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Abstract

In this thesis, we investigate the complexity of the membership problem for pat-

tern languages. A pattern is a string over the alphabet Σ ∪ X, where X :=

{x1, x2, x3, . . .} is a countable set of variables and Σ is a finite alphabet containing

terminals (e. g., Σ := {a, b, c, d}). Every pattern, e. g., β := x1 x2 abx2 bx1 cx2,

describes a pattern language, i. e., the set of all words that can be obtained by

uniformly substituting the variables in the pattern by arbitrary strings over Σ.

Hence, u := cacaaabaabcaccaa is a word of the pattern language of β, since sub-

stituting cac for x1 and aa for x2 yields u. On the other hand, there is no way to

obtain the word u′ := bbbababbacaaba by substituting the occurrences of x1 and

x2 in β by words over Σ.

The problem to decide for a given pattern α and a given word w whether or

not w is in the pattern language of α is called the membership problem for pattern

languages. Consequently, (β, u) is a positive instance and (β, u′) is a negative ins-

tance of the membership problem for pattern languages. For the unrestricted case,

i. e., for arbitrary patterns and words, the membership problem is NP-complete.

In this thesis, we identify classes of patterns for which the membership problem

can be solved efficiently.

Our first main result in this regard is that the variable distance, i. e., the

maximum number of different variables that separate two consecutive occurrences

of the same variable, substantially contributes to the complexity of the membership

problem for pattern languages. More precisely, for every class of patterns with

a bounded variable distance the membership problem can be solved efficiently.

The second main result is that the same holds for every class of patterns with

a bounded scope coincidence degree, where the scope coincidence degree is the

maximum number of intervals that cover a common position in the pattern, where

each interval is given by the leftmost and rightmost occurrence of a variable in the

pattern.

The proof of our first main result is based on automata theory. More precisely,

we introduce a new automata model that is used as an algorithmic framework in

order to show that the membership problem for pattern languages can be solved in

time that is exponential only in the variable distance of the corresponding pattern.
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We then take a closer look at this automata model and subject it to a sound

theoretical analysis. The second main result is obtained in a completely different

way. We encode patterns and words as relational structures and we then reduce

the membership problem for pattern languages to the homomorphism problem of

relational structures, which allows us to exploit the concept of the treewidth. This

approach turns out be successful, and we show that it has potential to identify

further classes of patterns with a polynomial time membership problem.

Furthermore, we take a closer look at two aspects of pattern languages that

are indirectly related to the membership problem. Firstly, we investigate the

phenomenon that patterns can describe regular or context-free languages in an

unexpected way, which implies that their membership problem can be solved ef-

ficiently. In this regard, we present several sufficient conditions and necessary

conditions for the regularity and context-freeness of pattern languages. Secondly,

we compare pattern languages with languages given by so-called extended regular

expressions with backreferences (REGEX). The membership problem for REGEX

languages is very important in practice and since REGEX are similar to pattern

languages, it might be possible to improve algorithms for the membership pro-

blem for REGEX languages by investigating their relationship to patterns. In this

regard, we investigate how patterns can be extended in order to describe large

classes of REGEX languages.



Acknowledgements

I am indebted most to Daniel Reidenbach. As my supervisor, he has been sup-

porting me throughout my research with great intensity and I profited from his

experience and his skills in many ways. At the same time, he always respected my

own individual ideas and gave me sufficient space to gain independence. Daniel’s

high demands he places on himself has been a great inspiration and encouragement

for me.

Furthermore, I would like to thank those who have enabled and encouraged

me to take up my PhD research and to write this thesis. In this regard, I am

very grateful to Dominik Freydenberger for supervising my Bachelor Thesis and

to Georg Schnitger, Detlef Wotschke and Nicole Schweikardt for their excellent

and motivating lectures about various aspects of theoretical computer science.

Last but not least, I wish to express my gratitude to my family and friends for

their continuous support in many different ways.

vi



Contents

1 Introduction 1

1.1 On Identifying a Pattern in a Word . . . . . . . . . . . . . . . . . . 1

1.2 Organisation of this Thesis . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Original Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Preliminaries 7

2.1 Words and Languages . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Patterns and Pattern Languages . . . . . . . . . . . . . . . . . . . . 9

2.2.1 Properties and Parameters of Patterns . . . . . . . . . . . . 9

2.2.2 Known Results about Pattern Languages . . . . . . . . . . . 12

2.2.2.1 The Membership Problem . . . . . . . . . . . . . . 14

2.2.3 Related Concepts . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.3.1 Extended Regular Expressions with Backreferences 18

2.2.3.2 Parameterised Pattern Matching . . . . . . . . . . 19

2.3 Two Fundamental Algorithmic Toolkits . . . . . . . . . . . . . . . . 19

2.3.1 Finite Automata . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3.2 Relational Structures . . . . . . . . . . . . . . . . . . . . . . 22

3 First Approach: Automata 25

3.1 Multi-head Automata and Pattern Languages . . . . . . . . . . . . 25

3.2 Nondeterministically Bounded Modulo Counter Automata . . . . . 29

3.2.1 Janus Automata . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3 Large Classes of Patterns with a Polynomial Time Membership Pro-

blem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.3.1 Janus Automata for Pattern Languages . . . . . . . . . . . . 34

3.3.2 Patterns with Restricted Variable Distance . . . . . . . . . . 46

3.3.3 Further Improvements . . . . . . . . . . . . . . . . . . . . . 58

3.4 Computing Shuffle Words with Minimum Scope Coincidence Degree 60

3.4.1 The Problem of Computing Shuffle Words with Minimum

Scope Coincidence Degree . . . . . . . . . . . . . . . . . . . 62

3.4.1.1 Scope Reduced Words . . . . . . . . . . . . . . . . 64

vii



Contents viii

3.4.2 Further Properties of the Scope Coincidence Degree . . . . . 66

3.4.3 Solving the Problem SWminSCDΣ . . . . . . . . . . . . . . 69

3.4.4 A Remark on the Lower Complexity Bound . . . . . . . . . 82

4 Interlude 84

4.1 A Formal Study of NBMCA . . . . . . . . . . . . . . . . . . . . . . 84

4.1.1 Expressive Power . . . . . . . . . . . . . . . . . . . . . . . . 86

4.1.2 Decidability . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.1.3 NBMCA without States . . . . . . . . . . . . . . . . . . . . 102

4.1.4 Stateless NBMCA with Bounded Resets . . . . . . . . . . . 111

4.2 Nondeterministically Initialised Multi-head Automata . . . . . . . . 126

4.2.1 Automata With Restricted Nondeterminism . . . . . . . . . 128

4.2.2 The Expressive Power of IFA(k) and NFAm(k) . . . . . . . . 128

4.2.3 Recognising Pattern Languages Deterministically . . . . . . 135

5 Second Approach: Relational Structures 137

5.1 A Meta-Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

5.1.1 Patterns and Words as Relational Structures . . . . . . . . . 138

5.1.2 Reduction to the Homomorphism Problem for Relational

Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

5.2 Application I: The Scope Coincidence Degree . . . . . . . . . . . . . 145

5.3 Application II: Mildly Entwined Patterns . . . . . . . . . . . . . . . 149

5.4 Ideas for Further Applications . . . . . . . . . . . . . . . . . . . . . 154

6 Pattern Languages and the Chomsky Hierarchy 156

6.1 Definitions and Known Results . . . . . . . . . . . . . . . . . . . . 157

6.2 Regularity and Context-Freeness of Pattern Languages: Sufficient

Conditions and Necessary Conditions . . . . . . . . . . . . . . . . . 158

6.3 Regularity of E-Pattern Languages: A Sufficient Condition Taking

Terminal Symbols into Account . . . . . . . . . . . . . . . . . . . . 171

7 Beyond Pattern Languages 180

7.1 Patterns with Regular Operators and Types . . . . . . . . . . . . . 182

7.2 Pattern Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

7.3 REGEX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

7.4 REGEX with a Bounded Number of Backreferences . . . . . . . . . 200

8 Conclusions and Discussion 205

8.1 Summary of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . 205

8.2 Discussion of the Results . . . . . . . . . . . . . . . . . . . . . . . . 208



Contents ix

8.3 Further Research Ideas . . . . . . . . . . . . . . . . . . . . . . . . . 209

References 211



Chapter 1

Introduction

1.1 On Identifying a Pattern in a Word

According to the Oxford Dictionary [57], the term pattern describes “something

serving as a model”. In this regard, the mould that is used by a smith in the

manufacturing process of a knife as well as the templates used by a tailor in the

production of textiles both are patterns. Hence, a pattern can have the function

of a blueprint that is used in order to produce copies of one and the same object

with a preferably high grade of precision.

On the other hand, patterns are used in a much less precise way in order to

describe sets of different objects that show similarities only in few details. For

example, the terms ballad, sonnet or limerick describe patterns for poems, and

the terms opera, sonata or fugue are used in order to describe different forms of

musical pieces. The expressiveness of these kinds of patterns is usually large and

they constitute essential and powerful means of communication. However, their

advantages come at a high cost: while a layman, provided with the appropriate

measuring instruments, is well able to identify those knifes that do not meet a

certain standard or those textiles that contain manufacturing errors, it takes some

expert knowledge to tell whether or not a musical piece is a fugue.

Consequently, for patterns the following question is crucial: given an arbitrary

object, does this object satisfy a certain pattern? Furthermore, the more expres-

sive a pattern is, the more complex it seems it is to answer this question. But

how exactly can we quantify the expressive power of a pattern? To this end, we

interpret a pattern as a formal descriptor of a set of objects, i. e., the set of all

objects that satisfy the pattern. In this regard, a mould for knifes or a template

for cloth are descriptors of rather boring sets of objects, i. e., the set of identical

knifes of some kind and the set of identically shaped pieces of cloth, respectively.

The term fugue, on the other hand, is a descriptor of an interesting and complex

1



Chapter 1. Introduction 2

class of musical pieces.

The above developed definitions of patterns on the one hand and objects that

satisfy patterns on the other hand are rather informal. In this thesis, we wish to

study, in a formal sense, the complexity of computing the answer to instances of

the question whether or not a given object satisfies a certain pattern. Hence, a

mathematically sound formalisation is required.

To this end, we apply the most fundamental mathematical objects that are

commonly used in order to encode and represent information and that are pro-

cessable by computers: sequences of symbols. For the sake of concreteness, we

define an alphabet of terminal symbols Σ := {a, b, c} and we call every sequence

of terminal symbols a word. For example, w1 := abacbab, w2 := aaaacaaab and

w3 := accbcccbb all are words. If a word contains variables (possibly in addition

to terminals) from the set X := {x1, x2, x3, . . .}, then we call it a pattern1. Thus,

α := ax1 cx1 b is an example of a pattern. Intuitively, the variables in a pattern

are placeholders for other words. Hence, in accordance with our initial view of

patterns as production tools, the patterns defined here are blueprints for words,

where the positions labeled by a variable are placeholders for other components,

which are taken from the set of words over Σ. More precisely, α describes all words

that can be obtained by substituting both occurrences of x1 by just some word.

Naturally, we have to substitute both occurrences of variable x1 by the same word,

since otherwise it does not make sense to use different variables in the first place.

We conclude that α describes the pattern language L(α) := {au cu b | u ∈ Σ+},
where Σ+ denotes the set of all (non-empty) words over the alphabet Σ and we

say that all words w ∈ L(α) satisfy the pattern α. The following illustration

demonstrates that in fact the above defined words w1, w2 and w3 all satisfy α:

w1 = a
x1

ba c
x1

ba b,

w2 = a
x1

aaa c
x1

aaa b,

w3 = a
x1

ccb c
x1

ccb b .

Deciding for a given word w on whether or not it is a member of L(α) is not very

difficult. It can be done by checking whether or not all of the following conditions

are satisfied (in the following, |w| denotes the length of a word w):

1It goes without saying that the above definition is just one possible way to formalise a pattern
in a word. There exist a large number of quite different mathematically sound formalisations
of patterns in mathematical objects, each of which caters for specific aspects and is tailored to
certain mathematical problems. Our concept of patterns is due to Dana Angluin and we shall
explain the role of these patterns and their importance for theoretical computer science in more
detail in Section 2.2.2.
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� |w| is odd.

� The first symbol of w is a, the last symbol of w is b and the symbol in the

middle is c.

� The factor between the first and middle symbol and the factor between the

middle and last symbol are equal.

However, this is an ad hoc procedure, which cannot be generalised to more involved

patterns as, e. g., β := x1 ax2 x3 x1 x3 bx2 x1. Intuitively, in order to check whether

or not a word w satisfies β, we have to check whether or not there exist words

u1, u2, u3 ∈ Σ+, such that w can be written as (or, more formally, can be factorised

into) w = u1 au2 u3 u1 u3 bu2 u1. This, as it seems, is only possible by trying out

a large number of different factorisations of w. In fact, if the complexity classes P

and NP do not coincide, then it can be shown that for the class of all possible such

patterns, this question cannot be answered in a way that is essentially better than

testing all possible factorisations. More precisely, this problem, which we call the

membership problem for pattern languages, is NP-complete.

In order to develop a gut feeling for the complexity of the membership problem,

we now take a more general point of view. Let α be a pattern of form y1 y2 · · · yn,

yi ∈ X, 1 ≤ i ≤ n, i. e., it does not contain any terminal symbols which makes

the following considerations easier (and, at the same time, the loss of generality

caused is negligible). Solving the membership problem for α and a given word w is

the task of finding a factorisation w = u1 u2 · · ·un, ui ∈ Σ+, 1 ≤ i ≤ n, such that,

for every i, j, 1 ≤ i < j ≤ n, if yi = yj, then ui = uj follows. More intuitively

speaking, we have to decompose w in n factors in such a way that all the factors

corresponding to the same variable in α (which comprises exactly n occurrences

of variables) are equal. Trying out all possible factorisations is a correct, but

time-consuming way to solve this task.

On second thoughts, we observe that the number of factorisations that we

have to investigate does not depend on the length of the pattern, but rather on

the number of different variables. If α contains only 2 variables, all that needs to

be done is to consider all possibilities to allocate a factor to each variable, since this

already implies a full factorisation of w. For example, in order to check whether or

not a word w satisfies x1 x2 x2 x1 x2 x1 x2, we enumerate all tuples (u1, u2), where

u1 and u2 are words with |u1| ≤ |w| and |u2| ≤ |w|, and then check whether or not

w = u1 u2 u2 u1 u2 u1 u2. We can further boost this algorithm by enumerating only

those tuples (u1, u2) that satisfy 3 |u1| + 4 |u2| = |w|, since if this is not satisfied,

then |w| 6= |u1 u2 u2 u1 u2 u1 u2|. In the worst case, however, we have to enumerate

a number of factorisations that is exponential in the number of different variables

in the pattern.
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We are now provided with a first understanding of the complexity of the mem-

bership problem and we have also learned that the number of different variables

is the crucial parameter that contributes to its complexity. However, all these

insights are fairly basic and somewhat unsatisfying, since we can easily come up

with specific example patterns for which it is quite easy to solve the membership

problem even though the number of variables is large. There even seem to be

simple classes of patterns with an unbounded number of variables, for which the

membership problem can be solved efficiently. For example, for every n, the pat-

tern αn := x1 x2 · · ·xn x1 x2 · · ·xn describes the language {uu | u ∈ Σ+, |u| ≥ n}
and, thus, it is very easy to solve the membership problem for these kinds of

patterns. This suggests that parameters of patterns other than their number of

different variables exist that also substantially contribute to the complexity of the

membership problem. If we can identify such parameters, then it is likely that by

restricting them, we obtain classes of patterns for which the membership problem

can be solved efficiently. Consequently, the goal of this thesis can be paraphrased

in the following way:

We want to find large classes of patterns for which the membership

problem can be solved in time that is polynomial in the length of the

input word and the number of variables.

1.2 Organisation of this Thesis

The present thesis is structured in the following way. In Chapter 2, we present most

technical concepts and definitions that are used throughout the thesis. However,

some more specialised definitions are provided in the individual chapters where

they are required. In addition to basic definitions of formal language theory,

Chapter 2 also contains a detailed definition of patterns and pattern languages,

which have already been outlined in Section 1.1. Furthermore, a discussion of the

most prominent known results regarding pattern languages and their importance

in theoretical computer science and discrete mathematics is provided. Since the

membership problem for pattern languages is the main topic of this thesis, we

spend some more time on it, thoroughly explaining its different aspects. Chapter 2

is concluded with the definition of two fundamental technical concepts that play

an important role in theoretical computer science and, in the scope of this thesis,

serve as central tools in order to obtain our main results: finite automata and

relational structures in conjunction with the treewidth.

The main part of the thesis is formed by Chapters 3, 4 and 5. In Chap-

ter 3, the first approach to the problem of identifying classes of pattern languages
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with a polynomial time membership problem is presented. Since this approach is

based on finite automata, we start with a comparison of automata and pattern

languages. After that, so-called nondeterministically bounded modulo counter au-

tomata (NBMCA) are defined. This special purpose automaton model serves as

the central tool in order to prove the main result of Chapter 3, i. e., we identify

an infinite hierarchy of classes of patterns, for which the membership problem can

be solved efficiently.

Before we present our second main approach, the next chapter, Chapter 4,

is an interlude that focuses on the model of NBMCA and provides a theoretical

sound analysis of this class of automata. We investigate questions about their

expressive power and decidability properties and we also take a closer look at

stateless variants of NBMCA with and without restricted nondeterminism. The

chapter is concluded by a study of a variant of multi-head automata that is only

marginally related to pattern languages and mainly motivated by the special kind

how nondeterminism is used by NBMCA.

In Chapter 5, we identify classes of pattern languages with a polynomial time

membership problem in quite a different way as it is done in Chapter 3. More

precisely, we encode patterns and words as relational structures and thereby reduce

the membership problem for pattern languages to the homomorphism problem for

relational structures. It turns out that this is a very convenient and powerful way

to treat the membership problem.

In Chapters 6 and 7, we study two aspects of patterns that again are of indirect

importance for the membership problem. Firstly, in Chapter 6, we investigate the

phenomenon that patterns can describe regular or context-free languages in an

unexpected way. This implies that there are classes of patterns with an efficient

membership problem, simply because these patterns describe regular or context-

free languages. Secondly, in Chapter 7 we investigate possibilities to combine

pattern languages with regular expressions in order to describe subclasses of so-

called extended regular expressions with backreferences (REGEX). These REGEX

are a widely applied tool to define formal languages and they are a generalisation

of pattern languages. It is likely, although not obvious, that insights about the

membership problem for pattern languages can be transferred to REGEX.

Finally, in Chapter 8, we summarise the results presented in this thesis and

address some open questions and ideas for future research.

1.3 Original Contribution

All major results of the present thesis have been previously published by the author

in conference proceedings or journals. The following list is intended to help to
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map the results presented in the subsequent chapters to the corresponding articles:

Section 3.3 of Chapter 3 has been originally presented in [69] and Section 3.4 in [68]

and its journal version [67]. The interlude, Chapter 4, contains work published in

[70] (Section 4.1) and [71] (Section 4.2). In [72], most of the results of Chapter 5 are

contained and Chapters 6 and 7 have been presented in [73] and [77], respectively.



Chapter 2

Preliminaries

In this chapter we introduce basic and general definitions. More specific technical

concepts that are especially tailored to the results of this thesis shall be given in

the individual chapters.

We assume the reader to be familiar with the standard mathematical concepts

and notations and, furthermore, the elementary definitions in formal language and

automata theory (cf. Salomaa [76], Hopcroft et al. [32]) and complexity theory

(cf. Papadimitriou [58]).

We start this chapter by giving a brief overview of some standard definitions

concerning words and languages and then we formally define the concept of pattern

languages. After that, we discuss the known results regarding pattern languages

and explain their importance in theoretical computer science and discrete ma-

thematics, focusing on the membership problem. We conclude this chapter by

defining some classes of automata as well as relational structures and the concept

of the treewidth.

2.1 Words and Languages

Let N denote the set of all positive integers and let N0 := N ∪ {0}. The symbols

⊆ and ⊂ refer to subset and proper subset relation, respectively. For any set A,

P(A) denotes the powerset of A.

A (finite) alphabet is a (finite) set of symbols. For an arbitrary alphabet A, a

string or word (over A) is a finite sequence of symbols from A, and ε stands for

the empty word. The notation A+ denotes the set of all nonempty strings over A,

and A∗ := A+ ∪ {ε}. For the concatenation of two words u, v we write u · v or

simply u v, and uk denotes the k-fold concatenation of u, i. e., uk := u1 u2 · · ·uk,
where ui = u, 1 ≤ i ≤ k. We say that a word v ∈ A∗ is a factor of a word

w ∈ A∗ if there are u1, u2 ∈ A∗ such that w = u1 v u2. If u1 = ε (or u2 = ε),

7
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then v is a prefix of w (or a suffix, respectively). The notation |K| stands for the

size of a set K or the length of a string K. The term alph(w) denotes the set of

all symbols occurring in w and, for each a ∈ alph(w), |w|a refers to the number

of occurrences of a in w. A word w′ is a permutation of a word w if and only if

alph(w) = alph(w′) and, for every a ∈ alph(w), |w|a = |w′|a. If we wish to refer to

the symbol at a certain position in a word w = a1 a2 · · · an, ai ∈ A, 1 ≤ i ≤ n, over

some alphabet A, then we use w[i] := ai, 1 ≤ i ≤ n, and if the length of a string

is unknown, then we denote its last symbol by w[−] := w[|w|]. Furthermore, for

each j, j′, 1 ≤ j < j′ ≤ |w|, let w[j, j′] := aj aj+1 · · · aj′ and w[j,−] := w[j, |w|]. In

case that j > |w|, we define w[j,−] = ε. A word w′ is the reversal of a word w if

and only if, for every i, 1 ≤ i ≤ |w|, w[i] = w′[|w| − i+ 1]. Furthermore, for every

word w, its reversal is denoted by wR.

For any alphabets A,B, a morphism is a function h : A∗ → B∗ that satisfies

h(vw) = h(v)h(w) for all v, w ∈ A∗; h is said to be nonerasing if and only if, for

every a ∈ A, h(a) 6= ε.

For any alphabet A, a language (over A) is a set L ⊆ A∗ of words over A. For

arbitrary languages L1, L2 we define L+
1 := {u1 u2 · · ·un | ui ∈ L1, 1 ≤ i ≤ n, n ∈

N}, L∗1 := L+
1 ∪ {ε} and L1 · L2 := {u · v | u ∈ L1, v ∈ L2}.

Let u and v be words over the alphabet A. The shuffle operation, denoted by

, is a binary operation on words, defined by

u v := {x1 y1 x2 y2 · · ·xn yn | n ∈ N, xi, yi ∈ (A ∪ {ε}), 1 ≤ i ≤ n,

u = x1 x2 · · ·xn, v = y1 y2 · · · yn} .

We extend the definition of the shuffle operation to the case of more than two

words in the following inductive way. Let u, v and w be words over the alphabet

A. Then (u v) w :=
⋃
w′∈u v w w′. We note that since the shuffle opera-

tion is obviously associative, we can drop the brackets, i. e., for arbitrary words

w1, w2, . . . , wk ∈ A∗, the term w1 w2 . . . wk is well defined. Furthermore,

we call Γ := w1 w2 . . . wk the shuffle of w1, . . . , wk and each word w ∈ Γ

is a shuffle word of w1, . . . , wk. For example, bcaabac ∈ abc ba ca.

The classes of regular languages and context-free languages are denoted by

REG and CF, respectively. We use regular expressions as they are commonly

defined (see, e. g., Yu [89]) and for any regular expression r, L(r) denotes the

language described by r.

In order to prove some of the technical claims in this thesis, the following

two versions of the well-known pumping lemma for regular languages as stated in

Yu [89] will be used.

Lemma 2.1. Let L ⊆ Σ∗ be a regular language. Then there is a constant n,
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depending on L, such that for every w ∈ L with |w| ≥ n there exist x, y, z ∈ Σ∗

such that w = xyz and

1. |xy| ≤ n,

2. |y| ≥ 1,

3. xykz ∈ L for every k ∈ N0.

Lemma 2.2. Let L ⊆ Σ∗ be a regular language. Then there is a constant n,

depending on L, such that for all u, v, w ∈ Σ∗, if |w| ≥ n, then there exist x, y, z ∈
Σ∗, y 6= ε, such that w = xyz and, for every k ∈ N0, uxykzv ∈ L if and only if

uwv ∈ L.

2.2 Patterns and Pattern Languages

We shall now formally define pattern languages. Let Σ be a (finite) alphabet of

so-called terminal symbols and X an infinite set of variables with Σ ∩ X = ∅.
We normally assume X := {x1, x2, x3, . . .}. A pattern is a nonempty string over

Σ∪X, a terminal-free pattern is a nonempty string over X and a word is a string

over Σ. For any pattern α, we refer to the set of variables in α as var(α) and,

for any variable x ∈ var(α), |α|x denotes the number of occurrences of x in α. A

morphism h : (Σ ∪X)∗ → Σ∗ is called a substitution if h(a) = a for every a ∈ Σ.

Let α ∈ (Σ ∪ X)∗ be a pattern. The erasing pattern (or E-pattern) language

of α is defined by

LE,Σ(α) := {h(α) | h : (Σ ∪X)∗ → Σ∗ is a substitution} ,

and the non-erasing pattern (or NE-pattern) language of α is defined by

LNE,Σ(α) := {h(α) | h : (Σ ∪X)∗ → Σ∗ is a nonerasing substitution} .

If the difference between the E and NE case is negligible, then we use the

notation LZ,Σ(α), Z ∈ {E,NE}, in order to denote pattern languages.

2.2.1 Properties and Parameters of Patterns

A convenient way to prove results about pattern languages, e. g., about the com-

plexity of their membership problem, is to show that properties of pattern lan-

guages can be reduced to structural properties of their corresponding patterns.

Since a pattern is a special kind of word, its structure, in contrast to the structure



Chapter 2. Preliminaries 10

of a pattern language, can be easily analysed. In this section, we present pro-

perties and parameters of patterns that are crucial for the results in this thesis.

However, before we do so, we wish to define some terminology.

In the following, when we speak of a property of a pattern, then we refer to some

predicate that is either satisfied or not satisfied by any pattern. A parameter of a

pattern, on the other hand, is a function that maps a pattern to an integer. More

formally, a property of a pattern is a mapping (Σ ∪X)∗ → {true, false} and a

parameter of a pattern is a mapping (Σ ∪X)∗ → N0. For example, every pattern

either satisfies or does not satisfy the property of not containing any terminal

symbol. On the other hand, the number of variables in a pattern α, i. e., the

number | var(α)|, is probably the first parameter of patterns that comes to mind.

Although this parameter is important for a variety of questions and it obviously

contributes to the complexity of pattern languages, it is somewhat trivial in the

sense that it ignores the order of the variables, which, as shall be shown, is often

crucial.

Next, we present two important properties of patterns that have been intro-

duced by Shinohara [80]. A pattern is non-cross if and only if between any two

occurrences of the same variable x no other variable different from x occurs, e. g.,

the pattern ax1bax1x2ax2x2x3x3bx4 is non-cross, whereas x1bx1x2bax3x3x4x4bcx2

is not. A pattern is regular if and only if every variable has only one occurrence

in the pattern, e. g., ax1bax2cx3bcax4ax5bb is a regular pattern.

In this thesis, we are mainly interested in properties or parameters of patterns

that yield classes of patterns the structure of which is restricted, but the number

of variables is not. We can note that the class of non-cross patterns as well as the

class of regular patterns constitute examples of such classes.

A colourful analogy of the non-cross property is that in a non-cross pattern

every different variable occupies a territory and no variable is allowed to cross

the territory that is occupied by another variable. While it is rather clear how

a pattern looks like if we do not allow any crossing of variables in this sense, it

is not straightforward to formally quantify a certain amount of crossing, i. e., to

generalise the non-cross property to a parameter of patterns. For example, it is

not clear whether this is achieved best by counting the number of territories that

are crossed by at least one other variable or rather by taking the maximum number

of different variables that are crossing the same territory.

In the following, we present two parameters that can be interpreted as gene-

ralisations of the non-cross property. The first parameter is the variable distance.

Informally speaking, the variable distance is the maximum number of different

variables separating any two consecutive occurrences of a variable:
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Definition 2.3. The variable distance of a pattern α (or vd(α) for short) is

the smallest number k ≥ 0 such that, for every x ∈ var(α), every factorisation

α = β · x · γ · x · δ with β, γ, δ ∈ (Σ ∪X)∗ and |γ|x = 0 satisfies | var(γ)| ≤ k.

Obviously, vd(α) ≤ | var(α)| − 1 for all patterns α. To illustrate the concept

of the variable distance, we consider α := x1 x2 x3 x2 x3 x1 x4 x3 x5 x5 x4. In the

following figure, for every two successive occurrences of any variable in α, the

number of different variables occurring between these occurrences is shown:

α = x1 x2 x3 x2 x3 x1 x4 x3 x5 x5 x4

2
1 2

1 2 0

Hence, it can be easily seen that vd(α) = 2.

The second parameter is the scope coincidence degree, which, intuitively, is the

maximum number of intervals that cover a common position in the pattern, where

each interval is given by the leftmost and rightmost occurrence of a variable in the

pattern:

Definition 2.4. Let α be a pattern. For every y ∈ var(α), the scope of y in α is

defined by scα(y) := {i, i + 1, . . . , j}, where i is the leftmost and j the rightmost

position of y in α. The scopes of y1, y2, . . . , yk ∈ var(α) coincide in α if and only

if
⋂

1≤i≤k scα(yi) 6= ∅. The scope coincidence degree of α (scd(α)) is the maximum

number of variables in α such that their scopes coincide.

As an example, we consider the patterns α1 := x1 x2 x1 x3 x2 x3 x1 x2 x3 and

α2 := x1 x2 x1 x1 x2 x3 x2 x3 x3. In the following figure the scopes of the variables

in α1 and α2 are highlighted:

α1 = x1 x2 x1 x3 x2 x3 x1 x2 x3

α2 = x1 x2 x1 x1 x2 x3 x2 x3 x3

Hence, scd(α1) = 3 and scd(α2) = 2.

The variable distance as well as the scope coincidence degree can be computed

in time that is polynomial in the length of the pattern. This aspect is discussed

in a bit more detail by Proposition 3.13 on page 46 and by Proposition 3.37 on

page 80, respectively. The following lemma relates the variable distance and the

scope coincidence degree.

Lemma 2.5. Let α be a pattern. Then scd(α) ≤ vd(α) + 1.

Proof. Let scd(α) = k, which, by definition, implies that, for k distinct variables

y1, y2, . . . , yk ∈ var(α),
⋂

1≤i≤k scα(yi) 6= ∅. Furthermore, this implies that there
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exists a p, 1 ≤ p ≤ k, such that α can be factorised into α = β · yp · γ with

({y1, y2, . . . , yk}/{yp}) ⊆ (var(β) ∩ var(γ)). Now let q, 1 ≤ q ≤ k, q 6= p, be such

that β can be factorised into β = β′·yq·β′′ with ({y1, y2, . . . , yk}/{yp, yq}) ⊆ var(β′′)

and yq /∈ β′′. Since there is an occurrence of yq in γ, γ can be factorised into

γ = γ′ · yq · γ′′ with |γ′|yq = 0. Hence, α contains the factor yq · β′′ · yp · γ′ · yq,
where |β′′ ·yp ·γ′|yq = 0 and ({y1, y2, . . . , yk}/{yq}) ⊆ var(β′′ ·yp ·γ′), which implies

vd(α) ≥ k − 1 = scd(α)− 1. �

On the other hand, the variable distance cannot be bounded in terms of the

scope coincidence degree since, for example, all patterns that are of the form

x1x2x3 . . . xkxk+1x1, k ∈ N, have a variable distance of k, but a constant scope

coincidence degree of 2.

The above defined parameters of the variable distance and the scope coinci-

dence degree shall play a central role for our two main approaches to the mem-

bership problem for pattern languages presented in Chapters 3 and 5. It is shown

in Section 3.3 that the membership problem with respect to any class of patterns

with a bounded variable distance can be solved efficiently. In Section 3.4, the

scope coincidence degree is applied for the first time, but to general words instead

of patterns. More precisely, we present an algorithm for an optimisation problem

on words, where the scope coincidence degree is the corresponding optimisation

parameter. The scope coincidence degree for patterns, as this parameter is defined

above, is crucial in context of Chapter 5, where it is shown that for the membership

problem for pattern languages this parameter plays a similar role as the variable

distance, i. e., bounding the scope coincidence degree of patterns allows us to solve

their membership problem efficiently.

2.2.2 Known Results about Pattern Languages

The concept of NE-pattern languages was introduced by Angluin [6] in 1980 and

soon afterwards complemented by Shinohara [79], who included the empty word as

an admissible substitution word, leading to the definition of E-pattern languages.

