132 research outputs found

    A Note on the Unsolvability of the Weighted Region Shortest Path Problem

    Full text link
    Let S be a subdivision of the plane into polygonal regions, where each region has an associated positive weight. The weighted region shortest path problem is to determine a shortest path in S between two points s, t in R^2, where the distances are measured according to the weighted Euclidean metric-the length of a path is defined to be the weighted sum of (Euclidean) lengths of the sub-paths within each region. We show that this problem cannot be solved in the Algebraic Computation Model over the Rational Numbers (ACMQ). In the ACMQ, one can compute exactly any number that can be obtained from the rationals Q by applying a finite number of operations from +, -, \times, \div, \sqrt[k]{}, for any integer k >= 2. Our proof uses Galois theory and is based on Bajaj's technique.Comment: 6 pages, 1 figur

    Efficient motion planning for problems lacking optimal substructure

    Full text link
    We consider the motion-planning problem of planning a collision-free path of a robot in the presence of risk zones. The robot is allowed to travel in these zones but is penalized in a super-linear fashion for consecutive accumulative time spent there. We suggest a natural cost function that balances path length and risk-exposure time. Specifically, we consider the discrete setting where we are given a graph, or a roadmap, and we wish to compute the minimal-cost path under this cost function. Interestingly, paths defined using our cost function do not have an optimal substructure. Namely, subpaths of an optimal path are not necessarily optimal. Thus, the Bellman condition is not satisfied and standard graph-search algorithms such as Dijkstra cannot be used. We present a path-finding algorithm, which can be seen as a natural generalization of Dijkstra's algorithm. Our algorithm runs in O((nBn)log(nBn)+nBm)O\left((n_B\cdot n) \log( n_B\cdot n) + n_B\cdot m\right) time, where~nn and mm are the number of vertices and edges of the graph, respectively, and nBn_B is the number of intersections between edges and the boundary of the risk zone. We present simulations on robotic platforms demonstrating both the natural paths produced by our cost function and the computational efficiency of our algorithm

    On approximating shortest paths in weighted triangular tessellations

    Get PDF
    We study the quality of weighted shortest paths when a continuous 2-dimensional space is discretized by a weighted triangular tessellation. In order to evaluate how well the tessellation approximates the 2-dimensional space, we study three types of shortest paths: a weighted shortest path SPw(s,t) , which is a shortest path from s to t in the space; a weighted shortest vertex path SVPw(s,t) , which is a shortest path where the vertices of the path are vertices of the tessellation; and a weighted shortest grid path SGPw(s,t) , which is a shortest path whose edges are edges of the tessellation. The ratios ¿SGPw(s,t)¿¿SPw(s,t)¿ , ¿SVPw(s,t)¿¿SPw(s,t)¿ , ¿SGPw(s,t)¿¿SVPw(s,t)¿ provide estimates on the quality of the approximation. Given any arbitrary weight assignment to the faces of a triangular tessellation, we prove upper and lower bounds on the estimates that are independent of the weight assignment. Our main result is that ¿SGPw(s,t)¿¿SPw(s,t)¿=23v˜1.15 in the worst case, and this is tight.Peer ReviewedPostprint (author's final draft

    The Galois Complexity of Graph Drawing: Why Numerical Solutions are Ubiquitous for Force-Directed, Spectral, and Circle Packing Drawings

    Get PDF
    Many well-known graph drawing techniques, including force directed drawings, spectral graph layouts, multidimensional scaling, and circle packings, have algebraic formulations. However, practical methods for producing such drawings ubiquitously use iterative numerical approximations rather than constructing and then solving algebraic expressions representing their exact solutions. To explain this phenomenon, we use Galois theory to show that many variants of these problems have solutions that cannot be expressed by nested radicals or nested roots of low-degree polynomials. Hence, such solutions cannot be computed exactly even in extended computational models that include such operations.Comment: Graph Drawing 201

