
Univerzita Karlova v Praze
Matematicko-fyzikálńı fakulta

DIPLOMOVÁ PRÁCE

Peter Černo

Clearing Restarting Automata

Kabinet software a výuky informatiky

Vedoućı diplomové práce: RNDr. Frantǐsek Mráz, CSc.

Studijńı program: Informatika, Teoretická informatika (ITI)

Praha, 2010

ii

Poděkováńı 1

Chtěl bych se poděkovat panu RNDr. Frantǐskovi Mrázovi, CSc. za jeho čas
a veškeré rady a doporučeńı, které vedly k napsáńı téhle práce.

Prohlašuji, že jsem svou diplomovou práci napsal samostatně a výhradně
s použit́ım citovaných pramen̊u. Souhlaśım se zap̊ujčováńım práce.

V Praze dne 2. srpna 2010 Peter Černo

1Tahle práce byla částečně podporována Grantovou agenturou České republiky pod
granty s č́ıslem P103/10/0783 a P202/10/1333.

iii

iv

Charles University in Prague
Faculty of Mathematics and Physics

DIPLOMA THESIS

Peter Černo

Clearing Restarting Automata

Department of Software and Computer Science Education

Supervised by RNDr. Frantǐsek Mráz, CSc.

Study program: Informatics, Theoretical Computer Science (ITI)

Prague, 2010

vi

Acknowledgements 2

I would like to thank RNDr. Frantǐsek Mráz, CSc. for his time and all advices
and suggestions that led to writing this thesis.

I declare that I have written all of the thesis on my own with the exceptions
explicitly mentioned, and that I cited all used sources of information. I agree
with public availability and lending of the thesis.

In Prague August 2, 2010 Peter Černo

2This work was partially supported by the Grant Agency of the Czech Republic under
Grant-No. P103/10/0783 and P202/10/1333.

vii

viii

Contents

Preface xiii

1 Introduction to Formal Languages 1
1.1 Words and Languages . 2
1.2 Regular Languages . 6

1.2.1 Finite Automata . 6
1.2.2 Regular Expressions 8
1.2.3 Properties of Regular Languages 10

1.3 Context-Free Languages . 11
1.3.1 Grammars . 12
1.3.2 Normal Forms . 14
1.3.3 Pushdown Machines 15
1.3.4 Subfamilies . 19

1.4 Chomsky Hierarchy . 20
1.4.1 Phrase-Structure Grammars 22
1.4.2 Context-Sensitive Grammars 22
1.4.3 Closure properties 24

2 Selected Models of Formal Languages 25
2.1 Marcus Contextual Grammars 25
2.2 Pure Grammars . 28
2.3 Church-Rosser String Rewriting Systems 29
2.4 Associative Language Description 32
2.5 Restarting Automata . 35

3 Clearing Restarting Automata 43
3.1 Context Rewriting Systems 45
3.2 Clearing Restarting Automata 47
3.3 Clearing restarting automata and regular languages 50

ix

3.4 (Non-)closure properties of L(cl-RA) 52
3.5 A hierarchy with respect to the length of contexts 53
3.6 4-cl-RA-automata recognizing non-context-free language . . . 55
3.7 1-cl-RA-automata . 61
3.8 2-cl-RA-automata recognizing non-context-free language . . . 63
3.9 3-cl-RA-automata recognizing non-context-free language . . . 68

4 Extended Clearing Restarting Automata 75
4.1 Greibach’s hardest context-free language 75
4.2 ∆-Clearing Restarting Automata 77
4.3 ∆∗-Clearing Restarting Automata 82

Conclusion 89

Bibliography 91

x

Název práce: Clearing Restarting Automata
Autor: Peter Černo
Katedra (ústav): Kabinet software a výuky informatiky (KSVI)
Vedoućı diplomové práce: RNDr. Frantǐsek Mráz, CSc.
e-mail vedoućıho: Frantisek.Mraz@mff.cuni.cz

Abstrakt: Restartovaćı automaty byly navrženy jako model pro redukčńı
analýzu, která představuje lingvisticky motivovanou metodu pro kontrolu
korektnosti věty. Ćılem práce je studovat omezeněǰśı modely restartovaćıch
automat̊u, které smı́ vymazat podřetězec nebo jej nahradit speciálńım po-
mocným symbolem, jenom na základě omezeného lokálńıho kontextu tohoto
podřetězce. Tyto restartovaćı automaty se nazývaj́ı clearing restarting au-
tomata. V práci jsou taktéž zkoumány uzávěrové vlastnosti těchto automat̊u,
jejich vztah k Chomskeho hierarchii a možnosti učeńı těchto automat̊u na
základě pozitivńıch a negativńıch př́ıklad̊u.
Kĺıčová slova: redukčńı analýza, restartovaćı automaty, formálńı jazyky,
gramatická inference

Title: Clearing Restarting Automata
Author: Peter Černo
Department: Department of Software and Computer Science Education
Supervisor: RNDr. Frantǐsek Mráz, CSc.
Supervisor’s e-mail address: Frantisek.Mraz@mff.cuni.cz

Abstract: Restarting automata were introduced as a model for analysis by
reduction which is a linguistically motivated method for checking correctness
of a sentence. The goal of the thesis is to study more restricted models of
restarting automata which based on a limited context can either delete a
substring of the current content of its tape or replace a substring by a special
symbol, which cannot be overwritten anymore, but it can be deleted later.
Such restarting automata are called clearing restarting automata. The thesis
investigates the properties of clearing restarting automata, their relation to
Chomsky hierarchy and possibilities for machine learning of such automata
from positive and negative samples.
Keywords: analysis by reduction, clearing restarting automata, formal lan-
guages, grammatical inference

xi

xii

Preface

Analysis by reduction [16, 19] consists of stepwise simplifications (reduc-
tions) of a given (lexically disambiguated) extended sentence until a correct
simple sentence is obtained, which is then accepted, or until an error is found
and the input is rejected. Each simplification replaces a short part of the
sentence by an even shorter one. It can be modelled by restarting automata
[13, 27]. In this thesis, we propose a new restricted version of restarting au-
tomata called clearing restarting automata. This model is motivated by the
need for simpler definitions of such automata and simultaneously by aiming
for efficient machine learning of such automata. Analysis by reduction in its
simplest form does not use auxiliary symbols. This is similar to several previ-
ous generative and analytical models of languages like contextual grammars
by Solomon Marcus [20], pure grammars in Maurer et al. [24], Church-Rosser
string rewriting systems [25], associative language description in Cherubini
et al. [7], and others.

Marcus’ contextual grammars are based on adjoining (inserting) pairs of
strings/contexts into a word according to a selection procedure. The selec-
tion procedure controls which strings (contexts) can be inserted in which
places of a string. As the selection procedure can be of arbitrary complexity
[28], many language classes generated by contextual grammars are of high
complexity and without practical applications.

Pure grammars [24] are similar to Chomsky grammars, but they do not
use auxiliary symbols – nonterminals. Both sides of their productions are
terminal strings only. There were considered mainly grammars with length
increasing rules which correspond to the length-decreasing reductions used
by restarting automata. In the case when the left-hand sides of the rules
are single letters only, such grammars generate only a subset of the class of
context-free languages (CFL), while in general they can generate a subset
of the class of context-sensitive languages (but not all of CFL). Our base
model of clearing restarting automata differs from both these types of pure

xiii

grammars as it can reduce a subword to an empty word only.

A Church-Rosser language is a set of words which can be reduced to
a special auxiliary symbol Y (it stands for ‘Yes’) by applying rules of a
Church-Rosser string rewriting system. Such rules are length reducing. The
rewriting system is confluent and Noetherian which guarantees that each
maximal sequence of reductions according to such rules ends with the same
irreducible string. However, Church-Rosser string rewriting systems use aux-
iliary symbols which we would like to avoid.

Associative language description is based on locally testable properties
only. The expressive power of associative language description does not ex-
ceed the expressive power of context-free languages. It works on so-called
stencil trees which are similar to derivation trees but without nonterminals.
The inner nodes of stencil trees are marked by a special auxiliary symbol
∆. The correctness of a stencil tree is checked according to a finite set of
rules, which specify what subtrees can appear in a correct input stencil tree.
The immediate drawback of this definition is that it requires building such
a stencil tree for the analyzed input word.

Our base model of clearing restarting automata also uses only the termi-
nal symbols, which are present in an input word, and its extended version
uses only one auxiliary symbol. It uses a set of rules for iterated local sim-
plifications until the input word is reduced into the empty word – in which
case the word is accepted – or a nonempty word that cannot be simplified
anymore is obtained – in which case the word is rejected.

While still being nondeterministic, clearing restarting automata can rec-
ognize some non-context-free languages (even without the use of auxiliary
symbols). Additionally, we have an extremely simple scheme for learning
such automata from samples of reductions.

Clearing restarting automata do not use states. This is similar to stateless
restarting automata introduced by Kutrib et al. in [18]. However, a stateless
restarting automaton still has the ability to rewrite a subword on its tape by
a shorter subword or in its weakest version to delete a scattered subword of
its tape. Moreover, a stateless restarting automaton scans its tape from the
left to the right and it can check that all the subwords seen in its scanning
window are from a finite set of words. Our models of restarting automata
can delete only whole subwords, or in the stronger version they can also
rewrite a continuous subword by a special symbol ∆.

In Chapter 1 we give a short introduction to the theory of automata and
formal languages and fix the notation for all subsequent chapters. The main

xiv

source for this chapter is Rozenberg and Salomaa [30], Hopcroft et al. [12],
and the free encyclopedia Wikipedia (http://en.wikipedia.org/).

The following Chapter 2 gives an overview of several selected models
related to our model of clearing restarting automata. These selected models
include contextual grammars by Solomon Marcus [20] in Section 2.1, pure
grammars by Maurer et al. [24] in Section 2.2, Church-Rosser string rewriting
systems [25] in Section 2.3, associative language description by Cherubini
et al. [7] in Section 2.4, and restarting automata [13, 27] in Section 2.5. We
omit the proofs and mention only the most important results.

The core chapter of the thesis is Chapter 3 where we introduce the model
of clearing restarting automata. In this chapter we compare the class of lan-
guages recognized by these automata to the Chomsky hierarchy. We show
that the class of languages recognized by clearing restarting automata, while
being a proper subset of the class of context-sensitive languages, is incom-
parable to CFL with respect to inclusion. We study what is the minimal size
of alphabet and context used by clearing restarting automata in order to be
able to recognize a non-context-free language.

As clearing restarting automata cannot recognize all context-free lan-
guages, in Chapter 4 we introduce two extended versions – the so-called
∆-clearing and ∆∗-clearing restarting automata. Both of them can use a
single auxiliary symbol ∆ only. ∆-clearing restarting automata can leave a
mark – a symbol ∆ – at the place of deleting besides rewriting into the empty
word λ. This model can recognize Greibach’s hardest context-free language
H ([10]), from which all context-free languages can be obtained by using a
proper inverse homomorphism. ∆∗-clearing restarting automata can rewrite
a subword w into ∆k where k is bounded from above by the length of w.
This is enough to enable this model to recognize all context-free languages.

The last concluding chapter contains some remarks and problems for
further research.

xv

http://en.wikipedia.org/

xvi

Chapter 1

Introduction to Formal
Languages

In this chapter we give a short survey of the theory of automata and formal
languages and introduce the notation for all subsequent chapters. We restrict
ourselves only to the most elementary definitions and theorems relevant to
the subject of this thesis.

In Section 1.1 (according to Mateescu and Salomaa [23]) we want to give
the reader some preliminary views about the very basics of the formal lan-
guage theory, about words and languages. In Section 1.2 (using Sheng Yu
[31]) we focus on regular languages. We describe several types of finite au-
tomata, introduce regular expression, and mention some standard properties
of regular languages. In Section 1.3 we investigate context-free languages,
grammars, and their normal forms (we follow Autebert et al. [1]). We also
define pushdown automata as a device for accepting context-free languages,
and mention some of the most important subfamilies of this family. The last
Section 1.4 (according to Mateescu and Salomaa [22]) is devoted to Chomsky
hierarchy of grammars and languages. We cover some properties of type 0
(phrase-structure) and type 1 (context-sensitive) grammars and languages.

Most of the material used in this chapter comes from Rozenberg and
Salomaa [30], Hopcroft et al. [12], and the free encyclopedia Wikipedia
(http://en.wikipedia.org/).

1

http://en.wikipedia.org/

1.1 Words and Languages

An alphabet is a finite nonempty set. The elements of an alphabet Σ are
called letters or symbols. A word or string over an alphabet Σ is a finite
sequence consisting of zero or more letters of Σ, whereby the same letter
may occur several times. The sequence of zero letters is called the empty
word, written λ. The set of all words (all nonempty words, respectively)
over an alphabet Σ is denoted by Σ∗ (Σ+, respectively). If x and y are words
over Σ, then so is their catenation (or concatenation) xy (or x · y), obtained
by juxtaposition, that is, writing x and y one after another. Catenation is
an associative operation and the empty word λ acts as an identity: wλ =
λw = w holds for all words w. Because of the associativity, we may use the
notation wi in the usual way. By definition, w0 = λ.

Let u be a word in Σ∗, say u = a1 . . . an with ai ∈ Σ. We use u[i] to
denote the ith letter of u, i.e. u[i] = ai. We say that n is the length of u
and we write |u| = n. The sets of all words over Σ of length k, or at most
k, are denoted by Σk and Σ≤k, respectively. By |u|a, for a ∈ Σ, we denote
the total number of occurrences of the letter a in u. The reversal (mirror
image) of u, denoted uR, is the word un . . . u1. Finally a factorization of u
is any sequence u1, ..., ut of words such that u = u1 · · ·ut.

For a pair u, v of words we define four relations:

1. u is a prefix of v, if there exists a word z such that v = uz,

2. u is a suffix of v, if there exists a word z such that v = zu, and

3. u is a factor (or subword) of v, if there exist words z and z′ such that
v = zuz′.

4. u is a scattered subword of v, if v as a sequence of letters contains u as
a subsequence, i.e. there exist words z1, . . . , zt and y0, . . . , yt such that
u = z1 . . . zt and v = y0z1y1 . . . ztyt.

Observe that u itself and λ are subwords, prefixes and suffixes of u. Other
subwords, prefixes and suffixes are called nontrivial.

Pref k(u) denotes either the (nontrivial) prefix of length k of the word u
in case |u| > k, or the whole of u in case |u| ≤ k. Similarly, Suff k(u) denotes
either the (nontrivial) suffix of length k of the word u in case |u| > k, or
the whole of u in case |u| ≤ k. The set of all subwords of length k of u that

2

occur in u in a position other than the prefix or suffix is denoted Intk(u)
(interior words).

The shuffle operation between words, denoted �, is defined recursively
by

(au� bv) = a(u� bv) ∪ b(au� v),

and

(u� λ) = (λ� u) = {u},

where u, v ∈ Σ∗ and a, b ∈ Σ. Obviously,

(u� v) = {x1y1 . . . xnyn | u = x1 . . . xn, v = y1 . . . yn, n ≥ 1}.

We now proceed from words to languages. Subsets, finite or infinite, of Σ∗

are referred to as (formal) languages over Σ. Thus L1 = {λ, 0, 111, 1001} and
L2 = {0p | p prime} are languages over the binary alphabet {0, 1}. A finite
language can always, at least in principle, be defined as L1 above: by listing
all of its words. Such a procedure is not possible for infinite languages. Some
finitary specification other than simple listing is needed to define an infinite
language. Much of language theory deals with such finitary specifications of
infinite languages: grammars, automata etc.

Regarding languages as sets, we may define the Boolean operations of
union, intersection and complementation in the usual fashion. The operation
of catenation (or concatenation) is extended to concern languages in the
natural way:

L1L2 = {w1w2 | w1 ∈ L1 and w2 ∈ L2}.

The notation Li is extended to concern languages, now L0 = {λ}. The
catenation closure or Kleene star (Kleene plus, respectively) of a language
L, in symbols L∗ (L+, respectively) is defined to be the union of all nonneg-
ative powers of L (of all positive powers of L, respectively). Observe that
this definition is in accordance with our earlier notations Σ∗ and Σ+ if we
understand Σ as the finite language whose words are the singleton letters.
The reversal (mirror image) of a language L, denoted LR, is the set

LR = {wR | w ∈ L}.

For each x ∈ Σ∗, the left-derivate of L with respect to x ∈ Σ∗ is the set

δx(L) = x\L = {y ∈ Σ∗ | xy ∈ L},

3

and for a language L0 ⊆ Σ∗, the left-quotient of L by L0 is the set

L0\L =
⋃
x∈L0

x\L = {y ∈ Σ∗ | xy ∈ L, x ∈ L0}.

Similarly, the right-derivate of L with respect to x ∈ Σ∗ is the set

δx(L) = L/x = {y ∈ Σ∗ | yx ∈ L},

and the right-quotient of L by a language L0 ⊆ Σ∗ is

L/L0 =
⋃
x∈L0

L/x = {y ∈ Σ∗ | yx ∈ L, x ∈ L0}.

It is clear by the above definition that

(L1\L) ∪ (L2\L) = (L1 ∪ L2)\L

for any L1, L2 ⊆ Σ∗. Similar equality holds for right-quotient of languages.
Also the shuffle operation is extended in the natural to languages:

(L1� L2) =
⋃

u∈L1,v∈L2

(u� v).

The operations of union, catenation, and Kleene star are referred as reg-
ular operations. A language L over Σ is termed regular if L can be obtained
from the “atomic” languages ∅ (the empty language) and {a}, where a is a
letter of Σ, by applying regular operations finitely many times. By applying
union and catenation, we obviously get all finite languages (Fin). The star
operation is needed to produce infinite languages. In fact, for any k, there
are regular languages that cannot be represented with fewer than k nested
star operations. When we speak of the family of regular languages, we mean
all languages that are regular over some Σ, that is, the alphabet may vary
from language to language. This family is very central in formal language
theory. It corresponds to strictly finite computing devices, finite automata.
The family has many desirable formal properties. It is closed under most of
the usual operations for languages, in particular, under all Boolean opera-
tions.

A language L over Σ is star-free if L can be obtained from the atomic
languages {a}, where a ∈ Σ, by applying Boolean operations (complement
is taken with respect to Σ∗) and catenation finitely many times. Apparently
every star-free language is regular.

4

We say that a language L is noncounting if there is an integer n such
that, for all words x, y, z,

xynz ∈ L⇔ xyn+1z ∈ L.

It can be proved that every star-free language is noncounting. The con-
verse holds in the form: every regular noncounting language is star-free.

A special subclass of star-free languages which has attracted much at-
tention is the locally testable languages. Informally, for a locally testable
language L, one can decide whether a word w is in L by looking at all sub-
words of w of a previously given length k. Formally, a language L ⊆ Σ∗

is said to be k-testable if, for any words x, y ∈ Σ∗, |x|, |y| ≥ k, the con-
ditions Pref k(x) = Pref k(y), Suff k(x) = Suff k(y), and Intk(x) = Intk(y)
imply that x ∈ L ⇔ y ∈ L. A language is said to be locally testable if it is
k-testable for some integer k ≥ 1.

Let Σ and Γ be two finite alphabets. A mapping h : Σ∗ → Γ∗ is called a
morphism if h(xy) = h(x)h(y) for all x, y ∈ Σ∗. In particular, h(λ) = λ.

For a set S, let 2S (or P(S)) denote the power set of S, i.e. the collection
of all subsets of S. A mapping φ : Σ∗ → 2Γ∗ is called a substitution if
φ(λ) = {λ} and φ(xy) = φ(x)φ(y) for all x, y ∈ Σ∗.

Clearly, a morphism is a special kind of substitution where each word
is associated with a singleton set. Morphisms and substitutions are usually
defined by specifying only the image of each letter in Σ under the mapping.
We extend the definitions of h and φ, respectively, to define

h(L) = {h(w) | w ∈ L}

and
φ(L) =

⋃
w∈L

φ(w)

for L ⊆ Σ∗.
A morphism h : Σ∗ → Γ∗ is said to be λ-free if h(a) 6= λ for all a ∈ Σ. A

substitution φ : Σ∗ → 2Γ∗ is said to be λ-free if λ /∈ φ(a) for all a ∈ Σ. And
φ is called a finite substitution if, for each a ∈ Σ, φ(a) is a finite subset of
Γ∗. Similarly, φ is called a regular substitution if, for each a ∈ Σ, φ(a) is a
regular language over Γ.

Let h : Σ∗ → Γ∗ be a morphism. The inverse of the morphism h is a
mapping h−1 : Γ∗ → 2Σ∗ defined by, for each y ∈ Γ∗,

h−1(y) = {x ∈ Σ∗ | h(x) = y}.

5

Similarly, for a substitution φ : Σ∗ → 2Γ∗ , the inverse of the substitution φ
is a mapping φ−1 : Γ∗ → 2Σ∗ defined by, for each y ∈ Γ∗,

φ−1(y) = {x ∈ Σ∗ | y ∈ φ(x)}.

1.2 Regular Languages

In formal language theory in general, there are two major types of mech-
anisms for defining languages: acceptors and generators. For regular lan-
guages in particular, the acceptors are finite automata and the generators
are regular expressions and right (left) linear grammars (see Section 1.3.4).

In Section 1.2.1 we describe several types of finite automata, all of which
accept exactly the family of regular languages. In Section 1.2.2 we intro-
duce regular expressions and their relationship to finite automata. The last
Section 1.2.3 gives some properties of regular languages.

Most of the material used in this Section is taken from Sheng Yu [31].

1.2.1 Finite Automata

Regular languages and finite automata have had a wide range of applica-
tions. Their most celebrated application has been lexical analysis in pro-
gramming language compilation and user-interface translations. Other no-
table applications include circuit design, text editing, and pattern matching.

A finite automaton (FA) consists of a finite set of internal states and
a set of rules that govern the change of the current state when reading a
given input symbol. If the next state is always uniquely determined by the
current state and the current input symbol, we say that the automaton
is deterministic. Formally, we define a deterministic finite automaton as
follows:

A deterministic finite automaton (DFA) A is a quintuple (Q,Σ, δ, s, F),
where:

Q is the finite set of states,

Σ is the input alphabet,

δ : Q× Σ→ Q is the state transition function,

s ∈ Q is the starting state, and

6

F ⊆ Q is the set of final states.

Note that, in general, we do not require the transition function δ to be
total, i.e. to be defined for every pair in Q× Σ. If δ is total, then we call A
a complete DFA.

A DFA such that every state is reachable from the starting state and
reaches a final state is called a reduced DFA. A reduced DFA may not be a
complete DFA.

A configuration of A = (Q,Σ, δ, s, F) is a word in QΣ∗, i.e. a state q ∈ Q
followed by a word x ∈ Σ∗ where q is the current state of A and x is the
remaining part of the input. The starting configuration of A for an input
word x ∈ Σ∗ is sx. Accepting configuration are defined to be elements of F
(followed by the empty word λ).

A computation step of A is a transition from a configuration α to a
configuration β, denoted by α `A β, where `A is a binary relation on the
set of configurations of A. The relation `A is defined by: for px, qy ∈ QΣ∗,
px `A qy if x = ay for some a ∈ Σ and δ(p, a) = q. We use ` instead of `A if
there is no confusion. The transitive closure and the reflexive and transitive
closure of ` are denoted `+ and `∗, respectively.

The language accepted by a DFA A = (Q,Σ, δ, s, F), denoted L(A), is
defined as follows:

L(A) = {w | sw `∗ f for some f ∈ F}.

For convenience, we define the extension of δ, δ∗ : Q × Σ∗ → Q, induc-
tively as follows. We set δ∗(q, λ) = q and δ∗(q, xa) = δ(δ∗(q, x), a), for q ∈ Q,
a ∈ Σ. Then we can also write:

L(A) = {w | δ∗(s, w) = f for some f ∈ F}.

Nondeterministic finite automata (NFA) are a generalization of DFA
where, for a given state and an input symbol, the number of possible transi-
tions can be greater than one. Formally, a nondeterministic finite automaton
A is a quintuple (Q,Σ, δ, s, F) where Q, Σ, s, and F are defined exactly the
same way as for a DFA, and δ : Q× Σ→ 2Q is the transition function.

The computation relation `A: QΣ∗ × QΣ∗ of an NFA A is defined by
setting px `A qy if x = ay and q ∈ δ(p, a), for p, q ∈ Q, x, y ∈ Σ∗, and
a ∈ Σ. The language accepted by A is defined in the same way as for DFA.

NFA can be further generalized to have state transitions without reading
any input symbol. Such transitions are called λ-transitions in the following
definition.

7

A nondeterministic finite automaton with λ-transitions (λ-NFA) A is a
quintuple (Q,Σ, δ, s, F) where Q, Σ, s, and F are the same as for an NFA;
and δ : Q× (Σ ∪ {λ})→ 2Q is the transition function.

For a λ-NFA A = (Q,Σ, δ, s, F), the binary relation `A: QΣ∗ × QΣ∗ is
defined by that px `A qy, for p, q ∈ Q and x, y ∈ Σ∗, if x = ay and q ∈ δ(p, a)
or if x = y and q ∈ δ(p, λ). The language accepted by A is again defined in
the same way as for DFA.

Let A = (Q,Σ, δ, s, F) be a λ-NFA. The λ-closure of a state q ∈ Q,
denoted by λ-closure(q), is the set of all states that are reachable from q by
zero or more λ-transitions, i.e.

λ-closure(q) = {q ∈ Q | q `∗A p}.

For a λ-NFA A = (Q,Σ, δ, s, F) let A′ = (Q,Σ, δ′, s, F ′) be an NFA, such
that for each q ∈ Q and a ∈ Σ,

δ′(p, a) = δ(p, a) ∪
⋃

q∈λ-closure(p)

δ(q, a)

and

F ′ = {q ∈ Q | λ-closure(q) ∩ F 6= ∅}.

It can be easily verified that L(A) = L(A′).
Another form of generalization of NFA is defined in the following.
A NFA with nondeterministic starting state (NNFA) A = (Q,Σ, δ, S, F)

is an NFA except that there is a set of starting states S rather than exactly
one starting state. Thus, for an input word, the computation of A starts
from a nondeterministically chosen starting state.

It can be shown that for each NNFA A of n states, we can construct an
equivalent DFA A′ of at most 2n states.

There are also several models of finite automata with output, which
include Moore machines, Mealy machine, and finite transducers.

1.2.2 Regular Expressions

In the previous section we have described various forms of finite automata.
These automata can be easily implemented by computer programs. However,
finite automata in any of the above mentioned forms are not convenient to
be specified manually by users. A succinct and comprehensible expression

8

in sequential form would be better suited than a finite automaton defini-
tion. Such expressions are regular expressions which are often used as user
interfaces for specifying regular languages.

We define, inductively, a regular expression e over an alphabet Σ and
the language L(e) it denotes as follows:

1. e = ∅ is a regular expression denoting the language L(e) = ∅.

2. e = λ is a regular expression denoting the language L(e) = {λ}.

