138 research outputs found

    Pseudo-Zernike Moments Based Sparse Representations for SAR Image Classification

    Get PDF
    We propose radar image classification via pseudo-Zernike moments based sparse representations. We exploit invariance properties of pseudo-Zernike moments to augment redundancy in the sparsity representative dictionary by introducing auxiliary atoms. We employ complex radar signatures. We prove the validity of our proposed methods on the publicly available MSTAR dataset

    Design and Optimization of Physical Waveform-Diverse and Spatially-Diverse Radar Emissions

    Get PDF
    With the advancement of arbitrary waveform generation techniques, new radar transmission modes can be designed via precise control of the waveform's time-domain signal structure. The finer degree of emission control for a waveform (or multiple waveforms via a digital array) presents an opportunity to reduce ambiguities in the estimation of parameters within the radar backscatter. While this freedom opens the door to new emission capabilities, one must still consider the practical attributes for radar waveform design. Constraints such as constant amplitude (to maintain sufficient power efficiency) and continuous phase (for spectral containment) are still considered prerequisites for high-powered radar waveforms. These criteria are also applicable to the design of multiple waveforms emitted from an antenna array in a multiple-input multiple-output (MIMO) mode. In this work, three spatially-diverse radar emission design methods are introduced that provide constant amplitude, spectrally-contained waveforms implemented via a digital array radar (DAR). The first design method, denoted as spatial modulation, designs the radar waveforms via a polyphase-coded frequency-modulated (PCFM) framework to steer the coherent mainbeam of the emission within a pulse. The second design method is an iterative scheme to generate waveforms that achieve a desired wideband and/or widebeam radar emission. However, a wideband and widebeam emission can place a portion of the emitted energy into what is known as the `invisible' space of the array, which is related to the storage of reactive power that can damage a radar transmitter. The proposed design method purposefully avoids this space and a quantity denoted as the Fractional Reactive Power (FRP) is defined to assess the quality of the result. The third design method produces simultaneous radar and communications beams in separate spatial directions while maintaining constant modulus by leveraging the orthogonal complement of the emitted directions. This orthogonal energy defines a trade-space between power efficiency gained from constraining waveforms to be constant amplitude and power efficiency lost by emitting energy in undesired directions. The design of FM waveforms via traditional gradient-based optimization methods is also considered. A waveform model is proposed that is a generalization of the PCFM implementation, denoted as coded-FM (CFM), which defines the phase of the waveform via a summation of weighted, predefined basis functions. Therefore, gradient-based methods can be used to minimize a given cost function with respect to a finite set of optimizable parameters. A generalized integrated sidelobe level (GISL) metric is used as the optimization cost function to minimize the correlation range sidelobes of the radar waveform. System specific waveform optimization is explored by incorporating the linear models of three different loopback configurations into the GISL metric to match the optimized waveforms to the particular systems

    Secure Data Collection and Analysis in Smart Health Monitoring

    Get PDF
    Smart health monitoring uses real-time monitored data to support diagnosis, treatment, and health decision-making in modern smart healthcare systems and benefit our daily life. The accurate health monitoring and prompt transmission of health data are facilitated by the ever-evolving on-body sensors, wireless communication technologies, and wireless sensing techniques. Although the users have witnessed the convenience of smart health monitoring, severe privacy and security concerns on the valuable and sensitive collected data come along with the merit. The data collection, transmission, and analysis are vulnerable to various attacks, e.g., eavesdropping, due to the open nature of wireless media, the resource constraints of sensing devices, and the lack of security protocols. These deficiencies not only make conventional cryptographic methods not applicable in smart health monitoring but also put many obstacles in the path of designing privacy protection mechanisms. In this dissertation, we design dedicated schemes to achieve secure data collection and analysis in smart health monitoring. The first two works propose two robust and secure authentication schemes based on Electrocardiogram (ECG), which outperform traditional user identity authentication schemes in health monitoring, to restrict the access to collected data to legitimate users. To improve the practicality of ECG-based authentication, we address the nonuniformity and sensitivity of ECG signals, as well as the noise contamination issue. The next work investigates an extended authentication goal, denoted as wearable-user pair authentication. It simultaneously authenticates the user identity and device identity to provide further protection. We exploit the uniqueness of the interference between different wireless protocols, which is common in health monitoring due to devices\u27 varying sensing and transmission demands, and design a wearable-user pair authentication scheme based on the interference. However, the harm of this interference is also outstanding. Thus, in the fourth work, we use wireless human activity recognition in health monitoring as an example and analyze how this interference may jeopardize it. We identify a new attack that can produce false recognition result and discuss potential countermeasures against this attack. In the end, we move to a broader scenario and protect the statistics of distributed data reported in mobile crowd sensing, a common practice used in public health monitoring for data collection. We deploy differential privacy to enable the indistinguishability of workers\u27 locations and sensing data without the help of a trusted entity while meeting the accuracy demands of crowd sensing tasks