As revealed by numerous studies, the small difference between the definitions of

NE- and E-pattern languages entails substantial differences between some of the

properties of the resulting (classes of) formal languages (see, e. g., Mateescu and

Salomaa [51] for a survey).

The original motivation of pattern languages (cf. Angluin [6]) is derived from

inductive inference, i. e., the task of inferring a pattern from any given sequence

of all words in its pattern language, for which numerous results can be found

in the literature (see, e. g., Angluin [6], Shinohara [79], Lange and Wiehagen [48],

Rossmanith and Zeugmann [75], Reidenbach [64, 66] and, for a survey, Ng and Shi-
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nohara [55]). On the other hand, due to their simple definition, pattern languages

have connections to many areas of theoretical computer science and discrete ma-

thematics, such as (un-)avoidable patterns (cf. Jiang et al. [41]), word equations

(cf. Mateescu and Salomaa [50]), the ambiguity of morphisms (cf. Freydenberger

et al. [22]), equality sets (cf. Harju and Karhumäki [28]) and extended regular

expressions (cf. Câmpeanu et al. [11]).

It can be easily verified that the class of pattern languages is incomparable with

the class of regular languages as well as with the class of context-free languages.

For example, the well-known copy language, which, over an alphabet of size at least

2, is not context-free, can be described by the simple pattern x1 x1. On the other

hand, pattern languages are always context-sensitive, since they can be accepted

by linear bounded nondeterministic Turing machines (in fact, as shall be mentio-

ned in Sections 3.1 and 4.2.3, pattern languages can be accepted in deterministic

logarithmic space). In the following, we shall give an overview of the current state

of research regarding the most prominent decision problems of patterns, namely

their membership problem, inclusion problem and equivalence problem. Since the

focus of this thesis is on the membership problem of pattern languages, we shall

first give a brief overview of the inclusion problem and equivalence problem and

then discuss the membership problem in more detail in Section 2.2.2.1.

For every Z ∈ {E,NE}, the inclusion problem for Z-pattern languages is the

problem to decide, for two given patterns α and β, whether or not LZ,Σ(α) ⊆
LZ,Σ(β). Similarly, the equivalence problem for Z-pattern languages is the pro-

blem to decide whether or not LZ,Σ(α) = LZ,Σ(β). In [6], Angluin has shown that

the equivalence problem for NE-pattern languages (with respect to any terminal

alphabet) is decidable. This is due to the fact that two patterns describe the

same NE-pattern language if and only if they are equal up to a renaming of va-

riables, i. e., one pattern can be obtained from the other by uniformly renaming

the variables. On the other hand, the question of whether or not the inclusion

problem for pattern languages is decidable had been open for a long time until

it was answered in the negative by Jiang et al. [42] for both the E and NE case.

More precisely, Jiang et al. [42] show that there is no effective procedure deciding

the inclusion problem for the class of all pattern languages over all alphabets. It

has later been shown that, for any fixed alphabet of size at least 2, the inclusion

problem is also undecidable for the class of pattern languages defined over this

fixed alphabet (see Freydenberger and Reidenbach [21]). Moreover, the inclusion

problem remains undecidable for patterns with a bounded number of variables

(see Bremer and Freydenberger [10]). Hence, for NE-pattern languages we have

the remarkable situation that the inclusion problem is undecidable, whereas the

equivalence problem is trivially decidable. This is a property that, according
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to Jiang et al. [42] and the references therein, is shared only by few classes of

formal languages including languages accepted by finite deterministic multi-tape

automata, simple languages and deterministic context-free languages (in fact, for

deterministic context-free languages the decidability status of the equivalence pro-

blem is still open).

The equivalence problem for E-pattern languages is much more difficult. In

fact, its decidability status is still open and it is subject to ongoing research (see,

e. g., Jiang et al. [42], Ohlebusch and Ukkonen [56], Reidenbach [65], Freydenber-

ger and Reidenbach [21]).

2.2.2.1 The Membership Problem

In this section, we discuss the membership problem for pattern languages in detail

and outline the most important known results about its complexity. First of all,

we present a formal definition:

Definition 2.6. Let Z ∈ {E,NE}, let Σ be an alphabet and let C ⊆ (Σ∪X)∗ be

a class of patterns. The membership problem for Z-pattern languages with respect

to C and Σ is defined in the following way:

Z-PATMemΣ(C) := {(α,w) | α ∈ C,w ∈ Σ∗, w ∈ LZ,Σ(α)} .

The membership problem for Z-pattern languages with respect to Σ is defined by

Z-PATMemΣ := Z-PATMemΣ((Σ ∪X)∗).

If the dependency of the alphabet is negligible or understood from the context,

then we ignore it, i. e., we write Z-PATMem(C) and Z-PATMem.

In the following, let Σ be an alphabet, let C ⊆ (Σ∪X)∗ be a class of patterns

and let Z ∈ {E,NE}. We say that Z-PATMemΣ(C) is decidable if and only if there

exists a total computable function which, for every α ∈ (Σ∪X)∗ and for every w ∈
Σ∗, decides on whether or not (α,w) ∈ Z-PATMemΣ(C). It can be easily verified

that the membership problem for pattern languages is decidable and we already

outlined in Chapter 1 how this can be done. However, regarding our definition

above, we can observe a particularity. If C is not decidable, then Z-PATMemΣ(C)

is also not decidable, since α ∈ C if and only if (α, h(α)) ∈ Z-PATMemΣ(C),

where h is some substitution. In this regard, the dependency of the class C in our

definition of the membership problem seems to be problematic. However, since

we are interested in complexity issues we shall see that this definition is suitable

for our purposes.

We say that the membership problem for Z-pattern languages with respect

to some class of patterns C and Σ (or Z-PATMemΣ(C)) can be solved in time
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O(f(n,m)) for some function f : N × N → N, if and only if there exists an

algorithm that, for any α ∈ C and w ∈ Σ∗, decides correctly on whether or not

(α,w) ∈ Z-PATMemΣ(C) in time O(f(|α|, |w|)).
It should be emphasised that the above notation particularly implies that the

algorithm solving Z-PATMem(C) can assume the input pattern α to be from

the class C, which implies that the complexity of deciding the class C is not

taken into account. This definition is convenient for us, since it allows us to

treat these two aspects, i. e., identifying classes of patterns C on the one hand

and solving the membership problem with respect to such a class on the other

hand, separately. Naturally, for all our concrete complexity results about the

membership problem with respect to some class C, we shall also explicitly mention

the complexity of deciding whether or not an arbitrary pattern is in the class

C. However, for the classes of patterns considered in this thesis, this problem

can always be solved in polynomial time, which implies that a polynomial time

solvability of the membership problem with respect to such classes C is not affected

by the complexity of deciding C.

As already mentioned in Chapter 1, the membership problem for pattern lan-

guages is NP-complete, which, for NE-pattern languages, has been shown by An-

gluin [5] and independently by Ehrenfeucht and Rozenberg [16]1 and, for E-pattern

languages, by Jiang et al. [41].

Theorem 2.7 (Angluin [5], Ehrenfeucht and Rozenberg [16], Jiang et al. [41]). Let

Z ∈ {E,NE} and Σ := {a, b}. The membership problem for Z-pattern languages

with respect to Σ is NP-complete.

We note that Theorem 2.7 implies that PATMemΣ is NP-complete for any

alphabet Σ with |Σ| ≥ 2. If, on the other hand, |Σ| = 1, then PATMemΣ can

be solved in polynomial time. This is due to the fact that, for every pattern

α ∈ (Σ∪X)∗, with |Σ| = 1, the lengths of the words of the unary language LZ,Σ(α)

are solely characterised by the number of occurrences of the variables in α, i. e.,

their order is insignificant. For example, the pattern α := ax1 x2 ax2 x1 x2 (as well

as the pattern a ax1 x1 x2 x2 x2 and, in general, every permutation of α) describes

the NE-pattern language LNE,Σ(α) = {an | ∃k1, k2 ∈ N : n = 2k1 + 3k2 + 2}. It is

straightforward to construct a finite automaton that accepts exactly LNE,Σ(α) and

this holds for all unary pattern languages. Consequently, unary pattern languages

1Ehrenfeucht and Rozenberg show that it is an NP-complete problem to decide, for two given
words u and v, where u is a word over an infinite alphabet and v is a word over a binary
alphabet, whether or not there exists a nonerasing morphism that maps u to v. Hence, in terms
of pattern languages, Ehrenfeucht and Rozenberg show a result that is slightly stronger than the
NP-completeness of NE-pattern languages, i. e., they show the NP-completeness of terminal-free
NE-pattern languages.
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are always regular languages and, thus, the membership problem can be solved in

polynomial time.2

For alphabets of size at least 2, a brute-force algorithm can solve the mem-

bership problem in time that is exponential only in the number of variables in

the pattern (for a detailed complexity analysis see Ibarra et al. [35]). Intuiti-

vely speaking, such a brute-force algorithm simply enumerates all morphisms and

checks whether or not they map the input pattern to the input word. This di-

rectly implies that if we restrict the number of variables to a constant, then the

membership problem can be solved in polynomial time. More precisely, if for a

class C of patterns there exists a constant k ∈ N, such that, for every α ∈ C,

| var(α)| ≤ k, then Z-PATMem(C) can be solved in polynomial time. This result

is neither surprising nor particularly informative. Thus, for the membership pro-

blem, classes of patterns with a bounded number of variables are usually not very

interesting3. This is in contrast to the learnability of pattern languages or their

inclusion problem since, as explained above, in these areas important results are

concerned with patterns with a bounded number of variables. In the remainder of

this section, we are mainly concerned with classes of patterns with an unbounded

number of variables for which it is known that the membership problem can be

solved efficiently.

We first consider the full class of patterns, for which the membership problem

can only be solved in polynomial time if the input words are restricted in some way.

This follows directly from the NP-completeness of the problem and the assumption

that P does not equal NP. A result of this kind is provided by Geilke and Zilles [26],

who show that the membership problem can be solved in polynomial time for the

whole class of patterns provided that the length of the input words is bounded by

a constant. More formally, Geilke and Zilles show that, for every constant k, the

class Z-PATMemΣ,k := {(α,w) | α ∈ (Σ,∪X)∗, w ∈ Σ∗, |w| ≤ k, w ∈ LZ,Σ(α)} can

be decided in polynomial time. Strictly speaking, this is not a result about the

membership problem for pattern languages, since the restriction of the input words

restricts the model of pattern languages, i. e., an algorithm deciding Z-PATMemΣ,k

2The computational problem of solving an equation with non-negative integer coefficients
as, e. g., n = 2k1 + 3k2 + 2, is often called Money-Changing-Problem and it is NP-complete,
which seems to contradict the polynomial time solvability of the membership problem with
respect to unary pattern languages. The reason for this is that the Money Changing Problem
is weakly NP-complete, i. e., it is only NP-complete since its input merely consists of numbers
in binary representation, which means that the input length for the Money Changing Problem
is exponentially smaller than for the membership problem for pattern languages, where we have
to regard the lengths of the input strings as input length of the problem.

3However, it is worth mentioning that a more refined complexity analysis of the member-
ship problem with respect to patterns with a bounded number of variables, provided by Ste-
phan et al. [83], shows that the membership problem for pattern languages is fixed parameter
intractable if parameterised by the number of variables.



Chapter 2. Preliminaries 17

solves the membership problem for any pattern α, but only for a finite subclass

of LZ,Σ(α), which, in the strict sense of the definition, is not a pattern language.

For these reasons, we shall concentrate on classes C of patterns that are such

that the membership problem for any α ∈ C and any w ∈ Σ∗ can be solved in

polynomial time, i. e., Z-PATMemΣ(C) is solvable in polynomial time. Hence, our

main research question can be stated in the following way:

Question 2.8. How can patterns be restricted in order to obtain classes C such

that Z-PATMemΣ(C) is solvable in polynomial time.

In reference to Question 2.8, it is very unlikely that a restriction of the ter-

minals in the patterns is helpful, since the membership problem remains NP-

complete even for terminal-free patterns (cf. Ehrenfeucht and Rozenberg [16],

Schneider [78]). More precisely, for every Σ with |Σ| ≥ 2 and Z ∈ {E,NE},
Z-PATMemΣ(X∗) is NP-complete.

In the following, let Creg and Cnc denote the classes of regular patterns and

non-cross patterns respectively. In Shinohara [80], it is shown that for Z ∈ {E,NE}
the membership problem for Z-pattern languages with respect to Creg or Cnc can

be solved in polynomial time. Furthermore, it can be easily seen that it can be

decided in polynomial time whether or not a given pattern is regular or non-cross.

For regular patterns the polynomial time solvability of the membership problem

follows trivially from the fact that, for any regular pattern α, LZ,Σ(α) is a regular

language. This is due to the fact that the pattern language of a regular pattern α

is the set of all words that contain the terminal segments of α in the same order as

they occur in α. For example, in the E case, the pattern x1 abx2 acbax3 cx4 acx5

describes the set of all words that contain non-overlapping occurrences of the

factors ab, acba, c and ac in exactly this order. In the NE case, we further

require that between these occurrences of the factors at least one symbol occurs.

It is straightforward to show how a finite automaton can recognise such languages.

Theorem 2.9 (Shinohara [80]). Let Σ be an alphabet and Z ∈ {E,NE}. Then

Z-PATMemΣ(Creg) is decidable in polynomial time.

Regarding non-cross patterns the situation is slightly more complicated. It

can be shown that for every non-cross pattern α, LZ,Σ(α) can be accepted by a

nondeterministic two-way 4-head automaton. For such automata, the acceptance

problem, i. e., the problem to decide whether or not a given word is accepted by

the automaton, is exponential only in the number of input heads.

Theorem 2.10 (Shinohara [80]). Let Σ be an alphabet and Z ∈ {E,NE}. Then

Z-PATMemΣ(Cnc) is decidable in polynomial time.
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To the knowledge of the author of the present thesis, the classes Creg and

Cnc are the only known non-trivial classes of patterns for which the membership

problem can be solved in polynomial time in the strict sense that Z-PATMemΣ(C),

C ∈ {Creg, Cnc}, is decidable in polynomial time.

2.2.3 Related Concepts

In this section, we mention two areas of computer science for which the member-

ship problem for pattern languages plays a central role, namely extended regular

expressions with backreferences and parameterised pattern matching.

2.2.3.1 Extended Regular Expressions with Backreferences

Since their introduction by Kleene in 1956 [45], regular expressions have not only

constantly challenged researchers in formal language theory, but they also attrac-

ted pioneers of applied computer science as, e. g., Thompson [86], who developed

one of the first implementations of regular expressions, marking the beginning of

a long and successful tradition of their practical application (see Friedl [23] for

an overview). In order to suit practical requirements, regular expressions have

undergone various modifications and extensions which lead to so-called extended

regular expressions with backreferences (REGEX for short). The introduction of

these new features of extended regular expressions has frequently not been gui-

ded by theoretically sound analyses and only recent studies have led to a deeper

understanding of their properties (see, e. g., Câmpeanu et al. [11]).

The main difference between REGEX and classical regular expressions is the

concept of backreferences. Intuitively speaking, a backreference points back to an

earlier subexpression, meaning that it has to be matched to the same word as the

earlier subexpression has been matched to. For example, r := (1 (a | b)∗ )1 ·c ·\1 is

a REGEX, where \1 is a backreference to the referenced subexpression in between

the parentheses (1 and )1. The language described by r, denoted by L(r), is the

set of all words wcw, w ∈ {a, b}∗, which is a non-regular language.

In this regard, backreferences are used in a very similar way as the variables in

patterns are used, and it is straightforward to see that pattern languages are inclu-

ded in the class of languages that can then be described by REGEX. For example,

let α := x1 ax2 x1 x1 bax2 be a pattern and let Σ be some alphabet. The language

LE,Σ(α) can be described by the REGEX (1 Σ∗ )1a(2 Σ∗ )2 \1 \1 ba \2. This directly

implies that all negative decidability results on pattern languages carry over to

REGEX languages. Furthermore, the NP-completeness of the membership pro-

blem carries over to REGEX languages as well. This is particularly worth men-

tioning as today’s text editors and programming languages (such as Perl, Python,
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Java, etc.) all provide so-called REGEX engines that compute the solution to the

membership problem for any language given by a REGEX and an arbitrary string

(cf. Friedl [23]). Hence, despite its theoretical intractability, algorithms that per-

form the match test for REGEX are a practical reality. While pattern languages

merely describe a proper subset of REGEX languages, they cover what is com-

putationally hard, i. e., the concept of backreferences. Hence, investigating the

membership problem for pattern languages helps to improve algorithms solving

the match test for extended regular expressions with backreferences.

In Chapter 7, we introduce extensions of pattern languages and investigate

their usefulness in describing REGEX languages. In this way, we gain a better

understanding of backreferences in REGEX in comparison to the weaker concept

of variables in patterns.

2.2.3.2 Parameterised Pattern Matching

The membership problem for pattern languages can also be considered as a kind

of pattern matching task, since we have to decide whether or not a given word sa-

tisfies a given pattern. In fact, this pattern matching aspect of pattern languages,

independently from Angluin’s work, has recently been rediscovered in the pattern

matching community in terms of so-called parameterised pattern matching, where

a text is not searched for all occurrences of a specific factor, but for all occurrences

of factors that satisfy a given pattern with parameters (i. e., variables). In the ori-

ginal version of parameterised pattern matching introduced by Baker [7], variables

in the pattern can only be substituted by single symbols and, furthermore, the

substitution must be injective, i. e., different variables cannot be substituted by

the same symbol. Amir et al. [3] generalise this problem by dropping the injecti-

vity condition and Amir and Nor [4] add the possibility of substituting variables

by words instead of single symbols and they also allow “don’t care” symbols to be

used in addition to variables. In 2009, Clifford et al. [14] considered parameteri-

sed pattern matching as introduced by Amir and Nor, but without “don’t care”

symbols, which leads to patterns as introduced by Angluin. In [4], motivations

for the membership problem for pattern languages can be found from such diverse

areas as software engineering, image searching, DNA analysis, poetry and music

analysis, or author validation.

2.3 Two Fundamental Algorithmic Toolkits

The two main approaches to the membership problem for pattern languages pre-

sented in this thesis utilise two technical toolkits that are tailored to algorithmic
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purposes. The first such toolkit are finite automata and the second are relational

structures in conjunction with the homomorphism problem for relational struc-

tures. In Chapters 3 and 5, it shall be explained in detail how these toolkits

serve our purpose and how they are applied in order to achieve the main results.

Hence, in this section, we only give the basic definitions regarding automata and

relational structures.

2.3.1 Finite Automata

In this section, we summarise some of the basic definitions of automata theory.

For those concepts not covered in this section, the reader is referred to Hop-

croft et al. [32].

In the whole thesis, for an arbitrary class of automata models, e. g., the set DFA

of deterministic finite automata, the expression “a DFA” refers to any automaton

from DFA. The class of deterministic and nondeterministic (one-way one-head)

automata is denoted by DFA and NFA, respectively.

Next, we define multi-head automata in a bit more detail (for a comprehen-

sive survey on multi-head automata the reader is referred to Holzer et al. [31] and

to the references therein). For every k ∈ N let 1DFA(k), 2DFA(k), 1NFA(k)

and 2NFA(k) denote the class of deterministic one-way, deterministic two-way,

nondeterministic one-way and nondeterministic two-way automata with k input

heads, respectively. A 1DFA(k), 2DFA(k), 1NFA(k) or 2NFA(k) is given as a

tuple (k,Q,Σ, δ, q0, F ) comprising the number of input heads k ≥ 1, a set of

states Q, the input alphabet Σ, the transition function δ, an initial state q0 ∈ Q
and a set of accepting states F ⊆ Q. The transition function is a mapping

Q× (Σ∪{¢, $})k → Q×Dk for deterministic and Q× (Σ∪{¢, $})k → P(Q×Dk)

for nondeterministic devices, where D, i. e., the set of input head movements, is

{0, 1} in case of one-way automata and D = {−1, 0, 1} for the two-way versions.

Let M be a 2DFA(k) or 2NFA(k). An input to M is any string of the form ¢w$,

where w ∈ Σ∗ and the symbols ¢, $ (referred to as left and right endmarker, respec-

tively) are not in Σ. Let δ(p, b1, b2, . . . , bk) 3 (q,m1,m2, . . . ,mk). For each i, 1 ≤
i ≤ k, we call the element bi the input symbol scanned by head i and mi the instruc-

tion for head i and, furthermore, we assume that bi = ¢ implies mi 6= −1 and bi = $

implies mi 6= 1. A configuration of M on some input ¢w$ is a tuple containing a

state and k positions in ¢w$. A configuration c := (p, h1, h2, . . . , hk) can be chan-

ged into a configuration c′ := (q, h′1, h
′
2, . . . , h

′
k) (denoted by the relation c `M,w c

′)

if and only if there exists a transition δ(p, b1, b2, . . . , bk) 3 (q,m1,m2, . . . ,mk) with

¢w$[hi] = bi and h′i = hi + mi, 1 ≤ i ≤ k. To describe a computation of M (on

input ¢w$) we use the reflexive and transitive closure of the relation `M,w, deno-
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ted by `∗M,w. The initial configuration of M (on input ¢w$) is the configuration

(q0, 0, 0, . . . , 0). An accepting configuration of M (on input ¢w$) is any configura-

tion of form (qf , h1, h2, . . . , hk), qf ∈ F , 0 ≤ hi ≤ |w| + 1, 1 ≤ i ≤ k. M accepts

the word w if and only if ĉ0 `∗M,w ĉf , where ĉ0 is the initial configuration, and ĉf

is an accepting configuration.

The definitions of the previous paragraph apply to 1DFA(k) and 1NFA(k) in

an analogous way, with the only difference that there is no left endmarker and the

instructions for the heads are 0 or 1.

We now briefly define counter automata in a more informal way; all the details

are defined in an analogous way as for multi-head automata. For every k ∈ N let

1CDFA(k), 2CDFA(k), 1CNFA(k) and 2CNFA(k) denote the class of deterministic

one-way, deterministic two-way, nondeterministic one-way and nondeterministic

two-way counter automata with one input head and k counters. The counters can

only store positive values. In each transition, these counters can be incremented,

decremented or left unchanged and, furthermore, it can be checked whether or

not a certain counter stores value 0. A transition of a counter automaton de-

pends on the state, the currently scanned input symbol and the set of counters

currently storing 0. For more details on counter automata see, e. g., Ibarra [36] or

Holzer et al. [31].

For an arbitrary automaton M , L(M) denotes the set of all words accepted by

M . For an arbitrary class A of automata, let L(A) denote the class of languages

defined by automata in A, i. e., L(A) := {L(M) | M ∈ A}. 2NFA and 2CNFA

denote the class of nondeterministic two-way multi-head automata and counter

automata, respectively, with any number of input heads and any number of coun-

ters, respectively. This notation is analogously used for all other above defined

classes of multi-head and counter automata.

We conclude this section with an observation that shall be useful for our ap-

plications of multi-head automata:

Observation 2.11. The input heads of a two-way multi-head automaton can be

used in order to implement a counter that can store numbers between 0 and the

current input length in the following way. We use two input heads, a left input

head that scans the left endmarker and a right one, that scans a position i, i. e.,

the number stored by the counter. An increment or decrement is performed by

moving the right input head a step to the right or to the left, respectively. The

left input head is needed to retrieve the value of the counter without loosing it,

which is done by moving the right input head to the left until it reaches the left

endmarker and simultaneously moving the left endmarker to the right. From now

on the roles of the left and right endmarker are changed.
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2.3.2 Relational Structures

We now define relational structures, tree decompositions and the concept of the

treewidth. For a comprehensive textbook reference about these standard defini-

tions, the reader is referred to Chapters 4, 11 and 13 of Flum and Grohe [19].

A (relational) vocabulary τ is a finite set of relation symbols. Every relation

symbol R ∈ τ has an arity ar(R) ≥ 1. A τ -structure A (or simply structure),

comprises a finite set A called the universe and, for every R ∈ τ , an interpretation

RA ⊆ Aar(R). For example, a graph G = (V,E) can be given as a relational

structure AG over the relational vocabulary {E ′}, ar(E ′) = 2, with universe V ′ :=

V and the binary relation E ′ is interpreted as E ′AG = E.

Let A and B be structures of the same vocabulary τ with universes A and B,

respectively. A homomorphism from A to B is a mapping h : A → B such that

for all R ∈ τ and for all a1, a2, . . . , aar(R) ∈ A, (a1, a2, . . . , aar(R)) ∈ RA implies

(h(a1), h(a2), . . . , h(aar(R))) ∈ RB.

Next, we introduce the concepts of tree decompositions and treewidth of a graph

(see Chapter 11 of Flum and Grohe [19]).

Definition 2.12. A tree decomposition of a graph G := (V,E) is a pair (T , {Bt |
t ∈ T}), where T := (T, F ) is a tree and the Bt, t ∈ T , are subsets of V such that

the following is satisfied:

1. For every v ∈ V , the set {t ∈ T | v ∈ Bt} is nonempty and connected in T .

2. For every edge {u, v} ∈ E there is a t ∈ T such that {u, v} ⊆ Bt.

The width of the tree decomposition (T , {Bt | t ∈ T}) is the number max{|Bt| |
t ∈ T} − 1. The treewidth of G (denoted by tw(G)) is the minimum of the widths

of the tree decompositions of G.

A tree decomposition, the underlying tree of which is a path, is also called a path

decomposition and the pathwidth of a graph G (denoted by pw(G)) is defined as the

treewidth, just with respect to path decompositions. For the sake of convenience,

we shall denote a path decomposition as a sequence (B1, B2, . . . , Bk) of sets of

vertices without the component of the tree T . Obviously, tw(G) ≤ pw(G).

Tree decompositions for general τ -structures are defined in a similar way as

for graphs, with the difference that the sets Bt contain now elements from the

universe A of the structure instead of vertices. Furthermore, analogously as for tree

decompositions of graphs, the sets {t ∈ T | a ∈ Bt}, a ∈ A, must be nonempty and

connected in T , but instead of requiring each edge to be represented in some Bt,

we require that, for every relation symbol R ∈ τ and every tuple (a1, . . . , aar(R)) ∈
RA there is a t ∈ T such that a1, . . . , aar(R) ∈ Bt (see Chapter 11 of Flum and
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Grohe [19] for a detailed definition). Path decompositions, the treewidth and

the pathwidth of relational structures are also defined in an analogous way as for

graphs. Tree decompositions of relational structures can also be characterised in

terms of classical graphs. To this end, we need the concept of the Gaifman graph

of a τ -structure A, which is the graph that has the universe A of A as vertices,

and two vertices are connected if and only if they occur together in some relation

(see Chapter 11 of Flum and Grohe [19]).

Proposition 2.13. A relational structure has the same tree decompositions as its

Gaifman graph.

The previous proposition particularly implies that the treewidth of a structure

equals the treewidth of its Gaifman graph. Thus, the Gaifman graph provides a

convenient means to handle tree decompositions and the treewidth of structures.

We say that a class of structures C has bounded treewidth if and only if there

exists a k ∈ N such that, for every A ∈ C, tw(A) ≤ k.

The homomorphism problem HOM is the problem to decide, for given struc-

tures A and B, whether there exists a homomorphism from A to B. For any set

of structures C, by HOM(C) we denote the homomorphism problem that is res-

tricted in such a way that the left hand input structure is from C. If C is a class

of structures with bounded treewidth, then HOM(C) can be solved in polynomial

time. This is a classical result that has been first achieved in terms of constraint

satisfaction problems by Freuder [20] (see also Chapter 13 of Flum and Grohe [19]).

Theorem 2.14 (Freuder [20]). Let C be a set of structures with bounded treewidth.

Then HOM(C) is solvable in polynomial time.

We shall briefly sketch how a tree decomposition of a structure A can be

used in order to decide on whether or not there exists a homomorphism from

A to another structure A′. The naive way of deciding on the existence of a

homomorphism is to simply enumerate all possible mappings from A to A′, the

universes of structures A and A′, respectively, and check whether or not one of

them satisfy the homomorphism condition. However, with a tree decomposition

(T := (T, F ), {Bt | t ∈ T}) of A, for every t ∈ T , we can first compute all

mappings from Bt to A′ that satisfy the homomorphism condition with respect to

the elements in Bt. Then, by inductively merging these partial mappings according

to the tree structure T , we can construct a homomorphism from A to A′ if one

exists. The correctness of this last step is provided by the conditions stating that,

for every a ∈ A, {t ∈ T | a ∈ Bt} is nonempty and connected in T and, for every

relation symbol R ∈ τ and every tuple (a1, . . . , aar(R)) ∈ RA there is a t ∈ T such

that a1, . . . , aar(R) ∈ Bt. In this procedure, we do not need to enumerate complete
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mappings, but only mappings for a number of elements that is bounded by the

width of the tree decomposition. Hence, the time complexity of this approach is

exponential only in the treewidth.



Chapter 3

First Approach: Automata

In this chapter, we present our first approach to the membership problem for

pattern languages, which is based on finite automata.

In Section 3.1, we compare multi-head automata with patterns and we present

a few examples of how multi-head automata can recognise pattern languages.

In Section 3.2, we introduce the so-called Nondeterministically Bounded Modulo

Counter Automata (NBMCA), an automata model that is tailored to pattern

languages. This model is quite general and for our actual application we need a

slightly more specialised version of NBMCA, called Janus automata, which are

also defined in Section 3.2. The more general NBMCA shall be subjected to a

detailed analysis in Chapter 4. In Sections 3.3, we present our main result, which

is achieved by applying Janus automata. We conclude this chapter by Section 3.4,

in which we investigate a scheduling problem that is directly motivated by our

application of Janus automata.

3.1 Multi-head Automata and Pattern

Languages

In this section, we show how different variants of multi-head automata can reco-

gnise pattern languages. First, we show in a non-constructive way that nonde-

terministic two-way multi-head automata can recognise pattern language by ob-

serving that pattern languages can be recognised in nondeterministic logarithmic

space. We then present a constructive way to transform a pattern into a non-

deterministic two-way multi-head automaton that recognises the corresponding

pattern language. Although the nondeterminism and the ability to move input

heads in both directions is convenient for this construction, it is not necessary.

More precisely, pattern languages can also be recognised by nondeterministic one-

way multi-head automata and by deterministic two-way multi-head automata.

25
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However, it seems impossible to recognise pattern languages with deterministic

one-way multi-head automata, but we cannot formally prove this claim.

We now recall that nondeterministic two-way multi-head automata characterise

the class NL of languages that can be recognised in nondeterministic logarithmic

space (see, e. g., Sudborough [84]). For an arbitrary pattern α, we can define

a nondeterministic logarithmic space bounded Turing machine Tα that accepts

LZ,Σ(α), Z ∈ {E,NE}. We illustrate this with an example. Let α := x1 x2 x2 x1

and let w be an input for Tα. We first guess two numbers k1, k2 between 0 and

|w| (or, in case of Z = NE, between 1 and |w|) and we store these numbers on

the working tape, which requires only logarithmic space. Then we check whether

or not these numbers induce a factorisation of w, i. e., w = u1 u2 u3 u4 with |u1| =
|u4| = k1 and |u2| = |u3| = k2. If this is satisfied, then we check whether or

not this factorisation is a valid one, i. e., we check whether or not u1 = u4 and

u2 = u3, which implies w ∈ LZ,Σ(α). This can be done by using the input head

of Tα and the numbers k1, k2 stored on the working tape. It is straightforward

to generalise this procedure to arbitrary patterns. Thus, pattern languages can

be recognised in nondeterministic logarithmic space, which particularly implies

that pattern languages can be recognised by nondeterministic two-way multi-head

automata.

However, we are interested in a constructive way to transform a pattern into

a nondeterministic two-way multi-head automata that accepts the corresponding

pattern language, which is provided by the following proposition:

Proposition 3.1. Let α ∈ (Σ ∪ X)∗ be a pattern and let Z ∈ {E,NE}. There

exists an M ∈ 2NFA(2 | var(α)|+ 1) with L(M) = LZ,Σ(α).

Proof. Let α := y1 y2 · · · yn, yi ∈ (Σ ∪ X), 1 ≤ i ≤ n, and let m := | var(α)|.
We now sketch how M checks whether or not some input w belongs to LZ,Σ(α).