3. e = a, a ∈ Σ, is a regular expression denoting the language L(e) = {a}.
Let e1 and e2 be regular expressions and L(e1) and L(e2) be the lan-
guages they denote, respectively. Then

4. e = (e1 + e2) is a regular expression denoting the language L(e) =
L(e1) ∪ L(e2).

5. e = (e1 · e2) is a regular expression denoting the language L(e) =
L(e1)L(e2).

6. e = e∗1 is a regular expression denoting the language (L(e1))∗.

We assume that ∗ has higher precedence than · and +, and · has higher
precedence than +. A pair of parentheses may be omitted whenever the
omission would not cause any confusion. Also, we usually omit the symbol
· in regular expressions.

There are three major approaches for transforming regular expressions
into finite automata. The first approach is to transform a regular expres-
sion into a λ-NFA. This approach is simple and intuitive, but may generate
many λ-transitions. The second approach transforms a regular expression
into an NFA without λ-transitions. The third and most involved approach
is to transform a regular expression directly into an equivalent DFA.

The converse is also possible, i.e. for a given finite automaton A, we can
construct a regular expression e such that e denotes the language accepted
by A. The construction uses extended finite automata where a transition
between a pair of states is labeled by a regular expression. For a given finite
automaton, a so-called state elimination technique deletes a state at each
step and changes the transitions accordingly. This process continues until the
FA contains only the starting state, a final state, and the transition between
them. The regular expression labeling the transition specifies exactly the
language accepted by A.

9

1.2.3 Properties of Regular Languages

There are many ways to show that a language is regular; for example, this
can be done by demonstrating that the language is accepted by a finite
automaton, specified by a regular expression, or generated by a right-linear
grammar. To prove that a language is not regular, the most commonly used
tools are the pumping properties of regular languages, which are usually
stated as “pumping lemmas”. The term “pumping” intuitively describes
the property that any sufficiently long word of the language has a nonempty
subword that can be “pumped”, i.e. if the subword is replaced by an arbitrary
number of copies of the same subword, the resulting word is still in the
language.

There are many versions of pumping lemmas for regular languages. The
“standard” version is a necessary but not sufficient condition for regularity.

Lemma 1.2.1. Let L be a regular language over Σ. Then there is a constant
n, depending on L, such that for each w ∈ L with |w| ≥ n there exist
x, y, z ∈ Σ∗ such that w = xyz and

1. |xy| ≤ n,

2. |y| ≥ 1,

3. xytz ∈ L for all t ≥ 0.

The proof is based on the observation that if an n-state DFA reads a
word w of length |w| ≥ n, then it passes through the sequence of |w|+1 > n
states, thus (by the pigeonhole principle) at least two states in this sequence
must be equal.

In the following theorem we summarize some selected closure properties
of regular languages.

Theorem 1.2.1. The family of regular languages is closed under the fol-
lowing operations (we assume that L ⊆ Σ∗):

1. Boolean operations: union, intersection, complementation,

2. catenation, Kleene star, reversal,

3. left and right-quotient by an arbitrary language,

4. prefix(L) = {x ∈ Σ∗ | xy ∈ L, y ∈ Σ∗},

10

5. suffix(L) = {y ∈ Σ∗ | xy ∈ L, x ∈ Σ∗},

6. infix(L) = {y ∈ Σ∗ | xyz ∈ L, x, z ∈ Σ∗},

7. morphism, inverse morphism,

8. finite substitution, inverse finite substitution,

9. regular substitution, inverse regular substitution.

Finally, we characterize the family of regular languages by a so-called
Myhill-Nerode Theorem. Let L ⊆ Σ∗ and x ∈ Σ∗. The derivate of L with
respect to x, denoted DxL, is

DxL = x\L = {y ∈ Σ∗ | xy ∈ L}.

For L ⊆ Σ∗, we define a relation ≡L⊆ Σ∗ × Σ∗ by

x ≡L y ⇔ DxL = DyL

for each pair x, y ∈ Σ∗. Clearly,≡L is an equivalence relation. It partitions Σ∗

into equivalence classes. The number of equivalence classes of ≡L is called
the index of ≡L. The following Myhill-Nerode Theorem characterizes the
family of regular languages.

Theorem 1.2.2. A language L ⊆ Σ∗ is regular if and only if ≡L has a finite
index.

If L is a regular language, then it can be shown that the minimal number
of states of a complete DFA that accepts L is equal to the index of ≡L.

1.3 Context-Free Languages

This section is devoted to context-free languages (CFL). Context-free lan-
guages and grammars were designed initially to formalize grammatical prop-
erties of natural languages. They subsequently appeared to be well adapted
to the formal description of the syntax of programming languages. This led
to a considerable development of the theory.

We focus on two basic tools: context-free grammars and pushdown au-
tomata. These are indeed the standard tools to generate and to recog-
nize context-free languages. In Section 1.3.1 we give a short introduction

11

to context-free grammars, followed by the survey of their normal forms in
Section 1.3.2. In Section 1.3.3 we introduce pushdown automata as a ba-
sic accepting device for context-free languages. In the last Section 1.3.4 we
present some subfamilies of context-free languages.

The main source for this Section is Autebert et al. [1].

1.3.1 Grammars

A context-free grammar G is a quadruple G = (VN , VT , S, P), where VN is
disjoint from VT and:

VN is the finite nonempty set of nonterminals or variables,

VT is the finite nonempty set of terminals or terminal letters,

S ∈ VN is the distinguished nonterminal called the axiom,

P ⊆ VN × (VN ∪ VT)∗ is the finite set of productions or derivation rules.

Given words u, v ∈ (VN ∪ VT)∗, we write u ⇒G v whenever there exist
factorizations u = xXy, v = xαy, with production (X,α) ∈ P . A derivation
of length k ≥ 0 from u to v is a sequence (u0, u1, . . . , uk) of words in (VN ∪
VT)∗ such that ui−1 ⇒G ui for i = 1, 2, . . . , k, and u = u0, v = uk. If this
holds, we write u ⇒k

G v. The existence of some derivation from u to v is
denoted by u ⇒∗G v. If there is a proper derivation (i.e. of length ≥ 1), we
use the notation u ⇒+

G v. The language generated by a nonterminal X in
the grammar G is the set

LG(X) = {w ∈ V ∗T | X ⇒∗G w}.

The language generated by the grammar G is LG(S) and is denoted, for
short, LG or L(G).

A language L is called context-free if it is the language generated by
some context-free grammar. Two grammars G and G′ are equivalent if they
generate the same language, i.e. if L(G) = L(G′).

More generally, if x ∈ (VN ∪ VT)∗, we set

LG(x) = {w ∈ V ∗T | x⇒∗G w}.

Context-freeness easily implies that LG(xy) = LG(x)LG(y).

12

Consider a derivation u = u0 ⇒G u1 ⇒G . . . ⇒G uk = v, with u, v ∈
(VN ∪VT)∗. Then there exist productions pi = (Xi, αi) and words xi, yi such
that ui = xiXiyi and ui+1 = xiαiyi for i = 0, 1, . . . , k − 1. The derivation is
leftmost if |xi| ≤ |xi+1| for i = 0, 1, . . . k−2, and rightmost if, symmetrically,
|yi| ≤ |yi+1| for i = 0, 1, . . . k − 2. It is an interesting fact that any word
in a context-free language LG(X) has the same number of leftmost and
of rightmost derivations. A context-free grammar G is unambiguous for a
nonterminal X if every word in LG(X) has exactly one leftmost (rightmost)
derivation. A language is unambiguous if there is an unambiguous grammar
to generate it, otherwise it is called inherently ambiguous.

We define the parse tree or the derivation tree as a rooted tree which
satisfies the following conditions:

1. each node is labeled by some element from VN ∪ VT ∪ {λ},

2. internal nodes are labeled by nonterminals,

3. if an internal node is labeled A and its children are labeled B1, . . . , Bn

respectively, from the left, then (A,B1 . . . Bn) ∈ P ,

4. if some node is labeled by λ, then it is the leaf and the only child of
its parent.

If we look at the leaves of any parse tree and concatenate them from the
left, we get a string, called the yield of the tree, which is always a string
that is derived from the root nonterminal. It can be shown that A⇒∗G w if
and only if there is a parse tree with root A and yield w.

A context-free grammar G is trim in the nonterminal S if the following
two conditions are fulfilled:

1. for every nonterminal X, the language LG(X) is nonempty,

2. for every nonterminal X, there exist u, v ∈ V ∗T such that S ⇒∗G uXv.

It is not difficult to see that a context-free grammar can always be
trimmed effectively.

A production is terminal if its right side contains no nonterminal. A
production is called a λ-production if its right side is the empty word. At
least one λ-production is necessary if the language generated by the gram-
mar contains the empty word. It is not too difficult to construct, for every

13

context-free grammar G, an equivalent context-free grammar with no λ-
production excepted the production (S, λ) if λ ∈ L(G).

A grammar G is proper if it has neither λ-productions nor any produc-
tion of the form (X, Y) with Y a nonterminal. Again, an equivalent proper
grammar can effectively be constructed for any grammar G if λ /∈ L(G).

There are several convenient shorthands to describe context-free gram-
mars. Usually, a production (X,α) is written X → α, and productions with
same left side are grouped together, the corresponding right sides being sep-
arated by a |. Usually, the nonterminals and terminal letters are clear from
the context.

Subsequently, we make use of the following notation. Let A be an alpha-
bet. A copy of A is an alphabet that is disjoint from A and in bijection with
A. A copy is often denoted Ā or A′. This implicitly means that the bijection
is denoted similarly, namely as the mapping a 7→ ā or a 7→ a′. The inverse
bijection is denoted the same, that is ¯̄a = a ((a′)′ = a, respectively), and it
is extended to a bijection from (A∪ Ā)∗ into itself by xy = x̄ȳ (similarly for
(A ∪ A′)∗).

Let A be an alphabet and let Ā be a copy. The Dyck language over A∪Ā
is the language D∗A generated by S in the grammar:

S → TS | λ; T → aSā for all a ∈ A.

If A has n letters, then the notation D∗n is frequently used instead of D∗A.

1.3.2 Normal Forms

In this section, we present three normal forms of context-free grammars.
The two first ones are the Chomsky normal form and the Greibach normal
form. They are often used to get easier proofs of results about context-free
languages. The third normal form is the operator normal form. It is an
example of a normal form that has been used in the syntactical analysis.

A context-free grammar G = (VN , VT , S, P) is in weak Chomsky normal
form if each nonterminal production has a right member in V ∗N and each
terminal production has a right member in VT∪{λ}. It is in Chomsky normal
form if it is in weak Chomsky normal form and each right member of a
nonterminal production has length 2.

It can be shown, that given a context-free grammar, an equivalent context-
free grammar in Chomsky normal form can effectively be constructed.

14

One of the consequences of Chomsky normal form is the following pump-
ing lemma for context-free languages.

Lemma 1.3.1. Let L be a context-free language over Σ. Then there exist
natural numbers p and q, depending on L, such that for each z ∈ L with
|z| > p there exist a factorization uvwxy of z such that

1. |vwx| ≤ q,

2. v 6= λ or x 6= λ,

3. uviwxiy ∈ L for all i ≥ 0.

A context-free grammar G = (VN , VT , S, P) is in Greibach normal form
if each production of the grammar rewrites a nonterminal into a word in
VTV

∗
N . In particular, the grammar is proper and each terminal production

rewrites a nonterminal in a terminal letter.
It is in quadratic Greibach normal form if it is in Greibach normal form

and each right member of a production of G contains at most 2 nonterminals.
It is in double Greibach normal form if each right member of the produc-

tions of G are in VTV
∗
NVT ∪VT . In particular, a terminal production rewrites

a nonterminal in a letter or in a word of length 2.
It is in cubic double Greibach normal form (in quadratic double Greibach

normal form, respectively) if it is in double Greibach normal form and each
right member of a production contains at most 3 nonterminals (at most 2
nonterminals, respectively).

A proper context-free grammar G can effectively be transformed into an
equivalent context-free grammar G′ in any of the aforementioned Greibach
normal forms.

A context-free grammar G = (VN , VT , S, P) is in operator normal form
if no right member of a production contains two consecutive nonterminals.
This normal form has been introduced for purposes from syntactical analysis.
For these grammars, an operator precedence can be defined which is inspired
by the classical precedence relations of usual arithmetic operators.

Again, given a context-free grammar G, an equivalent context-free gram-
mar G′ in operator normal form can effectively be constructed.

1.3.3 Pushdown Machines

In this section, we focus on the accepting device for context-free languages,
namely pushdown automaton with the important subclass induced by de-

15

terminism.
A pushdown machine over Σ (a pdm for short) is a quadruple M =

(Q,Σ, Z, T), where

Q is the finite set of states,

Σ is the input alphabet,

Z is the stack alphabet,

T is a finite subset of (Σ∪{λ})×Q×Z×Z∗×Q, called the set of transition
rules.

An element (y, q, z, h, q′) of T is a rule, and if y = λ, it is called a λ-rule.
The first three components are viewed as preconditions in the behavior of a
pdm (and therefore the last two components are viewed as postconditions).
T is often seen as a function from (Σ ∪ {λ}) × Q × Z into the subsets of
Z∗×Q, and we use (h, q′) ∈ T (y, q, z) as the equivalent for (y, q, z, h, q′) ∈ T .

A pushdown machine is realtime if T is a finite subset of Σ × Q × Z ×
Z∗×Q, i.e. if there is no λ-rule. A realtime pdm is simple, if it has only one
state. In this case, the state giving no information, it is omitted, and T is a
subset of A× Z × Z∗.

An internal configuration of a pdm M is a couple (q, h) ∈ Q×Z∗, where
q is the current state, and h is the string over Z∗ composed of the symbols
in the stack, the first letter of h being the bottom-most symbol of the stack.
A configuration is a triple (x, q, h) ∈ Σ∗×Q×Z∗, where x is the input word
to be read, and (q, h) is an internal configuration.

The transition relation is a relation over configurations defined in the
following way: let c = (yg, q, wz) and c′ = (g, q′, wh) be two configurations,
where y ∈ (Σ ∪ {λ}), g ∈ Σ∗, q, q′ ∈ Q, z ∈ Z, and w, h ∈ Z∗. There is
a transition between c and c′, and we note c 7→ c′, if (y, q, z, h, q′) ∈ T . If
y = λ, the transition is called a λ-transition, and if y ∈ Σ, the transition
is said to involve the reading of a letter. A valid computation is an element
of the reflexive and transitive closure of the transition relation, and we note
c 7→∗ c′ a valid computation from c and leading to c′. A convenient notation
is to introduce, for any word x ∈ Σ∗, the relation on internal configurations,
denoted

x−−→, and defined by:

(q, w)
x−−→ (q′, w′)⇔ (x, q, w) 7→∗ (λ, q′, w′).

16

We clearly have:
x−−→ ◦ y−−→ =

xy−−→.
An internal configuration (q′, w′) is accessible from an internal configu-

ration (q, w), or equivalently, (q, w) is co-accessible from (q′, w′) if there is
some x ∈ Σ∗ such that (q, w)

x−−→ (q′, w′).
A rule (y, q, z, h, q′) ∈ T is an increasing rule (respectively a stationary,

respectively a decreasing rule) if |h| > 1 (respectively |h| = 1, respectively
|h| < 1). The use of an increasing rule (respectively a stationary, respectively
a decreasing rule) in a computation increases (respectively leaves unchanged,
respectively decreases) the number of symbols in the stack. A pdm is in
quadratic form if for all rules (y, q, z, h, q′) ∈ T , we have: |h| ≤ 2.

A pdm is used as a device for recognizing words by specifying starting
configurations and accepting configurations. The convention is that there is
only one starting internal configuration i = (q, z), where the state q is the
initial state, and the letter z is the initial stack symbol. The sets of internal
accepting configurations usually considered are:

1. the set F × Z∗ where F is a subset of Q, called the set of accepting
states,

2. the set Q× {λ},

3. the set F × {λ} where F is a subset of Q,

4. the set Q× Z∗Z ′ where Z ′ is a subset of Z.

We call each of these cases a mode of acceptance.
A pushdown automaton over Σ (a pda for short) is composed of a push-

down machine (Q,Σ, Z, T), together with an initial internal configuration
i, and a set K of internal accepting configurations. It is so a 6-tuple A =
(Q,Σ, Z, i,K, T), and (Q,Σ, Z, T) is called the pdm associated to A.

A word x ∈ Σ∗ is recognized by a pda A = (Q,Σ, Z, i,K, T) over Σ with a
specified mode of acceptance if there is k ∈ K such that i

x−−→ k. Considering
the modes of acceptance defined above, in the first case the word is said to
be recognized by accepting states F , in the second case the word is said to
be recognized by empty storage, in the third case the word is said to be
recognized by empty storage and accepting states F , and in the last case the
word is said to be recognized by topmost stack symbols Z ′. The language
accepted by a pda with a given mode of acceptance is the set of all words
recognized by the pda with this mode. For any pda A = (Q,Σ, Z, i,K, T),
we note L(A) the language recognized by A, and for any set of internal

17

accepting configurations K ′, we note L(A,K ′) the language recognized by
the pda A′ = (Q,Σ, Z, i,K ′, T).

In general, for a given pda, changing the mode of acceptance changes
the languages recognized. Nevertheless, the family of languages that are
recognized by pda’s, using any of these modes remains the same. Moreover,
the family of languages recognized by pda’s using any of the aforementioned
modes of acceptance is exactly the family of context-free languages.

The characterization of context-free languages in terms of languages rec-
ognized by pda’s allows much simpler proofs of certain properties of context-
free languages.

A pushdown automaton is realtime (simple, respectively) if the associ-
ated pdm is realtime (simple, respectively).

The fact that any proper context-free language can be generated by a
context-free grammar in Greibach normal form implies that realtime pda’s,
and even simple pda’s, recognize exactly proper context-free languages.

A pdm M = (Q,Σ, Z, T) is deterministic if the set T of transitions
satisfies the following conditions for all (y, q, z) ∈ (Σ ∪ {λ})×Q× Z:

1. |T (y, q, z)| ≤ 1

2. T (λ, q, z) 6= ∅ ⇒ ∀a ∈ Σ : T (a, q, z) = ∅

A deterministic pda (dpda for short) is a pda with a deterministic asso-
ciated pdm.

It is possible to prove that the family of languages recognized by dpda’s
by empty storage is the same as the family of languages recognized by dpda’s
by empty storage and accepting states, and that this family is included in
the family of languages recognized by dpda’s by accepting states. On the
other hand, it is easy to verify that a language recognized by empty storage
by dpda is prefix, i.e. no proper prefix of a word of this language belongs to
this language. So, we are left with two families of languages: the family of
languages recognized by accepting states, called the family of deterministic
languages (DCFL), and the family of languages recognized by empty storage,
called the family of deterministic-prefix languages. It is easy to check that the
family of deterministic-prefix languages is exactly the family of deterministic
languages that are prefix languages.

The two families are distinct. As an example, the language L1 = {anbp |
p > n > 0} is deterministic but not prefix. To avoid these problems, a usual

18

trick is to consider languages with an end marker: indeed, L] is a prefix
language which is deterministic if and only if L is deterministic.

For any dpda it is possible to construct a dpda recognizing the same lan-
guage such that an accepting state cannot be on the left side of an λ-rule.
Consequently, in such a dpda, for any recognized word, there is only one
successful computation. This proves that deterministic languages are un-
ambiguous. Moreover, the family of deterministic languages is closed under
complementation. This property does not hold for the family of context-free
languages.

1.3.4 Subfamilies

We present here some subfamilies of the family of context-free languages.
We begin with the probably most classical one, namely the family of linear
languages. The simplest way to define the family of linear languages is by
grammars. A context-free grammar G = (VN , VT , S, P) is:

linear, if each production X → v ∈ P has v ∈ V ∗T ∪ V ∗T VNV ∗T ,

right-linear, if each production X → v ∈ P has v ∈ V ∗T ∪ V ∗T VN ,

left-linear, if each production X → v ∈ P has v ∈ V ∗T ∪ VNV ∗T ,

regular, if each production X → v ∈ P has v ∈ VT ∪ VTVN ∪ {λ}.

The family of languages generated by right- or by left-linear grammars
are equal and equal to the family of languages generated by regular gram-
mars, which is exactly the family of regular languages.

However, the family of regular languages is strictly included in the family
of linear languages, denoted by Lin.

Let ∆ = {anbn | n ≥ 0}. The language ∆ is linear, but not regular.
Moreover, the language ∆∆ is context-free but not linear. Thus, the family of
linear languages is a proper subfamily of the family of context-free languages.

The linear languages can be characterized also by pushdown automata.
Given a computation of pda A, a turn in the computation is a move that
decreases the height of the pushdown store and is preceded by a move that
has not decreased it. A pda A is said to be one-turn if in any computation,
there is at most one turn. It can be shown that a language is linear if and
only if it is recognized by a one-turn pda. This characterization can further
be generalized to finite-turn pda’s and languages.

19

Next we present the family of one-counter languages. It is defined through
pda’s. A pda is one-counter if the stack alphabet contains only one letter.
A context-free language is a one-counter language if it is recognized by a
one-counter pda by empty storage and accepting states.

We denote by Ocl this family of languages. The terminology used here
comes from the fact that, as soon as the stack alphabet is reduced to a single
letter, the stack can be viewed a counter.

However, it is worth noticing that, contrarily to the case of linear lan-
guages, one-counter languages do not enjoy other characterizations through
grammars as linear languages did.

We now turn to another subfamily of the family of context-free languages.
Consider an alphabet Σ containing two particular letters a and ā. A context-
free grammar over the terminal alphabet Σ is parenthetic if each rule of the
grammar has the following form X → aαā with α containing neither the
letter a nor the letter ā. As usual, a language is said to be parenthetic if it
is generated by some parenthetic grammar. In the particular case where the
alphabet Σ does not contain any other letters than the two special ones a
and ā, we speak of pure parenthetic grammar or language.

Clearly, any pure parenthetic language over Σ = {a, ā} is included in
the Dyck language D∗1. However, it should be noted that D∗1 is not (purely)
parenthetic.

A context-free grammar G = (VN , VT , S, P) is simple if it is in Greibach
normal form and if, for each pair (X, a) ∈ VN × VT , there is at most one
rule of the form X → am. As usual, a language is simple if it can be
generated by a simple grammar. It is easy to check that any simple language
is deterministic, and that there do exist deterministic languages which are
not simple. The simple languages are exactly the languages recognized by
simple deterministic pda’s as defined in Section 1.3.3. Moreover, this family
of languages enjoys nice properties. For instance, any simple language is
prefix, and the family of simple languages generates a free monoid.

A context-free grammar is very simple if it is simple and for any terminal
letter a there is at most one rule of the form X → am. Clearly, any very
simple language is simple. The converse is not true.

1.4 Chomsky Hierarchy

In this Section we present classical Chomsky hierarchy of grammars and
languages:

20

1. phrase-structure or type 0,

2. context-sensitive or type 1,

3. context-free or type 2,

4. regular or type 3.

The phrase-structure, context-sensitive, context-free, and regular gram-
mars are also called type 0, type 1, type 2, and type 3 grammars, respec-
tively. The families of languages they generate are denoted by L0 (or RE),
L1 (or CSL), L2 (or CFL), and L4 (or Reg), respectively. The following strict
inclusions hold:

Reg ⊂ Lin ⊂ CFL ⊂ CSL ⊂ RE.

Type 0 grammars and languages are equivalent to computability : what is
in principle computable. Thus, their importance is beyond any question. The
same or almost the same can be said about regular grammars and languages.
They correspond to strictly finitary computing devices. The remaining two
classes lie in-between.

The class of context-sensitive languages has turned out to be of smaller
importance than the other classes. The particular type of context-sensitivity
combined with linear work-space is perhaps not the essential type, it has
been replaced by various complexity hierarchies.

The Chomsky hierarchy still constitutes a testing ground often used: new
classes are compared with those in the Chomsky hierarchy. However, it is
not any more the only testing ground in the language theory.

In Section 1.4.1 we introduce phrase-structure grammars and formulate
the relation between languages generated by these grammars and recur-
sively enumerable languages. In Section 1.4.2 we concentrate on the family
of context-sensitive languages. Regular languages and context-free languages
have already been covered in Section 1.2 and Section 1.3, respectively. Fi-
nally, in Section 1.4.3 we summarize closure properties of families in Chom-
sky hierarchy.

The main source for this Section is Mateescu and Salomaa [23, 22]. Para-
graph concerning growing context-sensitive languages is taken from [4]. For
brevity, we omit definitions of Turing machines and complexity classes. The
interested reader is referred to Mateescu and Salomaa [22], or to a nice
survey of structural complexity theory in Balcázar et al. [2, 3].

21

1.4.1 Phrase-Structure Grammars

A phrase-structure grammar or a type 0 Chomsky grammar is a construct
G = (VN , VT , S, P), VN and VT are disjoint alphabets, S ∈ VN and P is a
finite set of ordered pairs (u, v), where u, v ∈ (VN ∪ VT)∗ and u contains at
least one element from VN .

As in Section 1.3.1, elements in VN are referred to as nonterminals, VT
is the terminal alphabet, S is the start symbol (or axiom) and P is the set
of productions or rewriting rules. Productions (u, v) are written u→ v. The
direct derivation relation induced by G is a binary relation between words
over VN ∪ VT , denoted ⇒G, and defined as:

α⇒G β ⇔ α = xuy, β = xvy, and (u→ v) ∈ P,

where α, β, x, y ∈ (VN ∪ VT)∗.
The derivation relation induced by G, denoted ⇒∗G, is the reflexive and

transitive closure of the relation ⇒G.
The language generated by G, denoted L(G), is:

L(G) = {w ∈ V ∗T | S ⇒∗G w}.

A language L is of type 0 if there exists a grammar G of type 0 such
that L = L(G). The family of all languages of type 0 is denoted by L0.

The fundamental result of Formal Language Theory is that the family
L0 is equal to the family RE of all recursively enumerable languages. The
family RE can be introduced by using Turing machines, although there are
many other formalisms for defining this family.

1.4.2 Context-Sensitive Grammars

A context-sensitive (type 1) grammar is a phrase-structure grammar G =
(VN , VT , S, P) such that each production in P is of the form αXβ → αuβ,
where X ∈ VN , α, β, u ∈ (VN ∪ VT)∗, u 6= λ. In addition, P may contain the
production S → λ and in this case S does not occur on the right side of any
production of P .

A language L is context-sensitive if there exists a context-sensitive gram-
mar G such that L = L(G). The family of all context-sensitive languages is
denoted by CSL or L1. Note that L1 = CSL ⊆ L0 = RE.

A length-increasing (monotonous) grammar is a type 0 grammar G =
(VN , VT , S, P) such that for each production u → v in P , |u| ≤ |v|. In

22

addition, P may contain the production S → λ and in this case S does not
occur on the right side of any production from P .

It can be shown, that L is a context-sensitive language if and only if
there exists a length-increasing grammar G such that L = L(G).

Let L = {anbncn | n ≥ 1}. It can be shown, that L is a context-
sensitive language. This immediately implies, that the family of context-free
languages is strictly contained in the family of context-sensitive languages,
since L /∈ CFL.

