41 research outputs found

    A Note on Limited Pushdown Alphabets in Stateless Deterministic Pushdown Automata

    Full text link
    Recently, an infinite hierarchy of languages accepted by stateless deterministic pushdown automata has been established based on the number of pushdown symbols. However, the witness language for the n-th level of the hierarchy is over an input alphabet with 2(n-1) elements. In this paper, we improve this result by showing that a binary alphabet is sufficient to establish this hierarchy. As a consequence of our construction, we solve the open problem formulated by Meduna et al. Then we extend these results to m-state realtime deterministic pushdown automata, for all m at least 1. The existence of such a hierarchy for m-state deterministic pushdown automata is left open

    Infinite state model checking of propositional dynamic logics

    Get PDF
    Model-checking problems for propositional dynamic logic (PDL) and its extension PDL^\cap (which includes the intersection operator on programs) over various classes of infinite state systems (BPP, BPA, pushdown systems, prefix-recognizable systems) are studied. Precise upper and lower bounds are shown for the data/expression/combined complexity of these model-checking problems

    Clearing Restarting Automata

    Get PDF
    Restartovací automaty byly navrženy jako model pro redukční analýzu, která představuje lingvisticky motivovanou metodu pro kontrolu korektnosti věty. Cílem práce je studovat omezenější modely restartovacích automatů, které smí vymazat podřetězec nebo jej nahradit speciálním pomocným symbolem, jenom na základě omezeného lokálního kontextu tohoto podřetězce. Tyto restartovací automaty se nazývají clearing restarting automata. V práci jsou taktéž zkoumány uzávěrové vlastnosti těchto automatů, jejich vztah k Chomskeho hierarchii a možnosti učení těchto automatů na základě pozitivních a negativních příkladů.Restarting automata were introduced as a model for analysis by reduction which is a linguistically motivated method for checking correctness of a sentence. The goal of the thesis is to study more restricted models of restarting automata which based on a limited context can either delete a substring of the current content of its tape or replace a substring by a special symbol, which cannot be overwritten anymore, but it can be deleted later. Such restarting automata are called clearing restarting automata. The thesis investigates the properties of clearing restarting automata, their relation to Chomsky hierarchy and possibilities for machine learning of such automata from positive and negative samples.Department of Software and Computer Science EducationKatedra softwaru a výuky informatikyFaculty of Mathematics and PhysicsMatematicko-fyzikální fakult

    Reachability games and related matrix and word problems

    Get PDF
    In this thesis, we study different two-player zero-sum games, where one player, called Eve, has a reachability objective (i.e., aims to reach a particular configuration) and the other, called Adam, has a safety objective (i.e., aims to avoid the configuration). We study a general class of games, called Attacker-Defender games, where the computational environment can vary from as simple as the integer line to n-dimensional topological braids. Similarly, the moves themselves can be simple vector addition or linear transformations defined by matrices. The main computational problem is to decide whether Eve has a winning strategy to reach the target configuration from the initial configuration, or whether the dual holds, that is, whether Adam can ensure that the target is never reached. The notion of a winning strategy is widely used in game semantics and its existence means that the player can ensure that his or her winning conditions are met, regardless of the actions of the opponent. It general, games provide a powerful framework to model and analyse interactive processes with uncontrollable adversaries. We formulated several Attacker-Defender games played on different mathematical domains with different transformations (moves), and identified classes of games, where the checking for existence of a winning strategy is undecidable. In other classes, where the problem is decidable, we established their computational complexity. In the thesis, we investigate four classes of games where determining the winner is undecidable: word games, where the players' moves are words over a group alphabet together with integer weights or where the moves are pairs of words over group alphabets; matrix games on vectors, where players transform a three-dimensional vector by linear transformations defined by 3×3 integer matrices; braid games, where players braid and unbraid a given braid; and last, but not least, games played on two-dimensional Z-VAS, closing the gap between decidable and undecidable cases and answering an existing open problem of the field. We also identified decidable fragments, such as word games, where the moves are over a single group alphabet, games on one-dimensional Z-VASS. For word games, we provide an upper-bound of EXPTIME , while for games on Z-VASS, tight bounds of EXPTIME-complete or EXPSPACE-complete, depending on the state structure. We also investigate single-player systems such as polynomial iteration and identity problem in matrix semigroups. We show that the reachability problem for polynomial iteration is PSPACE-complete while the identity problem for the Heisenberg group is in PTIME for dimension three and in EXPTIME for higher dimensions

