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 ABSTRACT  
 

STATISTICAL METHODS USED FOR INTRUSION DETECTION 
 

Computer networks are being attacked everyday. Intrusion detection systems are 

used to detect and reduce effects of these attacks. Signature based intrusion detection 

systems can only identify known attacks and are ineffective against novel and unknown 

attacks. Intrusion detection using anomaly detection aims to detect unknown attacks and 

there exist algorithms developed for this goal. In this study, performance of five 

anomaly detection algorithms and  a signature based intrusion detection system is 

demonstrated on synthetic and real data sets. A portion of attacks are detected using 

Snort and SPADE algorithms. PHAD and other algorithms could not detect 

considerable portion of the attacks in tests due to lack of sufficiently long enough 

training data . 
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 ÖZET  
 

SALDIRI TESPİTİ İÇİN İSTATİSTİKSEL YÖNTEMLERİN 

KULLANIMI 
 

Her gün bilgisayar ağlarına yönelik saldırılar gerçekleşmektedir. Saldırı tespit 

sistemleri bu saldırıları tespit edip etkilerini azaltmak için kullanılmaktadır. İmza 

temelli saldırı tespit sistemleri, sadece bilinen saldırıları tanımlayabilmekte, bilinmeyen 

ve yeni saldırılar karşısında etkisiz kalmaktadır. Anormallik tespiti ile saldırı tespiti 

yöntemleri bilinmeyen saldırıları tespit etmeyi hedeflemektedir ve bu amaca yönelik 

geliştirilmiş algoritmalar mevcuttur. Bu çalışmada beş anormallik tespiti algoritması ve 

imza tabanlı bir saldırı tespit sistemi olan Snort’un, sentetik ve gerçek veri kümeleri 

üzerinde test edilip başarımlarının gösterilmesi hedeflenmiştir. Snort ve SPADE 

algoritmaları kullanılarak saldırıların bir bölümü tespit edilebilmiştir. PHAD ve diğer 

algoritmalarda ise testlerde yeteri kadar uzun eğitim verisi olmaması sebebiyle 

saldırıların önemli bir bölümü tespit edilememiştir. 
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CHAPTER 1 
 

INTRODUCTION 
 

 

 Computers and Internet has become an ordinary and indispensable reality of life 

for many people. This trend makes people use facilities on-line with an increasing rate. 

This widespread usage has made Internet a new market for enterprises, a place to share 

and exchange information for researchers, source of entertainment and recreation. 

Widespread use and benefits of online resources have also attracted people who would 

like to benefit more than others with use of illegal methods. These people have 

exploited vulnerabilities in systems sometimes for benefit, sometimes for satisfying 

their curiosity only. In 1988, Morris Worm (WEB_1 2006) epidemic have caused to 

stop 10% of servers connected to Internet. Even though size and use of Internet was 

small at the time, economic and social impact was greater. Morris worm may be thought 

as a starting point for a new era. Attacks increased by time and this increase 

introduction of security mechanisms, precautions and development of software patches 

to remove vulnerability. Increased security precautions introduced new attack methods 

and exploitation of new vulnerabilities. Loop of improved security precautions and 

attacks Figure 1.1 shows number of reported incidents to CERT/CC between 1994 and 

2003 (WEB_2 2006). 
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Fig.1.1. CERT/CC reported incidents by year 
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According to an annual survey (CSI 2005), total financial loss due to security 

incidents have been around $130M in 2005. 95% of the participants have experienced 

more than 10 web site incidents last year. Moreover, a majority of 73% has not reported 

the incident.  

On the other hand, use of some of basic security tools has become very common, 

such as firewalls (97%), anti virus software (96%) and intrusion detection systems 

(72%) according to the report. Firewalls and anti virus software are applied as first line 

of defense against external attacks. Deploying and running intrusion detection systems 

may be considered as second line of defense, but it is obvious that they are also a 

popular solution, but not widely accepted. 

Attacks which exploit recently discovered vulnerabilities have more impact than 

older attacks, since a software patch is released by software vendors to remove for a 

known attack and is applied by security-aware administrators. Unknown attacks have 

more chance on defeating deployed security solutions. Traditional systems usually fail 

on detecting unknown attacks, since their success rates heavily rely on description of 

attacks. One way to describe or detect them is using anomalies happened on the 

systems. These undiscovered attacks can create anomalies in systems. If the anomalies 

caused by attacks can be discovered when they occurred; precautions may be taken 

much earlier before attack becomes widely known. Detecting, or at least being informed 

about unknown attacks provide a significant increase in security. Anomaly detection 

algorithms may help discovering attacks using anomalies due to the attacks on the 

system, without describing them and increasing overall security.  

Uses of anomaly detection for detecting hostile activity have been studied for a 

long time. There are anomaly detection algorithms and tools developed for detecting 

intrusions, both in commercial and academic research sites. However, commercial 

products are not tested in laboratory environment with scientific metrics. Even though 

result of anomaly detection algorithms sounds promising environment, most of them are 

not tried in harsh environment of real networks. Lack of being tested in real 

environments may be misleading for detection performance. For commercial products, 

even though there exists evaluations, but almost none of these make sense in a scientific 

way. This is a handicap for revealing real performance of commercial systems. In this 

study a set of anomaly detection algorithms and commercial products were tested using 
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synthetic and genuine real time datasets and results are discussed with comparison of 

their performance.  

Remainder of this dissertation is as follows, starting from Chapter 2: 

In Chapter 2, concepts of security, intrusion, intrusion detection and anomaly 

detection are described with their goals. In addition, tools and evaluation material are 

described. 

In Chapter 3, algorithms that are to be evaluated in this study are introduced with 

their background. 

In Chapter 4, introduces process of data collection operation from Izmir Institute 

of Technology campus servers.  

In Chapter 5, processes of evaluation of algorithms are explained with sufficient 

detail of evaluation environment, configuration and modifications and operation. 

In Chapter 6, findings on collected data are introduced. Similarities and 

significant differences between available datasets and other datasets are discussed in 

detail. Results of demonstration process are compared and discussed with each other 

and previous studies. 

Chapter 7 summarizes our main findings and advantages and disadvantages of 

described algorithms in practice. It also points out our limitations and further research 

issues. 
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CHAPTER 2 
 

INTRUSION DETECTION 
 

 

2.1. Overview 
 

Computers and computer networks have become quite common in use for people 

in modern world. Many services and information sources provided online such as online 

encyclopedias, informational web-pages, directory listings, newsgroups, email, and 

online shopping sites are accessed and extensively used by millions of people everyday. 

However, not every user wishes to benefit from these sites and services, there are people 

who try to abuse people, services and enterprises. 

 

2.2. Definition and Goals 

 
This is the point where computer security concept is introduced. Computer 

security may be defined as “generic name for collection of tools designed to protect 

computer systems” (Stallings 2003). It consists of three characteristic properties of the 

system to be protected. These three goals are defined as (Pfleeger 1997): 

Confidentiality: Confidentiality means the assets of a computing system are 

accessible only by authorized parties. This asset may contain any information not only 

limited to data and permissions, but also may contain existence of a fact about system or 

the data on the system. This term is also referred to as privacy or secrecy. In further 

parts of the text these terms are used interchangeably. 

Integrity: Integrity means that assets can be modified by only authorized parties 

or only in authorized ways. 

Availability: Availability means that assets are accessible to authorized parties. 

Availability of an object (or service) includes its presence, capacity to meet service 

needs, bounded waiting times, timeliness of service. 

 

An attack or intrusion may be defined as any set of actions that attempt to 

compromise confidentiality, integrity and availability of a resource (Heberlein et 
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al.1991), which may be simply stated as violation of the three goals. Sometimes the 

term penetration is used instead of intrusion. 

Attackers, who attack on computer systems, are also referred to as intruders. Attacker 

and intruders are also used interchangeably. However not all attackers are humans, 

viruses and worms may be accepted as attacker, since their goals and activities are 

similar to their human counterparts. 

Intrusion Detection is, in its simplest form, a set of tools, methods and activities 

to detect violations of security goals. Intrusion Detection System will gather information 

from monitored system or network and provide information to human analyst, about 

suspicious activity, which also may include intrusions. Intrusion Detection is interested 

detecting intrusions and being aware. Intrusion Prevention extends Intrusion Detection 

and includes countermeasures against attackers and their activities. 

 

2.2.1. Taxonomy of Attacks 
 

All attacks are not the same; they may be classified into five main groups according to 

targeted security goals. (Lippmann et al. 2000b) describes the taxonomy of attacks: 

Probes: These attacks automatically scan a network of computers or a DNS 

server to find valid IP addresses, active ports, host operating system types, and known 

vulnerabilities. 

Denial of Service Attacks: Denial of Service (DoS) attacks are designed to 

disrupt availability of a host or network service. 

Remote to Local Attacks: On a Remote to Local (R2L) attack, an attacker who 

does not have an account on a victim machine gains local access to the machine, 

exfiltrates files from the machine, or modifies data in transit to the machine. 

User to Root Attacks: User to Root (U2R) attacks where a local user on a 

machine 

is able to obtain privileges normally reserved for system administrators. 

Data Attacks: goal of a Data attack is to exfiltrate special files which the 

security policy specifies should remain on the victim hosts.  

 

Probe attacks are more widely applied than other methods, because of their 

reconnaissance-nature activities on potential victims. 
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2.2.2. Taxonomy of Intrusion Detection Systems 
 

Intrusion detection systems are classified into groups according to their data 

sources, methods of detection and response times. 

 

2.2.2.1. Classification of Intrusion Detection Systems by Data Source 
 

These systems use different data sources and usually installed on different 

locations to operate:  

 

2.2.2.1.1. Host Based Intrusion Detection Systems 

 
Host based intrusion detection system (HIDS) works on a single host, using 

different sources of information such as security audit logs, event logs, file hashes, 

registry traces etc. Application based intrusion detection systems are a special subset of 

this group, since they use host available only to the host they are installed and an data 

source is an application installed on that system, other than data sources provided by 

operating system facilities. 

 

2.2.2.1.2. Network Based Intrusion Detection Systems 
 

Network based intrusion detection systems (NIDS) works by analyzing network 

activity on the network. In its simplest forms a network tap, which is usually another 

computer, is installed and all network activity passing, inbound, outbound or both 

directions is logged or analyzed. Most commercial systems fall into this category. 

There is also a subset of network based intrusion detection, named Network 

Node Intrusion Detection. (Crothers 2003) describes Network Node Intrusion Detection 

using its working principle: “This system works by analyzing network traffic like 

standard network based intrusion detection does. But rather than attempting to monitor 

all network traffic, a network node IDS analyzes only network traffic specified for it”. 
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2.2.2.2. Classification of Intrusion Detection Systems by Method of  

             Detection 
 

Intrusion Detection Systems may be classified according to the methods used for 

detecting potential malicious activity. Two common and general methods exist, and 

have different strong and weak sides. 

 

2.2.2.2.1. Signature Based Intrusion Detection 
 

 Signature based Intrusion detection systems rely on a set of rules (also known as 

signatures) for detecting intrusion activity. A signature can be described as a conditional 

rule, which is tested on an instance of activity, identifying a specific type (Cole et al. 

2005). This instance may be an incoming network packet, streaming traffic flow, 

specific set of keywords or activities on a monitored system, lines of log records and 

lists of commands or sequence of system calls. For example, in the network packet case, 

an incoming packet to a network IDS may be checked against a set of rules for matching 

content. Matching operation usually includes comparisons of binary or text data using 

regular expressions. A signature can be used to detect intrusions or policy violations 

where applicable. Signature based detection may help previously known and modeled 

attacks. For undiscovered attacks, which is also known as “zero-day attacks”, they are 

usually useless. 