    Conflict resolution algorithms for optimal trajectories in presence of uncertainty

    Get PDF
    Mención Internacional en el título de doctorThe objective of the work presented in this Ph.D. thesis is to develop a novel method to address the aircraft-obstacle avoidance problem in presence of uncertainty, providing optimal trajectories in terms of risk of collision and time of flight. The obstacle avoidance maneuver is the result of a Conflict Detection and Resolution (CD&R) algorithm prepared for a potential conflict between an aircraft and a fixed obstacle which position is uncertain. Due to the growing interest in Unmanned Aerial System (UAS) operations, CD&R topic has been intensively discussed and tackled in literature in the last 10 years. One of the crucial aspects that needs to be addressed for a safe and efficient integration of UAS vehicles in non-segregated airspace is the CD&R activity. The inherent nature of UAS, and the dynamic environment they are intended to work in, put on the table of the challenges the capability of CD&R algorithms to handle with scenarios in presence of uncertainty. Modeling uncertainty sources accurately, and predicting future trajectories taking into account stochastic events, are rocky issues in developing CD&R algorithms for optimal trajectories. Uncertainty about the origin of threats, variable weather hazards, sensing and communication errors, are only some of the possible uncertainty sources that make jeopardize air vehicle operations. In this work, conflict is defined as the violation of the minimum distance between a vehicle and a fixed obstacle, and conflict avoidance maneuvers can be achieved by only varying the aircraft heading angle. The CD&R problem, formulated as Optimal Control Problem (OCP), is solved via indirect optimal control method. Necessary conditions of optimality, namely, the Euler-Lagrange equations, obtained from calculus of variations, are applied to the vehicle dynamics and the obstacle constraint modeled as stochastic variable. The implicit equations of optimality lead to formulate a Multipoint Boundary Value Problem (MPBVP) which solution is in general not trivial. The structure of the optimality trajectory is inferred from the type of path constraint, and the trend of Lagrange multiplier is analyzed along the optimal route. The MPBVP is firstly approximated by Taylor polynomials, and then solved via Differential Algebra (DA) techniques. The solution of the OCP is therefore a set of polynomials approximating the optimal controls in presence of uncertainty, i.e., the optimal heading angles that minimize the time of flight, while taking into account the uncertainty of the obstacle position. Once the obstacle is detected by on-board sensors, this method provide a useful tool that allows the pilot, or remote controller, to choose the best trade-off between optimality and collision risk of the avoidance maneuver. Monte Carlo simulations are run to validate the results and the effectiveness of the method presented. The method is also valid to address CD&R problems in presence of storms, other aircraft, or other types of hazards in the airspace characterized by constant relative velocity with respect to the own aircraft.L’obiettivo del lavoro presentato in questa tesi di dottorato è la ricerca e lo sviluppo di un nuovo metodo di anti collisione velivolo-ostacolo in presenza di incertezza, fornendo traiettorie ottimali in termini di rischio di collisione e tempo di volo. La manovra di anticollisione è il risultato di un algoritmo di detezione e risoluzione dei conflitti, in inglese Conflict Detection and Resolution (CD&R), che risolve un potenziale conflitto tra un velivolo e un ostacolo fisso la cui posizione è incerta. A causa del crescente interesse nelle operazioni che coinvolgono velivoli autonomi, anche definiti Unmanned Aerial System (UAS), negli ultimi 10 anni molte ricerche e sviluppi sono state condotte nel campo degli algoritmi CD&R. Uno degli aspetti cruciali per un’integrazione sicura ed efficiente dei velivoli UAS negli spazi aerei non segregati è l’attività CD&R. La natura intrinseca degli UAS e l’ambiente dinamico in cui sono destinati a lavorare, impongono delle numerose sfide fra cui la capacità degli algoritmi CD&R di gestire scenari in presenza di incertezza. La modellizzazione accurata delle fonti di incertezza e la previsione di traiettorie che tengano conto di eventi stocastici, sono problemi particolarmente difficoltosi nello sviluppo di algoritmi CD&R per traiettorie ottimali. L’incertezza sull’origine delle minacce, zone di condizioni metereologiche avverse al volo, errori nei sensori e nei sistemi di comunicazione per la navigazione aerea, sono solo alcune delle possibili fonti di incertezza che mettono a repentaglio le operazioni degli aeromobili. In questo lavoro, il conflitto è definito come la violazione della distanza minima tra un veicolo e un ostacolo fisso, e le manovre per evitare i conflitti possono essere ottenute solo variando l’angolo di rotta dell’aeromobile, ovvero virando. Il problema CD&R, formulato come un problema di controllo ottimo, o Optimal Control Problem (OCP), viene risolto tramite un metodo indiretto. Le condizioni necessarie di ottimalità, vale a dire le equazioni di Eulero-Lagrange derivanti dal calcolo delle variazioni, sono applicate alla dinamica del velivolo e