

STATISTICAL METHODS USED
FOR

INTRUSION DETECTION

A Thesis Submitted to
The Graduate School of Engineering and Sciences of

İzmir Institute of Technology
in Partial Fulfillment of the Requrements for the Degree of

MASTER OF SCIENCE

in Computer Software

by
Onur ÖZARDIÇ

July 2006
İZMİR

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace@IZTECH Institutional Repository

https://core.ac.uk/display/324142758?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

We approve the thesis of Onur ÖZARDIÇ

Date of Signature

.. 11 July 2006
Prof. Dr. Halis PÜSKÜLCÜ
Supervisor
Department of Computer Engineering
İzmir Institute of Technology

.. 11 July 2006
Asst. Prof. Dr. Tuğkan TUĞLULAR
Co-Supervisor
Department of Computer Engineering
İzmir Institute of Technology

.. 11 July 2006
Prof. Dr. Sıtkı AYTAÇ
Department of Computer Engineering
İzmir Institute of Technology

.. 11 July 2006
Assoc. Prof. Dr. Ahmet KOLTUKSUZ
Department of Computer Engineering
İzmir Institute of Technology

.. 11 July 2006
Prof. Dr. Şaban EREN
Department of Computer Engineering
Ege University

.. 11 July 2006
Prof. Dr. Kayhan ERCİYEŞ
Head of Department
Department of Computer Engineering
İzmir Institute of Technology

..
Assoc. Prof. Dr. Semahat ÖZDEMİR

Head of the Graduate School

ACKNOWLEDGEMENTS

 I would like to express sincere gratitude to my advisors Prof. Dr. Halis Püskülcü

and Asst. Prof. Dr. Tuğkan Tuğlular for their encouragement, guidance and support

through the development of this thesis.

 I also would like thank members of my thesis committee, Prof. Dr. Sıtkı Aytaç,

Prof. Dr. Şaban Eren, Assoc. Prof. Dr. Ahmet Koltuksuz and Prof. Dr. Kayhan Erciyeş,

Head of Computer Engineering Department.

 I also would like to thank friends Hüseyin Hışıl, Burak Galip Aslan, Selma Tekir

and Oğuzhan Arslan for their help and support.

 Finally, I owe my special thanks to my family for their support, encouragements

and patience

 iv

 ABSTRACT

STATISTICAL METHODS USED FOR INTRUSION DETECTION

Computer networks are being attacked everyday. Intrusion detection systems are

used to detect and reduce effects of these attacks. Signature based intrusion detection

systems can only identify known attacks and are ineffective against novel and unknown

attacks. Intrusion detection using anomaly detection aims to detect unknown attacks and

there exist algorithms developed for this goal. In this study, performance of five

anomaly detection algorithms and a signature based intrusion detection system is

demonstrated on synthetic and real data sets. A portion of attacks are detected using

Snort and SPADE algorithms. PHAD and other algorithms could not detect

considerable portion of the attacks in tests due to lack of sufficiently long enough

training data .

 v

 ÖZET

SALDIRI TESPİTİ İÇİN İSTATİSTİKSEL YÖNTEMLERİN

KULLANIMI

Her gün bilgisayar ağlarına yönelik saldırılar gerçekleşmektedir. Saldırı tespit

sistemleri bu saldırıları tespit edip etkilerini azaltmak için kullanılmaktadır. İmza

temelli saldırı tespit sistemleri, sadece bilinen saldırıları tanımlayabilmekte, bilinmeyen

ve yeni saldırılar karşısında etkisiz kalmaktadır. Anormallik tespiti ile saldırı tespiti

yöntemleri bilinmeyen saldırıları tespit etmeyi hedeflemektedir ve bu amaca yönelik

geliştirilmiş algoritmalar mevcuttur. Bu çalışmada beş anormallik tespiti algoritması ve

imza tabanlı bir saldırı tespit sistemi olan Snort’un, sentetik ve gerçek veri kümeleri

üzerinde test edilip başarımlarının gösterilmesi hedeflenmiştir. Snort ve SPADE

algoritmaları kullanılarak saldırıların bir bölümü tespit edilebilmiştir. PHAD ve diğer

algoritmalarda ise testlerde yeteri kadar uzun eğitim verisi olmaması sebebiyle

saldırıların önemli bir bölümü tespit edilememiştir.

 vi

TABLE OF CONTENTS

LIST OF FIGURES..ix

LIST OF TABLES...x

CHAPTER 1 INTRODUCTION...1

CHAPTER 2 INTRUSION DETECTION..4

 2.1. Overview..4

 2.2. Definition and Goals..4

 2.2.1. Taxonomy of Attacks...5

 2.2.2. Taxonomy of Intrusion Detection Systems..6

 2.2.2.1. Classification of Intrusion Detection Systems by Data Source...6

 2.2.2.1.1. Host Based Intrusion Detection Systems...............................6

 2.2.2.1.2. Network Based Intrusion Detection Systems........................6

 2.2.2.2. Classification of Intrusion Detection Systems

 by Method of Detection...7

 2.2.2.2.1. Signature Based Intrusion Detection.....................................7

 2.2.2.2.2. Anomaly Detection..7

 2.2.2.3. Classification of Intrusion Detection Systems

 by Processing and Response Time...8

 2.2.3. Background on Anomaly Detection...8

 2.2.3.1. Norm..8

 2.2.3.2. Attack...8

 2.2.4. Criteria on Evaluating Performance of Intrusion Detection Systems 9

 2.3. Related Work...10

 2.3.1. Signature Based Approaches...10

 2.3.2. Learning Based Detection Techniques..10

 2.4. IDEVAL Data Set..12

 2.4.1. Design of IDEVAL Simulation Environment..................................12

 2.4.2. Traffic Generation..13

 2.4.3. Attack Scenarios..14

 vii

 2.4.4. Critics and Discussion of IDEVAL Data Sets.................................15

 2.5. Modeling Behavior of Network Traffic...16

 2.6. Snort Intrusion Detection System..17

 2.6.1. Structure and Operational Properties...18

 2.6.1.1. Snort Rules...18

 2.6.1.2. Snort Rule Chain..19

 2.6.1.3. Preprocessors and Output Plug-ins..20

 2.6.2. Estimates on Detection Rates...21

CHAPTER 3 INTRUSION DETECTION ALGORITHM IMPLEMENTATIONS......22

 3.1. Overview..22

 3.2. Modeling Novel Events...23

 3.3. Packet Header Anomaly Detection..24

 3.4. Application Layer Anomaly Detector..25

 3.5. Learning Rules for Anomaly Detection...27

 3.5.1. Rule Set Generation...27

 3.5.2. Rule Elimination..28

 3.6. Network Traffic Anomaly Detector...29

 3.7. Statistical Packet Anomaly Detection Engine.......................................31

 3.8. Results of Previous Studies..33

CHAPTER 4 DATA COLLECTION OPERATION..35

 4.1. Overview..35

 4.2. Data Collection Environment and Properties..36

CHAPTER 5 DEMONSTRATION OF ALGORITHM IMPLEMENTATIONS...........38

 5.1. Testing Environment and Tools...38

 5.1.1. Testing Environment..38

 5.1.2. Testing Tools...38

 5.1.3. Modifications on Configurations and Programs..............................39

 5.1.3.1. Configuration of Snort and SPADE...39

 5.1.3.2. Modifications on Algorithm Implementations...........................40

 5.2. Training Systems...40

 5.3. Testing Systems...41

 viii

CHAPTER 6 RESULTS AND DISCUSSION..43

 6.1. Findings on IZTECH Dataset..43

 6.1.1. Description of Collected Data..43

 6.1.1.1. General Properties..43

 6.1.1.2. Intrusion Activity...46

 6.1.2. Comparison with IDEVAL Dataset...47

 6.1.3. Comparison with FIT Dataset..50

 6.2. Results of Demonstration of Algorithms...50

 6.2.1. Snort and SPADE on IDEVAL..52

 6.2.2. Snort and SPADE on IZTECH Data..54

 6.2.3. Anomaly Detection Algorithms on Iztech Data...............................56

 6.2.3.1. PHAD...56

 6.2.3.2. ALAD..56

 6.2.3.3. LERAD..56

 6.2.3.4. NETAD..56

CHAPTER 7 CONCLUSION...57

REFERENCES..58

APPENDICES

APPENDIX A. HEADER FIELDS OF LOWER LAYER PROTOCOL HEADERS....65

APPENDIX B. LIST OF DATA FILES..68

APPENDIX C. CONTENTS OF CD..70

 ix

LIST OF FIGURES

Figure Page

Figure 1.1. Reported incidents to CERT/CC between 1994-2003....................................1

Figure 2.1. Network structure diagram of 1999 evaluation...14

Figure 2.2. A simple Snort rule...19

Figure 2.3. Snort’s rule chain mechanism...20

Figure 3.1. Growth rate for rules in terms of performance..29

Figure 4.1. Simplified architecture of campus network and data collection operation...36

Figure 6.1. Daily distribution of data and packets...44

Figure 6.2. Daily data rates in data set...44

Figure 6.3. Average packet size graph for data set..45

Figure 6.4. Daily distribution of HTTP traffic..45

Figure 6.5. Daily distribution of other three frequently used protocols..........................46

Figure 6.6. Daily traffic distribution in IDEVAL..48

Figure 6.7. Detection/False Alarm Threshold Level Curve

 for test weeks of Snort and SPADE...54

Figure A.1. Fields of Ethernet Packet..65

Figure A.2. Fields of IP Header...66

Figure A.3. Fields of TCP Header...66

Figure A.4. Fields of UDP Header..67

Figure A.5. ICMP Header..67

 x

LIST OF TABLES

Table .Page

Table 2.1. Number and categorization of attacks according to attack types,

 victims and number of instances of each attack group...................................14

Table 3.1. Comparison of Detections of Selected Algorithms on IDEVAL Data...........34

Table 4.1. Available IP address blocks in Iztech campus..35

Table 4.2. List of servers, whose traffic has been collected..36

Table 6.1. Most frequently scanned ports and count of instances...................................46

Table 6.2. Number of alerts, true detections and packets in training data.......................53

Table 6.3. Number of alerts, true detections and packets in test data..............................53

Table 6.4. Top alerts and ratio of Spade related alerts in total group of alerts................54

Table B.1 List of tcpdump data files collected by Snort...68

 1

CHAPTER 1

INTRODUCTION

 Computers and Internet has become an ordinary and indispensable reality of life

for many people. This trend makes people use facilities on-line with an increasing rate.

This widespread usage has made Internet a new market for enterprises, a place to share

and exchange information for researchers, source of entertainment and recreation.

Widespread use and benefits of online resources have also attracted people who would

like to benefit more than others with use of illegal methods. These people have

exploited vulnerabilities in systems sometimes for benefit, sometimes for satisfying

their curiosity only. In 1988, Morris Worm (WEB_1 2006) epidemic have caused to

stop 10% of servers connected to Internet. Even though size and use of Internet was

small at the time, economic and social impact was greater. Morris worm may be thought

as a starting point for a new era. Attacks increased by time and this increase

introduction of security mechanisms, precautions and development of software patches

to remove vulnerability. Increased security precautions introduced new attack methods

and exploitation of new vulnerabilities. Loop of improved security precautions and

attacks Figure 1.1 shows number of reported incidents to CERT/CC between 1994 and

2003 (WEB_2 2006).

2340 2412 2573 2134 3734 9859
21756

52658

82094

137529

0

20000

40000

60000

80000

100000

120000

140000

160000

1994 1995 1996 1997 1998 1999 2000 2001 2002 2003

Years

In
ci

de
nt

 R
ep

or
ts

Fig.1.1. CERT/CC reported incidents by year

 2

According to an annual survey (CSI 2005), total financial loss due to security

incidents have been around $130M in 2005. 95% of the participants have experienced

more than 10 web site incidents last year. Moreover, a majority of 73% has not reported

the incident.

On the other hand, use of some of basic security tools has become very common,

such as firewalls (97%), anti virus software (96%) and intrusion detection systems

(72%) according to the report. Firewalls and anti virus software are applied as first line

of defense against external attacks. Deploying and running intrusion detection systems

may be considered as second line of defense, but it is obvious that they are also a

popular solution, but not widely accepted.

Attacks which exploit recently discovered vulnerabilities have more impact than

older attacks, since a software patch is released by software vendors to remove for a

known attack and is applied by security-aware administrators. Unknown attacks have

more chance on defeating deployed security solutions. Traditional systems usually fail

on detecting unknown attacks, since their success rates heavily rely on description of

attacks. One way to describe or detect them is using anomalies happened on the

systems. These undiscovered attacks can create anomalies in systems. If the anomalies

caused by attacks can be discovered when they occurred; precautions may be taken

much earlier before attack becomes widely known. Detecting, or at least being informed

about unknown attacks provide a significant increase in security. Anomaly detection

algorithms may help discovering attacks using anomalies due to the attacks on the

system, without describing them and increasing overall security.

Uses of anomaly detection for detecting hostile activity have been studied for a

long time. There are anomaly detection algorithms and tools developed for detecting

intrusions, both in commercial and academic research sites. However, commercial

products are not tested in laboratory environment with scientific metrics. Even though

result of anomaly detection algorithms sounds promising environment, most of them are

not tried in harsh environment of real networks. Lack of being tested in real

environments may be misleading for detection performance. For commercial products,

even though there exists evaluations, but almost none of these make sense in a scientific

way. This is a handicap for revealing real performance of commercial systems. In this

study a set of anomaly detection algorithms and commercial products were tested using

 3

synthetic and genuine real time datasets and results are discussed with comparison of

their performance.

Remainder of this dissertation is as follows, starting from Chapter 2:

In Chapter 2, concepts of security, intrusion, intrusion detection and anomaly

detection are described with their goals. In addition, tools and evaluation material are

described.

In Chapter 3, algorithms that are to be evaluated in this study are introduced with

their background.

In Chapter 4, introduces process of data collection operation from Izmir Institute

of Technology campus servers.