 

2.2.2.2.2. Anomaly Detection 

 
 Anomaly detection is not opposite of signature based detection, a supportive 

complement instead. Anomaly detection creates a norm model characterization for 

monitored activities using acquired data, such as connection durations, incoming or 

outgoing traffic rates, frequency of commands etc. Any event which is identified as 

deviant or anomalous according to this model is stamped as hostile or anomalous (Cole 

et al. 2005). This method can be used to detect not only known attacks, but also 

promises to detect unknown attacks. This scheme may be useful for detecting unknown 

attacks and to achieve a lower false negative rate. Anomaly detection systems may not 
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provide much information about attacks or their nature, since they are identified by their 

anomalous nature, not a signature. 

 

2.2.2.3. Classification by Processing and Response Time 
 

 A real time intrusion detection system can process data, determine existence of a 

suspected attack and respond or report in real time. This is most common approach and 

preferred, but not the only one. Another approach, off-line processing, is determining 

whether an attack was made in a separate time, probably using a different system. This 

may be preferred in cases of manual inspection, aggregation with other data, or 

existence of post-processing on data. 

 

2.2.3. Background on Anomaly Detection 
 

An anomaly is something unusual, unexpected or a form of deviation from a pre-defined 

standard rule, theory or measurement (WEB_3 2006). It may be an event happened or a 

value measured by some sort of experiment or device. Existence and definition of 

anomaly requires existence of some standard, which may be built on conventions or 

experiments. A snow storm between two sunny days in summer is possible, but if it 

happens, this event can be considered as anomalous.  

 

2.2.3.1. Norm 

 
Concept of anomaly rises from standards and expectations. Measurable quantities of 

events can be used to construct models and calculate statistics. Probability distribution 

of commands on a remote login connection of a home-office worker of some company, 

or distribution of some measurable information transferred on page requests from a 

server may be measured and a norm, a standard may be formed (Stallings 2003).  

 

2.2.3.2. Attack 
 

Deviation from a norm may be coincidental event; it may be tolerable up to some 

threshold level. Home-Office user may start using different commands with different 



 

 9

frequency, or page requests for server are significantly changed for some measurable 

time. These events may be signs of hostile activity, because of their deviations from 

norm, or vice versa. An anomaly may point a hostile activity. The old and the new 

activity profiles may overlap or may differ significantly. Deviations from the norm 

profile may be detected and can be signed as hostile (Stallings 2003).  

 

2.2.4. Criteria on Evaluating Performance of Intrusion Detection  

          Systems 
 

 Success rate of an intrusion detection system depends on a few criteria, each of 

which is not sufficient to be authoritative. 

High detection rate is the most important goal of an intrusion detection system. 

A good system should have high rates of detection with a relative false alarm rate. False 

alarm rate becomes a limiting factor (Axelsson 1999).  

 Intrusion detection systems should bring minimal computational overhead to the 

systems which they are run. Computational overhead can affect overall performance of 

system. In network based systems case, high load on NIDS increases rate of dropped 

packets, which will result as lowered detection rates. 

 An intrusion detection system should be able to identify an attack with high rate 

of accuracy. It also should be able to inform analysts about success and possible losses, 

such as compromised systems or data. 

 An intrusion detection system should be able to correlate different events and 

alerts to provide a big picture of overall attack, such as existence of a distributed attacks 

or disguising attackers.  

 Attackers and attack methods evolve as intrusion detection technology evolves. 

Development of new attacks and evasion techniques increases false negative rate of 

systems. An ideal system should be able to detect unknown attacks. Signature based 

systems usually fails this criteria, whereas anomaly detection scheme is considered 

more favorable. 
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2.3. Related Work 
 

 Intrusion detection has become a daily reality for many enterprise network 

system managers. Rise of Internet’s user base around the world, people joining to cyber 

world has brought risks for organizations. Intrusion detection aims to address these 

risks.  

Concept of intrusion detection, terms of audit trails and user activity have 

emerged by (Anderson 1980). Anderson actually wrote the report for a government 

organization and suggested using computer audit trails to understand user behavior and 

detect computer misuses. 

 Most commonly deployed commercial systems are signature based over the 

world. Heuristic approaches are also used in commercial products but did not become 

either common or popular. There are intrusion detection algorithms and systems 

developed previously, some of which date before 1999. These relatively older and 

fundamental systems are discussed in (Axelsson 2000). 

 

2.3.1. Signature Based Approaches 
 

 Most widely known of signature based intrusion detection system is Snort 

(Roesch 1999) and Bro (Paxson 1998), looking for attack signatures on monitored 

traffic. Snort is used to test one of the algorithms in integration with signature detection 

and is introduced in Section 2.6. 

 SHADOW (WEB_4 2006) is another intrusion detection system, provided 

freeware, is a set of useful scripts and programs. SHADOW has a manual and offline 

approach on intrusion detection, since system generates hourly reports of suspected 

traffic, to be inspected by analysts. It has been introduced in textbooks for educational 

purposes until Snort became widely available. 

 

2.3.2. Learning Based Detection Techniques 
 

 Second part of intrusion detection realm, statistical based intrusion detection, is 

formalized in (Denning 1987). The model described includes signature detection, use of 

statistical moments etc.  
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(Cabrera et al. 2000) has used Kolmogorov-Smirnov test to detect DoS and 

probing attacks in addition to detecting attack telnet traffic with attack patterns are 

statistically different from ordinary connections. They used DARPA 1998 evaluation 

data. 

 Statistical Packet Anomaly Detection Engine (SPADE) (Hoagland 2000) 

examines network and transport layer data for rare and anomalous events. SPADE 

algorithm is introduced in 3.5 and evaluated in this study in integration with Snort. 

(Bykova et al.2001) has tested anomalous activity for protocol specifications, 

such as packet headers and allowed values, address spaces and their possible reasons for 

intrusions. This type of anomaly detection is also called as strict anomaly detection. 

(Ye and Chen 2001, Ye et al. 2001, Ye et al. 2002) have used various univariate 

and multivariate statistical tests to detect R2L attacks in IDEVAL data using BSM 

module logs of Solaris operating system. 

Mahoney and Chan have developed a set of anomaly detection algorithms 

named Packet Header Anomaly Detection (PHAD) (Mahoney and Chan 2001), 

Application Layer Anomaly Detection (ALAD) (Mahoney and Chan 2002a), Learning 

Rules for Anomaly Detection (LERAD) (Mahoney and Chan 2002b) and Network 

Traffic Anomaly Detector (NETAD) (Mahoney and Chan 2003c). These algorithms 

used time based modeling and protocol modeling. 

(Aydin and Orencik 2005) has improved PHAD’s anomaly detection capability 

using different values for time factor of PHAD and used this modified algorithm in 

integration with Snort. (Yin et al. 2005) have used genetic programming based rule 

learning approach on LERAD to improve performance of LERAD.  

(Kruegel and Vigna 2003) has used an anomaly detection algorithm on web 

server request query attributes, calculating anomaly scores  which are derived from 

probability vales associated with query attributes.  

(Shon et al. 2005) have used genetic algorithms search technique to select 

features and support vector machine (SVM) machine learning methods to detect 

intrusions, using different data sources.  
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2.4. IDEVAL Data Set 
 

Evaluating performance of an intrusion detection system or an algorithm in 

terms of detecting and missing intrusions is not an easy task. Even though it is ideal to 

test systems in a real environment, this method has its own problems such as privacy of 

communication between peers, repeatability of events and uncontrollable nature of 

events, existence of non-typical traffic or availability of unknown attack methods.  

DARPA/MIT Lincoln Labs. Intrusion Detection Systems Evaluation Data Set 

(IDEVAL) is one of the leading tools for evaluating measuring and comparing 

performance of intrusion detection systems. Offline datasets contain synthetic 

background traffic and labeled attacks. There are two offline evaluation datasets: 1998 

and 1999.  

The DARPA 1998 Intrusion Detection Evaluation was an initial attempt to 

perform a comprehensive evaluation of intrusion detection technology. It was designed 

to evaluate only DARPA funded intrusion detection technology and not complete 

deployable intrusion detection systems (Lippmann et al. 2000b). 

1999 Evaluation and offline datasets have significant improvements on 1998 

evaluation in terms of network structure, evaluation scoring criteria and attack patterns. 

All datasets are published and can be downloaded from (WEB_5, 2006). 

 

2.4.1. Design of IDEVAL Simulation Environment 
 

There are three major design principles of the evaluation. These are: 

1) A Standalone network testbed was used to generate simulation environment 

2) Intrusion Detection Systems’ performance was measured using both attack 

detection rate and false alarm rate 

3) An offline evaluation format allowed many systems to be evaluated and 

supported intrusion detection researchers with examples of background traffic 

(Haines et al. 2001). 

1998 simulation environment aimed to simulate live traffic similar to traffic that 

flows between the inside and outside Internet of a United States Air Force Base. In 1998 

evaluation there are 3 victim UNIX hosts running Linux, Sun OS and Solaris operating 

systems, providing different services to users in and out of the base. 1999 evaluation 
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one more server is added to testbed network, which runs Windows NT. There are two 

sniffers on both side of the router, recording all traffic coming to router from the side 

where it is located.  

For evaluation, file system dumps are collected in addition to audit data collected 

from Solaris and Windows NT servers. Structure of the testbed network is simple 

enough to demonstrate capabilities of the technology. (Lippmann et al. 2000a) declares 

that this network architecture is not representative of an Air Force base.  It is a minimal 

network designed to support intrusion detection systems that desired to participate in 

1998 and 1999, attack types of interest and most of the network traffic types seen across 

many Air Force bases (Lippmann et al. 2000a). 

 

2.4.2. Traffic Generation 
 

There are two types of traffic simulated in the network: normal background 

traffic and attack patterns which are expected to be detected.  

Normal background traffic was statistically compatible with traffic of an Air 

Force base in terms of people’s web and other habits, used words in mails, traffic types 

and rates, frequency of words in documents. These statistics were collected from more 

than fifty bases were included.  

 There are two traffic generators in both inside and outside internets. Generator 

outside simulates thousands of sites and workstations accessed by clients in the base. 

Inside traffic generator simulates users inside the base with different activity profiles. 

These two generators have specific implementations in operating system kernel 

developed and tuned for the simulation. Figure 2.1 shows network structure diagram of 

network used for evaluation. 

Attacks were executed by automated scripts, collected from different sources on 

the Internet. Some of exploits are specifically modified to evade detection (Das 2000). 
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Fig. 2.1.Network structure diagram of 1999 evaluation 

                                        (Source: Haines et al. 2001) 

 

2.4.3. Attack Scenarios 
 

1999 Evaluation Data Set consists of five weeks of data. First three weeks are 

training data, where fourth and fifth are provided for testing purposes. First and third 

weeks’ traffic is attack free, but second week has some labeled attacks. Fourth and fifth 

weeks contain attacks in different numbers, times and diversity. Table 2.1 shows names, 

types, targets and numbers of attacks. Numbers in parentheses next to attack types are 

number of attack instances which fall into that category. Numbers in cells are number of 

applicable attacks which fall into that category: 

 

Table 2.1.Number and categorization of attacks according to attack  

                                  types, victims and number of instances of each attack group  

                                  (Summarized from original source: Haines et al. 2001) 

 

 DoS(65) Probe(37) R2L(56) U2R(37) Data(13) 
Solaris 8 2 6 4 1 
WindowsNT 4 2 5 4 1 
Sun OS 6 2 2 1  
Linux 11 4 9 3 1 
Cisco 1 2 1   
All OS  3    
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Details of attacks and discussion about traces, signatures and effects are 

explained thoroughly in (Kendall 1999) and (Marchette 2001). 

In the evaluation, two attacker profiles are considered: 

First profile is an amateur, relatively unsophisticated, testing his/her skills and 

probably has no specific goals in mind. He uses attack scripts collected from different 

public sources on Internet. Actually these type of attackers are known as “script-kiddie” 

in security community.  Second profile is a more professional one, probably a “black 

hat”, with specific goals in mind and equipped with more skills, may attempt to gain 

some information from the system or deny service for some time. This experienced and 

skilled attacker has ability to modify existing attack scripts where needed, in addition to 

create attacks from scratch, and capability to evade detection by means of using time 

and his coding ability.  