The automaton M uses 2m of its input heads in order to implement m counters

(denoted by counter 1, counter 2, . . ., counter m) as described in Observation 2.11,

(see page 21). Next, for every i, 1 ≤ i ≤ m, counter i is incremented to a

nondeterministically chosen value ki (with ki ≥ 1, if Z = NE). Now M checks

whether or not w = u1 u2 · · · un, where |ui| = 1 if yi ∈ Σ and |ui| = kj if

yi = xj, which can be done by using the counters and the remaining head. If this

holds, then the remaining head is used in order to check whether or not, for every

1 ≤ i < j ≤ n, yi = yj implies ui = uj. Again, this can be done with the aid of

the counters. �

The proof of Proposition 3.1 heavily depends on both the nondeterminism of

the automaton as well as its ability to move input heads in both directions. The
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question arises whether or not we can also recognise pattern languages by one-

way multi-head automata or deterministic multi-head automata. We first show

how pattern languages can be recognised by one-way nondeterministic multi-head

automata. In order to give an idea for the proof of the following proposition, we

recall that in the proof of Proposition 3.1, we nondeterministically guess numbers

and then check whether these numbers induce a factorisation of the input word.

For the construction in the one-way case, we again guess numbers, but we do

not check whether these numbers induce a factorisation and simply proceed in a

similar way as in the two-way case. Only at the end of the procedure, we then

verify if the guessed numbers actually induce a factorisation of the input word.

Proposition 3.2. Let α ∈ (Σ ∪ X)∗ be a pattern and let Z ∈ {E,NE}. There

exists an M ∈ 1NFA(2 |α|) with L(M) = LZ,Σ(α).

Proof. We prove the statement of the proposition only for the case Z = NE. The

case Z = E can be dealt with analogously.

Let α := y1 y2 · · · yn, yi ∈ (Σ ∪ X), 1 ≤ i ≤ n. We label n input heads by

m1,m2, . . . ,mn and the remaining n input heads by s1, s2, . . . , sn. In the following

procedure, all the heads mi, 1 ≤ i ≤ n, are used as mere markers that do not read

input symbols and all the heads si, 1 ≤ i ≤ n, are used in order to scan the input.

Furthermore, for any input head mi or si, by p(mi) or p(si) we denote its current

position in the input word. We now sketch how M checks whether or not some

input w belongs to LNE,Σ(α). First, we execute the following three steps.

1. All the input heads are nondeterministically moved to some positions of the

input word, such that 1 = p(m1) < p(m2) < . . . < p(mn) ≤ |w| and, for

every i, 1 ≤ i ≤ n, p(mi) = p(si).

2. For every i, 1 ≤ i ≤ n, if yi ∈ Σ, then we check whether or not head si scans

symbol yi and, if this is satisfied, we move head si one step to the right.

3. For every x ∈ var(α) we do the following. For all the heads si, 1 ≤ i ≤ n,

with yi = x, we check whether or not they are scanning exactly the same

symbol and then all these heads are simultaneously moved one step to the

right. This procedure is repeated for a nondeterministically chosen number

of steps.

Next, we check whether or not p(sn) = |w|+ 1, i. e., sn scans the right endmarker,

and, for every i, 1 ≤ i ≤ n− 1, whether or not p(si) = p(mi+1). This can be done

by moving heads si and mi+1 simultaneously to the right and check whether or

not they reach the right endmarker at the same time. If this is satisfied, then the
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input is accepted. If this is not satisfied or in the above procedure an input head

that scans the right endmarker is moved to the right, then the input is rejected.

The correctness of the above procedure is established by the following consi-

derations. Let k1, k2, . . . , kn be the number of steps the input heads s1, s2, . . . , sn

are moved to the right in steps 2 and 3. If w is accepted by M , then this means

that the numbers s1, s2, . . . , sn are the splitting points of a factorisation of w,

where the numbers k1, k2, . . . , kn are the lengths of the factors. More precisely,

w := u1 u2 · · ·un, where, for every i, 1 ≤ i ≤ n, |ui| = ki and for every i,

1 ≤ i ≤ n − 1, |u1 u2 · · ·ui| = mi+1 − 1. From steps 2 and 3, it then follows

immediately that, for every i, 1 ≤ i ≤ n, if yi ∈ Σ, then ui = yi and, for every

i, j, 1 ≤ i < j ≤ n, if yi, yj ∈ X and yi = yj, then ui = uj. Hence, w ∈ LNE,Σ(α).

On the other hand, if w ∈ LNE,Σ(α), then there exists such a factorisation of α

as described above and then the numbers k1, k2, . . . , kn and the initial positions of

the heads m1,m2, . . . ,mn can be guessed in such a way that w is accepted.

�

We note that for the whole procedure above the input head m1 is not needed

and, thus, LNE,Σ(α) can be accepted by a nondeterministic one-way automaton

with only 2 |α| − 1 heads. We choose to use 2 |α| input heads out of convenience,

since it simplifies the construction.

In the proofs of both Proposition 3.1 and 3.2, the nondeterminism of the au-

tomaton is used in order to guess a factorisation of the input word, which is then

checked in a deterministic way. Hence, if deterministic multi-head automata are

capable of recognising pattern languages, a different technique must be applied.

In the next proposition, we state that deterministic two-way multi-head automata

can recognise pattern languages, but we shall give a formal proof of this claim

later in this thesis:

Proposition 3.3. Let α ∈ (Σ ∪ X)∗ be a pattern and let Z ∈ {E,NE}. There

exists an M ∈ 2DFA(2 | var(α)|+ 1) with L(M) = LZ,Σ(α).

Intuitively speaking, a deterministic two-way multi-head automaton can reco-

gnise pattern language by deterministically trying out all possible factorisations

of the input word and check every single one in a similar way as done in the proofs

of Propositions 3.1 and 3.2. In Chapter 4, we shall introduce and investigate a

special kind of multi-head automaton with restricted nondeterminism that is a

very convenient tool in order to prove Proposition 3.3. Hence, we shall defer a

formal proof of Proposition 3.3, which can be found in Section 4.2.3 on page 135.
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3.2 Nondeterministically Bounded Modulo

Counter Automata

We now present a special kind of counter automaton that is tailored to recognising

pattern languages. This model constitutes the central tool that is applied in order

to obtain the main result of this chapter. It is similar to the counter automata

that are briefly explained in Section 2.3.1, i. e., it comprises a constant number of

counters which form its main computational resource, but there are substantial

differences in how these counters work.

A Nondeterministically Bounded Modulo Counter Automaton, NBMCA(k) for

short, is a two-way one-head automaton with k counters. More precisely, it is

a tuple M := (k,Q,Σ, δ, q0, F ), where k ∈ N is the number of counters, Q is a

finite nonempty set of states, Σ is a finite nonempty alphabet of input symbols,

q0 ∈ Q is the initial state, F ⊆ Q is the set of accepting states and δ is a mapping

Q × Σ × {t0, t1}k → Q × {−1, 0, 1} × {0, 1, r}k. The mapping δ is called the

transition function. An input to M is any word of the form ¢w$, where w ∈ Σ∗

and the symbols ¢, $ (referred to as left and right endmarker, respectively) are

not in Σ. Let (p, b, s1, . . . , sk) →δ (q, r, d1, . . . , dk). We call the element b the

scanned input symbol and r the input head movement. For each j ∈ {1, 2, . . . , k},
the element sj ∈ {t0, t1} is the counter message of counter j, and dj is called

the counter instruction for counter j. The transition function δ of an NBMCA(k)

determines whether the input head are moved to the left (r = −1), to the right

(r = 1) or left unchanged (r = 0), and whether the counters are incremented

(dj = 1), left unchanged (dj = 0) or reset (dj = r). In case of a reset, the counter

value is set to 0 and a new counter bound is nondeterministically guessed. Hence,

every counter is bounded, but these bounds are determined in a nondeterministic

way. In order to define the language accepted by an NBMCA, we need to define

the concept of an NBMCA computation.

Let M be an NBMCA and w := b1 ·b2 · · · bn, bi ∈ Σ, 1 ≤ i ≤ n. A configuration

of M (on input w) is an element of the set

ĈM := {[q, h, (c1, C1), . . . , (ck, Ck)] | q ∈ Q, 0 ≤ h ≤ n+ 1,

0 ≤ ci ≤ Ci ≤ n, 1 ≤ i ≤ k} .

The pair (ci, Ci), 1 ≤ i ≤ k, describes the current configuration of the ith counter,

where ci is the counter value and Ci the counter bound. The element h is called

the input head position.

An atomic move of M is denoted by the relation `M,w over the set of configu-

rations. Let (p, b, s1, . . . , sk) →δ (q, r, d1, . . . , dk). Then, for all ci, Ci, 1 ≤ i ≤ k,
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where ci < Ci if si = t0 and ci = Ci if si = t1, and for every h with 0 ≤ h ≤ n+ 1,

we define [p, h, (c1, C1), . . . , (ck, Ck)] `M,w [q, h′, (c′1, C
′
1), . . . , (c′k, C

′
k)]. Here, the

elements h′ and c′j, C
′
j, 1 ≤ j ≤ k, are defined in the following way:

h′ :=

h+ r if 0 ≤ h+ r ≤ n+ 1 ,

h else .

For each j ∈ {1, . . . , k}, if dj = r, then c′j := 0 and, for some m ∈ {0, 1, . . . , n},
C ′j := m. If, on the other hand, dj 6= r, then C ′j := Cj and

c′j := cj + dj mod (Cj + 1) .

To describe a sequence of (atomic) moves of M (on input w) we use the reflexive

and transitive closure of the relation `M,w, denoted by `∗M,w. M accepts the word

w if and only if ĉ0 `∗M,w ĉf , where ĉ0 := [q0, 0, (0, C1), . . ., (0, Ck)] for some Ci ∈
{0, 1, . . . , |w|}, 1 ≤ i ≤ k, is an initial configuration, and ĉf := [qf , h, (c1, C1), . . .

(ck, Ck)] for some qf ∈ F , 0 ≤ h ≤ n + 1 and 0 ≤ ci ≤ Ci ≤ n, 1 ≤ j ≤ k, is a

final configuration.

In every computation of an NBMCA, the counter bounds are nondeterministi-

cally initialised, and the only nondeterministic step an NBMCA is able to perform

during the computation consists in guessing a new counter bound for some coun-

ter. Apart from that, every transition is defined completely deterministically by

δ.

Next, as an example, we define an NBMCA with only one counter that reco-

gnises the language Lrev := {wwR | w ∈ Σ∗}.

Proposition 3.4. Lrev ∈ L(NBMCA(1)).

Proof. We sketch how an NBMCA(1) can be defined that accepts Lrev. In a first

step, by moving the input head from the left endmarker to the right endmarker,

it is checked whether or not the message of the counter changes from t0 to t1

exactly when the input head reaches the right endmarker, i. e., whether or not the

counter bound equals the length of the input. Furthermore, at the same time it is

checked whether or not the input w has even length. This can be easily done with

the finite state control. In case that |w| is odd or the counter bound is not |w|,
the input is rejected by entering a non-accepting trap state. Now, the counter can

be used to execute the following three steps in a loop.

1. Move the input head one step to the right.

2. Move the input head for |w|+ 1 steps by initially moving it to the right and

reversing its direction if the right endmarker is reached.
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3. Move the input head for |w| + 1 steps by initially moving it to the left and

reversing its direction if the left endmarker is reached.

This loop is executed until the right endmarker is reached in step 1. It can be

easily verified that this exactly happens in the (|w| + 1)th iteration of the loop.

Furthermore, for every i, 1 ≤ i ≤ |w|, in the ith iteration of the loop, the position

reached after step 1 is i and the position reached after step 2 is |w| − i + 1. So

in order to check on whether or not w = uuR, u ∈ Σ∗, it is sufficient to store

the symbol at position i after step 1 in the finite state control and compare it to

the symbol at position |w| − i + 1 after step 2 in each iteration of the loop. If

eventually the right endmarker is reached after step 1, the automaton accepts its

input and if, on the other hand, the symbol stored in the finite state control does

not equal the symbol scanned after step 2, the input is rejected. �

In the above example, we use the nondeterminism of the NBMCA(1) in order to

guess a specific position of the input word. Hence, one nondeterministic operation

of the automaton is sufficient in order to recognise Lrev. This contrasts with how

a pushdown automaton recognises Lrev, since this is usually done by moving the

input head step by step to the right and guessing in every single step whether

or not the middle position of the input is reached. Consequently, the number

of nondeterministic steps of such a pushdown automaton is not bounded by a

constant.

3.2.1 Janus Automata

In order to prove the main results of this chapter, we use a slightly different version

of NBMCA, i. e., NBMCA with two instead of only one input head, which we call

Janus automata (the choice of this name shall be explained later on). We require

the first input head to be always positioned to the left of the second input head, so

there are a well-defined left and right head. For the sake of completeness, we now

present a formal definition of Janus automata and mention that this definition is

analogous to the one of NBMCA with the small differences explained above.

A Janus automaton with k counters (denoted by JFA(k)) is a device M :=

(k,Q,Σ, δ, q0, F ), where k ≥ 0 is the number of counters, Q is a finite nonempty

set of states, Σ is a finite nonempty alphabet of input symbols, q0 ∈ Q is the initial

state, F ⊆ Q is the set of accepting states and δ is a mapping Q×Σ2×{t=, t<}k →
Q× {−1, 0, 1}2 × {0, 1, r}k. The mapping δ is called the transition function.

An input to M is any string of the form ¢w$, where w ∈ Σ∗ and the sym-

bols ¢, $ (referred to as left and right endmarker, respectively) are not in Σ. Let

δ(p, a1, a2, s1, . . . , sk) = (q, r1, r2, d1, . . . , dk). For each i ∈ {1, 2}, we call the ele-

ment ai the input symbol scanned by head i and ri the instruction for head i. For
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each j ∈ {1, 2, . . . , k}, the element sj ∈ {t=, t<} is the counter message of counter

j, and dj is called the counter instruction for counter j.

Let M := (k,Q,Σ, δ, q0, F ) be a JFA(k) and w := b1 · b2 · . . . · bn, bi ∈ Σ,

1 ≤ i ≤ n. A configuration of M (on input ¢w$) is an element of the set

ĈM := {(q, h1, h2, (c1, C1), . . . , (ck, Ck)) | q ∈ Q, 0 ≤ h1 ≤ h2 ≤ n+ 1,

0 ≤ ci ≤ Ci ≤ n, 1 ≤ i ≤ k} .

The pair (ci, Ci), 1 ≤ i ≤ k, describes the current configuration of the ith counter,

where ci is the counter value and Ci the counter bound. The element hi, i ∈ {1, 2},
is called the head position of head i.

An atomic move of M (on input ¢w$) is denoted by the relation `M,w over

the set of configurations. Let δ(p, a1, a2, s1, . . . , sk) = (q, r1, r2, d1, . . . , dk). Then,

for all ci, Ci, 1 ≤ i ≤ k, where ci < Ci if si = t< and ci = Ci if si = t=,

and for all h1, h2, 0 ≤ h1 ≤ h2 ≤ n + 1, with bhi = ai, i ∈ {1, 2}, we define

(p, h1, h2, (c1, C1), . . . , (ck, Ck)) `M,w (q, h′1, h
′
2, (c

′
1, C

′
1), . . . , (c′k, C

′
k)). Here, the ele-

ments h′i, i ∈ {1, 2}, and c′j, C
′
j, 1 ≤ j ≤ k, are defined as follows:

h′i :=

hi + ri if 0 ≤ h1 + r1 ≤ h2 + r2 ≤ n+ 1 ,

hi else .

For each j ∈ {1, . . . , k}, if dj = r, then c′j := 0 and, for some m ∈ {0, 1, . . . , n},
C ′j := m. If, on the other hand, dj 6= r, then C ′j := Cj and

c′j := cj + dj mod (Cj + 1) .

To describe a sequence of (atomic) moves of M (on input w) we use the reflexive

and transitive closure of the relation `M,w, denoted by `∗M,w. M accepts the word

w if and only if ĉ0 `∗M,w ĉf , where ĉ0 := (q0, 0, 0, (0, 0), . . ., (0, 0)) is the initial

configuration, and ĉf := (qf , h1, h2, (c1, C1), . . . (ck, Ck)) is a final configuration,

for some qf ∈ F , 0 ≤ h1 ≤ h2 ≤ n + 1 and 0 ≤ ci ≤ Ci ≤ n, 1 ≤ j ≤ k. For any

Janus automaton M , let L(M) denote the set of words accepted by M .

In our applications of this automata model, we use the counters in a particular

but natural way. Let us assume that n is the counter bound of a certain counter

with counter value 0. We can define the transition function in such a way that

an input head is successively moved to the right and, in every step, the counter is

incremented. As soon as the counter reaches its counter bound (i. e., its counter

message changes from t< to t=) we stop that procedure and can be sure that

the input head has been moved exactly n steps. In this way an automaton can
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scan whole factors of the input, induced by counter bounds. Furthermore, as

we have two input heads, we can use the counter with bound n to move them

simultaneously to the right, checking symbol by symbol whether two factors of

equal length are the same. It is also worth mentioning that we can use counters in

the same way to move input heads from right to left instead of from left to right.

This way of using counters shall be made clear by sketching how a Janus

automaton M could be defined that recognises the language

L := {u a v b v u | u, v ∈ {a, b}∗} .

The Janus automaton M uses two counters and applies the following strategy to

check whether an input word w is in L. First, we reset both counters and therefore

guess two new counter bounds C1 and C2. Then we check if w = u a v b v u with

|u| = C1 and |v| = C2. This is done by using the first counter to move the right

head from position 1 (the symbol next to the left endmarker) to the right until it

reaches position C1 +1. Then it is checked whether a occurs at this position. After

that, by using the second counter, the right head is moved further to the right to

position C1 + C2 + 2, where M checks for the occurrence of the symbol b. Next,

again by using the second counter, the right head is moved another C2 + 1 steps

to the right in order to place it exactly where we expect the second occurrence

of factor u to begin. Now, both input heads are moved simultaneously to the

right for C1 steps, checking in each step whether they scan the same symbol and

whether after these C1 steps the right head scans exactly the right endmarker.

If this is successful, we know that w is of form u a v b v′ u, with |u| = C1 and

|v| = |v′| = C2. Hence, it only remains to check whether or not v = v′. This

can be done by positioning both heads at the first positions of the factors v and

v′, i. e., moving the left head one step to the right and the right head C1 + C2

steps back to the left. In order to perform this, as well as the final matching of

the factors v and v′, M can apply its counters in the same way as before. If this

whole procedure is successful, M enters an accepting state, and reject its input

otherwise.

It is obvious that w ∈ L if and only if there is a possibility to guess counter

bounds such that M accepts w; thus, L(M) = L.

In the above procedure, the automaton can be interpreted as looking back (by

means of the left head) and forward (by means of the right head) at the same

time in order to compare an earlier factor with a later one. This explains why the

automaton is called Janus automaton.
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3.3 Large Classes of Patterns with a

Polynomial Time Membership Problem

In this section, we present a quite general way of how a pattern can be transfor-

med into a Janus automaton that recognises the corresponding pattern language.

To this end, we define an intermediate model, which, intuitively speaking, is a

sequence of instructions that tells a JFA how to move its input heads in order

to recognise the pattern language. We further identify a parameter of these ins-

truction sequences which determines the number of counters that a JFA requires

in order to carry them out. Finally, it is shown that this parameter is bounded

by the variable distance (see Section 2.2.1) of the corresponding pattern, which

yields our main result, namely that the membership problem for pattern languages

is solvable in polynomial time if the variable distance of the patterns is bounded.

In this section, the dependency on the terminal alphabet Σ is negligible and,

furthermore, we shall only consider the E case and terminal-free patterns. All our

results can be easily extended to the NE case, and also their generalisation to pat-

terns with terminal symbols is straightforward. Hence, for the sake of convenience,

for any terminal free pattern α, we denote LE,Σ(α) by L(α) in the following.

3.3.1 Janus Automata for Pattern Languages

In this section, we demonstrate how Janus automata can be used for recognising

pattern languages. More precisely, for an arbitrary terminal-free pattern α, we

construct a JFA(k) M satisfying L(M) = L(α). Before we move on to a formal

analysis of this task, we discuss the problem of deciding whether w ∈ L(α) for

given α and w, i. e., the membership problem, in an informal way. We point out

that the following basic ideas are sketched in Section 1.1 and are applied in the

proof of Proposition 3.1 (see Section 3.1).

Let α = y1 · y2 · . . . · yn be a terminal-free pattern with m := | var(α)|, and let

w ∈ Σ∗ be a word. The word w is an element of L(α) if and only if there exists a

factorisation w = u1 · u2 · . . . · un such that uj = uj′ for all j, j′, 1 ≤ j < j′ ≤ |α|,
with yj = yj′ . We call such a factorisation w = u1 · u2 · . . . · un a characteristic

factorisation for w ∈ L(α) (or simply characteristic factorisation if w and α are

obvious from the context). Thus, a way to solve the membership problem is to

initially guess m numbers l1, l2, . . . , lm, then, if possible, to factorise w = u1 ·. . .·un
such that |uj| = li for all j with yj = xi and, finally, to check whether this is a

characteristic factorisation for w ∈ L(α). A JFA(m) can perform this task by

initially guessing m counter bounds, which can be interpreted as the lengths of

the factors. The two input heads can be used to check if this factorisation has
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the above described properties. However, the number of counters that are then

required directly depends on the number of variables, and the question arises if

this is always necessary.

In the next definitions, we shall establish the concepts that formalise and ge-

neralise the way of checking whether or not a factorisation is a characteristic one.

Definition 3.5. Let α := y1 · y2 · . . . · yn be a terminal-free pattern, and, for each

xi ∈ var(α), let ni := |α|xi . The set varposi(α) is the set of all positions j satisfying

yj = xi. The sequence ((l1, r1), (l2, r2), . . . , (lni−1, rni−1)) with (lj, rj) ∈ varposi(α)2

and lj < rj, 1 ≤ j ≤ ni−1, is a matching order for xi in α if and only if the graph

(varposi(α), {{l1, r1}, {l2, r2}, . . . , {lni−1, rni−1}}) is a tree.

We consider an example in order to illustrate Definition 3.5. If, for some pat-

tern α and some xi ∈ var(α), varposi(α) := {1, 3, 5, 9, 14}, then the sequences

((5, 1), (14, 3), (1, 3), (9, 3)), ((1, 3), (3, 5), (5, 9), (9, 14)) and ((5, 1), (5, 3), (5, 9),

(5, 14)) are some of the possible matching orders for xi in α, whereas the se-

quences ((1, 3), (9, 1), (3, 9), (5, 14)) and ((1, 3), (3, 5), (5, 9), (9, 1)) do not satisfy

the conditions to be matching orders for xi in α.

In order to obtain a matching order for a whole pattern α we simply combine

matching orders for all x ∈ var(α):

Definition 3.6. Let α be a terminal-free pattern with m := | var(α)| and, for all

i with 1 ≤ i ≤ m, ni := |α|xi and let (mi,1,mi,2, . . . ,mi,ni−1) be a matching order

for xi in α. The tuple (m1,m2, . . . ,mk) is a complete matching order for α if and

only if k =
∑m

i=1(ni− 1) and, for all i, ji, 1 ≤ i ≤ m, 1 ≤ ji ≤ ni− 1, there is a j′,

1 ≤ j′ ≤ k, with mj′ = mi,ji . The elements mj ∈ varposi(α)2 of a matching order

(m1,m2, . . . ,mk) are called matching positions.

We introduce an example pattern

β := x1 · x2 · x1 · x2 · x3 · x2 · x3 ,

which we shall use throughout the whole section in order to illustrate the main

definitions. Regarding Definition 3.6, we observe that all possible sequences of the

matching positions in {(1, 3), (2, 4), (4, 6), (5, 7)} are some of the possible complete

matching orders for β. As pointed out by the following lemma, the concept of

a complete matching order can be used to check whether a factorisation is a

characteristic one.

Lemma 3.7. Let α = y1 · y2 · . . . · yn be a terminal-free pattern and let ((l1, r1),

(l2, r2), . . . , (lk, rk)) be a complete matching order for α. Let w be an arbitrary

word in some factorisation w = u1 ·u2 · . . . ·un. If ulj = urj for every j, 1 ≤ j ≤ k,

then w = u1 · u2 · . . . · un is a characteristic factorisation.
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Proof. Let xi ∈ var(α) be arbitrarily chosen and let the sequence ((l′1, r
′
1), (l′2, r

′
2),

. . . , (l′k′ , r
′
k′)) be an arbitrary matching order for xi in α. Assume that ul′j = ur′j

for all j, 1 ≤ j ≤ k′. As (varposi(α), {(l′1, r′1), (l′2, r
′
2), . . . , (l′k′ , r

′
k′)}) is a connected

graph and as the equality of words is clearly a transitive relation, we can conclude

that uj = uj′ for all j, j′, 1 ≤ j < j′ ≤ |α|, with yj = yj′ = xi. Applying this

argumentation to all variables in α implies the statement of Lemma 3.7. �

With respect to the complete matching order ((4, 6), (1, 3), (2, 4), (5, 7)) for

the example pattern β, we apply Lemma 3.7 in the following way. If w can be

factorised into w = u1 ·u2 · . . . ·u7 such that u4 = u6, u1 = u3, u2 = u4 and u5 = u7,

then w ∈ L(β).

Let (l1, r1) and (l2, r2) be two consecutive matching positions of a complete

matching order. It is possible to perform the comparison of factors ul1 and ur1

by positioning the left head on the first symbol of ul1 , the right head on the first

symbol of ur1 and then moving them simultaneously over these factors from left

to right, checking symbol by symbol if these factors are identical (cf. the example

Janus automaton in Section 3.2.1). After that, the left head, located at the first

symbol of factor ul1+1, has to be moved to the first symbol of factor ul2 . If l1 < l2,

then it is sufficient to move it over all the factors ul1+1, ul1+2, . . . , ul2−1. If, on the

other hand, l2 < l1, then the left head has to be moved to the left, and, thus, over

the factors ul1 and ul2 as well. Furthermore, as we want to apply these ideas to

Janus automata, the heads must be moved in a way that the left head is always

located to the left of the right head. The following definition shall formalise these

ideas.

Definition 3.8. In the following definition, let λ and ρ be constant markers. For

all j, j′ ∈ N with j < j′, we define a mapping g by g(j, j′) := (j+1, j+2, . . . , j′−1)

and g(j′, j) := (j′, j′ − 1, . . . , j).

Let ((l1, r1), (l2, r2), . . . , (lk, rk)) be a complete matching order for a terminal-

free pattern α and let l0 := r0 := 0. For every matching position (li, ri), 1 ≤ i ≤ k,

we define a sequence Dλ
i and a sequence Dρ

i by

Dλ
i := ((p1, λ), (p2, λ), . . . , (pk1 , λ)) and

Dρ
i := ((p′1, ρ), (p′2, ρ), . . . , (p′k2

, ρ)) ,

where (p1, p2, . . . , pk1) := g(li−1, li), (p′1, p
′
2, . . . , p

′
k2

) := g(ri−1, ri).

Now let D′i := ((s1, µ1), (s2, µ2), . . . , (sk1+k2 , µk1+k2)) be a tuple satisfying the

following two conditions. Firstly, it contains exactly the elements of Dλ
i and Dρ

i

such that the relative orders of the elements in Dλ
i and Dρ

i are preserved. Secondly,

for every j, 1 ≤ j ≤ k1 + k2, sjl ≤ sjr needs to be satisfied, with jl = max({j′ |
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1 ≤ j′ ≤ j, µj′ = λ} ∪ {j′l}) and jr = max({j′ | 1 ≤ j′ ≤ j, µj′ = ρ} ∪ {j′r}), where

(sj′l , µj′l) and (sj′r , µj′r) are the leftmost elements of D′i with µj′l = λ and µj′r = ρ,

respectively.

Now we append the two elements (ri, ρ), (li, λ) in exactly this order to the end

of D′i and obtain Di. Finally, the tuple (D1, D2, . . . , Dk) is called a Janus operating

mode for α (derived from the complete matching order ((l1, r1), . . . , (lk, rk))).

We once again consider the example β = x1 · x2 · x1 · x2 · x3 · x2 · x3. According

to Definition 3.8 we consider the tuples Dλ
i and Dρ

i with respect to the complete

matching order ((4, 6), (1, 3), (2, 4), (5, 7)) for β. We omit the markers λ and ρ for

a better presentation. The tuples Dλ
i and Dρ

i , 1 ≤ i ≤ 4, are given by

Dλ
1 = (1, 2, 3) , Dρ

1 = (1, 2, . . . , 5) ,

Dλ
2 = (4, 3, 2, 1) , Dρ

2 = (6, 5, 4, 3) ,

Dλ
3 = () , Dρ

3 = () ,

Dλ
4 = (3, 4) , Dρ

4 = (5, 6) .

Therefore, ∆β := (D1, D2, D3, D4) is a possible Janus operating mode for β derived

from ((4, 6), (1, 3), (2, 4), (5, 7)), where

D1 = ((1, ρ), (1, λ), (2, ρ), (2, λ), (3, ρ), (3, λ), (4, ρ), (5, ρ), (6, ρ), (4, λ)),

D2 = ((4, λ), (3, λ), . . . , (1, λ), (6, ρ), (5, ρ), . . . , (3, ρ), (3, ρ), (1, λ)),

D3 = ((4, ρ), (2, λ)),

D4 = ((3, λ), (5, ρ), (4, λ), (6, ρ), (7, ρ), (5, λ)).

Intuitively, we interpreted a complete matching order as a list of instructions

specifying how to check whether a factorisation is a characteristic one. Similarly,

a Janus operating mode derived from a complete matching order can be seen as

an extension of this complete matching order that also contains information of

how two input heads have to be moved from one matching position to the next

one. Hence, there is an immediate connection between Janus operating modes

and Janus automata for terminal-free pattern languages, and we shall see that

it is possible to transform a Janus operating mode for any pattern directly into

a Janus automaton recognising the corresponding pattern language. As we are

particularly interested in the number of counters a Janus automaton needs, we

introduce an instrument to determine the quality of Janus operating modes with

respect to the number of counters that are required to actually construct a Janus

automaton.

Definition 3.9. Let ∆α := (D1, D2, . . . , Dk) be a Janus operating mode for a
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terminal-free pattern α := y1 · y2 · . . . · yn. The head movement indicator of ∆α

is the tuple ∆α = ((d′1, µ
′
1), (d′2, µ

′
2), . . . , (d′k′ , µ

′
k′)) with k′ =

∑k
i=1 |Di| that is

obtained by concatenating all tuples Dj, 1 ≤ j ≤ k, in the order given by the

Janus operating mode. For every i, 1 ≤ i ≤ k′, let

si := |{x | ∃ j, j′ with 1 ≤ j < i < j′ ≤ k′, yd′j = yd′
j′

= x 6= yd′i}| .

Then the counter number of ∆α (or cn(∆α) for short) is max{si | 1 ≤ i ≤ k′}.

We now briefly explain the previous definition in an informal manner. Apart

from the markers λ and ρ, the head movement indicator ∆α, where ∆α is a Janus

operating mode for some α, can be regarded as a sequence (d′1, d
′
2, . . . , d

′
k′), where

the d′i, 1 ≤ i ≤ k′, are positions in α. Hence, we can associate a pattern Dα :=

yd′1 · yd′2 · . . . · yd′k′ with ∆α. In order to determine the counter number of ∆α, we

consider each position i, 1 ≤ i ≤ k′, in Dα and count the number of variables

different from yd′i that are parenthesising position i in Dα. The counter number is

then the maximum over all these numbers.

With regard to our example β, it can be easily verified that cn(∆β) = 2. We

shall now see that, for every Janus operating mode ∆α for a pattern α, we can

construct a Janus automaton recognising L(α) with exactly cn(∆α) + 1 counters:

Theorem 3.10. Let α be a terminal-free pattern and let ∆α be an arbitrary Janus

operating mode for α. There exists a JFA(cn(∆α)+1) M satisfying L(M) = L(α).

Before we can prove this result, we need the following technical lemma:

Lemma 3.11. Let α be a terminal-free pattern with | var(α)| ≥ 2, and let Γ :=

{z1, z2, . . . , zm} ⊆ var(α). The following statements are equivalent:

a. For all z, z′ ∈ Γ, z 6= z′, the pattern α can be factorised into α = β · z · γ ·
z′ · γ′ · z · δ or α = β · z′ · γ · z · γ′ · z′ · δ.

b. There exists a z ∈ Γ such that α can be factorised into α = β · z · γ with

(Γ/{z}) ⊆ (var(β) ∩ var(γ)).

Proof. We prove by contraposition that a implies b. Hence, we assume that there

exists no z ∈ Γ such that α can be factorised into α = β · z · γ with (Γ/{z}) ⊆
(var(β)∩ var(γ)). Next, we define l1, l2, . . . , lm to be the leftmost occurrences and

r1, r2, . . . , rm to be the rightmost occurrences of the variables z1, z2, . . . , zm in α.