all’ostacolo modellizato come una variabile stocastica. Le equazioni implicite di ottimalità formano un problema di valori al controno multipunto, Multipoint Boundary Value Problem(MPBVP), la cui soluzione in generale è tutt’altro che banale. La struttura della traiettoria ottimale viene dedotta dal tipo di vincolo, e l’andamento del moltiplicatore di Lagrange viene analizzato lungo il percorso ottimale. Il MPBVP viene prima approssimato con un spazio di polinomi di Taylor e successimvamente risolto tramite tecniche di algebra differenziale, in inglese Differential Algebra (DA). La soluzione del OCP è quindi un insieme di polinomi che approssima il controllo ottimo del problema in presenza di incertezza. In altri termini, il controllo ottimo è l’insieme degli angoli di prua del velivolo che minimizzano il tempo di volo e che tenendo conto dell’incertezza sulla posizione dell’ostacolo. Quando l’ostacolo viene rilevato dai sensori di bordo, questo metodo fornisce un utile strumento al pilota, o al controllore remoto, al fine di scegliere il miglior compromesso tra ottimalità e rischio di collisione con l’ostacolo. Simulazioni Monte Carlo sono eseguite per convalidare i risultati e l’efficacia del metodo presentato. Il metodo è valido anche per affrontare problemi CD&R in presenza di tempeste, altri velivoli, o altri tipi di ostacoli caratterizzati da una velocità relativa costante rispetto al proprio velivolo.El objetivo del trabajo presentado en esta tesis doctoral es la búsqueda y el desarrollo de un método novedoso de anticolisión con osbstáculos en espacios aéreos en presencia de incertidumbre, proporcionando trayectorias óptimas en términos de riesgo de colisión y tiempo de vuelo. La maniobra de anticolisión es el resultado de un algoritmo de detección y resolución de conflictos, en inglés Conflict Detection and Resolution (CD&R), preparado para un conflicto potencial entre una aeronave y un obstáculo fijo cuya posición es incierta. Debido al creciente interés en las operaciones de vehículos autónomos, también definidos como Unmanned Aerial System (UAS), en los últimos 10 años muchas investigaciones se han llevado a cabo en el tema CD&R. Uno de los aspectos cruciales que debe abordarse para una integración segura y eficiente de los vehículos UAS en el espacio aéreo no segregado es la actividad CD&R. La naturaleza intrínseca de UAS, y el entorno dinámico en el que están destinados a trabajar, suponen un reto para la capacidad de los algoritmos de CD&R de trabajar con escenarios en presencia de incertidumbre. La precisa modelización de las fuentes de incertidumbre, y la predicción de trayectorias que tengan en cuenta los eventos estocásticos, son problemas muy difíciles en el desarrollo de algoritmos CD&R para trayectorias óptimas. La incertidumbre sobre el origen de las amenazas, condiciones climáticas adversas, errores en sensores y sistemas de comunicación para la navegación aérea, son solo algunas de las posibles fuentes de incertidumbre que ponen en peligro las operaciones de los vehículos aéreos. En este trabajo, el conflicto se define como la violación de la distancia mínima entre un vehículo y un obstáculo fijo, y las maniobras de anticolisión se pueden lograr variando solo el ángulo de rumbo de la aeronave, es decir virando. El problema CD&R, formulado como problema de control óptimo, o Optimal Control Problem (OCP), se resuelve a través del método de control óptimo indirecto. Las condiciones necesarias de optimalidad, es decir, las ecuaciones de Euler-Lagrange que se obtienen a partir del cálculo de variaciones, son aplicadas a la dinámica de la aeronave y al obstáculo modelizado como variable estocástica. Las ecuaciones implícitas de optimalidad forman un problema de valor de frontera multipunto (MPBVP) cuya solución en general no es trivial. La estructura de la trayectoria de optimalidad se deduce del tipo de vínculo, y la tendencia del multiplicador de Lagrange se analiza a lo largo de la ruta óptima. El MPBVP se aproxima en primer lugar a través de un espacio de polinomios de Taylor, y luego se resuelve por medio de técnicas de álgebra diferencial, en inglés Differential Algebra(DA). La solución del OCP es un conjunto de polinomios que aproximan los controles óptimos en presencia de incertidumbre, es decir, los ángulos de rumbo óptimos que minimizan el tiempo de vuelo teniendo en cuenta la incertidumbre asociada a la posición del obstáculo. Una vez que los sensores a bordo detectan el obstáculo, este método proporciona una herramienta muy útil que permite al piloto, o control remoto, elegir el mejor compromiso entre optimalidad y riesgo de colisión con el obstáculo. Se ejecutan simulaciones de Monte Carlo para validar los resultados y la efectividad del método presentado. El método también es válido para abordar los problemas de CD&R en presencia de tormentas, otras aeronaves u otros tipos de obstáculos caracterizados por una velocidad relativa constante con respecto a la propia aeronave.Programa de Doctorado en Mecánica de Fluidos por la Universidad Carlos III de Madrid; la Universidad de Jaén; la Universidad de Zaragoza; la Universidad Nacional de Educación a Distancia; la Universidad Politécnica de Madrid y la Universidad Rovira i VirgiliPresidente: Carlo Novara.- Secretario: Lucia Pallotino.- Vocales: Manuel Sanjurjo Rivo; Yoshinori Matsuno; Alfonso Valenzuela Romer