 

2.4.4. Critics and Discussion of IDEVAL Data Sets 
 

(McHugh 2000) has published an article criticizing 1998 evaluation and dataset. 

He has focused criticism on 1998 evaluation. By the time 1999 evaluation was 

underway and some of the ambiguous points in evaluation have not been revealed then. 

Some of the ambiguous points have been revealed and problems discussed are 

addressed in (Das 2000) and (Haines et al. 2001). 

McHugh criticizes evaluation and data set under following titles: 

Goals: Consistency of achieving goals in evaluation 

Background data: Content and generation, similarity of simulated and real 

background traffic. 

Attack Data: Realistic distribution of attacks distributed among background 

traffic in both number and taxonomic classification. For example U2R attacks are the 

most common in evaluation however probes and DoS attacks are more common in real 

world. 

Testbed Network: hypothetical air force base network domain (eyrie.af.mil) has 

ambiguities on number and properties of client hosts. 

(Mahoney and Chan 2003b) have compared attack free data of 1999 evaluation 

data set network traffic properties with real network traffic collected from their 
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departmental servers in a few months period. They have discovered some simulation 

artifacts useful for testing anomaly detection algorithms. 

These simulation artifacts, which may result on making accurate estimations on 

accuracy of anomaly detection algorithms, are summarized as follows: 

Regularity in Simulation: Regularity and limited diversity of TCP options in 

simulation traffic 

Diversity in Packet Header Fields: Packet fields such as Type of Service 

(TOS) and Time to Live (TTL) take more diverse values in real time traffic. 

Crud Packets: There are packets observed where checksums are correct but 

some of protocol specifications violated, such as nonzero values in reserved 

fields. 

HTTP Requests: HTTP Requests in IDEVAL are generally in “GET url 

HTTP/1.0” form, followed by optional commands and “keyword:value” pairs in 

first 200 bytes of first data packet. Diversity is limited in these keywords and 

commands in simulation.  

SMTP Requests: Sessions in simulation are always beginning with HELO and 

EHLO with 3 and 24 different arguments respectively. In real traffic, more 

distinct arguments have been observed.  

SSH Requests: Client version is only of one type in IDEVAL, real traffic traces 

have shown that this is not the case. 

These measurements may be counted as a single observation; hence it is not a 

good idea to use these results as authoritative, but informative and insightful.  

Another critic on IDEVAL data sets are based on self similarity of IDEVAL 

traffic rates has been made by (Allen and Marin 2003). Their study show that self 

similarity models of network traffic fails at night. More details of these two studies are 

explained in 2.5. 

 

2.5. Modeling Behavior of Network Traffic 
 

 Modeling network traffic and its properties using existing statistical models have 

become an interest for people. There are models and technologies developed according 

to these models. Network activities were assumed to happen randomly, for sake of 

simplicity, for example a set of computers, all of which use the same medium as 
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common access channel, instance of transmission for a frame by these computers was to 

be modeled with Poisson distribution (Tanenbaum 1996). Another similar case is valid 

for modeling the process of arrivals, a Poisson process, which interarrival times of 

events are independent (Allen 1997).  However empirical evidence by (Paxson and 

Floyd 1995, Leland et al. 1994) has shown that this is not be the exact case. Leland 

shows pictorial evidence of self similarity using five different time scales of self 

similarity of network traffic and compares with graphical models of Poisson distribution 

for the same scales. Self similarity means that an object looks roughly the same on any 

scale (WEB_6 2006). Fractals are of this type of objects. For indicating self similarity of 

an object, Hurst parameter (denoted as H) is used. Hurst parameter of an object is 1 is if 

it is completely self similar, 0.5 when it has a Poisson distribution. H=0 means the 

object is not self similar. Shown that network traffic is self similar, it also implies that 

events in network are not independent, revealing a long range dependency. Floyd and 

Paxson have verified these results, by denying Poisson modeling, calling for a new 

method of modeling. However they also show that telnet session arrivals can be 

modeled using Poisson.  

 In another study made by (Paxson and Floyd 97), discusses issues in creating a 

simulation of a network and network traffic. There exist many parameters to consider 

for creating such type of simulation but a few of them are explained there with possible 

coping strategies. 

 

2.6. Snort Intrusion Detection System 
 

Snort is a lightweight intrusion detection system developed by (Roesch 1999, 

WEB_7 2006). It is an evolving system publicly available with GNU General Public 

License. In early versions Snort had limited functionality on limited number of 

platforms, however now it is supported and used on more platforms with increased 

functionality and effectiveness.  

In addition it has been quite popular in computer security community, due to its 

functionality, affordability (cost effective solution), widely applicable for various 

environment and purposes, and publicly available supportive material and community. 

Many textbooks on intrusion detection provide examples using Snort.  
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2.6.1. Structure and Operational Properties of Snort 
 

Snort uses libpcap in three of its four modes. Libpcap (WEB_8 2006) a software 

library designed and used to capture packets from specified network interfaces on the 

system.  

Snort has four operational modes which may serve different purposes (Sourcefire 2006): 

• Sniffer mode, which is simply reading the packets from network and displaying 

them in a continuous stream on the console 

• Packet Logger mode, which logs the packet contents to disk. 

• Network Intrusion Detection System (NIDS) mode is the most complex and 

configurable configuration, which allows Snort to analyze network traffic for 

matches against a user-defined rule set and performing several actions  

• Inline Mode: In this mode, Snort receives packets from iptables (WEB_9 2006) 

instead of libpcap interface and then causes iptables to drop or pass packets 

based on Snort rules that use inline-specific rule types. Iptables is a mechanism 

and tool used to modify packet filtering mechanism of Linux kernel. 

 

2.6.1.1. Snort Rules 
 

Rules as detection technique, is both the strong and the weak point of Snort. A 

simple Snort rule consists of two logical sections : “rule header” and “rule options”: 

 Header section consists of four parts:  

• action (alert, log, etc.),  

• protocol (tcp, udp, etc.), 

• source and destination (in terms of IP address and port) 

Rule options section specifies descriptive features on hostile packets such as portion 

of application payload content or some fields in packet headers. A simple rule for a 

fictional attack is given in Fig. 2.2 below.  

If this rule holds, alert will be triggered as ana action. Hostile packet may come 

from any IP address and any source port. Destination IP block is defined as 10.0.0.0/24, 

C class network and destination port is specified as 9999. 

Rule options define that application payload content contains a specific byte string. 

Last part defines informational message on hostile activity. Snort can also be used to 
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detect weird activities in addition to detecting security and usage policy violations on 

networks.  

 

 
 

Fig. 2.2. A simple Snort rule 

 

2.6.1.2. Snort Rule Chain 
 

Network Intrusion Detection mode of Snort, tries to detect intrusions on a rule-

matching basis. Rules are stored and used as a two dimensional linked lists, which 

connect chain headers and chain options. Common attributes of a set of rules are 

represented as chain headers, aiming to increase speed of rule-matching operations. 

Uncommon attributes, such as different flags on packets or payloads are linked and the 

list of options are connected to chain header. Snort’s detection engine checks rules for 

matching on chain headers and options (Roesch 1999). Rule chain mechanism is shown 

in Fig.2.3. 
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Fig.2.3.Snort’s rule chain mechanism  

                                                     (Redrawn, Original Source: Roesch 1999) 

 

Snort may produce alerts, logs and warnings when a rule on a chain is matched. 

Rules and counter-measures on these cases may be altered by maintainers.  

 

2.6.1.3. Preprocessors and Output Plug-ins of Snort 
 

 Snort can be extended by different plug-ins, thanks to its preprocessor and 

output plug-in enabling architecture. Special operations such as embedding different 

algorithms or additional event correlation may be added. Default snort package comes 

with different preprocessors such as port scan detection, http protocol inspector, 

fragmentation and flow control. Port scan preprocessor control incoming packets for 

port scanning probes and creates alerts. Another preprocessor of Snort is SPADE, which 

is to be evaluated in this study. Output plug-ins have different purposes such as 

reporting or additional post processing over data. 
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2.6.2. Estimates on Detection Rates of Snort 
 

Since Snort is a rule-based system (NIDS mode is considered and compared on 

this context), its detection rate and success rate depends on its rules coverage. A good 

rule will help getting a high detection rate, with low false alarm rate. On the other hand, 

a badly written rule will sign a higher rate of legitimate traffic as hostile. Snort will help 

its users proportional to its master’s ability to tune itself for more effective usage. By 

the way, estimates on the detection rate and effectiveness of whole system will be a 

rough one. Snort has different rule sources available, not limited to contributors from its 

user community, and Snort development team. It is also possible to subscribe for 

commercial rule services from different vendors.  

In this study IDEVAL 99 DataSet is used for estimating this rate, in terms of successful 

detections and false alarm rate. Results and discussion may be found on Section 6.2 
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CHAPTER 3 
 

 INTRUSION DETECTION ALGORITHM 

IMPLEMENTATIONS 
 

 

3.1. Overview 
 

Intrusion detection aims to identify hostile activity on computer systems. Since 

all attacks on systems can not be modeled and identified, a range of attacks can not be 

detected by signature detection techniques. However it is possible to identify hostile 

activity by anomalies they create on systems or traces they leave. Detecting anomalies 

for detecting intrusion activities be a useful method for intrusion detection. Anomaly 

detection tries to identify events which are rare or previously unseen and unexpected 

events in the environment. This may be some features of packets in network traffic, 

clothes or people passing by some point. There is a rare or previously unseen event such 

as a man with a Mexican hat on an elephant passing by street, or a group of dancers 

dancing or a packet with some features which has not been seen before. When these 

events are to be modeled, need for information about the event and similar events arise. 

There is a need to define norm and a training sequence for defining what is rare. In 

addition to defining norm and training sequences, there is another question about nature 

of events in interest. Events, which may describe people passing, can be independent, or 

dependent, a group of dancers in a carnival city passing by avenue. Predicting an 

event’s probability has been an interest for people for a long time, especially modeling 

purposes. There are models developed for one time predictions, such as Laplace and 

Good-Turing (WEB_10 2006) methods. (Mahoney 2003) has introduced a time based 

modeling method and used this time based method for detecting novel events and 

eventually for detecting anomalies in network traffic derived from Laplace’s model. 

This model and mathematical background is summarized in next section. 
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3.2. Modeling Novel Events 

 
In our everyday life we try to predict events in the future, next day’s weather, 

color of next car which will pass along the street etc. We usually depend on our 

observations and ignore effects of unseen events. However unseen events also have 

their probabilities to happen. It is harder to accurately estimate unseen events’ 

probabilities, or particularly novel values. It may be thought it is a good method to use 

experience from observations. However, observations will ignore events which may 

happen but have zero frequency in sampling or training period. Estimating probabilities 

for previously unseen events is called zero-frequency problem. Another unknown on 

this problem is size of alphabet or total set of possible events. 

For estimating these probabilities, the method, known as Good-Turing has been 

developed by Jeffrey Good and Alan Turing. (WEB_11 2006) provides more 

information on historical perspective of the method. Good-Turing estimation has been 

extensively used in empirical linguistics area. On the other hand, this estimation method 

needs observations to be independent (Mahoney 2003). As stated before, network 

activity does not consist of independent events; instead the events have long range 

dependencies in time. The process may be described as self-similar or fractal, but not 

Poisson. Good-Turing estimation may not be the correct estimation method for 

assigning probabilities from now on, so a different method for estimating probabilities 

for novel events should be used. In addition, this method should not require independent 

events.  

PPM (Prediction by Partial Match) (Cleary and Witten 1984) compression 

algorithm, which is an adaptive text compression algorithm, needs estimating 

probabilities for symbols to be predicted. In addition overall performance of 

compression is closely related to assigned probabilities for values not seen before.  