In Chapter 5, processes of evaluation of algorithms are explained with sufficient

detail of evaluation environment, configuration and modifications and operation.

In Chapter 6, findings on collected data are introduced. Similarities and

significant differences between available datasets and other datasets are discussed in

detail. Results of demonstration process are compared and discussed with each other

and previous studies.

Chapter 7 summarizes our main findings and advantages and disadvantages of

described algorithms in practice. It also points out our limitations and further research

issues.

 4

CHAPTER 2

INTRUSION DETECTION

2.1. Overview

Computers and computer networks have become quite common in use for people

in modern world. Many services and information sources provided online such as online

encyclopedias, informational web-pages, directory listings, newsgroups, email, and

online shopping sites are accessed and extensively used by millions of people everyday.

However, not every user wishes to benefit from these sites and services, there are people

who try to abuse people, services and enterprises.

2.2. Definition and Goals

This is the point where computer security concept is introduced. Computer

security may be defined as “generic name for collection of tools designed to protect

computer systems” (Stallings 2003). It consists of three characteristic properties of the

system to be protected. These three goals are defined as (Pfleeger 1997):

Confidentiality: Confidentiality means the assets of a computing system are

accessible only by authorized parties. This asset may contain any information not only

limited to data and permissions, but also may contain existence of a fact about system or

the data on the system. This term is also referred to as privacy or secrecy. In further

parts of the text these terms are used interchangeably.

Integrity: Integrity means that assets can be modified by only authorized parties

or only in authorized ways.

Availability: Availability means that assets are accessible to authorized parties.

Availability of an object (or service) includes its presence, capacity to meet service

needs, bounded waiting times, timeliness of service.

An attack or intrusion may be defined as any set of actions that attempt to

compromise confidentiality, integrity and availability of a resource (Heberlein et

 5

al.1991), which may be simply stated as violation of the three goals. Sometimes the

term penetration is used instead of intrusion.

Attackers, who attack on computer systems, are also referred to as intruders. Attacker

and intruders are also used interchangeably. However not all attackers are humans,

viruses and worms may be accepted as attacker, since their goals and activities are

similar to their human counterparts.

Intrusion Detection is, in its simplest form, a set of tools, methods and activities

to detect violations of security goals. Intrusion Detection System will gather information

from monitored system or network and provide information to human analyst, about

suspicious activity, which also may include intrusions. Intrusion Detection is interested

detecting intrusions and being aware. Intrusion Prevention extends Intrusion Detection

and includes countermeasures against attackers and their activities.

2.2.1. Taxonomy of Attacks

All attacks are not the same; they may be classified into five main groups according to

targeted security goals. (Lippmann et al. 2000b) describes the taxonomy of attacks:

Probes: These attacks automatically scan a network of computers or a DNS

server to find valid IP addresses, active ports, host operating system types, and known

vulnerabilities.

Denial of Service Attacks: Denial of Service (DoS) attacks are designed to

disrupt availability of a host or network service.

Remote to Local Attacks: On a Remote to Local (R2L) attack, an attacker who

does not have an account on a victim machine gains local access to the machine,

exfiltrates files from the machine, or modifies data in transit to the machine.

User to Root Attacks: User to Root (U2R) attacks where a local user on a

machine

is able to obtain privileges normally reserved for system administrators.

Data Attacks: goal of a Data attack is to exfiltrate special files which the

security policy specifies should remain on the victim hosts.

Probe attacks are more widely applied than other methods, because of their

reconnaissance-nature activities on potential victims.

 6

2.2.2. Taxonomy of Intrusion Detection Systems

Intrusion detection systems are classified into groups according to their data

sources, methods of detection and response times.

2.2.2.1. Classification of Intrusion Detection Systems by Data Source

These systems use different data sources and usually installed on different

locations to operate:

2.2.2.1.1. Host Based Intrusion Detection Systems

Host based intrusion detection system (HIDS) works on a single host, using

different sources of information such as security audit logs, event logs, file hashes,

registry traces etc. Application based intrusion detection systems are a special subset of

this group, since they use host available only to the host they are installed and an data

source is an application installed on that system, other than data sources provided by

operating system facilities.

2.2.2.1.2. Network Based Intrusion Detection Systems

Network based intrusion detection systems (NIDS) works by analyzing network

activity on the network. In its simplest forms a network tap, which is usually another

computer, is installed and all network activity passing, inbound, outbound or both

directions is logged or analyzed. Most commercial systems fall into this category.

There is also a subset of network based intrusion detection, named Network

Node Intrusion Detection. (Crothers 2003) describes Network Node Intrusion Detection

using its working principle: “This system works by analyzing network traffic like

standard network based intrusion detection does. But rather than attempting to monitor

all network traffic, a network node IDS analyzes only network traffic specified for it”.

 7

2.2.2.2. Classification of Intrusion Detection Systems by Method of

 Detection

Intrusion Detection Systems may be classified according to the methods used for

detecting potential malicious activity. Two common and general methods exist, and

have different strong and weak sides.

2.2.2.2.1. Signature Based Intrusion Detection

 Signature based Intrusion detection systems rely on a set of rules (also known as

signatures) for detecting intrusion activity. A signature can be described as a conditional

rule, which is tested on an instance of activity, identifying a specific type (Cole et al.

2005). This instance may be an incoming network packet, streaming traffic flow,

specific set of keywords or activities on a monitored system, lines of log records and

lists of commands or sequence of system calls. For example, in the network packet case,

an incoming packet to a network IDS may be checked against a set of rules for matching

content. Matching operation usually includes comparisons of binary or text data using

regular expressions. A signature can be used to detect intrusions or policy violations

where applicable. Signature based detection may help previously known and modeled

attacks. For undiscovered attacks, which is also known as “zero-day attacks”, they are

usually useless.

2.2.2.2.2. Anomaly Detection

 Anomaly detection is not opposite of signature based detection, a supportive

complement instead. Anomaly detection creates a norm model characterization for

monitored activities using acquired data, such as connection durations, incoming or

outgoing traffic rates, frequency of commands etc. Any event which is identified as

deviant or anomalous according to this model is stamped as hostile or anomalous (Cole

et al. 2005). This method can be used to detect not only known attacks, but also

promises to detect unknown attacks. This scheme may be useful for detecting unknown

attacks and to achieve a lower false negative rate. Anomaly detection systems may not

 8

provide much information about attacks or their nature, since they are identified by their

anomalous nature, not a signature.

2.2.2.3. Classification by Processing and Response Time

 A real time intrusion detection system can process data, determine existence of a

suspected attack and respond or report in real time. This is most common approach and

preferred, but not the only one. Another approach, off-line processing, is determining

whether an attack was made in a separate time, probably using a different system. This

may be preferred in cases of manual inspection, aggregation with other data, or

existence of post-processing on data.

2.2.3. Background on Anomaly Detection

An anomaly is something unusual, unexpected or a form of deviation from a pre-defined

standard rule, theory or measurement (WEB_3 2006). It may be an event happened or a

value measured by some sort of experiment or device. Existence and definition of

anomaly requires existence of some standard, which may be built on conventions or

experiments. A snow storm between two sunny days in summer is possible, but if it

happens, this event can be considered as anomalous.

2.2.3.1. Norm

Concept of anomaly rises from standards and expectations. Measurable quantities of

events can be used to construct models and calculate statistics. Probability distribution

of commands on a remote login connection of a home-office worker of some company,

or distribution of some measurable information transferred on page requests from a

server may be measured and a norm, a standard may be formed (Stallings 2003).

2.2.3.2. Attack

Deviation from a norm may be coincidental event; it may be tolerable up to some

threshold level. Home-Office user may start using different commands with different

 9

frequency, or page requests for server are significantly changed for some measurable

time. These events may be signs of hostile activity, because of their deviations from

norm, or vice versa. An anomaly may point a hostile activity. The old and the new

activity profiles may overlap or may differ significantly. Deviations from the norm

profile may be detected and can be signed as hostile (Stallings 2003).

2.2.4. Criteria on Evaluating Performance of Intrusion Detection

 Systems

 Success rate of an intrusion detection system depends on a few criteria, each of

which is not sufficient to be authoritative.

High detection rate is the most important goal of an intrusion detection system.

A good system should have high rates of detection with a relative false alarm rate. False

alarm rate becomes a limiting factor (Axelsson 1999).

 Intrusion detection systems should bring minimal computational overhead to the

systems which they are run. Computational overhead can affect overall performance of

system. In network based systems case, high load on NIDS increases rate of dropped

packets, which will result as lowered detection rates.

 An intrusion detection system should be able to identify an attack with high rate

of accuracy. It also should be able to inform analysts about success and possible losses,

such as compromised systems or data.

 An intrusion detection system should be able to correlate different events and

alerts to provide a big picture of overall attack, such as existence of a distributed attacks

or disguising attackers.

 Attackers and attack methods evolve as intrusion detection technology evolves.

Development of new attacks and evasion techniques increases false negative rate of

systems. An ideal system should be able to detect unknown attacks. Signature based

systems usually fails this criteria, whereas anomaly detection scheme is considered

more favorable.

 10

2.3. Related Work

 Intrusion detection has become a daily reality for many enterprise network

system managers. Rise of Internet’s user base around the world, people joining to cyber

world has brought risks for organizations. Intrusion detection aims to address these

risks.

Concept of intrusion detection, terms of audit trails and user activity have

emerged by (Anderson 1980). Anderson actually wrote the report for a government

organization and suggested using computer audit trails to understand user behavior and

detect computer misuses.

 Most commonly deployed commercial systems are signature based over the

world. Heuristic approaches are also used in commercial products but did not become

either common or popular. There are intrusion detection algorithms and systems

developed previously, some of which date before 1999. These relatively older and

fundamental systems are discussed in (Axelsson 2000).

2.3.1. Signature Based Approaches

 Most widely known of signature based intrusion detection system is Snort

(Roesch 1999) and Bro (Paxson 1998), looking for attack signatures on monitored

traffic. Snort is used to test one of the algorithms in integration with signature detection

and is introduced in Section 2.6.

 SHADOW (WEB_4 2006) is another intrusion detection system, provided

freeware, is a set of useful scripts and programs. SHADOW has a manual and offline

approach on intrusion detection, since system generates hourly reports of suspected

traffic, to be inspected by analysts. It has been introduced in textbooks for educational

purposes until Snort became widely available.

2.3.2. Learning Based Detection Techniques

 Second part of intrusion detection realm, statistical based intrusion detection, is

formalized in (Denning 1987). The model described includes signature detection, use of

statistical moments etc.

 11

(Cabrera et al. 2000) has used Kolmogorov-Smirnov test to detect DoS and

probing attacks in addition to detecting attack telnet traffic with attack patterns are

statistically different from ordinary connections. They used DARPA 1998 evaluation

data.

 Statistical Packet Anomaly Detection Engine (SPADE) (Hoagland 2000)

examines network and transport layer data for rare and anomalous events. SPADE

algorithm is introduced in 3.5 and evaluated in this study in integration with Snort.

(Bykova et al.2001) has tested anomalous activity for protocol specifications,

such as packet headers and allowed values, address spaces and their possible reasons for

intrusions. This type of anomaly detection is also called as strict anomaly detection.

(Ye and Chen 2001, Ye et al. 2001, Ye et al. 2002) have used various univariate

and multivariate statistical tests to detect R2L attacks in IDEVAL data using BSM

module logs of Solaris operating system.

Mahoney and Chan have developed a set of anomaly detection algorithms

named Packet Header Anomaly Detection (PHAD) (Mahoney and Chan 2001),

Application Layer Anomaly Detection (ALAD) (Mahoney and Chan 2002a), Learning

Rules for Anomaly Detection (LERAD) (Mahoney and Chan 2002b) and Network

Traffic Anomaly Detector (NETAD) (Mahoney and Chan 2003c). These algorithms

used time based modeling and protocol modeling.

(Aydin and Orencik 2005) has improved PHAD’s anomaly detection capability

using different values for time factor of PHAD and used this modified algorithm in

integration with Snort. (Yin et al. 2005) have used genetic programming based rule

learning approach on LERAD to improve performance of LERAD.

(Kruegel and Vigna 2003) has used an anomaly detection algorithm on web

server request query attributes, calculating anomaly scores which are derived from

probability vales associated with query attributes.

(Shon et al. 2005) have used genetic algorithms search technique to select

features and support vector machine (SVM) machine learning methods to detect

intrusions, using different data sources.

 12

2.4. IDEVAL Data Set

Evaluating performance of an intrusion detection system or an algorithm in

terms of detecting and missing intrusions is not an easy task. Even though it is ideal to

test systems in a real environment, this method has its own problems such as privacy of

communication between peers, repeatability of events and uncontrollable nature of

events, existence of non-typical traffic or availability of unknown attack methods.

DARPA/MIT Lincoln Labs. Intrusion Detection Systems Evaluation Data Set

(IDEVAL) is one of the leading tools for evaluating measuring and comparing

performance of intrusion detection systems. Offline datasets contain synthetic

background traffic and labeled attacks. There are two offline evaluation datasets: 1998

and 1999.

The DARPA 1998 Intrusion Detection Evaluation was an initial attempt to

perform a comprehensive evaluation of intrusion detection technology. It was designed

to evaluate only DARPA funded intrusion detection technology and not complete

deployable intrusion detection systems (Lippmann et al. 2000b).

1999 Evaluation and offline datasets have significant improvements on 1998

evaluation in terms of network structure, evaluation scoring criteria and attack patterns.

All datasets are published and can be downloaded from (WEB_5, 2006).

2.4.1. Design of IDEVAL Simulation Environment

There are three major design principles of the evaluation. These are:

1) A Standalone network testbed was used to generate simulation environment

2) Intrusion Detection Systems’ performance was measured using both attack

detection rate and false alarm rate

3) An offline evaluation format allowed many systems to be evaluated and

supported intrusion detection researchers with examples of background traffic

(Haines et al. 2001).

