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We study the quality of weighted shortest paths when a continuous 2-dimensional space 
is discretized by a weighted triangular tessellation. In order to evaluate how well the 
tessellation approximates the 2-dimensional space, we study three types of shortest paths: 
a weighted shortest path SPw(s, t), which is a shortest path from s to t in the space; 
a weighted shortest vertex path SVPw(s, t), which is an any-angle shortest path; and a 
weighted shortest grid path SGPw(s, t), which is a shortest path whose edges are edges 
of the tessellation. Given any arbitrary weight assignment to the faces of a triangular 
tessellation, thus extending recent results by Bailey et al. (2021) [6], we prove upper and 
lower bounds on the ratios ‖SGPw(s,t)‖

‖SPw(s,t)‖ , ‖SVPw(s,t)‖
‖SPw(s,t)‖ , ‖SGPw(s,t)‖

‖SVPw(s,t)‖ , which provide estimates on 
the quality of the approximation. It turns out, surprisingly, that our worst-case bounds are 
independent of any weight assignment. Our main result is that ‖SGPw(s,t)‖

‖SPw(s,t)‖ = 2√
3

≈ 1.15 in 
the worst case, and this is tight. As a corollary, for the weighted any-angle path SVPw(s, t)
we obtain the approximation result ‖SVPw(s,t)‖

‖SPw(s,t)‖ � 1.15.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the 
CC BY-NC-ND license (http://creativecommons .org /licenses /by-nc -nd /4 .0/).

1. Introduction

Geometric shortest path problems, where the goal is to find an optimal path between two points s and t in a geometric 
setting, are fundamental for variety of real-world applications. For example, autonomous navigation over different types of 
terrain is a building block of an intelligent vehicle [29,42,47]. Artificial intelligence is also an important part in the design of 
video games [25,43]; developers usually design the movement of non-player characters following the edges of the cells that 
decompose the space. See Fig. 1, which shows how 2D triangular cells are used in the strategy game “Colossal Citadels” [28]. 
Moreover, finding paths of minimum cost is one of the major features in geographic information science [17].

One of the most general settings for geometric shortest path problems arises when the cost of traversing the plane varies 
depending on the region, that is, when the domain consists of a planar subdivision and each region i of the subdivision has 
a weight ωi , that represents the cost per unit of distance traveled in that region.

In gaming applications, this can be seen as an agent moving at different speeds when traversing a road, a dirt track, a 
forest, or a swamp area. Infrastructure planning takes into consideration planning, ecological and economic decision criteria. 

✩ This is an extended version of a paper appearing in Proceedings of WALCOM 2022.
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Fig. 1. Screenshots of the “Colossal Citadels” game by Uneven Dungeon. Used with permission from the author. Note the triangular grid underlying the 
scene.

Hence, finding proper weights on a raster-based accumulated cost surface is crucial when placing power lines [5,21], and 
pylons [36,39]. It is also fundamental in the construction of highways and corridors [40]. Thus, the cost of traversing a region 
is typically given by the Euclidean distance traversed in the region, multiplied by the corresponding weight. The resulting 
metric is often called the weighted region metric, and the problem of computing a shortest path between two points under 
this metric is known as the weighted region problem (WRP) [30,31].

1.1. Assumptions

Applications usually require efficient and practical solutions for the WRP. Since an exact solution to the WRP is noto-
riously difficult, the problem is usually simplified in two ways. First, the domain is approximated by using a (weighted) 
plane subdivision with a simpler structure. Secondly, optimal shortest paths in that simpler subdivision are approximated. 
The typical way to represent a 2D (or 3D) environment where shortest paths need to be computed is by using navigational 
meshes [46]. These are polygonal subdivisions together with a graph that models the adjacency between the regions. Path 
planning is then done first on the graph, to obtain a sequence of regions to be traversed, and then within each region, for 
which a shortest geometric path is extracted.

Triangles, convex polygons, disks or squares —of different sizes— are among the most frequently used region shapes [46]. 
General navigational meshes allow efficient path planning in large environments as long as the region weights are limited 
to {1, ∞} (i.e., free movement or obstacles), but when more weights {1, ωi, . . . , ω j, ∞} are needed (i.e., modeling different 
speeds for different types of ground), the complexity of computing the shortest path inside each region is most easily 
achieved through the use of the simplest possible navigational mesh: regular grids.

In 2D, the only three types of regular polygons that can be used to tessellate continuous environments are triangles, 
squares and hexagons. The drawback with a grid is that it imposes a fixed resolution, requiring in general a large number of 
cells or regions. Still, grids are often used as navigational meshes (even for the simpler case of weights {1, ∞}), since they 
are easy to implement, are a natural choice for environments that are grid-based by design (e.g., many game designs, some 
robotic settings), and popular shortest path algorithms such as A∗ can be optimized for grids [22,32,34].

1.2. Definitions and notations

Even when a regular grid is used as a navigational mesh, in practice, computing an exact weighted shortest path SPw(s, t)
is difficult and, in fact, no exact algorithm exists for the WRP [16]: instead, in practice, one usually resorts to approximations, 
by computing shortest paths on a weighted graph associated to the grid [1–3,14].

To this end, two different graphs have been considered in the literature [6,27,33,34], the corner-vertex graph Gcorner and 
the k-corner grid graph Gkcorner.

In Gcorner, the vertex set is the set of corners of the tessellation and every pair of vertices is connected by an edge. This 
graph is the complete graph over the set of vertices. Fig. 2a depicts some of the neighbors of a vertex v in the corner-vertex 
graph. Note that in this graph some edges overlap. A path in this graph is called a vertex path or any-angle path; a shortest 
vertex path between s and t will be denoted by SVPw(s, t), where the subscript w highlights that this path depends on a 
particular weight assignment w .