PPMC – PPM Method C (Witten and Bell 1991) has been introduced and shown to be 

experimentally better than other methods on estimating probabilities. For method C this 

probability is defined as: 

 

Pr (next event will be novel) = r / (n + r) 
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where r is the number of distinct types observed so far and n is the total number of  

observations. As n increases, this formula may converge to r/n.  

(Mahoney and Chan 2001) provides one more coefficient for time based 

anomaly modeling, the effect of time and dependence of values seen before. An 

observation in which some values are consequently repeated, there is a probability of 

dependence between observations. If this is the case, calculating next event’s 

probability will need information about previous observations. For anomaly based time 

modeling, let time amount of t has passed. Then average rate of seeing an anomaly 

becomes t. After amount of time t passes it is possible to see another novel event. So, 

P(novel) can be assumed as 1/t. 

(Mahoney and Chan 2001) constructs anomaly score mechanism as 1/P(novel) = 

tn/r applying previous formula since is constructed as P(novel) = (1/t)(r/n), where n 

(total number of observations) and r (number of types seen) are counted during the 

training period, and where t is the time in seconds since the last anomaly.  

By an anomaly may occur during either training or testing, with the difference 

that if a novel value is observed in training it is added to the set of allowed values, but if 

it occurs during testing it is not. Note that in our model, P(novel) = (r/n)(1/t), which 

accounts for both the baseline rate of novel events, r/n, and a time-based model for 

events occurring outside the set of allowed values, 1/t. tn/r anomaly score is computed 

for each attribute on observed instance. Anomaly score of all features are added as all 

features are as of to be independent of each other. This anomaly scoring method will 

tend to produce higher anomaly scores as anomalous events are observed less 

frequently. 

 

3.3. Packet Header Anomaly Detection 
 

Packet Header Anomaly Detection (PHAD) algorithm is based on the anomaly 

score calculation method described above. PHAD models 33 header fields as attributes, 

found in Data Link (Ethernet), Network (Internet Protocol) and Transport Layer (TCP, 

UDP and ICMP) (Mahoney and Chan 2001). Fields for Ethernet, IP, TCP, UDP and 

ICMP Headers are shown in A.1, A.2, A.3, A.4 and A.5 in Appendix A. 

All fields on the TCP/IP stack headers are not equal in size, longer fields such as 

MAC Address field in Ethernet frame has been split into two three byte long fields. One 
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byte fields such as SYN and ACK are grouped into one byte field. The list below is the 

list of fields modeled on PHAD grouped by layer and protocol (Mahoney 2003): 

• Ethernet header (found in all packets): packet size, source address (high and 

low 3 bytes), destination address (high and low 3 bytes), and protocol (usually 

IPv4). 

• IP header: header length, TOS, packet size, IP fragment ID, IP flags and pointer 

(as a 2 byte attribute), TTL, protocol, checksum (computed), and source and 

destination addresses. 

• TCP header: source and destination ports, sequence and acknowledgment 

numbers, header length, flags, window size, checksum (computed), urgent 

pointer, and options (4 bytes if present). 

• UDP header: source and destination ports, checksum (computed), and length. 

• ICMP header: type, code, and checksum (computed). 

 

PHAD stores values in a clustered approach. If a novel value for a field arrives 

during training phase, this value is merged into cluster it. If no group contains the novel 

value, it is merged into the cluster which the novel value is closer to.  

 

3.4. Application Layer Anomaly Detector 
 

Application Layer Anomaly Detector is an anomaly detection algorithm 

developed by (Mahoney and Chan 2002a). This algorithm differs from PHAD in three 

points. First difference from PHAD is that ALAD algorithm uses application payload 

for detecting anomalies, where PHAD observed fields of lower layer protocols. ALAD 

algorithm calculates anomalies using features found in incoming TCP server 

connections. Instead of using all incoming packets coming to monitored server port, 

features only found in three packets are used. These are first, next to last and last packet 

in communication. Their difference is that only text based application protocols are 

included (e.g. HTTP, SMTP, etc.), binary protocols such as (e.g. DNS, RPC, etc.) are 

excluded. Model covers at most 1000 bytes of application payload, arguments and 

keywords after 1000th byte will not be included. ALAD can use conditional probability 

models applied on the features, such as P (source IP | destination IP) instead of using 
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only single probabilities, such as P (source IP). Features used to calculate conditional 

probabilities may be arbitrarily selected.  

 

ALAD uses six features on reassembled TCP streams. These are: 

• Source IP address, which is also the client 

• Destination IP address, which is also the server  

• Destination port number of the server application, which is related to service 

protocol. 

• TCP Flags of first and last two packets, e.g. SYN, SYN/ACK or FIN/ACK. 

Flags are used for modeling state of TCP connection. 

• Application keywords, the first word on a command line, such as a GET, POST 

or  

HEAD in a HTTP request 

• Application arguments, the rest of request command delimited by a line feed, 

such as  

“/somefile.html HTTP/1.1”, “Host: www.iyte.edu.tr” or “User-Agent: Mozilla/5.0” 

in a HTTP request.  

Selecting features to be used in calculating conditional probability calculations has a 

large space of probable combinations of features. For example, in presence of 5 

features, there exist 32 combinations (25 = 32) of features for antecedent event which 

contains no feature choice to all features choice. For consequent event, almost the same 

combination space applies, but alternatives which include chosen features for 

antecedent event are eliminated. Combination space grows exponentially as more usable 

features are considered for detection. It is obvious that all combinations of selected 

attributes and probabilities will show different detection rates. Selecting right 

combinations of probabilities will certainly help getting good detection rates and lower 

false alarm rates. 

ALAD uses the same time based modeling model with PHAD. The same anomaly 

score detection formula, anomaly score = tn/r, applies for ALAD. Scoring is made on 

observations in testing phase, using information obtained in training phase. In 

conditional model, separate t, n and r values are maintained for each distinct value of 

antecedent event, where n holds total number of observations that consequent event also 



 

 27

happened, t is the time past since last anomaly, r is number of distinct values for the 

consequent event.  

 

3.5. Learning Rules for Anomaly Detection 

 
Learning Rules for Anomaly Detection (LERAD) (Mahoney and Chan 2003a) is an 

anomaly detection algorithm which generates rules from arbitrary combinations of 

nominal attributes (Attributes are denoted with Ai and values for the attributes are 

denoted with vi). This algorithm does not need selecting rules; instead it generates and 

selects itself. It uses a rule mechanism composed of a set of constraints on attributes and 

defines set of allowed values for another attribute under these constraints (Mahoney 

2003). Rules have the form: 

  A1 = v1 and A2 = v2 and … Ak = vk => Ak+1 ∈ Vk = {set of allowed values} 

Chosen rules are the ones which produce high values of n and low values of r, where 

n stands for number of constraints in antecedent events and r stands for number of 

elements for the set of allowed values for Ak+1. Rules are generated by observing 

instances in training session. Choosing the rule step has generation and elimination 

steps. This step defines normal behavior and rule set for normal. In testing phase 

anomalies for deviations from normal are to be found by checking instances for fitting 

these rules. If a rule is violated, then an anomaly score is calculated using the same 

formula as of PHAD and ALAD; anomaly score = tn/r. Total anomaly score is 

summation of anomaly scores for each violated rule. However there are separate n, r and 

t values for each rule. Time variable t is calculated from the last anomaly either in 

training or testing. Instances which do not violate a rule take 0 as anomaly score. 

LERAD uses attributes similar to ALAD, but excludes binary protocols and makes 

use of keywords and certain information found in lower layer protocol headers. 

 

3.5.1. Rule Set Generation 

 
LERAD reviews training data and creates candidate rules using a randomized 

algorithm and tests them with more training data. It selects random pairs of instances 

from set of training instances. Using the values for attributes in chosen instances it tries 

to generate rules which produce n/r rate with 2/1. An attribute common in the training 
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pair becomes consequent event. Consequent attribute can take all or some of other 

attributes as antecedent. If more than one attribute is common, more rules can be 

generated. The more attributes exist; the more rules can be generated using same pair of 

data. This leads to a large set of rules which includes redundant and weaker rules. 

 

3.5.2. Rule Elimination 

 
Generated rule set may contain rules which may be superseded by other rules, in 

terms of their capability to cover training instances. These rules actually don’t add extra 

capability for prediction to current rule set, thus they may be considered to be 

redundant. This leads to general rules with fewer numbers, instead of specific rules in 

vast numbers. There is another set of rules which are not redundant but perform poorly 

on detections. The rules which generate false alarms towards to the end of full training 

set are considered to perform poorly. This is due to nature of the attributes. Some 

attributes will have vast amounts of values increasing over time with a significant rate 

(e.g. names of ships visiting an international port), whereas some attributes will 

converge to a value set and will almost the same values over some time (e.g. names of 

ships coming to a port near a lake). Performance of rules is benchmarked by checking 

alarms they create at some limited time at the end of training phase. Since training phase 

doesn’t contain traffic with attacks, bad rules will tend to produce more anomalies (i.e. 

false alarms in this context). Poor rules are removed before testing phase. Fig. 3.6 shows 

a graphical demonstration of good and poor rules growth rates and quality. 
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Fig. 3.1.Growth rate for rules in terms of performance  

                                      (Source: Mahoney and Chan 2003a) 

 

3.6. Network Traffic Anomaly Detector 
 

Network Traffic Anomaly Detector (NETAD) (Mahoney and Chan 2003b) is an 

anomaly detection algorithm, which detects anomalies in non-novel events in addition 

to detection of novel events. Some of non-novel events may also be considered 

anomalous if they occur sufficiently rare and not recently in this continuous modeling 

algorithm. This algorithm is more suitable for real world online systems because of its 

ability to adapt into changing nature of traffic in addition to its capability to accept 

mixed traffic (i.e. traffic which contains both attacks and attack-free traffic) in learning 

phase.  

NETAD, similar to PHAD, works packet base, but uses only start of inbound client 

session traffic, unlike PHAD. This makes a small percentage of overall network traffic; 

ignoring rest of the traffic is some sort of trade-off for detecting anomalies in outbound 

responses. NETAD filters certain types of traffic since it is not used. These types of 

traffic are (Mahoney 2003): 

 

• All non-IP packets (e.g. ARP, IPX etc.), since alarms are identified with their IP 

addresses 

• All outgoing packet traffic. 

• All TCP streams that begins with SYN-ACK. 
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• UDP packets to port number higher than 1023 (response to a local client) 

• TCP packets with sequence numbers more than 100 past the initial sequence 

number (i.e. after the first 100 bytes of incoming client data). 

• Packets addressed to any address/port/protocol combination (TCP, UDP, or 

ICMP) after the first 16 packets in 60 seconds (to limit bursts of UDP or ICMP 

traffic). 

NETAD only needs first 100 bytes of the inbound IP traffic and uses first 48 byte 

out of 100. First 48 bytes contain IP and TCP Headers in addition to first 8 bytes of 

application payload. In presence of non-empty IP and TCP option fields, payload 

contents are not covered either. However NETAD considers each byte is an attribute, 

any shift in fields or values are simply out of interest. 

NETAD model covers 9 types of packets. These nine types of traffic lead to 432 

rules (Mahoney and Chan 2003c) in the same form of LERAD’s rules. Nine models 

represent commonly exploited protocols in IDEVAL data set. The following rules are 

selected for NETAD, according to experimental results: 

1. All IP packets (no antecedent). 

2. All TCP packets (if protocol = TCP (6)) 

3. TCP SYN (if TCP and flags = SYN (2)) 

4. TCP data (if TCP and flags = ACK (16)) 

5. TCP data for ports 0-255 (if TCP and ACK and DP1 (dest. port high byte) = 

0) 

6. telnet (if TCP and ACK and DP1 = 0 and DP0 = 21) 

7. FTP (if TCP and ACK and DP1 = 0 and DP0 = 23) 

8. SMTP (if TCP and ACK and DP1 = 0 and DP0 = 25) 

9. HTTP (if TCP and ACK and DP1 = 0 and DP0 = 80) 

Anomaly score is calculated by summing anomaly scores of a packet for each rule. 