1998 simulation environment aimed to simulate live traffic similar to traffic that

flows between the inside and outside Internet of a United States Air Force Base. In 1998

evaluation there are 3 victim UNIX hosts running Linux, Sun OS and Solaris operating

systems, providing different services to users in and out of the base. 1999 evaluation

 13

one more server is added to testbed network, which runs Windows NT. There are two

sniffers on both side of the router, recording all traffic coming to router from the side

where it is located.

For evaluation, file system dumps are collected in addition to audit data collected

from Solaris and Windows NT servers. Structure of the testbed network is simple

enough to demonstrate capabilities of the technology. (Lippmann et al. 2000a) declares

that this network architecture is not representative of an Air Force base. It is a minimal

network designed to support intrusion detection systems that desired to participate in

1998 and 1999, attack types of interest and most of the network traffic types seen across

many Air Force bases (Lippmann et al. 2000a).

2.4.2. Traffic Generation

There are two types of traffic simulated in the network: normal background

traffic and attack patterns which are expected to be detected.

Normal background traffic was statistically compatible with traffic of an Air

Force base in terms of people’s web and other habits, used words in mails, traffic types

and rates, frequency of words in documents. These statistics were collected from more

than fifty bases were included.

 There are two traffic generators in both inside and outside internets. Generator

outside simulates thousands of sites and workstations accessed by clients in the base.

Inside traffic generator simulates users inside the base with different activity profiles.

These two generators have specific implementations in operating system kernel

developed and tuned for the simulation. Figure 2.1 shows network structure diagram of

network used for evaluation.

Attacks were executed by automated scripts, collected from different sources on

the Internet. Some of exploits are specifically modified to evade detection (Das 2000).

 14

Fig. 2.1.Network structure diagram of 1999 evaluation

 (Source: Haines et al. 2001)

2.4.3. Attack Scenarios

1999 Evaluation Data Set consists of five weeks of data. First three weeks are

training data, where fourth and fifth are provided for testing purposes. First and third

weeks’ traffic is attack free, but second week has some labeled attacks. Fourth and fifth

weeks contain attacks in different numbers, times and diversity. Table 2.1 shows names,

types, targets and numbers of attacks. Numbers in parentheses next to attack types are

number of attack instances which fall into that category. Numbers in cells are number of

applicable attacks which fall into that category:

Table 2.1.Number and categorization of attacks according to attack

 types, victims and number of instances of each attack group

 (Summarized from original source: Haines et al. 2001)

 DoS(65) Probe(37) R2L(56) U2R(37) Data(13)
Solaris 8 2 6 4 1
WindowsNT 4 2 5 4 1
Sun OS 6 2 2 1
Linux 11 4 9 3 1
Cisco 1 2 1
All OS 3

 15

Details of attacks and discussion about traces, signatures and effects are

explained thoroughly in (Kendall 1999) and (Marchette 2001).

In the evaluation, two attacker profiles are considered:

First profile is an amateur, relatively unsophisticated, testing his/her skills and

probably has no specific goals in mind. He uses attack scripts collected from different

public sources on Internet. Actually these type of attackers are known as “script-kiddie”

in security community. Second profile is a more professional one, probably a “black

hat”, with specific goals in mind and equipped with more skills, may attempt to gain

some information from the system or deny service for some time. This experienced and

skilled attacker has ability to modify existing attack scripts where needed, in addition to

create attacks from scratch, and capability to evade detection by means of using time

and his coding ability.

2.4.4. Critics and Discussion of IDEVAL Data Sets

(McHugh 2000) has published an article criticizing 1998 evaluation and dataset.

He has focused criticism on 1998 evaluation. By the time 1999 evaluation was

underway and some of the ambiguous points in evaluation have not been revealed then.

Some of the ambiguous points have been revealed and problems discussed are

addressed in (Das 2000) and (Haines et al. 2001).

McHugh criticizes evaluation and data set under following titles:

Goals: Consistency of achieving goals in evaluation

Background data: Content and generation, similarity of simulated and real

background traffic.

Attack Data: Realistic distribution of attacks distributed among background

traffic in both number and taxonomic classification. For example U2R attacks are the

most common in evaluation however probes and DoS attacks are more common in real

world.

Testbed Network: hypothetical air force base network domain (eyrie.af.mil) has

ambiguities on number and properties of client hosts.

(Mahoney and Chan 2003b) have compared attack free data of 1999 evaluation

data set network traffic properties with real network traffic collected from their

 16

departmental servers in a few months period. They have discovered some simulation

artifacts useful for testing anomaly detection algorithms.

These simulation artifacts, which may result on making accurate estimations on

accuracy of anomaly detection algorithms, are summarized as follows:

Regularity in Simulation: Regularity and limited diversity of TCP options in

simulation traffic

Diversity in Packet Header Fields: Packet fields such as Type of Service

(TOS) and Time to Live (TTL) take more diverse values in real time traffic.

Crud Packets: There are packets observed where checksums are correct but

some of protocol specifications violated, such as nonzero values in reserved

fields.

HTTP Requests: HTTP Requests in IDEVAL are generally in “GET url

HTTP/1.0” form, followed by optional commands and “keyword:value” pairs in

first 200 bytes of first data packet. Diversity is limited in these keywords and

commands in simulation.

SMTP Requests: Sessions in simulation are always beginning with HELO and

EHLO with 3 and 24 different arguments respectively. In real traffic, more

distinct arguments have been observed.

SSH Requests: Client version is only of one type in IDEVAL, real traffic traces

have shown that this is not the case.

These measurements may be counted as a single observation; hence it is not a

good idea to use these results as authoritative, but informative and insightful.

Another critic on IDEVAL data sets are based on self similarity of IDEVAL

traffic rates has been made by (Allen and Marin 2003). Their study show that self

similarity models of network traffic fails at night. More details of these two studies are

explained in 2.5.

2.5. Modeling Behavior of Network Traffic

 Modeling network traffic and its properties using existing statistical models have

become an interest for people. There are models and technologies developed according

to these models. Network activities were assumed to happen randomly, for sake of

simplicity, for example a set of computers, all of which use the same medium as

 17

common access channel, instance of transmission for a frame by these computers was to

be modeled with Poisson distribution (Tanenbaum 1996). Another similar case is valid

for modeling the process of arrivals, a Poisson process, which interarrival times of

events are independent (Allen 1997). However empirical evidence by (Paxson and

Floyd 1995, Leland et al. 1994) has shown that this is not be the exact case. Leland

shows pictorial evidence of self similarity using five different time scales of self

similarity of network traffic and compares with graphical models of Poisson distribution

for the same scales. Self similarity means that an object looks roughly the same on any

scale (WEB_6 2006). Fractals are of this type of objects. For indicating self similarity of

an object, Hurst parameter (denoted as H) is used. Hurst parameter of an object is 1 is if

it is completely self similar, 0.5 when it has a Poisson distribution. H=0 means the

object is not self similar. Shown that network traffic is self similar, it also implies that

events in network are not independent, revealing a long range dependency. Floyd and

Paxson have verified these results, by denying Poisson modeling, calling for a new

method of modeling. However they also show that telnet session arrivals can be

modeled using Poisson.

 In another study made by (Paxson and Floyd 97), discusses issues in creating a

simulation of a network and network traffic. There exist many parameters to consider

for creating such type of simulation but a few of them are explained there with possible

coping strategies.

2.6. Snort Intrusion Detection System

Snort is a lightweight intrusion detection system developed by (Roesch 1999,

WEB_7 2006). It is an evolving system publicly available with GNU General Public

License. In early versions Snort had limited functionality on limited number of

platforms, however now it is supported and used on more platforms with increased

functionality and effectiveness.

In addition it has been quite popular in computer security community, due to its

functionality, affordability (cost effective solution), widely applicable for various

environment and purposes, and publicly available supportive material and community.

Many textbooks on intrusion detection provide examples using Snort.

 18

2.6.1. Structure and Operational Properties of Snort

Snort uses libpcap in three of its four modes. Libpcap (WEB_8 2006) a software

library designed and used to capture packets from specified network interfaces on the

system.

Snort has four operational modes which may serve different purposes (Sourcefire 2006):

• Sniffer mode, which is simply reading the packets from network and displaying

them in a continuous stream on the console

• Packet Logger mode, which logs the packet contents to disk.

• Network Intrusion Detection System (NIDS) mode is the most complex and

configurable configuration, which allows Snort to analyze network traffic for

matches against a user-defined rule set and performing several actions

• Inline Mode: In this mode, Snort receives packets from iptables (WEB_9 2006)

instead of libpcap interface and then causes iptables to drop or pass packets

based on Snort rules that use inline-specific rule types. Iptables is a mechanism

and tool used to modify packet filtering mechanism of Linux kernel.

2.6.1.1. Snort Rules

Rules as detection technique, is both the strong and the weak point of Snort. A

simple Snort rule consists of two logical sections : “rule header” and “rule options”:

 Header section consists of four parts:

• action (alert, log, etc.),

• protocol (tcp, udp, etc.),

• source and destination (in terms of IP address and port)

Rule options section specifies descriptive features on hostile packets such as portion

of application payload content or some fields in packet headers. A simple rule for a

fictional attack is given in Fig. 2.2 below.

If this rule holds, alert will be triggered as ana action. Hostile packet may come

from any IP address and any source port. Destination IP block is defined as 10.0.0.0/24,

C class network and destination port is specified as 9999.

Rule options define that application payload content contains a specific byte string.

Last part defines informational message on hostile activity. Snort can also be used to

 19

detect weird activities in addition to detecting security and usage policy violations on

networks.

Fig. 2.2. A simple Snort rule

2.6.1.2. Snort Rule Chain

Network Intrusion Detection mode of Snort, tries to detect intrusions on a rule-

matching basis. Rules are stored and used as a two dimensional linked lists, which

connect chain headers and chain options. Common attributes of a set of rules are

represented as chain headers, aiming to increase speed of rule-matching operations.

Uncommon attributes, such as different flags on packets or payloads are linked and the

list of options are connected to chain header. Snort’s detection engine checks rules for

matching on chain headers and options (Roesch 1999). Rule chain mechanism is shown

in Fig.2.3.

 20

Fig.2.3.Snort’s rule chain mechanism

 (Redrawn, Original Source: Roesch 1999)

Snort may produce alerts, logs and warnings when a rule on a chain is matched.

Rules and counter-measures on these cases may be altered by maintainers.

2.6.1.3. Preprocessors and Output Plug-ins of Snort

 Snort can be extended by different plug-ins, thanks to its preprocessor and

output plug-in enabling architecture. Special operations such as embedding different

algorithms or additional event correlation may be added. Default snort package comes

with different preprocessors such as port scan detection, http protocol inspector,

fragmentation and flow control. Port scan preprocessor control incoming packets for

port scanning probes and creates alerts. Another preprocessor of Snort is SPADE, which

is to be evaluated in this study. Output plug-ins have different purposes such as

reporting or additional post processing over data.

 21

2.6.2. Estimates on Detection Rates of Snort

Since Snort is a rule-based system (NIDS mode is considered and compared on

this context), its detection rate and success rate depends on its rules coverage. A good

rule will help getting a high detection rate, with low false alarm rate. On the other hand,

a badly written rule will sign a higher rate of legitimate traffic as hostile. Snort will help

its users proportional to its master’s ability to tune itself for more effective usage. By

the way, estimates on the detection rate and effectiveness of whole system will be a

rough one. Snort has different rule sources available, not limited to contributors from its

user community, and Snort development team. It is also possible to subscribe for

commercial rule services from different vendors.

In this study IDEVAL 99 DataSet is used for estimating this rate, in terms of successful

detections and false alarm rate. Results and discussion may be found on Section 6.2

 22

CHAPTER 3

 INTRUSION DETECTION ALGORITHM

IMPLEMENTATIONS

3.1. Overview

Intrusion detection aims to identify hostile activity on computer systems. Since

all attacks on systems can not be modeled and identified, a range of attacks can not be

detected by signature detection techniques. However it is possible to identify hostile

activity by anomalies they create on systems or traces they leave. Detecting anomalies

for detecting intrusion activities be a useful method for intrusion detection. Anomaly

detection tries to identify events which are rare or previously unseen and unexpected

events in the environment. This may be some features of packets in network traffic,

clothes or people passing by some point. There is a rare or previously unseen event such

as a man with a Mexican hat on an elephant passing by street, or a group of dancers

dancing or a packet with some features which has not been seen before. When these

events are to be modeled, need for information about the event and similar events arise.

There is a need to define norm and a training sequence for defining what is rare. In

addition to defining norm and training sequences, there is another question about nature

of events in interest. Events, which may describe people passing, can be independent, or

dependent, a group of dancers in a carnival city passing by avenue. Predicting an

event’s probability has been an interest for people for a long time, especially modeling

purposes. There are models developed for one time predictions, such as Laplace and

Good-Turing (WEB_10 2006) methods. (Mahoney 2003) has introduced a time based

modeling method and used this time based method for detecting novel events and

eventually for detecting anomalies in network traffic derived from Laplace’s model.

This model and mathematical background is summarized in next section.

 23

3.2. Modeling Novel Events

In our everyday life we try to predict events in the future, next day’s weather,

color of next car which will pass along the street etc. We usually depend on our

observations and ignore effects of unseen events. However unseen events also have

their probabilities to happen. It is harder to accurately estimate unseen events’

probabilities, or particularly novel values. It may be thought it is a good method to use

experience from observations. However, observations will ignore events which may

happen but have zero frequency in sampling or training period. Estimating probabilities

for previously unseen events is called zero-frequency problem. Another unknown on

this problem is size of alphabet or total set of possible events.

For estimating these probabilities, the method, known as Good-Turing has been

developed by Jeffrey Good and Alan Turing. (WEB_11 2006) provides more

information on historical perspective of the method. Good-Turing estimation has been

extensively used in empirical linguistics area. On the other hand, this estimation method

needs observations to be independent (Mahoney 2003). As stated before, network

activity does not consist of independent events; instead the events have long range

dependencies in time. The process may be described as self-similar or fractal, but not

Poisson. Good-Turing estimation may not be the correct estimation method for

assigning probabilities from now on, so a different method for estimating probabilities

for novel events should be used. In addition, this method should not require independent

events.