    On the membership problem for pattern languages and related topics

    Get PDF
    In this thesis, we investigate the complexity of the membership problem for pattern languages. A pattern is a string over the union of the alphabets A and X, where X := {x_1, x_2, x_3, ...} is a countable set of variables and A is a finite alphabet containing terminals (e.g., A := {a, b, c, d}). Every pattern, e.g., p := x_1 x_2 a b x_2 b x_1 c x_2, describes a pattern language, i.e., the set of all words that can be obtained by uniformly substituting the variables in the pattern by arbitrary strings over A. Hence, u := cacaaabaabcaccaa is a word of the pattern language of p, since substituting cac for x_1 and aa for x_2 yields u. On the other hand, there is no way to obtain the word u' := bbbababbacaaba by substituting the occurrences of x_1 and x_2 in p by words over A. The problem to decide for a given pattern q and a given word w whether or not w is in the pattern language of q is called the membership problem for pattern languages. Consequently, (p, u) is a positive instance and (p, u') is a negative instance of the membership problem for pattern languages. For the unrestricted case, i.e., for arbitrary patterns and words, the membership problem is NP-complete. In this thesis, we identify classes of patterns for which the membership problem can be solved efficiently. Our first main result in this regard is that the variable distance, i.e., the maximum number of different variables that separate two consecutive occurrences of the same variable, substantially contributes to the complexity of the membership problem for pattern languages. More precisely, for every class of patterns with a bounded variable distance the membership problem can be solved efficiently. The second main result is that the same holds for every class of patterns with a bounded scope coincidence degree, where the scope coincidence degree is the maximum number of intervals that cover a common position in the pattern, where each interval is given by the leftmost and rightmost occurrence of a variable in the pattern. The proof of our first main result is based on automata theory. More precisely, we introduce a new automata model that is used as an algorithmic framework in order to show that the membership problem for pattern languages can be solved in time that is exponential only in the variable distance of the corresponding pattern. We then take a closer look at this automata model and subject it to a sound theoretical analysis. The second main result is obtained in a completely different way. We encode patterns and words as relational structures and we then reduce the membership problem for pattern languages to the homomorphism problem of relational structures, which allows us to exploit the concept of the treewidth. This approach turns out be successful, and we show that it has potential to identify further classes of patterns with a polynomial time membership problem. Furthermore, we take a closer look at two aspects of pattern languages that are indirectly related to the membership problem. Firstly, we investigate the phenomenon that patterns can describe regular or context-free languages in an unexpected way, which implies that their membership problem can be solved efficiently. In this regard, we present several sufficient conditions and necessary conditions for the regularity and context-freeness of pattern languages. Secondly, we compare pattern languages with languages given by so-called extended regular expressions with backreferences (REGEX). The membership problem for REGEX languages is very important in practice and since REGEX are similar to pattern languages, it might be possible to improve algorithms for the membership problem for REGEX languages by investigating their relationship to patterns. In this regard, we investigate how patterns can be extended in order to describe large classes of REGEX languages

    Foundations of Software Science and Computation Structures

    Get PDF
    This open access book constitutes the proceedings of the 25th International Conference on Foundations of Software Science and Computational Structures, FOSSACS 2022, which was held during April 4-6, 2022, in Munich, Germany, as part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2022. The 23 regular papers presented in this volume were carefully reviewed and selected from 77 submissions. They deal with research on theories and methods to support the analysis, integration, synthesis, transformation, and verification of programs and software systems

    Foundations of Software Science and Computation Structures

    Get PDF
    This open access book constitutes the proceedings of the 25th International Conference on Foundations of Software Science and Computational Structures, FOSSACS 2022, which was held during April 4-6, 2022, in Munich, Germany, as part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2022. The 23 regular papers presented in this volume were carefully reviewed and selected from 77 submissions. They deal with research on theories and methods to support the analysis, integration, synthesis, transformation, and verification of programs and software systems

    Bimorphisms and synchronous grammars

    Get PDF
    We tend to think of the study of language as proceeding by characterizing the strings and structures of a language, and we think of natural language processing as using those structures to build systems of utility in manipulating the language. But many language-related problems are more fruitfully viewed as requiring the specification of a relation between two languages, rather than the specification of a single language. We provide a synthesis and extension of work that unifies two approaches to such language relations: the automata-theoretic approach based on tree transducers that transform trees to their counterparts in the relation, and the grammatical approach based on synchronous grammars that derive pairs of trees in the relation. In particular, we characterize synchronous tree-substitution grammars and synchronous tree-adjoining grammars in terms of bimorphisms, which have previously been used to characterize tree transducers. In the process, we provide new approaches to formalizing the various concepts: a metanotation for describing varieties of tree automata and transducers in equational terms; a rigorous formalization of tree-adjoining and tree-substitution grammars and their synchronous counterparts, using trees over ranked alphabets; and generalizations of tree-adjoining grammar allowing multiple adjunction.Engineering and Applied Science
    corecore