Anomaly score of a packet for a rule may be calculated one of the methods explained 

below: 

Novel values only: anomaly score = tn/r. n is number of training packets satisfying 

the prior event, r is number of values seen in training for that field. t is the time 

passed since last anomaly either in training or in testing. 
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Validation weighed novel values: anomaly score = tna/r where na denotes number 

of packets satisfying the antecedent from the last training anomaly to end. This gives 

more weight for “better” rules than “good” rules. 

 

Fast Uniformity Detection: Score = tna(1 – r/256)/r. This method helps degrade 

effect of  rules for fields, in which most of possible values (out of [0,255] period ) 

are already observed during training stage. 

 

Non-novel values: Score = tin/(ni + 1), where ti is the time (packet count, training or 

test) 

since the value i was last seen, and ni is the number of times i was seen in training. It 

reduces to tin for novel events and ti / fi (with a Laplace approximation of fi = ni/n 

where n stands for overall packet count) for non-novel events. 

 

Weighed model: Score = tin/(n1 + r/W), where W = 256 is an experimentally 

determined 

weight emphasizing novel events. It reduces to Wtin/r for novel events and 

approximately 

ti/fi for non-novel events. 

 

NETAD combined model: Score = tna(1 – r/256)/r + tin/(n1 + r/W). Combined 

model is sum of weight model and fast uniformity detection models (Mahoney 

2003). 

 

3.7. Statistical Packet Anomaly Detection Engine 
 

Statistical Packet Anomaly Detection Engine (SPADE) (Hoagland 2000) is pre-

processor plug-in developed for Snort. It had been actively developed by Silicon 

Defense, however due to financial problems, development ended in 2003. Since its 

source code was copyrighted with a free software license, source code has been open. 

Source code maintenance and distribution is now performed under Bleeding Edge Snort 

community (WEB_12 2006) sponsorship.  
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SPADE looks for anomalies in traffic by its task-specific detectors. SPADE can not 

actually determine a packet is hostile or friendly, but can say how unusual or how 

anomalous a packet is. SPADE, similar to PHAD, only monitors network and transport 

layer fields.  SPADE has 5 different detector modes: 

 

• Closed Destination Port (closed-dport): closed-dport detector watches TCP and 

UDP traffic for use of closed or rarely used destination ports on home (local) 

network. This detector may be useful for detecting probing attempts. Closed-dport 

detector is the oldest detector of SPADE. Waiting period can be defined for this 

detector type, which helps removing passive FTP issues. Alerts are fired if a closed 

destination port replies as RST packet or ICMP unreachable response message. 

Third case covers anomalous but open destination ports which are accessed rarely. 

SPADE has four different probability modes (probmode option) for this detector 

type: 

1. Mode 0: a Bayesian network approximation of P (sip, sport, dip, dport) 

2. Mode 1:  P (source IP, source port, destination IP, destination port) 

3. Mode 2:  P (source IP, destination IP, destination port) 

4. Mode 3:  P (destination IP, destination port) (this is the default choice) 

 

• Dead Destination (dead-dest): dead-dest detector watches traffic for use of IP 

addresses that are not used actually. Some worms use an exhaustive try-fail 

technique to spread in local and remote networks. This detector may help detecting 

these activities. 

 

• Odd Destination Port (odd-dport): This detector watches traffic for port usage 

which differs from existing normal usage patterns. This detector may help 

discovering recently installed covert channels, special backdoors on possibly 

compromised machines. 

 

• Odd Port Destination (odd-port-dest): This detector reports connections 

performed by clients on servers using unusual port numbers. This may help 

discovering compromised hosts on home network. 
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• Odd Type Code (odd-typecode): odd-typecode detector reports unusual ICMP 

traffic (in terms of ICMP type and code values) observed on network. 

 

SPADE defines its normal usage by maintaining probability tables for monitored 

events. Records are weighted according to their occurrence time; newer events have 

more weight and older events have less weight on calculations. According to its 

probability tables all packets received by SPADE get an anomaly score.  

There are two anomaly score calculation methods used in SPADE (Biles 2006). 

These are: 

• Raw Anomaly Score: This score is calculated quite straightforward using 

formula 

 

A(X) = – log 2 (P(X)) 

 

Raw anomaly score can be confusing to remember and benchmark with similar 

scores. To overcome this confusion, relative anomaly scoring method is introduced. 

 

• Relative Anomaly Score: Relative Anomaly Score tries to remove confusion 

caused by raw anomaly score. Relative AS is calculated simply by dividing raw 

anomaly score by highest possible raw anomaly score. This method will always 

produce anomaly values between 0 and 1, so it is easier to comment on rarity of 

the event. 

 

3.8. Results of Previous Studies 
 

Five anomaly detection algorithms, namely PHAD, ALAD, LERAD, NETAD and 

SPADE, are introduced in this chapter. These five algorithms have been trained and 

tested using IDEVAL data set and produced different results. Table 3.1 shows 

comparative results of detection performance of each algorithm tested on IDEVAL data 

set. Data is based on (Mahoney and Chan 2002b) and (Mahoney and Chan 2003c).  
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Table 3.1.Comparison of Detections of Selected  

                                                Algorithms on IDEVAL Data 

 

Algorithm/System Number of Detections 
( at 100 FA) 

PHAD 54 
PHAD + ALAD 60 
LERAD (avg.) 114 
PHAD + ALAD + LERAD 85 
NETAD 132 

 

During development stage of this study, it has become obvious that there exist 

simulation artifacts in IDEVAL data, which could result misleading results. For 

example TTL field is considered an artifact since it doesn’t change over time and has 

almost the same values in all simulation. It is far from reflecting real-world case. Even 

though background of IDEVAL data seems realistic generally, there are problems to be 

uncovered and probably there is more to uncover. Analysis of 1999 Evaluation data set 

has been made and revealed other artifacts found in simulation (Mahoney and Chan 

2003b). 
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CHAPTER 4 
 

DATA COLLECTION OPERATION 
 

 

In Chapter 3, five algorithm implementations and their working principles are 

introduced. These implementations were tested on IDEVAL 99 Data Set and local data 

collected from a server from researchers’ university. To test these algorithms with a 

different data, another data set is created with efforts of Izmir Institute of Technology 

(IZTECH) Computer Application and Research Center (CARC). This chapter 

introduces and describes some fundamental properties of local data set, provides 

comparison with other datasets.  

 

4.1. Overview 
 

There are about 2000 computers working in a weekday in IZTECH campus, 

serving as clients and servers. Client computers are used for accessing the Internet and 

different servers in campus network. Users access Internet via a router which connects 

whole campus network to Internet Service Provider (ISP). There are two IP address 

blocks used in campus network, one real, one virtual. Real IP address block is generally 

used for servers on campus allowing to be accessed from the Internet. Virtual IP address 

block, which contains addresses available for private uses of enterprises, are used to 

connect clients to the Internet. These computers are not accessible from outside of the 

campus. These clients connect to the Internet via a gateway. Table 4.1 shows these 

address blocks and their properties 

 

Table 4.1.Available IP address blocks in IZTECH campus 

 

Network Real/Virtual Assignment Usage 

193.140.248.0/22 Real Assigned by ISP Servers and Clients 

10.10.0.0/16 Virtual Free for private uses Clients 
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4.2. Data Collection Environment and Properties 
 

 Data collection operation is performed by a dedicated computer installed by 

IZTECH-CARC personnel, between 04.06.2006 and 04.17.2006 for sampling from 

servers for data inspection and intrusion detection research purposes. Data consists of 

sniffed network traffic of four servers located in campus, each of which has different 

purposes and operating systems. List of servers and their operating systems are shown 

in Table 4.2. 

Table 4.2.List of servers, whose traffic has been collected. 

 

Server Name Goal Operating System 
bbsserver - Solaris  
likya - Linux  
gulbahce - Linux  
ftp file transfer Windows NT Server  

 

The servers and the sniffer computer are connected to the same network switch. 

All servers are connected with a 10/100 Mbit Ethernet card. All traffic of the servers 

was cloned into sniffer’s port using “port mirroring” feature of network switch. 

Simplified architecture of data collection operation and campus network is shown in 

Fig. 4.1. 

 

 
 

Fig. 4.1.Simplified architecture of campus network and data collection operation 
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Traffic collection starts in 04.06. 2006 at 14:32:14  and ends in 04.17.2006  at 

17:14:16. It spanned in 12 days, but collected traffic data is almost 11 days long, takes 

space about 39 GB. Whole data is not is saved as a single file, instead divided into 

numerous parts with different sizes. These files were reorganized to reflect daily traffic, 

using a patched version of tcpslice program. Tcpslice is a program is used to perform 

cut and paste operations on fragments of network traffic data files. Detailed information 

about these such as size and numbers is given in Appendix B. Main findings and certain 

properties of dataset are described in Chapter 6. 
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CHAPTER 5 
 

DEMONSTRATION OF ALGORITHM 

IMPLEMENTATIONS 
 

 

PHAD, ALAD, LERAD (both variants), NETAD and SPADE algorithms are to 

be tested using IDEVAL and data collected from IZTECH campus. PHAD, ALAD, 

LERAD and NETAD are standalone applications, SPADE is a preprocessor plug-in 

developed for integration with Snort. This chapter describes demonstration process of 

these implementations. 

 

5.1. Testing Environment and Tools 

 

5.1.1. Testing Environment 

 
Hardware: Tests were made on a PC with Pentium IV 2.9 GHz (with Hyper Threading 

support) processor and 1GB of RAM.  

Operating System: Fedora Core 4 with kernel version 2.6.11-1.1369_FC4.  

 

5.1.2. Testing Tools 
 

Following software packages were used for evaluation:  

• tcpdump tool version 3.9.4 

• Libpcap packet capture library with version 0.9.4 for individual operations 

• Snort lightweight IDS version 2.4.2 with SPADE - Integrated tarball version 

• Ethereal version 0.99.0 with libpcap version 0.8.3. This older version of libpcap 

did not have any version conflicts with latest version 

• Source codes for PHAD, ALAD, LERAD, NETAD, EVAL and other 

supplemental material provided by (WEB_14 2006 ) 

• gcc compiler v.4.0.0 20050519 (Red Hat 4.0.0-8) 
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5.1.3. Modifications on Configurations and Programs 
 

5.1.3.1. Configuration of Snort and SPADE 
 

Registered User Release of Snort rules available as of May 25 2006 are used. 

Default configuration is modified to include more rules in numbers, with allowing 

minimum rules about non-hostile activities, such as online gaming or IRC chat. Default 

running configurations of preprocessors are not changed except addition of SPADE 

configuration lines. 030125.1 version of SPADE is used.  

 Snort’s and SPADE’s “home network” settings were modified to reflect IP 

address blocks of evaluation networks. No extra rules have been written to adapt 

specific properties of networks. No special tuning operation was performed on Snort 

except changes explained below. Following rule sets were excluded on both operations: 

• chat: rules for detecting IRC and instant messaging (IM) activity such as MSN 

• multimedia: rules for detecting various multimedia material transfer 

• p2p: rules for detecting peer to peer networking activities such as file sharing 

• experimental: experimental rules, which was already empty in evaluation 

• porn: rules for checking sexually explicit material on content 

 

In IDEVAL scenario, servers are remotely monitored by remote Air Force 

computers. Two SNMP rules and one other rule caused more than 40000 alerts in a 

single attack-free day and hence they were disabled. The disabled rules are as follows: 

• “Web bug 1x1 gif attempt” alert (web bug is a 1x1 gif file used for tracking page 

visitors’ trends (WEB_15 2006)) 

• “SNMP public access udp” alert (Simple Network Management protocol is 

designed for remote monitoring and management, which generally uses UDP as 

transport protocol).  

