157 research outputs found

    A New MMC Topology Which Decreases the Sub Module Voltage Fluctuations at Lower Switching Frequencies and Improves Converter Efficiency

    Get PDF
    Modular Multi-level inverters (MMCs) are becoming more common because of their suitability for applications in smart grids and multi-terminal HVDC transmission networks. The comparative study between the two classic topologies of MMC (AC side cascaded and DC side cascaded topologies) indicates some disadvantages which can affect their performance. The sub module voltage ripple and switching losses are one of the main issues and the reason for the appearance of the circulating current is sub module capacitor voltage ripple. Hence, the sub module capacitor needs to be large enough to constrain the voltage ripple when operating at lower switching frequencies. However, this is prohibitively uneconomical for the high voltage applications. There is always a trade off in MMC design between the switching frequency and sub module voltage ripple

    Non-Ideal Proportional Resonant Control for Modular Multilevel Converters under Sub-Module Fault Conditions

    Get PDF

    Control of MMC-based STATCOM as an effective interface between energy sources and the power grid

    Get PDF
    © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This paper presents a dynamic model of modular multilevel converters (MMCs), which are considered as an effective interface between energy sources and the power grid. By improving the converter performance, appropriate reactive power compensation is guaranteed. Modulation indices are calculated based on detailed harmonic evaluations of both dynamic and steady-state operation modes, which is considered as the main contribution of this paper in comparison with other methods. As another novelty of this paper, circulating current control is accomplished by embedding an additional second harmonic component in the modulation process. The proposed control method leads to an effective reduction in capacitor voltage fluctuation and losses. Finally, converter’s maximum stable operation range is modified, which provides efficiency enhancements and also stability assurance. The proficiency and functionality of the proposed controller are demonstrated through detailed theoretical analysis and simulations with MATLAB/Simulink

    High-Efficiency MOSFET-based MMC Design for LVDC Distribution Systems

    Get PDF
    LVDC distribution networks have the potential to release larger capacity without having to upgrade the existing cables. One of the main challenges of LVDC networks is the extra customer-end DC-AC conversion stage. This paper proposes and evaluates a 5-level Si MOSFET-based MMC as a promising alternative to the conventional 2-level IGBT-based converter. This is due to the comparatively higher efficiency, power quality and reliability, and reduced EM emissions. A comprehensive analysis of a Si MOSFET 5-level MMC converter design is performed to investigate the suitability of the topology for LVDC applications. Detailed theoretical analysis of the 5-level MMC is presented, with simulated and experimental results to demonstrate circuit performance. To suppress the AC circulating current, especially the dominant 2nd harmonics, this paper presents a double line-frequency PI with orthogonal imaginary axis control method. Comparison of simulation and experimental results with those for double line-frequency PR control shows that the proposed PI controller has better performance. In addition, it is simpler to implement and more immune to sampling/discretisation errors

    Arm balancing control and experimental validation of a grid connected MMC with pulsed DC load

    Get PDF
    This paper focuses on the operation of a grid connected Modular Multilevel Converter (MMC) supplying a pulsed DC load. The goal is to achieve minimum AC power fluctuation despite the high power fluctuation present on the DC side. The MMC has been selected for its inherent ability to decouple AC and DC current controllers. How¬ever, if no additional provisions are taken, the pulsed load causes imbalance of cell capacitor voltages between upper and lower arm in each phase. The paper presents the the-oretical analysis of the imbalance problem, and proposes a simple arm balancing controller to enable the operation of the converter under pulsed DC load. The effectiveness of the controller has been successfully verified on a 7 kW MMC experimental prototype with a 3 kA pulsed DC load

    Advanced Control Strategies for Modular Multilevel Converters

    Get PDF

    An optimal full frequency control strategy for the modular multilevel matrix converter based on predictive control