Now we characterize the family of context-sensitive languages by a so-
called Workspace Theorem. Let G = (VN , VT , S, P) be a type 0 grammar
and consider a derivation D according to G,

D : S = w0 ⇒G w1 ⇒G . . .⇒G wn = w.

The workspace of w by the derivation D is:

WSG(w,D) = max{|wi| | 0 ≤ i ≤ n}.

The workspace of w is:

WSG(w) = min{WSG(w,D) | D is a derivation of w}.

Observe that WSG(w) ≥ |w| for all G and w.
The following Workspace Theorem is a powerful tool in showing lan-

guages to be context-sensitive.

Theorem 1.4.1 (Workspace theorem). If G is a type 0 grammar and if
there is a nonnegative integer k such that

WSG(w) ≤ k|w| for all nonempty words w ∈ L(G),

then L(G) is a context-sensitive language.

The family of context-sensitive languages can also be characterized in
terms of so-called linear bounded automata. Linear bounded automata are a
special type of Turing machines, which are closely related to a certain class
of Turing space complexity, NSPACE(n). More precisely, a linear bounded
automaton (LBA) is a nondeterministic Turing machine of space complexity
S(n) = n.

Theorem 1.4.2. The family L1 = CSL is equal to the family of languages
accepted by linear bounded automata, i.e.

CSL = NSPACE(n).

23

It is not known whether the inclusion DSPACE(n) ⊆ NSPACE(n) is
strict or not.

It can be shown, that there exist context-sensitive languages for which
the membership problem is PSPACE-complete. Thus, in their full generality
these languages are too powerful for practical applications. On the other
hand, context-free languages are not powerful enough to completely describe
all the syntactical aspects of a programming language like Pascal, since some
of them are inherently context dependent.

Dahlhaus and Warmuth [8] consider growing context-sensitive grammars
(GCSL), that is, context-sensitive grammars for which each production rule
is strictly length-increasing. Obviously, for such a grammar the length of
a derivation is bounded from above by the length of the sentence derived.
Dahlhaus and Warmuth prove that all growing context-sensitive languages,
that is, the languages that are generated by growing context-sensitive gram-
mars, have membership problems that are solvable in polynomial time.

1.4.3 Closure properties

Closure properties of families in Chomsky hierarchy (Y stands for yes and
N stands for no) taken from Mateescu and Salomaa [23]:

RE CSL CFL Lin Reg
Union Y Y Y Y Y
Intersection Y Y N N Y
Complementation N Y N N Y
Concatenation Y Y Y N Y
Kleene star Y Y Y N Y
Intersection with regular languages Y Y Y Y Y
Substitution Y N Y N Y
λ-free substitution Y Y Y N Y
Morphism Y N Y Y Y
λ-free morphism Y Y Y Y Y
Inverse morphism Y Y Y Y Y
Left/right quotient Y N N N Y
Left/right quotient with regular language Y N Y Y Y
Left/right derivate Y Y Y Y Y
Shuffle Y Y N N Y
Mirror image Y Y Y Y Y

24

Chapter 2

Selected Models of Formal
Languages

In this chapter we give an overview of several selected models related to our
model of clearing restarting automata.

In Section 2.1 we introduce contextual grammars by Solomon Marcus
[20]. In Section 2.2 we briefly describe pure grammars by Maurer et al. [24].
In Section 2.3 we introduce Church-Rosser string rewriting systems [25].
Associative language description by Cherubini et al. [7] is defined in Section
2.4. Finally, restarting automata [13, 27] are covered in Section 2.5.

2.1 Marcus Contextual Grammars

The main source for this section is Ehrenfeucht et al. [9]. Contextual gram-
mars were introduced by Solomon Marcus in 1969 [20], in an attempt to build
a bridge between analytical and generative models of natural languages. In
particular, contextual grammars were “translating” the central notion of
context from the analytical models into the framework of generative gram-
mars. A lucid account of the motivation behind contextual grammars from
the natural point of view can be found in Solomon Marcus [21].

Contextual grammars provide an important tool in the study of recursion
in formal language theory. In a sense, the research on contextual grammars
is a study of recursion in its pure form.

Also, contextual grammars offer a very convenient framework for the
systematic study of the basic language theoretic operations, such as insertion
and deletion, and the operation of splicing, which provide a nice bridge

25

between formal language theory and DNA computing.
Finally it should be stressed that contextual grammars form a major

contribution to our understanding of pure grammars (see Section 2.2).
In this section we consider contextual grammars from the formal lan-

guage theory point of view.
A total contextual grammar is a system

G = (Σ, B, C, φ),

where Σ is an alphabet, B is a finite language over Σ, C is a finite subset of
Σ∗$Σ∗, where $ is a special symbol not in Σ, and φ : Σ∗ × Σ∗ × Σ∗ → 2C .

The strings in B are called axioms, the elements u$v in C are called
contexts, and φ is the choice mapping. Here we do not impose restrictions
on φ – we even do not assume that φ is computable.

For a total contextual grammar G = (Σ, B, C, φ) we define the relation
⇒G on Σ∗ as follows: x ⇒G y if and only if x = x1x2x3, y = x1ux2vx3, for
some x1, x2, x3 ∈ Σ∗, u$v ∈ C, such that u$v ∈ φ(x1, x2, x3).

The subscript G may be omitted from ⇒G whenever G is understood.
Denoting by ⇒∗G the reflexive and transitive closure of ⇒G, the language
generated by G is

L(G) = {x ∈ Σ∗ | w ⇒∗G x for some w ∈ B}.

Note that, by definition, B ⊆ L(G).
We say that x directly derives y in G or that x derives y in G whenever

x⇒G y or x⇒∗G y holds, respectively.
Two special cases of total contextual grammars are very natural and

have been extensively investigated:

1. A total contextual grammar G = (Σ, B, C, φ) is called external if
φ(x1, x2, x3) = ∅ for all x1, x2, x3 ∈ Σ∗ such that x1x3 6= λ.

2. A total contextual grammar G = (Σ, B, C, φ) is called internal if
φ(x1, x2, x3) = φ(x′1, x2, x

′
3) for all x1, x

′
1, x2, x3, x

′
3 ∈ Σ∗.

Note that in both cases, the adjoining of a context u$v ∈ φ(x1, x2, x3)
to the string x1x2x3 depends on x2 only. Therefore, in these cases we can
simplify the choice mapping φ by having φ : Σ∗ → 2C . The so modified total
contextual grammars are called contextual grammars.

Since in this way there is no difference between external and internal
grammars, we shall distinguish between derivation relations, defining:

26

1. x⇒ex y if and only if y = uxv for u$v ∈ φ(x),

2. x⇒in y if and only if x = x1x2x3, y = x1ux2vx3, for some x1, x2, x3 ∈
Σ∗, u$v ∈ φ(x2).

We call ⇒ex an external (direct) derivation and ⇒in an internal (di-
rect) derivation. Accordingly we associate with a contextual grammar G
two languages:

Lα(G) = {x ∈ Σ∗ | w ⇒α x for some w ∈ B}

for α ∈ {ex, in}.
For a contextual grammar G = (Σ, B, C, φ), the relation u$v ∈ φ(x)

can be interpreted as a rewriting rule x → uxv. Therefore, a contextual
grammar with internal derivation can be considered to be a pure grammar
with arbitrarily many (length-increasing) productions of the form x→ uxv,
where there exists a bound k such that, for each x and each production
x → uxv, |uv| ≤ k holds. (Pure grammars are grammars that do not use
nonterminals. See Section 2.2)

A contextual grammar G = (Σ, B, C, φ) is said to be without choice if
φ(x) = C for all x ∈ Σ∗. In such a case, the mapping φ can be ignored, and
we write the grammar in the form G = (Σ, B, C).

Five basic families of languages are obtained in this way:

1. TC is the family of languages generated by total contextual grammars,

2. ECC is the family of languages externally generated by contextual
grammars,

3. ICC is the family of languages internally generated by contextual gram-
mars,

4. EC is the family of languages externally generated by contextual gram-
mars without choice,

5. IC is the family of languages internally generated by contextual gram-
mars without choice.

In general case of contextual grammars it is natural to require that φ
is a computable mapping. The corresponding families are denoted by TCc,
ECCc, ICCc, respectively.

We conclude this section with examples that illustrate the above defini-
tions.

27

Example 2.1.1. Every finite language, B, belongs to every family of con-
textual languages: for G = (Σ, B, ∅) we have Lex(G) = Lin(G) = B.

Example 2.1.2. For each alphabet Σ, the language Σ∗ belongs to every
family of contextual languages: for G = (Σ, {λ}, $Σ) we have Lex(G) =
Lin(G) = Σ∗. If we take G = (Σ,Σ, $Σ), then Lex(G) = Lin(G) = Σ+.

Example 2.1.3. Consider the grammar G = ({a, b}, {λ}, {a$b}). Obviously
Lex(G) = {anbn | n ≥ 1}, whereas Lin(G) is the Dyck language over the
alphabet {a, b}. This second equality can be proved by induction on the length
of the strings.

Note that Lex(G) is not regular and Lin(G) is not linear.

Example 2.1.4. For G = ({a, b, c}, {λ}, {αβ$γ, α$βγ | {α, β, γ} = {a, b, c}}),
we obtain

Lin(G) = {x ∈ {a, b, c}∗ | |x|a = |x|b = |x|c}.

The inclusion ⊆ is obvious. The inverse inclusion can be proved by induction
on the length of strings.

Note that the above language is not context-free.

Example 2.1.5. The grammar G = ({a}, {a3}, {$a, $a2}, φ), with mapping
φ defined by

φ(ai) =

{
$a if i+ 1 6= 2k for k ≥ 0
$a2 if i+ 1 = 2k for k ≥ 0

for all i ≥ 1, generates

Lex(G) = {an | n ≥ 1, n 6= 2k, k ≥ 0},
Lin(G) = a+ − {a, a2}.

2.2 Pure Grammars

The main source for this section is Mateescu and Salomaa [22]. In the Chom-
sky hierarchy and related types of grammars, it has become customary to
divide the alphabet into two parts: nonterminal letters and terminal let-
ters. Only words consisting entirely of terminal letters are considered to be
in the language generated. Basically, this distinction stems from linguistic
motivation: nonterminals represent syntactic classes of a language. One can
view the use of nonterminals also as an auxiliary definitional mechanisms
for generative devices. Not everything derived from the axiom or axioms is

28

accepted as belonging to the language. Nonterminals are used to filter out
unwanted words.

The study of pure grammars continues the line of research concerning
rewriting systems. In a pure grammar there is only one undivided alpha-
bet. The starting point, axiom, is a word or, more commonly, a finite set of
words. Rewriting is defined in the standard way, and a specific pure gram-
mar is obtained by giving a finite set of rewriting rules or productions. All
words derivable from some of the axioms belong to the language of the pure
grammar. A pure grammar is context-free (length increasing, respectively),
if the length of the left side of every production is equal to one (less than
or equal to the length of the right side, respectively). Abbreviations PCF
and PLI will be used for these special classes of pure grammars and their
languages. One can define also pure context-sensitive grammars in the stan-
dard way. The resulting class of languages will be strictly smaller than the
class of PLI languages.

The language {ancbn | n ≥ 1} is generated by the PCF grammar with the
axiom acb and the only production c → acb. The language {anbn | n ≥ 1}
is not PCF but is generated by the PLI grammar with the axiom ab and the
only production ab→ a2b2. Neither one of the languages

{anbncn | n ≥ 1} and {anbn | n ≥ 1} ∪ {anb2n | n ≥ 1}

is pure, that is, they are not generated by any pure grammar whatsoever.
Every regular language is PLI and, hence, pure. The family of pure lan-

guages over a one-letter alphabet {a} coincides with the family of regular
languages over {a}, whereas PCF languages constitute a proper subfam-
ily. There are nonrecursive pure languages. Each of the differences Li\Li+1,
0 ≤ i ≤ 2, where Li, 0 ≤ i ≤ 3, are the language families in the Chomsky
hierarchy, contains both pure and nonpure languages.

2.3 Church-Rosser String Rewriting Systems

The main source for this section is McNaughton et al. [25]. A Thue system
(after the Norwegian mathematician and logician Axel Thue who introduced
it in 1914) is a set of unordered pairs of strings. We write u1 ↔T u2 (some-
times omitting the subscript when T is understood) when for some (x, y) ∈ T
and strings w, z, u1 = wxz and u2 = wyz. We write ↔∗T for the reflexive
and transitive closure of ↔T (which is already symmetrical). The alphabet
of a Thue system is the set of all characters appearing in the paired strings.

29

We write [x]T to mean {x′ | x′ ↔∗T x}; in words it is the congruence class
of x modulo T . It is well known that {x′y′ | x′ ∈ [x]T , y

′ ∈ [y]T} ⊆ [xy]T , and
that by defining [x]T · [y]T to be [xy]T we get a monoid whose elements are
the congruence classes and whose identity is [λ]. If z is a string such that
(za, z), (az, z) ∈ T , for all a in the alphabet of T , then [z]T acts as a monoid
zero on the monoid. Thus for all x and y, [x]T [z]T [y]T = [z]T , corresponding
to the fact that xzy ↔∗T z.

We write u→T v if u↔T v and |u| > |v|. We call→∗T reduction, which is
the reflexive and transitive closure of→T . A Thue system T has the Church-
Rosser property (after Alonzo Church and J. Barkley Rosser and their work
in 1941 and 1942 on the lambda calculus), or T is a CR system, if for all u
and v, u↔∗T v implies there is a t such that u→∗T t and v →∗T t.

If T is a CR system, (x, y) ∈ T , |x| = |y| and T ′ = T\{(x, y)}, then it
is a consequence of the definition that T ′ is equivalent to T . We henceforth
assume that no CR system has length-preserving rules.

Generally, when we work with CR systems we are interested in reductions.
When we present a CR system in practice we list the pairs not in the form
(x, y) but in the form x → y, where |x| > |y|; x → y is called a length-
reducing rule or, simply, rule.

Theorem 2.3.1. A Thue system consisting of length-reducing rules has the
Church-Rosser property if and only if:

1. (Overlap condition) For all u1, u2, u3 6= λ if u1u2 → y1 and u2u3 → y3

are rules (not necessarily distinct), then there is a t such that y1u3 →∗ t
and u1y3 →∗ t (so that u1u2u3 → y1u3 →∗ t and u1u2u3 → u1y3 →∗ t).

2. (Substring condition) For all u1, u2, u3 where u1u3 6= λ, if u1u2u3 → y13

and u2 → y2 are rules, then there is a t such that y13 →∗ t and
u1y2u3 →∗ t (so that u1u2u3 → y13 →∗ t and u1u2u3 → u1y2u3 →∗ t).

3. (Identity condition) If u→ y1 and u→ y2 are rules, then there is a t
such that y1 →∗ t and y2 →∗ t.

An obvious, but useful, consequence of this principle is the following:

Corollary 2.3.1. If in a Thue system T no left side of a rule properly
overlaps with the left side of another rule or itself, no left side is a proper
substring of another left side, and no two rules have identical left sides but
different right sides, then T has the Church-Rosser property.

30

A CR system offers a convenient computation method for dealing with
strings: Given a string, we simply reduce it as far as possible until we obtain
an irreducible equivalent, whereupon the original string is identified. The
irreducible equivalent of the string is truly a canonical form for its congru-
ence class. The Church-Rosser property ensures that there cannot be two
congruent irreducible strings.

It can be proved that the canonical form of a given string can be obtained
in linear time by using an interesting automaton to do the computation,
which is a kind of generalization of the pushdown automaton. Languages
that CR systems are capable of processing are a significant generalization of
the deterministic context-free languages.

In the following we mention three ways in which CR systems can be used
to define (and hence to test for membership in) a formal language:

1. L is a Church-Rosser congruential language if L is the union of finitely
many congruence classes of some CR system.

2. L ⊆ A∗0 is a Church-Rosser language (CR language) if there is a CR
system T whose alphabet A1 has A0 as a proper subset, strings t1, t2 ∈
(A1\A0)∗, and Y ∈ A1\A0 such that, for all w ∈ A∗0, t1wt2 →∗T Y if
and only if w ∈ L. T is a defining CR system for the CR language L.

3. L ⊆ A∗0 is a Church-Rosser-decidable (or CR-decidable) language if L
is a CR language, and, where T , t1, t2, and Y are as mentioned in
that definition, there is an N ∈ A1\A0 such that, for all w ∈ A∗0,
t1wt2 →∗T N if and only if w /∈ L. T is then a defining CR system for
the CR-decidable language L.

The characters of A1\A0 of a defining CR system of a CR or CR-decidable
language L can be thought of as control characters.

Thus, in the defining CR system T of a CR-decidable language, for any
w ∈ A∗0, we can reduce t1wt2 to either Y (meaning yes) or N (no). It should
be noted that if L is merely a CR language, we have a decision procedure
that is almost as good. We reduce t1wt2 as far as we can. If we arrive at a
string other than Y to which no rule can applied, then we know that w /∈ L.

We emphasize that languages in all three classes have linear-time mem-
bership algorithms. The family of CR languages is the largest family of lan-
guages we know that enjoys the computation method of CR systems.

We do not know whether there exist any CR languages that are not CR
decidable. The proposition that all CR languages are CR decidable is clearly

31

equivalent to the proposition that every CR language L has a CR system
and string t1 and t2, as in the definition, such that t1A

∗
0t2 is contained in the

union of finitely many congruence classes, where A0 is the alphabet of L.

2.4 Associative Language Description

The main source for this section is Cherubini et al. [7]. The Associative Lan-
guage Description (ALD) model combines locally testable and constituent
structure ideas. The family of ALD languages is strictly included in the fam-
ily of context-free languages. However, it can be shown that the hardest
context-free language [10] is in ALD.

Context-free grammars, in spite of their universal adoption in language
reference manuals and compilers, have several shortcomings. They are un-
able to generate various linguistic constructs, or to handle long-distance
dependencies. In this section the following shortcomings of context-free lan-
guages are considered:

First, the generative capacity of context-free grammars is not only in-
sufficient, but also misdirected, because it affords languages that are never
considered for describing programming languages and never appear in com-
putational linguistics. We have in mind counting languages, which violate
the noncounting property, since they characterize the legal strings by some
numerical congruence.

A second criticism, originally voiced by Marcus’ school of contextual
grammars, is that context-free grammars require an unbounded number of
metasymbols, the nonterminals. A “pure” grammar should not use metavari-
ables, which are ‘external’ to the language, but rely instead on structural
and distributional properties.

The language definition technique to be presented addresses both crit-
icisms, but does not extend the capacity of context-free grammars. The
objective of this section is to formalize the definitions and to highlight the
explanatory adequacy by representative examples.

Let Σ be a finite alphabet, and let ∆ /∈ Σ be the placeholder. A stencil
tree is a tree such that: its internal nodes are labeled by ∆; its leaves have
labels in Σ∪{λ}. The constituents of a stencil tree are its subtrees of height
one and leaves with labels in Σ ∪ {λ} ∪ {∆}. The frontier of a stencil tree
T or of a constituent K is denoted, respectively, by τ(T) and τ(K).

Given a stencil tree T , a maximal subtree of T is a subtree of T whose
leaves are also leaves of T .

32

T

K
1

a c b Δ c b Δ c c

b b Δ b b b b b b

a c b c

K
2

K
3

K
4

Figure 2.1: A stencil tree T with four constituents K1, K2, K3, K4 schema-
tized by triangles.

Let T be a stencil tree. For an internal node i of T , let Ki and Ti be,
respectively, the constituent and the maximal subtree of T having root i.
Consider the tree T ′ obtained by excising the subtree Ti from T , leaving
only the root labeled ∆ of Ti behind. Let s, t ∈ Σ∗ be two strings such
τ(T ′) = s∆t. The left context of Ki in T and of Ti in T is Left(Ki, T) =
Left(Ti, T) = s; the right context of Ki in T and of Ti in T is Right(Ki, T) =
Right(Ti, T) = t.

Let ⊥ /∈ Σ be the left/right terminator. An associative language de-
scription (ALD) A is a finite set of triples (x, z, y), called rules, where
x ∈ (λ ∪ ⊥)Σ∗, y ∈ Σ∗(λ ∪ ⊥), and z ∈ (Σ ∪ {∆})∗\{∆}. The string z
is called the pattern of the rule (x, z, y) and the strings x and y are called
the permissible left/right contexts.

Shorthands : When a left/right context is irrelevant for a pattern, it is
represented by the empty string λ or it is omitted. The new symbol Λ may
be used to denote the optionality of one occurrence of ∆, that is to merge
two rules (x, z1∆z2, y) and (x, z1z2, t) into the rule (x, z1Λz2, y).

Another useful shorthand is the following one: given finite sets X, Z,
and Y of words, the notation (X,Z, Y) denotes the set of rules {(x, z, y) |
x ∈ X, z ∈ Z, y ∈ Y }. Moreover, instead of {w} we can use w.

33

An ALD defines a set of constraints or test conditions that a stencil tree
must satisfy, in the following sense: Let A be an ALD. A constituent Ki of
a stencil tree T is matched by a rule (x, z, y) of an ALD A if:

1. z = τ(Ki),

2. x is a suffix of ⊥Left(Ki, T),

3. y is a prefix of Right(Ki, T)⊥.

A stencil tree T is valid for A if each constituent Ki of T is matched by a
rule of A.

Therefore, an ALD is a device for defining a set of stencil trees and a
string language, corresponding to their frontiers. This is not achieved by
means of a derivation: the validity of a stencil tree is determined by a test.
Hence, an ALD is not a generative grammar.

The (stencil) tree language defined by ALD A, denoted by TL(A), is the
set of all stencil trees valid for A.

The (string) language defined by ALD A, denoted by L(A), is the set
{x ∈ Σ∗ | x = τ(T) for some T ∈ TL(A)}.

Example 2.4.1. The language {ancbn | n ≥ 1} is defined by the ALD rules:

(⊥, a∆b,⊥), (a, a∆b, b), (a, c, b).

Δ

a Δ b

a Δ b

a c b

Figure 2.2: A valid stencil tree for Example 2.4.1.

It is also possible to define a simpler, though equivalent, description of
the same language with the same patterns but simpler contexts:

(λ, a∆b, λ), (a, c, b).

Similarly, the language {anbn | n ≥ 1} is defined by the ALD {(λ, aΛb, λ)}.

34

Example 2.4.2. Obviously, all 1-variable context-free languages are defined
by ALDs. For instance, the Dyck language D∗1 on the opening and closing
parentheses {a, ā} is defined by the ALD rules:

(λ, a∆ā, λ), (λ, aā, λ), (λ, λ, λ),

where all contexts are empty. The ALD may be compacted, using the short-
hand Λ, into (λ, aΛāΛ, λ).

Example 2.4.3. The phenomenon of ambiguity can occur in ALDs much
as in context-free grammars. The following rules ambiguously define Dyck
language D∗1:

(λ,ΛΛ, λ), (λ, aΛā, λ),

because a sentence like aāaāaā admits distinct tree structures.

Example 2.4.4. It is not known whether all regular languages are ALD, but
many of them are. For instance, the language a+bc+ ∪ a+dc+ is defined by
the ALD rules: (⊥, a∆c,⊥), (a, a∆, c), (a,∆c, c), (a, b, c), (a, d, c).

As we have already mentioned, the family of ALD languages is strictly
included in the family of context-free languages. However, it is possible to
define the syntax of Pascal by using ALD. The size of the ALD definition is
comparable to a context-free grammar of Pascal when using short notations.
Also, the main features of HTML can be described conveniently by ALD.

Several theoretical questions are still open. For instance, it is unknown,
at the present, whether the ALD family includes the regular languages (there
are many examples of regular languages that are in ALD). There are also
other problems such as various decidability properties.

2.5 Restarting Automata

The main source for this section is Friedrich Otto [27]. The restarting au-
tomaton was introduced by Jančar et al. in 1995 in order to model the
so-called ‘analysis by reduction,’ which is a technique used in linguistics to
analyze sentences of natural languages that have a free word order. By now
there are many different models of restarting automata, and their investi-
gation has proved very fruitful in that they offer an opportunity to study
the influence of various kinds of resources on their expressive power. Here
we introduce and discuss the main variants of these automata.

35

Analysis by reduction is a technique used in linguistics to analyze sen-
tences of natural languages that have a free word order. This analysis consists
of a stepwise simplification of a sentence in such a way that the syntactical
correctness or incorrectness of the sentence is not affected. After a finite
number of steps either a correct simple sentence is obtained, or an error is
detected. In the former case the given sentence is accepted as being syn-
tactically correct; if, however, all possible sequences of simplifications yield
errors, then the given sentence is not syntactically correct. In this way it is
also possible to determine dependencies between various parts of the given
sentence, and to disambiguate between certain morphological ambiguities
contained in the sentence.

As illustrated by Jančar et al. (e.g. [16]) the restarting automaton was in-
vented to model the analysis by reduction. In fact, many aspects of the work
on restarting automata are motivated by the basic tasks of computational
linguistics. The notions developed in the study of restarting automata give
a rich taxonomy of constraints for various models of analyzers and parsers.
Already several programs are being used in Czech and German (corpus)
linguistics that are based on the idea of restarting automata.

As defined in [13] the restarting automaton is a nondeterministic machine
model that processes strings which are stored in a list (or a ‘rubber’ tape)
with end markers. It has a finite control, and it has a read/write window with
a finite look-ahead working on the list of symbols. The restarting automaton
can only perform two kinds of operations: move-right transitions, which shift
the read/write window one position to the right, thereby changing the actual
state, and combined delete/restart transitions, which delete some symbols
from the read/write window, place this window over the left end of the list,
and put the automaton back into its initial state. Hence, after performing
a delete/restart transition a restarting automaton has no way to remember
that it has already performed some steps of a computation. Further, by each
application of a delete/restart transition the list is shortened. It follows that
restarting automata are linearly space-bounded.

Subsequently Jančar et al. extended their model in various ways. Instead
of simply deleting some symbols from the actual content of the read/write
window during a delete/restart transition, a restarting automaton with rewrit-
ing has combined rewrite/restart transitions that replace the content of the
read/write window by a shorter string [14]. Further, the use of auxiliary
(that is, non-input) symbols was added to the model in [15], which yields
the so-called RWW-automaton. Also in [15] the restart transition was sep-

36

arated from the rewrite transition so that, after performing a rewrite step,
the automaton can still read the remaining part of the tape before perform-
ing a restart transition. This gives the so-called RRWW-automaton, which is
required to execute exactly one rewrite transition between any two restart
transitions. In addition, various notions of monotonicity have been discussed
for the various types of restarting automata. It turned out that monotone
RWW- and RRWW-automata accept exactly the context-free languages, and
that all the various types of monotone deterministic RWW- and RRWW-
automata accept exactly the deterministic context-free languages. Finally,
move-left transitions were added to the restarting automaton, which gave
the so-called two-way restarting automaton (RLWW-automaton) [29]. This
automaton can first scan its tape completely, and then move left to apply a
rewrite transition to some factor of the tape content.