Furthermore, we assume l1 < l2 < . . . < lm. By assumption, it is not possible

that, for every i, 1 ≤ i ≤ m − 1, ri > lm as this implies that α can be factorised

into α = β · zm · γ, |β| = lm − 1 with (Γ/{zm}) ⊆ (var(β) ∩ var(γ)). So we can

assume that there exists an i, 1 ≤ i ≤ m − 1, with ri < lm. This implies that,
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for zi, zm, α can neither be factorised into α = β · zi · γ · zm · γ′ · zi · δ nor into

α = β · zm · γ · zi · γ′ · zm · δ. This proves that a implies b.

The converse statement, b implies a, can be easily comprehended. We assume

that z ∈ Γ satisfies the conditions of b, i. e., α can be factorised into α = β · z · γ
with (Γ/{z}) ⊆ (var(β) ∩ var(γ)). Now we arbitrarily choose z′, z′′ ∈ Γ, z′ 6= z′′,

and we shall show that α = β′ · z′ · γ′ · z′′ · γ′′ · z′ · δ′ or α = β′ · z′′ · γ′ · z′ · γ′′ · z′′ · δ′.
If either z′ = z or z′′ = z, this is obviously true. In all other cases, the fact that

there are occurrences of both z′ and z′′ to either side of the occurrence of z directly

implies the existence of one of the aforementioned factorisations. �

Now we are able to present the proof of Theorem 3.10:

Proof. Let π := cn(∆α) + 1. In order to prove Theorem 3.10, we illustrate a

general way of transforming a Janus operating mode ∆α := (D1, D2, . . . , Dk) of

an arbitrary terminal-free pattern α := y1 · y2 · . . . · yn into a Janus automaton M

with cn(∆α) + 1 counters satisfying L(M) = L(α). We shall first give a definition

of the automaton and then prove its correctness, i. e., L(M) = L(α).

We assume that the Janus operating mode is derived from the complete mat-

ching order (m1,m2, . . . ,mk). Let us recall the main definitions that are used in

this proof, namely the complete matching order and the Janus operating mode.

We know that each element mi, 1 ≤ i ≤ k, of the complete matching order is a

matching position, i. e., mi = (li, ri), li < ri and yli = yri . The complete mat-

ching order is included in the Janus operating mode, since, for each i, 1 ≤ i ≤ k,

the tuple Di corresponds to the matching position mi in the following way: If

mi = (li, ri), then the last two elements of Di are (ri, ρ) and (li, λ). All the other

pairs in a Di are of form (j, µ) where 1 ≤ j ≤ |α| and µ ∈ {λ, ρ}.
Before we move on to the formal definitions of the states and transitions of the

automaton, let us illustrate its behaviour in an informal way. As described at the

beginning of Section 3.3.1, the membership problem can be solved by checking the

existence of a characteristic factorisation u1·u2·. . .·un of the input w. Furthermore,

by Lemma 3.7, the complete matching order can be used as a list of instructions

to perform this task. The factorisation is defined by the counter bounds, i. e.,

for every variable x ∈ var(α), the automaton uses a certain counter, the counter

bound of which defines the length of all the factors ui with yi = x. However,

if π < | var(α)| is satisfied, then the automaton does not have the number of

counters required for such a representation. Therefore, it might be necessary to

reuse counters. To define which counter is used for which variables, we use a

mapping co : var(α) → {1, 2, . . . , π}. Note that, in case of π < | var(α)|, this

mapping is not injective. We defer a complete definition of the mapping co and,

for now, just assume that there exists such a mapping.
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Next, we show how a tuple Dp for an arbitrary p, 1 ≤ p ≤ k, can be transformed

into a part of the automaton. Therefore, we define

Dp := ((j1, µ1), (j2, µ2), . . . , (jk′ , µk′), (jr, ρ), (jl, λ))

with µi ∈ {λ, ρ}, 1 ≤ i ≤ k′. Recall that Dp corresponds to the matching

position mp := (jl, jr). Let us interpret the tuple Dp as follows: The pairs

(j1, µ1), (j2, µ2), . . . , (jk′ , µk′) define how the heads have to be moved in order to

reach factors ujl and ujr , which then have to be matched. Let (ji, µi), 1 ≤ i ≤ k′,

be an arbitrary pair of Dp. If µi = λ (or µi = ρ), then the meaning of this pair is

that the left head (or the right head, respectively) has to be moved a number of

steps defined by the counter bound of counter co(yji). The direction the head has

to be moved to depends on the matching position corresponding to the previous

element Dp−1. In order to define these ideas formally, we refer to this previous

matching position by mp−1 := (j′l, r
′
l).

If j′l < jl, then we have to move the left head to the right passing the factors

uj′l+1, uj′l+2, . . . , ujl−1; thus, we introduce the following states:

{l-forthp,q | j′l + 1 ≤ q ≤ jl − 1} .

In every state l-forthp,q, j
′
l +1 ≤ q ≤ jl−1, we move the left head as many steps to

the right as determined by the currently stored counter bound for counter co(yq).

Hence, for every q, j′l +1 ≤ q ≤ jl−1, for all a, a′ ∈ Σ and for every si ∈ {t=, t<},
i ∈ {1, . . . , π}/{co(yq)}, we define

δ(l-forthp,q, a, a
′, s1, s2, . . . , sπ) := (l-forthp,q, 1, 0, d1, d2, . . . , dπ) ,

where sco(yq) := t<, dco(yq) := 1, and, for every i ∈ {1, . . . , π}/{co(yq)}, di := 0.

Analogously, if jl < j′l, then we have to move the left head to the left over the

factors uj′l , uj′l−1, . . . , ujl+1, ujl ; to this end we use the following set of states:

{l-backp,q | jl ≤ q ≤ j′l} .

As before, for every q, jl ≤ q ≤ j′l, for all a, a′ ∈ Σ and for every si ∈ {t=, t<},
i ∈ {1, . . . , π}/{co(yq)}, we define

δ(l-backp,q, a, a
′, s1, s2, . . . , sπ) := (l-backp,q,−1, 0, d1, d2, . . . , dπ) ,

where sco(yq) := t<, dco(yq) := 1, and, for every i ∈ {1, . . . , π}/{co(yq)}, di := 0.

Note that, in the above defined transitions, the only difference between the
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cases j′l < jl and jl < j′l, apart from the different states, is the head instruction

for the left head. The states for the right head, i. e., r-forthp,q and r-backp,q, and

their transitions are defined analogously.

Up to now, we have introduced states that can move the input heads back or

forth over whole factors of the input word. This is done by moving an input head

and simultaneously incrementing a counter until it reaches the counter bound, i. e.,

the counter message changes to t=. It remains to define what happens if an input

head is completely moved over a factor and the counter message changes to t=.

Intuitively, in this case the automaton should change to another state and then

move a head in dependency of another counter. Thus, e. g., if in state l-forthp,i the

counter message of counter co(yi) is t=, then the automaton should change into

state l-forthp,i+1. In order to simplify the formal definition we assume j′l < jl and

j′r < jr, as all other cases can be handled similarly. For every q, 1 ≤ q ≤ k′ − 1,

for all a, a′ ∈ Σ and for every si ∈ {t=, t<}, i ∈ {1, . . . , π}/{co(yq)}, we define

δ(l-forthp,q, a, a
′, s1, s2, . . . , sπ) := (l-forthp,q+1, 0, 0, d1, d2, . . . , dπ) ,

if µp = λ and µp+1 = λ ,

δ(l-forthp,q, a, a
′, s1, s2, . . . , sπ) := (r-forthp,q+1, 0, 0, d1, d2, . . . , dπ) ,

if µp = λ and µp+1 = ρ ,

δ(r-forthp,q, a, a
′, s1, s2, . . . , sπ) := (l-forthp,q+1, 0, 0, d1, d2, . . . , dπ) ,

if µp = ρ and µp+1 = λ ,

δ(r-forthp,q, a, a
′, s1, s2, . . . , sπ) := (r-forthp,q+1, 0, 0, d1, d2, . . . , dπ) ,

if µp = ρ and µp+1 = ρ ,

where sco(yq) := t=, dco(yq) = 1, and, for every i ∈ {1, . . . , π}/{co(yq)}, di := 0.

Now, for every i, 1 ≤ i ≤ k′−1, the transition changing the automaton from the

state corresponding to the pair (ji, µi) into the state corresponding to (ji+1, µi+1)

has been defined. Note, that in these transitions we increment the counter co(yq)

once more without moving the input head to set its value back to 0 again, such that

it is ready for the next time it is used. However, it remains to define what happens

if the counter co(yjk′ ) reaches its counter bound in the state that corresponds to

the final pair (jk′ , µk′). In this case, the automaton enters a new state matchp, in

which the factors ujl and ujr are matched. In the following definition, let q := jk′ .
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For all a, a′ ∈ Σ and for every si ∈ {t=, t<}, i ∈ {1, . . . , π}/{co(yq)}, we define

δ(l-forthp,q, a, a
′, s1, s2, . . . , sπ) := (matchp, 0, 0, d1, d2, . . . , dπ) ,

if µjk′ = λ ,

δ(r-forthp,q, a, a
′, s1, s2, . . . , sπ) := (matchp, 0, 0, d1, d2, . . . , dπ) ,

if µjk′ = ρ ,

where sco(yq) := t=, dco(yq) := 1, and, for every i ∈ {1, . . . , π}/{co(yq)}, di := 0.

In the state matchp the factors ujl and ujr are matched by simultaneously

moving both heads to the right. In the following definition, let q := jl. For every

a ∈ Σ and for every si ∈ {t=, t<}, i ∈ {1, . . . , π}/{co(yq)}, we define

δ(matchp, a, a, s1, s2, . . . , sπ) := (matchp, 1, 1, d1, d2, . . . , dπ) ,

where sco(yq) := t<, dco(yq) := 1, and, for every i ∈ {1, . . . , π}/{co(yq)}, di := 0.

Note, that these transitions are only applicable if both input heads scan the

same symbol. If the symbol scanned by the left head differs from the one scanned

by the right head, then no transition is defined and thus the automaton stops in

a non-accepting state.

Finally, the very last transition to define in order to transform Dp into a part

of the automaton is the case when counter co(yjl) has reached its counter bound

in state matchp. For the sake of convenience, we assume that the first pair of Dp+1

is (j′, λ) and, furthermore, that mp+1 := (j′′l , j
′′
r ) with jl < j′′l . For all a, a′ ∈ Σ

and for every si ∈ {t=, t<}, i ∈ {1, . . . , π}/{co(yq)}, we define

δ(matchp, a, a
′, s1, s2, . . . , sπ) := (l-forthp+1,j′ , 0, 0, d1, d2, . . . , dπ) ,

where sco(yq) := t=, dco(yq) := 1, and, for every i ∈ {1, . . . , π}/{co(yq)}, di := 0.

As mentioned above, this is merely the transition in the case that the first

pair of Dp+1 is (j′, λ) and jl < j′′l is satisfied. However, all the other cases can

be handled analogously. In the case that the first pair of Dp+1 is (j′, ρ) instead

of (j′, λ) we have to enter state r-forthp+1,j′ instead of l-forthp+1,j′ . If jl > j′′l
holds instead of jl < j′′l we have to enter a back-state (e. g., l-backp+1,j′) instead.

These transitions can also be interpreted as the passage between the part of the

automaton corresponding to Dp and the part corresponding to the next tuple Dp+1

of the Janus operating mode.

We have to explain a few special cases concerning the definitions above. Re-

garding the tuples D1 and Dk we have to slightly change the definitions. Initially,
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both heads are located at the very left position of the input, i. e., the left endmar-

ker “¢”, therefore only l-forth1,q and r-forth1,q states are needed to transform D1

into a part of the automaton. When the automaton is in state matchk and the

counter has reached its counter bound, then the state qf is entered, which is the

only final state of M . We recall, that α = y1 ·y2 · . . . ·yn. Whenever the automaton,

for a p, 1 ≤ p ≤ k, is in a state in {l-forthp,n, l-backp,n, r-forthp,n, r-backp,n} or in a

state matchp, where mp = (j, n), for some j, j < n, is a matching position, then

this means that a head is moved over the rightmost factor un. When the automa-

ton is in such a state for the first time and the counter bound of counter co(yn) is

reached, then the automaton blocks if the head does not scan the right endmarker

“$”, as this implies |u1 · u2 · . . . · un| < |w|. In case that |u1 · u2 · . . . · un| > |w| the

automaton blocks at some point when it tries to move a head to the right that

scans $ since this transition is not defined. A formal definition of these special

cases is omitted.

Obviously, each of the above defined transitions depend on a certain counter

determined by the mapping co, so let us now return to the problem of defining

this mapping. As already mentioned, this mapping co is in general not injective,

hence it is possible that co(x) = co(z) for some x 6= z. This means, intuitively

speaking, that there seems to be an undesirable connection between the lengths of

factors uj with yj = x and factors uj′ with yj′ = z. However, this connection does

not have any effect if it is possible to, initially, exclusively use the counter bound

of counter co(x) = co(z) for factors corresponding to x and then exclusively for

factors corresponding to variable z and never for factors corresponding to x again.

In this case the automaton may reset this counter after it has been used for factors

corresponding to x in order to obtain a new length for factors corresponding to z.

This means that a counter is reused. We now formalise this idea.

Let ∆α := ((d′1, µ
′
1), (d′2, µ

′
2), . . . , (d′k′′ , µ

′
k′′)) be the head movement indicator of

the Janus operating mode. We consider the pattern Dα := yd′1 · yd′2 · . . . · yd′k′′ . If,

for some x, z ∈ var(α), x 6= z, Dα can be factorised into Dα = β · x · γ · z · γ′ · x · δ,
then the automaton cannot use the same counter for variables x and z; thus, co

has to satisfy co(x) 6= co(z).

Claim (1). There exists a total mapping co : var(α)→ {1, 2, . . . , π} such that, for

all x, z ∈ var(α), x 6= z, if Dα = β · x · γ · z · γ′ · x · δ or Dα = β · z · γ · x · γ′ · z · δ,
then co(x) 6= co(z).

Proof. (Claim (1)) If there is no set of variables Γ ⊆ var(α) with |Γ| > π such that

for all x, z ∈ Γ, x 6= z, Dα = β ·x ·γ ·z ·γ′ ·x ·δ or Dα = β ·z ·γ ·x ·γ′ ·z ·δ, then there

obviously exists such a mapping co. So we assume to the contrary, that there exists

a set of variables Γ, |Γ| = π+1, with the above given properties. Now we can apply
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Lemma 3.11 to the pattern Dα and conclude that there exist a z′ ∈ Γ such that Dα

can be factorised into Dα = β ·z′ ·γ with (Γ/{z′}) ⊆ (var(β)∩var(γ)). This directly

implies cn(∆α) ≥ π = cn(∆α) + 1, which is a contradiction. � (Claim (1))

This shows that such a mapping co exists and, furthermore, we can note that

it is straightforward to effectively construct it.

As already mentioned above, it may be necessary for the automaton to reset

counters. More formally, if, for some j, 1 ≤ j ≤ π, and for some x, z ∈ var(α),

x 6= z, co(x) = co(z) = j, then this counter j must be reset. We now explain how

this is done. By definition of the states and transitions so far, we may interpret

states as being related to factors uq, i. e., for every p, 1 ≤ p ≤ k, and every

q, 1 ≤ q ≤ n, the states in {l-forthp,q, l-backp,q, r-forthp,q, r-backp,q} correspond to

factor uq and state matchp corresponds to both factors ul and ur, wheremp = (l, r).

For every x ∈ var(α), the automaton resets counter co(x), using the special counter

instruction r, immediately after leaving the last state corresponding to a factor

uq with yq = x. In order to define this transition formally, we assume that, for

example, l-forthp,q with yq = x is that state and l-forthp,q+1 is the subsequent state.

For all a, a′ ∈ Σ and for every si ∈ {t=, t<}, i ∈ {1, . . . , π}/{co(x)}, we define

δ(l-forthp,q, a, a
′, s1, s2, . . . , sπ) = (l-forthp,q+1, 0, 0, d1, d2, . . . , dπ) ,

where sco(x) := t=, dco(x) := r, and, for every i ∈ {1, . . . , π}/{co(x)}, di := 0.

We recall, that by definition of a Janus automaton, all counter bounds are

initially 0, so the automaton must initially reset all π counters. To define this

transition formally, let l-forth1,1 be the state corresponding to the first element of

D1. The first transition is defined by

δ(q0, ¢, ¢, t=, t=, . . . , t=) = (l-forth1,1, 0, 0, r, r, . . . , r) ,

where q0 is the initial state of M . This concludes the definition of the automaton

and we shall now prove its correctness, i. e., L(M) = L(α).

Let w ∈ Σ∗ be an arbitrary input word. From the above given definition, it

is obvious that the automaton treats w as a sequence of factors u1 · u2 · . . . · un.

The lengths of these factors ui, 1 ≤ i ≤ n, are determined by the counter bounds

guessed during the computation. If |u1 · u2 · . . . · un| 6= |w|, then the automaton

does not accept the input anyway, so we may only consider those cases where

suitable counter bounds are guessed that imply |u1 · u2 · . . . · un| = |w|. Recall

the complete matching order (m1,m2, . . . ,mk) with mp = (lp, rp), 1 ≤ p ≤ k. By

definition, in the states matchp, 1 ≤ p ≤ k, the automaton matches factor ulp and

urp . If M reaches the accepting state qf , then, for every p, 1 ≤ p ≤ k, ulp = urp
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and, by applying Lemma 3.7, we conclude that u1 · u2 · . . . · un is a characteristic

factorisation. Hence, w ∈ L(α).

On the other hand, let w′ ∈ L(α) be arbitrarily chosen. This implies that we

can factorise w′ into w′ = u1 · u2 · . . . · un such that for all j, j′, 1 ≤ j < j′ ≤ n,

yj = yj′ implies uj = uj′ , i. e., u1 · u2 · . . . · un is a characteristic factorisation. By

definition, it is possible that the automaton guesses counter bounds such that the

input word w′ is treated in this factorisation w′ = u1 · u2 · . . . · un, so M accepts

w′ and thus w′ ∈ L(M). Consequently, L(M) = L(α), which concludes the proof

of correctness, and hence the proof of Theorem 3.10. �

We conclude this section by discussing the previous results in a bit more detail.

The main technical tool defined in this section is the Janus operating mode. So

far, we interpreted Janus operating modes as instructions specifying how two

input heads can be used to move over a word given in a certain factorisation in

order to check on whether this factorisation is a characteristic one. So, in other

words, a Janus operating mode can be seen as representing an algorithm, solving

the membership problem for the pattern language given by a certain pattern.

Theorem 3.10 formally proves this statement.

A major benefit of this approach is, that from now on we can focus on Janus

operating modes rather than on the more involved model of a Janus automaton.

More precisely, the previous result shows that the task of finding an optimal Janus

automaton for a terminal-free pattern language is equivalent to finding an optimal

Janus operating mode for this pattern. Before we investigate this task in the

subsequent section, we revise our perspective regarding Janus operating modes.

There is no need to consider input words anymore and, thus, in the following

we shall investigate properties of patterns and Janus operating modes exclusively.

Therefore, we establish a slightly different point of view at Janus operating modes,

i. e., we interpret them as describing input head movements over a pattern instead

of over a word given in a factorisation:

Remark 3.12. Let ∆α := (D1, D2, . . . , Dk) be an arbitrary Janus operating mode

for some pattern α := y1 ·y2 · . . . ·yn and let ∆α be derived from the complete mat-

ching order (m1,m2, . . . ,mk). Furthermore, let ∆α := ((d′1, µ
′
1), (d′2, µ

′
2), . . . , (d′k′ , µ

′
k′))

be the head movement indicator of the canonical Janus operating mode. We can

interpret ∆α as a sequence of input head movements over the pattern α, i. e., after

i movements or steps of ∆α, where 1 ≤ i ≤ k′, the left input head is located at

variable yd′i if µ′i = λ or, in case that µ′i = ρ, the right input head is located at yd′i .

So for every i, 1 ≤ i ≤ k′, the sequence ∆α determines the positions of both input

heads after the first i movements of ∆α. More precisely, for every i, 1 ≤ i ≤ k′,

after i steps of ∆α, the positions li and ri of the left head and the right head in α
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are given by

li = max{d′j | 1 ≤ j ≤ i, µ′j = λ} and

ri = max{d′j | 1 ≤ j ≤ i, µ′j = ρ} .

We note that {d′j | 1 ≤ j ≤ i, µ′j = λ} = ∅ is possible, which means that µj = ρ,

1 ≤ j ≤ i, or, in other words, that so far only the right head has been moved. In

this case, we shall say that the left head has not yet entered α and therefore is

located at position 0. The situation {d′j | 1 ≤ j ≤ i, µ′j = ρ} = ∅ is interpreted

analogously. As already mentioned above, for every i, 1 ≤ i ≤ k′, we have either

li = d′i or ri = d′i (depending on µi). Furthermore, for every i, 1 ≤ i ≤ k′, it is not

possible that both heads are located at position 0.

This special perspective towards Janus operating modes, described in the pre-

vious remark, shall play a central role in the proofs for the following results.

3.3.2 Patterns with Restricted Variable Distance

We recall that the variable distance is a parameter of patterns that is defined in

Section 2.2.1 (Definition 2.3). In this section, by applying Janus automata, we

show that for patterns with a restricted variable distance the membership problem

can be solved in polynomial time.

We first note that the problem of computing the variable distance vd(α) for

an arbitrary pattern α is not a difficult one:

Proposition 3.13. For every terminal-free pattern α, the number vd(α) can be

computed in time O(|α| × | var(α)|).

Proof. Let α be a terminal-free pattern and let var(α) = {x1, x2, . . . , xm}. It is

possible to compute the variable distance of α in the following way. First, we

initialise a variable k := 0. Now, we move over the pattern from left to right.

Whenever a variable xi is encountered, we carry out the following steps. If this

is the first time that xi is encountered, then we initialise a boolean array Axi of

size | var(α)| with value 0 in every cell. If, on the other hand, this is not the

first time xi is encountered, then we set k := max{k, |Axi |}, where |Axi | denotes

the number of ones in Axi . In addition to that and regardless of whether this

occurrence of variable xi is the first one or not, we set cell i of array Axj to 1, for

all j, 1 ≤ j ≤ m, i 6= j, where such an array exists. It can be easily verified that

when we reach the right end of α, then k stores the variable distance of α.

For the above described procedure, in every step, we need to manipulate

| var(α)| arrays and we have to compute |Axi | for some i, 1 ≤ i ≤ m, which
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can be done in time O(| var(α)|). Thus, the total runtime of this procedure is

O(|α| × | var(α)|). �

The following vital result shows that for every possible Janus operating mode

for some pattern α, its counter number is at least equal to the variable distance of

α. Hence, the variable distance is a lower bound for the counter number of Janus

operating modes.

Theorem 3.14. Let ∆α be an arbitrary Janus operating mode for a terminal-free

pattern α. Then cn(∆α) ≥ vd(α).

Proof. Let α := y1·y2·. . .·yn be a terminal-free pattern and let (m1,m2, . . . ,mk) be

the complete matching order for α from which ∆α := (D1, D2, . . . , Dk) is derived.

Furthermore, let ∆α := ((d′1, µ
′
1), (d′2, µ

′
2), . . . , (d′k′ , µ

′
k′)) be the head movement

indicator of the Janus operating mode. This sequence ∆α contains numbers d′i,

1 ≤ i ≤ k′, that are positions of α, i. e., 1 ≤ d′i ≤ |α|, 1 ≤ i ≤ k′. Hence, we can

associate a pattern Dα with ∆α and α in the following way: Dα := yd′1 ·yd′2 ·. . .·yd′k′ .
By definition of the variable distance, we know that there exists an x ∈ var(α)

such that α = β · x · γ · x · δ with |γ|x = 0 and | var(γ)| = vd(α). We assume

vd(α) ≥ 1 (i. e., var(γ) 6= ∅), as in the case vd(α) = 0, cn(∆α) ≥ vd(α) trivially

holds.

In the following, let Γ := var(γ) ∪ {x}. We shall prove the statement of the

theorem by showing that there exists a variable z ∈ Γ such that Dα = β ·z ·γ with

|(var(β) ∩ var(γ))/{z}| ≥ vd(α), which implies cn(∆α) ≥ vd(α). To this end, we

first prove the following claim:

Claim (1). For all z, z′ ∈ Γ, z 6= z′, we can factorise Dα into Dα = β̃ ·z ·γ̃1 ·z′ ·γ̃2 ·z ·δ̃
or Dα = β̃ · z′ · γ̃1 · z · γ̃2 · z′ · δ̃.

Proof. (Claim (1)) For arbitrary z, z′ ∈ Γ, z 6= z′, there are two possible cases

regarding the positions of the occurrences of z and z′ in α. The first case describes

the situation that there exists an occurrence of z′ (or z) in α such that z (or z′,

respectively) occurs to the left and to the right of this occurrence. If this is not

possible, the occurrences of z and z′ are separated, i. e., the rightmost occurrence

of z (or z′) is to the left of the leftmost occurrence of z′ (or z, respectively). More

formally, it is possible to factorise α into

α = β̂ · z · γ̂1 · z′ · γ̂2 · z · δ̂ (3.1)

or into

α = β · x · γ̂1 · z · γ̂2 · z′ · γ̂3 · x · δ (3.2)
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with |β · x · γ̂1 · z · γ̂2|z′ = 0 and |γ̂2 · z′ · γ̂3 · x · δ|z = 0. The two factorisations

obtained by changing the roles of z and z′ can be handled analogously and are,

thus, omitted. We note that in the second factorisation, γ̂1 · z · γ̂2 · z′ · γ̂3 equals

the factor γ from the above introduced factorisation α = β · x · γ · x · δ. This is

due to the fact that we assume z, z′ ∈ Γ.

We first observe that z = x or z′ = x implies that the first factorisation

is possible. If we cannot factorise α according to factorisation (3.1), then we can

conclude that the rightmost occurrence of z is to the left of the leftmost occurrence

of z′ and, furthermore, as both z, z′ ∈ Γ and z 6= x 6= z′, these occurrences are

both in the factor γ. Hence, factorisation (3.2) applies. We now show that in

both cases the variables z, z′ satisfy the property described in Claim (1). However,

throughout the following argumentations, we need to bear in mind that Claim (1)

describes a property of Dα and the two considered factorisations are factorisations

of α.

We start with the case that α can be factorised into α = β̂ ·z · γ̂1 ·z′ · γ̂2 ·z · δ̂. Let

p := |β̂ ·z · γ̂1 ·z′ · γ̂2|+1, thus yp = z. In the complete matching order (m1, . . . ,mk)

there has to be an mq, 1 ≤ q ≤ k, with mq := (jl, jr) and either jl = p or jr = p.

We assume that jl = p; the case jr = p can be handled analogously. This implies,

by the definition of Janus operating modes, that the last element of Dq is (p, λ).

In the following, we interpret the Janus operating mode as a sequence of input

head movements over α, as explained in Remark 3.12. Both heads start at the

very left position of the input, so in order to move the left head to position p in the

pattern, it has to pass the whole part to the left of position p, i. e. y1 · y2 · . . . yp−1,

from left to right (possibly changing directions several times). In this initial part

of the pattern, the variables z and z′ occur in exactly this order. We conclude

that the left head has to pass an occurrence of z, then pass an occurrence of z′

and finally reaches position p, where variable z occurs. Regarding Dα this means

that a factorisation Dα = β̃ · z · γ̃1 · z′ · γ̃2 · z · δ̃ is possible.

Next, we consider the case that it is not possible to factorise α = β̂ · z · γ̂1 · z′ ·
γ̂2 · z · δ̂. As explained above, this implies that α = β · x · γ̂1 · z · γ̂2 · z′ · γ̂3 · x · δ
with |β · x · γ̂1 · z · γ̂2|z′ = 0 and |γ̂2 · z′ · γ̂3 · x · δ|z = 0. Let rz := |β · x · γ̂1|+ 1 and

lz′ := |β · x · γ̂1 · z · γ̂2| + 1 be the positions of the variables z and z′ pointed out

in the factorisation above. Obviously, rz is the rightmost occurrence of z and lz′

is the leftmost occurrence of z′. These positions rz and lz′ have to be covered by

some matching positions in the complete matching order (m1, . . . ,mk), i. e., there

exist matching positions mi := (lz, rz) and mi′ := (lz′ , rz′). We can assume that

rz is the right element and lz′ the left element of a matching position, as these

positions describe the rightmost and the leftmost occurrences of the variable z

and z′, respectively. Moreover, (m1, . . . ,mk) has to contain a complete matching
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order for variable x in α. Since there is no occurrence of x in the factor γ, this

implies the existence of a matching position mi′′ := (lx, rx) with lx ≤ |β| + 1 and

|β · x · γ̂1 · z · γ̂2 · z′ · γ̂3| + 1 ≤ rx. We simply assume that lx = |β| + 1 and

rx = |β · x · γ̂1 · z · γ̂2 · z′ · γ̂3| + 1, as this is no loss of generality regarding the

following argumentation. Hence, we deal with the following situation (recall that

lx, rx, rz and lz′ are positions of α):

α = β x γ̂1 z γ̂2 z′ γ̂3 x δ

lx rz lz′ rx

Now, in the same way as before, we interpret the Janus operating mode as a

sequence of input head movements. We proceed by considering two cases concer-

ning the order of the matching positions mi′ = (lz′ , rz′) and mi′′ = (lx, rx) in the

complete matching order, i. e., either i′ < i′′ or i′′ < i′. In the latter case, i′′ < i′,

the right input head is moved from the leftmost variable in α to position rx, hence,

it passes z and z′ in this order. Furthermore, the left input head is moved to posi-

tion lx. After that, since i′′ < i′, the left input head has to be moved from position

lx to position lz′ , thus, passing position rz where variable z occurs. Hence, we

conclude Dα = β̃ · z · γ̃1 · z′ · γ̃2 · z · δ̃. Next, we assume i′ < i′′, so the left input

head is moved from the leftmost variable in α to position lz′ , so again, an input

head passes z and z′ in this order. After that, the left input head is moved from

position lz′ to position lx, thus, it passes variable z on position rz. Again, we can

conclude Dα = β̃ · z · γ̃1 · z′ · γ̃2 · z · δ̃. � (Claim (1))

Hence, for all z, z′ ∈ Γ, z 6= z′, Dα can be factorised into Dα = β̃ ·z ·γ̃1 ·z′ ·γ̃2 ·z ·δ̃
or Dα = β̃ ·z′ · γ̃1 ·z · γ̃2 ·z′ · δ̃, and therefore we can apply Lemma 3.11 and conclude

that there exists a z ∈ Γ such that Dα can be factorised into Dα = β ·z ·γ with (Γ/

{z}) ⊆ (var(β)∩var(γ)). This directly implies that cn(∆α) ≥ |Γ|−1 = vd(α). �

In the previous section, the task of finding an optimal Janus automaton for

a pattern is shown to be equivalent to finding an optimal Janus operating mode

for this pattern. Now, by the above result, a Janus operating mode ∆α for some

pattern α is optimal if cn(∆α) = vd(α) is satisfied. Hence, our next goal is to find

a Janus operating mode with that property. To this end, we shall first define a

special complete matching order from which the optimal Janus operating mode is

then derived.

Definition 3.15. Let α := y1 · y2 · . . . · yn be a terminal-free pattern with p :=

| var(α)|. For every xi ∈ var(α), let varposi(α) := {ji,1, ji,2, . . . , ji,ni} with ni :=

|α|xi , ji,l < ji,l+1, 1 ≤ l ≤ ni − 1. Let (m1,m2, . . . ,mk), k =
∑p

i=1 ni − 1, be the
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enumeration of the set {(ji,l, ji,l+1) | 1 ≤ i ≤ p, 1 ≤ l ≤ ni−1} such that, for every

i′, 1 ≤ i′ < k, the left element of the pair mi′ is smaller than the left element of

mi′+1. We call (m1,m2, . . . ,mk) the canonical matching order for α.

Proposition 3.16. Let α be a terminal-free pattern. The canonical matching

order for α is a complete matching order.

Proof. For every xi ∈ var(α), let varposi(α) := {ji,1, ji,2, . . . , ji,ni} with ni := |α|xi ,
ji,l < ji,l+1, 1 ≤ l ≤ ni − 1. The tuple

((ji,1, ji,2), (ji,2, ji,3), . . . , (ji,ni−2, ji,ni−1), (ji,ni−1, ji,ni))

is clearly a matching order for xi in α. As the canonical matching order contains

all these matching orders for each variable xi ∈ var(α), it is a complete matching

order for α. �

Intuitively, the canonical matching order can be constructed by simply moving

through the pattern from left to right and for each encountered occurrence of a

variable x, this occurrence and the next occurrence of x (if there is any) constitutes

a matching position. For instance, the canonical matching order for the example

pattern β introduced in Section 3.3.1 is ((1, 3), (2, 4), (4, 6), (5, 7)).