In Gkcorner, which is a subgraph of a corner-vertex graph, the vertex set is the set of corners of the tessellation, and each 
vertex is connected by an edge to a predefined set of k neighboring vertices, depending on the tessellation and other design 
decisions. See Fig. 2b for the 6-corner grid graph in a triangular tessellation. (Analogous k-corner grid graphs can be defined 
for square and hexagonal tessellations.) A path in this graph is called a grid path; a shortest grid path between s and t will 
be denoted by SGPw(s, t).

In all cases, the weight of each graph edge is defined by a function of the weights of the regions that the line segment 
associated with the edge traverses. More formally, let Ti be a region in a subdivision with weight ωi ∈ R≥0. The cost of a 
segment π in the interior of a cell Ti is given by ωi‖π‖, where ‖ · ‖ is the Euclidean norm. In the case where π lies on 
2
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Fig. 2. Vertex v is connected to its neighbors in a triangular tessellation. The dashed lines represent the edges of the graphs that coincide with the edges 
of the cells. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

Fig. 3. SPw(s, t) (blue), SVPw(s, t) (green), and a SGPw(s, t) (red) between two corners s and t in G6corner . The cost of each path is 16.75, 17.32 and 18, 
respectively, for a cell side length of 2.

the boundary of two cells T j and Tk , the cost is min{ω j, ωk}‖π‖. Thus, the weighted length of a path � is the sum of the 
weighted lengths of its subpaths through each face and along each edge. With a slight abuse of notation, we still denote 
this by ‖�‖.

Fig. 3 shows an example, illustrating the three paths considered in this work: the shortest path SPw(s, t) (blue), the 
shortest vertex path SVPw(s, t) (green), and the shortest grid path SGPw(s, t) (red) in a 6-corner grid graph. Note that, in the 
remainder of this work, any cell that is not depicted in the figures is considered to have infinite weight. In addition, if two 
paths coincide in a segment, one of them is depicted with dashed lines in that segment.

1.3. Quality bounds for approximation paths

The goal of this work is to understand the relation between SGPw(s, t), SVPw(s, t), and SPw(s, t), when a general weight 
assignment {1, ωi, . . . , ω j, ∞} is given in the WRP. Since SVPw(s, t) and SGPw(s, t) are approximations of SPw(s, t), a funda-
mental question is: what is the worst-case approximation factor that they can give?

In particular, we are interested in upper-bounding the ratios ‖SGPw(s,t)‖
‖SPw(s,t)‖ and ‖SVPw(s,t)‖

‖SPw(s,t)‖ , since they indicate the approxi-

mation factor of the shortest grid path and shortest vertex path, respectively. The ratio ‖SGPw(s,t)‖
‖SVPw(s,t)‖ is also studied, to see how 

different the two approximations can be.
The major contribution of this paper is the analysis of the quality of the three types of shortest paths for a weighted 

triangular grid for G6corner, which is the most natural graph defined on a triangular grid.

1.4. Significance

The WRP is very general, since it can be used to model many well-known variants of geometric shortest path problems. 
Indeed, having all equal weights makes the metric equivalent to the Euclidean metric (up to scaling), while using weights 
{1, ∞} allows to model paths amidst obstacles.

In the latter case, SGPw(s, t) and SPw(s, t) have been previously studied (note that SVPw(s, t) and SPw(s, t) coincide 
when the weights of the cells are taken in the set {1, ∞}). Algorithms using Snell’s law of refraction, heuristic methods, 
or Dijkstra’s algorithm are often used to find the shortest grid path [33,44] between two given points. In case of large-
scale grid environments some relaxed versions of Dijkstra and A∗ with linear running time O (n) (n is the size of the grid) 
have been designed [4]. Furthermore, some heuristics have been proposed for computing shortest paths in the context of 
game-programming [33,48], and for mobile robots [11,18,35]. Other algorithms have been suggested for isoline-based world 
representations [19], or for robots with two degrees of freedom [41]. In addition, some algorithms using heuristics, like Field 
D∗ , have been generalized to 3D environments [10] when computing SPw(s, t).

Almost all previous bounds on the ratio ‖SGPw(s,t)‖
‖SPw(s,t)‖ consider a limited set of weights for the cells. Bailey et al. [6] consid-

ered only weights in the set {1, ∞} and proved that the weighted length of SGPw(s, t) in hexagonal G6corner and G12corner, 
square G4corner and G8corner, and triangle G6corner can be up to ≈1.15, ≈1.04, ≈1.41, ≈1.08, and ≈1.15 times the weighted 
length of SPw(s, t), respectively. In addition, for extended square grid neighborhoods such as G2kcorner r-constrained it is 
proved that the length of an r-constrained path is at most 1

cos
(

arccot(r)
2

) times the length of a shortest path [23]. For G2kcorner

and G2kcenter [27], theoretical bounds for the ratio ‖SGPw(s,t)‖
‖SPw(s,t)‖ were presented, but no improvement was obtained over the 

results in [7].
3
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Fig. 4. When the centers of the cells are used as the vertices of the associated graph, we can make the ratios ‖SGPw(s,t)‖
‖SPw(s,t)‖ , ‖SVPw(s,t)‖

‖SPw(s,t)‖ arbitrarily large by giving 
cells T4, T5, T6 a finite weight much greater than 1, and cells T1, T3 weight 1.

Perhaps not surprisingly, the WRP turns out to be a challenging problem, so the main challenge here is to obtain tight 
upper bounds that hold for any assignment {1, ωi, . . . , ω j, ∞} of region weights. Efficient algorithms for the WRP only exist 
for a few special cases, e.g., rectilinear subdivisions with the L1 metric [13], or the maximum concealment problem, where just 
regions with weights 0 (travel in concealed free space), 1 (travel in exposed free space), or ∞ (travel through obstacles) are 
allowed [20,30,31]. This latter version of the WRP is related to stealth video games, such as “Metal Gear” [26] or “Assassin’s 
Creed” [45], where the player uses stealth to avoid or overcome opponents, i.e., the objective is to minimize the time the 
moving agent is exposed to a given set of “enemy” observers.