In defining the restarting automaton and its main variants we will not
follow the historical development outlined above, but we will first present
the most general model, the RLWW-automaton, and then describe the other
variants as restrictions thereof.

As indicated above a restarting automaton is a nondeterministic machine
model that has a finite control and a read/write window that works on a
list of symbols delimited by end markers (see Figure 2.3).

¢ $

read/write window

finite control

...

flexible tape

Figure 2.3: Schematic representation of a restarting automaton.

Formally, a two-way restarting automaton, RLWW-automaton for short,
is a one-tape machine described by an 8-tuple M = (Q,Σ,Γ, ¢, $, q0, k, δ),
where Q is a finite set of states, Σ is a finite input alphabet, Γ is a finite

37

tape alphabet containing Σ, ¢, $ /∈ Γ are symbols that serve as markers for
the left and right border of the work space, respectively, q0 ∈ Q is the initial
state, k ≥ 1 is the size of the read/write window, and

δ : Q×PC(k) → P((Q× ({MVR,MVL} ∪PC≤(k−1))) ∪ {Restart,Accept})

is the transition relation. Here PC(k) is the set of possible contents of the
read/write window of M , where

PC(i) = (¢ · Γi−1) ∪ Γi ∪ (Γ≤i−1 · $) ∪ (¢ · Γ≤i−2 · $) (i ≥ 0),

and

Γ≤n =
n⋃
i=0

Γi and PC≤(k−1) =
k−1⋃
i=0

PC(i).

The transition relation describes five different types of transition steps:

1. A move-right step is of the form (q′,MVR) ∈ δ(q, u), where q, q′ ∈ Q
and u ∈ PC(k), u 6= $. If M is in state q and sees the string u in
its read/write window, then this move-right step causes M to shift
the read/write window one position to the right and to enter state q′.
However, if the content u of the read/write window is only the symbol
$, then no shift to the right is possible.

2. A move-left step is of the form (q′,MVL) ∈ δ(q, u), where q, q′ ∈ Q and
u ∈ PC(k) does not begin with the symbol ¢. It causes M to shift the
read/write window one position to the left and to enter state q′. This,
however, is only possible if the window is not already at the left end
of the tape.

3. A rewrite step is of the form (q′, v) ∈ δ(q, u), where q, q′ ∈ Q and
u ∈ PC(k), u 6= $, and v ∈ PC≤(k−1) such that |v| < |u|. It causes
M to replace the content of u of the read/write window by the string
v, thereby shortening the tape, and to enter state q′. Further, the
read/write window is placed immediately to the right of the string v.
However, some additional restrictions apply in that the border markers
¢ and $ must not disappear from the tape nor that new occurrences of
these markers are created. Further, the read/write window must not
move across the right border marker $, that is, if the string u ends in $,
then so does the string v, and after performing the rewrite operation,
the read/write window is placed on the $-symbol.

38

4. A restart step is of the form Restart ∈ δ(q, u), where q ∈ Q and
u ∈ PC(k). It causes M to place its read/write window over the left
end of the tape, so that the first symbol it sees is the left border marker
¢, and to reenter the initial state q0.

5. An accept step is of the form Accept ∈ δ(q, u), where q ∈ Q and
u ∈ PC(k). It causes M to halt and accept.

If δ(q, u) = ∅ for some q ∈ Q and u ∈ PC(k), then M necessarily halts,
and we say that M rejects in this situation. Further, the letters in Γ\Σ are
called auxiliary symbols.

A configuration of M is a string αqβ, where q ∈ Q, and either α = λ
and β ∈ {¢} ·Γ∗ · {$} or α ∈ {¢} ·Γ∗ and β ∈ Γ∗ · {$}; here q ∈ Q represents
the current state, αβ is the current content of the tape, and it is understood
that the read/write window contains the first k symbols of β or all of β when
|β| ≤ k. A restarting configuration is of the form q0¢w$, where w ∈ Γ∗; if
w ∈ Σ∗, then q0¢w$ is an initial configuration. Thus, initial configurations
are a particular type of restarting configurations. Further, we use Accept to
denote the accepting configurations, which are those configurations that M
reaches by executing an Accept instruction. A configuration of the form αqβ
such that δ(q, β1) = ∅, where β1 is the current content of the read/write
window, is a rejecting configuration. A halting configuration is either an
accepting or a rejecting configuration.

In general, the automaton M is nondeterministic, that is, there can be
two or more instructions with the same left-hand side (q, u), and thus, there
can be more than one computation for an input word. If this is not the case,
the automaton is deterministic. We use the prefix det- to denote determin-
istic classes of restarting automata.

We observe that any finite computation of a two-way restarting automa-
ton M consists of certain phases. A phase, called a cycle, starts in a restart-
ing configuration, the head moves along the tape performing MVR, MVL,
and Rewrite operations until a Restart operation is performed and thus a
new restarting configuration is reached. If no further Restart operation is
performed, any finite computation necessarily finishes in a halting configu-
ration – such a phase is called a tail. We require that M performs exactly
one Rewrite operation during any cycle – thus each new phase starts on
a shorter word than the previous one. During a tail at most one Rewrite
operation may be executed. By `cM we denote the execution of a complete
cycle, and `c∗M is the reflexive and transitive closure of this relation. It can

39

be seen as the rewrite relation that is realized by M on the set of restarting
configurations.

An input w ∈ Σ∗ is accepted by M , if there exists a computation of
M which starts with the initial configuration q0¢w$, and which finally ends
with executing an Accept instruction.

In the following we restate some basic facts about computations of restart-
ing automata.

Proposition 2.5.1 (Error Preserving Property). Let M be an RLWW-
automaton, and let u, v be words over its input alphabet Σ. If q0¢u$ `c∗M q0¢v$
holds and u /∈ L(M), then v /∈ L(M), either.

Proposition 2.5.2 (Correctness Preserving Property). Let M be an RLWW-
automaton, and let u, v be words over its input alphabet Σ. If q0¢u$ `c∗M q0¢v$
is an initial segment of an accepting computation of M , then v ∈ L(M).

Each cycle of each computation of an RLWW-automaton M consists of
three phases: first M scans its tape performing MVR- and MVL-instructions,
then it executes a Rewrite step, and finally it scans its tape again performing
MVR- and MVL-steps. Hence, in the first and the last phase of each cycle M
behaves like a nondeterministic two-way finite-state acceptor (2-NFA). In an
analogy to the proof that the language accepted by a 2-NFA is regular (see
e.g. [12]), the following result can be established. Here a restarting automa-
ton is called an RRWW-automaton if it does not use any MVL-transitions.
Thus, in each cycle an RRWW-automaton can scan its tape only once from
left to right.

Theorem 2.5.1. Let ML = (QL,Σ,Γ, ¢, $, q0, k, δL) be an RLWW-automaton.
Then there exists an RRWW-automaton MR = (QR,Σ,Γ, ¢, $, q0, k, δR) such
that, for all u, v ∈ Γ∗,

q0¢u$ `cML
q0¢v$ if and only if q0¢u$ `cMR

q0¢v$,

and the languages L(ML) and L(MR) coincide.

Thus, as far as nondeterministic restarting automata are concerned, the
MVL-instruction is not needed. However, this does not hold for deterministic
restarting automata. For RRWW-automata we have the following normal-
ization result, which is easily proved by using standard techniques from
automata theory.

40

Lemma 2.5.1. Each RRWW-automaton M is equivalent to an RRWW-
automaton M ′ that satisfies the following additional restriction:

(*) M ′ makes an accept or a restart step only when it sees the right border
marker $ in its read/write window.

This lemma means that in each cycle of each computation and also during
the tail of each accepting computation the read/write window moves all the
way to the right before a restart is made, respectively, before the machine
halts and accepts.

Based on this fact each cycle (and also the tail) of a computation of
an RRWW-automaton consists of three phases. Accordingly, the transition
relation of an RRWW-automaton can be described through a sequence of
so-called meta-instructions of the form (E1, u → v, E2), where E1 and E2

are regular languages, called the regular constraints of this instruction, and
u and v are strings such that |u| > |v|. The rule u→ v stands for a Rewrite
step of the RRWW-automatonM considered. On trying to execute this meta-
instruction M will get stuck (and so reject) starting from the configuration
q0¢w$, if w does not admit a factorization of the form w = w1uw2 such that
¢w1 ∈ E1 and w2$ ∈ E2. On the other hand, if w does have a factorization
of this form, then one such factorization is chosen nondeterministically, and
q0¢w$ is transformed into q0¢w1vw2$. In order to describe the tails of ac-
cepting computations we use meta-instructions of the form (¢ ·E ·$,Accept),
where the strings from the regular language E are accepted by M in tail
computations.

Finally, we introduce some restricted types of restarting automata. A
restarting automaton is called an RWW-automaton if it makes a restart
immediately after performing a rewrite operation. In particular, this means
that it cannot perform a rewrite step during the tail of a computation.

A cycle of a computation of an RWW-automaton M consists of two
phases only. Accordingly, the transition relation of an RWW-automaton can
be described by a finite sequence of meta-instructions of the form (E, u →
v), where E is a regular language, and u and v are strings such that |u| >
|v|, and meta-instructions of the form (¢ · E · $,Accept) for describing tail
computations.

An RLWW-automaton is called an RLW-automaton if its tape alphabet Γ
coincides with its input alphabet Σ, that is, if no auxiliary symbols are avail-
able. It is an RL-automaton if it is an RLW-automaton for which the right-
hand side v of each Rewrite step (q′, v) ∈ δ(q, u) is a scattered subword of the

41

left-hand side u. Analogously, we obtain RRW- and RR-automata from the
RRWW-automaton and RW- and R-automata from the RWW-automaton,
respectively.

It can be shown that L(R) contains languages that are not growing
context-sensitive. Hence, already the R-automaton has a fairly large expres-
sive power.

We conclude this section with the notion of monotonicity for restarting
automata (introduced in [14]). Here we consider a slightly more general
notion, which is taken from [17]. Let M be an RLWW-automaton. Each
computation of M can be described by a sequence of cycles C1, C2, . . . , Cn,
where Cn is the last cycle, which is followed by the tail of the computation.
Each cycle Ci of this computation contains a unique configuration of the form
¢xquy$ such that q is a state and (q′, v) ∈ δ(q, u) is the Rewrite step that is
applied during this cycle. ByDr(Ci) we denote the right distance |uy$| of this
cycle, and Dl(Ci) is the left distance |¢x| of this cycle. The sequence of cycles
C1, C2, . . . , Cn is called monotone ifDr(C1) ≥ Dr(C2) ≥ . . . ≥ Dr(Cn) holds.
A computation of M is called monotone if the corresponding sequence of
cycles is monotone. Observe that the tail of the computation is not taken into
account here. Finally, the RLWW-automaton M is called monotone if each
of its computations that starts from an initial configuration is monotone.

Here we want to compare the expressive power of the various types of
monotone restarting automata to each other. We use the prefix mon- to
denote the classes of monotone restarting automata.

All variants of deterministic monotone restarting automata obtained
from the RRWW-automaton coincide in their expressive power:

Theorem 2.5.2. For all types X ∈ {R,RR,RW,RRW,RWW,RRWW},

L(det-mon-X) = DCFL.

However, it can be shown that DCFL ⊂ L(det-mon-RL) ⊆ L(det-mon-RLWW).
For nondeterministic restarting automata it turns out that the use of

auxiliary symbols is necessary to obtain a characterization of the class of
context-free languages.

Theorem 2.5.3. For all types X ∈ {RLWW,RRWW,RWW},

L(mon-X) = CFL.

42

Chapter 3

Clearing Restarting Automata

In this chapter, we study the class of languages recognized by clearing
restarting automata (cl-RA-automata). Before we introduce our restricted
model of restarting automata in Section 3.2, we define a more general con-
cept called context rewriting system in Section 3.1. This concept will serve
us as a framework for all restricted models studied in this thesis.

In Section 3.3 we show that all regular languages can be recognized by
clearing restarting automata with restricted left (right, respectively) con-
texts. In case of a one-letter alphabet, clearing restarting automata recognize
exactly all regular languages containing the empty word.

In Section 3.4 we present some (non-)closure properties of L(cl-RA).
We prove that L(cl-RA) is not closed under several operations (concate-
nation, intersection, intersection with a regular language, difference) and
that there exist context-free languages which cannot be recognized by any
cl-RA-automaton.

In Section 3.5 we show that the language classes recognized by k-cl-RA-
automata create an infinite proper hierarchy with respect to the length of
contexts k.

In the following Sections 3.6, 3.7, 3.8, and 3.9 we study under which
restrictions (on the length of contexts and the size of alphabet) k-cl-RA-
automata can recognize non-context-free languages.

In Section 3.6 we prove that 4-cl-RA-automata are able to recognize
a non-context-free language over a two-letter alphabet. We construct a
4-cl-RA-automaton M = (Σ, I) such that L(M)∩{(ab)n | n > 0} = {(ab)2l |
l = 0, 1, 2, . . .}. Since context-free languages are closed under intersection
with regular languages, it follows that L(M) is a non-context-free language.

43

Rather than describing the language L(M) directly, we use a special inverse
morphism of this language called circle-square representation of L(M). We
use the term circle-square representation since we map the language L(M)
into a language on alphabet {#,2}, i.e. the words of this language are com-
posed of circles and squares.

Similar circle-square representations are used also in other sections. The
main motivation behind their use is that they often give us some insight
into the structure of the language generated by the clearing restarting au-
tomaton. The language itself is often very difficult to describe directly, but
usually it contains some regularities, which are easily captured by using the
proper circle-square representation.

In Section 3.7 we prove that 1-cl-RA-automata can recognize only context-
free languages, i.e. L(1-cl-RA) ⊂ CFL. Thus if we want to recognize a non-
context-free language, then we need contexts of length at least two.

In Section 3.8 we prove that there exists a 2-cl-RA-automaton recognizing
a non-context-free language over a six-letter alphabet. In the first part we de-
scribe a general idea of sending a signal through an ether and the subsequent
recovery of the ether by using only instructions of a 2-cl-RA-automaton. You
can imagine the ether as a word with some special properties. The signal is
usually a single letter, which spreads through this ether. The propagation
of the signal disturbs the ether. Therefore, we have special instructions that
recover the disturbed ether. In the second part we look at the process of
sending a signal through the ether by using a special circle-square repre-
sentation. This representation substantially simplifies the original language
generated by the process of sending a signal and enables us to prove that
this language is a non-context-free language. In the last part we show that it
is possible to construct a 2-cl-RA-automaton on a six-letter alphabet which
simulates the aforementioned process of sending a signal.

In Section 3.9 we construct a 3-cl-RA-automaton M = (Σ, I) on a two-
letter alphabet Σ = {a, b} such that L(M) is a non-context-free language.
The idea of this automaton is based on the idea of sending a signal through
the ether. As you can see this result improves the result from Section 3.6. In
spite of this fact, we have decided to include Section 3.6, since we present
there some basic ideas, which are then reused in other subsections in a more
complex form.

Most of the material used in this chapter is taken from the extended
version of [6] accepted for publication in Fundamenta Informaticae.

44

3.1 Context Rewriting Systems

In this section we introduce a general concept called called context rewriting
system which will serve us as a framework for all restricted models studied
in this thesis.

Definition 3.1.1. Let k be a positive integer. A k-context rewriting system
(k-CRS-system for short) is a system R = (Σ,Γ, I), where Σ is an input
alphabet, Γ ⊇ Σ is a working alphabet not containing the special symbols ¢
and $, called sentinels, and I is a finite set of instructions of the form:

(x, z → t, y) ,

where x is called left context, x ∈ LCk = Γk ∪ ¢ · Γ≤k−1, y is called right
context, y ∈ RCk = Γk ∪ Γ≤k−1 · $ and z → t is called rule, z, t ∈ Γ∗.

A word w = uzv can be rewritten into utv (denoted as uzv →R utv) if
and only if there exists an instruction i = (x, z → t, y) ∈ I such that x is a
suffix of ¢ ·u and y is a prefix of v · $. We often underline the rewritten part
of the word w, and if the instruction i is known we use →(i)

R instead of →R,

i.e. uzv →(i)
R utv. The relation →R ⊆ Γ∗ × Γ∗ is called rewriting relation.

Let l ∈ ¢ ·Γ∗ ∪Γ∗, and r ∈ Γ∗ ∪Γ∗ · $. A word w = uzv can be rewritten
in the context (l, r) into utv (denoted as uzv →R utv in the context (l, r))
if and only if there exists an instruction i = (x, z → t, y) ∈ I, such that x is
a suffix of l · u and y is a prefix of v · r. Each definition that uses somehow
the rewriting relation →R can be relativized to any context (l, r). Unless told
otherwise, we will use the standard context (l, r) = (¢, $).

The production language (reduction language, respectively) associated
with R is defined as L+(R) = {w ∈ Σ∗ | λ →∗R w} (L−(R) = {w ∈ Σ∗ |
w →∗R λ}, respectively), where →∗R is the reflexive and transitive closure of
→R. Note that, by definition, λ ∈ L+(R) (λ ∈ L−(R), respectively).

The production characteristic language (reduction characteristic lan-
guage, respectively) associated with R is defined as L+

C(R) = {w ∈ Γ∗ |
λ→∗R w} (L−C(R) = {w ∈ Γ∗ | w →∗R λ}, respectively).

Obviously, for each k-CRS-system R, it holds L+(R) = L+
C(R) ∩ Σ∗

(L−(R) = L−C(R) ∩ Σ∗).

Remark 3.1.1. We extend Definition 3.1.1 with the following notation: if
X ⊆ LCk and Y ⊆ RCk are finite nonempty sets, and Z is a finite nonempty
set of rules of the form z → t, z, t ∈ Γ∗, then we define (X,Z, Y) = {(x, z →
t, y) | x ∈ X, (z → t) ∈ Z, y ∈ Y }. However, if X = {x}, then instead of

45

writing ({x}, Z, Y) we write only (x, Z, Y) for short. The same holds for the
sets Z and Y , too.

By reversing all rewriting rules of a k-CRS-system we obtain a dual sys-
tem.

Definition 3.1.2. Let R = (Σ,Γ, I) be a k-CRS-system. A dual context
rewriting system RD is a k-CRS-system RD = (Σ,Γ, ID), where ID =
{(x, t → z, y) | (x, z → t, y) ∈ I}. For an instruction i = (x, z → t, y),
we call iD = (x, t → z, y) a dual instruction to the instruction i. We also
define a dual rewriting relation to the relation →R as (→R)D =→RD .

Theorem 3.1.1 (Duality theorem). For each k-CRS-system R = (Σ,Γ, I)
and its corresponding dual system RD the following holds:

(1) (→R)D = (→R)−1,
(2) (RD)D = R,
(3) L+(R) = L−(RD),
(4) L+

C(R) = L−C(RD).

Proof. (1) Obviously, for all w,w′ ∈ Γ∗ : w(→R)Dw′ ⇔ w →RD w′ ⇔ w′ →R

w, thus (→R)D = (→R)−1.
(2) is trivial, (3) and (4) follow from (1).

Naturally, if we increase the length of contexts used in instructions of a
CRS-system, we can increase their power only.

Theorem 3.1.2 (Context extension theorem). For each k-CRS-system R =
(Σ,Γ, I) there exists a (k + 1)-CRS-system R′ = (Σ,Γ, I ′) such that, for each
w,w′ ∈ Γ∗, it holds w →R w′ ⇔ w →R′ w

′. Moreover, both R and R′ use
the same rewriting rules:

{z → t | (x, z → t, y) ∈ I} = {z′ → t′ | (x′, z′ → t′, y′) ∈ I ′} .

Proof. For each instruction i = (x, z → t, y) ∈ I let us define Ji to be
(X, z → t, Y), where:
(1) If x ∈ Γk, then X = (Γ ∪ {¢}) · x. If x ∈ ¢ · Γ≤k−1, then X = {x}.
Evidently, X ⊆ LCk+1.
(2) If y ∈ Γk, then Y = y · (Γ ∪ {$}). If y ∈ Γ≤k−1 · $, then Y = {y}.
Obviously, Y ⊆ RCk+1.

46

It is easy to see that uzv →(i) utv if and only if uzv →(j) utv for some j ∈ Ji.
This implies that if we set I ′ :=

⋃
i∈I Ji, then we get a (k + 1)-CRS-system

R′ = (Σ,Γ, I ′) which has the same rewriting relation as the k-CRS-system
R = (Σ,Γ, I) and both R and R′ use the same rewriting rules.

Remark 3.1.2. Based on the above result, in Definition 3.1.1 we can allow
contexts of any length up to k, i.e. we can use:

LC≤k = Γ≤k ∪ ¢ · Γ≤k−1 =
⋃
i≤k LCi instead of LCk and

RC≤k = Γ≤k ∪ Γ≤k−1 · $ =
⋃
i≤k RCi instead of RCk.

The following theorem corresponds to correctness and error preserving
properties of restating automata ([16]).

Theorem 3.1.3 (Correctness and error preserving theorem). Let R = (Σ,Γ, I)
be a k-CRS-system and u, v be two words from Σ∗ such that u→∗R v. Then:

(1) u ∈ L+(R)⇒ v ∈ L+(R),
(2) u /∈ L−(R)⇒ v /∈ L−(R).

Proof. Let us suppose that u, v ∈ Σ∗ and u→∗R v.
(1) u ∈ L+(R) implies λ →∗R u and thus λ →∗R u →∗R v. Hence, v is in
L+(R).
(2) v ∈ L−(R) implies v →∗R λ and thus u →∗R v →∗R λ, which implies
u ∈ L−(R).

3.2 Clearing Restarting Automata

In this thesis, we will not study k-CRS-systems in their general form, since
they are too powerful (they can represent recursively enumerable languages).
Instead, we will always put some restrictions on the rules of instructions and
then study such restricted models. The first model we study is called clearing
restarting automaton which is a k-CRS-system such that Σ = Γ and all rules
in its instructions are of the form z → λ, where z ∈ Σ+.

Definition 3.2.1. Let k be a positive integer. A k-clearing restarting au-
tomaton (k-cl-RA-automaton for short) is a system M = (Σ, I), where
M = (Σ,Σ, I) is a k-CRS-system such that for each instruction i = (x, z →
t, y) ∈ I it holds z ∈ Σ+ and t = λ. Since t is always the empty word, we
use the notation i = (x, z, y). The width of the instruction i = (x, z, y) is
|i| = |xzy|.

47

The k-cl-RA-automaton M recognizes the language L(M) = {w ∈ Σ∗ |
w `∗M λ} = L−(M), where `M is the rewriting relation →M of M .

In the following, cl-RA denotes the class of all clearing restarting au-
tomata. L(k-cl-RA) (L(cl-RA), respectively) denotes the class of all languages
accepted by k-cl-RA-automata (cl-RA-automata, respectively), L(cl-RA) =⋃∞
k=1 L(k-cl-RA). In the rest of the paper we will freely use regular expres-

sions in places where regular languages are required.
The model of clearing restarting automaton was inspired by the Associa-

tive Language Description (ALD) model from [7]. The simplicity of the cl-RA
model implies that the investigation of its properties and the proofs are not
so difficult and also the learning of languages is easy, fast and straightfor-
ward. Another important advantage of this model is that the instructions are
human readable and simpler than the meta-instructions of general restarting
automata.

It is easy to see that an instruction (x, z, y) of a k-cl-RA-automaton corre-
sponds to the rewriting meta-instruction (x′, z → λ, y′) of an RR-automaton,
where either x′ = {x′′} in the case when x = ¢ · x′′, or x′ = Σ∗ · {x} in the
case when x does not start with ¢, and either y′ = {y′′} in the case when
y = y′′ · $, or y′ = {y} · Σ∗ in the case when y does not end with $.

Example 3.2.1. In this example we present a 1-cl-RA-automaton M =
(Σ, I) that recognizes the language L = {anbn | n ≥ 0}. Let Σ = {a, b} and
I be the following set of instructions:

(1) (a, ab, b),
(2) (¢, ab, $).

In the following α `(i)
M β means that we get α `M β by applying in-

struction (i). Moreover, we underline the “cleared” part of the word α. For
example:

aaaabbbb `(1)
M aaabbb `(1)

M aabb `(1)
M ab `(2)

M λ.

It means that aaaabbbb `∗M λ, so the word aaaabbbb is accepted by M . It is
easy to see that L(M) = L.

The corresponding restarting automaton N = (Σ,Γ, J), recognizing the
same language as M , has Γ = Σ = {a, b} and the following set of meta-
instructions J :

(1) (Σ∗ · {a}, ab→ λ, {b} · Σ∗),
(2) ({λ}, ab→ λ, {λ}),
(3) ({λ},Accept).

48

In the following α `(i)c
N β means that α `cN β by applying the meta-instruction

(i). For example, the word aaaabbbb is recognized by N using the following
sequence of reductions:

aaaabbbb `(1)c
N aaabbb `(1)c

N aabb `(1)c
N ab `(2)c

N λ.

The computation ends by the word λ, which is accepted by the accepting
meta-instruction (3).

The construction used in Example 3.2.1 can be generalized into a con-
struction which, for any given cl-RA-automaton M , constructs an equivalent
RR-automaton N recognizing the same language as M . Hence, we have the
following theorem.

Theorem 3.2.1. L(cl-RA) ⊆ L(RR).

As we will see later, the above inclusion is proper. Since cl-RA-automata
can be considered as a subclass of RR-automata, they inherit also some of
their basic properties. In particular, the automata are error preserving which
is formally stated in the following theorem.

Theorem 3.2.2 (Error preserving property [16]). Let M = (Σ, I) be a
cl-RA-automaton and u, v be two words from Σ∗. If u `∗M v and u /∈ L(M),
then v /∈ L(M).

This theorem is also a consequence of Theorem 3.1.3, since L(M) =
L−(M).

Remark 3.2.1. By definition, each cl-RA-automaton accepts λ. If we say
that a cl-RA-automaton M recognizes (or accepts) a language L we always
mean that L(M) = L ∪ {λ}.

This implicit acceptance of the empty word can be avoided by a slight
modification of the definition of clearing restarting automata, or even context
rewriting system, but in principle, we would not get a more powerful model.

Remark 3.2.2. As we have seen, the language recognized by a k-cl-RA-
automaton M = (Σ, I) is defined as the reduction language of M , i.e.
L(M) = L−(M). Also note that L+(M) = {λ}. Now suppose that N = MD

is a dual k-CRS-system to the k-CRS-system M . N is no longer a clearing
restarting automaton, because it contains instructions of the form (x, λ →
z, y), where z ∈ Σ+. But according to the Duality Theorem (Theorem 3.1.1),
L(M) = L−(M) = L+(MD) = L+(N). This reasoning suggests that we can
look at clearing restarting automata from two points of view:

49

1. We can consider a cl-RA-automaton M = (Σ, I) to be an automaton
that recognizes the language L(M) by using reductions, i.e. L(M) =
{w ∈ Σ∗ | w `∗M λ}, where `M is the rewriting relation of M , called
reduction!relation.

2. We can consider a cl-RA-automaton M = (Σ, I) to be a generative de-
vice generating the language L(M) by using productions, i.e. L(M) =
{w ∈ Σ∗ | λ a∗M w}, where aM = (`M)−1 is the rewriting relation of
N = MD, called production relation.