• “SNMP request udp” alert (a SNMP request is made )  

 

SPADE had one detector open with following configuration: 

• Detector type: closed-dport 

• TCP Flags: synonly ( only SYN flag is set ) 
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• To: home (packets are destined to home network clients) 

• Wait: 3 (Determines time out period for a host to reply an incoming SYN packet 

) 

• Protocol: TCP 

• Probability Mode: 3 (the probability model: P (dest. IP, dest. port), explained in 

section 3.6 )  

All alerts (saved into a text file named “alert”), logs (saved into a binary file named 

Snort.log.x where is a positive integer, indicating startup time in Unix time format) and 

SPADE state files (spade.rcv) are logged into /var/log/snort directory. 

 

5.1.3.2. Modifications on Algorithm Implementations 
 

 Original source code of PHAD failed to process IZTECH dataset, because of 

byte order difference problem (WEB_16 2006). IDEVAL data was collected and saved 

on big-endian machines (Haines et al. 2001). Original source code could only process 

big-endian data. Since IZTECH dataset was collected on a PC (with 80x86 

architecture), it is saved as little-endian. Modifications were made to original source 

code and tests were performed to check both accuracy of modified version and 

consistency with original program. Modified versions of the source code are presented 

in a CD provided with this study. Contents of the CD are in Appendix C. 

 

5.2. Training Systems 
 

 Snort did not need any training, because of being a signature based system. 

SPADE has no prior training period, for first run. In every run SPADE records 

observations for monitored activities, after 50000 updates. At the end of each running 

session, SPADE records its current state, which holds statistical information. SPADE 

uses incoming packets provided by Snort and needs no extra preprocessing for both 

training and test periods. At each start of Snort, it searches for state file. Snort logs and 

alert files were relocated for further processing in order to store separate alert files for 

different days. SPADE state files were not relocated for consequent evaluations for 

members of the same dataset. 
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 PHAD and other algorithms were trained using IDEVAL data set’s attack free 

traffic provided for systems training. In fact, real time traffic can contain novel attacks. 

For algorithms which can accept mixed traffic, all IDEVAL traffic is used.  

 PHAD, ALAD, LERAD and NETAD are standalone applications which run 

using given parameters from command line. PHAD takes two primary inputs; training 

time in seconds, list of data files. Input files are ordered chronologically. Training phase 

starts from the instance of earlist packet in first data file and spans as long as given 

training time parameter. Each packet after training period ends is used as test data. 

 ALAD, LERAD and NETAD have a two pass approach. First pass covers 

preparation of data for processing, such traffic filtering, keyword or feature extraction 

from data files, etc. There are three supplemental programs used for data preparation. 

These are 

• te: traffic extraction utility, extracts TCP streams from tcpdump files. 

• a2l.pl: a perl script which converts output of te to LERAD compatible format 

• tf: traffic filtering program 

 ALAD uses interim files provided by te as data. It takes two parameters, one for 

training data file and other for test data file, both of which are interim files. Output is in 

sim format. 

 LERAD uses data files similar to ALAD. ALAD compatible files are converted 

for use of LERAD using a2l.pl. Outputs are text files. LERAD uses three parameters; 

first two is similar to ALAD, these are training and testing files. Third parameter is 

random number seed - required for LERAD's randomized algorithm. Another variant of 

LERAD uses interim data files generated using tf.  

 NETAD also uses data files generated by tf. Since training period is hardcoded 

in original version, it does not use external parameters other than training and test file 

names. 

 

5.3. Testing Systems 
 

Detection performance operations on IDEVAL were performed by EVAL 

program, which is compatible with original evaluation detection criteria. For 

demonstration on real data, Snort is used for benchmarking since there is not an 

available evaluation program for analyzing live data similar to EVAL. A portion of 



 

 42

IDEVAL training data is used for training systems for algorithms which require attack-

free data. In addition, a portion of real data is used for testing after training.   
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CHAPTER 6 
 

RESULTS AND DISCUSSION 
 

 

6.1. Findings on IZTECH Dataset 
 

 There are significant differences in simulated traffic of IDEVAL data set and a 

real traffic data. Some of simple and significant differences between IDEVAL, IZTECH 

and FIT data sets are described in the following sections. Since FIT data is not publicly 

available, an available source of statistical information for this dataset is (Mahoney and 

Chan 2003c). This data source is served as main tool for making comparisons. Ethereal 

software package tools (tethereal and capinfos) and Snort was used to extract statistical 

information from datasets. Graphics are generated using Microsoft Excel. 

 

6.1.1. Description of Collected Data 
 

6.1.1.1. General Properties 
 

Data set contains about 74 million packets and takes 39 GB of disk space. Daily 

distribution of collected packets and size of traffic data is shown on Fig. 6.1. 

Collected data is almost continuous, except a 50 min. gap in Apr 7 2006. Average 

bandwidth usage has been 339 Kbits/sec for overall traffic. Data rates of individual 

samples vary between 40 KBits/sec and 20 Mbits/sec. Average bandwidth usage for 

days are shown in Fig. 6.2. Average packet size of samples varies between 324 and 691. 

Daily averages for packet size is shown in Fig. 6.3. Most common protocols on daily 

traffic are shown in Fig 6.4 and 6.5.  
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Distribution of Data and Packets
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Fig. 6.1. Daily distribution of data and packets 

 

 

 

Fig.6.2 Daily data rates in data set 
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Average Packet Size
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Fig.6.3.Average packet size graph for data set 
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Fig.6.4.Daily distribution of HTTP traffic 
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Protocol Usage
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Fig.6.5.Daily distribution of other three frequently used protocols 

 

6.1.1.2. Intrusion Activity 
 

At first glance, collected traffic may seem to be relatively clean. However after 

careful examination, it has become clear that attack patterns exist and distributed among 

all data. Only one of 43 data file was found to be clean, however this may be considered 

trivial, since file contains about 497 packets recorded in 10 seconds and takes only 90 

KB in disc. 

Evidences of probing attacks can be found in almost every data sample. Most 

probes were checking for open SQL Server ports (port no: 1433). Most frequently 

scanned ports are given in Table 4.3 with their possible attacker and application.  

 

Table 6.1. Most frequently scanned ports and count of instances 

 

Port Application (Legitimate or Malicious) and Possible Reason Probe Count 
1433 Microsoft SQL Server 2230 

445 Microsoft-ds - Server Message Block (SMB) and worms 2181 
139 Netbios Session Service and Trojans 2132 

80 WWW and various Trojans 2069 
1080 SOCKS Proxy Server, trojans,  worms or spammers 1133 

15118 dipnet trojan backdoor, worms 746 
8080 www alternative port, trojans and backdoors 663 
5900 Real Virtual Network Computing (VNC) 659 
3372 Microsoft Distributed Transaction Coordinator (DTC) 455 
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22 Secure Shell (ssh) and Trojans 406 
1026 Windows Remote Procedure Call (RPC), worms Unknown 
1027 ICQ Instant messenger Unknown 

 

Two ports have experienced unknown number of probes. This is due to 

uncertainties in probing activities and imprecise nature of port-scan preprocessor of 

Snort. Probe counts are obtained after processing of Snort alert files. The port-scan and 

Spade preprocessor alerts have alerted for different activities, sometimes overlapping.  

There are traces of spammer activity in traffic, looking for badly configured mail 

servers for relaying mail messages or directly sending messages to server. Probing for 

sending spam may be considered as commercial activity employing illegal methods.  

There are two types of probes: probes which focus on certain port on a range of 

computers and probes focus on open ports of a specific computer. In addition there are 

other probes, such as ping probes for various IP address ranges, usually used for 

checking whether a specific computer is connected. These ping and port probes may be 

used together to cooperate by attackers. 

There is an attack wave between 04.13.2006 to end of data collection directed to 

open port 3306 on one of servers. This port is used by MySQL Database Management 

System. Remote attacker has tried to guess root password of the server. Total number of 

detected trials in that period is 663451. There is not an evidence of success of attacker, 

since no data exists about successful login and probing operation was underway at the 

time when data collection ended. It should have ended before end of collected data. Port 

3306 has also been probed in port scans, but not as much as other ports. In addition 

there are other password trials in other days, but numbers of consecutive trials are much 

lower. 

 

6.1.2. Comparison with IDEVAL Dataset 
 

IDEVAL dataset is produced after a simulation effort, made in 1999, according 

to statistical information collected in 1998 from various US Air Force bases. Content of 

simulated traffic differed from our traffic in many ways, such as data and packet rates, 

protocols etc. 

IDEVAL traffic data has a smaller data rate and packet size, producing a smaller 

data set. Generated traffic, which covers only weekdays of 5 weeks, contains about 52M 
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packets and takes about 10.8 GB of space. Daily distribution of traffic in IDEVAL is 

shown in Fig. 6.6.  
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Fig.6.6.Daily traffic distribution in IDEVAL 

 

IDEVAL traffic is different from our dataset in many ways: 

Synthetic Traffic: IDEVAL traffic is created in laboratory environment using 

scripts and other sorts of programs. Properties of the traffic which is to be synthesized is 

based on statistical information that came from military based in different locations. Our 

traffic is collected from a campus network and is generated by users in campus, people 

and software accessing the servers. These large communities with different things in 

mind have helped to create a traffic record with an unrepeatable and surprising nature.  

Age and Span: IDEVAL data sets have been built according to statistical data 

which belongs to 1997 (Haines et al. 2001), reflecting trends in that time. It spans about 

6 weeks (Extra days of Week 3 is actually fourth week of March) and is recorded into 

daily partitions. Weekend days are excluded in simulation. However our recorded traffic 

spans 12 days, including weekends and almost continuous. 

Different trends: IDEVAL traffic is created based on different trends and usage 

policies. By time some of these policies or trends change. For example using finger to 

check whether a user exists in a mail server before sending a mail is a trend in IDEVAL 

traffic. However finger action has long been discouraged from practical usage 

(WEB_13 2006). Visited sites and tools may change place to place and people to 
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people. This is another difference. In IDEVAL traffic there is no crawler activity, 

however these agents have become most common visitors of websites. 

Daily Data Size and Packet Counts: Daily data size of IDEVAL is very 

different from our traffic. It has smaller data size, lower number of packets and thus a 

lower bandwidth usage. IDEVAL case may be considered as unrealistic for today’s 

Internet. As it is obvious in Fig. 4.3 and 4.7, highest traffic load in IDEVAL is about 

25% of lowest traffic load in our dataset. However this information should not be 

considered decisive; since more real time data may help denying this proposition. 

Protocol Distribution and Variety: There are similar protocols used in 

simulation and in real world, these are ARP, IP, TCP, UDP, ICMP, SMTP, POP3, 

FTP,FTP-DATA, IMAP, nbname, nbdgram protocols. No IMAP traffic was captured in 

campus but had different other protocols running such as Spanning Tree Protocol (STP), 

nbss, Microsoft-ds and non-IP based protocols. There is limited use of telnet and ssh in 

traffic. 

Traffic Scope: IDEVAL network traffic has been collected by two sniffers, 

labeled as inside and outside, recording all traffic passing by. For inside traffic, it covers 

communication between hosts, too. Our collection has a limited scope of traffic that is 

about a group of servers, connected to same switch. Our approach excludes clients’ 

activities in general except their communication with sniffed servers. 

Traffic Regularity: 5 weeks of synthetic data has about 40 million packets but 

none of these contain bad checksums, either IP or TCP. Our samples, which covered 

more than half of overall traffic, has bad IP and TCP checksums in different numbers, 

but with quite low percentage in overall data. Bad checksum probability is about 10-5. 

Discarded Packets: On evaluation phase, Snort and SPADE has been used to 

search intrusions in IDEVAL data for evaluating detection rates. The same procedure 

was also applied to IDEVAL data. During inspection Snort discarded 18 packets in our 

dataset. However Snort did not discard any packets when inspecting IDEVAL data. 

Snort discards only packets which could not be parsed. Reasons for this behavior are not 

clear, malformed packets exist in our dataset. It is also unknown that whether this is a 

feature or possible bug of the dataset.  

