201 research outputs found

    A Study of Data Security on E-Governance using Steganographic Optimization Algorithms

    Get PDF
    Steganography has been used massively in numerous fields to maintain the privacy and integrity of messages transferred via the internet. The need to secure the information has augmented with the increase in e-governance usage. The wide adoption of e-governance services also opens the doors to cybercriminals for fraudulent activities in cyberspace. To deal with these cybercrimes we need optimized and advanced steganographic techniques. Various advanced optimization techniques can be applied to steganography to obtain better results for the security of information. Various optimization techniques like particle swarm optimization and genetic algorithms with cryptography can be used to protect information for e-governance services. In this study, a comprehensive review of steganographic algorithms using optimization techniques is presented. A new perspective on using this technique to protect the information for e-governance is also presented. Deep Learning might be the area that can be used to automate the steganography process in combination with other method

    Integrasi Discrete Wavelet Transform dan Singular Value Decomposition pada Watermarking Citra untuk Perlindungan Hak Cipta

    Full text link
    Tren masalah watermarking pada sekarang ini adalah bagaimana mengoptimalkan trade-off antara imperceptibility (visibilitas) citra ter-watermark terhadap pengaruh distorsi dan robustness terhadap penyisipan watermark. Masalah menggunakan kekuatan penyisipan berdasarkan Single Scaling Factor (SSF) atau Multiple Scaling Factor (MSF) juga ditemukan. Penelitian ini mengusulkan metode penyisipan watermark untuk perlindungan hak cipta pada citra dan algoritma ekstraksi citra ter-watermark yang dioptimalkan dengan penggabungan Discrete Wavelet Transform (DWT) dan Singular Value Decomposition (SVD). Nilai-nilai singular dari LL3 koefisien sub-band dari citra host dimodifikasi menggunakan nilai tunggal citra watermark biner menggunakan MSFs. Kontribusi utama dari skema yang diusulkan adalah aplikasi DWT-SVD untuk mengidentifikasi beberapa faktor skala yang optimal. Hasil penelitian menunjukkan bahwa skema yang diusulkan menghasilkan nilai Peak Signal to Noise Ratio (PSNR) yang tinggi, yang menunjukkan bahwa kualitas visual gambar yang baik pada masalah citra watermarking telah mengoptimalkan trade-off. Trade-off antara imperceptibility (visibilitas) citra ter-watermark terhadap pengaruh distorsi dan robustness citra ter-watermark terhadap operasi pengolahan citra. Nilai PSNR yang didapat pada citra yang diujikan: baboon=53,184; boat=53,328; cameraman=53,700; lena=53,668; man=53,328; dan pepper sebesar 52,662. Delapan perlakuan khusus pada hasil citra ter-watermark diujikan dan diekstraksi kembali yaitu JPEG 5%, Noise 5%, Gaussian filter 3x3, Sharpening, Histogram Equalization, Scaling 512-256, Gray Quantitation 1bit, dan Cropping 1/8. Hasil dari perlakuan khusus kemudian diukur nilai Normalized Cross-Correlation (NC) yang menghasilkan rata-rata semua citra diperoleh sebesar 0,999 dari satu. Hasil penelitian dari metode yang diusulkan lebih unggul nilai PSNR dan NC dari penelitian sebelumnya. Jadi dapat disimpulkan bahwa penerapan dengan metode DWT-SVD ini mampu menghasilkan citra yang robust namun memiliki tingkat imperceptibility yang cukup tinggi

    PSO Based Lossless and Robust Image Watermarking using Integer Wavelet Transform

    Get PDF
    In recent days, the advances in the broadcasting of multimedia contents in digital format motivate to protect this digital multimedia content form illegal use, such as manipulation, duplication and redistribution. However, watermarking algorithms are designed to meet the requirements of different applications, because, various applications have various requirements. This paper intends to design a new watermarking algorithm with an aim of provision of a tradeoff between the robustness and imperceptibility and also to reduce the information loss. This approach applies Integer Wavelet Transform (IWT) instead of conventional floating point wavelet transforms which are having main drawback of round of error. Then the most popular artificial intelligence technique, particle swarm optimization (PSO) used for optimization of watermarking strength. The strength of watermarking technique is directly related to the watermarking constant alpha. The PSO optimizes alpha values such that, the proposed approach achieves better robustness over various attacks and an also efficient imperceptibility. Numerous experiments are conducted over the proposed approach to evaluate the performance. The obtained experimental results demonstrates that the proposed approach is superior compared to conventional approach and is able to provide efficient resistance over Gaussian noise, sal