We proceed with the definition of a Janus operating mode that is derived from

the canonical matching order. Before we do so, we informally explain how this

is done. To this end, we employ the interpretation of Janus operating modes

as instructions for input head movements. In each step of moving the input

heads from one matching position to another, we want to move first the left head

completely and then the right head. This is not a problem as long as the part the

left head has to be moved over and the part the right head has to be moved over

are not overlapping. However, if they are overlapping, then the left head would

overtake the right head which conflicts with the definition of Janus operating

modes. So in this special case, we first move the left head until it reaches the

right head and then we move both heads simultaneously. As soon as the left head

reaches the left element of the next matching position, we can keep on moving the

right head until it reaches the right element of the next matching position.

Definition 3.17. Let (m1,m2, . . . ,mk) be the canonical matching order for a

terminal-free pattern α. For any mi−1 := (j′1, j
′
2) and mi := (j1, j2), 2 ≤ i ≤ k, let

(p1, p2, . . . , pk1) := g(j′1, j1) and (p′1, p
′
2, . . . , p

′
k2

) := g(j′2, j2), where g is the function

introduced in Definition 3.8. If j1 ≤ j′2, then we define

Di := ((p1, λ), (p2, λ), . . . , (pk1 , λ), (p′1, ρ), (p′2, ρ), . . . , (p′k2
, ρ), (j2, ρ), (j1, λ)) .
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If, on the other hand, j′2 < j1, we define Di in three parts

Di := ((p1, λ), (p2, λ), . . . , (j′2, λ),

(j′2 + 1, ρ), (j′2 + 1, λ), (j′2 + 2, ρ), (j′2 + 2, λ), . . . , (j1 − 1, ρ), (j1 − 1, λ),

(j1, ρ), (j1 + 1, ρ), . . . , (j2 − 1, ρ), (j2, ρ), (j1, λ)) .

Finally, D1 := ((1, ρ), (2, ρ), . . . , (j − 1, ρ), (j, ρ), (1, λ)), where m1 = (1, j). The

tuple (D1, D2, . . . , Dk) is called the canonical Janus operating mode.

If we derive a Janus operating mode from the canonical matching order ((1, 3),

(2, 4), (4, 6), (5, 7)) for β as described in Definition 3.17 we obtain the canonical

Janus operating mode (((1, ρ), (2, ρ), (3, ρ), (1, λ)), ((4, ρ), (2, λ)), ((3, λ), (5, ρ),

(6, ρ), (4, λ)), ((7, ρ), (5, λ))). This canonical Janus operating mode has a counter

number of 1, so its counter number is smaller than the counter number of the

example Janus operating mode ∆β given in Section 3.3.1 and, furthermore, equals

the variable distance of β. Referring to Theorem 3.14, we conclude that the

canonical Janus operating mode for β is optimal. The next lemma shows that this

holds for every pattern.

Lemma 3.18. Let α be a terminal-free pattern and let ∆α be the canonical Janus

operating mode for α. Then cn(∆α) = vd(α).

Proof. Let α := y1 ·y2 · . . . ·yn and let ∆α := ((d′1, µ
′
1), (d′2, µ

′
2), . . . , (d′k′ , µ

′
k′)) be the

head movement indicator of the canonical Janus operating mode. This sequence

∆α contains numbers d′i, 1 ≤ i ≤ k′, that are positions of α, i. e. 1 ≤ d′i ≤ |α|,
1 ≤ i ≤ k′. Hence, we can associate a sequence of variables (yd′1 , yd′2 , . . . , yd′k′ ) with

∆α.

In order to prove Lemma 3.18, we assume to the contrary that cn(∆α) > vd(α).

This implies that there is a p, 1 ≤ p ≤ k′, and a set Γ of at least π := vd(α) + 1

different variables z1, z2, . . . , zπ such that yd′p /∈ Γ and, for every z ∈ Γ, there exist

j, j′, 1 ≤ j < p < j′ ≤ k′, with yd′j = yd′
j′

= z.

We can interpret ∆α as a sequence of input head movements over the pattern

α as explained in Remark 3.12. We are particularly interested in the position of

the left head in α at step p of ∆α. Thus, we define p̂ such that d′p̂ = max{d′j |
1 ≤ j ≤ p, µ′j = λ}. However, we note that {d′j | 1 ≤ j ≤ p, µ′j = λ} = ∅
is possible and in this case d′p̂ would be undefined. So for now, we assume that

{d′j | 1 ≤ j ≤ p, µ′j = λ} 6= ∅ and consider the other case at the end of this

proof. Moreover, we need to define the rightmost position in α that has been

visited by any input head when we reach step p in ∆α. By definition of the

canonical matching order, this has to be the right input head, as it is always
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positioned to the right of the left input head. Thus, we define pmax such that

d′pmax
:= max{d′j | 1 ≤ j ≤ p}.

Now, we can consider α in the factorisation

α = β · yd′
p̂
· γ · yd′pmax

· δ .

By the definition of the positions p̂ and pmax above, we can conclude the following.

After performing all steps d′j with 1 ≤ j ≤ p, position d′p̂ is the position where the

left head is located right now. This implies, by definition of the canonical Janus

operating mode, that no head will be moved to one of the positions in β again.

The position d′pmax
is the rightmost position visited by any head so far. Hence,

until now, no head has reached a position in δ.

Regarding the sequence of variables (yd′1 , yd′2 , . . . , yd′k′ ) we can observe that for

every j, 1 ≤ j ≤ p, yd′j ∈ var(β · yd′
p̂
· γ · yd′pmax

), and, for every j′, p < j′ ≤ k′,

yd′
j′
∈ var(γ · yd′pmax

· δ). This follows directly from our interpretation of ∆α as

a sequence of input head movements over α. Moreover, since for every z ∈ Γ,

there exist j, j′, 1 ≤ j < p < j′ ≤ k′, with yd′j = yd′
j′

= z, we can conclude

that Γ ⊆ (var(β · yd′
p̂
· γ · yd′pmax

) ∩ var(γ · yd′pmax
· δ)). We can further show that

Γ ⊆ var(γ ·yd′pmax
). To this end, we assume that for some z ∈ Γ, z /∈ var(γ ·yd′pmax

),

which implies z ∈ (var(β · ydp̂) ∩ var(δ)). Hence, we can conclude that there

exists a matching position (lz, rz) in the canonical matching order, where the left

element lz is a position in β · ydp̂ and the right element rz is a position in δ, i. e.,

1 ≤ lz ≤ |β · ydp̂ | and |β · yd′
p̂
· γ · yd′pmax

| + 1 ≤ rz ≤ |α|. By definition of the

canonical Janus operating mode, this implies that the rightmost position in α,

that has been visited by any input head when we reached step p in ∆α has to be

at least position rz. Since rz > d′pmax
, this is clearly a contradiction. Consequently,

we conclude that Γ ⊆ var(γ · yd′pmax
).

We recall that position d′pmax
of α has already been reached by the right head

and that in the canonical Janus operating mode, the right head is exclusively

moved from the right element of some matching position (l, r) to the right element

of another matching position (l′, r′). Consequently, either r ≤ d′pmax
≤ r′ or

r′ ≤ d′pmax
≤ r and, furthermore, the left elements l and l′ must be positions

in the factor β · yd′
p̂
. Thus, there has to be a matching position (l, r) in the

canonical matching order with l ≤ d′p̂ and r ≥ d′pmax
. Therefore, we can refine the

factorisation from above by factorising β · yd′
p̂

into β1 · yl · β2 and yd′pmax
· δ into

δ1 · yr · δ2; thus, we obtain

α = β1 · yl · β2 · γ · δ1 · yr · δ2 .



Chapter 3. First Approach: Automata 53

In the following, we show that the factor between the left and right element of the

matching position (l, r), i. e., β2·γ ·δ1, contains too many distinct variables different

from yl = yr. More precisely, the number of such variables is clearly bounded by

the variable distance, but, by means of the variables in Γ, we obtain a contradiction

by showing that there are vd(α) + 1 such variables in the factor β2 · γ · δ1. To this

end, we first recall that we have already established that Γ ⊆ var(γ · yd′pmax
) and,

furthermore, yd′p /∈ Γ and (l, r) is a matching position; thus, yl = yr.

By the factorisation above, we know that d′pmax
≤ r. If d′pmax

< r, then Γ ⊆
var(γ · yd′pmax

) implies Γ ⊆ var(γ · δ1). We can further note, that yr cannot be

an element of Γ as this contradicts to the fact that (l, r) is a matching position.

Thus, we have |Γ| variables different from yl = yr occurring in β2 · γ · δ1 and we

obtain the contradiction as described above.

In the following, we assume that d′pmax
= r and note that this implies δ1 = ε. We

observe that there are two cases depending on whether or not yd′pmax
∈ Γ. We start

with the easy case, namely yd′pmax
/∈ Γ, and note that in this case Γ ⊆ var(γ ·yd′pmax

)

implies Γ ⊆ var(γ). In the same way as before, this leads to a contradiction.

It remains to consider the case that yd′pmax
∈ Γ. Here, Γ ⊆ var(γ) is not satisfied

anymore, as (l, d′pmax
) is a matching position (recall that we still assume d′pmax

= r)

and, thus, yd′pmax
/∈ var(γ). In the following we consider the variable yd′p , for which,

by definition, yd′p /∈ Γ is satisfied. Hence, in order to obtain a contradiction, it is

sufficient to show that yd′p ∈ var(β2 · γ · δ1). To this end, we need the following

claim:

Claim (1). l ≤ d′p.

Proof. (Claim (1)) If µ′p = λ, then, by definition, d′p̂ = d′p and if µ′p = ρ, then

d′p̂ < d′p, since p̂ is the position of the left head and d′p is the position of the right

head. Hence, since l ≤ d′p̂, we conclude l ≤ d′p̂ ≤ d′p. � (Claim (1))

If l < d′p, then yd′p ∈ var(β2 · γ · δ1), since yd′p = yd′pmax
is not possible as, by

assumption, yd′pmax
∈ Γ and yd′p /∈ Γ. Hence, we assume l = d′p, which implies yl =

yd′p . We can show that this is a contradiction. First, we recall that (l, d′pmax
) is a

matching position, so yl = yd′pmax
and since yd′pmax

∈ Γ, yl ∈ Γ as well. Furthermore,

yd′p /∈ Γ, which contradicts yl = yd′p . We conclude that yd′p ∈ var(β2 · γ · δ1) must

be satisfied.

Hence, for each possible case, we obtain | var(β2 · γ · δ1)| ≥ π, which is a

contradiction.

It still remains to consider the case {d′j | 1 ≤ j ≤ p, µ′j = λ} = ∅. In this case

we have µ′i = ρ for every i with 1 ≤ i ≤ p. This implies that until now the left

input head has not yet entered α and the right head has been moved directly from

the first position of α to position d′p without reversing direction. Furthermore, we
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know that the first matching position of the canonical matching order is (1, r),

where d′p ≤ r.

If d′p = r, we can factorise α into

α = y1 · β · yd′p · γ ,

where (1, d′p) is a matching position. As for every z ∈ Γ there exists an i, 1 ≤ i < p,

with ydi = z and since yd′p /∈ Γ, we conclude Γ ⊆ var(β). This directly implies

vd(α) ≥ π, which is a contradiction.

If, on the other hand, d′p < r, then we can factorise α into

α = y1 · β1 · yd′p · β2 · yr · γ .

In the same way as before, we can conclude that Γ ⊆ var(y1 · β1), thus, (Γ/

{y1}) ⊆ var(β1). Now, as yd′p /∈ Γ, we have (Γ/{y1}) ∪ {yd′p} ⊆ var(β1 · yd′p · β2),

where |(Γ/{y1}) ∪ {yd′p}| = π and, since (1, r) is a matching position, vd(α) ≥ π

follows, which is a contradiction. This concludes the proof of Lemma 3.18. �

The above lemma, in conjunction with Theorems 3.10 and 3.14, shows that the

canonical Janus operating mode for a pattern α can be transformed into a Janus

automaton that is optimal with respect to the number of counters. We summarise

this first main result in the following theorem:

Theorem 3.19. Let α be a terminal-free pattern. There exists a JFA(vd(α) + 1)

M such that L(M) = L(α).

The Janus automaton obtained from the canonical Janus operating mode for

a pattern α (in the way it is done in the proof of Theorem 3.10) is called the

canonical Janus automaton. As already stated above, Theorem 3.19 shows the

optimality of the canonical automaton. However, this optimality is subject to a

vital assumption: we assume that the automaton needs to know the length of a

factor in order to move an input head over this factor. Although this assumption

is quite natural, we shall reconsider it in more detail in Section 3.3.3.

The variable distance is the crucial parameter when constructing canonical

Janus automata for pattern languages. We obtain a polynomial time match test

for any class of patterns with a restricted variable distance:

Theorem 3.20. There is a computable function that, given any terminal-free

pattern α and w ∈ Σ∗, decides on whether w ∈ L(α) in time O(|α|3 |w|(vd(α)+4)).

Proof. We present an algorithm solving the membership problem with respect to

terminal-free pattern languages within the time bound claimed in Theorem 3.20.
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Our algorithm, on input α and w, simply constructs the canonical Janus auto-

maton M for α and then solves the acceptance problem for M on input w. As

L(M) = L(α), this algorithm clearly works correctly.

Regarding the time complexity we have to investigate two aspects: Firstly, the

time complexity of transforming α into the canonical Janus automaton M and,

secondly, the time complexity of solving the acceptance problem for M on input

w. In order to simplify the estimations of time complexities, we define n := |w|.
In the strict sense, the input has length |w| + 2 and there are |w| + 1 possible

counter bounds to guess, but as we shall use the Landau notation, n is sufficiently

accurate for the following analysis.

We begin with transforming α := y1 · y2 · . . . · yn′ into M . To this end, we

construct the canonical matching order (m1,m2, . . . ,mk), which can be obtained

from α in time O(|α|). Definition 3.17 shows that the canonical Janus operating

mode ∆α := (D1, . . . , Dk) can be directly constructed from the canonical matching

order and the time complexity required to do so is merely the size of ∆α. Ob-

viously, every Di, 1 ≤ i ≤ k, has O(|α|) elements and k ≤ |α|. Thus, we conclude

that ∆α can be constructed in O(|α|2). Let ∆α = ((d′1, µ
′
1), (d′2, µ

′
2), . . . , (d′k′ , µ

′
k′))

be the head movement indicator of ∆α, and let Dα := yd′1 · yd′2 · . . . · yd′k′ , where, as

described above, k′ ≤ |α|2. Next, we have to construct a mapping co : var(α) →
{1, . . . , vd(α) + 1} with the required properties described in the proof of Theo-

rem 3.10, i. e., if, for some z, z′ ∈ var(α), z 6= z′, Dα can be factorised into

Dα = β · z ·γ · z′ ·γ′ · z · δ, then co(z) 6= co(z′). Such a mapping can be constructed

in the following way. Assume that it is possible to mark counters either as free or

as occupied. We move over the pattern yd1 · yd2 · . . . · ydk′ from left to right and

whenever a variable xi is encountered for the first time, we set co(xi) := j for some

counter j that is not occupied right now and then mark this counter j as occupied.

Whenever a variable xi is encountered for the last time, counter co(xi) is marked

as free. As we have to move over ∆α in order to construct co in this way, time

O(k′) = O(|α|2) is sufficient. We note that this method can be applied as it is not

possible that there are more than cn(∆α) + 1 = vd(α) + 1 variables such that for

all z, z′, z 6= z′ of them, Dα can be factorised into Dα = β · z · γ · z′ · γ′ · z · δ or

Dα = β · z′ · γ · z · γ′ · z′ · δ. This can be shown in the same way as we have already

done in the proof of Theorem 3.10.

Next we transform each Dp, 1 ≤ p ≤ k, into a part of the automaton M ,

following the construction in the proof of Theorem 3.10. For the remainder of

this proof, we define π := vd(α) + 1. We show how many states are needed to

implement an arbitrary Dp with p ≥ 2. Therefore, we define

Dp := ((j1, µ1), (j2, µ2), . . . , (jk′′ , µk′′), (jr, ρ), (jl, λ))



Chapter 3. First Approach: Automata 56

with µq ∈ {λ, ρ}, 1 ≤ q ≤ k′′, and the tuples (j′r, ρ), (j′l, λ) to be the last two

elements of Dp−1. We need the following sets of states.

Qp,l :=

{l-forthp,q | 1 ≤ q ≤ k′′, µq = λ} if j′l < jl ,

{l-backp,q | 1 ≤ q ≤ k′′, µq = λ} else .

Qp,r :=

{r-forthp,q | 1 ≤ q ≤ k′′, µq = ρ} if j′r < jr ,

{r-backp,q | 1 ≤ q ≤ k′′, µq = ρ} else .

Qp := Qp,l ∪Qp,r ∪ {matchp} .

The setQ1 is defined analogously, with the only difference that only forth-states are

needed. Clearly, |Qp| = k′′+1 = O(|α|), 1 ≤ p ≤ k. So as k =
∑| var(α)|

i=1 (|α|xi−1) =

|α| − | var(α)| ≤ |α|, we can conclude that |Q| = O(|α|2), where Q :=
⋃k
i=1Qi.

For each element y in (|Q|×{0, 1, . . . , n+ 1}2×{t=, t<}π) we need to define δ(y),

so δ can be constructed in time O(|α|2 n2 2π). This shows that the automaton M

can be constructed in time O(|α|2 n2 2π).

Next we shall investigate the time complexity of solving the acceptance pro-

blem for M on input w. We apply the following idea. We construct a directed

graph of possible configurations of M as vertices, connected by an edge if and

only if it is possible to get from one configuration to the other by applying the

transition function δ. Then we search this graph for a path leading from the initial

configuration to a final configuration, i. e., an accepting path. For an arbitrary

vertex v, we denote the number of edges starting at v by outdegree of v and the

number of edges ending at v by indegree of v. The nondeterminism of the com-

putation of M is represented by the fact that there are vertices with outdegree

greater than 1, namely those configurations where a new counter bound is guessed.

So the existence of an accepting path is a sufficient and necessary criterion for the

acceptance of the input word w. Searching this graph for an accepting path leads

to a deterministic algorithm correctly solving the acceptance problem for M . Let

(V,E) be this graph. The problem of finding an accepting path can then be solved

in time O(|V | + |E|). We illustrate this idea more formally and define the set of

vertices, i. e., the set of all possible configurations of M on input w:

Ĉ ′M,w := {(q, h1, h2, (c1, C1), . . . , (cπ, Cπ)) | q ∈ Q, 0 ≤ h1 ≤ h2 ≤ n+ 1,

0 ≤ ci ≤ Ci ≤ n, 1 ≤ i ≤ π} .

Now we obtain ĈM,w by simply deleting all the configurations of Ĉ ′M,w that cannot

be reached in any computation of M on input w. How this can be done shall

be explained at the end of the proof. Furthermore, we define a set of edges
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ÊM,w, connecting the configurations in ĈM,w as follows: for all ĉ1, ĉ2 ∈ ĈM,w,

(ĉ1, ĉ2) ∈ ÊM,w if and only if ĉ1 `M,w ĉ2. We call ĜM,w := (ĈM,w, ÊM,w) the full

computation graph of M on input w. To analyse the time complexity of searching

ĜM,w for an accepting path, we have to determine the size of ĈM,w and ÊM,w.

By the construction given in the proof of Theorem 3.10, for all configurations

(q, h1, h2, (c1, C1), . . . , (cπ, Cπ)) ∈ ĈM,w, there is at most one i, 1 ≤ i ≤ π, with

ci ≥ 1. That is due to the fact that when M increments a counter, then this

counter is incremented until the counter value jumps back to 0 again before another

counter is incremented. Thus, for each i, 1 ≤ i ≤ π, there are |Q|nπ+3, possible

configurations (q, h1, h2, (c1, C1), . . . , (cπ, Cπ)) such that ci ≥ 1. Therefore, we

obtain

|ĈM,w| = O(|Q|π nπ+3) = O(|α|2 (vd(α) + 1)nπ+3) = O(|α|3 nπ+3) .

Next, we analyse the number of edges in ĜM,w. As already mentioned, due to the

nondeterminism of Janus automata, there are vertices in ĜM,w with an outdegree

greater than one. One such vertex is the initial configuration, as in the initial

configuration, all π counters are reset. Thus, the initial configuration has outdegree

of O(nπ). Furthermore, if M resets a counter by changing from one configuration

ĉ1 to another configuration ĉ2, then ĉ1 has outdegree greater than one. However,

there is at most one counter reset by changing from one configuration to another,

so, for these configurations, the outdegree is bounded by n. We know that M

has | var(α)| states such that a counter is reset in this state and, furthermore, if a

counter is reset, all counter values are 0. Hence the number of configurations with

outdegree n is O(| var(α)|nπ+2) and so we count O(| var(α)|nπ+3) edges for these

configurations. Finally, all the other vertices not considered so far have outdegree

1, and, as the complete number of vertices is O(|α|3 nπ+3), we can conclude that

the number of vertices with outdegree 1 does not exceed O(|α|3 nπ+3). We obtain

|ÊM,w| = O(nπ + | var(α)|nπ+3 + |α|3 nπ+3) = O(|α|3 nπ+3) .

Consequently, O(|ĈM,w|+|ÊM,w|) = O(|α|3 nπ+3) and, as π = vd(α)+1, O(|ĈM,w|+
|ÊM,w|) = O(|α|3 nvd(α)+4). However, it remains to explain how exactly we can

search the graph for an accepting path. This can be done in the following way.

We start with the initial configuration of M on input w and then we construct the

graph ĜM,w step by step by using a Depth-First-Search approach. By this method

an accepting configuration is found if there exists one and, furthermore, we do not

need to construct the whole set of configurations Ĉ ′M,w first. This concludes the

proof. �
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This main result, which is stated for terminal-free E-pattern languages, also

holds for the NE case and for general patterns with terminals (see our example

in Section 3.2.1). Moreover, the above developed techniques and results can be

easily extended to regular-typed patterns1, i. e., patterns, where for every variable

x ∈ var(α) a regular language (or type) Rx is given and the corresponding pattern

language contains then all words w that can be obtained from α by substituting

every x ∈ var(α) by some word in its type Rx. This is due to the fact that any

Janus automaton M that recognises a pattern language given by some pattern α

can be easily transformed into a Janus automaton M ′ that recognises a regular-

typed pattern language with respect to α in the following way. Whenever M

compares two factors that correspond to occurrences of the same variable x, then

M ′ also checks whether or not these factors are members of the type Rx. This can

be easily done by using the finite state control of M ′. We note that, technically,

regular typed patterns constitute a subclass of extended regular expressions (see

Section 7).

Since our automaton-based approach to the membership problem for pattern

languages can be easily extended in the above described way and since automata

provide a convenient foundation for practical implementations, the results presen-

ted in this chapter might have practical implications. We anticipate, though, that

the necessary amendments to our definitions involve some technical hassle.

3.3.3 Further Improvements

In Section 2.2.1, the variable distance is introduced and the studies of the present

chapter reveal that the complexity of the membership problem is essentially de-

termined by this subtle combinatorial property. Any restriction of this parameter

yields major classes of pattern languages with a polynomial-time match test.

We are also able to prove our approach to be optimal. However, this optimality

is subject to the following vital assumption. We assume that a Janus automaton

needs to know the length of a factor in order to move an input head over this

factor and, thus, needs to store this length in form of a counter bound. Although

this assumption is quite natural, it might be worthwhile to consider possibilities

to weaken it. For instance, a Janus automaton is able to detect the left and right

end of its input by means of the endmarkers. Therefore, it can move an input

head from any position to either end of the input without using any counter. So if

an input head has to be moved from one position to another, there are three ways

of doing this. We can either move it directly over the intermediate factors (how it

is done in the original definition of Janus operating modes) or we can move it first

1In Chapter 7, we shall investigate typed patterns in more detail.
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to either the left or the right endmarker and then from there to the new position.

In the latter two cases, only the information of the lengths of the factors between

the left endmarker or the right endmarker and the target position are required. It

is straightforward to extend the definition of Janus operating modes in accordance

with these new ideas. Furthermore, we could again use the concept of the counter

number of Janus operating modes and transform these refined Janus operating

modes into Janus automata in a similar way as done in the proof of Theorem 3.10.

The following example points out that, using this new approach, we can find Janus

automata with less counters than the canonical Janus automata.

Example 3.21. Let α := x1 x2 x3 x1 x2 x4 x4 x5 x5 x3. Clearly, vd(α) = 4; thus the

canonical Janus automaton for α needs 5 counters. We observe that there exists

a JFA(4) M with L(M) = L(α). This automaton M matches factors according

to the complete matching order ((1, 4), (2, 5), (6, 7), (8, 9), (3, 10)). The trick is

that after matching the factors related to the matching position (6, 7), i. e., the

factors corresponding to the occurrences of x4, the counter responsible for factors

corresponding to x4 is reused to match the factors related to the matching position

(8, 9). Hence, so far, we only needed 4 counters, but, obviously, we have lost the

information of the length of factors corresponding to x4. Now, we find the situation

that it still remains to match the factors corresponding to the occurrences of x3,

i. e. the matching position (3, 10), but we cannot simply move the left head back to

factor 3, as the automaton does not know the length of the factors corresponding

to x4 anymore. However, we can move it to the left endmarker first, and then

from there, over the factors corresponding to x1 and x2, to factor 3. We can do

this without storing the lengths of factors related to x4 and x5. Hence, 4 counters

are sufficient.

The above illustrated amendments to our approach further complicate the

definition of Janus operating modes and we do not know anymore how to efficiently

compute the Janus operating mode that is optimal with respect to the counter

number. In the following, we discuss this issue in a bit more detail.

By Theorem 3.14 and Lemma 3.18, it is demonstrated that a Janus operating

mode that is optimal with respect to the counter number, namely the canonical

Janus operating mode, has a simple structure. Thus, it can be easily computed.

However, if we modify the definition of Janus operating modes such that it caters

for situations as described in the above example, then we encounter several pro-

blems. First of all, we have to find an appropriate matching order from which the

optimal Janus operating mode can be derived. But even if we simply assume that

we are given such an optimal matching order, then there are still two problems.

Firstly, for every element of the matching order and every input head, we have to

choose one of three options to move the input head to the next matching position,
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i. e., we can move the input head directly, via the left endmarker or via the right

endmarker. Secondly, if we have decided on the movements of the input heads,

it is still a question how we should interleave these two individual movements of

the input heads. More precisely, it is not clear whether it is better to first move

the left head and then the right head or the other way around or whether a more

sophisticated strategy of alternately moving the two heads is required. This inter-

leaving of input heads movements is not an issue for the canonical Janus operating

mode, since here the left input head is monotonously moved step by step to the

right. Thus, it is clear that moving the left input head first is always the best

choice with respect to the counter number.

We can observe that this last aspect, i. e., the interleaving of the input head

movements, can be treated as a separate computational problem. Once we have

decided on a matching order and a way to move input heads from one matching

position to the next one, the whole problem of computing an optimal Janus ope-

rating mode reduces to the problem of interleaving, or shuffling, two sequences in

such a way that a certain parameter is optimised. This parameter is the counter

number of Janus operating modes, which, applied to general words, is analogous

to the scope coincidence degree (see Definition 2.4, Section 2.2.1).

In the following section, we investigate the problem of computing shuffle words

with a minimum scope coincidence degree.

3.4 Computing Shuffle Words with Minimum

Scope Coincidence Degree

As described in Section 3.3.3, the computational problem to be investigated in this

section is motivated by ideas on improving the Janus automata based approach to

the membership problem presented in Section 3.3. Nevertheless, a more general

motivation for computing shuffle words with a minimum scope coincidence degree

can be found in terms of a scheduling problem. In the following, we therefore

explain and motivate this computational problem in a way that is independent

from our considerations about the Janus operating mode.

Let us assume we have k processes and m values stored in memory cells, and

all these processes need to access the stored values at some points during their

execution. A process does not necessarily need all the m values at the same time,

so a process might get along with less than m memory cells by, for example, first

using a memory cell for a value x and then, as soon as x is not needed anymore,

using the same cell for another, and previously unneeded, value y. As an example,

we assume that process w1 uses the values a, b and c in the order abacbc. This
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process only needs two memory cells: In the first cell, b is permanently stored,

and the second cell first stores a until it is not required anymore and then stores

value c. This is possible, since the part of w1 where a occurs and the part where

c occurs can be completely separated from each other. If we now assume that the

k processes cannot access the shared memory simultaneously, then the question

arises how we can sequentially arrange all memory accesses such that a minimum

overall number of memory cells is required. For example, if we assume that, in

addition to process w1 = abacbc, there is another process w2 := abc, then we

can of course first execute w1 and afterwards w2, which results in the memory

access sequence abacbcabc. It is easy to see that this requires a memory cell for

each value a, b and c. On the other hand, we can first execute aba of process w1,

then process w2 = abc, and finally the remaining part cbc of w1. This results in

abaabccbc, which allows us to use a single memory cell for both values a and c

as before.

This scheduling problem can directly be formalised as a question on shuffle

words. To this end, we merely have to interpret each of the k processes as a word

over an alphabet of cardinality m, where m is the number of different values to

be stored. Hence, our problem of finding the best way to organise the memory

accesses of all processes directly translates into computing a shuffle word of the

k processes that minimises the parameter determining the number of memory

cells required. Unfortunately, even for k = 2, there is an exponential number

of possible ways to schedule the memory accesses. However, we can present an

algorithm solving this problem for arbitrary input words and a fixed alphabet size

in polynomial time.

The above described problem is similar to the task of register allocation (see,

e. g., [60, 34]), which plays an important role in compiler optimisation. However,

in register allocation, the problem is to allocate a number of m values accessed by

a process to a fixed number of k registers, where k < m, with the possibility to

temporarily move values from a register into the main memory. Since accessing

the main memory is a much more expensive CPU operation, the optimisation

objective is to find an allocation such that the number of memory accesses is

minimised. The main differences to the problem investigated in this work are

that the number of registers is fixed, the periods during which the values must

be accessible in registers can be arbitrarily changed by storing them in the main

memory, and there is usually not the problem of sequentialising several processes.

Furthermore, this problem of computing shuffle words with minimum scope

coincidence degree is not covered by any literature on scheduling (see, e. g., [15, 27])

we are aware of, and the same holds for the research on the related common

supersequence problems (see, e. g., [49]).



Chapter 3. First Approach: Automata 62

3.4.1 The Problem of Computing Shuffle Words with

Minimum Scope Coincidence Degree

The scope coincidence degree is introduced for patterns in Section 2.2.1 (Defini-

tion 2.4); it is straightforward to generalise it to arbitrary words. However, for the

sake of completeness, we shall now explicitly define this parameter in a slightly

different, yet equivalent, way.

For an arbitrary w ∈ Σ∗ and any b ∈ alph(w) let l, r, 1 ≤ l, r ≤ |w|, be chosen

such that w[l] = w[r] = b and there exists no k, k < l, with w[k] = b and no k′,

r < k′, with w[k′] = b. Then the scope of b in w (scw(b) for short) is defined by

scw(b) := (l, r). Note that in the case that for some word w we have w[j] = b

and |w|b = 1, the scope of b in w is (j, j). Now we are ready to define the so

called scope coincidence degree: Let w ∈ Σ∗ be an arbitrary word and, for each i,

1 ≤ i ≤ |w|, let

scdi(w) := |{b ∈ Σ | b 6= w[i], scw(b) = (l, r) and l < i < r}| .

We call scdi(w) the scope coincidence degree of position i in w. Furthermore, the

scope coincidence degree of the word w is defined by

scd(w) := max{scdi(w) | 1 ≤ i ≤ |w|} .

As an example, we now consider the word w := acacbbdeabcedefdeff. It can

easily be verified that scd8(w) = scd9(w) = 4 and scdi(w) < 4 if i /∈ {8, 9}. Hence,

scd(w) = 4.

In our practical motivation given above, we state that we wish to sequentially

arrange parallel sequences of memory accesses. These sequences shall be modelled

by words and the procedure of sequentially arranging them is described by the

shuffle operation. Furthermore, our goal is to construct a shuffle word such that,

for any memory access in the shuffle word, the maximum number of values that

already have been accessed and shall again be accessed later on is minimal. For

instance, in the shuffle word abaabccbc of abacbc and abc, for each position i,

1 ≤ i ≤ 9, there exists at most one other symbol that has an occurrence to both

sides of position i. On the other hand, with respect to the shuffle word abacbcabc

we observe that at position 4 symbol c occurs while both symbols a and b have

an occurrence to both sides of position 4. This number of symbols occurring to

both sides of an occurrence of another symbol is precisely the scope coincidence

degree. Hence, our central problem is the problem of finding, for any given set of

words, a shuffle word with a minimum scope coincidence degree.