    On approximating shortest paths in weighted triangular tessellations

    Full text link
    We study the quality of weighted shortest paths when a continuous 2-dimensional space is discretized by a weighted triangular tessellation. In order to evaluate how well the tessellation approximates the 2-dimensional space, we study three types of shortest paths: a weighted shortest path~SPw(s,t) \mathit{SP_w}(s,t) , which is a shortest path from s s to t t in the space; a weighted shortest vertex path SVPw(s,t) \mathit{SVP_w}(s,t) , which is a shortest path where the vertices of the path are vertices of the tessellation; and a weighted shortest grid path~SGPw(s,t) \mathit{SGP_w}(s,t) , which is a shortest path whose edges are edges of the tessellation. The ratios SGPw(s,t)SPw(s,t) \frac{\lVert \mathit{SGP_w}(s,t)\rVert}{\lVert \mathit{SP_w}(s,t)\rVert} , SVPw(s,t)SPw(s,t) \frac{\lVert \mathit{SVP_w}(s,t)\rVert}{\lVert \mathit{SP_w}(s,t)\rVert} , SGPw(s,t)SVPw(s,t) \frac{\lVert \mathit{SGP_w}(s,t)\rVert}{\lVert \mathit{SVP_w}(s,t)\rVert} provide estimates on the quality of the approximation. Given any arbitrary weight assignment to the faces of a triangular tessellation, we prove upper and lower bounds on the estimates that are independent of the weight assignment. Our main result is that SGPw(s,t)SPw(s,t)=231.15 \frac{\lVert \mathit{SGP_w}(s,t)\rVert}{\lVert \mathit{SP_w}(s,t)\rVert} = \frac{2}{\sqrt{3}} \approx 1.15 in the worst case, and this is tight.Comment: 17 pages, 10 figure

    On approximating shortest paths in weighted triangular tessellations

    Get PDF
    © 2023 Elsevier. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/We study the quality of weighted shortest paths when a continuous 2-dimensional space is discretized by a weighted triangular tessellation. In order to evaluate how well the tessellation approximates the 2-dimensional space, we study three types of shortest paths: a weighted shortest path , which is a shortest path from s to t in the space; a weighted shortest vertex path , which is an any-angle shortest path; and a weighted shortest grid path , which is a shortest path whose edges are edges of the tessellation. Given any arbitrary weight assignment to the faces of a triangular tessellation, thus extending recent results by Bailey et al. (2021) [6], we prove upper and lower bounds on the ratios , , , which provide estimates on the quality of the approximation. It turns out, surprisingly, that our worst-case bounds are independent of any weight assignment. Our main result is that in the worst case, and this is tight. As a corollary, for the weighted any-angle path we obtain the approximation result .P. B. is partially supported by NSERC. G. E., D. O. and R. I. S. are partially supported by H2020-MSCA-RISE project 734922 - CONNECT and project PID2019-104129GB-I00 funded by MCIN/AEI/10.13039/501100011033. G. E. and D. O. are also supported by PIUAH21/IA-062 and CM/JIN/2021-004. G. E. is also funded by an FPU of the Universidad de Alcalá.Peer ReviewedPostprint (published version

    Geometric Secluded Paths and Planar Satisfiability

    Get PDF
    We consider paths with low exposure to a 2D polygonal domain, i.e., paths which are seen as little as possible; we differentiate between integral exposure (when we care about how long the path sees every point of the domain) and 0/1 exposure (just counting whether a point is seen by the path or not). For the integral exposure, we give a PTAS for finding the minimum-exposure path between two given points in the domain; for the 0/1 version, we prove that in a simple polygon the shortest path has the minimum exposure, while in domains with holes the problem becomes NP-hard. We also highlight connections of the problem to minimum satisfiability and settle hardness of variants of planar min- and max-SAT

