29,580 research outputs found

    A Novel CT Imaging System with Adjacent Double X-Ray Sources

    Get PDF
    Current computed tomography (CT) scanners rotate fast to reduce motion artifact. X-ray tube must work in a high power to make the image clear under short exposure time. However, the life span of such a tube may be shortened. In this paper, we propose a novel double sources CT imaging system, which puts two of the same X-ray sources closely with each other. The system is different from current dual source CT with orthogonal X-ray sources. In our system, each projection is taken twice by these two sources to enhance the exposure value and then recovered to a single source projection for image reconstruction. The proposed system can work like normal single source CT system, while halving down the working power for each tube

    Energy and position resolution of a CdZnTe gamma-ray detector with orthogonal coplanar anodes

    Get PDF
    We report on the simulation, construction and performance of prototype CZT imaging detectors employing orthogonal coplanar anodes. These detectors employ a novel electrode geometry with non-collecting anode strips in 1D and collecting anode pixels, interconnected in rows, in the orthogonal dimensions. These detectors retain the spectroscopic and detection efficiency advantages of single carried charge sensing devices as well as the principal advantage of conventional strip detectors with orthogonal anode and cathode strips, i.e. an N X N array of imagin pixels are realized with only 2N electronic channels. Charge signals induced on the various electrodes of a prototype detector with 8 X 8 unit cells are in good agreement with the simulations. The position resolution is about 1 mm in the direction perpendicular to the pixel lines while it is of the order of 100 micrometers in the other direction. Energy resolutions of 0.9 percent at 662 keV, 2.6 percent at 122 keV and 5.7 percent at 60 keV have been obtained at room temperature

    Beam Energy Considerations for Gold Nano-Particle Enhanced Radiation Treatment

    Get PDF
    Purpose: A novel approach using nano technology enhanced radiation modalities is investigated. The proposed methodology uses antibodies labeled with organically inert metals with a high atomic number. Irradiation using photons with energies in the kilo--electron volt (keV) range show an increase in dose due to a combination of an increase in photo-electric interactions and a pronounced generation of Auger and/or Coster-Kronig (A-CK) electrons. Methods: The dependency of the dose deposition on various factors is investigated using Monte Carlo simulation models. The factors investigated include: agent concentration, spectral dependency looking at mono--energetic sources as well as classical bremsstrahlung sources. The optimization of the energy spectrum is performed in terms of physical dose enhancement as well as the dose deposited by Auger and/or Coster-Kronig electrons and their biological effectiveness. Results: A quasi-linear dependency on concentration and an exponential decrease within the target medium is observed. The maximal dose enhancement is dependent on the position of the target in the beam. Apart from irradiation with low photon energies (10 - 20 keV) there is no added benefit from the increase in generation of Auger electrons. Interestingly, a regular 110kVp bremsstrahlung spectrum shows a comparable enhancement in comparison with the optimized mono--energetic sources. Conclusions: In conclusion we find that the use of nano-particle enhanced shows promise to be implemented quite easily in regular clinic on a physical level due to the advantageous properties in classical beams.Comment: Preprint submitted to Phys Med Bio

    PEPI Lab: a flexible compact multi-modal setup for X-ray phase-contrast and spectral imaging

    Get PDF
    This paper presents a new flexible compact multi-modal imaging setup referred to as PEPI (Photon-counting Edge-illumination Phase-contrast imaging) Lab, which is based on the edge-illumination (EI) technique and a chromatic detector. The system enables both X-ray phase-contrast (XPCI) and spectral (XSI) imaging of samples on the centimeter scale. This work conceptually follows all the stages in its realization, from the design to the first imaging results. The setup can be operated in four different modes, i.e. photon-counting/conventional, spectral, double-mask EI, and single-mask EI, whereby the switch to any modality is fast, software controlled, and does not require any hardware modification or lengthy re-alignment procedures. The system specifications, ranging from the X-ray tube features to the mask material and aspect ratio, have been quantitatively studied and optimized through a dedicated Geant4 simulation platform, guiding the choice of the instrumentation. The realization of the imaging setup, both in terms of hardware and control software, is detailed and discussed with a focus on practical/experimental aspects. Flexibility and compactness (66 cm source-to-detector distance in EI) are ensured by dedicated motion stages, whereas spectral capabilities are enabled by the Pixirad-1/Pixie-III detector in combination with a tungsten anode X-ray source operating in the range 40-100 kVp. The stability of the system, when operated in EI, has been verified, and drifts leading to mask misalignment of less than 1 [Formula: see text]m have been measured over a period of 54 h. The first imaging results, one for each modality, demonstrate that the system fulfills its design requirements. Specifically, XSI tomographic images of an iodine-based phantom demonstrate the system's quantitativeness and sensibility to concentrations in the order of a few mg/ml. Planar XPCI images of a carpenter bee specimen, both in single and double-mask modes, demonstrate that refraction sensitivity (below 0.6 [Formula: see text]rad in double-mask mode) is comparable with other XPCI systems based on microfocus sources. Phase CT capabilities have also been tested on a dedicated plastic phantom, where the phase channel yielded a 15-fold higher signal-to-noise ratio with respect to attenuation

