2,902 research outputs found

    Poseidon: a 2-tier Anomaly-based Intrusion Detection System

    Get PDF
    We present Poseidon, a new anomaly based intrusion detection system. Poseidon is payload-based, and presents a two-tier architecture: the first stage consists of a Self-Organizing Map, while the second one is a modified PAYL system. Our benchmarks on the 1999 DARPA data set show a higher detection rate and lower number of false positives than PAYL and PHAD

    Poseidon: a 2-tier Anomaly-based Network Intrusion Detection System

    Get PDF
    We present Poseidon, a new anomaly based intrusion detection system. Poseidon is payload-based, and presents a two-tier architecture: the first stage consists of a Self-Organizing Map, while the second one is a modified PAYL system. Our benchmarks on the 1999 DARPA data set show a higher detection rate and lower number of false positives than PAYL and PHAD

    A CONTENT-ADDRESSABLE-MEMORY ASSISTED INTRUSION PREVENTION EXPERT SYSTEM FOR GIGABIT NETWORKS

    Get PDF
    Cyber intrusions have become a serious problem with growing frequency and complexity. Current Intrusion Detection/Prevention Systems (IDS/IPS) are deficient in speed and/or accuracy. Expert systems are one functionally effective IDS/IPS method. However, they are in general computationally intensive and too slow for real time requirements. This poor performance prohibits expert system's applications in gigabit networks. This dissertation describes a novel intrusion prevention expert system architecture that utilizes the parallel search capability of Content Addressable Memory (CAM) to perform intrusion detection at gigabit/second wire speed. A CAM is a parallel search memory that compares all of its entries against input data in parallel. This parallel search is much faster than the serial search operation in Random Access Memory (RAM). The major contribution of this thesis is to accelerate the expert system's performance bottleneck "match" processes using the parallel search power of a CAM, thereby enabling the expert systems for wire speed network IDS/IPS applications. To map an expert system's Match process into a CAM, this research introduces a novel "Contextual Rule" (C-Rule) method that fundamentally changes expert systems' computational structures without changing its functionality for the IDS/IPS problem domain. This "Contextual Rule" method combines expert system rules and current network states into a new type of dynamic rule that exists only under specific network state conditions. This method converts the conventional two-database match process into a one-database search process. Therefore it enables the core functionality of the expert system to be mapped into a CAM and take advantage of its search parallelism.This thesis also introduces the CAM-Assisted Intrusion Prevention Expert System (CAIPES) architecture and shows how it can support the vast majority of the rules in the 1999 Lincoln Lab's DARPA Intrusion Detection Evaluation data set, and rules in the open source IDS "Snort". Supported rules are able to detect single-packet attacks, abusive traffic and packet flooding attacks, sequences of packets attacks, and flooding of sequences attacks. Prototyping and simulation have been performed to demonstrate the detection capability of these four types of attacks. Hardware simulation of an existing CAM shows that the CAIPES architecture enables gigabit/s IDS/IPS

    CONDOR: A Hybrid IDS to Offer Improved Intrusion Detection

    Get PDF
    Intrusion Detection Systems are an accepted and very useful option to monitor, and detect malicious activities. However, Intrusion Detection Systems have inherent limitations which lead to false positives and false negatives; we propose that combining signature and anomaly based IDSs should be examined. This paper contrasts signature and anomaly-based IDSs, and critiques some proposals about hybrid IDSs with signature and heuristic capabilities, before considering some of their contributions in order to include them as main features of a new hybrid IDS named CONDOR (COmbined Network intrusion Detection ORientate), which is designed to offer superior pattern analysis and anomaly detection by reducing false positive rates and administrator intervention

    Hardware Acceleration of Network Intrusion Detection System Using FPGA

    Get PDF
    This thesis presents new algorithms and hardware designs for Signature-based Network Intrusion Detection System (SB-NIDS) optimisation exploiting a hybrid hardwaresoftware co-designed embedded processing platform. The work describe concentrates on optimisation of a complete SB-NIDS Snort application software on a FPGA based hardware-software target rather than on the implementation of a single functional unit for hardware acceleration. Pattern Matching Hardware Accelerator (PMHA) based on Bloom filter was designed to optimise SB-NIDS performance for execution on a Xilinx MicroBlaze soft-core processor. The Bloom filter approach enables the potentially large number of network intrusion attack patterns to be efficiently represented and searched primarily using accesses to FPGA on-chip memory. The thesis demonstrates, the viability of hybrid hardware-software co-designed approach for SB-NIDS. Future work is required to investigate the effects of later generation FPGA technology and multi-core processors in order to clearly prove the benefits over conventional processor platforms for SB-NIDS. The strengths and weaknesses of the hardware accelerators and algorithms are analysed, and experimental results are examined to determine the effectiveness of the implementation. Experimental results confirm that the PMHA is capable of performing network packet analysis for gigabit rate network traffic. Experimental test results indicate that our SB-NIDS prototype implementation on relatively low clock rate embedded processing platform performance is approximately 1.7 times better than Snort executing on a general purpose processor on PC when comparing processor cycles rather than wall clock time

    Know Your Enemy: Stealth Configuration-Information Gathering in SDN

    Full text link
    Software Defined Networking (SDN) is a network architecture that aims at providing high flexibility through the separation of the network logic from the forwarding functions. The industry has already widely adopted SDN and researchers thoroughly analyzed its vulnerabilities, proposing solutions to improve its security. However, we believe important security aspects of SDN are still left uninvestigated. In this paper, we raise the concern of the possibility for an attacker to obtain knowledge about an SDN network. In particular, we introduce a novel attack, named Know Your Enemy (KYE), by means of which an attacker can gather vital information about the configuration of the network. This information ranges from the configuration of security tools, such as attack detection thresholds for network scanning, to general network policies like QoS and network virtualization. Additionally, we show that an attacker can perform a KYE attack in a stealthy fashion, i.e., without the risk of being detected. We underline that the vulnerability exploited by the KYE attack is proper of SDN and is not present in legacy networks. To address the KYE attack, we also propose an active defense countermeasure based on network flows obfuscation, which considerably increases the complexity for a successful attack. Our solution offers provable security guarantees that can be tailored to the needs of the specific network under consideratio

    Statistical methods used for intrusion detection

    Get PDF
    Thesis (Master)--Izmir Institute of Technology, Computer Engineering, Izmir, 2006Includes bibliographical references (leaves: 58-64)Text in English; Abstract: Turkish and Englishx, 71 leavesComputer networks are being attacked everyday. Intrusion detection systems are used to detect and reduce effects of these attacks. Signature based intrusion detection systems can only identify known attacks and are ineffective against novel and unknown attacks. Intrusion detection using anomaly detection aims to detect unknown attacks and there exist algorithms developed for this goal. In this study, performance of five anomaly detection algorithms and a signature based intrusion detection system is demonstrated on synthetic and real data sets. A portion of attacks are detected using Snort and SPADE algorithms. PHAD and other algorithms could not detect considerable portion of the attacks in tests due to lack of sufficiently long enough training data
    corecore