The first algorithm for the WRP was a (1 + ε)-approximation proposed by Mitchell and Papadimitriou [31], which runs 
in time O (n8 log

(nN W
wε

)
), where N is the maximum integer coordinate of any vertex of the subdivision, W and w are 

the maximum finite and the minimum nonzero integer weights assigned to the regions, respectively. Substantial research 
has been devoted to designing faster approximation algorithms and studying different variants of the problem [1–3,38]. 
Approximation schemes for the WRP are sophisticated methods that usually are based on variants of the continuous Dijk-
stra’s algorithm, subdividing triangle edges in parts for which crossing shortest paths have the same combinatorial structure 
(e.g., [31]), or work by computing a discretization of the domain by carefully placing Steiner points (e.g., see [14] for the 
currently best method of this type). The lack of exact algorithms for the WRP is probably explained by the fact that it was 
recently shown to be impossible to solve this problem in the Algebraic Computation Model over the Rational Numbers [16]. 
This is a model of computation where one can compute exactly any number that can be obtained from rational numbers by 
a finite number of basic operations.

1.5. Results

In this work, we consider tessellations where every face is an equilateral triangle (analogous ideas apply to square 
and hexagonal grids), and any arrangement of (non-negative) weights {1, ωi , . . . , ω j, ∞} to the cells of the discrete 2D 
environment. This extends recent results by Bailey et al. [6], who just considered weights in {1, ∞}.

Some advantages of triangular grids are that they can include hexagonal grids, and the distance between the vertices of 
adjacent cells is always the same, which simplifies distance calculations. In terms of computer games, movement of units in 
tight formation is allowed to have six directions and to turn smoothly. Furthermore, triangles can represent complex shapes, 
which is useful for building fortresses, bastions and streets, and interesting symmetrical shapes can be used for spells [28].

In contrast to previous work [6,23,27], we allow the weights ωi to take any value in R≥0. When the weights of the 
cells are allowed to be arbitrary non-negative numbers, the only result that we are aware of is for square tessellations and 
another type of shortest path, with vertices at the center of the cells, for which Jaklin [24] showed that ‖SGPw(s,t)‖

‖SPw(s,t)‖ ≤ 2
√

2. 
This latter model, considering vertices placed at the centers of the cells, simplifies collision avoidance during path execution, 
and has produced slightly different approximation results for the 2-dimensional terrain case, see [7] for unweighted square 
tessellations. However, we do not study the ratios in this model since all of them are unbounded when we assign non-
negative weights to the cells, see for instance Fig. 4.

Our main result is that ‖SGPw(s,t)‖
‖SPw(s,t)‖ = 2√

3
in the worst case, for any (non-negative) weight assignment. This implies bounds 

for the other two ratios considered. Moreover, our upper bound for ‖SGPw(s,t)‖
‖SPw(s,t)‖ is tight, since it matches the lower bound of 

Nash [33]. Table 1 summarizes our results, including Nash’s lower bounds.
In order to obtain bounds on the ratios, we uncover some properties of the different paths that allow us to prove our 

approximation ratios. These properties are related to the behavior of shortest paths and to the geometry of a constant 
number of cells of the tessellation. Surprisingly, a consequence of our analysis is that the worst-case ratios are upper-
bounded by constants that are independent of the weights assigned to the regions in the tessellation, i.e., the assignment 
of arbitrary weights to the cells is not the determining factor on the worst-case ratio.
4
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Table 1
Bounds on the quality of approximations of shortest paths in weighted triangular 
tessellations for G6corner .

Lower bound Upper bound
‖SGPw(s,t)‖
‖SPw(s,t)‖

2√
3

≈ 1.15 [33] 2√
3

≈ 1.15 (Theorem 1)

‖SVPw(s,t)‖
‖SPw(s,t)‖

2
√

7
√

3−12

(7−4
√

3)(6
√

2+
√

7
√

3−12)
≈ 1.11 (Obs. 3) 2√

3
≈ 1.15 (Corollary 2)

‖SGPw(s,t)‖
‖SVPw(s,t)‖

2√
3

≈ 1.15 [33] 2√
3

≈ 1.15 (Corollary 1)

Fig. 5. Weighted shortest path SPw(s, t) (blue) and the crossing path X(s, t) (orange) from s to t in a triangular tessellation.

2. ‖SGPw(s,t)‖
‖SPw(s,t)‖ ratio in G6corner for triangular cells

This section is devoted to obtaining, for two vertices s and t , an upper bound on the ratio ‖SGPw(s,t)‖
‖SPw(s,t)‖ in G6corner in a 

triangular tessellation T where faces are assigned arbitrary weights in R≥0. We assume that SPw(s, t) is unique, otherwise 
it is enough to repeat the following argument where we compute an upper bound for ‖SGPw(s,t)‖

‖SPw(s,t)‖ . In addition, we suppose, 
without loss of generality, that the length of each edge of the triangular cells is 2, in order to have a non-fractional length 
(
√

3) for the cell height.
Let (s = u1, u2, . . . , u� = t) be the ordered sequence of consecutive points where a grid path GPw(s, t) and the shortest 

path SPw(s, t) coincide; in the case where GPw(s, t) and SPw(s, t) share one or more segments, we define the corresponding 
points as the endpoints of each of these segments, see Fig. 5 for an illustration. Observation 1 below is a special case of the 
mediant inequality.

Observation 1. Let GPw(s, t) and SPw(s, t) be, respectively, a weighted grid path, and a weighted shortest path, from s to t. Let ui and 
ui+1 be two consecutive points where GPw(s, t) and SPw(s, t) coincide. Then, the ratio ‖GPw(s,t)‖

‖SPw(s,t)‖ is at most the maximum of all ratios 
‖GPw(ui ,ui+1)‖
‖SPw(ui ,ui+1)‖ , i ∈ {1, . . . , � − 1}.