PPM (Prediction by Partial Match) (Cleary and Witten 1984) compression

algorithm, which is an adaptive text compression algorithm, needs estimating

probabilities for symbols to be predicted. In addition overall performance of

compression is closely related to assigned probabilities for values not seen before.

PPMC – PPM Method C (Witten and Bell 1991) has been introduced and shown to be

experimentally better than other methods on estimating probabilities. For method C this

probability is defined as:

Pr (next event will be novel) = r / (n + r)

 24

where r is the number of distinct types observed so far and n is the total number of

observations. As n increases, this formula may converge to r/n.

(Mahoney and Chan 2001) provides one more coefficient for time based

anomaly modeling, the effect of time and dependence of values seen before. An

observation in which some values are consequently repeated, there is a probability of

dependence between observations. If this is the case, calculating next event’s

probability will need information about previous observations. For anomaly based time

modeling, let time amount of t has passed. Then average rate of seeing an anomaly

becomes t. After amount of time t passes it is possible to see another novel event. So,

P(novel) can be assumed as 1/t.

(Mahoney and Chan 2001) constructs anomaly score mechanism as 1/P(novel) =

tn/r applying previous formula since is constructed as P(novel) = (1/t)(r/n), where n

(total number of observations) and r (number of types seen) are counted during the

training period, and where t is the time in seconds since the last anomaly.

By an anomaly may occur during either training or testing, with the difference

that if a novel value is observed in training it is added to the set of allowed values, but if

it occurs during testing it is not. Note that in our model, P(novel) = (r/n)(1/t), which

accounts for both the baseline rate of novel events, r/n, and a time-based model for

events occurring outside the set of allowed values, 1/t. tn/r anomaly score is computed

for each attribute on observed instance. Anomaly score of all features are added as all

features are as of to be independent of each other. This anomaly scoring method will

tend to produce higher anomaly scores as anomalous events are observed less

frequently.

3.3. Packet Header Anomaly Detection

Packet Header Anomaly Detection (PHAD) algorithm is based on the anomaly

score calculation method described above. PHAD models 33 header fields as attributes,

found in Data Link (Ethernet), Network (Internet Protocol) and Transport Layer (TCP,

UDP and ICMP) (Mahoney and Chan 2001). Fields for Ethernet, IP, TCP, UDP and

ICMP Headers are shown in A.1, A.2, A.3, A.4 and A.5 in Appendix A.

All fields on the TCP/IP stack headers are not equal in size, longer fields such as

MAC Address field in Ethernet frame has been split into two three byte long fields. One

 25

byte fields such as SYN and ACK are grouped into one byte field. The list below is the

list of fields modeled on PHAD grouped by layer and protocol (Mahoney 2003):

• Ethernet header (found in all packets): packet size, source address (high and

low 3 bytes), destination address (high and low 3 bytes), and protocol (usually

IPv4).

• IP header: header length, TOS, packet size, IP fragment ID, IP flags and pointer

(as a 2 byte attribute), TTL, protocol, checksum (computed), and source and

destination addresses.

• TCP header: source and destination ports, sequence and acknowledgment

numbers, header length, flags, window size, checksum (computed), urgent

pointer, and options (4 bytes if present).

• UDP header: source and destination ports, checksum (computed), and length.

• ICMP header: type, code, and checksum (computed).

PHAD stores values in a clustered approach. If a novel value for a field arrives

during training phase, this value is merged into cluster it. If no group contains the novel

value, it is merged into the cluster which the novel value is closer to.

3.4. Application Layer Anomaly Detector

Application Layer Anomaly Detector is an anomaly detection algorithm

developed by (Mahoney and Chan 2002a). This algorithm differs from PHAD in three

points. First difference from PHAD is that ALAD algorithm uses application payload

for detecting anomalies, where PHAD observed fields of lower layer protocols. ALAD

algorithm calculates anomalies using features found in incoming TCP server

connections. Instead of using all incoming packets coming to monitored server port,

features only found in three packets are used. These are first, next to last and last packet

in communication. Their difference is that only text based application protocols are

included (e.g. HTTP, SMTP, etc.), binary protocols such as (e.g. DNS, RPC, etc.) are

excluded. Model covers at most 1000 bytes of application payload, arguments and

keywords after 1000th byte will not be included. ALAD can use conditional probability

models applied on the features, such as P (source IP | destination IP) instead of using

 26

only single probabilities, such as P (source IP). Features used to calculate conditional

probabilities may be arbitrarily selected.

ALAD uses six features on reassembled TCP streams. These are:

• Source IP address, which is also the client

• Destination IP address, which is also the server

• Destination port number of the server application, which is related to service

protocol.

• TCP Flags of first and last two packets, e.g. SYN, SYN/ACK or FIN/ACK.

Flags are used for modeling state of TCP connection.

• Application keywords, the first word on a command line, such as a GET, POST

or

HEAD in a HTTP request

• Application arguments, the rest of request command delimited by a line feed,

such as

“/somefile.html HTTP/1.1”, “Host: www.iyte.edu.tr” or “User-Agent: Mozilla/5.0”

in a HTTP request.

Selecting features to be used in calculating conditional probability calculations has a

large space of probable combinations of features. For example, in presence of 5

features, there exist 32 combinations (25 = 32) of features for antecedent event which

contains no feature choice to all features choice. For consequent event, almost the same

combination space applies, but alternatives which include chosen features for

antecedent event are eliminated. Combination space grows exponentially as more usable

features are considered for detection. It is obvious that all combinations of selected

attributes and probabilities will show different detection rates. Selecting right

combinations of probabilities will certainly help getting good detection rates and lower

false alarm rates.

ALAD uses the same time based modeling model with PHAD. The same anomaly

score detection formula, anomaly score = tn/r, applies for ALAD. Scoring is made on

observations in testing phase, using information obtained in training phase. In

conditional model, separate t, n and r values are maintained for each distinct value of

antecedent event, where n holds total number of observations that consequent event also

 27

happened, t is the time past since last anomaly, r is number of distinct values for the

consequent event.

3.5. Learning Rules for Anomaly Detection

Learning Rules for Anomaly Detection (LERAD) (Mahoney and Chan 2003a) is an

anomaly detection algorithm which generates rules from arbitrary combinations of

nominal attributes (Attributes are denoted with Ai and values for the attributes are

denoted with vi). This algorithm does not need selecting rules; instead it generates and

selects itself. It uses a rule mechanism composed of a set of constraints on attributes and

defines set of allowed values for another attribute under these constraints (Mahoney

2003). Rules have the form:

 A1 = v1 and A2 = v2 and … Ak = vk => Ak+1 ∈ Vk = {set of allowed values}

Chosen rules are the ones which produce high values of n and low values of r, where

n stands for number of constraints in antecedent events and r stands for number of

elements for the set of allowed values for Ak+1. Rules are generated by observing

instances in training session. Choosing the rule step has generation and elimination

steps. This step defines normal behavior and rule set for normal. In testing phase

anomalies for deviations from normal are to be found by checking instances for fitting

these rules. If a rule is violated, then an anomaly score is calculated using the same

formula as of PHAD and ALAD; anomaly score = tn/r. Total anomaly score is

summation of anomaly scores for each violated rule. However there are separate n, r and

t values for each rule. Time variable t is calculated from the last anomaly either in

training or testing. Instances which do not violate a rule take 0 as anomaly score.

LERAD uses attributes similar to ALAD, but excludes binary protocols and makes

use of keywords and certain information found in lower layer protocol headers.

3.5.1. Rule Set Generation

LERAD reviews training data and creates candidate rules using a randomized

algorithm and tests them with more training data. It selects random pairs of instances

from set of training instances. Using the values for attributes in chosen instances it tries

to generate rules which produce n/r rate with 2/1. An attribute common in the training

 28

pair becomes consequent event. Consequent attribute can take all or some of other

attributes as antecedent. If more than one attribute is common, more rules can be

generated. The more attributes exist; the more rules can be generated using same pair of

data. This leads to a large set of rules which includes redundant and weaker rules.

3.5.2. Rule Elimination

Generated rule set may contain rules which may be superseded by other rules, in

terms of their capability to cover training instances. These rules actually don’t add extra

capability for prediction to current rule set, thus they may be considered to be

redundant. This leads to general rules with fewer numbers, instead of specific rules in

vast numbers. There is another set of rules which are not redundant but perform poorly

on detections. The rules which generate false alarms towards to the end of full training

set are considered to perform poorly. This is due to nature of the attributes. Some

attributes will have vast amounts of values increasing over time with a significant rate

(e.g. names of ships visiting an international port), whereas some attributes will

converge to a value set and will almost the same values over some time (e.g. names of

ships coming to a port near a lake). Performance of rules is benchmarked by checking

alarms they create at some limited time at the end of training phase. Since training phase

doesn’t contain traffic with attacks, bad rules will tend to produce more anomalies (i.e.

false alarms in this context). Poor rules are removed before testing phase. Fig. 3.6 shows

a graphical demonstration of good and poor rules growth rates and quality.

 29

Fig. 3.1.Growth rate for rules in terms of performance

 (Source: Mahoney and Chan 2003a)

3.6. Network Traffic Anomaly Detector

Network Traffic Anomaly Detector (NETAD) (Mahoney and Chan 2003b) is an

anomaly detection algorithm, which detects anomalies in non-novel events in addition

to detection of novel events. Some of non-novel events may also be considered

anomalous if they occur sufficiently rare and not recently in this continuous modeling

algorithm. This algorithm is more suitable for real world online systems because of its

ability to adapt into changing nature of traffic in addition to its capability to accept

mixed traffic (i.e. traffic which contains both attacks and attack-free traffic) in learning

phase.

NETAD, similar to PHAD, works packet base, but uses only start of inbound client

session traffic, unlike PHAD. This makes a small percentage of overall network traffic;

ignoring rest of the traffic is some sort of trade-off for detecting anomalies in outbound

responses. NETAD filters certain types of traffic since it is not used. These types of

traffic are (Mahoney 2003):

• All non-IP packets (e.g. ARP, IPX etc.), since alarms are identified with their IP

addresses

• All outgoing packet traffic.

• All TCP streams that begins with SYN-ACK.

 30

• UDP packets to port number higher than 1023 (response to a local client)

• TCP packets with sequence numbers more than 100 past the initial sequence

number (i.e. after the first 100 bytes of incoming client data).

• Packets addressed to any address/port/protocol combination (TCP, UDP, or

ICMP) after the first 16 packets in 60 seconds (to limit bursts of UDP or ICMP

traffic).

NETAD only needs first 100 bytes of the inbound IP traffic and uses first 48 byte

out of 100. First 48 bytes contain IP and TCP Headers in addition to first 8 bytes of

application payload. In presence of non-empty IP and TCP option fields, payload

contents are not covered either. However NETAD considers each byte is an attribute,

any shift in fields or values are simply out of interest.

NETAD model covers 9 types of packets. These nine types of traffic lead to 432

rules (Mahoney and Chan 2003c) in the same form of LERAD’s rules. Nine models

represent commonly exploited protocols in IDEVAL data set. The following rules are

selected for NETAD, according to experimental results:

1. All IP packets (no antecedent).

2. All TCP packets (if protocol = TCP (6))

3. TCP SYN (if TCP and flags = SYN (2))

4. TCP data (if TCP and flags = ACK (16))

5. TCP data for ports 0-255 (if TCP and ACK and DP1 (dest. port high byte) =

0)

6. telnet (if TCP and ACK and DP1 = 0 and DP0 = 21)

7. FTP (if TCP and ACK and DP1 = 0 and DP0 = 23)

8. SMTP (if TCP and ACK and DP1 = 0 and DP0 = 25)

9. HTTP (if TCP and ACK and DP1 = 0 and DP0 = 80)

Anomaly score is calculated by summing anomaly scores of a packet for each rule.

Anomaly score of a packet for a rule may be calculated one of the methods explained

below:

Novel values only: anomaly score = tn/r. n is number of training packets satisfying

the prior event, r is number of values seen in training for that field. t is the time

passed since last anomaly either in training or in testing.

 31

Validation weighed novel values: anomaly score = tna/r where na denotes number

of packets satisfying the antecedent from the last training anomaly to end. This gives

more weight for “better” rules than “good” rules.

Fast Uniformity Detection: Score = tna(1 – r/256)/r. This method helps degrade

effect of rules for fields, in which most of possible values (out of [0,255] period)

are already observed during training stage.

Non-novel values: Score = tin/(ni + 1), where ti is the time (packet count, training or

test)

since the value i was last seen, and ni is the number of times i was seen in training. It

reduces to tin for novel events and ti / fi (with a Laplace approximation of fi = ni/n

where n stands for overall packet count) for non-novel events.

Weighed model: Score = tin/(n1 + r/W), where W = 256 is an experimentally

determined

weight emphasizing novel events. It reduces to Wtin/r for novel events and

approximately

ti/fi for non-novel events.

NETAD combined model: Score = tna(1 – r/256)/r + tin/(n1 + r/W). Combined

model is sum of weight model and fast uniformity detection models (Mahoney

2003).

3.7. Statistical Packet Anomaly Detection Engine

Statistical Packet Anomaly Detection Engine (SPADE) (Hoagland 2000) is pre-

processor plug-in developed for Snort. It had been actively developed by Silicon

Defense, however due to financial problems, development ended in 2003. Since its

source code was copyrighted with a free software license, source code has been open.

Source code maintenance and distribution is now performed under Bleeding Edge Snort

community (WEB_12 2006) sponsorship.

 32

SPADE looks for anomalies in traffic by its task-specific detectors. SPADE can not

actually determine a packet is hostile or friendly, but can say how unusual or how

anomalous a packet is. SPADE, similar to PHAD, only monitors network and transport

layer fields. SPADE has 5 different detector modes:

• Closed Destination Port (closed-dport): closed-dport detector watches TCP and

UDP traffic for use of closed or rarely used destination ports on home (local)

network. This detector may be useful for detecting probing attempts. Closed-dport

detector is the oldest detector of SPADE. Waiting period can be defined for this

detector type, which helps removing passive FTP issues. Alerts are fired if a closed

destination port replies as RST packet or ICMP unreachable response message.