    Radar Technology

    Get PDF
    In this book “Radar Technology”, the chapters are divided into four main topic areas: Topic area 1: “Radar Systems” consists of chapters which treat whole radar systems, environment and target functional chain. Topic area 2: “Radar Applications” shows various applications of radar systems, including meteorological radars, ground penetrating radars and glaciology. Topic area 3: “Radar Functional Chain and Signal Processing” describes several aspects of the radar signal processing. From parameter extraction, target detection over tracking and classification technologies. Topic area 4: “Radar Subsystems and Components” consists of design technology of radar subsystem components like antenna design or waveform design

    Computational aberration correction in optical coherence tomography with phase-unstable systems

    Get PDF
    La tomografía de coherence óptica (OCT) es una técnica usada ampliamente en medicina, pero al tratarse de una técnica óptica es susceptible la aberraciones ópticas que degradan la calidad de la imagen, lo que dificulta la visualización de estructuras finas con alta resolución. Este trabajo presenta una técnica computacional para corregir aberraciones en OCT, cuya operación es compatible con muchos tipos de sistemas estandarés, y se muestran resultados en imagen del ojo, la via area y la piel.Optical coherence tomography (OCT) is an imaging technique widely use in medicine. OCT is an optical technique, therefore it is prone to optical aberrations that degrade image quality, making it difficult to visualize fine structures with high resolution.This work presents SHARP, a computational technique for correction of aberrations in OCT, that is compatible with most standard systems, and we present results in eye, airway and skin imagin

    Structured Compressed Sensing Using Deterministic Sequences

    No full text
    The problem of estimating sparse signals based on incomplete set of noiseless or noisy measurements has been investigated for a long time from different perspec- tives. In this dissertation, after the review of the theory of compressed sensing (CS) and existing structured sensing matrices, a new class of convolutional sensing matri- ces based on deterministic sequences are developed in the first part. The proposed matrices can achieve a near optimal bound with O(K log(N)) measurements for non-uniform recovery. Not only are they able to approximate compressible signals in the time domain, but they can also recover sparse signals in the frequency and discrete cosine transform domain. The candidates of the deterministic sequences include maximum length sequence (or called m-sequence), Golay's complementary sequence and Legendre sequence etc., which will be investigated respectively. In the second part, Golay-paired Hadamard matrices are introduced as structured sensing matrices, which are constructed from the Hadamard matrix, followed by diagonal Golay sequences. The properties and performances are analyzed in the following. Their strong structures ensure special isometry properties, and make them be easier applicable to hardware potentially. Finally, we exploit novel CS principles successfully in a few real applications, including radar imaging and dis- tributed source coding. The performance and the effectiveness of each scenario are verified in both theory and simulations

    Marine gravity and bathymetry modelling from recent satellite altimetry

    Get PDF

    Advances in Modeling of Fluid Dynamics

    Get PDF
    This book contains twelve chapters detailing significant advances and applications in fluid dynamics modeling with focus on biomedical, bioengineering, chemical, civil and environmental engineering, aeronautics, astronautics, and automotive. We hope this book can be a useful resource to scientists and engineers who are interested in fundamentals and applications of fluid dynamics
    corecore