    A Novel DWT-CT approach in Digital Watermarking using PSO

    Get PDF
    The importance of watermarking is dramatically enhanced due to the promising technologies like Internet of Things (IoT), Data analysis, and automation of identification in many sectors. Due to these reasons, systems are inter-connected through networking and internet and huge amounts of information is generated, distributed and transmitted over the World Wide Web. Thus authentication of the information is a challenging task. The algorithm developed for the watermarking needs to be robust against various attack such as salt & peppers, filtering, compression and cropping etc. This paper focuses on the robustness of the algorithm by using a hybrid approach of two transforms such as Contourlet, Discrete Wavelet Transform (DWT). Also, the Particle Swarm Optimization (PSO) is used to optimize the embedding strength factor. The proposed digital watermarking algorithm has been tested against common types of image attacks. Experiment results for the proposed algorithm gives better performance by using similarity metrics such as NCC (Normalized Cross Correlation value) and PSNR (Peak Signal to Noise Ratio)

    Reversible Image Watermarking Using Modified Quadratic Difference Expansion and Hybrid Optimization Technique

    Get PDF
    With increasing copyright violation cases, watermarking of digital images is a very popular solution for securing online media content. Since some sensitive applications require image recovery after watermark extraction, reversible watermarking is widely preferred. This article introduces a Modified Quadratic Difference Expansion (MQDE) and fractal encryption-based reversible watermarking for securing the copyrights of images. First, fractal encryption is applied to watermarks using Tromino's L-shaped theorem to improve security. In addition, Cuckoo Search-Grey Wolf Optimization (CSGWO) is enforced on the cover image to optimize block allocation for inserting an encrypted watermark such that it greatly increases its invisibility. While the developed MQDE technique helps to improve coverage and visual quality, the novel data-driven distortion control unit ensures optimal performance. The suggested approach provides the highest level of protection when retrieving the secret image and original cover image without losing the essential information, apart from improving transparency and capacity without much tradeoff. The simulation results of this approach are superior to existing methods in terms of embedding capacity. With an average PSNR of 67 dB, the method shows good imperceptibility in comparison to other schemes

    Optimized DWT Based Digital Image Watermarking and Extraction Using RNN-LSTM

    Get PDF
    The rapid growth of Internet and the fast emergence of multi-media applications over the past decades have led to new problems such as illegal copying, digital plagiarism, distribution and use of copyrighted digital data. Watermarking digital data for copyright protection is a current need of the community. For embedding watermarks, robust algorithms in die media will resolve copyright infringements. Therefore, to enhance the robustness, optimization techniques and deep neural network concepts are utilized. In this paper, the optimized Discrete Wavelet Transform (DWT) is utilized for embedding the watermark. The optimization algorithm is a combination of Simulated Annealing (SA) and Tunicate Swarm Algorithm (TSA). After performing the embedding process, the extraction is processed by deep neural network concept of Recurrent Neural Network based Long Short-Term Memory (RNN-LSTM). From the extraction process, the original image is obtained by this RNN-LSTM method. The experimental set up is carried out in the MATLAB platform. The performance metrics of PSNR, NC and SSIM are determined and compared with existing optimization and machine learning approaches. The results are achieved under various attacks to show the robustness of the proposed work

    Monte Carlo Method with Heuristic Adjustment for Irregularly Shaped Food Product Volume Measurement

    Get PDF
    Volume measurement plays an important role in the production and processing of food products. Various methods have been proposed to measure the volume of food products with irregular shapes based on 3D reconstruction. However, 3D reconstruction comes with a high-priced computational cost. Furthermore, some of the volume measurement methods based on 3D reconstruction have a low accuracy. Another method for measuring volume of objects uses Monte Carlo method. Monte Carlo method performs volume measurements using random points. Monte Carlo method only requires information regarding whether random points fall inside or outside an object and does not require a 3D reconstruction. This paper proposes volume measurement using a computer vision system for irregularly shaped food products without 3D reconstruction based on Monte Carlo method with heuristic adjustment. Five images of food product were captured using five cameras and processed to produce binary images. Monte Carlo integration with heuristic adjustment was performed to measure the volume based on the information extracted from binary images. The experimental results show that the proposed method provided high accuracy and precision compared to the water displacement method. In addition, the proposed method is more accurate and faster than the space carving method