Third case covers anomalous but open destination ports which are accessed rarely.

SPADE has four different probability modes (probmode option) for this detector

type:

1. Mode 0: a Bayesian network approximation of P (sip, sport, dip, dport)

2. Mode 1: P (source IP, source port, destination IP, destination port)

3. Mode 2: P (source IP, destination IP, destination port)

4. Mode 3: P (destination IP, destination port) (this is the default choice)

• Dead Destination (dead-dest): dead-dest detector watches traffic for use of IP

addresses that are not used actually. Some worms use an exhaustive try-fail

technique to spread in local and remote networks. This detector may help detecting

these activities.

• Odd Destination Port (odd-dport): This detector watches traffic for port usage

which differs from existing normal usage patterns. This detector may help

discovering recently installed covert channels, special backdoors on possibly

compromised machines.

• Odd Port Destination (odd-port-dest): This detector reports connections

performed by clients on servers using unusual port numbers. This may help

discovering compromised hosts on home network.

 33

• Odd Type Code (odd-typecode): odd-typecode detector reports unusual ICMP

traffic (in terms of ICMP type and code values) observed on network.

SPADE defines its normal usage by maintaining probability tables for monitored

events. Records are weighted according to their occurrence time; newer events have

more weight and older events have less weight on calculations. According to its

probability tables all packets received by SPADE get an anomaly score.

There are two anomaly score calculation methods used in SPADE (Biles 2006).

These are:

• Raw Anomaly Score: This score is calculated quite straightforward using

formula

A(X) = – log 2 (P(X))

Raw anomaly score can be confusing to remember and benchmark with similar

scores. To overcome this confusion, relative anomaly scoring method is introduced.

• Relative Anomaly Score: Relative Anomaly Score tries to remove confusion

caused by raw anomaly score. Relative AS is calculated simply by dividing raw

anomaly score by highest possible raw anomaly score. This method will always

produce anomaly values between 0 and 1, so it is easier to comment on rarity of

the event.

3.8. Results of Previous Studies

Five anomaly detection algorithms, namely PHAD, ALAD, LERAD, NETAD and

SPADE, are introduced in this chapter. These five algorithms have been trained and

tested using IDEVAL data set and produced different results. Table 3.1 shows

comparative results of detection performance of each algorithm tested on IDEVAL data

set. Data is based on (Mahoney and Chan 2002b) and (Mahoney and Chan 2003c).

 34

Table 3.1.Comparison of Detections of Selected

 Algorithms on IDEVAL Data

Algorithm/System Number of Detections
(at 100 FA)

PHAD 54
PHAD + ALAD 60
LERAD (avg.) 114
PHAD + ALAD + LERAD 85
NETAD 132

During development stage of this study, it has become obvious that there exist

simulation artifacts in IDEVAL data, which could result misleading results. For

example TTL field is considered an artifact since it doesn’t change over time and has

almost the same values in all simulation. It is far from reflecting real-world case. Even

though background of IDEVAL data seems realistic generally, there are problems to be

uncovered and probably there is more to uncover. Analysis of 1999 Evaluation data set

has been made and revealed other artifacts found in simulation (Mahoney and Chan

2003b).

 35

CHAPTER 4

DATA COLLECTION OPERATION

In Chapter 3, five algorithm implementations and their working principles are

introduced. These implementations were tested on IDEVAL 99 Data Set and local data

collected from a server from researchers’ university. To test these algorithms with a

different data, another data set is created with efforts of Izmir Institute of Technology

(IZTECH) Computer Application and Research Center (CARC). This chapter

introduces and describes some fundamental properties of local data set, provides

comparison with other datasets.

4.1. Overview

There are about 2000 computers working in a weekday in IZTECH campus,

serving as clients and servers. Client computers are used for accessing the Internet and

different servers in campus network. Users access Internet via a router which connects

whole campus network to Internet Service Provider (ISP). There are two IP address

blocks used in campus network, one real, one virtual. Real IP address block is generally

used for servers on campus allowing to be accessed from the Internet. Virtual IP address

block, which contains addresses available for private uses of enterprises, are used to

connect clients to the Internet. These computers are not accessible from outside of the

campus. These clients connect to the Internet via a gateway. Table 4.1 shows these

address blocks and their properties

Table 4.1.Available IP address blocks in IZTECH campus

Network Real/Virtual Assignment Usage

193.140.248.0/22 Real Assigned by ISP Servers and Clients

10.10.0.0/16 Virtual Free for private uses Clients

 36

4.2. Data Collection Environment and Properties

 Data collection operation is performed by a dedicated computer installed by

IZTECH-CARC personnel, between 04.06.2006 and 04.17.2006 for sampling from

servers for data inspection and intrusion detection research purposes. Data consists of

sniffed network traffic of four servers located in campus, each of which has different

purposes and operating systems. List of servers and their operating systems are shown

in Table 4.2.

Table 4.2.List of servers, whose traffic has been collected.

Server Name Goal Operating System
bbsserver - Solaris
likya - Linux
gulbahce - Linux
ftp file transfer Windows NT Server

The servers and the sniffer computer are connected to the same network switch.

All servers are connected with a 10/100 Mbit Ethernet card. All traffic of the servers

was cloned into sniffer’s port using “port mirroring” feature of network switch.

Simplified architecture of data collection operation and campus network is shown in

Fig. 4.1.

Fig. 4.1.Simplified architecture of campus network and data collection operation

 37

Traffic collection starts in 04.06. 2006 at 14:32:14 and ends in 04.17.2006 at

17:14:16. It spanned in 12 days, but collected traffic data is almost 11 days long, takes

space about 39 GB. Whole data is not is saved as a single file, instead divided into

numerous parts with different sizes. These files were reorganized to reflect daily traffic,

using a patched version of tcpslice program. Tcpslice is a program is used to perform

cut and paste operations on fragments of network traffic data files. Detailed information

about these such as size and numbers is given in Appendix B. Main findings and certain

properties of dataset are described in Chapter 6.

 38

CHAPTER 5

DEMONSTRATION OF ALGORITHM

IMPLEMENTATIONS

PHAD, ALAD, LERAD (both variants), NETAD and SPADE algorithms are to

be tested using IDEVAL and data collected from IZTECH campus. PHAD, ALAD,

LERAD and NETAD are standalone applications, SPADE is a preprocessor plug-in

developed for integration with Snort. This chapter describes demonstration process of

these implementations.

5.1. Testing Environment and Tools

5.1.1. Testing Environment

Hardware: Tests were made on a PC with Pentium IV 2.9 GHz (with Hyper Threading

support) processor and 1GB of RAM.

Operating System: Fedora Core 4 with kernel version 2.6.11-1.1369_FC4.

5.1.2. Testing Tools

Following software packages were used for evaluation:

• tcpdump tool version 3.9.4

• Libpcap packet capture library with version 0.9.4 for individual operations

• Snort lightweight IDS version 2.4.2 with SPADE - Integrated tarball version

• Ethereal version 0.99.0 with libpcap version 0.8.3. This older version of libpcap

did not have any version conflicts with latest version

• Source codes for PHAD, ALAD, LERAD, NETAD, EVAL and other

supplemental material provided by (WEB_14 2006)

• gcc compiler v.4.0.0 20050519 (Red Hat 4.0.0-8)

 39

5.1.3. Modifications on Configurations and Programs

5.1.3.1. Configuration of Snort and SPADE

Registered User Release of Snort rules available as of May 25 2006 are used.

Default configuration is modified to include more rules in numbers, with allowing

minimum rules about non-hostile activities, such as online gaming or IRC chat. Default

running configurations of preprocessors are not changed except addition of SPADE

configuration lines. 030125.1 version of SPADE is used.

 Snort’s and SPADE’s “home network” settings were modified to reflect IP

address blocks of evaluation networks. No extra rules have been written to adapt

specific properties of networks. No special tuning operation was performed on Snort

except changes explained below. Following rule sets were excluded on both operations:

• chat: rules for detecting IRC and instant messaging (IM) activity such as MSN

• multimedia: rules for detecting various multimedia material transfer

• p2p: rules for detecting peer to peer networking activities such as file sharing

• experimental: experimental rules, which was already empty in evaluation

• porn: rules for checking sexually explicit material on content

In IDEVAL scenario, servers are remotely monitored by remote Air Force

computers. Two SNMP rules and one other rule caused more than 40000 alerts in a

single attack-free day and hence they were disabled. The disabled rules are as follows:

• “Web bug 1x1 gif attempt” alert (web bug is a 1x1 gif file used for tracking page

visitors’ trends (WEB_15 2006))

• “SNMP public access udp” alert (Simple Network Management protocol is

designed for remote monitoring and management, which generally uses UDP as

transport protocol).

• “SNMP request udp” alert (a SNMP request is made)

SPADE had one detector open with following configuration:

• Detector type: closed-dport

• TCP Flags: synonly (only SYN flag is set)

 40

• To: home (packets are destined to home network clients)

• Wait: 3 (Determines time out period for a host to reply an incoming SYN packet

)

• Protocol: TCP

• Probability Mode: 3 (the probability model: P (dest. IP, dest. port), explained in

section 3.6)

All alerts (saved into a text file named “alert”), logs (saved into a binary file named

Snort.log.x where is a positive integer, indicating startup time in Unix time format) and

SPADE state files (spade.rcv) are logged into /var/log/snort directory.

5.1.3.2. Modifications on Algorithm Implementations

 Original source code of PHAD failed to process IZTECH dataset, because of

byte order difference problem (WEB_16 2006). IDEVAL data was collected and saved

on big-endian machines (Haines et al. 2001). Original source code could only process

big-endian data. Since IZTECH dataset was collected on a PC (with 80x86

architecture), it is saved as little-endian. Modifications were made to original source

code and tests were performed to check both accuracy of modified version and

consistency with original program. Modified versions of the source code are presented

in a CD provided with this study. Contents of the CD are in Appendix C.

5.2. Training Systems

 Snort did not need any training, because of being a signature based system.

SPADE has no prior training period, for first run. In every run SPADE records

observations for monitored activities, after 50000 updates. At the end of each running

session, SPADE records its current state, which holds statistical information. SPADE

uses incoming packets provided by Snort and needs no extra preprocessing for both

training and test periods. At each start of Snort, it searches for state file. Snort logs and

alert files were relocated for further processing in order to store separate alert files for

different days. SPADE state files were not relocated for consequent evaluations for

members of the same dataset.

 41

 PHAD and other algorithms were trained using IDEVAL data set’s attack free

traffic provided for systems training. In fact, real time traffic can contain novel attacks.

For algorithms which can accept mixed traffic, all IDEVAL traffic is used.

 PHAD, ALAD, LERAD and NETAD are standalone applications which run

using given parameters from command line. PHAD takes two primary inputs; training

time in seconds, list of data files. Input files are ordered chronologically. Training phase

starts from the instance of earlist packet in first data file and spans as long as given

training time parameter. Each packet after training period ends is used as test data.

 ALAD, LERAD and NETAD have a two pass approach. First pass covers

preparation of data for processing, such traffic filtering, keyword or feature extraction

from data files, etc. There are three supplemental programs used for data preparation.

These are

• te: traffic extraction utility, extracts TCP streams from tcpdump files.

• a2l.pl: a perl script which converts output of te to LERAD compatible format

• tf: traffic filtering program

 ALAD uses interim files provided by te as data. It takes two parameters, one for

training data file and other for test data file, both of which are interim files. Output is in

sim format.

 LERAD uses data files similar to ALAD. ALAD compatible files are converted

for use of LERAD using a2l.pl. Outputs are text files. LERAD uses three parameters;

first two is similar to ALAD, these are training and testing files. Third parameter is

random number seed - required for LERAD's randomized algorithm. Another variant of

LERAD uses interim data files generated using tf.

 NETAD also uses data files generated by tf. Since training period is hardcoded

in original version, it does not use external parameters other than training and test file

names.

5.3. Testing Systems

Detection performance operations on IDEVAL were performed by EVAL

program, which is compatible with original evaluation detection criteria. For

demonstration on real data, Snort is used for benchmarking since there is not an

available evaluation program for analyzing live data similar to EVAL. A portion of

 42

IDEVAL training data is used for training systems for algorithms which require attack-

free data. In addition, a portion of real data is used for testing after training.

 43

CHAPTER 6

RESULTS AND DISCUSSION

6.1. Findings on IZTECH Dataset

 There are significant differences in simulated traffic of IDEVAL data set and a

real traffic data. Some of simple and significant differences between IDEVAL, IZTECH

and FIT data sets are described in the following sections. Since FIT data is not publicly

available, an available source of statistical information for this dataset is (Mahoney and

Chan 2003c). This data source is served as main tool for making comparisons. Ethereal

software package tools (tethereal and capinfos) and Snort was used to extract statistical

information from datasets. Graphics are generated using Microsoft Excel.

6.1.1. Description of Collected Data

6.1.1.1. General Properties

Data set contains about 74 million packets and takes 39 GB of disk space. Daily

distribution of collected packets and size of traffic data is shown on Fig. 6.1.

Collected data is almost continuous, except a 50 min. gap in Apr 7 2006. Average

bandwidth usage has been 339 Kbits/sec for overall traffic. Data rates of individual

samples vary between 40 KBits/sec and 20 Mbits/sec. Average bandwidth usage for

days are shown in Fig. 6.2. Average packet size of samples varies between 324 and 691.

Daily averages for packet size is shown in Fig. 6.3. Most common protocols on daily

traffic are shown in Fig 6.4 and 6.5.