Variety in Protocol Usage: IDEVAL dataset has only GET commands in HTTP 

conversations. However this is unrealistic when compared to our results. There are other 

commands used, even much less frequent, such as POST, HEAD, OPTIONS, 
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PROPLINK, PUT and CONNECT. In addition, available protocol versions are 1.0 and 

1.1, this due to the fact that our data is recorded in 2006. 

 

6.1.3. Comparison with FIT Dataset 
 

Dataset used in (Mahoney, 2003b) has been collected from a departmental 

server, which served web pages and several accounts. Dataset was collected in 

weekdays over 10 week period. 

Our dataset was collected using feature of the network switch; this helped 

monitoring more than one server in dataset. Department server is said to be behind a 

firewall, providing additional protection for probes coming from external probes and 

possible exploit attempts. Our dataset has more probes and brute force attacks included. 

For HTTP traffic our observations are similar, more keywords for HTTP exist: 

FIT group has experienced more values for http commands in their dataset, 

found 9 commands in data (GET, HEAD, POST, OPTIONS, PROPFIND, LINK and 

two malformed) where GET is dominant over others by 99%. We have observed PUT 

and CONNECT commands as different commands but not observed any LINK in 

199302 requests. 99% percent of commands were GET. 

Similar points and significant differences between three datasets are discussed. 

Two of these datasets were collected from real networks. Since second real traffic 

dataset was not publicly available, only source of information has been used for 

comparison. Third dataset, IDEVAL, was other available dataset but differed from other 

two, because of its synthetic nature. 

 

6.2. Results of Demonstration of Algorithms 
 

In this study, performance of two anomaly detection algorithms, one as a 

standalone implementation, one as a preprocessor plug-in integrated with Snort was 

demonstrated. In original study of (Mahoney and Chan 2001), results were promising 

but on further studies it was revealed that results could be misleading because of 

existing artifacts in simulation (Mahoney and Chan 2003b) – which could hide real 

performance of algorithms and systems.  
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IDEVAL 99 data set has been the most comprehensive and publicly available 

work in evaluation of intrusion detection systems. Dataset included real attacks on 

hosts, with simulated background traffic, created with statistical information from real 

production environments. Further studies showed that there are issues with possible 

bugs, probably caused by idiosyncrasies of simulation. There are problems with its 

nature and structure of its compatibility of modern internets. Statistical data used for 

IDEVAL sets belonged to 1997, compatible with its time, but not with today’s network 

trends and traffic. New trends, technologies and threats have emerged by time after 

1997, but nature of this dataset prevents development of anomaly detection algorithms 

which will fit with today’s world.  

For evaluation of algorithms in a real network environment, network traffic data 

was collected from servers of our university. Collected data has shown significant 

differences with simulated data. Real dataset contained real attacks distributed into data, 

making it harder to use with clean-data sensitive algorithms. This is a certain 

disadvantage for systems with learning based approaches. Reducing number of these 

attacks may be succeeded with more restrictive firewall and network usage policies.  

SPADE algorithm, integrated and evaluated with Snort, had difficulties in 

detecting intrusions, producing so many alerts, some of which were false alarms. False 

alarms of Snort came from http-inspect preprocessor, which comes with standard 

package and is started with Snort by default. It produced false alerts on requests of files 

which included letters encoded in URL format (e.g. using “%20” instead of space 

character), which contains characters found in Turkish alphabet and not in English 

alphabet, such as ğ, ş and İ. Another preprocessor named portscan also produced 

relatively higher amount of false alerts, which is thought to be related for being untuned. 

Snort rules were configured to run with minimum changes, closer to default 

configuration. Snort and other intrusion detection systems need monitoring and 

modifications from default configuration when deployed in real environment. This may 

be thought as a form of training to reduce number of false alerts.  

SPADE is a useful tool, especially for detecting probes to unusual ports. 

However it has a serious flaw: it has no correlation mechanism between events in a time 

window, but portscan has. For example, when a probing event occurs for x ports on y 

machines, SPADE will produce (x*y) alerts if all packets are over defined threshold 

level. A similar tool, port-scan preprocessor has correlation capability and will produce 

only one alert for this probing activity. Approach of port-scan detector is better than 
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SPADE in detection of closed ports, even though alerts were overlapped in evaluation. 

Spade produced many alerts in evaluation with both datasets. In availability of port-scan 

preprocessor, closed-dport detector is not necessary. 

PHAD algorithm was evaluated after Snort and SPADE. Special modifications 

were made on original code. PHAD had problems in evaluation with real time data. 

PHAD algorithm failed to fit test environment due to its rigidity and tight bounds to 

underlying structure. Another reason is duration and difference of training data.  

 

6.2.1. Snort and SPADE on IDEVAL 

 
Snort and SPADE data has been used to test IDEVAL data. It is aimed to 

estimate detection and false alarm rates on following configuration. Snort and SPADE 

settings of this test have been explained in 5.1.3.1. Snort and SPADE records all alerts 

into one single text file. Evaluation of detection rate is made using EVAL where all alert 

data must be entered in form: 

 

  ID   Date    Time   Victim IP   Alarm Score  Comment 

0 03/29/1999 14:33:12 170.70.71.73  0.854322 # notes 

 

ID value has no specific meaning and is ignored in evaluation; date is given in 

MM/DD/YYYY format; victim’s IP address in dotted decimal notation. Alarm score 

determines certainty of attack. Higher alarm score means, this activity has higher 

probability of being hostile. Alarm score starts from 0. Attacks are reported in Eastern 

Standard Time (EST) for first four weeks. Valid time zone for fifth week is Eastern 

Daylight Time. For converting snort alert files into sim format, all alarms were given 

alarm score 1.000000. 

Snort alert files were processed using a conversion program to be compatible 

with input format of described above and daily alert outputs were converted to sim files. 

Each alert were given score 1.000000. On first evaluation, each sim file was evaluated 

separately using EVAL. In second evaluation, all created sim files were merged into a 

larger file. The merged sim file was used for evaluation with EVAL, in second 

evaluation step. Tables 6.2 and 6.3 shows number of true detections and alerts for 

training and test weeks. Figure 6.7 shows Detections/False Alarms Threshold Level 
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curve created for detection rates of Snort and SPADE with different tolerance of false 

alarms.  

 

Table 6.2. Number of alerts, true detections and packets  

                                            in training data 

 
Week/Day Alerts Attacks Detections Packets 
W 1 / D1 220 0 0 1.495.808 
W 1 / D2 274 0 0 1.240.260 
W 1 / D3 563 0 0 1.730.292 
W 1 / D4 476 0 0 1.951.904 
W 1 / D5 605 0 0 1.487.186 
W 2 / D1 915 7 0 1.755.742 
W 2 / D2 3965 9 2 1.588.037 
W 2 / D3 11194 6 0 1.014.119 
W 2 / D4 18760 9 1 1.566.930 
W 2 / D5 17487 12 0 1.365.264 
W3 / D1 590 0 0 2.110.223 
W3 / D2 762 0 0 1.834.417 
W3 / D3 949 0 0 1.853.383 
W3 / D4 872 0 0 1.562.141 
W3 / D5 858 0 0 1.638.336 
W3 / D6 981 0 0 1.683.381 
W3 / D7 332 0 0 2.157.318 
Total  43 3  

 
 

Table 6.3.Number of alerts, true detections and packets  

                                           in test data 

 
Week/Day Alerts Attacks Detections Packets 
W4 / D1 297 17 3 1.651.481 
W4 / D2 0 12 0 0 
W4 / D3 1134 19 6 1.768.940 
W4 / D4 1220 10 3 2.359.214 
W4 / D5 1119 17 3 1.949.641 
W5 / D1 5776 27 12 2.294.746 
W5 / D2 7456 25 10 3.407.858 
W5 / D3 1656 17 10 2.091.431 
W5 / D4 13567 21 15 3.205.259 
W5 / D5 1246 32 16 3.397.462 
  197 78  
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Figure 6.7.Detection/False Alarm Threshold Level Curve for test weeks of  

                            Snort and SPADE 

 

6.2.2. Snort and SPADE on IZTECH Data 
 

Snort and SPADE has been used to detect intrusions on real time dataset. Snort 

and SPADE’s alerts are shown in Table 6.4. Alerts are grouped to show SPADE’s 

effect. Ratio of SPADE column shows alert groups created by SPADE to all alert 

groups ratio. 

 

Table 6.4.Top alerts and ratio of SPADE related alerts in total groups of alerts 

 

Day Part Packets Alerts Top Alert  Top Alert Definition Ratio of SPADE 
6 1 1.582.906 391 29 robots.txt 235/256 
6 2 502 0 0   
6 3 1.482.899 1079 440 ICMP Ping 224/252 

  3.066.307     
7 1 2.779.952 1961 144 robots.txt 650/678 
7 2 1.354.134 526 111 SPADE 207/226 
7 3 1.379.683 373 26 robots.txt 177/200 
7 4 388.390 155 45 robots.txt 36/55 

  5.902.159     
8 1 2.411.406 726 190 robots.txt 175/208 
8 2 775.667 292 73 robots.txt 90/116 

  3.187.073     
9 1 2.527.108 74836 4657 SPADE 281/319 
9 2 1.343.585 184 61 robots.txt 41/63 
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9 3 151.694 48 21 robots.txt  3 / 14 
  4.022.387     

10 1 1.995.399 2059 757 SPADE 324/352 
10 2 2.523.863 2774 761 SPADE 244/273 
10 3 1.377.922 217 49 SPADE 44/59 
10 4 1.537.600 53 6 SPADE 20/28 
10 5 881.384 682 86 robots.txt 79/111 

  8.316.168     
11 1 1.478.832 591 112 robots.txt 153/183 
11 2 2.878.084 3230 814 SPADE 476/506 
11 3 924.230 822 218 SPADE 149/180 

  5.281.146     
12 1 1.424.997 780 165 SPADE 137/162 
12 2 2.733.034 1035 115 SPADE 349/375 
12 3 1.362.016 805 164 SPADE 126/150 

  5.520.047     
13 1 690.701 319 97 robots.txt 34/54 
13 2 1.864.309 399 59 SPADE 148/168 
13 3 2.589.204 26 6 robots.txt 5 /17 
13 4 2.342.495 174 25 ping 48/72 
13 5 2.002.180 429 128 SPADE 111/134 
13 6 2.202.247 333 113 SPADE 64/76 
13 7 1.654.141 6515 5854 MYSQL 4.0 root login attempt 80/106 

  13.345.277     
14 1 664.181 32409 32227 MYSQL 4.0 root login attempt 80/108 
14 2 2.161.180 44526 43457 MYSQL 4.0 root login attempt 17/37 
14 3 3.267.559 18025 16359 MYSQL 4.0 root login attempt 235/260 
14 4 2.127.386 1081 1045 MYSQL 4.0 root login attempt 486/515 
14 5 1.902.083 52803 51927 MYSQL 4.0 root login attempt 15/28 

  10.122.389  145015    
15 1 1.257.635 66032 64564 MYSQL 4.0 root login attempt 39/63 
15 2 2.507.106 71781 71190 MYSQL 4.0 root login attempt 40/69 
15 3 1.566.383 71286 70187 MYSQL 4.0 root login attempt 105/134 

  5.331.124  205941    
16 1 3.828.679 145537 144418 MYSQL 4.0 root login attempt 104/137 
16 2 1.313.619 59731 58400 MYSQL 4.0 root login attempt 91/115 

  5.142.298  202818    
17 1 2.332.617 89260 87729 MYSQL 4.0 root login attempt 351/372 
17 2 2.715.846 14265 13050 MYSQL 4.0 root login attempt 511/536 
17 3 183.172 3080 3044 MYSQL 4.0 root login attempt 15/28 

  5.231.635  103823   
  74.468.010     

 

Alerts were grouped according to their names and SPADE groups were also 

grouped according to created anomaly scores. This is the main reason of SPADE alert 

groups. These alerts are created when a probing event occurs either by a human or by a 

worm. Combinations of IP addresses and port numbers result with many alert groups 

with relatively low population.  
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6.2.3. Anomaly Detection Algorithms on Iztech Data 

 

6.2.3.1. PHAD 

 
 Original PHAD source code could not handle Tcpdump files stored on a PC, 

modifications were made to solve this problem (modified version will be referred as 

PHADm from now on). First PHADm run used Week 3 of IDEVAL data for training 

and a sample from data set for test. It resulted with 99996 anomalies. 4 of top 5 fields 

for anomalies belonged to Ethernet protocol header. In second run, in order to include 

into traffic from our institute, clean data from our dataset has been added to evaluation. 