Problem 3.22. For an arbitrary alphabet Σ, let the problem SWminSCDΣ be the
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problem of finding, for given wi ∈ Σ∗, 1 ≤ i ≤ k, a shuffle word w ∈ w1 . . . wk

with minimum scope coincidence degree.

Note that in the definition of SWminSCDΣ, the alphabet Σ is constant and not

part of the input; hence, for each alphabet Σ, inputs for the problem SWminSCDΣ

have to consist of words over the alphabet Σ exclusively. This shall be important

for complexity considerations.

A naive approach to solving SWminSCDΣ on input (w1, w2, . . . , wk) would

be to enumerate all elements in w1 w2 . . . wk in order to find one with

minimum scope coincidence degree. However, the size of this search space is too

large, as the cardinality of the shuffle w1 w2 . . . wk is, in the worst case,

given by the multinomial coefficient [18]. More precisely,

|w1 w2 . . . wk| ≤
(

n

|w1|, |w2|, . . . , |wk|

)
=

n!

|w1|!× |w2|!× . . .× |wk|!
,

where n :=
∑k

i=1 |wi|, and x! denotes the factorial of an integer x. This de-

monstrates that the search space of a naive algorithm can be exponentially large.

Therefore, a polynomial time algorithm cannot simply search the whole shuffle

w1 w2 . . . wk, which implies that a more sophisticated strategy is required.

Before we present a successful approach to SWminSCDΣ in Section 3.4.3, we

discuss some simple observations in Sections 3.4.1.1 and 3.4.2. First, we note

that solving SWminSCDΣ on input w1, w2, . . . , wk by first computing a minimal

shuffle word w of w1 and w2 (ignoring w3, . . . , wn) and then solving SWminSCDΣ

on the smaller input w,w3 . . . , wn and so on is not possible. This can be easily

comprehended by considering the words w1 := ab and w2 := bc and observing that

w := abbc is a shuffle word of w1 and w2 that is optimal, since scd(w) = 0. Now, it

is not possible to shuffle w with w3 := cba in such a way that the resulting shuffle

word has a scope coincidence degree of less than 2; however, w′ := w2 · w3 · w1 =

bccbaab ∈ w1 w2 w3 and scd(w′) = 1. We can further note that w is in fact

the only optimal shuffle word of w1 and w2, thus, in terms of the above described

approach, we necessarily have to start with a shuffle word of w1 and w2 that is

not optimal in order to obtain an optimal shuffle word of all three words w1, w2

and w3.

Intuitively, it seems obvious that the scope coincidence degree only depends on

the leftmost and rightmost occurrences of the symbols. In other words, removing

a symbol from a word that does not constitute a leftmost or rightmost occurrence

should not change the scope coincidence degree of that word. For instance, if

we consider a word w := α · c · β, where c is a symbol occurring in both α and

β, then all symbols in the word w that are in the scope of c are still in the
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scope of c with respect to the word α · β. Consequently, we can first remove

all occurrences of symbols that are neither leftmost nor rightmost occurrences,

then solve SWminSCDΣ on these reduced words and finally insert the removed

occurrences into the shuffle word in such a way that the scope coincidence degree

does not increase. This reduction of the input words results in a smaller, but

still exponentially large search space. Hence, this approach does not seem to help

us solving SWminSCDΣ in polynomial time. For completeness, we discuss this

matter in a bit more detail in the following section.

3.4.1.1 Scope Reduced Words

As mentioned above, all symbols in the word w := α · c ·β that are in the scope of

c, where c is a symbol occurring in both α and β, are still in the scope of c with

respect to the word α·β. However, in order to conclude scd(w) = scd(α·β), we also

have to consider the following situation. In case that scd|α|+1(w) = scd(w) (i. e.,

the position of the symbol c under consideration has maximum scope coincidence

degree in w) it is no longer as obvious that this particular occurrence of c can be

removed without changing the scope coincidence degree of w.

In this case, we can show that there must exist a position i in w, different

from position |α| + 1, that also has a maximum scope coincidence degree, i. e.,

scdi(w) = scd|α|+1(w):

Lemma 3.23. Let w := α · c · β ∈ Σ∗, where c ∈ Σ, 1 ≤ |α|, 1 ≤ |β|. If

c ∈ (alph(α) ∩ alph(β)), then scd(w) = scd(α · β).

Proof. Let w′ := α · β. Since the occurrence of c at position |α| + 1 is neither a

leftmost nor a rightmost occurrence, it is obvious that scdi(w) = scdi(w
′), 1 ≤

i ≤ |α|, and scdi+1(w) = scdi(w
′), |α| + 1 ≤ i ≤ |α · β|. First, we observe that if

scd|α|+1(w) ≤ scd|α|(w), then we can conclude

scd(w) = max{scdi(w) | 1 ≤ i ≤ |w|, i 6= |α|+ 1}

= max{scdi(w
′) | 1 ≤ i ≤ |w′|}

= scd(w′) .

So in order to prove the statement of the lemma, it is sufficient to show that

scd|α|+1(w) ≤ scd|α|(w). Now, as 1 ≤ |α|, there exists a b ∈ Σ such that α = α′ · b.
In case that b = c, scd|α|+1(w) = scd|α|(w). Therefore, in the following, we assume

that b 6= c and define the set Γ := {a | a ∈ (alph(α)∩ alph(β)) \ {b, c}}. There are

two cases depending on whether or not b ∈ alph(β).

If b ∈ alph(β), then scd|α|+1(w) = |Γ|+|{b}| and scd|α|(w) = |Γ|+|{c}|. Hence,

scd|α|+1(w) = scd|α|(w). If, on the other hand, b /∈ alph(β), then scd|α|+1(w) = |Γ|
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and scd|α|(w) = |Γ|+ |{c}|, which implies scd|α|+1(w) < scd|α|(w). �

By iteratively applying Lemma 3.23, it can easily be seen that all occurrences

of symbols from a word that are neither leftmost nor rightmost occurrences can

be removed without changing its scope coincidence degree. The next definition

shall formalise that procedure.

Definition 3.24. Let w = b1 · b2 · · · bn, bi ∈ Σ, 1 ≤ i ≤ n, be arbitrarily chosen

and, for each i, 1 ≤ i ≤ n, let ci := ε if bi ∈ (alph(w[1, i− 1]) ∩ alph(w[i+ 1,−]))

and ci := bi otherwise. The word c1 ·c2 · · · cn (denoted by sr(w)) is called the scope

reduced version of w. An arbitrary word v ∈ Σ∗, such that, for each b ∈ alph(w),

|w|b ≤ 2, is said to be scope reduced.

We can now use the previous result and Definition 3.24 in order to show that,

regarding the problem SWminSCDΣ, we can restrict our considerations to input

words that are scope reduced:

Lemma 3.25. Let w1, w2, . . . , wk ∈ Σ∗. There is a word u ∈ w1 w2 . . . wk

with scd(u) = m if and only if there is a word v ∈ sr(w1) sr(w2) . . . sr(wk)

with scd(v) = m.

Proof. We prove the only if direction by showing that any u ∈ w1 w2 . . . wk

can be transformed into a v ∈ sr(w1) sr(w2) . . . sr(wk) with scd(u) =

scd(v). The if direction shall be shown in a similar way.

The basic idea is that all the symbols from the words wi, 1 ≤ i ≤ k, that are

neither leftmost nor rightmost occurrences, can simply be removed from a shuffle

word of w1, . . . , wk in order to obtain a shuffle word of sr(w1), . . . , sr(wk), and, ana-

logously, inserting these symbols anywhere, but always between two occurrences

of the same symbol, into a shuffle word of sr(w1), . . . , sr(wk) results in a shuffle

word of w1, . . . , wk. The equivalence of the scope coincidence degree can then be

established by Lemma 3.23.

Let u ∈ w1 w2 . . . wk be arbitrarily chosen. By definition of a shuffle,

we can assume that all symbols in u are marked with one of the numbers in

{1, 2, . . . , k} in such a way that, for each i, 1 ≤ i ≤ k, by deleting all symbols

from u that are not marked with i, we obtain exactly wi. Hence, all symbols in u

are of form b(i), where b ∈ Σ and 1 ≤ i ≤ k. Next, we obtain a word v from u in

the following way. For each b ∈ Σ and each i, 1 ≤ i ≤ k, we delete all occurrences

of symbols b(i) that are neither leftmost nor rightmost occurrences of the symbol

b(i). After that, we unmark all symbols. Since, for each i, 1 ≤ i ≤ k, we removed

all symbols in u originating from wi except the left- and rightmost occurrences

in wi, we conclude that v is a shuffle word of sr(w1), sr(w2), . . . , sr(wk) and, by

Lemma 3.23, we can conclude that scd(u) = scd(v).
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In order to prove the if direction, we arbitrarily choose a word v of the shuffle

sr(w1) sr(w2) . . . sr(wk). Again, we may assume that all symbols in v are

marked in the same way as before. Now, for every b ∈ Σ and every i, 1 ≤ i ≤ k,

if |wi|b > 2, we define nb,i := |wi|b − 2. Next, we construct a word u from v by

applying the following algorithm:

1: Set u← v

2: for all b ∈ Σ do

3: for all i, 1 ≤ i ≤ k, do

4: if |wi|b > 2 then

5: Let α, β, γ such that u = α · b(i) · β · b(i) · γ
6: Set u← α · b · bnb,i · β · b · γ
7: end if

8: end for

9: end for

For every b ∈ Σ and every i, 1 ≤ i ≤ k, with |wi|b > 2, we can conclude that there

are exactly 2 occurrences of b(i) in u, thus, the factorisation in line 5 is unique. In

line 6, we simply insert nb,i = |wi|b−2 occurrences of symbol b in between the two

occurrences of b(i), which we unmark. Consequently, the word u constructed by

the above given algorithm is a shuffle word of w1, w2, . . . , wk and, by Lemma 3.23,

we can conclude that scd(u) = scd(v). �

The previous result also shows how to obtain a solution for SWminSCDΣ on

input words w1, w2, . . . , wk from a solution for SWminSCDΣ on the scope reduced

input words sr(w1), sr(w2), . . . , sr(wk). Although the above made observations are

more or less irrelevant for our main results, we shall use them at the very end of

this work in order to obtain a better complexity bound.

In the following section, we shall establish basic results about the scope coin-

cidence degree of words. These results shall then be applied later on in order to

analyse the scope coincidence degree of shuffle words.

3.4.2 Further Properties of the Scope Coincidence Degree

In this section, we take a closer look at the scope coincidence degree. We are

particularly interested in how words can be transformed without increasing their

scope coincidence degree. First, we note that the scope coincidence degree of a

single position i in some word w, i. e., scdi(w), does not change if we permute the

prefix w[1, i− 1] or the suffix w[i+ 1,−]. This follows directly from the definition,

since scdi(w) is the number of distinct symbols that occur to both sides of position

i, which remains unchanged if w[1, i− 1] or w[i+ 1,−] are permuted.
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Proposition 3.26. Let u, v ∈ Σ∗ with |u| = |v|. If, for some i, 1 ≤ i ≤ |u|,
u[i] = v[i] and u[1, i − 1] is a permutation of v[1, i − 1] and u[i + 1,−] is a

permutation of v[i+ 1,−], then scdi(u) = scdi(v).

Hence, for every position in a word we can permute the part to the left or

to the right of this position without changing its scope coincidence degree. The

scope coincidence degree of the positions in the parts that are permuted is not

necessarily stable, and thus the scope coincidence degree of the whole word may

change. However, if a factor of a word w satisfies a certain property, i. e., it

contains no leftmost occurrence of a symbol with respect to w (it may, however,

contain rightmost occurrences of symbols), then we can arbitrarily permute this

factor without changing the scope coincidence degree of the whole word:

Lemma 3.27. Let α, β, π, π′ ∈ Σ∗, where π is a permutation of π′ and alph(π) ⊆
alph(α). Then scd(α · π · β) = scd(α · π′ · β).

Proof. We prove scd(v) = scd(v′), where v := α · π · β and v′ := α · π′ · β. By

Proposition 3.26, we can conclude that, for each i, with 1 ≤ i ≤ |α| or |α ·π|+1 ≤
i ≤ |v|, scdi(v) = scdi(v

′). So it remains to examine the numbers scdi(v), scdi(v
′),

where |α| + 1 ≤ i ≤ |α · π|. In particular, we take a closer look at scd|α|+1(v)

and scd|α|+1(v′), which are determined by the number of symbols different from

π[1] (π′[1], respectively) that occur in both factors α and π[2,−] · β (π′[2,−] · β,

respectively). These symbols can be divided into two sets, the set of symbols

occurring in alph(α) ∩ alph(β) but not in alph(π) (alph(π′), respectively) on the

one hand, and the set alph(π) \ {π[1]} (alph(π′) \ {π′[1]}, respectively) on the

other hand. This is due to the fact that alph(π) ⊆ alph(α); thus, all symbols in

alph(π) \ {π[1]} (alph(π′) \ {π′[1]}, respectively) have an occurrence to the left

and to the right of position |α|+ 1 in v (v′, respectively). Therefore, scd|α|+1(v) =

scd|α|+1(v′) = (m − 1) + r, where m := | alph(π)| and r := |(alph(α) ∩ alph(β)) \
alph(π)|. If we consider the numbers scdi(v), scdi(v

′), |α| + 2 ≤ i ≤ |α · π| we

encounter the same situation with the only difference that not necessarily all m−1

symbols in alph(π) \ {v[i]} (alph(π′) \ {v′[i]}, respectively) have to occur to the

right of position i. Hence, scd|α|+i(v) = r + m′ and scd|α|+i(v) = r + m′′, where

m′ ≤ (m− 1) and m′′ ≤ (m− 1). In conclusion,

� max{scdi(v) | |α|+ 1 ≤ i ≤ |α · π|} = scd|α|+1(v),

� max{scdi(v
′) | |α|+ 1 ≤ i ≤ |α · π′|} = scd|α|+1(v′), and

� scd|α|+1(v) = scd|α|+1(v′).

Thus, scd(v) = scd(v′). �
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The next two lemmas show that if certain conditions hold, then we can move

one or several symbols in a word to the left without increasing the scope coinci-

dence degree. The first result of that kind is related to the situation where only one

symbol is moved, and the second lemma describes the case where several symbols

are moved and therefore makes use of the first lemma.

We can informally summarise the first lemma in the following way. We assume

that at position i in a word w a certain symbol b occurs and, furthermore, this

is not the leftmost occurrence of b. Then we can move this symbol to the left

without increasing the scope coincidence degree of w as long as it is not moved

to the left of the leftmost occurrence of a b in w. This seems plausible, as such

an operation shortens the scope of symbol b or leaves it unchanged. However, we

might move this certain b into a region of the word where many scopes coincide;

thus, it is possible that the scope coincidence degree of the new position of b

increases compared to its old position. We can show that this increase of the scope

coincidence degree of that certain position does not affect the scope coincidence

degree of the whole word:

Lemma 3.28. For all α, β, γ ∈ Σ∗ and for each b ∈ Σ with b ∈ alph(α),

scd(α · b · β · γ) ≤ scd(α · β · b · γ) .

Proof. Let w := α · b · β · γ and w′ := α · β · b · γ. Furthermore, let j := |α · b|. We

prove the statement of the lemma by showing that scdi(w) ≤ scd(w′), for each i,

1 ≤ i ≤ |w|.
By applying Proposition 3.26, we can conclude that for each i with 1 ≤ i ≤ j−1

or |α · b · β| + 1 ≤ i ≤ |w|, scdi(w) = scdi(w
′). For the positions in w that are in

factor β, i. e. the positions i with j + 1 ≤ i ≤ j + |β|, we observe the following.

For each i, j+ 1 ≤ i ≤ j+ |β|, there is a certain number of symbols different from

symbol w[i] that occur to the left and to the right of position i in w. Regarding

w′, as in w′ the factor β is simply shifted one position to the left, the very same

symbols occur to the left and to the right of position i−1 in w′. In addition to that,

we know that symbol b has an occurrence to the left and to the right of position

i− 1 in w′, whereas in w and with respect to position i, this is not necessarily the

case. Therefore, we can conclude that scdi(w) ≤ scdi−1(w′), j + 1 ≤ i ≤ j + |β|.
So far, we showed that scdi(w) ≤ scd(w′) for each i with 1 ≤ i ≤ |w| and i 6= j.

Thus, it only remains to take a closer look at position j in w and, in particular,

at the number scdj(w). In general, it is possible that scdj(w) > scd|α·β|+1(w′), but

we shall see that always scdj(w) ≤ scd(w′) holds. We consider the symbol y at

position j − 1 in w, i. e. the last symbol of the factor α (recall that |α| ≥ 1). Now

we can write w as w := α′ · y · b · β · γ, where α = α′ · y. If y = b, then obviously
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scdj(w) = scdj−1(w) and we already know that scdj−1(w) = scdj−1(w′), hence,

scdj(w) ≤ scd(w′). We assume that, on the other hand, y 6= b. Furthermore, we

assume to the contrary that scdj(w) = m > scd(w′). This implies that |Γ| = m,

where Γ := |(alph(α)∩alph(β ·γ))\{b}|. Next we consider the set Γ′ = (alph(α′)∩
alph(β · b · γ)) \ {y} and note that, since b ∈ alph(α′), b ∈ Γ′. We observe now

that we have |Γ| = |Γ′| if y ∈ Γ, and |Γ| < |Γ′| if y /∈ Γ, hence, |Γ| ≤ |Γ′| and, as

|Γ′| = scdj−1(w′), m ≤ scdj−1(w′) is implied, which is a contradiction. �

Obviously, if for some word w the condition of Lemma 3.28 is satisfied not only

for one symbol b but for several symbols d1, d2, . . . , dn, then we can separately move

each of these di, 1 ≤ i ≤ n, to the left and conclude that the scope coincidence

degree of the resulting word does not increase compared to w. This observation

is described by the following lemma.

Lemma 3.29. Let α, γ, βi ∈ Σ∗, 0 ≤ i ≤ n, n ∈ N, and let di ∈ Σ, 1 ≤ i ≤ n,

such that di ∈ alph(α), 1 ≤ i ≤ n. Then

scd(α · d1 · d2 · · · dn · β1 · β2 · · · βn · γ) ≤ scd(α · β1 · d1 · β2 · d2 · · · βn · dn · γ) .

Proof. We prove scd(w) ≤ scd(w′), where

� w := α · d1 · d2 · · · dn · β1 · β2 · · · βn · γ ,

� w′ := α · β1 · d1 · β2 · d2 · · · βn · dn · γ .

We can obtain a word u1 from w′ by moving d1 to the left until it is positioned

directly to the left of factor β1. Furthermore, for each i, 2 ≤ i ≤ n, we can

obtain a word ui from ui−1 by moving the symbol di to the left in the same

way (i. e. di is then positioned between di−1 and β1). Obviously, un = w and,

by Lemma 3.28, scd(u1) ≤ scd(w′) and scd(ui) ≤ scd(ui−1), 2 ≤ i ≤ n, hence,

scd(w) ≤ scd(w′). �

Concerning the previous lemma, we observe that we can as well position the

symbols di, 1 ≤ i ≤ n, in any order other than d1 · d2 · · · dn and would still obtain

a word with a scope coincidence degree that has not increased. Furthermore, with

Lemma 3.27, we can conclude that the scope coincidence degree is exactly the

same, no matter in which order the symbols di, 1 ≤ i ≤ n, occur between α and

β1.

3.4.3 Solving the Problem SWminSCDΣ

In this section, we present an efficient way to solve SWminSCDΣ. Our approach is

established by identifying a certain set of well-formed shuffle words which contains
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at least one shuffle word with minimum scope coincidence degree and, moreover,

is considerably smaller than the set of all shuffle words. To this end, we shall first

introduce a general concept for constructing shuffle words, and then a simpler and

standardised way of constructing shuffle words is defined. By applying the lemmas

given in the previous section, we are able to show that there exists a shuffle word

with minimum scope coincidence degree that can be constructed in this simple

way.

Let w1, w2, . . . , wk ∈ Σ∗ be arbitrary words. We consider these words as stack-

like data structures where the leftmost symbol is the topmost stack element. Now

we can empty these stacks by successively applying the pop operation and every

time we pop a symbol from a stack, we append this symbol to the end of an

initially empty word w. Thus, as soon as all stacks are empty, we obtain a word

built up of symbols from the stacks, and this word is certainly a shuffle word of

w1, w2, . . . , wk.

It seems useful to reason about different ways of constructing a shuffle word

rather than about actual shuffle words, as this allows us to ignore the fact that

in general a shuffle word can be constructed in several completely different ways.

In particular the following unpleasant situation seems to complicate the analysis

of shuffle words. If we consider a shuffle word w of the words w1, w2, . . . , wk, it

might be desirable to know, for a symbol b on a certain position j, which wi,

1 ≤ i ≤ k, is the origin of that symbol. Obviously, this depends on how the shuffle

word has been constructed from the words wi, 1 ≤ i ≤ k, and for different ways

of constructing w, the symbol b on position j may originate from different words

wi, 1 ≤ i ≤ k. In particular, if we want to alter shuffle words by moving certain

symbols, it is essential to know the origin words wi, 1 ≤ i ≤ k, of the symbols, as

this determines how they can be moved without destroying the shuffle properties.

We now formalise the way to construct a shuffle word by utilising the stack

analogy introduced above. An arbitrary configuration (of the content) of the

stacks corresponding to words wi, 1 ≤ i ≤ k, can be given as a tuple (v1, . . . , vk)

of suffixes, i. e. wi = ui · vi, 1 ≤ i ≤ k. Such a configuration (v1, . . . , vk) is

then changed into another configuration (v1, . . . , vi−1, v
′
i, vi+1, . . . , vk), by a pop

operation, where vi = b · v′i for some i, 1 ≤ i ≤ k, and for some b ∈ Σ. Initially, we

start with the stack content configuration (w1, . . . , wk) and as soon as all the stacks

are empty, which can be represented by (ε, . . . , ε), our shuffle word is complete.

Hence, we can represent a way to construct a shuffle word by a sequence of these

tuples of stack contents:

Definition 3.30. A construction sequence for words w1, w2, . . . , wk, wi ∈ Σ∗,

1 ≤ i ≤ k, is a sequence s := (s0, s1, . . . , sm), m := |w1 · · ·wk| such that
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� si = (vi,1, vi,2, . . . , vi,k), 0 ≤ i ≤ m, where, for each i, 0 ≤ i ≤ m, and for

each j, 1 ≤ j ≤ k, vi,j is a suffix of wj ,

� s0 = (w1, . . . , wk) and sm = (ε, ε, . . . , ε),

� for each i, 0 ≤ i ≤ m − 1, there exists a ji, 1 ≤ ji ≤ k, and a bi ∈ Σ such

that vi,ji = bi · vi+1,ji and vi,j′ = vi+1,j′ , j
′ 6= ji.

The shuffle word w = b0 · b1 · · · bm−1 is said to correspond to s. In a step from si

to si+1, 0 ≤ i ≤ m− 1, of s, we say that the symbol bi+1 is consumed.

To illustrate the definition of construction sequences, we consider an example

construction sequence s := (s0, s1, . . . , s9) corresponding to a shuffle word of the

words w1 := abacbc and w2 := abc:

s := ((abacbc, abc), (bacbc, abc), (bacbc, bc), (bacbc, c),

(acbc, c), (acbc, ε), (cbc, ε), (bc, ε), (c, ε), (ε, ε)) .

The shuffle word corresponding to s is w := aabbcacbc, and it is easy to see that

scd(w) = 2.

In the next definition, we introduce a certain property of construction se-

quences that can be easily described in an informal way. Recall that in an arbi-

trary step from si to si+1 of a construction sequence s, exactly one symbol b is

consumed. Hence, at each position si = (v1, . . . , vk) of a construction sequence,

we have a part u of already consumed symbols, which is actually a prefix of the

shuffle word we are about to construct and some suffixes v1, . . . , vk that remain to

be consumed. A symbol b that is consumed can be an old symbol that already

occurs in the part u or it can be a new symbol that is consumed for the first

time. Now the special property to be introduced next is that this consumption

of symbols is greedy with respect to old symbols: Whenever a new symbol b is

consumed in a step from si to si+1 = (v1, . . . , vk), we require the construction

sequence to first consume as many old symbols as possible from the remaining

v1, . . . , vk before another new symbol is consumed. For the sake of uniqueness,

this greedy consumption of old symbols shall be defined in a canonical order, i. e.

we first consume all the old symbols from v1, then all the old symbols from v2 and

so on. However, this consumption is canonical only with respect to old symbols.

Thus, there are still several possible greedy construction sequences for some input

words wi, 1 ≤ i ≤ k, since whenever a new symbol is consumed, we have a choice

of k possible suffixes to take this symbol from. We formally define this greedy

property of construction sequences.
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Definition 3.31. Let w ∈ w1 w2 . . . wk, wi ∈ Σ∗, 1 ≤ i ≤ k, and let

s := (s0, s1, . . . , s|w|) with si = (vi,1, vi,2, . . . , vi,k), 0 ≤ i ≤ |w|, be an arbitrary

construction sequence for w. An element si, 1 ≤ i ≤ |w| − 1, of s satisfies the

greedy property if and only if w[i] /∈ alph(w[1, i − 1]) implies that for each j,

1 ≤ j ≤ k, si+|u1···uj | = (vi,1, . . . , vi,j, vi,j+1, . . . , vi,k), where vi,j = uj · vi,j and uj is

the longest prefix of vi,j such that alph(uj) ⊆ alph(w[1, i]).

A construction sequence s := (s0, s1, . . . , s|w|) for some w ∈ Σ∗ is a greedy

construction sequence if and only if, for each i, 1 ≤ i ≤ |w| − 1, si satisfies the

greedy property. A shuffle word w that corresponds to a greedy construction

sequence is a greedy shuffle word.

As an example, we again consider the words w1 = abacbc and w2 = abc. This

time, we present a greedy construction sequence s := (s0, s1, . . . , s9) for w1 and

w2:

s := ((abacbc, abc), (bacbc, abc), (bacbc, bc), (bacbc, c),

(acbc, c), (cbc, c), (cbc, ε), (bc, ε), (c, ε), (ε, ε)) .

Obviously, the shuffle word w := aabbaccbc corresponds to the construction se-

quence s and scd(w) = 1. To show that s is a greedy construction sequence,

it is sufficient to observe that s1, s3 and s6 (the elements where a new symbol

is consumed) satisfy the greedy property. We only show that s3 satisfies the

greedy property as s1 and s6 can be handled analogously. First, we recall that

s3 = (bacbc, c) and note that, in terms of Definition 3.31, we have u1 := ba,

v3,1 := cbc, u2 := ε and v3,2 := c. By definition, s3 only satisfies the greedy pro-

perty if s3+|u1| = (v3,1, v3,2) and s3+|u1·u2| = (v3,1, v3,2). Since |u1| = |u1 · u2| = 2,

v3,1 = cbc, v3,2 = v3,2 = c and s5 = (cbc, c), this clearly holds.

In the following, we show how we can transform an arbitrary construction

sequence s := (s0, s1, . . . , sm) into a greedy one. Informally speaking, this is done

by determining the first element si that does not satisfy the greedy property and

then we simply redefine all the elements sj, i + 1 ≤ j ≤ m, in a way such that si

satisfies the greedy property. If we apply this method iteratively, we can obtain

a greedy construction sequence. Next, we introduce the formal definition of that

transformation and explain it in more detail later on.

Definition 3.32. We define an algorithm G that transforms a construction se-

quence. Let s := (s0, s1, . . . , sm) with si = (vi,1, vi,2, . . . , vi,k), 0 ≤ i ≤ m, be an

arbitrary construction sequence that corresponds to a shuffle word w. In the case

that s is a greedy construction sequence, we define G(s) := s. If s is not a greedy

construction sequence, then let p, 1 ≤ p ≤ m, be the smallest number such that
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sp does not satisfy the greedy property. Furthermore, for each j, 1 ≤ j ≤ k, let uj

be the longest prefix of vp,j with alph(uj) ⊆ alph(w[1, p]) and let vp,j = uj · vp,j.
For each j, 1 ≤ j ≤ k, let σj : Σ∗ → Σ∗ be a mapping defined by σj(x) := vp,j

if |x| > |vp,j| and σj(x) := x otherwise, for each x ∈ Σ∗. Furthermore, let the

mapping σ : (Σ∗)k → (Σ∗)k be defined by σ((v1, . . . , vk)) := (σ1(v1), . . . , σk(vk)),

vj ∈ Σ∗, 1 ≤ j ≤ k. Finally, we define G(s) := (s′0, s
′
1, . . . , s

′
m′), where the elements

s′i, 0 ≤ i ≤ m′, are defined by the following procedure.

1: s′i := si, 0 ≤ i ≤ p

2: for all j, 1 ≤ j ≤ k, do

3: s′p+|u1···uj | := (vp,1, . . . , vp,j, vp,j+1, . . . , vp,k)

4: for all lj, 2 ≤ lj ≤ |uj|, do

5: sp+|u1···uj−1|+lj−1 := (vp,1, . . . , vp,j−1, uj[lj,−] · vp,j, vp,j+1, . . . , vp,k)

6: end for

7: end for

8: q′ ← p+ 1

9: q′′ ← p+ |u1 · · ·uk|+ 1

10: while q′ ≤ m do

11: if σ(sq′−1) 6= σ(sq′) then

12: s′q′′ := σ(sq′)

13: q′′ ← q′′ + 1

14: end if

15: q′ ← q′ + 1

16: end while

As mentioned above, we explain the previous definition in an informal way and

shall later consider an example. Let s := (s0, s1, . . . , sm) be an arbitrary construc-

tion sequence and let p and the uj, 1 ≤ j ≤ k, be defined as in Definition 3.32.

The sequence s′ := (s′0, s
′
1, . . . , s

′
m′) := G(s) is obtained from s in the following

way. We keep the first p elements and then redefine the next |u1 · · ·uk| elements

in such a way that s′p satisfies the greedy property as described by Definition 3.31.

This is done in lines 1 to 9 of the algorithm. Then, in order to build the rest of

s′, we modify the elements si, p + 1 ≤ i ≤ m. First, for each component vi,j,

p+ 1 ≤ i ≤ m, 1 ≤ j ≤ k, if |vp,j| < |vi,j| we know that vi,j = uj · vp,j, where uj is

a suffix of uj. In s′, this part uj has already been consumed by the new elements

s′i, p + 1 ≤ i ≤ p + |u1 · · ·uk|, and is, thus, simply cut off and discarded by the

mapping σ in Definition 3.32. More precisely, if a component vi,j, p+ 1 ≤ i ≤ m,

1 ≤ j ≤ k, of an element si is longer than vp,j, then σj(vi,j) = vi,j. If on the

other hand |vi,j| ≤ |vp,j|, then σ(vi,j) = vi,j. This is done in lines 10 to 16 of the

algorithm.
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The following proposition shows that G(s) actually satisfies the conditions to

be a proper construction sequence:

Proposition 3.33. For each construction sequence s of some words w1, . . . , wk,

G(s) is also a construction sequence of the words w1, . . . , wk.

Proof. Let s := (s0, s1, . . . , sm) and s′ := (s′0, s
′
1, . . . , s

′
m′) := G(s), where si :=

(vi,1, . . . , vi,k), 0 ≤ i ≤ m, s′i′ := (v′i′,1, . . . , v
′
i′,k), 0 ≤ i′ ≤ m′. We assume that s is

not greedy, as otherwise G(s) = s and the statement of the proposition trivially

holds. Hence, let p, 1 ≤ p ≤ m, be the smallest number such that sp does not

satisfy the greedy property. In order to show that s′ is a construction sequence,

we need to show that the following conditions hold:

1. s′0 = (w1, w2, . . . , wk).

2. s′m′ = (ε, ε, . . . , ε).

3. For each i, 0 ≤ i ≤ m′ − 1, there exists a ji, 1 ≤ ji ≤ k, and a bi ∈ Σ, such

that v′i,ji = bi · v′i+1,ji
and v′i,j′ = v′i+1,j′ , j

′ 6= ji.