 44

Distribution of Data and Packets

0
2.000.000
4.000.000
6.000.000
8.000.000

10.000.000
12.000.000
14.000.000
16.000.000

6 7 8 9 1011121314151617

Days

P
ac

ke
ts

0,00
1.000,00
2.000,00
3.000,00
4.000,00
5.000,00
6.000,00
7.000,00
8.000,00

D
at

a
S

iz
e

(in
 M

B)

Packets
Size

Fig. 6.1. Daily distribution of data and packets

Fig.6.2 Daily data rates in data set

Average Data Rate

0
100000
200000
300000
400000
500000
600000
700000
800000

6 7 8 9 10 11 12 13 14 15 16 17

Days

bi
ts

/s
ec

Average Data Rate

 45

Average Packet Size

0
100
200
300
400
500
600
700
800

6 7 8 9 10 11 12 13 14 15 16 17

Days

By
te

s

Packet Size

Fig.6.3.Average packet size graph for data set

Http Protocol Usage

0

5000

10000

15000

20000

25000

30000

6 7 8 9 10 11 12 13 14 15 16 17

Days

Se
ss

io
ns

Http Sessions

Fig.6.4.Daily distribution of HTTP traffic

 46

Protocol Usage

0

500

1000

1500

2000

2500

6 7 8 9 10 11 12 13 14 15 16 17

Days

Se
ss

io
ns ftp-data

SMTP
microsoft-ds

Fig.6.5.Daily distribution of other three frequently used protocols

6.1.1.2. Intrusion Activity

At first glance, collected traffic may seem to be relatively clean. However after

careful examination, it has become clear that attack patterns exist and distributed among

all data. Only one of 43 data file was found to be clean, however this may be considered

trivial, since file contains about 497 packets recorded in 10 seconds and takes only 90

KB in disc.

Evidences of probing attacks can be found in almost every data sample. Most

probes were checking for open SQL Server ports (port no: 1433). Most frequently

scanned ports are given in Table 4.3 with their possible attacker and application.

Table 6.1. Most frequently scanned ports and count of instances

Port Application (Legitimate or Malicious) and Possible Reason Probe Count
1433 Microsoft SQL Server 2230

445 Microsoft-ds - Server Message Block (SMB) and worms 2181
139 Netbios Session Service and Trojans 2132

80 WWW and various Trojans 2069
1080 SOCKS Proxy Server, trojans, worms or spammers 1133

15118 dipnet trojan backdoor, worms 746
8080 www alternative port, trojans and backdoors 663
5900 Real Virtual Network Computing (VNC) 659
3372 Microsoft Distributed Transaction Coordinator (DTC) 455

 47

22 Secure Shell (ssh) and Trojans 406
1026 Windows Remote Procedure Call (RPC), worms Unknown
1027 ICQ Instant messenger Unknown

Two ports have experienced unknown number of probes. This is due to

uncertainties in probing activities and imprecise nature of port-scan preprocessor of

Snort. Probe counts are obtained after processing of Snort alert files. The port-scan and

Spade preprocessor alerts have alerted for different activities, sometimes overlapping.

There are traces of spammer activity in traffic, looking for badly configured mail

servers for relaying mail messages or directly sending messages to server. Probing for

sending spam may be considered as commercial activity employing illegal methods.

There are two types of probes: probes which focus on certain port on a range of

computers and probes focus on open ports of a specific computer. In addition there are

other probes, such as ping probes for various IP address ranges, usually used for

checking whether a specific computer is connected. These ping and port probes may be

used together to cooperate by attackers.

There is an attack wave between 04.13.2006 to end of data collection directed to

open port 3306 on one of servers. This port is used by MySQL Database Management

System. Remote attacker has tried to guess root password of the server. Total number of

detected trials in that period is 663451. There is not an evidence of success of attacker,

since no data exists about successful login and probing operation was underway at the

time when data collection ended. It should have ended before end of collected data. Port

3306 has also been probed in port scans, but not as much as other ports. In addition

there are other password trials in other days, but numbers of consecutive trials are much

lower.

6.1.2. Comparison with IDEVAL Dataset

IDEVAL dataset is produced after a simulation effort, made in 1999, according

to statistical information collected in 1998 from various US Air Force bases. Content of

simulated traffic differed from our traffic in many ways, such as data and packet rates,

protocols etc.

IDEVAL traffic data has a smaller data rate and packet size, producing a smaller

data set. Generated traffic, which covers only weekdays of 5 weeks, contains about 52M

 48

packets and takes about 10.8 GB of space. Daily distribution of traffic in IDEVAL is

shown in Fig. 6.6.

Daily Amount of Traffic

0,00

200,00

400,00

600,00

800,00

1000,00

1200,00

1 2 3 4 5 6 7

Week Days (Day 6 and 7 are for extra days in
W3)

M
B

Week 1
Week 2
Week 3
Week 4
Week 5

Fig.6.6.Daily traffic distribution in IDEVAL

IDEVAL traffic is different from our dataset in many ways:

Synthetic Traffic: IDEVAL traffic is created in laboratory environment using

scripts and other sorts of programs. Properties of the traffic which is to be synthesized is

based on statistical information that came from military based in different locations. Our

traffic is collected from a campus network and is generated by users in campus, people

and software accessing the servers. These large communities with different things in

mind have helped to create a traffic record with an unrepeatable and surprising nature.

Age and Span: IDEVAL data sets have been built according to statistical data

which belongs to 1997 (Haines et al. 2001), reflecting trends in that time. It spans about

6 weeks (Extra days of Week 3 is actually fourth week of March) and is recorded into

daily partitions. Weekend days are excluded in simulation. However our recorded traffic

spans 12 days, including weekends and almost continuous.

Different trends: IDEVAL traffic is created based on different trends and usage

policies. By time some of these policies or trends change. For example using finger to

check whether a user exists in a mail server before sending a mail is a trend in IDEVAL

traffic. However finger action has long been discouraged from practical usage

(WEB_13 2006). Visited sites and tools may change place to place and people to

 49

people. This is another difference. In IDEVAL traffic there is no crawler activity,

however these agents have become most common visitors of websites.

Daily Data Size and Packet Counts: Daily data size of IDEVAL is very

different from our traffic. It has smaller data size, lower number of packets and thus a

lower bandwidth usage. IDEVAL case may be considered as unrealistic for today’s

Internet. As it is obvious in Fig. 4.3 and 4.7, highest traffic load in IDEVAL is about

25% of lowest traffic load in our dataset. However this information should not be

considered decisive; since more real time data may help denying this proposition.

Protocol Distribution and Variety: There are similar protocols used in

simulation and in real world, these are ARP, IP, TCP, UDP, ICMP, SMTP, POP3,

FTP,FTP-DATA, IMAP, nbname, nbdgram protocols. No IMAP traffic was captured in

campus but had different other protocols running such as Spanning Tree Protocol (STP),

nbss, Microsoft-ds and non-IP based protocols. There is limited use of telnet and ssh in

traffic.

Traffic Scope: IDEVAL network traffic has been collected by two sniffers,

labeled as inside and outside, recording all traffic passing by. For inside traffic, it covers

communication between hosts, too. Our collection has a limited scope of traffic that is

about a group of servers, connected to same switch. Our approach excludes clients’

activities in general except their communication with sniffed servers.

Traffic Regularity: 5 weeks of synthetic data has about 40 million packets but

none of these contain bad checksums, either IP or TCP. Our samples, which covered

more than half of overall traffic, has bad IP and TCP checksums in different numbers,

but with quite low percentage in overall data. Bad checksum probability is about 10-5.

Discarded Packets: On evaluation phase, Snort and SPADE has been used to

search intrusions in IDEVAL data for evaluating detection rates. The same procedure

was also applied to IDEVAL data. During inspection Snort discarded 18 packets in our

dataset. However Snort did not discard any packets when inspecting IDEVAL data.

Snort discards only packets which could not be parsed. Reasons for this behavior are not

clear, malformed packets exist in our dataset. It is also unknown that whether this is a

feature or possible bug of the dataset.

Variety in Protocol Usage: IDEVAL dataset has only GET commands in HTTP

conversations. However this is unrealistic when compared to our results. There are other

commands used, even much less frequent, such as POST, HEAD, OPTIONS,

 50

PROPLINK, PUT and CONNECT. In addition, available protocol versions are 1.0 and

1.1, this due to the fact that our data is recorded in 2006.

6.1.3. Comparison with FIT Dataset

Dataset used in (Mahoney, 2003b) has been collected from a departmental

server, which served web pages and several accounts. Dataset was collected in

weekdays over 10 week period.

Our dataset was collected using feature of the network switch; this helped

monitoring more than one server in dataset. Department server is said to be behind a

firewall, providing additional protection for probes coming from external probes and

possible exploit attempts. Our dataset has more probes and brute force attacks included.

For HTTP traffic our observations are similar, more keywords for HTTP exist:

FIT group has experienced more values for http commands in their dataset,

found 9 commands in data (GET, HEAD, POST, OPTIONS, PROPFIND, LINK and

two malformed) where GET is dominant over others by 99%. We have observed PUT

and CONNECT commands as different commands but not observed any LINK in

199302 requests. 99% percent of commands were GET.

Similar points and significant differences between three datasets are discussed.

Two of these datasets were collected from real networks. Since second real traffic

dataset was not publicly available, only source of information has been used for

comparison. Third dataset, IDEVAL, was other available dataset but differed from other

two, because of its synthetic nature.

6.2. Results of Demonstration of Algorithms

In this study, performance of two anomaly detection algorithms, one as a

standalone implementation, one as a preprocessor plug-in integrated with Snort was

demonstrated. In original study of (Mahoney and Chan 2001), results were promising

but on further studies it was revealed that results could be misleading because of

existing artifacts in simulation (Mahoney and Chan 2003b) – which could hide real

performance of algorithms and systems.

 51

IDEVAL 99 data set has been the most comprehensive and publicly available

work in evaluation of intrusion detection systems. Dataset included real attacks on

hosts, with simulated background traffic, created with statistical information from real

production environments. Further studies showed that there are issues with possible

bugs, probably caused by idiosyncrasies of simulation. There are problems with its

nature and structure of its compatibility of modern internets. Statistical data used for

IDEVAL sets belonged to 1997, compatible with its time, but not with today’s network

trends and traffic. New trends, technologies and threats have emerged by time after

1997, but nature of this dataset prevents development of anomaly detection algorithms

which will fit with today’s world.

For evaluation of algorithms in a real network environment, network traffic data

was collected from servers of our university. Collected data has shown significant

differences with simulated data. Real dataset contained real attacks distributed into data,

making it harder to use with clean-data sensitive algorithms. This is a certain

disadvantage for systems with learning based approaches. Reducing number of these

attacks may be succeeded with more restrictive firewall and network usage policies.

SPADE algorithm, integrated and evaluated with Snort, had difficulties in

detecting intrusions, producing so many alerts, some of which were false alarms. False

alarms of Snort came from http-inspect preprocessor, which comes with standard

package and is started with Snort by default. It produced false alerts on requests of files

which included letters encoded in URL format (e.g. using “%20” instead of space

character), which contains characters found in Turkish alphabet and not in English

alphabet, such as ğ, ş and İ. Another preprocessor named portscan also produced

relatively higher amount of false alerts, which is thought to be related for being untuned.

Snort rules were configured to run with minimum changes, closer to default

configuration. Snort and other intrusion detection systems need monitoring and

modifications from default configuration when deployed in real environment. This may

be thought as a form of training to reduce number of false alerts.

SPADE is a useful tool, especially for detecting probes to unusual ports.

However it has a serious flaw: it has no correlation mechanism between events in a time

window, but portscan has. For example, when a probing event occurs for x ports on y

machines, SPADE will produce (x*y) alerts if all packets are over defined threshold

level. A similar tool, port-scan preprocessor has correlation capability and will produce

only one alert for this probing activity. Approach of port-scan detector is better than

 52

SPADE in detection of closed ports, even though alerts were overlapped in evaluation.

Spade produced many alerts in evaluation with both datasets. In availability of port-scan

preprocessor, closed-dport detector is not necessary.

PHAD algorithm was evaluated after Snort and SPADE. Special modifications

were made on original code. PHAD had problems in evaluation with real time data.

PHAD algorithm failed to fit test environment due to its rigidity and tight bounds to

underlying structure. Another reason is duration and difference of training data.

6.2.1. Snort and SPADE on IDEVAL

Snort and SPADE data has been used to test IDEVAL data. It is aimed to

estimate detection and false alarm rates on following configuration. Snort and SPADE

settings of this test have been explained in 5.1.3.1. Snort and SPADE records all alerts

into one single text file. Evaluation of detection rate is made using EVAL where all alert

data must be entered in form:

 ID Date Time Victim IP Alarm Score Comment

0 03/29/1999 14:33:12 170.70.71.73 0.854322 # notes

ID value has no specific meaning and is ignored in evaluation; date is given in

MM/DD/YYYY format; victim’s IP address in dotted decimal notation. Alarm score

determines certainty of attack. Higher alarm score means, this activity has higher

probability of being hostile. Alarm score starts from 0. Attacks are reported in Eastern

Standard Time (EST) for first four weeks. Valid time zone for fifth week is Eastern

Daylight Time. For converting snort alert files into sim format, all alarms were given

alarm score 1.000000.

Snort alert files were processed using a conversion program to be compatible

with input format of described above and daily alert outputs were converted to sim files.

Each alert were given score 1.000000. On first evaluation, each sim file was evaluated

separately using EVAL. In second evaluation, all created sim files were merged into a

larger file. The merged sim file was used for evaluation with EVAL, in second

evaluation step. Tables 6.2 and 6.3 shows number of true detections and alerts for

training and test weeks. Figure 6.7 shows Detections/False Alarms Threshold Level

 53

curve created for detection rates of Snort and SPADE with different tolerance of false

alarms.