3.3 Clearing restarting automata and regu-

lar languages

In contrast to associative language description ([7]), clearing restarting au-
tomata can recognize all regular languages. We show that clearing restart-
ing automata using only instructions with left contexts starting with the
left sentinel ¢ recognize exactly the class of regular languages. Further, if
we restrict the alphabet used by a cl-RA-automaton to a single letter, the
respective automata recognize regular languages over one-letter alphabet
only.

Theorem 3.3.1. All regular languages can be recognized by clearing restart-
ing automata using only instructions with left contexts starting with ¢. Hence,
for each regular language L, there exists a cl-RA-automaton M such that
L(M) = L ∪ {λ}.

Proof. The proof is almost identical to the proof of Proposition 3.4 of
[18], which states that each regular language is accepted by a stateless R-
automaton.

Next, we show that the converse also holds if each instruction of the
given cl-RA-automaton is either prefix-rewriting or suffix-rewriting. Rewrit-
ing rules, which can rewrite only prefix (suffix, respectively) of tape content,
are called prefix-rewriting (suffix-rewriting, respectively). A rule (x, z, y) of
a k-cl-RA-automaton such that x has prefix ¢ can rewrite only the prefix
of a tape content, so it is prefix-rewriting. Similarly, each rule (x, z, y) of a
k-cl-RA-automaton such that y has suffix $ is suffix-rewriting. String rewrit-
ing systems having prefix- and suffix-rewriting rules only are called finite
combined prefix- and suffix-rewriting systems [11].

50

Theorem 3.3.2. Let M = (Σ, I) be a k-cl-RA-automaton such that for each
(x, z, y) ∈ I: ¢ is a prefix of x or $ is a suffix of y. Then L(M) is a regular
language.

Proof. The rewriting relation of MD satisfying the conditions of the theo-
rem is a finite combined prefix- and suffix rewriting system. Thus, L(M) =
L+(MD) = {w ∈ Σ∗ | λ a∗M w} is generated from the regular language
{λ} using a finite combined prefix- and suffix-rewriting system. Hofbauer
and Waldman in [11] have shown that finite combined prefix- and suffix-
rewriting systems preserve regularity. From this it follows immediately that
L(M) is a regular language.

As we have already seen in Example 3.2.1, if we allow instructions with
left context not starting with ¢ and right context not ending with $, then
clearing restarting automata can recognize also languages which are not
regular.

Also cl-RA-automata with a one-letter alphabet without any restrictions
on contexts cannot recognize more than regular languages over a one-letter
alphabet.

Lemma 3.3.1. For each cl-RA-automaton M = (Σ, I), where Σ = {a},
L(M) is a regular language.

Proof. If we replace every instruction i = (ax, az, ay) in I by the instruction
i′ = (¢ · ax, az, ay) we get an equivalent cl-RA-automaton M ′ = (Σ, I ′) such
that L(M ′) = L(M) and u `M v if and only if u `M ′ v. Since for each
instruction i′ = (x′, z′, y′) in I ′ the left context x′ starts with ¢, L(M) =
L(M ′) is a regular language according to Theorem 3.3.2.

On the other hand by Theorem 3.3.1, for each regular language L there
exists a cl-RAM such that L(M) = L∪{λ}. Since over a one-letter alphabet
the class of regular languages equals to the class of context-free languages,
we get the following corollary:

Corollary 3.3.1. If we restrict ourselves to a one-letter alphabet, clearing
restarting automata recognize exactly all context-free languages containing
the empty word.

51

3.4 (Non-)closure properties of L(cl-RA)

In this section, we present several results showing that the class of languages
recognized by cl-RA-automata does not contain all context-free languages
and is not closed under several operations.

Theorem 3.4.1. The language L1 = {ancbn | n ≥ 0}∪{λ} is not recognized
by any cl-RA-automaton.

Proof. For a contradiction, let us suppose that there exists a k-cl-RA-automaton
M = (Σ, I) such that L(M) = L1. Let m be the maximal width of instruc-
tions of M . Obviously, amcbm ∈ L implies amcbm `∗M λ and the word amcbm

cannot be reduced to λ in a single step. On the other hand, if we erase any
single nonempty continuous proper subword from the word amcbm, then we
get a word that does not belong to L1 – a contradiction to L(M) = L1.

The language L1 can be recognized by a simple RR-automaton. Conse-
quently, using Theorem 3.2.1 and the fact that L1 is a context-free language
we get the following:

Corollary 3.4.1.

a) L(cl-RA) ⊂ L(RR).

b) CFL− L(cl-RA) 6= ∅.

Let L2 = {anbn | n ≥ 0} and L3 = {anb2n | n ≥ 0} be two sample
languages. It is easy to see, that both L2 and L3 are recognized by some
1-cl-RA-automata.

Theorem 3.4.2. The languages L2 ∪ L3 and L2 · L3 are not recognized by
any cl-RA-automaton.

Proof. For a contradiction, let us suppose that there exists a k-cl-RA-automaton
M = (Σ, I) such that L(M) = L2 ∪ L3 (L(M) = L2 · L3, respectively). Let
m > 0 be the maximal width of instructions of M . Obviously, a4mb4m ∈
L(M) and a4mb4m `∗M λ. Let a4mb4m `(i)

M a4m−sb4m−t be the first step
of an accepting computation of M on a4mb4m, where s, t ≥ 0, s + t > 0
and i = (x, z, y) ∈ I. Because |i| = |xzy| ≤ m, |x|, |y|, |z| ≥ 1 and
a4m−sb4m−t ∈ L(M), it follows that s = t, 0 < 2s < m and z = asbs.

Then a4m+sb8m+s `(i)
M= a4mb8m ∈ L(M) and we obtain a contradiction to

the error preserving property since a4m+sb8m+s is not in L2 ∪ L3 (not in
L2 · L3, respectively).

52

Corollary 3.4.2. L(cl-RA) is neither closed under union nor under con-
catenation.

Corollary 3.4.3. L(cl-RA) is not closed under morphism.

Proof. Consider L = {anbncmd2m | n,m ≥ 0} recognized by 1-cl-RA-automaton
and the morphism h : a 7→ a, b 7→ b, c 7→ a, d 7→ b. Then h(L) = L2 · L3 6∈
L(cl-RA).

It is easy to see that each of the following languages:

L4 = {ancbn | n ≥ 0} ∪ {anbn | n ≥ 0} and

L5 = {ancbm | n,m ≥ 0} ∪ {λ}

can be recognized by a 1-cl-RA-automaton. Using these languages we can
show several additional non-closure properties of L(cl-RA).

Corollary 3.4.4. L(cl-RA) is not closed under

a) intersection,

b) intersection with a regular language,

c) set difference.

Proof. Part a) follows from the equality L1 = L4 ∩ L5 and Theorem 3.4.1.
For proving b) just notice that L5 is a regular language. Proof of c) is implied
by the equality L1 = (L4 − L2) ∪ {λ}.

Example 3.4.1. The Dyck language of correct parentheses can be recognized
by a cl-RA-automaton with a single instruction: (λ, (), λ). With respect to
the definition of the 1-cl-RA-automaton this instruction is in fact a set of
instructions: ({¢} ∪ Σ, (),Σ ∪ {$}), where Σ = {(,)}.

3.5 A hierarchy with respect to the length of

contexts

As we have seen in Theorem 3.1.2, by increasing the length of contexts
used in instructions, k-CRS-systems could only increase their power. In this
section we show that by increasing the length of contexts in instructions
of clearing restarting automata we strictly increase their power. Hence, we
obtain the following infinite hierarchy of language classes.

53

Theorem 3.5.1. L(k-cl-RA) ⊂ L((k + 1)-cl-RA), for all k ≥ 1.

Proof. First, we show that by increasing the length of contexts for a cl-RA-
automaton we do not decrease its power. If M = (Σ, I) is a k-cl-RA-
automaton, then by Theorem 3.1.2 there exists a (k + 1)-CRS-system M ′ =
(Σ,Σ, I ′) such that for each w,w′ ∈ Σ∗ :

w →M w′ ⇔ w →M ′ w
′

and both I and I ′ have the same set of rules. Thus M ′ is a (k + 1)-cl-RA-
automaton and L(M) = L−(M) = L−(M ′) = L(M ′).

Next we show that by increasing the length of contexts of cl-RA-automata
we do increase their power. For each k ≥ 1 and the language L

(k)
1 =

{(ckack)n(ckbck)n | n ≥ 0} the following holds:

L
(k)
1 ∈ L((k + 1)-cl-RA)− L(k-cl-RA) .

It is easy to see that L
(k)
1 is recognized by the following (k + 1)-cl-RA-

automaton M
(k+1)
1 = ({a, b, c}, I(k+1)

1) with instructions:

(1) (ack, ckackckbck, ckb),
(2) (¢, ckackckbck, $).

Assume to the contrary that there is a k-cl-RA-automaton M = ({a, b, c}, I)

recognizing the language L
(k)
1 . Let m be the maximal width of an instruc-

tion in I. The word w = (ckack)m(ckbck)m is accepted by M . Let us in-

spect the first reduction of an accepting computation for w: w `(i)
M w′.

Then in the instruction i = (x, z, y) used in this reduction the deleted
part z must be of the form crack(ckack)n(ckbck)nckbcs for some n, 0 ≤ n <
m
6

, r, s ≥ 0, r + s = 2k. The left context x must contain at least one
symbol a, otherwise the instruction i could be applied to the word w′′ =
(ckack)m(ckbck)(ckack)n+1(ckbck)n+1(ckbck)m−1 /∈ L

(k)
1 and we would obtain

w′′ `(i)
M w ∈ L

(k)
1 , which contradicts the error preserving property (Theo-

rem 3.2.2). Similarly, the right context y must contain at least one symbol
b. Then obviously |xzy| ≥ 2k + 2 + |z| and |x| = |y| ≥ k + 1, which is a
contradiction.

54

3.6 4-cl-RA-automata recognizing non-context-

free language

We have seen that cl-RA-automata can recognize some context-free lan-
guages. In the following we show that they can even recognize some non-
context-free languages. However, since L(cl-RA) ⊂ L(RR) and RR-automata
can be simulated by linear bounded automata ([16]), we have the following:

Corollary 3.6.1. L(cl-RA) ⊂ CSL, where CSL denotes the class of context-
sensitive languages.

In order to construct a cl-RA-automaton recognizing a non-context-free
language we first describe a scheme for designing machine learning algo-
rithms for cl-RA-automata. Subsequently we apply this scheme for inferring
the desired 4-cl-RA-automaton.

Knowing some reductions that can be made by an unknown clearing
restarting automaton M , we can often infer the instructions of the k-cl-RA-
automaton M . Let w1 `M w′1, . . . , wn `M w′n, where wi, w

′
i ∈ Σ∗ for i =

1, . . . , n, n > 0, be a list of known reductions. A meta-algorithm for ma-
chine learning of unknown clearing restarting automaton can be outlined as
follows:

Meta-Algorithm 3.6.1. Learning a clearing restarting automaton from a
set of sample reductions:

Step 1 k := 1 .

Step 2 For each reduction wi `M w′i nondeterministically choose
a factorization of wi such that wi = αiβiγi and w′i = αiγi.

Step 3 Construct the clearing restarting automaton M = (Σ, I),
where

I =
n⋃
i=1

{(Suff k(¢αi), βi,Pref k(γi$))}.

Step 4 Test the automaton M using any available information,
e.g. some negative samples of words not belonging to L(M).

Step 5 If the automaton passed all the tests, return M other-
wise try another factorization of the known reductions and
continue by Step 3. If all possible factorizations have been
tried, then increase k and continue by Step 2.

55

Although Step 2 is nondeterministic, for many sample reductions the
factorization in this step is unambiguous. E.g. for the set of sample re-
ductions {aabb `M ab, ab `M λ} we obtain for k = 1 only one set of
instructions I = {(a, ab, b), (¢, ab, $)}, which is exactly the set of instruc-
tions of the automaton M from Example 3.2.1 recognizing the language
L = {anbn | n ≥ 0}.

Even if the algorithm is very simple, it can be used to infer non-trivial
clearing restarting automata.

In [14] there was presented a very restricted restarting automaton (de-
terministic restarting automaton which can delete only) that recognizes a
non-context-free language. It is possible to construct a cl-RA-automaton
recognizing the same language using Meta-Algorithm 3.6.1 on reductions
collected from a sample computation.

Theorem 3.6.1. There exists a k-cl-RA-automaton M recognizing a lan-
guage that is not context-free.

Idea of the proof: We will construct a k-cl-RA-automaton M = (Σ, I),
where Σ = {a, b}, such that L(M)∩{(ab)n | n > 0} = {(ab)2l | l ≥ 0}. Since
context-free languages are closed under intersection with regular languages,
it follows that L(M) is a non-context-free language.

The respective automaton from [14] accepts the word (ab)8 by the fol-
lowing sequence of reductions:

abababababababab `M abababababababb `M abababababbabb `M
abababbabbabb `M abbabbabbabb `M abbabbabbab `M
abbabbabab `M abbababab `M abababab `M
abababb `M abbabb `M abbab `M
abab `M abb `M ab `M λ accept.

From this sample computation, we can collect 15 reductions and use them
as an input to an algorithm based on Meta-Algorithm 3.6.1. All these reduc-
tions have unambiguous factorizations (the deleted symbols are underlined).
Hence, the only variable we have to choose is k – the length of the context
of the instructions. In the following, we use the abbreviation for sets of
instructions introduced in Remark 3.1.1.

1. For k = 1 we get the following 3 instructions:
(b, a, b), (a, b, b), (¢, ab, $).

56

Then, however, the automaton would accept the word ababab, which
does not belong to L: ababab ` ababb ` abbb ` abb ` ab ` λ.

2. For k = 2 we get the following set of instructions:
(ab, a, {b$, ba}), ({¢a, ba}, b, {b$, ba}), (¢, ab, $).
Then, however, the automaton would accept the word ababab that does
not belong to L: ababab ` ababb ` abab ` abb ` ab ` λ.

3. For k = 3 we get the following set of instructions:
({¢ab, bab}, a, {b$, bab}), ({¢a, bba}, b, {b$, bab}), (¢, ab, $).
But then again the automaton would accept the word ababab, which
does not belong to L: ababab ` abbab ` abab ` abb ` ab ` λ.

4. For k = 4 we get the following set of instructions:
({¢ab, abab}, a, {b$, babb}), ({¢a, abba}, b, {b$, bab$, baba}), (¢, ab, $).
Let us show that this automaton has the required properties.

Let us denote the instructions I of our 4-cl-RA M = (Σ, I) in the follow-
ing way:

a1 = (¢ab, a, b$), b3 = (¢a, b, baba),
a2 = (¢ab, a, babb), b4 = (abba, b, b$),
a3 = (abab, a, b$), b5 = (abba, b, bab$),
a4 = (abab, a, babb), b6 = (abba, b, baba),
b1 = (¢a, b, b$), c0 = (¢, ab, $).
b2 = (¢a, b, bab$),

In the rest of this section we prove that L(M) is not a context-free language.
We use the generative approach described in Remark 3.2.2. The correspond-
ing set of dual instructions ID can be outlined as (the little vertical arrows
in the left-hand sides of these productions mark the positions where some
symbols are inserted):

A1 : ¢ab↓b$ aM ¢abab$, B3 : ¢a↓baba aM ¢abbaba,
A2 : ¢ab↓babb aM ¢abababb, B4 : abba↓b$ aM abbabb$,
A3 : abab↓b$ aM ababab$, B5 : abba↓bab$ aM abbabbab$,
A4 : abab↓babb aM ababababb, B6 : abba↓baba aM abbabbaba,
B1 : ¢a↓b$ aM ¢abb$, C0 : ¢↓$ aM ¢ab$.
B2 : ¢a↓bab$ aM ¢abbab$,

57

Now observe that each word generated by M is of the form:

w = (ab)x0(abb)y0 . . . (ab)xn(abb)yn

where n ≥ 0, x0 ≥ 0, y0 > 0, x1 > 0, y1 > 0, . . . , xn > 0, yn ≥ 0. In
the case n = 0 we mean for x0 and y0 only the inequalities x0 ≥ 0, y0 ≥ 0.
This is because each production preserves this form. This form allows us to
define the so-called circle-square representation of w as #x02y0 . . .#xn2yn

where each circle # represents ab and each square 2 represents abb. If we
rewrite the productions of M in this circle-square representation, we get:

A′1 : ¢2$ aM ¢##$, B′3 : ¢##? aM ¢2#?,
A′2 : ¢22 aM ¢##2, B′4 : 2#$ aM 22$,
A′3 : #2$ aM ###$, B′5 : 2##$ aM 22#$,
A′4 : #22 aM ###2, B′6 : 2##? aM 22#?,
B′1 : ¢#$ aM ¢2$, C ′0 : ¢↓$ aM ¢#$,
B′2 : ¢##$ aM ¢2#$,

where the symbol ? represents either the symbol #, or the symbol 2.

Lemma 3.6.1. Consider a 1-CRS-system R = (Θ,Θ, J), where Θ = {#,2},
with instructions:

(0) (¢, λ→ #, $),
(1) ({¢,2},#→ 2, {#, $}), and
(2) ({¢,#},2→ ##, {2, $}).

Then for each instruction i ∈ ID: i can be applied to the word

w = (ab)x0(abb)y0 . . . (ab)xn(abb)yn

if and only if there exists j ∈ J which can be applied in the same way to the
word

#x02y0 . . .#xn2yn .

Thus the circle-square representation of the language L(M) is equal to L+(R).

Proof. There is one-to-one correspondence between the productions A1, A2,
A3, A4, B1, B4, C0 from ID and instructions A′1, A′2, A′3, A′4, B′1, B′4, C ′0
from J . Now observe that the productions B2 and B3 correspond to the
instruction (¢,# → 2,#) of R, and similarly the productions B5 and B6

correspond to the instruction (2,#→ 2,#) of R.

58

The following theorem characterizes the languages recognized by a slightly
generalized version of the 1-CRS-system from the previous lemma. Moreover,
we will use this theorem also in another section in a different situation.

Theorem 3.6.2. Consider a 1-CRS-system R = (Θ,Θ, J), where Θ =
{#,2}, with instructions:

(0) (¢, λ→ #m, $),
(1) ({¢,2},#→ 2α, {#, $}),
(2) ({¢,#},2→ #β, {2, $}),

where m,α, β ≥ 1 are integer constants. Then each w ∈ L+(R) is of the
form:

w = #x02y0#x12y1 . . .#xk2yk ,

where:

k ≥ 0, x0 ≥ 0, y0 > 0, x1 > 0, y1 > 0, . . . , xk > 0, yk ≥ 0,
α0β0x0 + α0β1y0 + α1β1x1 + α1β2y1 + . . .+ αkβkxk + αkβk+1yk = (αβ)lm

(∗)

for some l ≥ 1. We call this sum the overall sum of the word w. Note that
in the case k = 0 we mean for x0 and y0 only the inequalities x0 ≥ 0, y0 ≥ 0.

Proof. (By induction on the number of used instructions)
The word #m evidently satisfies all conditions of the theorem, i.e. k = 0,

x0 = m, y0 = 0, and α0β0x0 + α0β1y0 = (αβ)0m.
Suppose that we have w of the form w = #x02y0#x12y1 . . .#xk2yk satis-

fying all conditions (∗) of the theorem. Depending on the last used instruc-
tion, there are several cases we have to consider:

1. (¢,#→ 2α, $): can be applied only to the word w = #, i.e. m = 1. We
get w′ = 2α satisfying all conditions (∗), i.e. k = 0, x0 = 0, y0 = α,
and α0β0x0 + α0β1y0 = αβ = (αβ)m.

2. (¢,# → 2α,#): can be applied to w = ##x0−12y0#x12y1 . . .#xk2yk ,
where x0 ≥ 2. We get:

w′ = 2α#x0−12y0#x12y1 . . .#xk2yk = #x′02y′0#x′12y′1 . . .#x′k+12y′k+1 ,

where x′0 = 0, y′0 = α, x′1 = x0 − 1, y′1 = y0, and x′i+1 = xi, y
′
i+1 = yi

for all i ∈ {1, 2, . . . , k}. Thus
α0β0x′0+α0β1y′0+α1β1x′1+α1β2y′1+. . . αk+1βk+1x′k+1+αk+1βk+2y′k+1 =
α0β0×0 +α0β1×α−α1β1×1 +α1β1(α0β0x0 +α0β1y0 + . . . αkβkxk +
αkβk+1yk) = (αβ)× (αβ)lm = (αβ)l+1m.

59

3. (2,#→ 2α, $): can be applied to w = #x02y0 . . .#xk−12yk−1#, where
k ≥ 1, yk−1 ≥ 1, xk = 1, yk = 0. We get:

w′ = #x02y0 . . .#xk−12yk−12α = #x′02y′0 . . .#x′k−12y′k−1 ,

where x′i = xi, y
′
i = yi for all i ∈ {0, 1, . . . , k − 2}, and x′k−1 = xk−1,

y′k−1 = yk−1 + α. Thus
α0β0x′0+α0β1y′0+α1β1x′1+α1β2y′1+. . .+αk−1βk−1x′k−1+αk−1βky′k−1 =
α0β0x0+α0β1y0+α1β1x1+α1β2y1+. . .+αk−1βk−1xk−1+αk−1βk(yk−1+
α) = α0β0x0 + α0β1y0 + . . .+ αk−1βk−1xk−1 + αk−1βkyk−1 + αkβkxk +
αkβk+1yk = (αβ)lm.

4. (2,#→ 2α,#): can be applied to a subword u = 2## of the word w.
We get a new subword u′ = 22α# and the corresponding w′. The over-
all sum does not change, since each 2 in both subwords contributes to
this sum with the weight αiβi+1 for some i ≥ 0 and each # contributes
to this sum with the weight αi+1βi+1. Thus w′ satisfies all conditions
(∗) of the theorem.

5. (¢,2 → #β, $): can be applied only to the word w = 2 = #x02y0 ,
where k = 0, x0 = 0, y0 = 1. We get w′ = #β = #x′02y′0 , where x′0 = β,
y′0 = 0, and the overall sum α0β0x′0 + α0β1y′0 = β = α0β0x0 + α0β1y0

remains unchanged.

6. (¢,2 → #β,2): can be applied to w = 22y0−1#x12y1 . . .#xk2yk ,
where x0 = 0 and y0 ≥ 2. We get:

w′ = #β2y0−1#x12y1 . . .#xk2yk = #x′02y′0#x′12y′1 . . .#x′k2y′k ,

where x′0 = β, y′0 = y0−1, and x′i = xi, y
′
i = yi for all i ∈ {1, 2, . . . , k}.

Thus
α0β0x′0 +α0β1y′0 +α1β1x′1 +α1β2y′1 +αkβkx′k +αkβk+1y′k = α0β0×β+
α0β1(y0 − 1) + α1β1x1 + α1β2y1 + . . . αkβkxk + αkβk+1yk = (αβ)lm.

7. (#,2→ #β, $): can be applied to w = #x02y0#x12y1 . . .#xk2, where
xk ≥ 1, yk = 1. We get

w′ = #x02y0#x12y1 . . .#xk#β = #x′02y′0#x12y1 . . .#x′k2y′k ,

where x′i = xi, y
′
i = yi for all i ∈ {0, 1, . . . , k − 1}, x′k = xk + β, and

y′k = 0. Thus

60

α0β0x′0+α0β1y′0+. . . αk−1βk−1x′k−1+αk−1βky′k−1+αkβkx′k+α
kβk+1y′k =

α0β0x0 + α0β1y0 + . . . αk−1βk−1xk−1 + αk−1βkyk−1 + αkβk(xk + β) =
(αβ)lm.

8. (#,2 → #β,2): can be applied to a subword u = #22 of the word
w. We get a new subword u′ = ##β2 and the corresponding w′. The
overall sum does not change, since each # in both subwords contributes
to this sum with the weight αiβi for some i ≥ 0 and each 2 contributes
to this sum with the weight αiβi+1. Thus w′ satisfies all conditions (∗)
of the theorem.

Theorem 3.6.3. Let R be a 1-CRS-system from Theorem 3.6.2. Then

L+(R) ∩ {#}+ = {#x | x = (αβ)lm, l = 0, 1, 2, . . .}.

Proof. If #x ∈ L+(R), then by Theorem 3.6.2 necessarily x = (αβ)lm for
some l ≥ 0. On the other hand by using the instructions of R we can easily
generate any such word #x, where x = (αβ)lm. For instance, consider the
following derivation:
#m = ##m−1 →R 2α##m−2 →R 2α2α##m−3 →∗R 2α(m−1)#→R 2αm =
22αm−1 →R #β22αm−2 →R #β#β22αm−3 →∗R #β(αm−1)2→R #(αβ)m.
Thus #m →∗R #(αβ)m, which immediately implies that #m →∗R #(αβ)lm for
any l ≥ 0.

If we apply Theorem 3.6.3 to the circle-square representation of L(M),
i.e. m = 1, α = 1, and β = 2, we get the following result:

Theorem 3.6.4. L(M) ∩ {(ab)n | n > 0} = {(ab)2l | l = 0, 1, 2, . . .}.
As context-free languages are closed under intersection with regular lan-

guages, L(M) is not a context-free language.

3.7 1-cl-RA-automata

Let M = (Σ, I) be a cl-RA-automaton, l ∈ ¢ · Σ∗ ∪ Σ∗, and r ∈ Σ∗ ∪ Σ∗ · $.
Let us denote L(l,r)(M) = {w ∈ Σ∗ | w `∗M λ in the context (l, r)}, i.e.
L(l,r)(M) is the reduction language L−(M) in the context (l, r) (Definition
3.1.1). Obviously, L(M) = L

(¢,$)
(M). If the cl-RA-automaton M is known

from the context, then we use the abbreviation L(l,r) = L(l,r)(M).

61

Example 3.7.1. Suppose that we have 1-cl-RA-automaton M = (Σ, I),
where Σ = {a, b} and the instructions are I = {(¢, ab, $), (a, ab, b)}. Of
course, we have

L
(¢,$)

(M) = {λ} ∪ a · L(a,b)(M) · b and

L(a,b)(M) = {λ} ∪ a · L(a,b)(M) · b.
We can rewrite these language equations into the context-free grammar G =
(VN , VT , S, P) with VN = {S,X}, VT = Σ, and the following set of produc-
tion rules:

S → λ | aXb,
X → λ | aXb.

We can generalize this technique to any 1-cl-RA-automaton.

Lemma 3.7.1. Suppose that we have 1-cl-RA-automaton M = (Σ, I). Then
for each l ∈ LC1 = {¢} ∪ Σ, and r ∈ RC1 = Σ ∪ {$}:

L(l,r) = {λ}∪
⋃

(l,u1...un,r)∈I

L(l,u1) ·u1 ·L(u1,u2) ·u2 . . . un−1 ·L(un−1,un) ·un ·L(un,r) .