2.1. Crossing paths and weakly simple polygons

The shape of the shortest paths SPw(s, t) and SGPw(s, t) is unknown to us. Moreover, knowing the exact shape of SPw(s, t)
is difficult. In addition, the two paths might intersect many different cells of the tessellation, so we need to take into account 
the weights of all the intersected regions. To address all these issues, for a given SPw(s, t) we define a particular grid path 
called a crossing path X(s, t), whose structure is simpler than the structure of a SGPw(s, t), and whose weighted length 
provides an upper bound on the weighted length of SGPw(s, t). See the orange path in Fig. 5. Thus, since ‖SGPw(s, t)‖ ≤
‖X(s, t)‖, the key idea to prove an upper bound on the ratio ‖SGPw(s,t)‖

‖SPw(s,t)‖ is to upper-bound the ratio ‖X(s,t)‖
‖SPw(s,t)‖ . To do so, we 

analyze the components resulting from the intersection between SPw(s, t) and X(s, t). Each component is a weakly simple 
polygon, whose boundary consists of the portions of SPw(s, t) and X(s, t) between the intersection points. The reason the 
polygons are weakly simple is because some portion of the boundary may be shared between the two paths. These weakly 
simple polygons are the basic unit that we will analyze to obtain our main result. We also obtain a relation between the 
weights of some cells intersected by SPw(s, t) and X(s, t). Notice that, for one type of weakly simple polygon, we will need 
a finer analysis using shortcut paths �i(s, t), which are defined in Section 2.2 (see Definition 3).

We begin by defining X(s, t). Let (T1, . . . , Tn) be the ordered sequence of consecutive triangular cells intersected 
by SPw(s, t) in the tessellation T . Let vi

1, v
i
2, v

i
3 be the three consecutive corners on the boundary of Ti, 1 ≤ i ≤ n, in 

clockwise order. Let (s = a1, a2, . . . , an+1 = t) be the sequence of consecutive points where SPw(s, t) changes the cell(s) it 
belongs to in T . In particular, let ai and ai+1 be, respectively, the points where SPw(s, t) enters and leaves Ti . Informally, 
we define X(s, t) based on SPw(s, t). Essentially, SPw(s, t) must traverse a number of cells of the tessellation. Although we 
5
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Fig. 6. Some of the positions of the intersection points between SPw(s, t) (blue) and a cell. The vertices of the crossing path X(s, t) in a triangular cell are 
depicted in orange.

Fig. 7. An example of weakly simple polygon for each type Pk (notice that, w.l.o.g., u j and u j+1 could have other positions), and the subpath of the crossing 
path X(s, t) (orange) from u j to u j+1 intersecting consecutive triangular cells. SPw(u j , u j+1) is depicted in blue.

do not know which cells are crossed, based on the geometry of the cell, we can compute an approximate path, X(s, t). We 
formalize this notion below:

Definition 1. The crossing path X(s, t) between two vertices s and t is defined by the sequence (X1, . . . , Xn), where Xi is a 
sequence of vertices determined by the pair (ai, ai+1), 1 ≤ i ≤ n, as follows:

1. If ai and ai+1 are on the same edge ei
1 ∈ Ti , let v and w be the endpoints of ei

1, where ai is encountered before ai+1

when traversing ei
1 from v to w . Then Xi = (v, w) if ai = v , and Xi = (w) otherwise, see Fig. 6a.

2. If ai is a corner of Ti , and ai+1 belongs to the interior of the edge ei
2 ∈ Ti not adjacent to ai , let p be the midpoint of 

ei
2. If ai+1 is to the left of −→ai p, Xi is ai and the endpoint of ei

2 to the left of −→ai p, see Fig. 6b. Otherwise, Xi is ai and the 
endpoint of ei

2 to the right of −→ai p.
3. If ai belongs to the interior of an edge ei

1 ∈ Ti and ai+1 is a corner of Ti not contained in ei
1, Xi = (ai+1), see Fig. 6c.

4. If ai and ai+1 belong to the interior of two different edges ei
1, e

i
2 ∈ Ti , Xi is the common endpoint of ei

1 and ei
2, see 

Fig. 6d.

Note that the four conditions in Definition 1 cover all possible cases. Thus, each shortest path SPw(s, t) corresponds to a 
single unique X(s, t).

Let (s = u1, u2, . . . , u� = t) be the sequence of consecutive points where X(s, t) and SPw(s, t) coincide. The union of 
SPw(s, t) and X(s, t) between two consecutive points u j and u j+1, for 1 ≤ j < �, induces a weakly simple polygon (see [12]
for a formal definition). Henceforth, we use the term polygon to mean weakly simple polygon. We distinguish six different 
types of weakly simple polygons, denoted P1, . . . , P6, depending on the number of edges of T intersected by SPw(u j, u j+1), 
see Fig. 7.

Definition 2. Let u j and u j+1 be two consecutive points where X(s, t) and SPw(s, t) coincide in a triangular tessellation. Let 
p be a corner of T contained in X(u j, u j+1). A weakly simple polygon induced by u j and u j+1 is of type Pk , for 1 ≤ k ≤ 6, 
if the subpath SPw(u j, u j+1) intersects k consecutive edges around p.
6
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Fig. 8. Subpath of a weighted shortest path SPw(s, t) between two points p and q.

The weakly simple polygons are an important tool in our proof, since it is enough to upper-bound ‖X(s,t)‖
‖SPw(s,t)‖ for polygons 

of each type P1, . . . , P6.

Lemma 1. The polygons from Definition 2 are the only weakly simple polygons that can arise.