Table 6.2. Number of alerts, true detections and packets

 in training data

Week/Day Alerts Attacks Detections Packets
W 1 / D1 220 0 0 1.495.808
W 1 / D2 274 0 0 1.240.260
W 1 / D3 563 0 0 1.730.292
W 1 / D4 476 0 0 1.951.904
W 1 / D5 605 0 0 1.487.186
W 2 / D1 915 7 0 1.755.742
W 2 / D2 3965 9 2 1.588.037
W 2 / D3 11194 6 0 1.014.119
W 2 / D4 18760 9 1 1.566.930
W 2 / D5 17487 12 0 1.365.264
W3 / D1 590 0 0 2.110.223
W3 / D2 762 0 0 1.834.417
W3 / D3 949 0 0 1.853.383
W3 / D4 872 0 0 1.562.141
W3 / D5 858 0 0 1.638.336
W3 / D6 981 0 0 1.683.381
W3 / D7 332 0 0 2.157.318
Total 43 3

Table 6.3.Number of alerts, true detections and packets

 in test data

Week/Day Alerts Attacks Detections Packets
W4 / D1 297 17 3 1.651.481
W4 / D2 0 12 0 0
W4 / D3 1134 19 6 1.768.940
W4 / D4 1220 10 3 2.359.214
W4 / D5 1119 17 3 1.949.641
W5 / D1 5776 27 12 2.294.746
W5 / D2 7456 25 10 3.407.858
W5 / D3 1656 17 10 2.091.431
W5 / D4 13567 21 15 3.205.259
W5 / D5 1246 32 16 3.397.462
 197 78

 54

True Detections and False Alarms

4 6 6 7 8 13

58

78

0
10
20
30
40
50
60
70
80
90

10 25 50 10
0

50
0

10
00

50
00

35
00

0

False Alarm Threshold Level

D
et

ec
tio

ns

Detections

Figure 6.7.Detection/False Alarm Threshold Level Curve for test weeks of

 Snort and SPADE

6.2.2. Snort and SPADE on IZTECH Data

Snort and SPADE has been used to detect intrusions on real time dataset. Snort

and SPADE’s alerts are shown in Table 6.4. Alerts are grouped to show SPADE’s

effect. Ratio of SPADE column shows alert groups created by SPADE to all alert

groups ratio.

Table 6.4.Top alerts and ratio of SPADE related alerts in total groups of alerts

Day Part Packets Alerts Top Alert Top Alert Definition Ratio of SPADE
6 1 1.582.906 391 29 robots.txt 235/256
6 2 502 0 0
6 3 1.482.899 1079 440 ICMP Ping 224/252

 3.066.307
7 1 2.779.952 1961 144 robots.txt 650/678
7 2 1.354.134 526 111 SPADE 207/226
7 3 1.379.683 373 26 robots.txt 177/200
7 4 388.390 155 45 robots.txt 36/55

 5.902.159
8 1 2.411.406 726 190 robots.txt 175/208
8 2 775.667 292 73 robots.txt 90/116

 3.187.073
9 1 2.527.108 74836 4657 SPADE 281/319
9 2 1.343.585 184 61 robots.txt 41/63

 55

9 3 151.694 48 21 robots.txt 3 / 14
 4.022.387

10 1 1.995.399 2059 757 SPADE 324/352
10 2 2.523.863 2774 761 SPADE 244/273
10 3 1.377.922 217 49 SPADE 44/59
10 4 1.537.600 53 6 SPADE 20/28
10 5 881.384 682 86 robots.txt 79/111

 8.316.168
11 1 1.478.832 591 112 robots.txt 153/183
11 2 2.878.084 3230 814 SPADE 476/506
11 3 924.230 822 218 SPADE 149/180

 5.281.146
12 1 1.424.997 780 165 SPADE 137/162
12 2 2.733.034 1035 115 SPADE 349/375
12 3 1.362.016 805 164 SPADE 126/150

 5.520.047
13 1 690.701 319 97 robots.txt 34/54
13 2 1.864.309 399 59 SPADE 148/168
13 3 2.589.204 26 6 robots.txt 5 /17
13 4 2.342.495 174 25 ping 48/72
13 5 2.002.180 429 128 SPADE 111/134
13 6 2.202.247 333 113 SPADE 64/76
13 7 1.654.141 6515 5854 MYSQL 4.0 root login attempt 80/106

 13.345.277
14 1 664.181 32409 32227 MYSQL 4.0 root login attempt 80/108
14 2 2.161.180 44526 43457 MYSQL 4.0 root login attempt 17/37
14 3 3.267.559 18025 16359 MYSQL 4.0 root login attempt 235/260
14 4 2.127.386 1081 1045 MYSQL 4.0 root login attempt 486/515
14 5 1.902.083 52803 51927 MYSQL 4.0 root login attempt 15/28

 10.122.389 145015
15 1 1.257.635 66032 64564 MYSQL 4.0 root login attempt 39/63
15 2 2.507.106 71781 71190 MYSQL 4.0 root login attempt 40/69
15 3 1.566.383 71286 70187 MYSQL 4.0 root login attempt 105/134

 5.331.124 205941
16 1 3.828.679 145537 144418 MYSQL 4.0 root login attempt 104/137
16 2 1.313.619 59731 58400 MYSQL 4.0 root login attempt 91/115

 5.142.298 202818
17 1 2.332.617 89260 87729 MYSQL 4.0 root login attempt 351/372
17 2 2.715.846 14265 13050 MYSQL 4.0 root login attempt 511/536
17 3 183.172 3080 3044 MYSQL 4.0 root login attempt 15/28

 5.231.635 103823
 74.468.010

Alerts were grouped according to their names and SPADE groups were also

grouped according to created anomaly scores. This is the main reason of SPADE alert

groups. These alerts are created when a probing event occurs either by a human or by a

worm. Combinations of IP addresses and port numbers result with many alert groups

with relatively low population.

 56

6.2.3. Anomaly Detection Algorithms on Iztech Data

6.2.3.1. PHAD

 Original PHAD source code could not handle Tcpdump files stored on a PC,

modifications were made to solve this problem (modified version will be referred as

PHADm from now on). First PHADm run used Week 3 of IDEVAL data for training

and a sample from data set for test. It resulted with 99996 anomalies. 4 of top 5 fields

for anomalies belonged to Ethernet protocol header. In second run, in order to include

into traffic from our institute, clean data from our dataset has been added to evaluation.

PHADm also included part of real network data for evaluation. On third trial, real and

synthetic data have been used to train system and real time data to test. Both evaluations

resulted with fewer number of alerts but still very high. Total number of reported

anomalies was more than 20000. Alerts in high numbers have shown that this algorithm

is sensitive to amount of training and significant changes in underlying network

structure.

6.2.3.2. ALAD

ALAD, even though used a different method of anomaly calculation, it is not

evaluated due to problems occurred in evaluation of PHAD.

6.2.3.3. LERAD

LERAD algorithm relies on data provided by interim-data created for evaluation

of ALAD. Cancellation of ALAD evaluation also cancels LERAD evaluation because

of similar algorithmic handicap and lack of usable data.

6.2.3.4. NETAD

NETAD algorithm evaluation did not happen due to limited time and similar

algorithmic handicaps for successful evaluation.

 57

CHAPTER 7

CONCLUSION

In this study five anomaly detection algorithms (PHAD, ALAD, LERAD,

NETAD and SPADE) and Snort, a commercial signature based intrusion detection

system, is introduced.

In first step of demonstration, Snort and SPADE were tested on synthetic

IDEVAL dataset. After that they were used to test real network traffic data collected

from servers of our university. PHAD was also used to test these data for intrusions.

Collected network traffic data contained various attacks distributed into samples

and a few attack waves which last longer than other attacks. Since Snort and Spade were

not affected underlying structure or content of the network, demonstration has been

completed. However PHAD algorithm required clean training data obtained from the

network which it is deployed. This type of data was not available in large amounts, so

the process ended with many false alerts, a sign of tight bounds between algorithm and

structure and content of the network. Demonstration of other algorithms in real traffic

was cancelled because of similar algorithmic background.

SPADE has proven to be useful for detecting port scans but has a serious lack of

event correlation ability. Performance of the selected detector of SPADE has been

superseded by default port-scan preprocessor plug-in of Snort package. Not all detected

probes of SPADE and port-scan overlap each other, thus providing more information on

activities missed by other detector. SPADE has been more informative and precise on

scanned ports than port-scan.

As future work, evaluation of these algorithms may be performed with more real

attack-free training data. Demonstrating performance of other detectors of SPADE may

be added to the overall process.

 58

 REFERENCES:

Please note that last access dates are in MM.DD.YYYY format for web sources.

Allen, A.O., 1997. Probability, Statistics and Queuing Theory with Computer Science

Applications, 2nd Edition, Academic Press Inc.

Allen, W.H. and Marin, G.A., 2003. “On the Self-similarity of Synthetic Traffic for the

Evaluation of Intrusion Detection Systems”, Proceedings of the 2003 Symposium on

Applications and the Internet (SAINT’03)

Anderson, J., 1980. "Computer Security Threat Monitoring and Surveillance", James P.

Anderson Co., Fort Washington, PA.

Axelsson S., 1999, “On a difficulty on Intrusion Detection”, 1999, Proceedings of the

Second International Workshop on Recent Advances in Intrusion Detection, W.

Lafayette, Indiana, 1999.

Axelsson S., 2000. “Intrusion Detection Systems: A Survey and Taxonomy”. Technical

Report 99-15, Depart. of Computer Engineering, Chalmers University, march 2000

Aydin, M.A. and Orencik B. 2005. “Bilgisayar Ağlarında Saldırı Tespiti için

İstatistiksel Yöntem Kullanımı ve Bir Karma Saldırı Tespit Sistemi Tasarımı”,

Proceedings of First Symposium on Network and Information Security, Istanbul

Biles S., “Detecting the Unknown with Snort and the Statistical Packet Anomaly

Detection Engine (SPADE)”, Technical Report, 01.01.2006, available via web address

http://www.computersecurityonline.com/spade/SPADE.pdf

Bykova, M., Ostermann, S. and Tjaden, B., 2001. “Detecting Network Intrusions via a

Statistical Analysis of Network Packet Characteristics”, Proceedings of the 33rd

Southeastern Symposium on System Theory.

 59

Cabrera J.B.D, Ravichandran B. and Mehra, R.K. 2000, “Statistical Traffic Modeling

for Network Intrusion Detection”,.in Proceedings of the Eighth International 13th

Symposium on Modeling, Analysis, and Simulation of Computer and

Telecommunications Systems, pages 466--473, San Francisco, CA, August 2000. IEEE

Computer Society

Cleary J.G. and Witten I.H., 1984, “Data Compression using adaptive coding and partial

string matching”, IEEE Transactions on Communication, vol.COM-32, no.4, pp. 396-

402

Cole, E., Krutz, R. and Conley, J.W, 2005. Network Security Bible, Wiley Publishing

Inc.

Crothers T., 2003. Implementing Intrusion Detection Systems A Hands on Guide for

Securing the Network, Wiley Publishing

CSI/FBI, 2005. “Computer Crime and Security Survey”, Computer Security Institute

Das K., 2000. “Attack Development for Intrusion Detection Evaluation”, Master Thesis,

Massachusetts Institute of Technology

Denning, D. 1987. An Intrusion Detection Model. IEEE Transactions on Software

Engineering 13, 2 (Feb.), 222--232

Haines, J.W., Lippmann, R.P., Fried, D.J., Zissman M.A., Tran, E. and Boswell S.B.,

2001, “1999 DARPA Intrusion Detection Evaluation: Design and Prıcedures”, MIT

Lincoln Laboratory Technical Report, TR-1062, Massachusets, USA

Heberlein L. T., Levitt K. N. and Mukherjee B.. “A Method To Detect Intrusive

Activity in a Networked Environment” Proceedings of the 14th National Computer

Security Conference, pages 362 371, October 1991.

Hoagland J., Staniford S., 2000. “Statistical Packet Anomaly Detection Engine”

 60

Kendall K., 1999 “A Database of Computer Attacks for the Evaluation of Intrusion

Detection Systems”, Master Thesis, Lexington, Massachusetts

Kruegel, C. and Vigna, G., 2003. “Anomaly Detection of Web based Attacks”,

Proceedings of the 10th ACM conference on Computer and communications security

p.251-261.

Leland, W.E., Taqqu, M.S., Willinger W. and Wilson, D.V., 1994. “On the Self-Similar

Nature of Ethernet Traffic (Extended Version)”, IEEE/ACM Transactions on

Networking Vol. 2, No 1, Feb 1994

Lippmann R., Haines, J.W., Fried, D.J., Korba, J. and Das K., 2000a. “Analysis and

Results of the 1999 DARPA Off-Line Intrusion Detection Evaluation”, Proceedings od

Recent Advances in Intrusion Detection: Third International Workshop, RAID 2000,

Toulouse, France, October 2000

Lippmann R.,Haines J.W., Fried, D.J., Korba J. and Das K., 2000b. “The 1999 DARPA

Off-Line Intrusion Detection Evaluation”, Computer Networks, 34(4), p579-595

Mahoney M.V., Chan P.K., 2001. “PHAD: Packet Header Anomaly Detection

for Identifying Hostile Network Traffic”, Florida Inst. of Tech. Technical Report, CS-

2001-04

Mahoney, M.V. and Chan P.K, 2002a, “Learning Nonstationary Models of Normal

Network Traffic for Detecting Novel Attacks”, Proceedings of ACM Eighth

International Conference on Knowledge Discovery and Data Mining (SIGKDD), p376-

385.

Mahoney M.V., Chan P.K., 2002b. “Learning Models of Network Traffic for Detecting

Novel Attacks”, Florida Institute of Technology Technical Report CS-2002-08

 61

Mahoney M.V., Chan P.K., 2003a. “Learning Rules for Anomaly Detection of Hostile

Network Traffic”, Proc. Third International Conference on Data Mining (ICDM 2003),

Melbourne FL

Mahoney M.V., Chan P.K., 2003b. “An Analysis of the 1999 DARPA/Lincoln

Laboratory Evaluation Data for Network Anomaly Detection”, Florida Institute of

Technology Technical Report CS-2003-02.