Proof. Let R denote the right-hand side of this equation. Suppose w ∈
L(l,r). If w = λ, then w ∈ R. If w 6= λ, then w `∗M w0 `M λ in the
context (l, r). Suppose w0 = u1 . . . un. Then, clearly, (l, u1 . . . un, r) ∈ I and
w = z0u1z1u2z2 . . . unzn for some z0, . . . , zn ∈ Σ∗ such that z0 `∗M λ in the
context (l, u1), z1 `∗M λ in the context (u1, u2), etc., zn `∗M λ in the context
(un, r). This is equivalent to z0 ∈ L(l,u1), z1 ∈ L(u1,u2), . . . , zn ∈ L(un,r). Thus
w is in R.

Suppose w ∈ R. If w = λ, then w ∈ L(l,r). Otherwise suppose w =
z0u1z1u2z2 . . . unzn for some (l, u1 . . . un, r) ∈ I and z0, . . . , zn ∈ Σ∗ such that
z0 ∈ L(l,u1), z1 ∈ L(u1,u2),. . . , zn ∈ L(un,r). Obviously, w = z0u1z1u2z2 . . . unzn `∗M
u1z1u2z2 . . . unzn `∗M u1u2z2 . . . unzn `∗M . . . `∗M u1u2 . . . unzn `∗M u1u2 . . . un `M
λ in the context (l, r) and hence w ∈ L(l,r).

Since we can easily rewrite the language equations from Lemma 3.7.1
into production rules of a context-free grammar with the initial nonterminal
corresponding to L

(¢,$)
, we get together with Theorem 3.4.1 the following

corollary:

Corollary 3.7.1. L(1-cl-RA) ⊂ CFL .

62

3.8 2-cl-RA-automata recognizing non-context-

free language

In the following, we use the generative approach for clearing restarting au-
tomata as it was described in Remark 3.2.2. We restrict ourselves to 2-cl-RA-
automata only.

Definition 3.8.1. Let Λ be a finite nonempty set of so-called basic symbols.
We define a set of so-called wave symbols as wave(Λ) = {uv∼| u, v ∈ Λ}. Let
Σ = Λ ∪ wave(Λ).

We say that a couple (x, y) ∈ Σ × Σ satisfies the ether property if and
only if the couple (x, y) is one of the following types:

(1) (
uv∼, vw∼) for some u, v, w ∈ Λ,

(2) (
uv∼, v) for some u, v ∈ Λ, or

(3) (u,
uv∼) for some u, v ∈ Λ.

For each wave symbol x =
uv∼ let us define left(x) = u, right(x) = v. For

x ∈ Λ let us define left(x) = right(x) = x. Hence, a couple (x, y) ∈ Σ× Σ
satisfies the ether property if and only if right(x) = left(y) and at least one
of the symbols x, y is a wave symbol.

We say that a word w = x1x2 . . . xn ∈ Σ∗ satisfies the ether property
if and only if all couples (x1, x2), (x2, x3), ..., (xn−1, xn) satisfy the ether
property. We also say that the word w is an ether and for clarity we often

mark this property by a line above the ether, e.g. a
ab∼ bc∼ a

ab∼ b
bc∼ c a.

First, we will informally describe the motivation behind Definition 3.8.1.
Suppose that we have two special symbols X, Y ∈ Λ – a so-called membranes
– connected by an ether, i.e. a word satisfying the ether property, for instance

X
Xe∼ ee∼ eY∼ Y . We want to send some signal from X to Y through the ether.

For technical reasons, the signal is represented by two special basic symbols
a, ã ∈ Λ. After sending a signal, we want to recover the ether between X
and Y in order to be able to send another signal. Our goal is to simulate this
process by using a 2-cl-RA-automaton M . The choice of the term membrane
for the symbols X and Y is motivated by the fact that a membrane usually
serves as a separator of two spaces. In our case the membranes X and Y are
on the border of the space filled by the ether, but in general we can have
more membranes such that each two consecutive membranes are connected
by different ethers.

63

We can schematically describe the process of spreading a signal from left
to right in the ether as:

σxyz aM σxσ′yz ,

where σ, σ′ ∈ {a, ã}. We call this step a jump of the signal σ from left to
right. The jump can occur only if the couple (σ, x) does not satisfy the ether
property and both couples (x, y) and (y, z) do satisfy the ether property. We
have to choose σ′ in such a way that neither (x, σ′), nor (σ′, y) satisfy the
ether property. It is easy to see that we can always choose such σ′ ∈ {a, ã}.
If right(x) = left(y) = a, then choose σ′ = ã. Otherwise, if right(x) =
left(y) 6= a, then choose σ′ = a.

Now observe that we can simulate the jump of the signal σ from left to
right by the instruction:

(σx, σ′, yz) ,

which is a legal instruction of a 2-cl-RA-automaton.

Example 3.8.1. In this example we demonstrate the process of sending a
signal from X to Y :

(1) X
Xe∼ ee∼ eY∼ Y aM

(2) X a
Xe∼ ee∼ eY∼ Y aM

(3) X a
Xe∼ a

ee∼ eY∼ Y aM
(4) X a

Xe∼ a
ee∼ a

eY∼ Y aM
(5) X a

Xe∼ a
ee∼ a

eY∼ a Y .

Note that in the first step (1)→ (2) the symbol X initiated sending a signal
a to Y . On the other hand, in the last step (4)→ (5) the symbol Y received
the signal a from X. Only in the steps (2)→ (3) and (3)→ (4) we used the
jump operation. Now we have to recover the ether between X and Y to be
able to send another signal.

We can schematically describe the process of recovering an ether from
left to right as:

xyzd aM xy
uv∼ zd,

where u = right(y) and v = left(z). We call this step a recovery of the ether
from left to right. The recovery can occur only if the couple (x, y) satisfies
the ether property and neither (y, z), nor (z, d) satisfy the ether property.

64

Once again, observe that we can simulate the recovery of the ether from
left to right by the instruction:

(xy,
uv∼, zd),

which is a legal instruction of a 2-cl-RA-automaton.

Example 3.8.2. In this example, we demonstrate the process of recovering
the ether from X to Y . We continue from the previous Example 3.8.1.

(5) X a
Xe∼ a

ee∼ a
eY∼ a Y aM

(6) X
Xa∼ a

Xe∼ a
ee∼ a

eY∼ a Y aM
(7) X

Xa∼ a
aX∼ Xe∼ a

ee∼ a
eY∼ a Y aM

(8) X
Xa∼ a

aX∼ Xe∼ ea∼ a
ee∼ a

eY∼ a Y aM
(9) X

Xa∼ a
aX∼ Xe∼ ea∼ a

ae∼ ee∼ a
eY∼ a Y aM

(10) X
Xa∼ a

aX∼ Xe∼ ea∼ a
ae∼ ee∼ ea∼ a

eY∼ a Y aM
(11) X

Xa∼ a
aX∼ Xe∼ ea∼ a

ae∼ ee∼ ea∼ a
ae∼ eY∼ a Y aM

(12) X
Xa∼ a

aX∼ Xe∼ ea∼ a
ae∼ ee∼ ea∼ a

ae∼ eY∼ Y a∼ a Y aM
(13) X

Xa∼ a
aX∼ Xe∼ ea∼ a

ae∼ ee∼ ea∼ a
ae∼ eY∼ Y a∼ a

aY∼ Y .

Note that in the first step (5)→ (6) the symbol X initiated recovering of the
ether between X and Y . On the other hand, in the last step (12)→ (13) the
symbol Y finished the recovery of the ether between X and Y . Only in the
steps (6)→ (7) to (11)→ (12) we used the recovery operation. Now we can
send another signal from X to Y .

It is difficult to describe the language L which is generated from the word

X
Xe∼ ee∼ eY∼ Y by repeated sending a signal (represented by the symbols a

and ã) from X to Y , as in Example 3.8.1 and Example 3.8.2. But observe
that if the ether between X and Y has n symbols, then after sending a signal
through this ether we get an unusable transfer medium between X and Y
of length 2n + 1. After subsequent recovering of this medium we get a new
ether between X and Y of length 2(2n+ 1) + 1. Thus the transfer medium
between X and Y grows exponentially as we send signals from X to Y . Also
note that Lether = {w ∈ Σ∗ | |w| ≥ 2, w is an ether } is a regular language.
It can be shown that the language L ∩ Lether contains only words of length
4k + 1, and for each k ≥ 1 it contains at least one word. This implies that

65

L is not a context-free language. In order to prove this formally we need to
make some observations.

Suppose that we have w = a1a2 . . . an ∈ Σ∗. Consider the sequence of
couples (a1, a2), (a2, a3), ..., (an−1, an). Now if we replace each couple in this
sequence with the symbol # or 2 depending on whether the corresponding
couple satisfies the ether property or not, we get a so-called circle-square

representation of the word w. For instance, in the word a
ab∼ bc∼ a

ab∼ b
bc∼ c a

we have couples:

(a,
ab∼), (

ab∼, bc∼), (
bc∼, a), (a,

ab∼), (
ab∼, b), (b,

bc∼), (
bc∼, c), and (c, a).

The corresponding circle-square representation of this word is: ##2####2.

For w ∈ Σ≥2, let us define ψ(w) to be the circle-square representation
of w. First, note that |ψ(w)| = |w| − 1. Second, for each 1 ≤ i < j ≤ n :
ψ(w[i . . . j]) = ψ(w)[i . . . j − 1].

The circle-square representation of the jump and recovery operation is:
(1) circle-square jump: 2## aM 222#,
(2) circle-square recovery: #22 aM ###2.

The corresponding instructions for these operations are:
(1) circle-square jump instruction: (2,#→ 22,#),
(2) circle-square recovery instruction : (#,2→ ##,2).

Lemma 3.8.1. Suppose w ∈ Σ∗.
(1) If σ ∈ {a, ã} and w′ = σxyz ∈ Σ4 is a subword of w, then there

exists a jump instruction (σx, λ → σ′, yz) applicable to the subword w′ of
w if and only if a circle-square jump instruction (2,# → 22,#) can be
applied to ψ(w′), i.e. if ψ(w′) = 2##.

(2) If w′ = xyzd ∈ Σ4 is a subword of w, then there exists a recovery
instruction (xy, λ →uv∼, zd) applicable to the subword w′ of w if and only if
a circle-square recover instruction (#,2→ ##,2) can be applied to ψ(w′),
i.e. if ψ(w′) = #22.

Proof. The proof is an immediate consequence of the definition of the jump
and recovery operation.

Thus if the concrete symbols of a word are not important but we study
which pairs of consecutive symbols satisfy the ether property, we can restrict
ourselves to the circle-square representation of words and the aforementioned
circle-square jump and recovery instructions.

66

Example 3.8.3. If we rewrite Examples 3.8.1 and 3.8.2 in a circle-square
representation, then the signal spreading part from Example 3.8.1 is:

(1) ####→
(2) 22###→
(3) 2222##→
(4) 222222#→
(5) 22222222

and the recovery part from Example 3.8.2 is:

(5) 22222222→
(6) ##2222222→
(7) ####222222→
(8) ######22222→
(9) ########2222→
(10) ##########222→
(11) ############22→
(12) ##############2→
(13) ################ .

Consider a 1-CRS-system R = (Θ,Θ, J), where Θ = {#,2}, with the
following instructions:

(0) (¢, λ→ #m, $),
(1) ({¢,2},#→ 22, {#, $}),
(2) ({¢,#},2→ ##, {2, $}).

According to Theorem 3.6.3, L+(R)∩{#}+ = {#x | x = 4lm, l = 0, 1, 2, . . .},
where m ≥ 1 and α = β = 2.

Note that the circle-square representation of the word w0 = X
Xe∼ ee∼ eY∼ Y

is #4 and the circle-square representation of Lether is the language {#}+.
Let L denote the language generated from the word w0 by continual sending
a signal (represented by the symbols a and ã) from X to Y , as it was
described above in Example 3.8.1 and Example 3.8.2. It is easy to see that
the circle-square representation of L is equal to L+(R) for m = 4. Thus the
circle-square representation of L ∩ Lether is L+(R) ∩ {#}+, which is equal
to {#x | x = 4k, k = 1, 2, 3, . . .}. This implies that the language L ∩ Lether
contains only words of length 4k + 1, and for each k ≥ 1 at least one word.

67

The approach described so far can be generalized in many ways. For in-
stance, we can have more membranes, more kinds of signals, and we can also
send these signals in both directions. If we send signals in both directions,
then we have to ensure that in every transfer medium the communication
flows only in one direction at any given time.

On the other hand, this approach allows us to construct a 2-cl-RA-
automaton accepting a non-context-free language by using only 6-letter al-
phabet. First, the signal is represented by symbols a and ã, and these two
symbols are the only basic symbols. Thus Λ = {a, ã} and the corresponding
alphabet Σ = Λ ∪ wave(Λ) contains exactly 2 + 4 = 6 letters. Second, we
do not use special symbols for membranes, i.e. X and Y . Instead of X we
can use a and instead of Y we can use a, as well. The instructions of the
resulting automaton simulate continual sending of the signal from the first
symbol a to the last symbol a, and the starting word is w0 = a

aa∼ aa∼ aa∼ a.

3.9 3-cl-RA-automata recognizing non-context-

free language

The question, whether there exists a 2-cl-RA-automaton with alphabet con-
sisting of less than six letters recognizing a non-context-free language, re-
mains open. However, there exists a 3-cl-RA-automaton accepting a non-
context-free language on alphabet Σ = {a, b}. Also the idea of this automa-
ton is based on sending a signal through the ether. Let us consider the
following productions:

aaabbbaaabbb aM abaabbbaaabbb aM
abababbbaaabbb aM ababababbaaabbb aM
. . .

abababababababababab aM
aaabababababababababab aM
aaabbbababababababababab aM
. . .

(aaabbb)8aaabab aM
(aaabbb)8aaabbbab aM
(aaabbb)8aaabbbaaab aM
(aaabbb)8aaabbbaaabbb .

68

The corresponding 3-cl-RA-automaton M = (Σ, I) has the following instruc-
tions:

a1 = (bab, a, b$), c1 = (¢, aa, aba),
a2 = (bab, a, baa), c2 = (bbb, aa, ab$),
a3 = (bab, a, bb$), c3 = (bbb, aa, aba),
a4 = (bab, a, bba), d1 = (aaa, bb, b$),
b1 = (¢a, b, aab), d2 = (aaa, bb, bab),
b2 = (aba, b, aab), e1 = (¢, aaabbbaaabbb, $).
b3 = (aba, b, abb),

It is difficult to describe the language L(M) directly. Therefore, we in-
troduce the following circle-square representation: Suppose that we have
w = a1a2 . . . an ∈ Σ∗. Consider the corresponding sequence of couples
(a1, a2), (a2, a3), ..., (an−1, an). Now if we replace each couple in this se-
quence with the symbol # or 2 depending on whether the corresponding
couple (ai, ai+1) is homogenous (i.e. ai = ai+1) or not, we get a circle-square
representation of the word w.

For w ∈ Σ≥2, we define χ(w) to be the circle-square representation of w.
Of course, |χ(w)| = |w| − 1, and for each 1 ≤ i < j ≤ n : χ(w[i . . . j]) =
χ(w)[i . . . j − 1].

The circle-square representation of productions defining the automaton
M is:

##2##2##2##→ 22#2##2##2##→
22222##2##2##→ 2222222#2##2##→
. . .

2222222222222222222→
##2222222222222222222→
##2##222222222222222222→
. . .

(##2)16##222→
(##2)16##2##22→
(##2)16##2##2##2→
(##2)16##2##2##2## .

Consider a 2-CRS-system R = (Θ,Θ, J), where Θ = {#,2}, with in-

69

structions:

X0 = (¢,#→ 22,#2), Y0 = (¢, λ→ ##,22),
X1 = (22,#→ 22,#2), Y1 = (##,2→ 2##,22),
X2 = (22,#→ 22,2#), Y2 = (##,2→ 2##,2$),
X3 = (22,#→ 22,#$), Y3 = (##,2→ 2##, $),
X4 = (22,#→ 22, $), Z0 = (¢, λ→ ##2##2##2##, $).

Then, trivially for each instruction i ∈ ID, if i can be applied to the word
w ∈ Σ≥2, then there exists j ∈ J which can be applied in the same way to
the word χ(w). Thus the circle-square representation of the language L(M)
is included in L+(R).

To analyze the language L+(R) we first introduce several auxiliary defi-
nitions. An ether is a word w ∈ {#,2}+ which starts and ends with #, and
if for some 1 < i < |w| we have w[i] = 2, then w[i − 1] = w[i + 1] = #,
i.e. all squares are single. A factor is a word 2kw 6= λ such that k ≥ 0
and w is either λ, or an ether. For a word w ∈ {#,2}+, we define a fac-
torization w = w0w1 . . . wn recursively as: wn is the longest suffix of w such
that wn is a factor, and w0w1 . . . wn−1 is the factorization of the rest of
the word. Since the word wn is defined unambiguously, it is easy to see
by induction that the factorization of w is unique. For instance, the word
w = 22#2##222222#2##2## has the factors: w0 = 22#2##
and w1 = 222222#2##2##. The weight of a factor u is defined as
ω(u) = |u|2 + 2|u|#.

Lemma 3.9.1. Suppose that w ∈ L+(R) and w = w0w1 . . . wn is a factor-
ization of w. Let us denote ai = ω(wi), for all i = 0, 1, . . . , n. Then for some
l ≥ 1:

50a0 + 51a1 + . . .+ 5nan = 4× 5n+l − 1 .

We call this sum the overall sum of the word w.

Proof. (By induction on the number of used instructions of R)
The first applied instruction is always Z0 = (¢, λ→ ##2##2##2##, $).

This instruction can never be used later. The factorization of the resulting
word w = ##2##2##2## is clearly w = w0, thus n = 0, a0 = ω(w0) =
ω(w) = 19 and 50a0 = 19 = 4× 50+l − 1 for l = 1.

Suppose that w = w0w1 . . . wn is a factorization of w generated so far
by circle-square instructions, ai = ω(wi), for all i = 0, 1, . . . , n, and 50a0 +
51a1 + . . . + 5nan = 4 × 5n+l − 1 for some l ≥ 1. We consider several cases
depending on the next applied instruction.

70

1. X0 = (¢,# → 22,#2): can be applied only to a prefix ##2 of w0,
i.e. w0 = ##2u0. After application we get w′0 = 22#2u0 which is
obviously a factor with the same weight as w0.

2. X1 = (22,# → 22,#2): can be applied only to a subword u =
22##2 of w. Apparently, u is a subword of some factor wi, i.e. wi =
2k22##2ui, k ≥ 0. After application we get w′i = 2k2222#2ui
which is a factor with the same weight as wi.

3. X2 = (22,# → 22,2#): can be applied only to a subword u =
22#2# of w. Obviously, u is a subword of some factor wi, i.e. wi =
2k22#2#ui, k ≥ 0. After application we obtain w′i = 2k22222#ui,
which is a factor with the same weight as wi.

4. X3 = (22,#→ 22,#$): can be applied only to a suffix 22## of wn,
i.e. wn = 2k22##, k ≥ 0. After application we get w′n = 2k2222#,
which is a factor with the same weight as wn.

5. X4 = (22,# → 22, $): can be applied only to a suffix 22# of wn,
i.e. wn = 2k22#, k ≥ 0. After application we obtain w′n = 2k2222,
which is a factor with the same weight as wn.

6. Y0 = (¢, λ → ##,22): can be applied only to a prefix of w0, i.e.
w0 = 222ke0, k ≥ 0, e0 is either λ, or the ether. After application we
get a new factor w′0 = ## with a′0 = ω(w′0) = 4, i.e. the corresponding
w′ = w′0w

′
1 . . . w

′
n+1, where w′i+1 = wi, a

′
i+1 = ai, for all i = 0, 1, . . . , n.

Thus the overall sum is 50a′0 + 51a′1 + . . . + 5n+1a′n+1 = 4 + 5 × (4 ×
5n+l − 1) = 4× 5(n+1)+l − 1.

7. Y1 = (##,2 → 2##,22): can be applied to a subword ##222 of
w, i.e. to a prefix of some factor wi+1 = 222ui+1, where wi = ui##.
After application we get factors: w′i = ui##2## and w′i+1 = 22ui+1.
Obviously, ω(wi)+5×ω(wi+1) = ω(w′i)+5×ω(w′i+1), because ω(w′i)−
ω(wi) = 5 × (ω(wi+1) − ω(w′i+1)) = 5. Since all other factors remain
unchanged, the overall sum does not change.

8. Y2 = (##,2→ 2##,2$): can be applied to a suffix ##22 of w, i.e.
n ≥ 1, wn−1 = un−1##, and wn = 22. After application we obtain
factors: w′n−1 = un−1##2## and w′n = 2. Obviously, ω(wn−1) +
5 × ω(wn) = ω(w′n−1) + 5 × ω(w′n), because ω(w′n−1) − ω(wn−1) =

71

5 × (ω(wn) − ω(w′n)) = 5. Since all other factors remain unchanged,
the overall sum does not change.

9. Y3 = (##,2 → 2##, $): can be applied to a suffix ##2 of w,
i.e. n ≥ 1, wn−1 = un−1##, and wn = 2. After application we get
factor: w′n−1 = un−1##2## and the last factor vanishes. Appar-
ently, ω(wn−1) + 5× ω(wn) = ω(w′n−1), because ω(w′n−1)− ω(wn−1) =
5× ω(wn) = 5. All other factors remain unchanged, thus if we denote
a′i = ω(w′i), for all i = 0, 1, . . . , n−1, then 50a′0+51a′1+. . .+5n−1a′n−1 =
50a0 +51a1 + . . .+5n−1(an−1 +5an) = 4×5n+l−1 = 4×5(n−1)+(l+1)−1.

Note that only the instruction Y0 = (¢, λ→ ##,22) increases the num-
ber of factors and only the instruction Y3 = (##,2 → 2##, $) decreases
the number of factors. Also note that only the instruction Y0 increases the
overall sum, and only the instruction Y3 increases l. All remaining instruc-
tions neither change the number of factors, nor the overall sum.

Lemma 3.9.2. L(M) ∩ {(ab)n | n > 0} = {(ab)n | n = 2× 5l, l = 1, 2, . . .}.
Proof. Suppose that (ab)m ∈ L(M) for some m > 0. The circle-square rep-
resentation of (ab)m is 22m−1. Since 22m−1 is a factor, according to Lemma
3.9.1 we get 2m−1 = 4×5n+l−1, where n = 0 and l ≥ 1. Thus m = 2×5l.

On the other hand, we have to show that for each l ≥ 1, (ab)2×5l ∈ L(M).
First observe:

aaabbb(aaabbb)maaabbb aM
abaabbb(aaabbb)maaabbb aM abababbb(aaabbb)maaabbb aM
ababababb(aaabbb)maaabbb aM ababababab(aaabbb)maaabbb aM
. . . aM ababababab(ababababab)maaabbb aM
ababababab(ababababab)mabaabbb aM ababababab(ababababab)mabababbb aM
ababababab(ababababab)mababababb aM ababababab(ababababab)mababababab =
(ab)5(ababababab)m(ab)5 .

Similarly:

abab(ab)nabab aM
aaabab(ab)nabab aM aaabbbab(ab)nabab aM
aaabbbaaab(ab)nabab aM aaabbbaaabbb(ab)nabab aM
. . . aM aaabbbaaabbb(aaabbb)nabab aM
aaabbbaaabbb(aaabbb)naaabab aM aaabbbaaabbb(aaabbb)naaabbbab aM
aaabbbaaabbb(aaabbb)naaabbbaaab aM aaabbbaaabbb(aaabbb)naaabbbaaabbb =
(aaabbb)2(aaabbb)n(aaabbb)2 .

72

Consequently, for m = 0 we get: λ aM aaabbbaaabbb a∗M (ab)2×5, and for
each l ≥ 1: (ab)2×5l a∗M (aaabbb)2×5l a∗M (ababababab)2×5l = (ab)2×5l+1

. Thus
for each l ≥ 1 : (ab)2×5l ∈ L(M).

The following theorem summarizes the results from the previous Sections
3.3, 3.6, 3.7, 3.8, and 3.9, and compares the class of languages recognized
by clearing restarting automata with the class of context-free languages.

Theorem 3.9.1. Let us consider k-cl-RA-automata over an alphabet Σ.

a) L(cl-RA) = CFL for |Σ| = 1.

b) L(1-cl-RA) ⊂ CFL for an arbitrary alphabet Σ.

c) L(2-cl-RA)− CFL 6= ∅ for |Σ| ≥ 6.

d) L(3-cl-RA)− CFL 6= ∅ for |Σ| ≥ 2.

73

74

Chapter 4

Extended Clearing Restarting
Automata

In this chapter we introduce two extended versions – the so-called ∆-clearing
restarting automata in Section 4.2 and ∆∗-clearing restarting automata in
Section 4.3. Both of them can use a single auxiliary symbol ∆ only. ∆-
clearing restarting automata can leave a mark – a symbol ∆ – at the place of
deleting besides rewriting into the empty word λ. This model can recognize
Greibach’s hardest context-free language H ([10]). In Section 4.1 we define

this language H and prove that there is no cl-RA-automaton recognizing H.
∆∗-clearing restarting automata can rewrite a subword w into ∆k where k
is bounded from above by the length of w. This is enough to enable this
model to recognize all context-free languages.

Most of the material used in this chapter is taken from the extended
version of [6] accepted for publication in Fundamenta Informaticae.

4.1 Greibach’s hardest context-free language

As we have seen in Corollary 3.4.1b) not all context-free languages are rec-
ognized by cl-RA-automata. We can still try to characterize CFL by us-
ing clearing restarting automata, inverse morphism, and Greibach’s hardest
context-free language [10].

Greibach constructed a context-free language H such that:

• Any context-free language can be parsed in whatever time or space it
takes to recognize H.

75

• Any context-free language L can be obtained from H by an inverse
morphism. That is, for each context-free language L ⊆ Σ∗, there exists
a morphism ϕ such that L = ϕ−1(H).

The definition of Greibach’s language follows. Let Σ = {a1, a2, a1, a2,#, c}
and Σ′ = Σ ∪ {d}, where d /∈ Σ. Let H ⊂ (Σ′)∗ be the language

H = {λ} ∪ {x1cy1cz1d . . . xncyncznd | n ≥ 1, y1 . . . yn ∈ #D2, xi, zi ∈ Σ∗,
for all i, 1 ≤ i ≤ n,
y1 ∈ # · {a1, a2, a1, a2}∗,
yi ∈ {a1, a2, a1, a2}∗, for all i ≥ 2}

(note that xi’s and zi’s can contain c’s and #’s), where D2 is a semi-Dyck
language over the alphabet {a1, a2, a1, a2} generated by the grammar with
one nonterminal S and the set of rules:

S → λ|SS|a1Sa1|a2Sa2 .

The symbols d divide naturally w into blocks. Each block is naturally
divided by symbols c into parts called segments. It is easy to see that H is
context-free. Imagine a pushdown automaton which “guesses” a segment y1

in the first block and processes it in the natural way a pushdown automaton
would work on the Dyck set (i.e. stack everything and pop when the top of
the stack is ai and the input is ai). The computation is repeated for each
block as delimited by d.