Proof. Suppose the point u j is a vertex, then if the next point where SPw(s, t) changes cell belongs to the same edge as 
u j then we have a polygon of type P1, by Definition 1, part 1. Otherwise, we obtain a polygon of type Pk , by Definition 1, 
parts 2 and 4.

Now, suppose u j is a point on the interior of an edge. Let b be the next point where SPw(s, t) changes the cell(s) it 
belongs to. Then if b belongs to the same edge as u j , we obtain a polygon of type P1, by Definition 1, part 1. Otherwise, 
there is a set of points where SPw(s, t) coincides with k consecutive edges around a point p, which is the common endpoint 
of the edges containing u j and b. Hence, by Definition 1, parts 3 and 4, X(s, t) intersects u j, p, and u j+1, which is the last 
point of the set. Thereby, defining polygons of type P2, . . . , P6 depending on the value of k. �
2.2. Bounding the ratio for weakly simple polygons

We are now ready to upper-bound the ratio ‖X(u j ,u j+1)‖
‖SPw(u j ,u j+1)‖ for each of the six types of weakly simple polygons in G6corner.

First, we make a geometric observation that will be needed later. Let p and q be two points that are in the interior of 
two different edges on the boundary of the same triangular cell. Then, the length of the segment between p and q is given 
in Observation 2, which can be proved using the law of cosines.

Observation 2. Let Ti be a triangular cell, and let (u, v, w) be the three vertices of Ti , in clockwise order. Let p ∈ [u, v] and q ∈ [v, w]
be two points on the boundary of Ti , see Fig. 8. Then, |pq| = √|pv|2 + |vq|2 − |pv||vq|.

We observe that, by definition, we have ‖X(u j ,u j+1)‖
‖SPw(u j ,u j+1)‖ = 1 for a polygon of type P1. Therefore, our focus will be on 

bounding polygons of type P2, . . . , P6. We begin from the simpler case of polygons of type P3, . . . , P6, and later we will 
consider a polygon of type P2, whose analysis is substantially more involved.

Lemma 2. Let u j, u j+1 ∈ T be two consecutive points where a shortest path SPw(s, t) and the crossing path X(s, t) coincide. If 
u j, u j+1 induce a weakly simple polygon of type Pk, for 3 ≤ k ≤ 6, then ‖X(u j ,u j+1)‖

‖SPw(u j ,u j+1)‖ ≤ 2√
3

.

Proof. Let Ti−1 ∩ Ti be the cell boundary containing u j , and let Ti+k−2 ∩ Ti+k−1 be the cell boundary containing u j+1, 
see Fig. 9 for an example with k = 3. Since u j and u j+1 are two consecutive points where SPw(s, t) and X(s, t) coincide, 
and they induce a polygon of type Pk , SPw(s, t) enters Ti from Ti−1 through u j , and SPw(s, t) leaves Ti+k−2, and enters 
Ti+k−1 through u j+1. Let (vi

1, p, vi
2) be the sequence of consecutive vertices on the boundary of Ti , in clockwise order, and 

(vi+k−2
1 , p, vi+k−2

2 ) be the sequence of consecutive vertices on the boundary of Ti+k−2, in clockwise order. Let x ∈ [vi
2, p] be 

the point where SPw(s, t) leaves Ti , and let y ∈ [vi+k−2
1 , p] be the point where SPw(s, t) enters Ti+k−2. Let a, b, c, d be the 

lengths |u j p|, |u j x|, |u j+1 p|, and |u j+1 y|, respectively.

An upper bound on the ratio ‖X(u j ,u j+1)‖
‖SPw(u j ,u j+1)‖ in a polygon of type Pk is given by

‖X(u j, u j+1)‖
‖SPw(u j, u j+1)‖ = a min{ωi−1,ωi} + c min{ωi+k−2,ωi+k−1}

bωi + ‖SPw(x, y)‖ + dωi+k−2
≤ aωi + cωi+k−2

bωi + dωi+k−2
≤

≤ aωi + cωi+k−2√
3

2 aωi +
√

3
2 cωi+k−2

= aωi + cωi+k−2√
3

2 (aωi + cωi+k−2)
= 2√

3
.

Note that the ‖SPw(x, y)‖ term in the second denominator is zero for the case of P3, while for Pk, k ≥ 4, will just make the 
fraction smaller. Also, the last inequality comes from the fact that [p, u j] is the side of a triangle adjacent to an angle of π , 
3

7
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Fig. 9. Subpaths of the crossing path X(s, t) (orange), and SPw(s, t) (blue) traversing a polygon of type P3 in a triangular tessellation.

Fig. 10. The weights of the cells are ω1 =2, ω2 =1.5, ω3 =2, and ω4 =1.2. The ratio ‖X(s,t)‖
‖SPw(s,t)‖ is ≈1.19, whereas the ratio ‖�3(s,t)‖

‖SPw(s,t)‖ is almost 1.

Fig. 11. Weighted shortest path SPw(s, t) (blue), crossing path X(s, t) (orange), and shortcut path �i(s, t) (purple) intersecting a weakly simple polygon of 
type P2.

and [u j, x] is the side opposite to this angle. Hence, if we want to minimize the length of [u j, x], it has to be perpendicular 
to [p, u j], so |u j x| ≥ |pu j | sin π

3 = |pu j|
√

3
2 . An analogous reasoning can be applied in triangle Ti+1 for distances c and d. �

Next, we present a similar bound for a polygon of type P2. There is the added difficulty that for a polygon of type P2
it is possible to find an instance where SPw(s, t) intersects a weakly simple polygon of type P2 such that the ratio ‖X(s,t)‖

‖SPw(s,t)‖
is much larger than ‖SGPw(s,t)‖

‖SPw(s,t)‖ , see Fig. 10. However, between s and t there are other grid paths shorter than X(s, t) that 
intersect a polygon of type P2. In order to obtain an upper bound when SPw(s, t) intersects a polygon of type P2, we need 
a finer analysis.