Mahoney M.V., Chan P.K., 2003c. “Network Packet Anomaly Detection Based on

Packet Bytes”, Proceedings of ACM-SAC, Melbourne FL, p. 346-350

Mahoney M.V., 2003. “A Machine Learning Approach to Detecting Attacks by

Identifying Anomalies in Network Traffic”, Ph.D. Thesis dissertation, TR-CS-2003-13

Marchette, D. J., 2001. Computer Intrusion Detection and Network Monitoring : A

Statistical Viewpoint, Springer-Verlag

McHugh J., 2000, “Testing Intrusion Detection Systems: A Critique of the 1998 and

1999 DARPA Intrusion Detection System Evaluations as Performed by Lincoln

Laboratory”, ACM Transactions on Information and System Security, Vol. 3, No. 4,

November 2000, Pages 262–294.

Paxson, V., Floyd, S., 1995. “The Failure of Poisson Modeling”, IEEE/ACM

Transactions on Networking Vol.3 No:3 p.226-244.

Paxson, V. and Floyd, S., 1997. “Why we don't know how to simulate the internet”. In

Proceedings of the 1997 Winter Simulation Conference

Paxson V., 1998. “Bro: A System for Detecting Network Intruders in Real-Time”,

Proceedings of 7th USENIX Security Symposium.

Pfleeger, C.P., 1997. Security in Computing 2nd Edition, Prentice Hall PTR,

 62

Roesch M., 1999. “Snort – lightweight intrusion detection for networks”, in Proceedings

13th USENIX Systems Administration Conference (LISA ’99), Seattle, WA, Nov. 1999

Shon, T., Kim., Y., Lee, C. and Moon, J., 2005. “A Machine Learning Framework for

Network Anomaly Detection using SVM and GA”, Proceedings of the 2005 IEEE

Workshop on Information Assurance and Security, United States Military Academy,

West Point, NY.

Sourcefire Inc., 2006. “Snort Users Manual 2.4.0 RC1”

Stallings, W., 2003. Network Security Essentials Applications and Standards 2nd

Edition, Pearson Education Inc.

Stevens W.R., 1994. TCP/IP Illustrated Vol.1: Protocols, Addison Wesley Publishing

Tanenbaum, A.S., 1996, Computer Networks 3rd Edition, Prentice Hall

Witten, I.H., Bell, T., 1991. “The Zero-Frequency Problem: Estimating the Probabilities

of Novel Events in Adaptive Text Compression”, IEEE Transactions on Information

Theory, vol.37, No:4

Ye, N., Li, X., Chen, Q., Emran, S.M., Xu, M., 2001. “Probabilistic techniques for

intrusion detection based on computer audit data”, IEEE Transactions on Man and

Cybernetics, Part A: Systems and Humans, Vol.31, No:4

Ye N. and Chen, Q., 2001. “An anomaly detection technique based on a chi-square

statistic for detecting intrusions into information systems”, Quality and Reliability

Engineering International Vol. 17, No:2 , Pages 105 – 112

Ye, N., Emran, S.M., Chen, Q. and Vilbert, S., 2002., “Multivariate statistical analysis

of audit trails for host-basedintrusion detection” IEEE Transactions on Computers,

Vol.51., No:7, July 2002

 63

Yin C., Tian S., Huang H., He J., 2005. “Applying Genetic Programming to Evolve

Learned Rules for Network Anomaly Detection”, Proceedings of First International

Conference on Advances in Natural Computation, ICNC 2005, Changsha, China,

August 27-29, Part III , p.323

(WEB_1 2006) Morris Worm article in Wikipedia, 07.01.2006,

http://en.wikipedia.org/wiki/Morris_worm

(WEB_2 2006) CERT/CC Statistics 1998-2006, 07.01.2006, http://www.cert.org/stats/

(WEB_3 2006) Anomaly Web Article in Wikipedia, 07.01.2006,

http://en.wikipedia.org/wiki/Anomaly

(WEB_4 2006) SHADOW Intrusion Detection System, 07.01.2006,

http://www.nswc.navy.mil/ISSEC/CID/index.html

(WEB_5 2006) MIT Lincoln Laboratory IDEVAL Home Site, 07.01.2006,

http://www.ll.mit.edu/IST/ideval/

(WEB_6 2006) Self-Similarity article From MathWorld by Eric Weisstein, 07.01.2006,

http://mathworld.wolfram.com/Self-Similarity.html

(WEB_7) Snort Home Site, 07.01.2006, http://www.snort.org

(WEB_8 2006): Tcpdump.org web site (also libpcap’s web site), 07.01.2006,

http://www.tcpdump.org

(WEB_9) Netfilter Web Site (also iptables’ web site), 07.02.2006,

http://netfilter.org

(WEB_10) Good Turing Estimator Web Article in Wikipedia, 07.01.2006,

http://en.wikipedia.org/wiki/Good-Turing_estimator

(WEB_11 2006) The Good-Turing Estimator, Geomblog Web Resource, 07.01.2006,

http://geomblog.blogspot.com/2005_07_01_geomblog_archive.html

 64

(WEB_12) Bleeding Edge Snort Community Home Site, 07.01.2006,

http://www.bleedingsnort.com

(WEB_13 2006) History of the Finger Protocol, 07.02.2006,

http://www.rajivshah.com/Case_Studies/Finger/Finger.htm

(WEB_14 2006) Source Code for PHAD, ALAD, LERAD, NETAD and EVAL.

07.01.2006, http://www.cs.fit.edu/~mmahoney/dist/

(WEB_15 2006) A Frequently Asked Questions (FAQ) on Web Bugs, 06.01.2006,

http://www.eff.org/Privacy/Marketing/web_bug.html

(WEB_16 2006) A Tutorial on Byte Orders, 07.01.2006,

http://www.netrino.com/Publications/Glossary/Endianness.html

 65

APPENDIX A

FIELDS OF LOWER LAYER PROTOCOL HEADERS

 Five anomaly detection algorithms covered in Chapter 4 use different fields on

lower layer protocols. These fields in lower layer protocols and their order in packet

payloads are provided in the following figures

Fig. A.1.Fields of Ethernet Packet

 (Redrawn, Original source: Stevens 1994)

 66

Fig. A.2.Fields of IP Header

 (Source: Stevens 1994)

Fig. A.3.Fields of TCP Header

 (Source: Stevens 1994)

 67

Fig. A.4.Fields of UDP Header

 (Source: Stevens 1994)

Fig.A.5.ICMP Header

 (Redrawn, Original source: Stevens 1994)

 68

APPENDIX B

LIST OF DATA FILES

Table B.1 shows list of available data files. File names have no extension. Data files of

the same day are grouped and summed in empty line after each group.

Table B.1. List of tcpdump data files collected by Snort

 File Name Starts at (* Real time) Ends at (* Real time) Length(MB)
1 snort-tcpdump-6-1 Thu Apr 6 14:32:14 Thu Apr 6 16:38:18 1.200,00
2 snort-tcpdump-6-2 Thu Apr 6 16:38:36 Thu Apr 6 16:38:46 0,09
3 snort-tcpdump-6-3 Thu Apr 6 16:38:58 Thu Apr 6 23:59:59 783,50
 1.983,59

4 snort-tcpdump-7-1 Fri Apr 7 00:00:00 Fri Apr 7 14:26:42 1.200,00
5 snort-tcpdump-7-2 Fri Apr 7 15:16:41 Fri Apr 7 16:25:01 1.100,00
6 snort-tcpdump-7-3 Fri Apr 7 16:25:01 Fri Apr 7 20:00:01 954,80
7 snort-tcpdump-7-4 Fri Apr 7 20:00:01 Fri Apr 7 23:59:59 128,30
 3.383,10

8 snort-tcpdump-8-1 Sat Apr 8 00:00:00 Sat Apr 8 16:40:01 1.300,00
9 snort-tcpdump-8-2 Sat Apr 8 16:40:01 Sat Apr 8 23:59:59 305,70
 1.605,70

10 snort-tcpdump-9-1 Sun Apr 9 00:00:00 Sun Apr 9 16:30:01 1.300,00
11 snort-tcpdump-9-2 Sun Apr 9 16:30:02 Sun Apr 9 22:20:01 979,50
12 snort-tcpdump-9-3 Sun Apr 9 22:20:02 Sun Apr 9 23:59:59 59,20
 2.338,70

13 snort-tcpdump-10-1 Mon Apr 10 00:00:00 Mon Apr 10 11:20:01 947,10
14 snort-tcpdump-10-2 Mon Apr 10 11:20:01 Mon Apr 10 16:30:01 1.600,00
15 snort-tcpdump-10-3 Mon Apr 10 16:30:01 Mon Apr 10 17:10:01 1.200,00
16 snort-tcpdump-10-4 Mon Apr 10 17:10:01 Mon Apr 10 17:20:01 1.400,00
17 snort-tcpdump-10-5 Mon Apr 10 17:20:01 Mon Apr 10 23:59:59 371,10
 5.518,20

18 snort-tcpdump-11-1 Tue Apr 11 00:00:00 Tue Apr 11 10:10:01 784,20
19 snort-tcpdump-11-2 Tue Apr 11 10:10:01 Tue Apr 11 16:40:01 1.800,00
20 snort-tcpdump-11-3 Tue Apr 11 16:40:02 Tue Apr 11 23:59:59 331,00
 2.915,20

21 snort-tcpdump-12-1 Wed Apr 12 00:00:00 Wed Apr 12 10:40:01 637,00
22 snort-tcpdump-12-2 Wed Apr 12 10:40:01 Wed Apr 12 16:30:01 1.800,00
23 snort-tcpdump-12-3 Wed Apr 12 16:30:01 Wed Apr 12 23:59:59 741,90
 3.178,90

 69

 File Name Starts at (* Real time) Ends at (* Real time) Length(MB)
24 snort-tcpdump-13-1 Thu Apr 13 00:00:00 Thu Apr 13 08:50:01 214,40
25 snort-tcpdump-13-2 Thu Apr 13 08:50:01 Thu Apr 13 12:20:01 1.016,80
26 snort-tcpdump-13-3 Thu Apr 13 12:20:01 Thu Apr 13 12:40:01 1.300,00
27 snort-tcpdump-13-4 Thu Apr 13 12:40:01 Thu Apr 13 14:10:01 1.500,00
28 snort-tcpdump-13-5 Thu Apr 13 14:10:01 Thu Apr 13 16:00:01 1.200,00
29 snort-tcpdump-13-6 Thu Apr 13 16:00:01 Thu Apr 13 16:30:01 1.500,00
30 snort-tcpdump-13-7 Thu Apr 13 16:30:01 Thu Apr 13 23:59:59 849,30
 7.580,50

31 snort-tcpdump-14-1 Fri Apr 14 00:00:00 Fri Apr 14 04:00:01 105,20
32 snort-tcpdump-14-2 Fri Apr 14 04:00:01 Fri Apr 14 10:50:01 1.000,00
33 snort-tcpdump-14-3 Fri Apr 14 10:50:01 Fri Apr 14 16:10:01 1.500,00
34 snort-tcpdump-14-4 Fri Apr 14 16:10:02 Fri Apr 14 16:40:01 1.500,00
35 snort-tcpdump-14-5 Fri Apr 14 16:40:01 Fri Apr 14 23:59:59 787,70
 4.892,90

36 snort-tcpdump-15-1 Sat Apr 15 00:00:00 Sat Apr 15 08:00:01 170,60
37 snort-tcpdump-15-2 Sat Apr 15 08:00:01 Sat Apr 15 16:30:01 1.200,00
38 snort-tcpdump-15-3 Sat Apr 15 16:30:01 Sat Apr 15 23:59:59 355,40
 1.726,00

39 snort-tcpdump-16-1 Sun Apr 16 00:00:00 Sun Apr 16 16:30:01 1.300,00
40 snort-tcpdump-16-2 Sun Apr 16 16:30:01 Sun Apr 16 23:59:59 287,70
 1.587,70

41 snort-tcpdump-17-1 Mon Apr 17 00:00:00 Mon Apr 17 11:00:01 668,30
42 snort-tcpdump-17-2 Mon Apr 17 11:00:01 Mon Apr 17 16:40:01 1.700,00
43 snort-tcpdump-17-3 Mon Apr 17 16:40:01 Mon Apr 17 17:14:16 77,30
 2.445,60

 70

APPENDIX C

CONTENTS OF CD

root directory:

 binaries (dir)

 extras (dir)

 TITLE.doc

 original (dir)

 programs (dir)

 README.txt

 sources (dir)

 TABLE OF CONTENTS.doc

 THESIS.doc

binaries directory:

 ethereal-0.99.0-fc4.1.i386.rpm

 ethereal-gnome-0.99.0-fc4.1.i386.rpm

 Files.txt

 libnet10-1.0.2a-8.fc4.i386.rpm

 libpcap-0.8.3-14.FC4.i386.rpm

 pcre-5.0-4.1.fc4.i386.rpm

 pcre-devel-5.0-4.1.fc4.i386.rpm

 snort-2.4.4-3.fc4.i386.rpm

 tcpdump-3.8.2-14.FC4.i386.rpm

 unrar-3.5.4-0.lvn.1.4.i386.rpm

 extras directory:

 snortrules-snapshot-CURRENT.tar.gz

 tarihler.iztech.txt

 tethereal.manual.txt

 71

original directory:

 a2l.txt

 alad.txt

 eval.cpp

 IDS Distribution.htm

 lerad.cpp

 leradp.cpp

 netad.cpp

 phad.cpp

 sad.cpp

 te.cpp

 tf.cpp

programs directory:

 Files.txt

 libpcap-0.9.4.tar.gz

 snort-2.4.4.tar.gz

 spade.tar.gz

 tcpdump-3.9.4.tar.gz

 tcpslice-1.1a3.tar.gz

 tcpslice_mod.tar.gz

sources directory:

 doopen-final.sh

 Files.txt

 generate-final.sh

 Makefile

 myenhtest-final.pl

 mytest2-final.pl

 phadm.cpp

 pssum-final.c

 saviour-final.sh

 savioursliced-final.sh

	01.pdf
	02.pdf
	03.pdf
	Ye N. and Chen, Q., 2001. “An anomaly detection technique based on a chi-square statistic for detecting intrusions into information systems”, Quality and Reliability Engineering International Vol. 17, No:2 , Pages 105 – 112

