6 research outputs found

    Neutrosophic Hough Transform

    Get PDF
    Hough transform (HT) is a useful tool for both pattern recognition and image processing communities. In the view of pattern recognition, it can extract unique features for description of various shapes, such as lines, circles, ellipses, and etc. In the view of image processing, a dozen of applications can be handled with HT, such as lane detection for autonomous cars, blood cell detection in microscope images, and so on. As HT is a straight forward shape detector in a given image, its shape detection ability is low in noisy images. To alleviate its weakness on noisy images and improve its shape detection performance, in this paper, we proposed neutrosophic Hough transform (NHT). As it was proved earlier, neutrosophy theory based image processing applications were successful in noisy environments. To this end, the Hough space is initially transferred into the NS domain by calculating the NS membership triples (T, I, and F). An indeterminacy filtering is constructed where the neighborhood information is used in order to remove the indeterminacy in the spatial neighborhood of neutrosophic Hough space. The potential peaks are detected based on thresholding on the neutrosophic Hough space, and these peak locations are then used to detect the lines in the image domain. Extensive experiments on noisy and noise-free images are performed in order to show the efficiency of the proposed NHT algorithm. We also compared our proposed NHT with traditional HT and fuzzy HT methods on variety of images. The obtained results showed the efficiency of the proposed NHT on noisy images

    Segmentation of color images by chromaticity features using self-organizing maps

    Get PDF
    Usually, the segmentation of color images is performed using cluster-based methods and the RGB space to represent the colors. The drawback with these methods is the a priori knowledge of the number of groups, or colors, in the image; besides, the RGB space issensitive to the intensity of the colors. Humans can identify different sections within a scene by the chromaticity of its colors of, as this is the feature humans employ to tell them apart. In this paper, we propose to emulate the human perception of color by training a self-organizing map (SOM) with samples of chromaticity of different colors. The image to process is mapped to the HSV space because in this space the chromaticity is decoupled from the intensity, while in the RGB space this is not possible. Our proposal does not require knowing a priori the number of colors within a scene, and non-uniform illumination does not significantly affect the image segmentation. We present experimental results using some images from the Berkeley segmentation database by employing SOMs with different sizes, which are segmented successfully using only chromaticity features.Usualmente, la segmentación de imágenes de color se realiza empleando métodos de agrupamiento y el espacio RGB para representar los colores. El problema con los métodos de agrupamiento es que se requiere conocer previamente la cantidad de grupos, o colores, en la imagen; además de que el espacio RGB es sensible a la intensidad de colores. Los humanos podemos identificar diferentes secciones de una escena solo por la cromaticidad de los colores, ya que representa la característica que nos permite diferenciarlos entre sí. En este artículo se propone emular la percepción humana del color al entrenar un mapa auto-organizado (MAO) con muestras de cromaticidad de diferentes colores. La imagen a procesar es transformada al espacio HSV porque en tal espacio la cromaticidad es separada de la intensidad, mientras que en el espacio RGB no es posible. Nuestra propuesta no requiere conocer previamente la cantidad de colores que hay en una escena, y la iluminación no uniforme no afecta significativamente la segmentación de la imagen. Presentamos resultados experimentales utilizando algunas imágenes de la base de segmentación de Berkeley empleando MAOs de diferentes tamaños, las cuales son segmentadas exitosamente empleando únicamente características de cromaticidad

    Segmentación de Imágenes de Color Inspirado en la Percepción Humana del Color

    Get PDF
    En esta tesis se presentan los resultados obtenidos en la segmentación de imágenes por características de color, utilizando solo la información cromática de los colores; en donde se entrenan redes neuronales no supervisadas para reconocer cromaticidades de diferentes colores y después ser utilizados para procesar imágenes digitales.Usualmente la segmentación de imágenes se realiza considerando las características de textura y/o geométricas. Sin embargo, la segmentación de imágenes utilizando las características de color no es tan común. Los trabajos que abordan la segmentación de imágenes por sus características de color emplean o se basan en métodos nos supervisados o técnicas de agrupamiento, principalmente fuzzy C-means. Los resultados que se reportan son buenos, la desventaja con dichas técnicas es que se requiere definir previamente la cantidad de grupos que en se desean agrupar los colores, pero esto puede limitar la cantidad de colores que existen en la imagen; por otra parte, el procesamiento de los algoritmos no pueden generalizarse para cualquier imagen ya que solo procesan los colores de cada imagen, si estos grupos se intentan emplear para segmentar imágenes diferentes, es muy probable que no funcionarán correctamente. En este trabajo se propone imitar la percepción humana del reconocimiento del color empleando redes neuronales artificiales de tipo competitivas. Los seres humanos reconocen los colores primero por su cromaticidad y después por su intensidad; por otra parte, los seres humanos pueden reconocer áreas o secciones de imágenes dependiendo solamente de la cromaticidad de las partes que conforman la imagen. De aquí que, se propone entrenar una red neuronal que reconozca la cromaticidad de los colores. Una ventaja que tendrá la red neuronal con respecto a los métodos de agrupamiento es que no tendrá que ser entrenada por cada imagen, es decir, una vez entrenada la red neuronal a reconocer la cromaticidad del color, esta puede ser aplicada a cualquier imagen sin volver a ser entrenada.Beca CONACyT para realizar estudios de maestría, con el número de registro 634201

