diseases, respectively.

Structural deep network embedding. The Structural Deep Network  embedding97 is a node representation learn-
ing method that can capture the network’s global and local structure efficiently by employing a deep autoen-
coder. The model is claimed to be able to learn highly non-linear network structures while being robust to the 
network  sparsity97. In particular, SDNE enforces the first-order similarity constraint, which basically implies that 
two vertices in a network are similar if they are linked by an observed edge as a supervised signal to learn the 
local network structure. The second-order proximity, which assumes that two vertices sharing many common 
neighbors are similar, is also incorporated into the model to capture the global network structure. A comparative 
study presented  in19 indicates that SDNE acquires the best performance compared with other structural embed-
ding methods for the miRNA-disease association prediction problem. For that reason, we adapt SDNE to learn 
the structural embeddings for miRNAs and diseases from the Gmdp network. We use the SDNE implementation 
shared  by19 to generate the embeddings for miRNAs and diseases from the inter-connected miRNA-PCG-dis-
ease network. The results presented in section “Results” correspond to the SDNE with two encoder layers of size 
[1000, 128], one decoder layer, and the output embedding of 128 dimensions as suggested  in19.

The classification module. The features. The miRNA family features. miRNAs belonging to the same 
family usually share a common ancestor in the phylogenetic tree. They are also believed to share similar sec-
ondary structures and have similar biological  functions98. Consequently, miRNA family information is highly 
relevant to the miRNA-disease association prediction task. We retrieve the miRNA family information from 
mirBase  database99. In the end, each miRNA is assigned to one of the 1375 families. We model each miRNA’s 
family features as the one-hot encoding of its family.

The disease semantic similarity features. he disease semantic  similarity20,49 quantifies how similar two par-
ticular diseases are based on their relative positions on the disease MESH  ontology54. We use the code and the 
setup  in44 to compute a disease semantic similarity matrix for our 3679 diseases set. Each entry (i,j) in the matrix 
indicates how similar disease i is to disease j. We model each disease’s semantic similarity features as the cor-
responding row entry in the similarity matrix.

The classifier. The final classifier module takes the input representation for miRNA-disease pairs and for each 
pair, it outputs an association probability in the [0,1] range. The higher the probability, the more likely the input 
pair is associated. For a particular (m, d) input pair, we construct the input feature vector as the concatena-
tion of their corresponding structural embeddings, the miRNA family, and disease semantic similarity features. 
More specifically, Xmd = [Em,Ed , Fm, Sd] , where Xmd denotes the input feature vector corresponding to (m, d); 
Em,Ed represent the pre-trained embeddings output from SDNE; while Fm refers to the miRNA family feature 
for miRNA m; Sd corresponds to the disease semantic similarity for disease d. A pictorial illustration of the final 
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miRNA-disease pair representation is given in Fig. 6. We train a Random Forest  classifier100,101 with 350 estima-
tors to do the association prediction task.

Data availability
All the code and data are publicly available at https:// git. l3s. uni- hanno ver. de/ dong/ mpm. All generated predic-
tions and related domain information can be found at http:// softw are. mpm. leibn iz- ai- lab. de/.
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