8,670 research outputs found

    Multivariate time series analysis for short-term forecasting of ground level ozone (O3) in Malaysia

    Get PDF
    The declining of air quality mostly affects the elderly, children, people with asthma, as well as a restriction on outdoor activities. Therefore, there is an importance to provide a statistical modelling to forecast the future values of surface layer ozone (O3) concentration. The objectives of this study are to obtain the best multivariate time series (MTS) model and develop an online air quality forecasting system for O3 concentration in Malaysia. The implementations of MTS model improve the recent statistical model on air quality for short-term prediction. Ten air quality monitoring stations situated at four (4) different types of location were selected in this study. The first type is industrial represent by Pasir Gudang, Perai, and Nilai, second type is urban represent by Kuala Terengganu, Kota Bharu, and Alor Setar. The third is suburban located in Banting, Kangar, and Tanjung Malim, also the only background station at Jerantut. The hourly record data from 2010 to 2017 were used to assess the characteristics and behaviour of O3 concentration. Meanwhile, the monthly record data of O3, particulate matter (PM10), nitrogen dioxide (NO2), sulphur dioxide (SO2), carbon monoxide (CO), temperature (T), wind speed (WS), and relative humidity (RH) were used to examine the best MTS models. Three methods of MTS namely vector autoregressive (VAR), vector moving average (VMA), and vector autoregressive moving average (VARMA), has been applied in this study. Based on the performance error, the most appropriate MTS model located in Pasir Gudang, Kota Bharu and Kangar is VAR(1), Kuala Terengganu and Alor Setar for VAR(2), Perai and Nilai for VAR(3), Tanjung Malim for VAR(4) and Banting for VAR(5). Only Jerantut obtained the VMA(2) as the best model. The lowest root mean square error (RMSE) and normalized absolute error is 0.0053 and <0.0001 which is for MTS model in Perai and Kuala Terengganu, respectively. Meanwhile, for mean absolute error (MAE), the lowest is in Banting and Jerantut at 0.0013. The online air quality forecasting system for O3 was successfully developed based on the best MTS models to represent each monitoring station

    Causative factors of construction and demolition waste generation in Iraq Construction Industry

    Get PDF
    The construction industry has hurt the environment from the waste generated during construction activities. Thus, it calls for serious measures to determine the causative factors of construction waste generated. There are limited studies on factors causing construction, and demolition (C&D) waste generation, and these limited studies only focused on the quantification of construction waste. This study took the opportunity to identify the causative factors for the C&D waste generation and also to determine the risk level of each causal factor, and the most important minimization methods to avoiding generating waste. This study was carried out based on the quantitative approach. A total of 39 factors that causes construction waste generation that has been identified from the literature review were considered which were then clustered into 4 groups. Improved questionnaire surveys by 38 construction experts (consultants, contractors and clients) during the pilot study. The actual survey was conducted with a total of 380 questionnaires, received with a response rate of 83.3%. Data analysis was performed using SPSS software. Ranking analysis using the mean score approach found the five most significant causative factors which are poor site management, poor planning, lack of experience, rework and poor controlling. The result also indicated that the majority of the identified factors having a high-risk level, in addition, the better minimization method is environmental awareness. A structural model was developed based on the 4 groups of causative factors using the Partial Least Squared-Structural Equation Modelling (PLS-SEM) technique. It was found that the model fits due to the goodness of fit (GOF ≥ 0.36= 0.658, substantial). Based on the outcome of this study, 39 factors were relevant to the generation of construction and demolition waste in Iraq. These groups of factors should be avoided during construction works to reduce the waste generated. The findings of this study are helpful to authorities and stakeholders in formulating laws and regulations. Furthermore, it provides opportunities for future researchers to conduct additional research’s on the factors that contribute to construction waste generation

    A Study in Image Watermarking Schemes using Neural Networks

    Full text link
    The digital watermarking technique, an effective way to protect image, has become the research focus on neural network. The purpose of this paper is to provide a brief study on broad theories and discuss the different types of neural networks for image watermarking. Most of the research interest image watermarking based on neural network in discrete wavelet transform or discrete cosine transform. Generally image watermarking based on neural network to solve the problem on to reduce the error, improve the rate of the learning, achieves goods imperceptibility and robustness. It will be useful for researches to implement effective image watermarking by using neural network

    An innovative metaheuristic strategy for solar energy management through a neural networks framework

    Get PDF
    Proper management of solar energy as an effective renewable source is of high importance toward sustainable energy harvesting. This paper offers a novel sophisticated method for predicting solar irradiance (SIr) from environmental conditions. To this end, an efficient metaheuristic technique, namely electromagnetic field optimization (EFO), is employed for optimizing a neural network. This algorithm quickly mines a publicly available dataset for nonlinearly tuning the network parameters. To suggest an optimal configuration, five influential parameters of the EFO are optimized by an extensive trial and error practice. Analyzing the results showed that the proposed model can learn the SIr pattern and predict it for unseen conditions with high accuracy. Furthermore, it provided about 10% and 16% higher accuracy compared to two benchmark optimizers, namely shuffled complex evolution and shuffled frog leaping algorithm. Hence, the EFO-supervised neural network can be a promising tool for the early prediction of SIr in practice. The findings of this research may shed light on the use of advanced intelligent models for efficient energy development

    Development of soft computing and applications in agricultural and biological engineering

    Get PDF
    Soft computing is a set of “inexact” computing techniques, which are able to model and analyze very complex problems. For these complex problems, more conventional methods have not been able to produce cost-effective, analytical, or complete solutions. Soft computing has been extensively studied and applied in the last three decades for scientific research and engineering computing. In agricultural and biological engineering, researchers and engineers have developed methods of fuzzy logic, artificial neural networks, genetic algorithms, decision trees, and support vector machines to study soil and water regimes related to crop growth, analyze the operation of food processing, and support decision-making in precision farming. This paper reviews the development of soft computing techniques. With the concepts and methods, applications of soft computing in the field of agricultural and biological engineering are presented, especially in the soil and water context for crop management and decision support in precision agriculture. The future of development and application of soft computing in agricultural and biological engineering is discussed

    Deep Learning in Cardiology

    Full text link
    The medical field is creating large amount of data that physicians are unable to decipher and use efficiently. Moreover, rule-based expert systems are inefficient in solving complicated medical tasks or for creating insights using big data. Deep learning has emerged as a more accurate and effective technology in a wide range of medical problems such as diagnosis, prediction and intervention. Deep learning is a representation learning method that consists of layers that transform the data non-linearly, thus, revealing hierarchical relationships and structures. In this review we survey deep learning application papers that use structured data, signal and imaging modalities from cardiology. We discuss the advantages and limitations of applying deep learning in cardiology that also apply in medicine in general, while proposing certain directions as the most viable for clinical use.Comment: 27 pages, 2 figures, 10 table
    • …
    corecore