In Definition 3 we define another class of grid paths, called shortcut paths, that gives a tighter upper bound on the ratio 
‖SGPw(s,t)‖
‖SPw(s,t)‖ when a weakly simple polygon of type P2 is intersected by SPw(s, t). See the purple path in Fig. 11.

Definition 3. Let SPw(s, t) enter and leave cell Ti ∈ T through the edges [vi
1, v

i
2] and [vi

2, v
i
3], respectively. If X(s, t) contains 

the subpath (vi
1, v

i
2, v

i
3), the shortcut path �i(s, t) is defined as the grid path X(s, vi

1) ∪ (vi
1, v

i
3) ∪ X(vi

3, t).

By using the shortcut path �i(s, t), we obtain a relation between the weights of the cells adjacent to Ti ∈ T intersected 
by the crossing path X(s, t). Before obtaining an upper bound on the ratio ‖X(s,t)‖

‖SPw(s,t)‖ for a polygon of type P2, we define a 
P2-triple of cells, see Fig. 12, that will be useful later.

Definition 4. A P2-triple between two vertices s and t is defined as a set of five consecutive cells T1, . . . , T5 with the 
following properties:

• The cells form a strip of width 
√

3.
• s is the vertex common to T1 and T2 not adjacent to T3.
8
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Fig. 12. P2-triple between s and t is depicted in white. SPw(s, t), �3(s, t) and X(s, t) are depicted in blue, purple and orange, respectively. Observe that 
the three paths coincide when SPw(s, t) coincide with the edges of the cells.

• t is the vertex common to T4 and T5 not adjacent to T3.
• SPw(s, t) determines three weakly simple polygons of type P2, one around each of the vertices of T3.

By using P2-triples we reduce the number of cases to analyze. Using Observation 1, Lemma 2, and the definition of 
polygons P1, we know that the only type of weakly simple polygon that could give a ratio larger than 2√

3
is a P2. Thus, we 

can assume that the shortest paths giving the maximum ratio intersect a weakly simple polygon P2 , and that this ratio is 
larger than 2√

3
(otherwise, ‖X(s,t)‖

‖SPw(s,t)‖ ≤ 2√
3

, and we are done.).

In the following, we replace a given instance by a P2-triple, corresponding to a weakly simple polygon of type P2 that 
has the same ratio as the given instance. Thus, instead of upper-bounding the ratio of the given instance, we can do it for 
the P2-triple, which is substantially easier.

Lemma 3. For any weakly simple polygon P ′ of type P2 , a P2-triple can be defined such that P ′ is the polygon of type P2 of the vertex 
T2 ∩ T3 ∩ T4 , and the weights ω2, ω3, ω4 remain as in P ′. We say that this P2-triple corresponds to the weakly simple polygon P ′.

Proof. Let u j and u j+1 be the points where SPw(s, t) respectively enters and leaves P ′ , and let u j, u j+1 ∈ T j′ . Consider a 
P2-triple intersected by a path SPw(s′, t′) where the weights of the cells T2, T3, and T4 are, respectively, the same as the 
weights of cells T j′−1, T j′ and T j′+1 in the former instance. The weights of the cells T1 and T5 are obtained by solving the 
system of equations given by Snell’s law of refraction. By construction, this P2-triple is a valid instance of SPw(s′, t′), and it 
intersects the cell T3 forming the same weakly simple polygon P ′ as in the former instance. �

Lemma 3 allows us to assume, from now on, that an upper bound on the ratio ‖X(s,t)‖
‖SPw(s,t)‖ is given by the length of a path 

that intersects a P2-triple as in Definition 4.

Lemma 4. Let ‖SGPw(s,t)‖
‖SPw(s,t)‖ be the maximum ratio attained by any path intersecting a polygon of type P2 . Consider its corresponding 

P2-triple. Let T3 be the cell where the maximum ratio ‖X(u j ,u j+1)‖
‖SPw(u j ,u j+1)‖ , u j, u j+1 ∈ T3 is attained. Then, ‖X(s, t)‖ = ‖�3(s, t)‖.

Proof. We prove the result by contradiction, arguing that if there is at least one grid path GPw(s, t) among {X(s, t), �3(s, t)}, 
that is strictly shorter than the other grid path, then this instance cannot maximize ‖SGPw(s,t)‖

‖SPw(s,t)‖ . We will show this by finding 

another assignment of weights w ′ for the cells T1, . . . , T5, such that ‖GPw′ (s,t)‖
‖SPw′ (s,t)‖ >

‖GPw(s,t)‖
‖SPw(s,t)‖ , proving that the given instance 

does not provide the maximum ratio.
We first set the weight of all the cells that are not traversed by X(s, t) to infinity. This way, we ensure that when 

modifying the weights of some cells, the combinatorial structure of the shortest path is preserved. Let T� be the cell that 
shares the edge of �3(s, t) with T3, see Fig. 12. Recall that ωi is the weight of the triangular cell Ti . Then, the weighted 
length of the crossing path X(s, t) along the edges of T3 is 2 min{ω2, ω3} + 2 min{ω3, ω4}, and the weighted length of the 
shortcut path �3(s, t) along the edges of T3 is 2 min{ω3, ω�} = 2ω3 (because ω� = ∞). Let u j and u j+1 be two consecutive 
points where X(s, t) and SPw(s, t) coincide. Let [p, q], and [p′, q′] be, respectively, the edges containing u j and u j+1, where 
p, p′ ∈ T� .

• If GPw(s, t) = X(s, t) then ‖X(s, t)‖ < ‖�3(s, t)‖, and we have that

min{ω2,ω3} + min{ω3,ω4} < ω3. (1)
9
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Fig. 13. Subpaths of the grid path �3(s, t) (purple), the crossing path X(s, t) (orange), and SPw(s, t) (blue) traversing a polygon of type P2 in a triangular 
tessellation.