    The Lawn Mowing Problem: From Algebra to Algorithms

    Get PDF

    Conflict-driven learning in AI planning state-space search

    Get PDF
    Many combinatorial computation problems in computer science can be cast as a reachability problem in an implicitly described, potentially huge, graph: the state space. State-space search is a versatile and widespread method to solve such reachability problems, but it requires some form of guidance to prevent exploring that combinatorial space exhaustively. Conflict-driven learning is an indispensable search ingredient for solving constraint satisfaction problems (most prominently, Boolean satisfiability). It guides search towards solutions by identifying conflicts during the search, i.e., search branches not leading to any solution, learning from them knowledge to avoid similar conflicts in the remainder of the search. This thesis adapts the conflict-driven learning methodology to more general classes of reachability problems. Specifically, our work is placed in AI planning. We consider goal-reachability objectives in classical planning and in planning under uncertainty. The canonical form of "conflicts" in this context are dead-end states, i.e., states from which the desired goal property cannot be reached. We pioneer methods for learning sound and generalizable dead-end knowledge from conflicts encountered during forward state-space search. This embraces the following core contributions: When acting under uncertainty, the presence of dead-end states may make it impossible to satisfy the goal property with absolute certainty. The natural planning objective then is MaxProb, maximizing the probability of reaching the goal. However, algorithms for MaxProb probabilistic planning are severely underexplored. We close this gap by developing a large design space of probabilistic state-space search methods, contributing new search algorithms, admissible state-space reduction techniques, and goal-probability bounds suitable for heuristic state-space search. We systematically explore this design space through an extensive empirical evaluation. The key to our conflict-driven learning algorithm adaptation are unsolvability detectors, i.e., goal-reachability overapproximations. We design three complementary families of such unsolvability detectors, building upon known techniques: critical-path heuristics, linear-programming-based heuristics, and dead-end traps. We develop search methods to identify conflicts in deterministic and probabilistic state spaces, and we develop suitable refinement methods for the different unsolvability detectors so to recognize these states. Arranged in a depth-first search, our techniques approach the elegance of conflict-driven learning in constraint satisfaction, featuring the ability to learn to refute search subtrees, and intelligent backjumping to the root cause of a conflict. We provide a comprehensive experimental evaluation, demonstrating that the proposed techniques yield state-of-the-art performance for finding plans for solvable classical planning tasks, proving classical planning tasks unsolvable, and solving MaxProb in probabilistic planning, on benchmarks where dead-end states abound.Viele kombinatorisch komplexe Berechnungsprobleme in der Informatik lassen sich als Erreichbarkeitsprobleme in einem implizit dargestellten, potenziell riesigen, Graphen - dem Zustandsraum - verstehen. Die Zustandsraumsuche ist eine weit verbreitete Methode, um solche Erreichbarkeitsprobleme zu lösen. Die Effizienz dieser Methode hängt aber maßgeblich von der Verwendung strikter Suchkontrollmechanismen ab. Das konfliktgesteuerte Lernen ist eine essenzielle Suchkomponente für das Lösen von Constraint-Satisfaction-Problemen (wie dem Erfüllbarkeitsproblem der Aussagenlogik), welches von Konflikten, also Fehlern in der Suche, neue Kontrollregeln lernt, die ähnliche Konflikte zukünftig vermeiden. In dieser Arbeit erweitern wir die zugrundeliegende Methodik auf Zielerreichbarkeitsfragen, wie sie im klassischen und probabilistischen Planen, einem Teilbereich der Künstlichen Intelligenz, auftauchen. Die kanonische Form von „Konflikten“ in diesem Kontext sind sog. Sackgassen, Zustände, von denen aus die Zielbedingung nicht erreicht werden kann. Wir präsentieren Methoden, die es ermöglichen, während der Zustandsraumsuche von solchen Konflikten korrektes und verallgemeinerbares Wissen über Sackgassen zu erlernen. Unsere Arbeit umfasst folgende Beiträge: Wenn der Effekt des Handelns mit Unsicherheiten behaftet ist, dann kann die Existenz von Sackgassen dazu führen, dass die Zielbedingung nicht unter allen Umständen erfüllt werden kann. Die naheliegendste Planungsbedingung in diesem Fall ist MaxProb, das Maximieren der Wahrscheinlichkeit, dass die Zielbedingung erreicht wird. Planungsalgorithmen für MaxProb sind jedoch wenig erforscht. Um diese Lücke zu schließen, erstellen wir einen umfangreichen Bausatz für Suchmethoden in probabilistischen Zustandsräumen, und entwickeln dabei neue Suchalgorithmen, Zustandsraumreduktionsmethoden, und Abschätzungen der Zielerreichbarkeitswahrscheinlichkeit, wie sie für heuristische Suchalgorithmen gebraucht werden. Wir explorieren den resultierenden Gestaltungsraum systematisch in einer breit angelegten empirischen Studie. Die Grundlage unserer Adaption des konfliktgesteuerten Lernens bilden Unerreichbarkeitsdetektoren. Wir konzipieren drei Familien solcher Detektoren basierend auf bereits bekannten Techniken: Kritische-Pfad Heuristiken, Heuristiken basierend auf linearer Optimierung, und Sackgassen-Fallen. Wir entwickeln Suchmethoden, um Konflikte in deterministischen und probabilistischen Zustandsräumen zu erkennen, sowie Methoden, um die verschiedenen Unerreichbarkeitsdetektoren basierend auf den erkannten Konflikten zu verfeinern. Instanziiert als Tiefensuche weisen unsere Techniken ähnliche Eigenschaften auf wie das konfliktgesteuerte Lernen für Constraint-Satisfaction-Problemen. Wir evaluieren die entwickelten Methoden empirisch, und zeigen dabei, dass das konfliktgesteuerte Lernen unter gewissen Voraussetzungen zu signifikanten Suchreduktionen beim Finden von Plänen in lösbaren klassischen Planungsproblemen, Beweisen der Unlösbarkeit von klassischen Planungsproblemen, und Lösen von MaxProb im probabilistischen Planen, führen kann
    corecore