    Trends in Pixel Detectors: Tracking and Imaging

    Full text link
    For large scale applications, hybrid pixel detectors, in which sensor and read-out IC are separate entities, constitute the state of the art in pixel detector technology to date. They have been developed and start to be used as tracking detectors and also imaging devices in radiography, autoradiography, protein crystallography and in X-ray astronomy. A number of trends and possibilities for future applications in these fields with improved performance, less material, high read-out speed, large radiation tolerance, and potential off-the-shelf availability have appeared and are momentarily matured. Among them are monolithic or semi-monolithic approaches which do not require complicated hybridization but come as single sensor/IC entities. Most of these are presently still in the development phase waiting to be used as detectors in experiments. The present state in pixel detector development including hybrid and (semi-)monolithic pixel techniques and their suitability for particle detection and for imaging, is reviewed.Comment: 10 pages, 15 figures, Invited Review given at IEEE2003, Portland, Oct, 200

    Real time observation of mouse fetal skeleton using a high resolution X-ray synchrotron

    Get PDF
    The X-ray synchrotron is quite different from conventional radiation sources. This technique may expand the capabilities of conventional radiology and be applied in novel manners for special cases. To evaluate the usefulness of X-ray synchrotron radiation systems for real time observations, mouse fetal skeleton development was monitored with a high resolution X-ray synchrotron. A non-monochromatized X-ray synchrotron (white beam, 5C1 beamline) was employed to observe the skeleton of mice under anesthesia at embryonic day (E)12, E14, E15, and E18. At the same time, conventional radiography and mammography were used to compare with X-ray synchrotron. After synchrotron radiation, each mouse was sacrificed and stained with Alizarin red S and Alcian blue to observe bony structures. Synchrotron radiation enabled us to view the mouse fetal skeleton beginning at gestation. Synchrotron radiation systems facilitate real time observations of the fetal skeleton with greater accuracy and magnification compared to mammography and conventional radiography. Our results show that X-ray synchrotron systems can be used to observe the fine structures of internal organs at high magnification

    Three-dimensional distribution of primary melt inclusions in garnets by X-ray microtomography

    Get PDF
    open6X-ray computed microtomography (X-mu CT) is applied here to investigate in a non-invasive way the three-dimensional (3D) spatial distribution of primary melt and fluid inclusions in gamets from the metapeitic enclaves of El Hoyazo and from the migmatitcs of Sierra Alpujata, Spain. Attention is focused on a particular case of inhomogeneous distribution of inclusions, characterized by inclusion-rich cores and almost inclusion-free rims (i.e., zonal arrangement), that has been previously investigated in detail only by means of 2D conventional methods. Different experimental X-mu CT configurations, both synchrotron radiation- and X-ray tube-based, are employed to explore the limits of the technique. The internal features of the samples are successfully imaged, with spatial resolution down to a few micrometers. By means of dedicated image processing protocols, the lighter melt and fluid inclusions can be separated from the heavier host garnet and from other non-relevant features (e.g., other mineral phases or large voids). This allows evaluating the volumetric density of inclusions within spherical shells as a function of the radial distance from the center of the host garnets. The 3D spatial distribution of heavy mineral inclusions is investigated as well and compared with that of melt inclusions. Data analysis reveals the occurrence of a clear peak of melt and fluid inclusions density, ranging approximately from 1/3 to 1/2 of the radial distance from the center of the distribution and a gradual decrease from the peak outward. heavy mineral inclusions appear to be almost absent in the central portion of the garnets and more randomly arranged, showing no correlation with the distribution of melt and fluid inclusions. To reduce the effect of geometric artifacts arising from the non-spherical shape of the distribution, the inclusion density was calculated also along narrow prisms with different orientations, obtaining plots of pseudo-linear distributions. The results show that the core-rim transition is characterized by a rapid (but not step-like) decrease in inclusion density, occurring in a continuous mode. X-ray tomographic data, combined with electron microprobe chemical profiles of selected elements, suggest that despite the inhomogeneous distribution of inclusions, the investigated garnets have grown in one single progressive episode in the presence of anatectic melt. The continuous drop of inclusion density suggests a similar decline in (radial) garnet growth, which is a natural consequence in the case of a constant reaction rate. Our results confirm the advantages of high-resolution X-mu CT compared to conventional destructive 2D observations for the analysis of the spatial distribution of micrometer-scale inclusions in minerals, owing to its non-invasive 3D capabilities. The same approach can be extended to the study of different microstructural features in samples from a wide variety of geological settings.openParisatto, Matteo; Turina, Alice; Cruciani, Giuseppe; Mancini, Lucia; Peruzzo, Luca; Cesare, BernardoParisatto, Matteo; Turina, Alice; Cruciani, Giuseppe; Mancini, Lucia; Peruzzo, Luca; Cesare, Bernard

    Pixel Detectors for Tracking and their Spin-off in Imaging Applications

    Full text link
    To detect tracks of charged particles close to the interaction point in high energy physics experiments of the next generation colliders, hybrid pixel detectors, in which sensor and read-out IC are separate entities, constitute the present state of the art in detector technology. Three of the LHC detectors as well as the BTeV detector at the Tevatron will use vertex detectors based on this technology. A development period of almost 10 years has resulted in pixel detector modules which can stand the extreme rate and timing requirements as well as the very harsh radiation environment at the LHC for its full life time and without severe compromises in performance. From these developments a number of different applications have spun off, most notably for biomedical imaging. Beyond hybrid pixels, a number of trends and possibilities with yet improved performance in some aspects have appeared and presently developed to greater maturity. Among them are monolithic or semi-monolithic pixel detectors which do not require complicated hybridization but come as single sensor/IC entities. The present state in hybrid pixel detector development for the LHC experiments as well as for some imaging applications is reviewed and new trends towards monolithic or semi-monolithic pixel devices are summarized.Comment: 24 pages, 16 figure
    corecore