    Intelligent watermarking of long streams of document images

    Get PDF
    Digital watermarking has numerous applications in the imaging domain, including (but not limited to) fingerprinting, authentication, tampering detection. Because of the trade-off between watermark robustness and image quality, the heuristic parameters associated with digital watermarking systems need to be optimized. A common strategy to tackle this optimization problem formulation of digital watermarking, known as intelligent watermarking (IW), is to employ evolutionary computing (EC) to optimize these parameters for each image, with a computational cost that is infeasible for practical applications. However, in industrial applications involving streams of document images, one can expect instances of problems to reappear over time. Therefore, computational cost can be saved by preserving the knowledge of previous optimization problems in a separate archive (memory) and employing that memory to speedup or even replace optimization for future similar problems. That is the basic principle behind the research presented in this thesis. Although similarity in the image space can lead to similarity in the problem space, there is no guarantee of that and for this reason, knowledge about the image space should not be employed whatsoever. Therefore, in this research, strategies to appropriately represent, compare, store and sample from problem instances are investigated. The objective behind these strategies is to allow for a comprehensive representation of a stream of optimization problems in a way to avoid re-optimization whenever a previously seen problem provides solutions as good as those that would be obtained by reoptimization, but at a fraction of its cost. Another objective is to provide IW systems with a predictive capability which allows replacing costly fitness evaluations with cheaper regression models whenever re-optimization cannot be avoided. To this end, IW of streams of document images is first formulated as the problem of optimizing a stream of recurring problems and a Dynamic Particle Swarm Optimization (DPSO) technique is proposed to tackle this problem. This technique is based on a two-tiered memory of static solutions. Memory solutions are re-evaluated for every new image and then, the re-evaluated fitness distribution is compared with stored fitness distribution as a mean of measuring the similarity between both problem instances (change detection). In simulations involving homogeneous streams of bi-tonal document images, the proposed approach resulted in a decrease of 95% in computational burden with little impact in watermarking performace. Optimization cost was severely decreased by replacing re-optimizations with recall to previously seen solutions. After that, the problem of representing the stream of optimization problems in a compact manner is addressed. With that, new optimization concepts can be incorporated into previously learned concepts in an incremental fashion. The proposed strategy to tackle this problem is based on Gaussian Mixture Models (GMM) representation, trained with parameter and fitness data of all intermediate (candidate) solutions of a given problem instance. GMM sampling replaces selection of individual memory solutions during change detection. Simulation results demonstrate that such memory of GMMs is more adaptive and can thus, better tackle the optimization of embedding parameters for heterogeneous streams of document images when compared to the approach based on memory of static solutions. Finally, the knowledge provided by the memory of GMMs is employed as a manner of decreasing the computational cost of re-optimization. To this end, GMM is employed in regression mode during re-optimization, replacing part of the costly fitness evaluations in a strategy known as surrogate-based optimization. Optimization is split in two levels, where the first one relies primarily on regression while the second one relies primarily on exact fitness values and provide a safeguard to the whole system. Simulation results demonstrate that the use of surrogates allows for better adaptation in situations involving significant variations in problem representation as when the set of attacks employed in the fitness function changes. In general lines, the intelligent watermarking system proposed in this thesis is well adapted for the optimization of streams of recurring optimization problems. The quality of the resulting solutions for both, homogeneous and heterogeneous image streams is comparable to that obtained through full optimization but for a fraction of its computational cost. More specifically, the number of fitness evaluations is 97% smaller than that of full optimization for homogeneous streams and 95% for highly heterogeneous streams of document images. The proposed method is general and can be easily adapted to other applications involving streams of recurring problems

    Optimization of medical image steganography using n-decomposition genetic algorithm

    Get PDF
    Protecting patients' confidential information is a critical concern in medical image steganography. The Least Significant Bits (LSB) technique has been widely used for secure communication. However, it is susceptible to imperceptibility and security risks due to the direct manipulation of pixels, and ASCII patterns present limitations. Consequently, sensitive medical information is subject to loss or alteration. Despite attempts to optimize LSB, these issues persist due to (1) the formulation of the optimization suffering from non-valid implicit constraints, causing inflexibility in reaching optimal embedding, (2) lacking convergence in the searching process, where the message length significantly affects the size of the solution space, and (3) issues of application customizability where different data require more flexibility in controlling the embedding process. To overcome these limitations, this study proposes a technique known as an n-decomposition genetic algorithm. This algorithm uses a variable-length search to identify the best location to embed the secret message by incorporating constraints to avoid local minimum traps. The methodology consists of five main phases: (1) initial investigation, (2) formulating an embedding scheme, (3) constructing a decomposition scheme, (4) integrating the schemes' design into the proposed technique, and (5) evaluating the proposed technique's performance based on parameters using medical datasets from kaggle.com. The proposed technique showed resistance to statistical analysis evaluated using Reversible Statistical (RS) analysis and histogram. It also demonstrated its superiority in imperceptibility and security measured by MSE and PSNR to Chest and Retina datasets (0.0557, 0.0550) and (60.6696, 60.7287), respectively. Still, compared to the results obtained by the proposed technique, the benchmark outperforms the Brain dataset due to the homogeneous nature of the images and the extensive black background. This research has contributed to genetic-based decomposition in medical image steganography and provides a technique that offers improved security without compromising efficiency and convergence. However, further validation is required to determine its effectiveness in real-world applications
    • …
    corecore