– If ω3 ≤ ω2, then ω3 + min{ω3, ω4} < ω3, which is not possible since min{ω3, ω4} ≥ 0. Hence, ω3 > ω2.
– If ω3 ≤ ω4, then min{ω2, ω3} + ω4 < ω3, which is not possible since min{ω2, ω3} ≥ 0. Hence, ω3 > ω4.
These two facts together with Equation (1) imply that ω2 + ω4 < ω3. We also have that

‖GPw(s, t)‖
‖SPw(s, t)‖ = ‖X(s, p)‖ + 2(ω2 + ω4) + ‖X(p′, t)‖

‖SPw(s, u j)‖ + |u ju j+1|ω3 + ‖SPw(u j+1, t)‖
and we know that |u ju j+1| > 0, so we can decrease the weight ω3, increasing the ratio.

• Otherwise, if GPw(s, t) = �3(s, t) then ‖�3(s, t)‖ < ‖X(s, t)‖, and we have that ω3 < min{ω2, ω3} + min{ω3, ω4}. We 
also have that

‖GPw(s, t)‖
‖SPw(s, t)‖ = ‖�3(s, p)‖ + 2ω3 + ‖�3(p′, t)‖

‖SPw(s, u j)‖ + ‖SPw(u j, u j+1)‖ + ‖SPw(u j+1, t)‖ .

The ratio ‖GPw(s,t)‖
‖SPw(s,t)‖ is a strictly monotonic function for every ωk [15,37]. So, if this function is decreasing in the direction 

of ω3, we can decrease the weight ω3. Otherwise, we can increase the weight ω3. In both cases, we can increase the 
ratio.

Thus, we found another weight assignment w ′ such that ‖GPw′ (s,t)‖
‖S P w′ (s,t)‖ >

‖GPw(s,t)‖
‖SPw(s,t)‖ . In addition, the change in ω3 can be as small 

as needed so that the weighted length of GPw′ (s, t) is not larger than that of the other grid path in the set {X(s, t), �3(s, t)}
with the new weight assignment w ′ and, thus, it does not change which of the two grid paths in the set is the shorter 
one. �

Now, we have all the tools needed to obtain an upper bound on the ratio ‖X(u j ,u j+1)‖
‖SPw(u j ,u j+1)‖ for a P2-triple. Lemma 5 presents 

an upper bound on this ratio where u j, u j+1 ∈ T3 are two consecutive points where X(s, t) and SPw(s, t) coincide, and 
‖X(s, t)‖ = ‖�3(s, t)‖. Since the exact shape of SPw(s, t) is unknown, when computing the ratio in Lemma 5, we will 
maximize the ratio for any position of the points u j and u j+1.

Lemma 5. Let u j, u j+1 ∈ T3 , be two consecutive points where a shortest path SPw(s, t) and the crossing path X(s, t) coincide. If 
u j, u j+1 induce a weakly simple polygon of type P2 , and ‖X(s, t)‖ = ‖�3(s, t)‖, then ‖X(u j ,u j+1)‖

‖SPw(u j ,u j+1)‖ ≤ 2√
3

.

Proof. Let (v3
1, v

3
2, v

3
3) be the sequence of vertices on the boundary of T3 in clockwise order. Since u j and u j+1 are two 

consecutive points where SPw(s, t) and X(s, t) coincide, and they induce a polygon of type P2, SPw(s, t) enters T3 from cell 
T2 through u j , and SPw(s, t) leaves T3 and enters cell T4 through u j+1, see Fig. 13. Suppose, without loss of generality, 
that u j ∈ [v3

1, v
3
2] and u j+1 ∈ [v3

2, v
3
3]. Let a, b, c be the lengths |u j v3

2|, |v3
2u j+1|, and |u ju j+1|, respectively. According to 

Observation 2, c = √
a2 + b2 − ab. We want to maximize the ratio ‖X(u j ,u j+1)‖

‖SPw(u j ,u j+1)‖ for all weight assignments of ω2, ω3, and 
ω4.

Traversing cell T3 there is also the grid path �3(s, t). Let T� be the cell that shares the edge of �3(s, t) with T3. Since 
‖X(s, t)‖ = ‖�3(s, t)‖, 2 min{ω2, ω3} + 2 min{ω3, ω4} = 2 min{ω3, ω�}. Thus, we distinguish two cases: b ≤ a and b > a. In 
the first case we take:

min{ω2,ω3} = min{ω3,ω�} − min{ω3,ω4}.
In the second case we take:
10
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Fig. 14. SPw(s, t) and SGPw(s, t) are depicted in blue and red, respectively. The ratio ‖SGPw(s,t)‖
‖SPw(s,t)‖ is 2√

3
.

min{ω3,ω4} = min{ω3,ω�} − min{ω2,ω3}.
Then, an upper bound on the ratio R = ‖X(u j ,u j+1)‖

‖SPw(u j ,u j+1)‖ in a polygon of type P2 is:

R = a min{ω2,ω3} + b min{ω3,ω4}
cω3

≤

⎧⎪⎪⎨
⎪⎪⎩

if b≤a︷︸︸︷≤ a min{ω3,ω�}+(b−a) min{ω3,ω4}
cω3

≤
if a<b︷︸︸︷≤ b min{ω3,ω�}+(a−b) min{ω2,ω3}

cω3
≤

≤
⎧⎨
⎩

a min{ω3,ω�}
cω3

≤ a√
a2+b2−ab

b min{ω3,ω�}
cω3

≤ b√
a2+b2−ab

≤ 2√
3
,

where the last inequality in the two ratios is obtained by maximization over the values of a ∈ [0, 2] and b ∈ [0, 2]. �
Finally, we have all the pieces to prove our main result.