The semi-Dyck language D2 is recognized by a simple cl-RA-automaton
MD with the following two instructions:

(λ, a1a1, λ),

(λ, a2a2, λ).

Hence the main problem of recognizing H by a clearing restarting au-
tomaton is the selection of segments y1, y2, . . . , yn (see the definition of H
above). Unfortunately, there is no cl-RA-automaton recognizing H.

Theorem 4.1.1. H is not accepted by any cl-RA-automaton.

Proof. For a contradiction, let us suppose that there exists a k-cl-RA-automaton
M = (Σ′, I) such that L(M) = H. Let m be the maximal width of instruc-

tions of M . Obviously, w = c#am1 cdca
m
1 cd ∈ H. Let w `(i)

M w′ `M · · · `M λ

76

be an accepting computation of H on input w. In the first reduction the
deleted substring must be of the form ar1cdca

s
1 for some r, s, 0 ≤ r, s < m,

otherwise w′ would not be in H. Further, it is easy to see that r = s. As |i| ≤
m, the first applied instruction i is of the form (aα1 , a

r
1cdca

r
1, a

β
1), where α, β <

m. Then, however, consider the word u = c#am+1
1 ar1cdca

r
1a
m
1 c#a1a1cd. Ob-

viously, u is not in H, but u `(i)
M c#am+1

1 am1 c#a1a1cd ∈ H, which is a
contradiction to the error preserving property (Theorem 3.2.2).

4.2 ∆-Clearing Restarting Automata

In [7] Cherubini et al. defined H using associative language description,
which uses one auxiliary symbol ∆. Therefore, we slightly extend the def-
inition of cl-RA-automata in order to be able to recognize more languages
including H.

Definition 4.2.1. Let k be a positive integer. A k-∆-clearing restarting
automaton (k-∆cl-RA-automaton for short) is a system M = (Σ, I), where
M = (Σ,Γ, I) is a k-CRS-system such that ∆ /∈ Σ, Γ = Σ ∪ {∆}, and for
each instruction i = (x, z → t, y) ∈ I: z ∈ Γ+ and either t = λ, or t = ∆.

The k-∆cl-RA-automaton M recognizes the language L(M) = {w ∈ Σ∗ |
w `∗M λ} = L−(M), where `M is the rewriting relation →M of M .

The characteristic language of M is the language LC(M) = L−C(M).

Actually, ∆cl-RA-automata differ from cl-RA-automata in the ability to
leave a mark – a symbol ∆ – at the place of deleting.

By ∆cl-RA we denote the class of all ∆-clearing restarting automata.
L(k-∆cl-RA) (L(∆cl-RA), respectively) denotes the class of all languages
accepted by k-∆cl-RA-automata (∆cl-RA-automata, respectively).

Example 4.2.1. Let M = (Σ, I) be the 1-∆cl-RA-automaton with Σ =
{a, b, c} and the set of instructions I consisting of the following instructions:

(1) (a, c→ ∆, b),
(2) (a, a∆b→ ∆, b),
(3) (¢, a∆b→ ∆, $),
(4) (¢, c→ ∆, $),
(5) (¢,∆→ λ, $).

An input word ancbn, for arbitrary n > 1, is accepted by M in the fol-
lowing way:

ancbn `(1)
M an−1a∆bbn−1n `(2)

M an−1∆bn−1 `(2)
M . . . `(2)

M a∆b `(3)
M ∆ `(5)

M λ .

77

First, M deletes c while marking its position by ∆. In each of the following
steps, M deletes one a and one b around ∆ until it obtains single-letter word
∆, which is then reduced into λ.

It is easy to see that M recognizes the language L = {ancbn | n ≥ 0}∪{λ}.
The characteristic language of M is

LC(M) = {ancbn, an∆bn | n ≥ 0} ∪ {λ} .

In what follows we show that the language H can be recognized by a
1-∆cl-RA-automaton:

Theorem 4.2.1. H is recognized by a 1-∆cl-RA-automaton.

Proof. Let us describe a ∆cl-RA-automaton M recognizing H informally,
first. Let w be a word from H of the following form:

(?) w = x1cy1cz1dx2cy2cz2d . . . xncyncznd, where
n ≥ 1, y1 . . . yn ∈ #D2,
xi, zi ∈ Σ∗ = {a1, a2, a1, a2,#, c}∗,
for all i, 1 ≤ i ≤ n, y1 ∈ # · {a1, a2, a1, a2}∗
and yi ∈ {a1, a2, a1, a2}∗, for all i ≥ 2.

In the first phase, we start with deleting letters from the alphabet Σ
from the right side of ¢ and from the left and right sides of the letters d.
As soon as we think that we have the following word: cy1cdcy2cd . . . cyncd
we introduce symbols ∆: ∆y1∆y2∆ . . .∆yn∆. In the second phase we check
whether y1y2 . . . yn ∈ #D2.

Let us denote Σ = {a1, a2, a1, a2,#, c}, Γ = Σ ∪ {d,∆}, d,∆ /∈ Σ. The
corresponding set I of instructions of the 1-∆cl-RA-automaton M consists
of the following instructions:

Instructions for the first phase Instructions for the second phase
(1) (¢,Σ→ λ,Σ) (7) (Γ, a1a1 → λ,Γ− {#})
(2) (Σ,Σ→ λ, d) (8) (Γ, a2a2 → λ,Γ− {#})
(3) (d,Σ→ λ,Σ) (9) (Γ, a1∆a1 → ∆,Γ− {#})
(4) (¢, c→ ∆,Σ ∪ {∆}) (10) (Γ, a2∆a2 → ∆,Γ− {#})
(5) (Σ ∪ {∆}, cdc→ ∆,Σ ∪ {∆}) (11) (Σ− {c},∆→ λ,∆)
(6) (Σ ∪ {∆}, cd→ ∆, $) (12) (¢,∆#∆→ λ, $)

Note that we cannot guarantee that M completes the first phase first
and then will continue with the second phase. Nevertheless, we will prove
that L(M) = H by showing that H ⊆ L(M) and L(M) ⊆ H.

78

Lemma 4.2.1. H ⊆ L(M).

Proof. Let w ∈ H be of the form (?) above. The instructions (1), (2), (3)
allow the following computation:

x1cy1cz1dx2cy2cz2d . . . xncyncznd `∗M cy1cdcy2cdc . . . cyncd.

The instructions (4), (5), (6) enable to continue in the following way:

cy1cdcy2cdc . . . cyncd `M ∆y1cdcy2cdc . . . cyncd `M ∆y1∆y2cdc . . . cyncd `∗M
. . .
∆y1∆y2∆ . . .∆yncd `M ∆y1∆y2∆ . . .∆yn∆ .

Note that some of the words yi can be empty. This explains why we have
added ∆ symbols to the context of these instructions.

We know that y1y2 . . . yn ∈ #D2. If we wanted to recognize just the
words from #D2, then the instructions (7), (8) and (¢,# → λ, $) would
be sufficient. The problem is that we have the word ∆y1∆y2∆ . . .∆yn∆.
We need to add the instructions (9), (10), (11). It is easy to see that these
instructions allow the reduction: ∆y1∆y2∆ . . .∆yn∆ `∗M ∆#∆. The last
word ∆#∆ can be reduced by instruction (12).

There is an interesting question why we have not used the following
instructions:

(9′) (Γ, a1∆a1 → λ,Γ− {#}) and
(10′) (Γ, a2∆a2 → λ,Γ− {#})

instead of instructions (9) and (10)?
The reason why cl-RA-automata are not able to recognize H is caused

by the instruction i = (au1 , a
α
1 cdca

α
1 , a

v
1), which erases the group of letters

cdc. The introduction of these new ∆ symbols helped us to save the symbols
d, which are now hidden behind these ∆ symbols and are important for
separating the words yi. If we use instructions (9′) and (10′) instead of (9)
and (10), then take the word c#a1a1cdca1c#a1a1cd, which does not belong
to H. First, by using the instruction (5) on the group of letters cdc we get:
c#a1a1∆a1c#a1a1cd, and next by using the instruction (9′) we get the word:
c#a1c#a1a1cd, which evidently belongs to H – a contradiction.

Lemma 4.2.2. L(M) ⊆ H.

Proof. We prove that each word w ∈ LC(M) is of the form: U1U2 . . . Un
where:

79

1. n ≥ 0, n 6= 1,

2. U1 is either ∆y1, or x1cy1, for some y1 ∈ # · {a1, a2, a1, a2}∗, x1 ∈ Σ∗,

3. Ui is either ∆yi, or cxidzicyi, for 1 < i < n and some xi, zi ∈ Σ∗, yi ∈
{a1, a2, a1, a2}∗,

4. Un is either ∆, or cxnd, for some xn ∈ Σ∗,

5. y1 . . . yn−1 ∈ #D2.

Let Ω denote the set of all such words. It is easy to see that all words
from Ω ∩ Σ∗ have the following form:

x1cy1cx2d z2cy2cx3d z3cy3 . . . cxn−1d zn−1cyn−1cxnd ,

where n ≥ 0, n 6= 1, xi, zi ∈ Σ∗, y1 . . . yn−1 ∈ #D2. Apparently, this implies
that Ω ∩ Σ∗ ⊆ H. To prove that L(M) ⊆ Ω ∩ Σ∗ ⊆ H it is enough to show
that all words w ∈ LC(M) are also in the set Ω.

Let us prove this proposition by induction on the number m of applied
instructions. For m = 0, we have n = 0 and w = λ ∈ Ω. For m = 1, only the
instruction (12) (¢,∆#∆→ λ, $) can be used, and the word w = ∆#∆ ∈ Ω
(take n = 2, U1 = ∆y1, U2 = ∆, where y1 = #).

Suppose that U1 . . . Un aM w by using the instruction i ∈ ID, n ≥ 2 and
U1 . . . Un was obtained from λ by using at most m− 1 instructions from ID,
where m > 1. In the word U1 . . . Un we place an arrow ↓ above the place
where the application of the instruction i ∈ ID occurred. There are several
cases based on the choice of the instruction i ∈ ID:

1. (¢, λ→ Σ,Σ): this instruction can be applied only within U1 = ↓x1cy1.
We can easily see that we get a correct form, so the generated word w
belongs to Ω.

2. (Σ, λ → Σ, d): this instruction can be applied either within Uk =
cxk

↓dzkcyk, where 1 < k < n, or within Un = cxn
↓d. In both cases,

we get a word w from Ω.

3. (d, λ → Σ,Σ): this instruction can be applied only within Uk =
cxkd

↓zkcyk, where 1 < k < n, and again we get a correct word from
Ω.

80

4. (¢,∆→ c,Σ∪{∆}): this instruction can be applied only within U1 =
↓
∆

y1. We obtain a new U ′1 = cy1, which leads to a correct word from Ω.
Note that since y1 always starts with # (because y1 . . . yn ∈ #D2), we
could replace this instruction with (¢,∆→ c,#).

5. (Σ ∪ {∆},∆ → cdc,Σ ∪ {∆}): this instruction can be applied only

within Uk =
↓
∆ yk, where 1 < k < n. We get a new U ′k = cdcyk, which

leads to a correct word from Ω.

6. (Σ ∪ {∆},∆ → cd, $): this instruction can be applied only within

Un =
↓
∆. We obtain a new U ′n = cd, which leads to a correct word from

Ω.

7. (Γ, λ→ a1a1,Γ− {#}): see case 8.

8. (Γ, λ → a2a2,Γ − {#}): we investigate cases 7 and 8 together. These
instructions can be applied between any two consecutive characters in
the word U1 . . . Un except the left end (where the left context equals
¢), the right end (where the right context equals $) and the case in
which the right context equals #. We need to consider these cases:

(a) U1 = ↓∆y1 is impossible, since the left context equals ¢.

(b) U1 = ∆ ↓y1 is impossible, as the right context equals #.

(c) For U1 = ∆
↓
y1, U1 = ∆y1

↓ we get a correct word.

(d) U1 = ↓x1cy1is impossible, since the left context equals ¢.

(e) U1 =
↓
x1 cy1, x1

↓cy1, x1c
↓y1, x1c

↓
y1 , or x1cy1

↓: all these cases are
possible and all leave a correct word.

(f) Uk = ↓∆yk, where 1 < k < n is possible and we get a new
U ′k−1 = . . . yk−1aiai, which leads to a correct word from Ω.

There are many other cases to consider (we have mentioned only few
of them for brevity), but we can easily see that all of them preserve the
correct form of the word. Also note that the constraint y1 . . . yn ∈ #D2

is not violated in any of these cases.

9. (Γ,∆→ a1∆a1,Γ− {#}): see case 10.

81

10. (Γ,∆→ a2∆a2,Γ−{#}): we investigate cases 9 and 10 together. These

instructions can be applied only within Uk =
↓
∆ yk, where 1 < k < n.

We obtain a new U ′k−1 = . . . yk−1ai and U ′k = ∆aiyk, which leads to a
correct word. Also in this case, the constraint y1 . . . yn ∈ #D2 is not
violated.

11. (Σ − {c}, λ → ∆,∆): this instruction can be applied only in the fol-
lowing two cases:

(a) Uk = ↓∆yk, where 1 < k < n, Uk−1 = . . . yk−1 and yk−1 6= λ.
From the word U1 . . . Uk−1∆yk . . . Un we get a new word

U1 . . . Uk−1∆∆yk . . . Un,

which is a correct word from Ω.

(b) Un = ↓∆, where Un−1 = . . . yn−1 and yn−1 6= λ.
From the word U1 . . . Un−1∆ we get a new word

U1 . . . Un−1∆∆,

which is a correct word from Ω.

12. (¢, λ→ ∆#∆, $): this instruction can be applied only in the beginning,
when we have the empty word. Evidently, ∆#∆ is in Ω.

We have proven that each word generated by using instructions ID belongs
to Ω. As we have shown before, this implies that L(M) ⊆ Ω ∩ Σ∗ ⊆ H.

The statement of Theorem 4.2.1 follows from the above two lemmas.

4.3 ∆∗-Clearing Restarting Automata

Although ∆cl-RA-automata can recognize Greibach’s hardest context-free
language H, we still do not know whether they are able to recognize all
context-free languages. Now we introduce a generalization of ∆cl-RA-automata,
a so-called ∆∗-clearing restarting automata, which are able to recognize all
context-free languages.

82

Definition 4.3.1. Let k be a positive integer. A k-∆∗-clearing restarting
automaton (k-∆∗cl-RA-automaton for short) is a system M = (Σ, I), where
M = (Σ,Γ, I) is a k-CRS-system such that ∆ /∈ Σ, Γ = Σ ∪ {∆}, and for
each instruction i = (x, z → t, y) ∈ I: z ∈ Γ+ and t = ∆i, where 0 ≤ i ≤ |z|.

The k-∆∗cl-RA-automaton M recognizes the language L(M) = {w ∈ Σ∗ |
w `∗M λ} = L−(M), where `M is the rewriting relation →M of M .

The characteristic language of M is the language LC(M) = L−C(M).

∆∗cl-RA-automata differ from ∆cl-RA-automata in the ability to leave
more than one symbol ∆ at the place of deleting. The only constraint is
that they can replace a subword z by at most |z| symbols ∆.

By ∆∗cl-RA we denote the class of all ∆∗-clearing restarting automata.
L(k-∆∗cl-RA) (L(∆∗cl-RA), respectively) denotes the class of all languages
accepted by k-∆∗cl-RA-automata (∆∗cl-RA-automata, respectively).

Next we show that 1-∆∗cl-RA-automata can recognize any context-free
language.

Theorem 4.3.1. For each context-free language L there exists a 1-∆∗cl-RA-
automaton M recognizing L.

Proof. Let L be a context-free language. Then there exists a context-free
grammar G = (VN , VT , S, P) in Chomsky normal form generating the lan-
guage L(G) = L \ {λ}. Let VN = {N1, . . . , Nm}, S = N1 and ∆ 6∈ VN ∪ VT
and let G′ = (VN , V

′
T , S, P

′) be a grammar which we obtain from G by adding
a new terminal symbol ∆ to VT and adding new productions Ni → ∆ia to
P , for all 1 ≤ i ≤ m and all a ∈ VT . We will show that we can effectively
construct a 1-∆∗cl-RA-automaton M such that L(M) = L(G) ∪ {λ}.

Let us set Σ = VT and Γ = Σ∪{∆} = V ′T . We will construct a 1-∆∗cl-RA-
automaton M such that LC(M) = L(G′) ∪ {λ}. This implies that L(M) =
LC(M) ∩ Σ∗ = (L(G′) ∪ {λ}) ∩ Σ∗ = L(G) ∪ {λ}.

For the automaton M all the words ∆ia for all a ∈ Σ represent “codes”
for the nonterminal Ni. The letter a ∈ Σ serves as a separator for distin-
guishing several consecutive coded nonterminals.

Lemma 4.3.1. For the grammar G′ there exist natural numbers p, q, m+1 ≤
p ≤ q, such that the following condition holds: if w ∈ L(G′) and |w| > p,
then there exists a derivation N1 ⇒∗G′ xNiy ⇒∗G′ xzy such that w = xzy and
p < |z| ≤ q.

Proof. Let us set p := m + 1 and q := 2p. Suppose that we have w ∈
L(G′), |w| > p. Let us consider the derivation tree T corresponding to

83

some derivation N1 ⇒∗G′ w. Now we will inductively define a path P =
A1A2 . . . Art in the tree T , where A1, A2, . . . , Ar are nonterminals and t is a
terminal.

First, we set A1 := N1. Now suppose that Ai is defined and in the
derivation tree T a rule r is used to rewrite Ai. There are two possible forms
of r:

• Either r is of the form Ai → LR, where L,R ∈ VN . If the number of
terminal leaves under L is not less than the number of terminal leaves
under R in T , then we set Ai+1 := L and Bi+1 := R. Otherwise, we
set Ai+1 := R and Bi+1 := L.

• Or r is of the form Ai → u, where u ∈ Γ+, then we set r := i and t to
be any letter from u. Note that |u| ≤ m+ 1.

Let us denote ai (bi, respectively) a terminal word generated by the
derivation tree T from the occurrence of Ai (Bi, respectively). We can easily
see that a1 = w, and for all i, 1 ≤ i < r, we have either ai = ai+1bi+1, or
ai = bi+1ai+1, so |ai| = |ai+1| + |bi+1|. Since |a1| = |a2| + |b2| = |a3| + |b3| +
|b2| = . . . = |ar| + |br| + |br−1| + . . . + |b2|, we have a descending sequence
|a1| > |a2| > . . . > |ar| ≥ 1. By the definition of P we have |ai+1| ≥ |bi+1|,
for all i, 1 ≤ i < r, so |ai+1| = 1

2
(|ai+1|+ |ai+1|) ≥ 1

2
(|ai+1|+ |bi+1|) = 1

2
|ai|.

By our assumptions, |a1| = |w| > p = m + 1 and 1 ≤ |ar| ≤ m + 1 <
q = 2p. Let i be the smallest integer from {1, 2, . . . , r} such that |ai| ≤ q. If
i = 1, then |ai| > p. If i > 1, then |ai| ≥ 1

2
|ai−1| > 1

2
q = p.

Now it is sufficient to set z := ai, because p < |ai| ≤ q and N1 ⇒∗G′
xAiy ⇒∗G′ xaiy = w.

Now we show how to construct a 1-∆∗cl-RA M such that LC(M) =
L(G′) ∪ {λ}:

First, we set I1 = {(¢, w → λ, $) | w ∈ L(G′), |w| ≤ p}.
For every i ∈ {1, 2, . . . ,m} let Li = {z ∈ Γ∗ | Ni ⇒∗G′ z, p < |z| ≤ q}.

For every such z ∈ Li, z = z1 . . . zs−1zs, let us consider the instruction (or
to be more precise – the set of instructions):

(Σ ∪ {¢}, z1 . . . zs−1 → ∆i, zs) .

Let I2 be the set of all such instructions. Then M = (Σ, I1 ∪ I2) is the
required automaton.

Lemma 4.3.2. L(G′) ⊆ LC(M).

84

Proof. (By induction on the length of words from L(G′))
Let w ∈ L(G′). If |w| ≤ p, then (¢, w → λ, $) ∈ I1, thus w `M λ which

implies w ∈ LC(M).
Suppose |w| > p. According to Lemma 4.3.1, there are x, y, z ∈ Γ∗,

p < |z| ≤ q, and i ∈ {1, 2, . . . ,m} such that there exists a derivation N1 ⇒∗G′
xNiy ⇒∗G′ xzy = w, where z = z1 . . . zs−1zs. The definition of I2 implies
that there is an instruction (Σ ∪ {¢}, z1 . . . zs−1 → ∆i, zs) ∈ I2. If we use
this instruction in the word w, we get the reduction: w = xz1 . . . zs−1zsy `M
x∆izsy = w′. Note that x is either λ, or ends with a letter from Σ. If x 6= λ,
then necessarily for some suffix u of x there is N ∈ VN : N ⇒∗G′ u. From
the definition of G′ we see, that if we take any nonterminal N ∈ VN and
any derivation N ⇒∗G′ u, the word u ends either with a nonterminal, or a
letter from Σ. Now s = |z| > p implies that s − 1 ≥ p ≥ m + 1 > m ≥ i.
So |z1 . . . zs−1| > |∆i| implies |w| > |w′|. On the other hand, in G′ there is a
production rule Ni → ∆izs, so N1 ⇒∗G′ xNiy ⇒G′ x∆izsy = w′. Thus w′ ∈
L(G′) and by induction hypothesis (since |w′| < |w|) we have w′ ∈ LC(M)
and w′ `∗M λ which implies w `M w′ `∗M λ and w ∈ LC(M).

Lemma 4.3.3. LC(M) ⊆ L(G′) ∪ {λ} .

Proof. (By induction on the number of reduction steps)
Suppose w ∈ LC(M) and w = wn `M wn−1 `M . . . `M w1 `M λ. For

each i = 1, 2, . . . n, let us prove that wi ∈ L(G′)∪{λ}. w1 `M λ implies that
there is the instruction (¢, w1 → λ, $) in I1, and thus w1 ∈ L(G′) according to
the definition of I1. Suppose that wj ∈ L(G′) and in the reduction wj+1 `M
wj we have used the instruction φ = (Σ ∪ {¢}, z1 . . . zs−1 → ∆i, zs) ∈ I2, i.e.
wj+1 = xz1 . . . zs−1zsy `M x∆izsy = wj. We have wj ∈ L(G′). Therefore,

N1 ⇒∗G′ x∆izsy and (since φ is applicable to xz1 . . . zs−1zs) x is either λ, or

ends with a letter from Σ. The sequence of letters ∆izs in our derivation
could have been created only by using the production rule Ni → ∆izs. Thus
there exists a derivation N1 ⇒∗G′ xNiy ⇒G′ x∆izsy in G′. From the definition
of φ ∈ I2 we also have Ni ⇒∗G′ z1 . . . zs−1zs, where p < s ≤ q. Thus in G′

there exists a derivation N1 ⇒∗G′ xNiy ⇒∗G′ xa1 . . . as−1asy = wj+1, which
immediately implies that wj+1 ∈ L(G′).

This completes the proof of Theorem 4.3.1.

We have shown that ∆∗cl-RA-automata are able to recognize all context-
free languages (except the empty word – see Remark 3.2.1). This result opens

85

an interesting question whether it is possible to transform each ∆∗cl-RA-
automaton into an equivalent ∆cl-RA-automaton. If we are interested only
in the problem whether ∆cl-RA-automata can recognize all context-free lan-
guages, then we do not need to do this transformation for all ∆∗cl-RA-
automata. We just need to do this transformation to such ∆∗cl-RA-automata
which were obtained from a context-free grammar, as was shown above.
Moreover, the aforementioned construction can be generalized, i.e. we can
put some extra restrictions on the instructions of the resulting ∆∗cl-RA-
automaton. We can generalize the construction of the grammar G′ and its
corresponding ∆∗cl-RA M in the following three ways:

1. We can choose a minimal length m0 ≥ 1 of codes for nonterminals, i.e.
we can code Ni by using i+m0 − 1 consecutive letters ∆.

2. We can choose a minimal length m1 ≥ 1 of shortening for each reduc-
tion, i.e. for each instruction (x, u → ∆r, y) such that r ≥ 1, we can
guarantee that |u| − |∆r| ≥ m1.

3. We can choose a length k ≥ 1 of the separator. It means that instead of
one letter we use k consecutive arbitrary letters from Σ as a separator.

Again suppose that we have a context-free grammar G = (VN , VT , S, P)
in Chomsky normal form with VN = {N1, . . . , Nm} and S = N1. Let ∆ /∈
VT and G′ = (VN , V

′
T , S, P

′) be the grammar which we obtain from G by
adding new terminal symbol ∆ to VT and adding new production rules
Ni → ∆i+m0−1z1z2 . . . zk to P , for all 1 ≤ i ≤ m and all z1, z2, . . . , zk ∈ VT .

Lemma 4.3.4. For the grammar G′ there exist natural numbers p, q, m +
m0 +m1 − 2 ≤ p ≤ q, such that the following condition holds: if w ∈ L(G′)
and |w| > p, then there exists a derivation N1 ⇒∗G′ xNiy ⇒∗G′ xzy in G′,
where w = xzy and p < |z| ≤ q.

Proof. The proof is the same as in Lemma 4.3.1 except that we set p :=
m+m0 +m1 + k − 2 and q := 2p.

Let Σ = VT and Γ = Σ ∪ {∆} = V ′T . The construction of a k-∆∗cl-RA-
automaton M recognizing L(G′) ∪ {λ} is similar to the previous one (note
that the length of the context is exactly the length of the separator):

First, we set I1 = {(¢, w → λ, $) | w ∈ L(G′), |w| ≤ p}.

86

For every i ∈ {1, 2, . . . ,m}, let Li = {z ∈ Γ∗ | Ni ⇒∗G′ z, p < |z| ≤
q}. For every such z ∈ Li, z = z1 . . . zs−kzs−k+1 . . . zs, let us consider the
following instruction (set of instructions):

(Σ ∪ {¢}, z1 . . . zs−k → ∆i+m0−1, zs−k+1 . . . zs) .

Let I2 be the set of all such instructions. Then M = (Σ, I1∪I2) is the required
automaton. Note that |z1 . . . zs−k| − |∆i+m0−1| = (s − k) − (i + m0 − 1) ≥
(p+1−k)− (m+m0−1) = m+m0 +m1 +k−2+1−k−m−m0 +1 = m1.

The proof of L(G′) ⊆ LC(M) (LC(M) ⊆ L(G′) ∪ {λ}, respectively) is
analogous to the proof of Lemma 4.3.2 (Lemma 4.3.3, respectively).

Lemma 4.3.5. For each t ≥ 1, we can set the parameters m1 and k so that,
for each instruction φ = (x, u→ ∆r, y) ∈ I2, there exists a subword v ∈ Σ∗

(i.e. not containing ∆) of u with length |v| ≥ t.