Condition 1 is clearly satisfied as s′0 = s0 = (w1, . . . , wk). We note that it is

sufficient to prove that condition 3 is satisfied, as this implies condition 2 and,

furthermore, m = m′. For each i, 0 ≤ i ≤ p + |u1 · · ·uk| − 1, condition 3 is

clearly satisfied. To show the same for each i, p + |u1 · · ·uk| ≤ i ≤ m′, we

consider the mapping σ from Definition 3.32. This mapping is defined in a way

that, for an arbitrary si = (vi,1, . . . , vi,k), σ(si) = (ṽi,1, . . . , ṽi,k), with, for each j,

1 ≤ j ≤ k, either ṽi,j = vi,j, if |vi,j| ≤ |vp,j| or ṽi,j = vp,j, if |vi,j| > |vp,j|, where

vp,j is defined as in Definition 3.32. Consequently, for each i, p + 1 ≤ i ≤ m, we

have either σ(si−1) = σ(si) or σ(si−1) = (ṽi,1, . . . , ṽi,j−1, b · ṽi,j, ṽi,j+1, . . . , ṽi,k) and

σ(si) = (ṽi,1, . . . , ṽi,k), for some j, 1 ≤ j ≤ k. In lines 10 to 16 of the algorithm,

we ignore the σ(si) with σ(si) = σ(si−1) and only keep σ(si) in the sequence s′ if

σ(si) 6= σ(si−1). Hence, condition 1 holds for all i, 0 ≤ i ≤ m− 1, and, moreover,

this implies m′ = m. �

Now, as an example for Definition 3.32, we consider the construction sequence

s := ((abacbc, abc), (bacbc, abc), (bacbc, bc), (bacbc, c),

(acbc, c), (acbc, ε), (cbc, ε), (bc, ε), (c, ε), (ε, ε))

of the words w1 = abacbc and w2 = abc, as given below Definition 3.30. The

shuffle word that corresponds to this construction sequence is w := aabbcacbc.

We now illustrate how the construction sequence s′ := (s′0, s
′
1, . . . , s

′
m) := G(s) is

constructed by the algorithm G. First, we note that s3 = (bacbc, c) is the first
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element that does not satisfy the greedy property, since in the step from s4 to

s5, the symbol c is consumed before the leftmost (and old) symbol a from v4,1

is consumed. Thus, s′i = si, 1 ≤ i ≤ 3. As w[1, 3] = aab, we conclude that

u1 := ba and u2 := ε. So the next two elements s′4 and s′5 consume the factor u1

from bacbc, hence, s′4 = (acbc, c) and s′5 = (cbc, c). Now let σ be defined as in

Definition 3.32, thus,

σ(s3) = (cbc, c), σ(s4) = (cbc, c), σ(s5) = (cbc, ε),

σ(s6) = (cbc, ε), σ(s7) = (bc, ε), σ(s8) = (c, ε), σ(s9) = (ε, ε) .

Since σ(s3) = σ(s4) and σ(s5) = σ(s6), we ignore σ(s4) and σ(s6); hence,

s′6 = σ(s5) = (cbc, ε), s′7 = σ(s7) = (bc, ε),

s′8 = σ(s8) = (c, ε), s′9 = σ(s9) = (ε, ε) .

In conclusion,

s′ = ((abacbc, abc), (bacbc, abc), (bacbc, bc), (bacbc, c),

(acbc, c), (cbc, c), (cbc, ε), (bc, ε), (c, ε), (ε, ε)) .

Next, we show that if in a construction sequence s := (s0, s1, . . . , sm) the

element sp is the first element that does not satisfy the greedy property, then in

G(s) := (s′0, s
′
1, . . . , s

′
m) the element s′p satisfies the greedy property. This follows

from Definition 3.32 and has already been explained informally.

Proposition 3.34. Let s := (s0, s1, . . . , sm) be any construction sequence that is

not greedy, and let p, 0 ≤ p ≤ m, be the smallest number such that sp does not

satisfy the greedy property. Let s′ := (s′0, s
′
1, . . . , s

′
m) := G(s) and, if s′ is not

greedy, let q, 0 ≤ q ≤ m, be the smallest number such that s′q does not satisfy the

greedy property. Then p < q.

Proof. Let si := (vi,1, vi,2, . . . , vi,k), 0 ≤ i ≤ m. We assume that s′ is not greedy

and note that, by Definition 3.32, s′i = si, 1 ≤ i ≤ p. Hence, all the elements s′i,

1 ≤ i ≤ p− 1, satisfy the greedy property. To prove p < q it is sufficient to show

that s′p satisfies the greedy property.

Since w[1, p] = w′[1, p], we can conclude that w′[p] /∈ alph(w′[1, p − 1]). Fur-

thermore, line 5 of the algorithm given in Definition 3.32 makes sure that, for

every j, 1 ≤ j ≤ k,

s′p+|u1···uj | = (vp,1, . . . , vp,j, vp,j+1, . . . , vp,k) ,
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where the vp,j are defined as in Definition 3.32. Consequently, s′p satisfies the

greedy property, and therefore p < q. �

More importantly, we can also state that the scope coincidence degree of the

shuffle word corresponding to G(s) does not increase compared to the shuffle word

that corresponds to s. To this end, we shall employ the lemmas introduced in

Section 3.4.2.

Lemma 3.35. Let s be an arbitrary construction sequence that corresponds to

the shuffle word w and let w′ be the shuffle word corresponding to G(s). Then

scd(w′) ≤ scd(w).

Proof. Let s := (s0, s1, . . . , sm), s′ := G(s) := (s′0, s
′
1, . . . , s

′
m) and, for each i,

0 ≤ i ≤ m, si := (vi,1, vi,2, . . . , vi,k), s
′
i := (v′i,1, v

′
i,2, . . . , v

′
i,k). In this proof we shall

use a special terminology: If for some i, i′ with 1 ≤ i < i′ ≤ m, vi,j := ui,j · vi′,j,
1 ≤ j ≤ k, then we say that the ui,j, 1 ≤ j ≤ k, are consumed from the vi,j,

1 ≤ j ≤ k, by the part si, si+1, . . . , si′ .

If s is a greedy construction sequence, then G(s) = s and we are done. There-

fore, we assume that s is not a greedy construction sequence and let p, 0 ≤ p ≤ m,

be the smallest number such that sp does not satisfy the greedy property. For

each vp,j, 1 ≤ j ≤ k, we define vp,j = uj · vp,j, where uj is the longest prefix of vp,j

with alph(uj) ⊆ alph(w[1, p]).

To prove scd(w′) ≤ scd(w), we have to consider two possible cases. The first

case is that alph(w[p+ 1,−]) ⊆ alph(w[1, p]), i. e. w[p] is the last new symbol that

is consumed in s; thus vp,j = ε, 1 ≤ j ≤ k. The second case is that this property

is not satisfied, so there exists a c ∈ Σ, such that w[p + 1,−] = α · c · β with

c /∈ alph(w[1, p+ |α|]). In other words, c is the next new symbol that is consumed

in s after b is consumed in the step from sp−1 to sp.

We start with the latter case and note that we can write w as follows:

w = α1 · b · α2 · c · β ,

where |α1| = p − 1, c /∈ alph(α1 · b · α2) and alph(α2) ⊆ alph(α1 · b). Before we

continue, we explain the main idea of the proof. By definition of the transformation

G, we know that the shuffle word w′ begins with the same prefix as w, i e. w′ =

α1 · b · δ, but the suffix δ may differ from α2 · c · β. In the following we show that

the suffix α2 · c · β from w can be gradually transformed into δ without increasing

the scope coincidence degree of w.

Next, we take a closer look at w and notice that α2 exclusively consists of

symbols from the prefixes uj, 1 ≤ j ≤ k. That is due to the fact that alph(α2) ⊆
alph(α1 · b) and, for each j, 1 ≤ j ≤ k, uj is the longest prefix of vp,j with
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alph(uj) ⊆ alph(α1 · b). Consequently, we can consider the prefixes uj, 1 ≤ j ≤ k,

as being factorised into uj = ũj · ûj such that

sp+|α2| = (û1 · vp,1, û2 · vp,2, . . . , ûk · vp,k) .

In other words, as sp = (ũ1 · û1 · vp,1, . . . , ũk · ûk · vp,k), exactly the prefixes ũj are

consumed by the part sp, sp+1, . . . , sp+|α2| of s, and, thus, α2 ∈ ũ1 ũ2 . . . ũk.

Moreover, the suffix c · β exclusively consists of symbols consumed in steps from

si to si+1, p+ |α2| ≤ i ≤ m− 1. Thus, c · β ∈ û1 · vp,1 û2 · vp,2 . . . ûk · vp,k.
Now let n := |û1 · û2 · · · ûk|. We can conclude that the n symbols from the factors

ûj, 1 ≤ j ≤ k, occur somewhere in c · β, and, furthermore, since c /∈ alph(ûj),

1 ≤ j ≤ k, we also know that all these n symbols occur in β. Thus we can write

β = β1 · d1 · β2 · d2 · · · βn · dn · γ ,

where the symbols dj, 1 ≤ j ≤ n, are exactly the symbols consumed from the ûj,

1 ≤ j ≤ k, i. e., for each i ∈ {|α1 ·b·α2 ·c·β1 ·d1 · · · βi′ | | 1 ≤ i′ ≤ n} there exists a ji,

1 ≤ ji ≤ k, such that vi,ji = di · vi+1,ji and vi,j′ = vi+1,j′ , j
′ 6= ji, and, furthermore,

|vi+1,ji | ≥ |vp,ji |. This means, in particular, that d1 ·d2 · · · dn ∈ û1 û2 . . . ûk

and c · β1 · β2 · · · βn · γ ∈ vp,1 vp,2 . . . vp,k, and therefore,

α2 · d1 · d2 · · · dn ∈ ũ1 · û1 ũ2 · û2 . . . ũk · ûk = u1 u2 . . . uk .

On the other hand, by Definition 3.32, we know that s′ is constructed such that

the prefixes uj, 1 ≤ j ≤ k, are consumed by s′p, s
′
p+1, . . . , s

′
|u1·u2···uk| in a canonical

way, i. e. we can write w′ as

w′ = α1 · b · u1 · u2 · · ·uk · c′ · β′ .

Since, for each j, 1 ≤ j ≤ k, uj is the longest prefix of vp,j with alph(uj) ⊆
alph(α1 · b), we know that c′ /∈ alph(α1 · b · u1 · · ·uk). In the following, we show

that c′ = c. To this end, we recall that sp+|α2| = (û1 ·vp,1, . . . , ûk ·vp,k) and the sym-

bol c is consumed in the step from sp+|α2| to sp+|α2|+1. More precisely, for some j′,

1 ≤ j′ ≤ k, ûj′ = ε, vp,j′ [1] = c and vp+|α2|+1,j′ = vp,j′ [2,−]. Since |ûj ·vp,j| ≥ |vp,j|,
1 ≤ j ≤ k, we can conclude that σ(sp+|α2|) = (vp,1, . . . , vp,k) and, for the same rea-

son, σ(si) = (vp,1, . . . , vp,k), for each i, p ≤ i ≤ p+|α2|. Hence, σ(si−1) = σ(si), p+

1 ≤ i ≤ p+ |α2|, and σ(sp+|α2|) 6= σ(sp+|α|+1). By recalling lines 10 to 16 of Defini-

tion 3.32, we can observe that this implies s′p+|u1···uk| = (vp,1, . . . , vp,k) and, further-

more, s′p+|u1···uk|+1 = σ(sp+|α2|+1) = (vp,1, . . . , vp,j′−1, vp,j′ [2,−], vp,j′+1, . . . , vp,k),

where vp,j′ [1] = c. This directly implies w′[p + |u1 · · ·uk| + 1] = c and thus,
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c = c′.

Next, we show that β′ = β1 · β2 · · · βn · γ. We already know that β1 · β2 · · · βn ·
γ ∈ vp,1 vp,2 . . . vp,k and clearly β′ ∈ vp,1 vp,2 . . . vp,k, too. Now

we recall that β = β1 · d1 · β2 · d2 · · · βn · dn · γ is constructed by the part t :=

(sp+|α2|+1, sp+|α2|+2, . . . , sm) of the construction sequence s and β′ is constructed

by t′ := (s′p+|u1···uk|+1, s
′
p+|u1···uk|+2, . . . , s

′
m). By Definition 3.32, t′ is the same

as (σ(sp+|α2|+1), σ(sp+|α2|+2), . . . , σ(sm)) with the only difference, that duplicate

elements have been removed. These duplicate elements are exactly the elements

that consume the symbols di, 1 ≤ i ≤ n, and therefore, we can conclude that t

and t′ construct the same shuffle word.

We consider now the scope coincidence degree of w. Obviously,

scd(w) = scd(α1 · b · α2 · c · β) = scd(α1 · b · α2 · c · β1 · d1 · · · βn · dn · γ) .

Next, we recall that di ∈ alph(α1 · b · α2), 1 ≤ i ≤ n, and therefore, by applying

Lemma 3.29, we can move all the symbols di, 1 ≤ i ≤ n, to the left, directly next

to symbol c, without increasing the scope coincidence degree, i. e.

scd(α1 · b · α2 · c · β1 · d1 · · · βn · dn · γ) ≥ scd(α1 · b · α2 · d1 · · · dn · c · β1 · · · βn · γ) .

Now we recall that α2 · d1 · · · dn ∈ u1 . . . uk, and, thus, is actually a permu-

tation of u1 · · ·uk. Moreover, by definition, for each j, 1 ≤ j ≤ k, alph(uj) ⊆
alph(α1 · b). Consequently, by Lemma 3.27, we can substitute u1 · · ·uk for α2 ·
d1 · · · dn without changing the scope coincidence degree and, furthermore, we can

substitute β′ for β1 · β2 · · · βn · γ:

scd(α1 · b · α2 · d1 · · · dn · c · β1 · · · βn · γ) = scd(α1 · b · u1 · · ·uk · c · β′) = scd(w′) .

Hence, scd(w′) ≤ scd(w).

It remains to prove scd(w′) ≤ scd(w) for the case that alph(w[p + 1,−]) ⊆
alph(w[1, p]). In this case, the situation is not as difficult as before. We can write

w′ as

w′ = α1 · b · u1 · · ·uk .

Furthermore, alph(w[p+ 1,−]) ⊆ alph(w[1, p]) implies sp = (u1, u2, . . . , uk); thus,

w = α1 · b · α2 ,

where α2 is a permutation of u1 · · ·uk. As alph(α2) = alph(u1 · · ·uk) ⊆ alph(α1 ·b),
we can apply Lemma 3.27 and conclude scd(w′) = scd(w). �
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The previous lemma is very important, as it implies our next result, which can

be stated as follows. By iteratively applying the algorithm G, we can transform

each construction sequence, including the ones corresponding to shuffle words

with minimum scope coincidence degree, into a greedy construction sequence that

corresponds to a shuffle word with a scope coincidence degree that is the same or

even lower:

Theorem 3.36. Let w ∈ w1 . . . wk, wi ∈ Σ∗, 1 ≤ i ≤ k, be an arbitrary

shuffle word. There exists a greedy shuffle word w′ such that scd(w′) ≤ scd(w).

Proof. Let s be an arbitrary construction sequence of w. We define s′ := G|Σ|(s),

where Gk(s) is the k-fold application of the mapping G on s, i. e. Gk(s) =

G(G(. . . G(s)) . . .). Obviously, in w there exist |Σ| positions i, 1 ≤ i ≤ |w|,
such that w[i] /∈ alph(w[1, i − 1]). Thus, in s there exist at most |Σ| elements

si, 1 ≤ i ≤ |w|, that do not satisfy the greedy property. Therefore, by Proposi-

tion 3.34, we conclude that s′ is a greedy construction sequence and Lemma 3.35

implies that scd(w′) ≤ scd(w), where w′ is the shuffle word corresponding to s′. �

This particularly implies that there exists a greedy shuffle word with minimum

scope coincidence degree. Hence, SWminSCDΣ reduces to the problem of finding

a greedy shuffle word with minimum scope coincidence degree.

The following algorithm – referred to as SolveSWminSCD – applies the above

established way to construct greedy shuffle words and enumerates all possible

greedy shuffle words in order to solve SWminSCDΣ.

Algorithm 1 SolveSWminSCD

1: optShuffle := ε, minscd := |Σ|, push (ε, (w1, . . . , wk))
2: while the stack is not empty do
3: Pop element (w, (v1, . . . , vk))
4: if |v1 · v2 · · · vk| = 0 and scd(w) < minscd then
5: optShuffle := w
6: minscd := scd(w)
7: else
8: for all i, 1 ≤ i ≤ k, with vi 6= ε do
9: b := vi[1]

10: vi := vi[2,−]
11: Let uj, 1 ≤ j ≤ k, be the longest prefix of vj with alph(uj) ⊆ alph(w ·b)

12: Push (w·b·u1 ·u2 · · ·uk, (v1[|u1|+1,−], v2[|u2]+1,−], . . . , vk[|uk|+1,−]))
13: end for
14: end if
15: end while
16: Output optShuffle
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As a central data structure in our algorithm, we use a stack that is able to

store tuples of the form (w, (v1, v2, . . . , vk)), where w, vi ∈ Σ∗, 1 ≤ i ≤ k. In the

following, all push or pop operations refer to this stack. Initially, the stack stores

(ε, (w1, w2, . . . , wk)) (line 1), where (w1, w2, . . . , wk) is the input of the algorithm.

We shall see that throughout the whole execution of the algorithm, the stack

exclusively stores elements (w, (v1, v2, . . . , vk)), where, for each i, 1 ≤ i ≤ k,

either vi[1] /∈ alph(w) or vi = ε. For the initial element (ε, (w1, w2, . . . , wk)),

this property is clearly satisfied. In the main part of the algorithm, we first

pop an element (w, (v1, v2, . . . , vk)) (line 3) and then, for each i, 1 ≤ i ≤ k,

with vi 6= ε, we carry out the following steps (lines 7 to 12). First we append

b := vi[1] to the end of w, i. e. w := w · b and vi := vi[2,−] (lines 8 and 9),

then, for each j, 1 ≤ j ≤ k, we compute the longest prefix uj of vj, such that

alph(uj) ∈ alph(w · vi[1]) (line 11). After that, we append all these factors uj,

1 ≤ j ≤ k, to w, i. e. w := w · u1 · u2 · · ·uk and vj := vj[|uj| + 1,−]. Finally,

(w, (v1, v2, . . . , vk)) is pushed on the stack (line 12). When this is done for each

i, 1 ≤ i ≤ k, with vi 6= ε, we pop another element and repeat these steps.

Sooner or later, we necessarily pop a tuple (w, (ε, ε, . . . , ε)) and according to how

the algorithm constructs the new elements that are pushed on the stack, we can

conclude that w is a greedy shuffle word of the words w1, w2, . . . , wk. Thus, we

compute scd(w) and save both w and scd(w) in case that scd(w) is smaller than

our current minimum (lines 5 and 6). The algorithm terminates as soon as the

stack is completely empty.

We note that in lines 4 and 6 of the algorithm SolveSWminSCD the number

scd(w) needs to be computed, which, by the following proposition, can be done

efficiently:

Proposition 3.37. Let w ∈ Σ be arbitrarily chosen. Then the number scd(w) can

be computed in time O(|w| × |Σ|).

Proof. We illustrate a procedure that computes scd(w). First of all, we move

over the word w from left to right, determining the scopes of the symbols in

alph(w) := {b1, b2, . . . , bm}, i. e. for each bi, 1 ≤ i ≤ m, we obtain (li, ri) := scw(bi).

Then we initialise |w| counters c1 := 0, c2 := 0, . . . , c|w| := 0, and, for each i,

1 ≤ i ≤ m, j, li < j < ri, we increment cj if w[j] 6= bi. Finally, scd(w) = max{ci |
1 ≤ i ≤ n}. �

Next, we state that algorithm SolveSWminSCD works correctly and establish

its time complexity.

Theorem 3.38. On an arbitrary input (w1, w2, . . . , wk) ∈ (Σ∗)k, the algorithm

SolveSWminSCD computes a w ∈ w1 w2 . . . wk in time O(|w1 · · ·wk| ×
|Σ| × k|Σ|), and there exists no w′ ∈ w1 w2 . . . wk with scd(w′) < scd(w).
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Proof. We shall first prove the correctness of the algorithm SolveSWminSCD,

i. e., SolveSWminSCD computes a shuffle word with minimum scope coincidence

degree, and then we take a closer look at its runtime.

By definition of the algorithm SolveSWminSCD, it is obvious that the output

is a greedy shuffle word of the input words w1, w2, . . . , wk. From Theorem 3.36,

we can derive that, in order to prove that w is a shuffle word with minimum scope

coincidence degree, it is sufficient to show that the algorithm SolveSWminSCD

considers all possible greedy shuffle words and therefore outputs a greedy shuffle

word with minimum scope coincidence degree. To this end, let s := (s0, s1, . . . , sm)

be an arbitrary greedy construction sequence that corresponds to the shuffle word

w ∈ w1 w2 . . . wk. We can factorise w into w = b1 · α1 · b2 · α2 · · · b|Σ| · α|Σ|,
where, for each i, 2 ≤ i ≤ |Σ|, bi /∈ alph(b1 ·α1 · b2 ·α2 · · · bi−1 ·αi−1). Let, for each

i, 1 ≤ i ≤ |Σ|, pi := |b1 · α1 · · · bi−1 · αi−1|. We observe, furthermore, that in the

construction sequence s, for each i, 1 ≤ i ≤ |Σ|, we can associate the element spi
with the symbol bi at position |b1 · α1 · · · bi−1 · αi−1| + 1 in w, as the symbol bi is

consumed in the step from spi to spi+1. More precisely, for each i, 1 ≤ i ≤ |Σ|, there

exists a qi, 1 ≤ qi ≤ k, such that spi = (vpi,1, . . . , vpi,k), where vpi,qi = bi · vpi+1,qi .

Moreover, since s is a greedy construction sequence, we know that for each j,

1 ≤ j ≤ k, either vpi,j[1] /∈ alph(b1 · α1 · · · bi−1 · αi−1) or vpi,j = ε. Consequently,

by definition of the algorithm and since s is a greedy construction sequence, we

can conclude that, for each i, 1 ≤ i ≤ |Σ| − 1, if we pop the tuple (b1 · α1 · · · bi−1 ·
αi−1, (vpi,1, . . . , vpi,k)) from the stack in line 3, then in iteration qi of the loop in

lines 7 to 12, we push the element (b1 ·α1 · · · bi ·αi, (vpi+1,1, . . . , vpi+1,k)) on the stack.

Moreover, if we pop the tuple (b1 ·α1 · · · b|Σ|−1 ·α|Σ|−1, (vp|Σ|−1,1, . . . , vp|Σ|−1,k)) in line

3, then the tuple (b1 ·α1 · · · b|Σ| ·α|Σ|, (ε, ε, . . . , ε)) is pushed on the stack in iteration

q|Σ| of the loop in lines 7 to 12. As (ε, (vp1,1, . . . , vp1,k)) = (ε, (w1, . . . , wk)) and

(ε, (w1, . . . , wk)) is pushed on the stack in line 1, we can conclude that all the tuples

(b1·α1 · · · bi−1·αi−1, (vpi,1, . . . , vpi,k)), 1 ≤ i ≤ |Σ|, are pushed on the stack and thus,

also popped from it, at some point of the execution of the algorithm. As shown

above, this implies that in particular the tuple (b1 · α1 · · · b|Σ| · α|Σ|, (ε, ε, . . . , ε)) =

(w, (ε, ε, . . . , ε)) is popped from the stack.

Since w has been arbitrarily chosen, we can conclude that each possible greedy

shuffle word of the words w1, w2, . . . , wk is considered by SolveSWminSCD. Thus,

SolveSWminSCD computes a shuffle word with minimum scope coincidence de-

gree.

Next, we consider the runtime of SolveSWminSCD. First, we determine the

total number of elements that are pushed on the stack during the execution of

algorithm SolveSWminSCD. To this end, we note that if we pop an element

(w, (v1, v2, . . . , vk)) from the stack in line 3, then in lines 7 to 12 we push at
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most k elements (w′, (v′1, v
′
2, . . . , v

′
k)) on the stack and, furthermore, | alph(w′)| =

| alph(w)| + 1. Hence, we cannot push more than k|Σ| elements on the stack.

We conclude the proof by estimating the time complexity caused by a single stack

element (w, (v1, v2, . . . , vk)). The lines 8 to 13 as well as line 3 can each be executed

in time O(|w · v1 · · · vk|). In lines 4 and 6, we have to know the number scd(w),

which, by Proposition 3.37, can be computed in time O(|w|×|Σ|). Hence, for each

element that is pushed on the stack at some point of the algorithm, we require

time O(|w · v1 · · · vk|× |Σ|) = O(|w1 ·w2 · · ·wk|× |Σ|). Since, as explained initially,

at most k|Σ| elements are pushed on the stack, we can conclude that the total

runtime of the algorithm SolveSWminSCD is O(|w1 · · ·wk| × |Σ| × k|Σ|). �

By applying the observation from Section 3.4.1.1 – i. e., SWminSCDΣ can be

solved by first deleting all the occurrences of symbols in the input words that are

neither leftmost nor rightmost occurrences and then solving SWminSCDΣ for the

reduced input words – we can prove the following result about the time complexity

of SWminSCDΣ:

Theorem 3.39. The problem SWminSCDΣ on an arbitrary input (w1, w2, . . . , wk),

wi ∈ Σ∗, 1 ≤ i ≤ k, can be solved in time O(max{|w1 · w2 · · ·wk|, |Σ|2 × k|Σ|+1}).

Proof. We observe that we can solve the problem SWminSCDΣ on an input

w1, w2, . . . , wk in the following way. First, we use the algorithm SolveSWminSCD

to compute a w′ ∈ sr(w1) sr(w2) . . . sr(wk) with minimum scope coinci-

dence degree. After that, from w′, we obtain a w ∈ w1 w2 . . . wk with

scd(w) = scd(w′) by inserting the symbols into w′ that have been removed in

order to scope reduce the words w1, w2, . . . , wk. By the proof of Lemma 3.25, it

is obvious that both, scope reducing the input words and obtaining w from w′

by inserting the removed symbols, can be done in time O(|w1 · w2 · · ·wk|). Since

| sr(w1) · sr(w2) · · · sr(wk)| = O(2|Σ|k), we can conclude that, in case that the in-

put words are scope reduced, the runtime of SolveSWminSCD is O(|Σ|2× k|Σ|+1).

Hence, with the assumption that |w1 ·w2 · · ·wk| = O(|Σ|2× k|Σ|+1), it follows that

SWminSCDΣ can be solved in time O(|Σ|2 × k|Σ|+1). �

3.4.4 A Remark on the Lower Complexity Bound

We have introduced and investigated the problem SWminSCDΣ, i. e., the problem

of computing a shuffle word for given input words over the alphabet Σ that is opti-

mal with respect to the scope coincidence degree. We have presented an algorithm

solving SWminSCDΣ, which makes use of the fact that there necessarily exists a

shuffle word with a minimum scope coincidence degree that can be constructed in

a canonical way. Consequently, we obtain an upper bound for the time complexity
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of this problem, which is dominated by the number of input words and the alpha-

bet size; the length of the input words, on the other hand, is not a crucial factor.

Since we have assumed the alphabet to be a constant, the problem is solvable in

polynomial time, but the complexity of the problem remains open for the general

case, i. e., if the alphabet is considered part of the input (we denote this problem

by SWminSCD). We further note that if SWminSCD is NP-complete, then our

algorithm is of special interest as it demonstrates the fixed-parameter tractability

of this problem, with respect to the parameters of the number of input words and

the alphabet size.



Chapter 4

Interlude

This chapter is devoted to a formal study of nondeterministically bounded mo-

dulo counter automata (Section 4.1) and nondeterministically initalised automata

(Section 4.2). Nondeterministically bounded modulo counter automata are in-

troduced in Chapter 3, where a special version of them, Janus automata, is suc-

cessfully applied to identify subclasses of pattern languages with a polynomial

time membership problem. Nondeterministically initalised automata (IFA) are

multi-head automata with restricted nondeterminism. More precisely, an IFA is

a deterministic multi-head automaton, the input heads of which are initially non-

deterministically distributed on the input word.

4.1 A Formal Study of NBMCA

Regarding NBMCA, two aspects seem to be particularly worth studying: Firstly,

all additional resources the automaton is equipped with, namely the counters, are

tailored to storing positions in the input word. Secondly, the nondeterminism of

NBMCA, which merely allows positions in the input word to be guessed, differs

quite substantially from the common nondeterminism of automata, which provides

explicit computational alternatives.

If we study the first aspect in more detail, then we can see that it is not really

new. For example, even when regarding a common multi-head automaton M with

input word w, in every step of a computation every input head implicitly represents

a number between 1 and |w|, namely its position. We can therefore, without a

loss of expressive power, turn all input heads into blind heads, that cannot scan

the input anymore, and successively move an additional reading input head to

their positions in order to store the corresponding input symbols in the finite

state control. Thus, we can separate the mechanisms of storing positions from

the functionality of actually processing the input. This idea is formalised in the

84



Chapter 4. Interlude 85

model of partially blind multi-head automata (see, e. g., Ibarra and Ravikumar

[39]). Another respective variant of multi-head automata are Pebble Automata

(see, e. g., Chang et al. [13]), where again only one input head can scan symbols

and also place pebbles on the input tape in order to mark certain positions. Finally,

automata with sensing heads (see, e. g., Petersen [61]) are multi-head automata

where each head is able to sense all other heads currently located at the same

input tape cell. Given this similarity between NBMCA and established automata

models regarding their emphasis on storing positions in the input word, there is

still one difference: the counters of NBMCA are quite limited in their ability to

change the positions they represent, since their values can merely be incremented,

and their bounds are guessed.

Regarding the second aspect, as mentioned above, standard nondeterminism is

designed to provide the automata with computational alternatives. Nevertheless,

these automata often use their nondeterminism to actually guess a certain position

of the input. For example, as already mentioned in Section 3.2 on page 31, a push-

down automaton that recognises {wwR | w ∈ Σ∗} needs to perform an unbounded

number of guesses even though only one specific position, namely the middle one,

of the input needs to be found. Despite this observation, the nondeterminism of

NBMCA might be weaker, as it seems to solely refer to positions in the input.

In order to understand the character of these novel, and seemingly limited,

resources NBMCA can use, in the present section we compare the expressive power

of these automata to that of the well-established, and seemingly less restricted,

models of multi-head and counter automata. Furthermore, we study some basic

decision problems for NBMCA and present a hierarchy result with respect to the

number of counters.

The second part of this section is concerned with the role of the finite state

control of NBMCA in case that the nondeterminism, i. e., the number of coun-

ter resets, is restricted. To this end, we investigate stateless NBMCA. Stateless

automata, i. e., automata with only one internal state, have first been considered

by Yang et al. [88], where they are compared to P-Systems. This comparison

is appropriate, as it is a feature of P-Systems that they are not controlled by a

finite state control. Ibarra et al. [38] and Frisco and Ibarra [24] mainly investi-

gate stateless multi-head automata, whereas Ibarra and Eğecioğlu [37] consider

stateless counter machines. In Kutrib et al. [47] stateless restarting automata

are studied. Intuitively, the lack of states results in a substantial loss of possible

control mechanisms for the automaton. For instance, the task to recognise exactly

the singleton language {ak} for some fixed constant k, which is easily done by any

automaton with states, suddenly seems difficult, as we somehow need to count k

symbols without using any states. In [38] an example of a stateless multi-head
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automaton that recognises {ak} can be found.

The question of whether or not states are really necessary for a model, i. e.,

whether it is possible to simulate automata by their stateless counterparts, is pro-

bably the most fundamental question about stateless automata. Obviously, the

models of DFA and NFA degenerate if the number of states is restricted to at most

one. On the other hand, we know that the power of nondeterministic PDA is not

dependent on the number of states and, thus, every PDA can be turned into a

PDA with only a single state (see, e. g., Hopcroft and Ullman [33]). Intuitively, the

pushdown store compensates for the loss of states. Regarding deterministic push-

down automata, we find a different situation; here, the expressive power strictly

increases with the number of states (see, e. g., Harrison [29]).

Our first main result shows that every NBMCA with states can be turned into

an equivalent one without states. Hence, the loss of the finite state control does

not lead to a reduced expressive power of the model. NBMCA are tailored to a

restriction of nondeterminism, since we can simply limit the number of possible

resets of counters. If the number of resets for an NBMCA M is bounded by k,

then this means that in every computation of M the first k resets for every counter

actually reset the counters and all further resets are ignored, i. e., after a counter

is reset for at least k times, every further reset leaves the counter unchanged.

Furthermore, we focus on stateless NBMCA with a single one-way input head and

only one counter, the resets of which are restricted as defined above. For this class

of automata, we establish our second main result, which, on the one hand, states

that there exist languages that can be recognised by stateless NBMCA with k but

not with k − 1 resets and, on the other hand, that there exist languages that can

be recognised with k but not with k + 1 resets. Hence, for this class of NBMCA,

a non-existent finite state control can turn nondeterminism into a handicap with

respect to the expressive power.