PHADm also included part of real network data for evaluation. On third trial, real and 

synthetic data have been used to train system and real time data to test. Both evaluations 

resulted with fewer number of alerts but still very high. Total number of reported 

anomalies was more than 20000. Alerts in high numbers have shown that this algorithm 

is sensitive to amount of training and significant changes in underlying network 

structure. 

 

6.2.3.2. ALAD 
 

ALAD, even though used a different method of anomaly calculation, it is not 

evaluated due to problems occurred in evaluation of PHAD. 

 

6.2.3.3. LERAD 
 

LERAD algorithm relies on data provided by interim-data created for evaluation 

of ALAD. Cancellation of ALAD evaluation also cancels LERAD evaluation because 

of similar algorithmic handicap and lack of usable data.  

 

6.2.3.4. NETAD 
 

NETAD algorithm evaluation did not happen due to limited time and similar 

algorithmic handicaps for successful evaluation. 
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CHAPTER 7 
 

CONCLUSION 
 

 

In this study five anomaly detection algorithms (PHAD, ALAD, LERAD, 

NETAD and SPADE) and Snort, a commercial signature based intrusion detection 

system, is introduced.  

In first step of demonstration, Snort and SPADE were tested on synthetic 

IDEVAL dataset. After that they were used to test real network traffic data collected 

from servers of our university. PHAD was also used to test these data for intrusions.  

Collected network traffic data contained various attacks distributed into samples 

and a few attack waves which last longer than other attacks. Since Snort and Spade were 

not affected underlying structure or content of the network, demonstration has been 

completed. However PHAD algorithm required clean training data obtained from the 

network which it is deployed. This type of data was not available in large amounts, so 

the process ended with many false alerts, a sign of tight bounds between algorithm and 

structure and content of the network. Demonstration of other algorithms in real traffic 

was cancelled because of similar algorithmic background.  

SPADE has proven to be useful for detecting port scans but has a serious lack of 

event correlation ability. Performance of the selected detector of SPADE has been 

superseded by default port-scan preprocessor plug-in of Snort package. Not all detected 

probes of SPADE and port-scan overlap each other, thus providing more information on 

activities missed by other detector. SPADE has been more informative and precise on 

scanned ports than port-scan. 

As future work, evaluation of these algorithms may be performed with more real 

attack-free training data. Demonstrating performance of other detectors of SPADE may 

be added to the overall process. 
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APPENDIX A 
 

FIELDS OF LOWER LAYER PROTOCOL HEADERS 
 

 

 Five anomaly detection algorithms covered in Chapter 4 use different fields on 

lower layer protocols. These fields in lower layer protocols and their order in packet 

payloads are provided in the following figures 

 

 
 

Fig. A.1.Fields of Ethernet Packet  

                                 (Redrawn, Original source: Stevens 1994) 
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Fig. A.2.Fields of IP Header  

                    (Source: Stevens 1994) 

 

 
 

Fig. A.3.Fields of TCP Header  

               (Source: Stevens 1994) 
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Fig. A.4.Fields of UDP Header  

               (Source: Stevens 1994) 

 

 
 

Fig.A.5.ICMP Header  

                                                (Redrawn, Original source: Stevens 1994) 
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APPENDIX B 
 

LIST OF DATA FILES 
 

 

Table B.1 shows list of available data files. File names have no extension. Data files of 

the same day are grouped and summed in empty line after each group. 

 
Table B.1. List of tcpdump data files collected by Snort 

 
 File Name Starts at (* Real time) Ends at (* Real time) Length(MB) 
1 snort-tcpdump-6-1 Thu Apr 6 14:32:14  Thu Apr 6 16:38:18  1.200,00 
2 snort-tcpdump-6-2 Thu Apr 6 16:38:36  Thu Apr 6 16:38:46  0,09 
3 snort-tcpdump-6-3 Thu Apr 6 16:38:58  Thu Apr 6 23:59:59  783,50 
    1.983,59 
     
4 snort-tcpdump-7-1 Fri Apr 7 00:00:00  Fri Apr 7 14:26:42  1.200,00 
5 snort-tcpdump-7-2 Fri Apr 7 15:16:41  Fri Apr 7 16:25:01  1.100,00 
6 snort-tcpdump-7-3 Fri Apr 7 16:25:01  Fri Apr 7 20:00:01  954,80 
7 snort-tcpdump-7-4 Fri Apr 7 20:00:01  Fri Apr 7 23:59:59  128,30 
    3.383,10 
     
8 snort-tcpdump-8-1 Sat Apr 8 00:00:00  Sat Apr 8 16:40:01  1.300,00 
9 snort-tcpdump-8-2 Sat Apr 8 16:40:01  Sat Apr 8 23:59:59  305,70 
    1.605,70 
     
10 snort-tcpdump-9-1 Sun Apr 9 00:00:00  Sun Apr 9 16:30:01  1.300,00 
11 snort-tcpdump-9-2 Sun Apr 9 16:30:02  Sun Apr 9 22:20:01  979,50 
12 snort-tcpdump-9-3 Sun Apr 9 22:20:02  Sun Apr 9 23:59:59  59,20 
    2.338,70 
     
13 snort-tcpdump-10-1 Mon Apr 10 00:00:00  Mon Apr 10 11:20:01  947,10 
14 snort-tcpdump-10-2 Mon Apr 10 11:20:01  Mon Apr 10 16:30:01  1.600,00 
15 snort-tcpdump-10-3 Mon Apr 10 16:30:01  Mon Apr 10 17:10:01  1.200,00 
16 snort-tcpdump-10-4 Mon Apr 10 17:10:01  Mon Apr 10 17:20:01  1.400,00 
17 snort-tcpdump-10-5 Mon Apr 10 17:20:01  Mon Apr 10 23:59:59  371,10 
    5.518,20 
     
18 snort-tcpdump-11-1 Tue Apr 11 00:00:00  Tue Apr 11 10:10:01  784,20 
19 snort-tcpdump-11-2 Tue Apr 11 10:10:01  Tue Apr 11 16:40:01  1.800,00 
20 snort-tcpdump-11-3 Tue Apr 11 16:40:02  Tue Apr 11 23:59:59  331,00 
    2.915,20 
     
21 snort-tcpdump-12-1 Wed Apr 12 00:00:00  Wed Apr 12 10:40:01  637,00 
22 snort-tcpdump-12-2 Wed Apr 12 10:40:01  Wed Apr 12 16:30:01  1.800,00 
23 snort-tcpdump-12-3 Wed Apr 12 16:30:01  Wed Apr 12 23:59:59  741,90 
    3.178,90 
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 File Name Starts at (* Real time) Ends at (* Real time) Length(MB) 
24 snort-tcpdump-13-1 Thu Apr 13 00:00:00  Thu Apr 13 08:50:01  214,40 
25 snort-tcpdump-13-2 Thu Apr 13 08:50:01  Thu Apr 13 12:20:01  1.016,80 
26 snort-tcpdump-13-3 Thu Apr 13 12:20:01  Thu Apr 13 12:40:01  1.300,00 
27 snort-tcpdump-13-4 Thu Apr 13 12:40:01  Thu Apr 13 14:10:01  1.500,00 
28 snort-tcpdump-13-5 Thu Apr 13 14:10:01  Thu Apr 13 16:00:01  1.200,00 
29 snort-tcpdump-13-6 Thu Apr 13 16:00:01  Thu Apr 13 16:30:01  1.500,00 
30 snort-tcpdump-13-7 Thu Apr 13 16:30:01  Thu Apr 13 23:59:59  849,30 
    7.580,50 
     
31 snort-tcpdump-14-1 Fri Apr 14 00:00:00  Fri Apr 14 04:00:01  105,20 
32 snort-tcpdump-14-2 Fri Apr 14 04:00:01  Fri Apr 14 10:50:01  1.000,00 
33 snort-tcpdump-14-3 Fri Apr 14 10:50:01  Fri Apr 14 16:10:01  1.500,00 
34 snort-tcpdump-14-4 Fri Apr 14 16:10:02  Fri Apr 14 16:40:01  1.500,00 
35 snort-tcpdump-14-5 Fri Apr 14 16:40:01  Fri Apr 14 23:59:59  787,70 
    4.892,90 
     
36 snort-tcpdump-15-1 Sat Apr 15 00:00:00  Sat Apr 15 08:00:01  170,60 
37 snort-tcpdump-15-2 Sat Apr 15 08:00:01  Sat Apr 15 16:30:01  1.200,00 
38 snort-tcpdump-15-3 Sat Apr 15 16:30:01  Sat Apr 15 23:59:59  355,40 
    1.726,00 
     
39 snort-tcpdump-16-1 Sun Apr 16 00:00:00  Sun Apr 16 16:30:01  1.300,00 
40 snort-tcpdump-16-2 Sun Apr 16 16:30:01  Sun Apr 16 23:59:59  287,70 
    1.587,70 
     
41 snort-tcpdump-17-1 Mon Apr 17 00:00:00  Mon Apr 17 11:00:01  668,30 
42 snort-tcpdump-17-2 Mon Apr 17 11:00:01  Mon Apr 17 16:40:01  1.700,00 
43 snort-tcpdump-17-3 Mon Apr 17 16:40:01  Mon Apr 17 17:14:16  77,30 
    2.445,60 
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APPENDIX C 
 

CONTENTS OF CD 
 

 

root directory:  

    binaries (dir) 

    extras (dir) 

    TITLE.doc 

    original (dir) 

    programs (dir) 

    README.txt  

    sources (dir) 

    TABLE OF CONTENTS.doc 

    THESIS.doc 

 

binaries directory: 

    ethereal-0.99.0-fc4.1.i386.rpm 

    ethereal-gnome-0.99.0-fc4.1.i386.rpm 

    Files.txt 

    libnet10-1.0.2a-8.fc4.i386.rpm 

    libpcap-0.8.3-14.FC4.i386.rpm 

    pcre-5.0-4.1.fc4.i386.rpm 

    pcre-devel-5.0-4.1.fc4.i386.rpm 

    snort-2.4.4-3.fc4.i386.rpm 

    tcpdump-3.8.2-14.FC4.i386.rpm 

    unrar-3.5.4-0.lvn.1.4.i386.rpm 

 

 extras directory: 

     snortrules-snapshot-CURRENT.tar.gz 

     tarihler.iztech.txt 

     tethereal.manual.txt 
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original directory: 

    a2l.txt 

    alad.txt 

    eval.cpp 

    IDS Distribution.htm 

    lerad.cpp 

    leradp.cpp 

    netad.cpp 

    phad.cpp 

    sad.cpp 

    te.cpp 

    tf.cpp 

 

programs directory: 

    Files.txt 

    libpcap-0.9.4.tar.gz 

    snort-2.4.4.tar.gz 

    spade.tar.gz 

    tcpdump-3.9.4.tar.gz 

    tcpslice-1.1a3.tar.gz 

    tcpslice_mod.tar.gz 

 

sources directory: 

    doopen-final.sh 

    Files.txt 

    generate-final.sh 

    Makefile 

    myenhtest-final.pl 

    mytest2-final.pl 

    phadm.cpp 

    pssum-final.c 

    saviour-final.sh 

    savioursliced-final.sh 


	01.pdf
	02.pdf
	03.pdf
	Ye N. and Chen, Q., 2001. “An anomaly detection technique based on a chi-square statistic for detecting intrusions into information systems”, Quality and Reliability Engineering International Vol. 17, No:2 , Pages 105 – 112