Proof. Set k := t and m1 := 2t + m − 1. Let us consider any φ = (x, u →
∆i+m0−1, y) ∈ I2. If u ∈ Σ∗, then we set v := u and we obtain |v| = |u| ≥
(i + m0 − 1) + m1 ≥ t. Suppose that there are some letters ∆ in u. If in
u we can find two consecutive continuous sequences of letters ∆, then at
least k letters from Σ separate these two sequences. We can set v to be this
separator. Suppose that there is at most one continuous sequence of letters
∆, i.e. u = w1∆j+m0−1w2 for some w1, w2 ∈ Σ∗ and 1 ≤ j ≤ m. We know
that |w1| + (j + m0 − 1) + |w2| − (i + m0 − 1) ≥ m1. On the other hand,
|w1|+(j+m0−1)+|w2|−(i+m0−1) = |w1|+|w2|+j−i ≤ |w1|+|w2|+m−1,
since 1 ≤ i, j ≤ m. Accordingly, |w1|+ |w2|+m− 1 ≥ m1. The bigger of the
words w1, w2 has the length at least 1

2
(m1 −m+ 1) = t.

In the following, we would like to outline what we think is a promising
way to transform a k-∆∗cl-RA-automaton M obtained from the previous
construction into an equivalent ∆cl-RA-automaton N . First suppose that
we do this transformation in a trivial way, i.e. we transform each instruction
φ = (x, u→ ∆i, y) of M , where i > 1 and u = z1 . . . zs, into a set of so-called
partial instructions:

φ1 = (x, z1 → ∆, z2z3 . . . zs, y),
φ2 = (x∆, z2 → ∆, z3z4 . . . zs, y),
. . .
φi−1 = (x∆i−2, zi−1 → ∆, zizi+1 . . . zs, y),
φi = (x∆i−1, zizi+1 . . . zs → ∆, y).

87

Apparently, this technique gives us only the inclusion L(M) ⊆ L(N). The
other inclusion is not guaranteed. The problem is that we can find two
different instructions φ and ψ in M such that they have different partial
instructions φi and ψj applicable in the same context. One possible way how
to avoid such situations is to introduce some new special instructions, which
will encode some extra information into u by rewriting some letters with
auxiliary ∆-symbols. Using Lemma 4.3.5 we can guarantee a long enough
subword v ∈ Σ∗ in u, which we can use to encode this information. However,
it is an open problem how to encode the extra information into this subword
in order to avoid collisions between partial instructions.

88

Conclusion

We have successfully achieved the main goal of the thesis, which was to
study more restricted models of restarting automata – called clearing restart-
ing automata – which based on a limited context can either delete a sub-
string of the current content of its tape or replace a substring by one (or
more than one) auxiliary symbol ∆. We have investigated several proper-
ties of these automata including their relation to Chomsky hierarchy and
possibilities for machine learning of these automata from positive and neg-
ative samples. Moreover, the results in this thesis were presented in two
workshops: ABCD workshop, held in Prague, Czech Republic, March 27
– 29, 2009 (http://ksvi.mff.cuni.cz/workshop/abcd09/) and
NCMA workshop, held in Wroclaw, Poland, August 31 – September 1, 2009
(http://www.informatik.uni-giessen.de/ncma2009/). An ex-
tetended version of the paper from the NCMA workshop was accepted for
publication in Fundamenta Informaticae ([6]).

The formal study of clearing restarting automata has just started and
several theoretical questions are still open or under investigation. In the
following we present some concluding remarks and mention several open
problem.

We have seen that knowing some sample computations (or reductions)
of a k-cl-RA-automaton (or k-∆cl-RA-automaton) it is extremely simple to
infer its instructions. This implies an interesting property of being learnable
for them. Moreover, the instructions of a ∆cl-RA-automaton are easily “hu-
man readable”, which is an advantage for their possible applications, e.g. in
linguistics.

L(cl-RA) is incomparable with the class of string languages defined by
ALD – associative language descriptions ([7]). An ALD can define the lan-
guage L1 from Section 3.4 ([7]), while L1 cannot be recognized by any cl-RA-
automaton (Theorem 3.4.1). On the other hand, no ALD can define a non-
context-free string language, but cl-RA-automata can (Theorem 3.6.1).

89

http://ksvi.mff.cuni.cz/workshop/abcd09/
http://www.informatik.uni-giessen.de/ncma2009/

Unfortunately, we still do not know whether ∆cl-RA-automata can rec-
ognize all context-free languages. If we generalize k-∆cl-RA-automata by
enabling them to use any number of auxiliary symbols: ∆1,∆2, . . . ,∆n in-
stead of single ∆, then we increase their power up-to context-sensitive lan-
guages. Such automata can easily accept all languages generated by context-
sensitive grammars with productions of the following three forms only:
A → a,A → BC,AB → AC, where A, B, C are nonterminals and a is
a terminal. This normal form of context-sensitive grammars is called one-
sided normal form [30]. Penttonen showed that for every context-sensitive
grammar there exists an equivalent grammar in one-sided normal form.

Many other questions are waiting for further research:

• What is the smallest alphabet Σ such that there exists a 2-cl-RA-
automaton M = (Σ, I) recognizing a non-context-free language?

• What is the difference between language classes of L(k-cl-RA) and
L(k-∆cl-RA) for different values of k?

• What is the difference between language classes L(∆cl-RA) and L(∆∗cl-RA)?

• Can ∆cl-RA-automata recognize all context-free languages?

• Can ∆cl-RA-automata recognize all string languages defined by ALD’s?

• What is the relation between L(∆cl-RA) and the class of one counter
languages, simple context-sensitive grammars (they have single non-
terminal), etc?

90

Bibliography

[1] Autebert J.-M., Berstel J., Boasson L. (1997): Context-Free Lan-
guages and Pushdown Automata, Handbook of Formal Languages, Vol-
ume I. Word, Language, Grammar, (G. Rozenberg, A. Salomaa, Eds.),
Springer-Verlag New York, Inc., 111–174.

[2] Balcázar J. L., Dı́az J., Gabarró J. (1988): Structural Complexity I,
EATCS Monographs on Theoretical Computer Science (W. Brauer,
G. Rozenberg, A. Salomaa, Eds.), Volume 11, Springer–Verlag Berlin
Heidelberg.

[3] Balcázar J. L., Dı́az J., Gabarró J. (1990): Structural Complexity II,
EATCS Monographs on Theoretical Computer Science (W. Brauer,
G. Rozenberg, A. Salomaa, Eds.), Volume 22, Springer–Verlag Berlin
Heidelberg.

[4] Buntrock G., Otto F. (1998): Growing Context-Sensitive Languages
and Church-Rosser Languages, Information and Computation 141(1),
1–36.

[5] Černo P. (2008): Bachelor Thesis, Charles University in Prague, Faculty
of Mathematics and Physics, 2008, Prague.

[6] Černo P., Mráz. F. (2009): Clearing Restarting Automata, Workshop on
Non-Classical Models for Automata and Applications (NCMA) (H. Bor-
dinh, R. Freund, M. Holzer, M. Kutrib, and F. Otto, Eds.), Volume 256
of books@ocg.at, Österreichisches Computer Gesellschaft, 77–90. An ex-
tetended version of the paper was accepted for publication in Funda-
menta Informaticae.

[7] Cherubini A., Reghizzi S. C., Pietro P. S. (2002): Associative Language
Descriptions, Theoretical Computer Science 270(1-2), 463–492.

91

[8] Dahlhaus E., Warmuth M. K (1986): Membership for Growing Context-
sensitive Grammars is Polynomial, Journal of Computer and System
Sciences 33(3), 456–472.

[9] Ehrenfeucht A., Păun G., Roszenberg G. (1997): Contextual Grammars
and Formal Languages, Handbook of Formal Languages, Volume II.
Linear Modeling: Background and Application, (G. Rozenberg, A. Sa-
lomaa, Eds.), Springer-Verlag New York, Inc., 237–293.

[10] Greibach S. A. (1973): The Hardest Context-Free Language, SIAM
Journal on Computing 2(4), 304–310.

[11] Hofbauer D., Waldmann J. (2004): Deleting String Rewriting Systems
Preserve Regularity, Theoretical Computer Science 327(3), 301–317.

[12] Hopcroft J. E., Motwani R., Ullman J. D. (2000): Introduction to Au-
tomata Theory, Languages, and Computation, Addison Wesley, 2nd
edition, November 2000.

[13] Jančar P., Mráz F., Plátek M., Vogel J. (1995): Restarting Automata,
Fundamentals of Computation Theory, FCT 1995, Proc. (H. Reichel,
Ed.), LNCS 965, Springer, 283–292.

[14] Jančar P., Mráz F., Plátek M., Vogel J. (1997): On Restarting Au-
tomata with Rewriting, New Trends in Formal Languages (G. Paun,
A. Salomaa, Eds.), LNCS 1218, Springer, 119–136.

[15] Jančar P., Mráz F., Plátek M., Vogel J. (1998): Different Types of Mono-
tonicity for Restarting Automata, FSTTCS 1998, Proc. (V. Arvind,
R. Ramanujam, Eds.), LNCS 1530, Springer, 343—354.

[16] Jančar P., Mráz F., Plátek M., Vogel J. (1999): On Monotonic Au-
tomata with a Restart Operation, Journal of Automata, Languages
and Combinatorics 4(4), 287–312.

[17] Jančar P., Mráz F., Plátek M., Vogel J. (2007): Monotonicity of Restart-
ing Automata, Journal of Automata, Languages and Combinatorics
12(3), 355–371.

[18] Kutrib M., Messerschmidt H., Otto F. (2008): On Stateless Two-
Pushdown Automata and Restarting Automata, Automata and Formal

92

Languages, AFL, Proc. (E. Csuhaj-Varjú, Z. Ésik, Eds.), Computer and
Automation Research Institute, Hungarian Academy of Sciences, Bu-
dapest, 257–268.

[19] Lopatková M., Plátek M., Kuboň V. (2005): Modeling Syntax of Free
Word-Order Languages: Dependency Analysis by Reduction, Text,
Speech and Dialogue, TSD 2005, Proc. (V. Matousek, P. Mautner,
T. Pavelka, Eds.), LNCS 3658, Springer, 140–147.

[20] Marcus S. (1969): Contextual Grammars, Revue Roum. Mathy. Pures
Appl. 14(10), 1525–1534.

[21] Marcus S. (1997): Contextual Grammars and Natural Languages,
Handbook of Formal Languages, Volume II. Linear Modeling: Back-
ground and Application, (G. Rozenberg, A. Salomaa, Eds.), Springer-
Verlag New York, Inc., 215–235.

[22] Mateescu A., Salomaa A. (1997): Aspects of Classical Language Theory,
Handbook of Formal Languages, Volume I. Word, Language, Grammar,
(G. Rozenberg, A. Salomaa, Eds.), Springer-Verlag New York, Inc.,
175–251.

[23] Mateescu A., Salomaa A. (1997): Formal Languages: an Introduction
and a Synopsis, Handbook of Formal Languages, Volume I. Word, Lan-
guage, Grammar, (G. Rozenberg, A. Salomaa, Eds.), Springer-Verlag
New York, Inc., 1–39.

[24] Maurer H. A., Salomaa A. K., Wood D. (1980): Pure Grammars, In-
formation and Control 44(1), 47–72.

[25] McNaughton R., Narendran P., Otto F. (1988): Church-Rosser Thue
Systems and Formal Languages, Journal of the ACM (JACM) 35(2),
324–344.

[26] Mráz F., Otto F., Plátek M. (2006): Learning Analysis by Reduc-
tion from Positive Data, Grammatical Inference: Algorithms and Ap-
plications, ICGI 2006, Proc. (Y. Sakakibara, S. Kobayashi, K. Sato,
T. Nishino, E. Tomita, Eds.), LNCS 4201, Springer, 125–136.

[27] Otto F. (2006): Restarting Automata, Recent Advances in Formal Lan-
guages and Applications, (Z. Esik, C. Mart́ın-Vide, V. Mitrana, Eds.),

93

Volume 25 of Studies in Computational Intelligence, Springer-Verlag
Berlin Heidelberg, 269–303.

[28] Pǎun G. (1998): Marcus Contextual Grammars, Volume 67 of Studies
in Linguistics and Philosophy, Springer.

[29] Plátek M. (2001): Two-Way Restarting Automata and J-Monotonicity,
SOFSEM 2001, Proc. (L. Pacholski, P. Ružička, Eds.), Volume 2235 of
Lecture Notes in Computer Science, Springer-Verlag Berlin Heidelberg,
316–325.

[30] Rozenberg G., Salomaa A., Eds. (1997): Handbook of Formal Lan-
guages, Volume I. Word, Language, Grammar, Springer-Verlag New
York, Inc.

[31] Sheng Yu (1997): Regular Languages, Handbook of Formal Languages,
Volume I. Word, Language, Grammar, (G. Rozenberg, A. Salomaa,
Eds.), Springer-Verlag New York, Inc., 41–110.

94

Index

2S, 5
LCk, 45
LC≤k, 47
RCk, 45
RC≤k, 47
ALD, 32–35, 48, 89, 90
Accept, 39–41
CFL, 11, 21, 24, 42, 62, 73, 75
CR language, 31
CR system, 30, 31

defining, 31
CR-decidable language, 31
CSL, 21, 22, 24, 55
DCFL, 18, 42
DFA, 6–9

complete, 7
reduced, 7

∆∗cl-RA-automaton, 83, 85, 90
∆cl-RA-automaton, 77, 82, 83, 86,

87, 89, 90
∆-clearing restarting automaton, see

(k−)∆cl-RA-automaton, 75
∆∗-clearing restarting automaton,

see (k−)∆∗cl-RA-automaton,
75, 82

EC, 27
ECC, 27
ECCc, 27
FA, 6, 9
Fin, 4

GCSL, 24
IC, 27
ICC, 27
ICCc, 27
Intk(u), 3, 5
LBA, 23
Lin, 19, 24
MVL, 38–40
MVR, 38–40
NFA, 7–9
NNFA, 8
Ocl, 20
PCF, 29
PLI, 29
Pref k(u), 2, 5, 55
R-automaton, 42, 50
RE, 21, 22, 24
RL-automaton, 41, 42
RLW-automaton, 41
RLWW-automaton, 37, 40–42
RR-automaton, 42, 48, 49, 52, 55
RRW-automaton, 42
RRWW-automaton, 37, 40–42
RW-automaton, 42
RWW-automaton, 36, 37, 41, 42
Reg, 21, 24
Restart, 39
Rewrite, 39–42
Suff k(u), 2, 5, 55
TC, 27

95

TCc, 27
cl-RA-automaton, 43, 48–53, 55, 56,

61, 73, 75–77, 79, 89
det-, 39
dpda, 18
k-CRS-system, 45–47, 53, 77, 83
1-CRS-system, 58, 59, 61, 67
2-CRS-system, 69
k-∆∗cl-RA-automaton, 83, 86, 87
1-∆∗cl-RA-automaton, 83, 84
k-∆cl-RA-automaton, 77, 89, 90
1-∆cl-RA-automaton, 77, 78
k-cl-RA-automaton, 43, 47, 48, 50,

55, 89, 90
1-cl-RA-automaton, 44, 48, 52, 53,

62, 73
2-cl-RA-automaton, 44, 63–65, 68,

73, 90
3-cl-RA-automaton, 44, 68, 69, 73
4-cl-RA-automaton, 43, 55, 57
λ-NFA, 8, 9
λ-closure, 8
λ-free morphism, see morphism
λ-free substitution, see substitution
L0, 21, 22
L1, 21, 22
L2, 21
L3, 21
P(S), 5
mon-, 42
pda, 17–20
pdm, 16–18

quadratic form, 17

accepting configuration, see config-
uration

alphabet, 2
binary, 3
input, 6, 37, 40, 41, 45

one-letter, 43, 50, 51
tape, 38, 41
working, 45

analysis by reduction, 35, 36
associative language description, see

ALD, 25, 32, 33, 48, 50, 77,
89

auxiliary symbol, 36, 39, 41, 42, 77,
89, 90

axiom, 12, 22, 26, 29

Boolean operation, see operation

canonical form, 31
catenation, see concatenation, 2
choice mapping, 26
Chomsky hierarchy, 20, 28, 89
Chomsky normal form, see normal

form
Church-Rosser language, see lan-

guage, CR-language
Church-Rosser property, 30, 31
Church-Rosser string rewriting sys-

tem, 25, 29
Church-Rosser system, see CR sys-

tem
Church-Rosser-decidable language,

see language, CR-decidable
language

circle-square jump, 66
circle-square recovery, 66
circle-square representation, 44, 58,

66, 67, 69
clearing restarting automaton, see

(k−)cl-RA-automaton, 25,
43, 47, 53, 75, 89

meta-algorithm, 55
closure properties, 24, 43, 52
complementation, 3, 24

96

computation, 8, 17, 19, 31, 39–42,
49, 56, 76, 89

accepting, 41
monotone, 42
relation, 7
step, 7
valid, 16

concatenation, 2, 3, 24, 53
closure, 3

configuration, 7, 16, 39, 41, 42
accepting, 7, 17, 39
halting, 39
initial, 39, 40, 42
internal, 16

accepting, 17
accessible, 17
co-accessible, 17
initial, 17

rejecting, 39
restarting, 39
starting, 7, 17

constituent, 32
constraint, 41
context, 26, 53

left, 33, 45, 50
right, 33, 45

context extension theorem, 46
context rewriting system, see (k−)CRS,

43, 45
dual, 46

context-free grammar, see grammar
context-free language, see language,

CFL, L2

context-sensitive grammar, see gram-
mar

context-sensitive language, see lan-
guage, CSL, L1

contextual grammar, 25, 26, 32

total, see TC, TCc, 26
external, see ECC, ECCc, 26
internal, see ICC, ICCc, 26

without choice, see EC, IC, 27
copy, 14
correctness preserving theorem, 40,

47
cycle, 39–42

left distance, 42
right distance, 42

derivation, 12, 24, 26
direct, 22, 26
external, 27
internal, 27
leftmost, 13
relation, 22
rightmost, 13

derivation rule, see production, 12
derivation tree, see tree
dual system, 46
duality theorem, 46
Dyck language, 14, 20, 53

semi-Dyck language, 76

empty word, see word
error preserving theorem, 40, 47,

49
ether, 44, 63, 64, 68, 70

property, 63, 66

factor, 2, 70
weight, 70

factorization, 2, 70
finite automaton, see FA, 4, 6

deterministic, see DFA, 6
extended, 9
nondeterministic, see NFA, NNFA,

λ-NFA, 7

97

finite substitution, see substitution
finite transducer, 8
frontier, 32

grammar
context-free, 11, 12, 21, 35, 62,

83, 86
context-sensitive, 21, 22, 24, 90

growing, 24
one-sided normal form, see nor-

mal form
left-linear, 6, 19
length-increasing, 22
linear, 19
monotonous, 22
parenthetic, 20
phrase-structure, 21, 22
proper, 14
pure parenthetic, 20
regular, 19, 21
right-linear, 6, 19
simple, 20
trim, 13
type 0, 21, 22
type 1, 21, 22
type 2, 21
type 3, 21
unambiguous, 13
very simple, 20

Greibach normal form, see normal
form

Greibach’s hardest context-free lan-
guage, see hardest context-
free language

growing context-sensitive grammar,
see grammar

growing context-sensitive language,
see language, GCSL

halting configuration, see configu-
ration

hardest context-free language, 32,
75, 82

identity condition, 30
initial configuration, see configura-

tion
instruction, 45, 89

dual, 46
prefix-rewriting, 50
suffix-rewriting, 50
width, 47

interior words, see Intk(u), 3
intersection, 3, 24, 53

with regular language, 24, 53,
56, 61

inverse morphism, see morphism
inverse substitution, see substitu-

tion

jump, 64, 66

Kleene plus, 3
Kleene star, 3, 24

language, 3
k-testable, 5
ambiguous, 13
atomic, 4
characteristic, 77, 78, 83
Church-Rosser, see CR-language,

31
congruential, 31

Church-Rosser-decidable, see CR-
decidable language, 31

context-free, see CFL, L2, 11,
12, 18, 20, 21, 24, 35, 37,
42–44, 51, 52, 55, 61, 75,
76, 82, 83, 85, 90

98

deterministic, see DCFL, 18,
31, 37

deterministic-prefix, 18
context-sensitive, see CSL, L1,

21, 22, 24, 55, 90
growing, see GCSL, 21, 42

empty, 4
finite, see Fin, 3, 4
infinite, 3, 4
linear, see Lin, 19
locally testable, 5
mirror image, 3
non-context-free, 43, 44, 55, 56,

63, 68, 89, 90
noncounting, 5
one-counter, see Ocl, 20, 90
parenthetic, 20
pure, see PCF, PLI, 29
pure parenthetic, 20
recursively enumerable, see RE,
L0, 21, 22, 47

regular, see Reg, L3, 4, 6, 10,
19, 21, 29, 35, 41, 43, 50,
51, 65

reversal, 3
simple, 20
star-free, 4
stencil tree, 34
type 0, see L0, 21
type 1, see L1, 21
type 2, see L2, 21
type 3, see L3, 21
unambiguous, 13, 19

language recognized by
accepting states, 17, 18
empty storage, 17, 18

left constraint, see constraint
left context, see context

left terminator, see terminator
left-derivate, 3, 24
left-linear grammar, see grammar
left-quotient, 4, 24

with regular language, 24
length, 2
letter, 2
linear bounded automaton, see LBA,

23, 55
linear grammar, see grammar
linear language, see language, Lin

Marcus contextual grammar, see con-
textual grammar

marker, 36–39, 41
maximal subtree, 32
Mealy machine, 8
membrane, 63, 68
meta-instruction, 41, 48

rewriting, 48
metasymbol, 32
metavariable, 32
mirror image, 2, 24
mode of acceptance, 17
Moore machine, 8
morphism, 5, 24, 53

λ-free, 5, 24
inverse, 5, 24, 44, 75, 76

move-left operation, see transition
step, MVL

move-right operation, see transition
step, MVR

Myhill-Nerode theorem, 11

noncounting property, 32
nonterminal, 12, 22, 28, 32, 83, 86
normal form, 12, 14

Chomsky, 14, 83, 86
cubic double Greibach, 15

99

double Greibach, 15
Greibach, 14, 15
one-sided normal form, 90
operator, 14, 15
quadratic double Greibach, 15
quadratic Greibach, 15
weak Chomsky, 14

one-sided normal form, see normal
form

operation
Boolean, 3, 4
regular, 4

overlap condition, 30

parse tree, see tree
Pascal, 24, 35
pattern, 33
permissible context, 33
phrase-structure grammar, see gram-

mar
placeholder, 32
power set, see 2S, P(S), 5
prefix, see Pref k(u), 2
production, 12, 22, 24, 29, 50, 83

λ-production, 13
relation, 50
terminal, 13

production language, 45
characteristic, 45

pumping lemma, 10
context-free language, 15
regular language, 10

pure grammar, 25–29, 32
context-free, see PCF, 29
context-sensitive, 29
length increasing, see PLI, 29

pushdown automaton, see pda, 11,
15, 17, 31, 76

deterministic, see dpda, 18
finite-turn, 19
one-counter, 20
one-turn, 19
realtime, 18
simple, 18, 20

pushdown machine, see pdm, 16
deterministic, 18
realtime, 16
simple, 16

read/write window, 36–39, 41
possible contents, 38

recovery, 44, 63–66
recursively enumerable language, see

language, RE, L0

reduction, 30, 50, 86, 89
relation, 50

reduction language, 45
characteristic, 45

regular expressions, 6, 9
regular language, see language, Reg,

L3

regular operation, see operation
regular substitution, see substitu-

tion
rejecting configuration, see config-

uration
restart operation, see transition step,

Restart
restarting automaton, see RRWW-

automaton, 25, 35–37, 40,
41, 43, 48, 89

deterministic, 39, 40, 42, 56
monotone, 37, 42
nondeterministic, 39, 40
two-way, 37, 39
with rewriting, 36

100

restarting configuration, see con-
figuration

reversal, see mirror image, 2
rewrite operation, see transition step,

Rewrite
rewriting relation, 40, 45, 48, 77,

83
dual, 46
in the context, 45

rewriting rule, 22, 29, 50
prefix-rewriting, 50
suffix-rewriting, 50

right constraint, see constraint
right context, see context
right terminator, see terminator
right-derivate, 4, 24
right-linear grammar, see grammar
right-quotient, 4, 24

with regular language, 24
rule, 16, 30, 33, 45, 50

λ-rule, 16
decreasing, 17
increasing, 17
length-reducing, 30
prefix-rewriting, 50
stationary, 17
suffix-rewriting, 50

scattered subword, see subword
sentinel, 45

left, 50
set difference, 53
shuffle, 3, 4, 24
signal, 44, 63–65, 67, 68

spreading, 64, 67
start symbol, see axiom, 22
state, 6, 37, 42

accepting, 17

current, 39
final, 7
initial, 36, 38, 39
starting, 6, 8

stencil tree, see tree
step, see transition step
string, 2
string language, 34
string rewriting system, 50
substitution, 5, 24

λ-free, 5, 24
finite, 5
inverse, 6
regular, 5

substring condition, 30
subword, 2

scattered, 2, 41
suffix, see Suff k(u), 2
symbol, 2

basic, 63, 68
wave, 63

tail, 39, 41, 42
tape, 36, 37, 39
terminal, 12, 22, 28, 83
terminal letter, see terminal
terminator

left, 33
right, 33

Thue system, 29
transition, see transition step, 7,

16
λ-transition, 7, 9, 16
function, 6, 7
relation, 16, 38

transition step, 38
accept, see Accept, 39, 41
delete/restart, 36

101

move-left, see MVL, 37, 38
move-right, see MVR, 36
restart, see Restart, 36, 37, 39,

41
rewrite, see Rewrite, 37, 38, 41
rewrite/restart, 36

tree
derivation, 13
parse, 13
stencil, 32

valid, 34
Turing machine, 22

union, 3, 24, 53

variable, see nonterminal, 12

word, 2
empty, 2, 49, 75

workspace theorem, 23

yield, 13

102

	Preface
	Introduction to Formal Languages
	Words and Languages
	Regular Languages
	Finite Automata
	Regular Expressions
	Properties of Regular Languages

	Context-Free Languages
	Grammars
	Normal Forms
	Pushdown Machines
	Subfamilies

	Chomsky Hierarchy
	Phrase-Structure Grammars
	Context-Sensitive Grammars
	Closure properties

	Selected Models of Formal Languages
	Marcus Contextual Grammars
	Pure Grammars
	Church-Rosser String Rewriting Systems
	Associative Language Description
	Restarting Automata

	Clearing Restarting Automata
	Context Rewriting Systems
	Clearing Restarting Automata
	Clearing restarting automata and regular languages
	(Non-)closure properties of L(cl-RA)
	A hierarchy with respect to the length of contexts
	[4]-automata recognizing non-context-free language
	[1]-automata
	[2]-automata recognizing non-context-free language
	[3]-automata recognizing non-context-free language

	Extended Clearing Restarting Automata
	Greibach's hardest context-free language
	-Clearing Restarting Automata
	*-Clearing Restarting Automata

	Conclusion
	Bibliography