Theorem 1. In G6corner, ‖SGPw(s,t)‖
‖SPw(s,t)‖ ≤ 2√

3
.

Proof. Let SPw(s, t) be a weighted shortest path between two corners s and t in a triangular tessellation. Let X(s, t) be the 
crossing path from s to t obtained from SPw(s, t). By Observation 1, ‖X(s,t)‖

‖SPw(s,t)‖ ≤ ‖X(u j ,u j+1)‖
‖SPw(u j ,u j+1)‖ , over all pairs (u j, u j+1) of 

consecutive points where SPw(s, t) and X(s, t) coincide.

As already observed, the ratio ‖X(u j ,u j+1)‖
‖SPw(u j ,u j+1)‖ is 1 in a polygon of type P1. Further, by Lemma 2, that ratio is at most 2√

3
for weakly simple polygons of type Pk, k > 2. Finally, using Lemmas 3 and 4, we know that if a path intersecting cell T3 is 
the path that maximizes the ratio ‖X(u j ,u j+1)‖

‖SPw(u j ,u j+1)‖ in a weakly simple polygon of type P2, then ‖X(s, t)‖ = ‖�3(s, t)‖. And, in 

this case, by Lemma 5 we get that the ratio ‖X(u j ,u j+1)‖
‖SPw(u j ,u j+1)‖ is at most 2√

3
, where u j, u j+1 ∈ T3.

All this implies that ‖X(s,t)‖
‖SPw(s,t)‖ is at most 2√

3
. Since ‖SGPw(s, t)‖ ≤ ‖X(s, t)‖, we have that ‖SGPw(s,t)‖

‖SPw(s,t)‖ ≤ 2√
3

. �
Fig. 14 provides an illustration of the lower bound 2√

3
on the ratio between the weighted shortest grid path SGPw(s, t)

(red) and the weighted shortest path SPw(s, t) (blue) claimed by Nash [33]. Hence, the upper bound in Theorem 1 is tight 
for G6corner.

3. Ratios ‖SGPw(s,t)‖
‖SVPw(s,t)‖ in G6corner and ‖SVPw(s,t)‖

‖SPw(s,t)‖ in Gcorner

In this section we provide results for the ratios where the weighted shortest vertex path SVPw(s, t) is involved, i.e., 
‖SGPw(s,t)‖
‖SVPw(s,t)‖ and ‖SVPw(s,t)‖

‖SPw(s,t)‖ . The length of a weighted shortest vertex path SVPw(s, t) is an upper bound for the length of a 
weighted shortest path SPw(s, t), so the upper bound on the ratio ‖SGPw(s,t)‖

‖SPw(s,t)‖ obtained in Theorem 1 is an upper bound for 
‖SGPw(s,t)‖
‖SVPw(s,t)‖ .

Corollary 1. In G6corner, ‖SGPw(s,t)‖
‖SVPw(s,t)‖ ≤ 2√

3
.

When the weights of the cells are in the set {1, ∞}, the ratio ‖SGPw(s,t)‖
‖SVPw(s,t)‖ was proved to be at most 2√

3
by Nash [33]. In 

addition, Nash showed that this bound is tight. Thus, for general (non-negative) weights this value is a lower bound on the 
ratio ‖SGPw(s,t)‖

‖SVPw(s,t)‖ for G6corner.
As a corollary of Theorem 1, we obtain Corollary 2. The result comes from the fact that ‖SVPw(s, t)‖ is a lower bound for 

‖SGPw(s, t)‖. Recall that SVPw(s, t) and SPw(s, t) do not use G6corner, but Gcorner.
11
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Fig. 15. SPw(s, t) and SVPw(s, t) are depicted in blue and green, respectively. The ratio ‖SVPw(s,t)‖
‖SPw(s,t)‖ is 2

√
7
√

3−12

(7−4
√

3)(6
√

2+
√

7
√

3−12)
when a =

4−(4
√

6+7
√

2)
√

1351
√

3−2340
4 ≈ 0.87.

Corollary 2. In Gcorner, ‖SVPw(s,t)‖
‖SPw(s,t)‖ ≤ 2√

3
≈ 1.15.

Finally, we provide a lower bound for the ratio ‖SVPw(s,t)‖
‖SPw(s,t)‖ . The green path in Fig. 15 is a weighted shortest vertex 

path SVPw(s, t) between vertices s and t , thus, we have the following result.

Observation 3. In Gcorner, ‖SVPw(s,t)‖
‖SPw(s,t)‖ ≥ 2

√
7
√

3−12

(7−4
√

3)(6
√

2+
√

7
√

3−12)
≈ 1.11.

4. Discussion and future work

We presented bounds on the ratio between the lengths of three types of weighted shortest paths in a triangular tessel-
lation. The fact that a compact grid graph such as G6corner guarantees an error bound of ≈ 15%, regardless of weights used, 
justifies its widespread use in applications in areas such as gaming and simulation, where performance is a priority over 
accuracy.

Our analysis techniques, presented here for triangular grids, can also be applied to obtain upper bounds for the same 
ratios in the other two types of regular tessellations, square and hexagonal. In particular, we recently proved upper bounds 
of R = 2√

2+√
2

for weighted square cells [9], and R = 3
2 when we only allow movement along the edges of an hexagonal 

tessellation [8]. The main differences lie in the exact definition of the crossing paths and the weakly simple polygons. Our 
techniques can also be used to derive upper bounds for another type of grid graph, where the vertices are cell centers 
instead of corners (see, e.g., [7,24,33]).

For future work, it would be interesting to close the gap for ‖SVPw(s,t)‖
‖SPw(s,t)‖ , of approximately 0.04. It is an intriguing question 

whether the seemingly richer any-angle path SVPw(s, t) can actually guarantee a better quality factor than G6corner. However, 
our results show that, even if that is the case, the improvement is rather negligible.
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