    The Encyclopedia of Neutrosophic Researchers - vol. 1

    Get PDF
    This is the first volume of the Encyclopedia of Neutrosophic Researchers, edited from materials offered by the authors who responded to the editor’s invitation. The authors are listed alphabetically. The introduction contains a short history of neutrosophics, together with links to the main papers and books. Neutrosophic set, neutrosophic logic, neutrosophic probability, neutrosophic statistics, neutrosophic measure, neutrosophic precalculus, neutrosophic calculus and so on are gaining significant attention in solving many real life problems that involve uncertainty, impreciseness, vagueness, incompleteness, inconsistent, and indeterminacy. In the past years the fields of neutrosophics have been extended and applied in various fields, such as: artificial intelligence, data mining, soft computing, decision making in incomplete / indeterminate / inconsistent information systems, image processing, computational modelling, robotics, medical diagnosis, biomedical engineering, investment problems, economic forecasting, social science, humanistic and practical achievements

    The Encyclopedia of Neutrosophic Researchers, 5th Volume

    Get PDF
    Neutrosophic set, neutrosophic logic, neutrosophic probability, neutrosophic statistics, neutrosophic measure, neutrosophic precalculus, neutrosophic calculus and so on are gaining significant attention in solving many real life problems that involve uncertainty, impreciseness, vagueness, incompleteness, inconsistent, and indeterminacy. In the past years the fields of neutrosophics have been extended and applied in various fields, such as: artificial intelligence, data mining, soft computing, decision making in incomplete / indeterminate / inconsistent information systems, image processing, computational modelling, robotics, medical diagnosis, biomedical engineering, investment problems, economic forecasting, social science, humanistic and practical achievements. There are about 7,000 neutrosophic researchers, within 89 countries around the globe, that have produced about 4,000 publications and tenths of PhD and MSc theses, within more than two decades. This is the fifth volume of the Encyclopedia of Neutrosophic Researchers, edited from materials offered by the authors who responded to the editor’s invitation, with an introduction contains a short history of neutrosophics, together with links to the main papers and books

    Neutrosophic Multi-Criteria Decision Making

    Get PDF
    The notion of a neutrosophic quadruple BCK/BCI-number is considered in the first article (“Neutrosophic Quadruple BCK/BCI-Algebras”, by Young Bae Jun, Seok-Zun Song, Florentin Smarandache, and Hashem Bordbar), and a neutrosophic quadruple BCK/BCI-algebra, which consists of neutrosophic quadruple BCK/BCI-numbers, is constructed. Several properties are investigated, and a (positive implicative) ideal in a neutrosophic quadruple BCK-algebra and a closed ideal in a neutrosophic quadruple BCI-algebra are studied. Given subsets A and B of a BCK/BCI-algebra, the set NQ(A,B), which consists of neutrosophic quadruple BCK/BCInumbers with a condition, is established. Conditions for the set NQ(A,B) to be a (positive implicative) ideal of a neutrosophic quadruple BCK-algebra are provided, and conditions for the set NQ(A,B) to be a (closed) ideal of a neutrosophic quadruple BCI-algebra are given. Techniques for the order of preference by similarity to ideal solution (TOPSIS) and elimination and choice translating reality (ELECTRE) are widely used methods to solve multicriteria decision-making problems. In the second research article (“Decision-Making with Bipolar Neutrosophic TOPSIS and Bipolar Neutrosophic ELECTRE-I”), Muhammad Akram, Shumaiza, and Florentin Smarandache present the bipolar neutrosophic TOPSIS method and the bipolar neutrosophic ELECTRE-I method to solve such problems. The authors use the revised closeness degree to rank the alternatives in the bipolar neutrosophic TOPSIS method. The researchers describe the bipolar neutrosophic TOPSIS method and the bipolar neutrosophic ELECTRE-I method by flow charts, also solving numerical examples by the proposed methods and providing a comparison of these methods. In the third article (“Interval Neutrosophic Sets with Applications in BCK/BCI-Algebra”, by Young Bae Jun, Seon Jeong Kim and Florentin Smarandache), the notion of (T(i,j),I(k,l),F(m,n))-interval neutrosophic subalgebra in BCK/BCI-algebra is introduced for i,j,k,l,m,n infoNumber 1,2,3,4, and properties and relations are investigated. The notion of interval neutrosophic length of an interval neutrosophic set is also introduced, and the related properties are investigated
    corecore