    Get PDF
    The modular multilevel matrix converter (M3C) is a promising topology for high-voltage high-power applications. Recent researches have proved its significant advantages for adjustable-speed motor drives compared with the back-to-back modular multilevel converter (MMC). However, the branch energy balancing in the M3C presents great challenge especially at critical-frequency points where the output frequency is close to zero or grid-side frequency. Generally, this balancing control depends on the appropriate injection of inner circulating currents and the common-mode voltage (CMV) whereas their values are hard to determine and optimize. In this paper, an optimization based predictive control method is proposed to calculate the required circulating currents and the CMV. The proposed method features a broad-frequency range balancing of capacitor-voltages and no reactive power in the grid side. For operation at critical-frequency points, there is no increase on branch voltage stresses and limited increase on branch current stresses. A downscaled M3C system with 27 cells is designed and experiment results with the R-L load and induction motor load are presented to verify the proposed control method

    Novel double-layer DC/AC railway traction power supply system with renewable integration

    Get PDF
    Back-to-back converter based railway traction power supply system (TPSS) can eliminate neutral sections in the traction side and improve power quality in the grid side, but it still has some drawbacks such as low reliability, difficulty in accepting large-capacity renewable energy, and power mismatches. In this study, a double-layer DC/AC TPSS with renewable integration is proposed to address these challenges and to improve system performance. The proposed topology breaks the limit of back-to-back structure and enables more flexible free energy flow. A top-down system design method is proposed in this study. Firstly, the characteristics of the proposed TPSS for integration with renewable power are described and compared with the traditional back-to-back topology. Secondly, a DC droop controller and a AC droop controller are designed for DC layer grid and AC layer grid, respectively, to control the power flow in each layer. The traditional AC droop control is based on the inductive transmission impedance, but the resistance of traction transmission line cannot be ignored. Thus, a modified droop control strategy with the consideration of line resistance is also proposed in this study. Subsequently, the voltage control strategy for the single modular multilevel converter is designed to track the reference signal from the upper droop controller. Finally, a general double-layer DC/AC TPSS is designed from bottom to top, and the simulation results confirm that the proposed TPSS with renewable integration is capable of delivering desirable performance

    Power quality improvement with a pulse width modulation control method in modular multilevel converters under varying nonlinear loads

    Get PDF
    UIDB/00667/2020 POCI-01-0145-FEDER-029803 (02/SAICT/2017) POCI-01-0145-FEDER-006961 (UID/EEA/50014/2019)In order to reach better results for pulse width modulation (PWM)-based methods, the reference waveforms known as control laws have to be achieved with good accuracy. In this paper, three control laws are created by considering the harmonic components of modular multilevel converter (MMC) state variables to suppress the circulating currents under nonlinear load variation. The first control law consists of only the harmonic components of the MMC's output currents and voltages. Then, the second-order harmonic of circulating currents is also involved with both upper and lower arm currents in order to attain the second control law. Since circulating current suppression is the main aim of this work, the third control law is formed by measuring all harmonic components of circulating currents which impact on the arm currents as well. By making a comparison between the switching signals generated by the three proposed control laws, it is verified that the second-order harmonic of circulating currents can increase the switching losses. In addition, the existence of all circulating current harmonics causes distributed switching patterns, which is not suitable for the switches' lifetime. Each upper and lower arm has changeable capacitors, named "equivalent submodule (SM) capacitors" in this paper. To further assess these capacitors, eliminating the harmonic components of circulating currents provides fluctuations with smaller magnitudes, as well as a smaller average value for the equivalent capacitors. Moreover, the second-order harmonic has a dominant role that leads to values higher than 3 F for equivalent capacitors. In comparison with the first and second control laws, the use of the third control-law-based method will result in very small circulating currents, since it is trying to control and eliminate all harmonic components of the circulating currents. This result leads to very small magnitudes for both the upper and lower arm currents, noticeably decreasing the total MMC losses. All simulation results are verified using MATLAB software in the SIMULINK environment.publishersversionpublishe
    corecore