4.1.1 Expressive Power

In this section we investigate the expressive power of NBMCA in comparison to

multi-head automata and counter automata. Since an NBMCA can be regarded as

a finite state control with additional resources the model is still sufficiently similar

to classical multi-head automata and counter automata, so that a comparison in

terms of expressive power is appropriate. On the other hand, NBMCA show non-

standard restrictions that seem difficult to classify in terms of the classical models

and may be worthwhile to investigate.

One question that springs to mind is whether or not the fact that the counters

of an NBMCA can only count modulo a certain bound is a restriction, in terms of
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expressive power, compared to automata with counters that can be decremented

as well. As already described in Section 4.1, another interesting aspect of NBMCA

is their specific use of nondeterminism and it is not obvious whether this special

nondeterminism is somehow weaker than nondeterminism defined via a transition

relation.

In order to address these questions, we now study the problem of whether clas-

sical multi-head automata and counter automata can simulate NBMCA and vice

versa. It is almost obvious that NBMCA can be simulated by these other models as

NBMCA can be interpreted as multi-head automata (or counter automata, respec-

tively) with further restrictions. So multi-head and counter automata intuitively

seem to be more powerful. In contrast, the converse question, i. e., whether or not

arbitrary multi-head and counter automata, and particularly their unrestricted

nondeterminism, can be simulated by NBMCA, is more challenging.

In our comparisons we have to make a restriction to the model of counter

automata. The problem is that the counters of counter automata are unrestricted

and can, thus, store arbitrarily large values. This yields an immense expressive

power, and in fact even two counters are sufficient to simulate Turing machines (cf.

Minsky [52]). As multi-head automata and NBMCA are restricted to exclusively

operate on the original input, they are strictly weaker than Turing machines.

Hence, it seems uninteresting to compare the model of a counter automaton to

NBMCA or multi-head automata in terms of expressive power. Since we are

particularly interested in the special restrictions of NBMCA and their impact

on the expressive power, we still consider it worthwhile to compare NBMCA to

a model that also uses counters, but without the modulo restriction and with

classical nondeterminism. To this end, we slightly alter the definition of counter

automata. More precisely, we define counter automata the counters of which are

bounded by a function of the input length:

Definition 4.1. Let k ∈ N and f : N → N. An f(n)-bounded nondeterministic

or deterministic two-way counter automaton with k counters (2CNFAf(n)(k) or

2CDFAf(n)(k) for short) is a nondeterministic (or deterministic, respectively) two-

way automaton with k counters that can be incremented and decremented within

the bounds of 0 and f(n), where n is the current input length. It can be checked

whether a counter stores 0, f(n) or a value in between.

We shall mainly consider the models of 2CNFAf(n)(k) and 2CDFAf(n)(k),

where f(n) = n, denoted by 2CNFAn(k) and 2CDFAn(k). We note that we

can interpret a 2CNFAn(k) as an NBMCA that has static counter bounds equal

to the input length and that can decrement counters as well. Furthermore, the

transition function is nondeterministic. Hence, the model of a 2CNFAn(k) can be
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regarded as an unrestricted version of an NBMCA.

We proceed with a basic observation that shall prove useful for our further

results.

Proposition 4.2. For every k ∈ N, L(2CNFAn(k)) ⊆ L(2NFA(k + 1)).

This proposition can be easily comprehended by observing that we can use k

input heads of the 2NFA(k + 1) in such a way that they ignore the input, thus,

they behave exactly like counters that are bounded by the input length.

In the following we show that for every k ∈ N there exists a k′ ∈ N such that

an arbitrary NBMCA(k) can be simulated by a 2CNFAn(k′). For this simulation,

we apply the following idea. For each counter of the NBMCA(k) we simply use

two counters of the 2CNFAn(k′), one of which stores the current counter value

and the other stores the distance between counter value and counter bound. With

Proposition 4.2 we can extend this simulation to 2NFA(k′ + 1) as well.

Lemma 4.3. For every k ∈ N and for every M ∈ NBMCA(k), there exists an

M ′ ∈ 2CNFAn(2k) and an M ′′ ∈ 2NFA(2k + 1) with L(M) = L(M ′) = L(M ′′).

Proof. Let M ∈ NBMCA(k) be arbitrarily chosen. We show how an M ′ ∈
2CNFAn(2k) can simulate M . The input head of M ′ is used in exactly the same

way M uses its input head. Hence, it is sufficient to illustrate how M ′ simulates

the modulo counters of M . The idea is that the modulo counter i, 1 ≤ i ≤ k, of M

is simulated by the counters 2i−1 and 2i of M ′, i. e., counter 2i−1 represents the

counter value and counter 2i represents the counter bound of the modulo counter

i of M . A reset of modulo counter i is simulated by M ′ in the following way. First,

both counters 2i − 1 and 2i of M ′ are decremented to 0. Then counter 2i − 1 is

incremented and after every increment, M ′ can nondeterministically guess whe-

ther it keeps on incrementing or it stops. If the counter reaches value n, it must

stop. The value counter 2i − 1 stores after that procedure is interpreted as the

new counter bound.

The actual counting of the modulo counter i of M is then simulated in the

following way. Whenever M increments counter i, then M ′ increments counter

2i and decrements counter 2i − 1. When counter 2i − 1 reaches 0, then this is

interpreted as reaching the counter bound. In order to enable a new incrementing

cycle of the modulo counter i of M from 0 to its counter bound, the counters 2i−1

and 2i simply change their roles and can then be used again in the same way.

Using Proposition 4.2 we can conclude that there exists an M ′′ ∈ 2NFA(2k+1)

with L(M ′′) = L(M ′).

�

Now Lemma 4.3 directly implies the following result.
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Theorem 4.4. For every k ∈ N,

• L(NBMCA(k)) ⊆ L(2CNFAn(2k)) and

• L(NBMCA(k)) ⊆ L(2NFA(2k + 1)).

Next, we investigate the problem of whether NBMCA can be used to simulate

2CNFAn(k) and 2NFA(k). It turns out that this is possible, but the constructions

are a bit more involved since we have to simulate input heads that can be moved

in both direction (counters that may count in both directions, respectively) by the

restricted counters of NBMCA. Furthermore, the nondeterminism of these models

has to be handled by the special nondeterminism of NBMCA.

It is sufficient to show how 2NFA(k) can be simulated by NBMCA and then

use Proposition 4.2 to conclude that we can simulate 2CNFAn(k) by NBMCA as

well. In the following simulation, the NBMCA uses one modulo counter in order to

store the positions of two input heads of the 2NFA(k), i. e., the counter value and

the counter bound each represent an input head position. A step of the 2NFA(k)

is then simulated by first moving the input head of the NBMCA successively to

all these positions stored by the counters and record the scanned input symbols in

the finite state control. After that, all these positions stored by the counters must

be updated according to the transition function of the 2NFA(k). Since counter

values cannot be decremented and counter bounds cannot be changed directly,

this updating step requires some technical finesse. Furthermore, we need an addi-

tional counter which is also used in order to simulate the possible nondeterministic

choices of the 2NFA(k).

Lemma 4.5. For every k ∈ N and for every M ∈ 2NFA(k), there exists an

M ′ ∈ NBMCA(dk
2
e + 1) with L(M) = L(M ′). For every M̂ ∈ 2CNFAn(k) there

exists an M̂ ′ ∈ NBMCA(dk+1
2
e+ 1) with L(M̂) = L(M̂ ′).

Proof. We first show how an NBMCA(dk
2
e+1) M ′ can be constructed that, on any

input w := a1 · a2 · · · an, ai ∈ Σ, 1 ≤ i ≤ n, simulates M . For the sake of conve-

nience, we assume that k is even, the case that k is odd can be handled analogously.

The general idea is that the first dk
2
e modulo counters of M ′ are used to store the

positions of the k input heads of M . Thus, one modulo counter of M ′ has to store

the positions of two input heads of M , i. e., one position is represented by the

counter value and the other one by the counter bound of the modulo counter. In

addition to that, M ′ has an auxiliary counter that is used to temporarily store data.

More precisely, if M is able to perform the move [q, h1, . . . , hk] `M,w [p, h′1, . . . , h
′
k],

then M ′ can perform a sequence of moves [q, 0, (h1, h2), . . . , (hk−1, hk), (0, c)] `∗M ′,w
[p, 0, (h′1, h

′
2), . . . , (h′k−1, h

′
k), (0, c

′)], for some c, c′, 1 ≤ c, c′ ≤ n. The role of the
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counter bounds c and c′ of the auxiliary counter are not important right now and

shall be explained later on.

We shall now informally explain the basic idea of how a step of M can be

simulated by a sequence of moves of M ′ and formally prove all the technical

details afterwards. A transition of M depends on k input symbols and a state.

Therefore, M ′ records in its finite state control all the symbols at the positions

determined by the counter values and counter bounds. More precisely, if h1 and

h2 are the counter value and counter bound of the first counter and M ′ is in state

q right now, then M ′ moves its input head to position h1, changes into state qah1
,

moves the input head to position h2 and changes into state qah1
,ah2

. The same

procedure is applied to all counters 2, 3, . . . , dk
2
e until M finally reaches a state

qah1
,ah2

,...,ahk
. We note that in order to prove that all these steps can be carried

out by M ′, it is sufficient to show that M ′ can perform the following sequences of

moves:

c̃ `∗M ′,w [qah2i−1
, 0, (h1, h2), . . . , (h2i−1, h2i), . . . , (hk−1, hk), (0, c

′)] , (4.1)

c̃ `∗M ′,w [qah2i
, 0, (h1, h2), . . . , (h2i−1, h2i), . . . , (hk−1, hk), (0, c

′)] , (4.2)

where c̃ := [q, 0, (h1, h2), . . . , (hk−1, hk), (0, c
′′)] is an arbitrary configuration of M ′

and 0 ≤ c′, c′′ ≤ n.

The next step is now determined by q, the symbols ah1 , ah2 , . . . , ahk and δ,

the transition function of M , which is possibly nondeterministic and can choose

one of several possible steps. However, it is possible to transform an arbitrary

2NFA(k) into a 2NFA(k), where for every nondeterministic step there are exactly

two possible choices. This can be done by substituting a nondeterministic transi-

tion with l > 2 choices by l− 2 transitions that have exactly two nondeterministic

choices. Obviously, this requires l − 2 new states and, thus, the number of states

increases, but this is not a problem as the number of states does not play any

role in the statement of the lemma. In order to simulate this nondeterministic

choice between two options, M ′ resets counter dk
2
e+ 1 and checks whether or not

the newly guessed counter bound equals 0, which is only the case if the counter

message is t1 right after reseting it. The transition function of M ′ can then be

defined such that the first option of the two possible transitions of M is carried out

if 0 is guessed as new counter bound and the second option is chosen otherwise.

We assume that the transition chosen by M is (q, ah1 , . . . , ahk)→δ (p, d1, . . . , dk),

where p is the new state and (d1, . . . , dk) are the input head movements, so next all

counter values and counter bounds need to be updated according to (d1, . . . , dk).

To this end, M ′ changes into state pd1,...,dk where the counter value of counter 1 is

changed to h1 +d1 and after that M changes into state pd2,...,dk . Next, the counter
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bound of counter 1 is changed to h2 + d2 while the state changes into pd3,...,dk and

so on. Eventually, M ′ reaches state p and the configurations of the counters are

(h1 + d1, h2 + d2), . . . , (hk−1 + dk−1, hk + dk). Again, in order to prove that this

procedure can be carried out by M ′, it is sufficient to show that M ′ can perform

the following sequences of moves:

c̃ `∗M ′,w [q, 0, (h1, h2), . . . , (h2i−1 + d, h2i), . . . , (hk−1, hk), (0, c
′)] , (4.3)

c̃ `∗M ′,w [q, 0, (h1, h2), . . . , (h2i−1, h2i + d′), . . . , (hk−1, hk), (0, c
′)] , (4.4)

where c̃ := [q, 0, (h1, h2), . . . , (hk−1, hk), (0, c
′′)] is an arbitrary configuration of M ′,

0 ≤ c′, c′′ ≤ n, d, d′ ∈ {1,−1}, h2i−1 + d ≤ h2i and h2i−1 ≤ h2i + d′.

In order to conclude the proof, it remains to show that the transition function

δ′ of M ′ can be defined in a way such that the sequences of moves (4.1) - (4.4)

can be performed. We begin with the sequences of moves (4.1) and (4.2). First,

M ′ resets counter dk
2
e + 1 and then increments counter dk

2
e + 1 and counter i

simultaneously. If these two counters reach their counter bounds at exactly the

same time, then we can conclude that the newly guessed counter bound of counter

dk
2
e+1 equals h2i−h2i−1 and we proceed. In case that a different counter bound is

guessed, M ′ changes into a non-accepting trap state. This procedure is illustrated

by the following diagram.

dummydummy

counter i

h2i

h2i−1

counter dk
2
e+ 1

h2i − h2i−1

Counters i and dk
2
e + 1 are then set back to 0 by incrementing them once more.

Then they are incremented simultaneously until counter dk
2
e+1 reaches its counter

bound. After this step, counter i stores value h2i − h2i−1 as pointed out by the

following illustration.

dummydummy

counter i

h2i

h2i − h2i−1

counter dk
2
e+ 1

h2i − h2i−1

Now it is possible to increment counter i and simultaneously move the input head

to the right until counter i reaches its bound of h2i. Clearly, this happens after
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h2i−1 increments, so the input head is then located at position h2i−1 of the input

tape.

dummydummy

counter i

h2i

h2i − h2i−1

tape

h2i−1

Now, in case of (4.1), M ′ changes into state qah2i−1
and sets the value of counter

i back to 0. Finally, by moving the input head from position h2i−1 to the left until

it reaches the left endmarker and simultaneously incrementing counter i, we set

the input head back to position 0 and the counter value of counter i back to h2i−1.

Furthermore, we set the value of counter dk
2
e+ 1 back to 0.

In case of (4.2), a few more steps are required. We recall that the input head

is located at position h2i−1. M resets counter dk
2
e + 1 and checks whether or not

the new counter bound equals h2i−1. This is done by moving the input head to

the left and simultaneously incrementing counter dk
2
e+ 1.

dummydummy

counter dk
2
e+ 1

h2i−1

tape

h2i−1

Next, we set the value of counter i back to 0 and then increment it until the

counter bound of h2i is reached and simultaneously move the input head to the

right. Obviously, the input head is then located at position h2i. Thus, M ′ can

change into state qah2i
.

dummydummy

counter i

h2i

tape

h2i

As counter dk
2
e+ 1 has a counter bound of h2i−1, we can easily set the value of

counter i back to h2i−1. Finally, the input head is moved back to position 0 and

the value of counter dk
2
e+ 1 is set back to 0.
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Next, we consider case (4.3). If d = 1, we can simply increment counter i.

If, on the other hand, d = −1, we first move the input head to position h2i−1 in

the same way we did in case (4.1), and then one step to the left, i. e., to position

h2i−1 +d. Now we can set counter i to 0, and then increment it and simultaneously

move the input head to the left until it reaches the left endmarker. After that

step, counter i stores value h2i−1 + d.

In order to implement case (4.4), we first move the input head to position h2i

in the same way we did in case (4.2), i. e., we first move it to position h2i−1 as

done for cases (4.1) and (4.2) and then, by reseting counter dk
2
e+1, we store h2i−1

in the counter bound of counter dk
2
e+ 1 and finally use counter i in order to move

the input head to position h2i. Next, we move the input head to position h2i + d′,

reset counter i and, by moving the input head back to position 0, check whether

h2i + d′ is guessed as new counter bound. Finally, we use counter dk
2
e + 1, which

has a counter bound of h2i−1, to set the counter value of counter i back to h2i−1.

It remains to show how we can handle the cases where we have h2i−1 = h2i and

either h2i−1 should be incremented or h2i should be decremented. Clearly, this is

not possible, so in this case we simply change the roles of the counter bound and

counter value to avoid this problem. If we do this, we need to store in the finite

state control that from now on the counter value stores the position of input head

2i and the counter bound stores the position of input head 2i− 1.

This shows that M ′ can perform the sequences of moves (4.1) - (4.4), which

implies that M ′ can simulate M in the way described at the beginning of this

proof.

It remains to show that an arbitrary M̂ ∈ 2CNFAn(k′), k′ ∈ N, can be simu-

lated by some M̂ ′ ∈ NBMCA(dk′+1
2
e + 1). This can be directly concluded from

Proposition 4.2. �

Before we proceed to the main result of this section, we wish to briefly discuss

some particularities of the proof of the above lemma: Originally, the counters of

NBMCA were designed for a special application (see Chapter 3). In this context,

the purpose of the counter bound is to store the length of a factor or a position of

the input and the counter value is incremented in order to move the input head over

a whole factor or to a distinct position of the input. So intuitively, every counter

bound can be interpreted as an anchor on the input tape and the functionality

of the counters is merely a mechanism to move the input head to these anchored

positions. However, the result above is obtained by showing that the counters

of NBMCA can be used in a completely different and rather counter-intuitive

way. In the proof of Lemma 4.5 it is vital to overcome the strong dependency

between a counter value and its counter bound such that both of them can be
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fully exploited as mere storages for input positions that can be arbitrarily updated.

The immediate result of this is then that the counter value as well as the counter

bound are each as powerful as an input head.

From Lemma 4.5, we conclude the following theorem.

Theorem 4.6. For every k ∈ N,

• L(2NFA(k)) ⊆ L(NBMCA(dk
2
e+ 1)) and

• L(2CNFAn(k)) ⊆ L(NBMCA(dk+1
2
e+ 1)).

By definition, NBMCA and 2NFA are different in several regards. The input

heads of 2NFA can be freely moved on the tape whereas the counter values of

NBMCA can only be incremented from 0 to the counter bound, which in turn can

only be changed by nondeterministically guessing a new one and, thus, losing the

old bound. Furthermore, the nondeterministic transitions of 2NFA are defined by

the scanned input symbols and the state, whereas the deterministic step of an

NBMCA is merely defined by the state and the predicate whether the counter

values have reached their bounds, i. e., neither counter bounds nor counter values

directly control the automaton. Given these substantial differences between the

models, the previous result seems surprising.

In the following corollary, NL denotes the complexity class of nondeterministic

logarithmic space. The characterisation
⋃
k∈N L(2NFA(k)) = NL is a well know

fact (see Hartmanis [30]) and the other equalities follow from Theorems 4.4 and 4.6.

Corollary 4.7.⋃
k∈N

L(2CNFAn(k)) =
⋃
k∈N

L(2NFA(k)) =
⋃
k∈N

L(NBMCA(k)) = NL .

In a simulation of 2NFA by NBMCA as used in the proof of Lemma 4.5,

the counters of the NBMCA can be employed quite economically, i. e., we use

one counter of the NBMCA to handle two input heads of the 2NFA. Intuitively, a

simulation is also possible, and most likely much simpler, if we allow one counter of

the NBMCA per input head of the 2NFA. However, we shall see that this tight use

of the modulo counters is worth the effort, as it allows us to prove a hierarchy result

on the class NBMCA. This insight follows from the classical result in automata

theory that adding an input head to a 2NFA(k) strictly increases its expressive

power (see Holzer et al. [31] for a summary and references of the original papers).

More precisely, the classes L(2NFA(k)), k ∈ N, describe a hierarchy with respect

to k:

Theorem 4.8 (Monien [53]). For every k ∈ N, L(2NFA(k)) ⊂ L(2NFA(k + 1)).
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Theorem 4.8 together with Theorems 4.4 and 4.6 can be used to show a similar

result on NBMCA with respect to the number of counters. However, we obtain

a hierarchy with a gap, i. e., we can only show that NBMCA(k + 2) are strictly

more powerful than NBMCA(k).

Corollary 4.9. For every k ∈ N, L(NBMCA(k)) ⊂ L(NBMCA(k + 2)).

Proof. By Theorems 4.4, 4.8 and 4.6, we know that, for every k ∈ N,

• L(NBMCA(k)) ⊆ L(2NFA(2k + 1)),

• L(2NFA(2k + 1)) ⊂ L(2NFA(2k + 2)) and

• L(2NFA(2k + 2)) ⊆ L(NBMCA(k + 2)).

Consequently, NBMCA(k) ⊂ NBMCA(k + 2). �

In this section, we investigated the expressive power of NBMCA in relation to

classical multi-head automata. Next, we shall take a closer look at decidability

properties of NBMCA.

4.1.2 Decidability

In this section, we investigate the decidability of the emptiness, infiniteness, uni-

verse, equivalence, inclusion and disjointness problem with respect to languages

given by NBMCA. All these problems are undecidable even for 1DFA(2) (cf.,

Holzer et al. [31]) and since NBMCA can simulate 1DFA(2) (Lemma 4.5) these

negative results carry over to the class of NBMCA. However, it is a common ap-

proach to further restrict automata models with undecidable problems in order to

obtain subclasses with decidable problems (see, e.g., Ibarra [36]). One respective

option is to require the automata to be reversal bounded. The following definitions

are according to [36].

In a computation of some two-way automaton model, an input head reversal

describes the situation that the input head is moved a step to the right (to the left,

respectively) and the last time it has been moved it was moved a step to the left

(to the right, respectively), so it reverses directions. A counter reversal is defined

in a similar way just with respect to the increments and decrements of a counter.

We say that an automaton is input head reversal bounded or counter reversal

bounded if there exists a constant m such that, for every accepting computation,

the number of input head reversals (counter reversals, respectively) is at most m.

We now formally define classes of reversal bounded automata.
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Definition 4.10. For all m1,m2, k ∈ N, we define (m1,m2) -REV-CNFA(k) and

(m1,m2) -REV-CDFA(k) to be the class of 2CNFA(k) and 2CDFA(k), respectively,

that perform at most m1 input head reversals and every counter performs at most

m2 counter reversals in every accepting computation.

For the above defined reversal bounded automata, there is no need anymore

to distinguish between the one-way and the two-way case as this aspect is covered

by the number of input head reversals, i. e., one-way automata coincide with those

that are input head reversal bounded by 0. Next, we cite a classical result about

reversal bounded counter automata:

Theorem 4.11 (Ibarra [36]). The emptiness, infiniteness and disjointness pro-

blems for the class (m1,m2) -REV-CNFA(k) are decidable. The emptiness, uni-

verse, infiniteness, inclusion, equivalence and disjointness problem for the class

(m1,m2) -REV-CDFA(k) are decidable.

Our goal is to transfer these results to reversal bounded NBMCA. With respect

to NBMCA, a counter reversal is interpreted as an increment of the counter in case

that it has already reached its counter bound. Furthermore, we need to bound

the number of resets as well.

Definition 4.12. For all m1,m2, l, k ∈ N, let (m1,m2, l) -REV-NBMCA(k) denote

the class of NBMCA(k) that perform at most m1 input head reversals, at most

m2 counter reversals and resets every counter at most l times in every accepting

computation.

We can show that an (m1,m2, l) -REV-NBMCA(k) can be simulated by an

(m′1,m
′
2) -REV-CNFA(k′), which implies that the results of Theorem 4.11 carry

over to (m1,m2, l) -REV-NBMCA(k).

Lemma 4.13. For every M ∈ (m1,m2, l) -REV-NBMCA(k), there exists an M ′ ∈
(m′1,m

′
2) -REV-CNFA(4k) such that L(M) = L(M ′).

Proof. Let M ∈ (m1,m2, l) -REV-NBMCA(k). We first recall that, by Lemma 4.3,

an NBMCA(k) can be simulated by a CNFAn(2k). Furthermore, in this simula-

tion, the input head of the CNFAn(2k) is used in the same way as the input

head of NBMCA(k), and every counter reversal and reset of a modulo coun-

ter of the NBMCA(k) causes the two corresponding counters of the CNFAn(2k)

to perform a reversal. Consequently, in the simulation of an NBMCA(k) by a

CNFAn(2k), the input head reversals of the NBMCA(k) are preserved and the

counter reversals of the CNFAn(2k) are bounded in the number of counter re-

sets and counter reversals of the NBMCA(k). We conclude that there exists an
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(m′1,m
′
2) -REV-CNFAn(2k) M ′, i. e., an (m′1,m

′
2) -REV-CNFA(2k) the counters of

which are bounded by the input length, with L(M) = L(M ′). This M ′ can be

simulated by an (m′1 + 2,m′2 + 1) -REV-CNFA(4k) M ′′ in the following way. At

the beginning of the computation M ′′ increments the first 2k counters to the in-

put length by moving the input head over the input. After that step, for every

i, 1 ≤ i ≤ 2k, counter i stores the input length n and counter i + 2k stores 0.

Counters i and i + 2k of M ′′ can simulate counter i of M ′ by decrementing (or

incrementing) counter i and incrementing (or decrementing, respectively) counter

i+ 2k for every increment (or decrement, respectively) of counter i of M ′. Hence,

when counter i of M ′′ reaches 0, then counter i of M ′ reaches n and when counter

i+ 2k of M ′′ reaches 0, then counter i of M ′ reaches 0 as well. This requires two

additional input head reversals and an additional counter reversal for the first k

counters. �

Corollary 4.14. The emptiness, infiniteness and disjointness problem for the

class (m1,m2, l) -REV-NBMCA are decidable.

In the following, we study the question of whether it is possible to ease the

strong restriction of (m1,m2, l) -REV-NBMCA a little without losing the deci-

dability results. More precisely, we investigate the decidability of the emptiness,

infiniteness, universe, equivalence, inclusion and disjointness problems for the class

(m,∞, l) -REV-NBMCA, i. e., the number of counter reversals is not bounded any-

more. We shall explain our motivation for this in a bit more detail. To this end

we cite the following result.

Theorem 4.15 (Ibarra [36]). The emptiness, infiniteness, universe, equivalence,

inclusion and disjointness problems are undecidable for (1,∞) -REV-CDFA(1).

Consequently, with respect to CDFA (and, thus, CNFA) the typical decision

problems remain undecidable when the restriction on the counter reversals is aban-

doned. However, regarding (m,∞, l) -REV-NBMCA we observe a slightly different

situation. While a counter reversal of a counter automaton can happen anytime

in the computation and for any possible counter value, a counter reversal of an

NBMCA strongly depends on the current counter bound, i. e., as long as a counter

is not reset, all the counter reversals of that counter happen at exactly the same

counter value. So while for (1,∞) -REV-CDFA the counters are not restricted

at all, the modulo counters of (m,∞, l) -REV-NBMCA can still be considered as

restricted, since the number of resets is bounded. Intuitively, this suggests that

the restrictions of (m,∞, l) -REV-NBMCA are still stronger than the restrictions

of (1,∞) -REV-CDFA.

In order to answer the question about the decidability of the above mentio-

ned problems with respect to (m,∞, l) -REV-NBMCA, we first find another way
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to simulate counter automata by NBMCA. The simulation that can be used to

prove Lemma 4.5 has the advantage of requiring a relatively small number of mo-

dulo counters, but pays the price of a large number of input head reversals and

counter resets. In fact, in the simulation of Lemma 4.5 even if the 2CNFA(k) is

input head reversal bounded and counter reversal bounded, the number of coun-

ter resets as well as the input head reversals of the NBMCA(dk+1
2
e + 1) are not

necessarily bounded anymore. Hence, it is our next goal to find a simulation of

counter automata by NBMCA that preserves the number of input head reversals

and requires only a constant number of resets. Before we can give such a simula-

tion, we need the following technical lemma, which shows that we can transform

an arbitrary 2CNFA(k)f(n) or 2CDFAf(n)(k) into an equivalent 2CNFAf(n)(k) (or

2CDFAf(n)(k), respectively) that only reverses counters at value 0 or f(n).

Lemma 4.16. For every M ∈ 2CNFAf(n)(k) (or M ∈ 2CDFAf(n)(k)) there exists

an M ′ ∈ 2CNFAf(n)(k + 2) (or M ′ ∈ 2CDFAf(n)(k + 2), respectively) such that

L(M) = L(M ′) and every counter of M ′ reverses from decrementing to incremen-

ting only at value 0 and from incrementing to decrementing only at value f(n).

Furthermore, for every w ∈ Σ∗, if M reverses the input head m times and reverses

every counter at most q times on input w, then M ′ reverses the input head m times

and reverses every counter at most 2kq times on w.

Proof. Let M ∈ 2CNFAf(n)(k) (or M ∈ 2CDFAf(n)(k)), k ∈ N, be arbitrarily

chosen. We shall show how M can be changed such that all counters only reverse

at value 0 or f(n). All the following constructions are completely deterministic,

so determinism of M is preserved. We can assume that, for every counter, M

stores in its finite state control whether this counter is in incrementing or decre-

menting mode. Thus, for any counter, M can identify a change from incrementing

to decrementing and vice versa. Furthermore, by using additional states, every

2CNFAf(n)(k) (or 2CDFAf(n)(k), respectively) can be transformed into one that

increments or decrements at most one counter in any transition. Hence, we can

assume M to have this property.

We define how an M ′ ∈ 2CNFAf(n)(k+ 2) (or M ′ ∈ 2CDFAf(n)(k+ 2), respec-

tively), the counters of which reverse only at values 0 or f(n), can simulate M .

In this simulation, the counters 1 to k of M ′ exactly correspond to the counters

1 to k of M , and the counters k + 1 and k + 2 of M ′ are auxiliary counters. We

now consider a situation where counter i of M is decremented from value p to

p − 1 and this decrement constitutes a reversal. We show how M ′ simulates this

step such that its counter i reverses at f(n). The main idea is to use the auxiliary

counters k + 1 and k + 2 to temporarily store values, but, since these counter

can only reverse at values 0 or f(n) as well, the construction is not completely
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straightforward.

M ′ simulates the above described step in the following way. Instead of de-

crementing counter i from p to p − 1, M ′ performs further dummy increments

until value f(n) is reached and simultaneously increments counter k + 1. Hence,

counter k + 1 stores exactly f(n)− p when counter i reaches f(n). This situation

is illustrated below.
dummydummy

counter i

f(n)

p

counter k + 1

f(n)

f(n)− p

Next, we increment counters k + 1 and k + 2 simultaneously until counter k + 1

reaches f(n). This implies that counter k + 2 stores now p.

dummydummy

counter k + 1

f(n)

f(n)− p

counter k + 2

f(n)

p

We can now decrement counter i, thus performing the reversal at value f(n),

and simultaneously increment counter k + 2 until it reaches f(n). After these

steps, counter i stores value p again, but is now in decrementing mode. M finally

decrements counter i to value p− 1.

dummydummy

counter i

f(n)

p
p− 1

counter k + 2

f(n)

p

Both counters k + 1 and k + 2 store now value f(n) and therefore are simply

decremented until value 0 is reached. We note that in the above described proce-

dure, counter i is incremented from p to f(n) and then decremented from f(n) to

p− 1. Furthermore, both auxiliary counters k+ 1 and k+ 2 are incremented from

0 to f(n) and then again decremented from f(n) to 0, so they reverse only at 0 or

f(n). We conclude that M satisfies the required conditions.
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A reversal from decrementing to incrementing can be handled in an analogous

way. The only difference is that counter i keeps on decrementing until 0 is reached

and is then incremented again. The two auxiliary counters k+ 1 and k+ 2 can be

used in exactly the same way.

We assume that M reverses the input head m times and every counter reverses

at most q times on some input w. Obviously, M ′ also reverses the input head m

times on input w. Furthermore, for every reversal of a counter of M that is not

done at either value 0 or value f(n), M ′ reverses counters k + 1 and k + 2 twice.

Hence, the two auxiliary counters reverse at most 2kq times on input w. �

We are now ready to show how CDFAn(k) can be simulated by NBMCA such

that the number of input head reversals is preserved and no counter is reset.

Lemma 4.17. For every M ∈ 2CDFAn(k) there exists an M ′ ∈ NBMCA(k + 2)

with L(M) = L(M ′). Furthermore, M ′ resets none of its counters and, for every

w ∈ Σ∗, if M reverses the input head m times on input w, then M ′ reverses the

input head m+ 2 times on input w.

Proof. We show how to define an automaton M ′ that simulates M . First, we

transform M into an equivalent 2CDFAn(k + 2) M̂ that reverses counters only at

value 0 or value n. By Lemma 4.16 we know that such an automaton exists and,

furthermore, that M̂ reverses the input head m times. We shall now show how

this automaton M̂ is simulated by M ′. At the beginning of a computation, M ′

checks whether or not all modulo counters are initialised with a counter bound of

n, where n is the current input length. This can be done by moving the input head

from the left endmarker to the right endmarker and simultaneously incrementing

all k + 2 modulo counters. After that, the input head needs to be moved back

to the left end of the input, so M ′ makes two additional input head reversals.

Next, we show how M ′ simulates a step of M̂ . The input head of M ′ is used in

exactly the same way M̂ uses its input head, and every counter of M ′ simulates

one counter of M̂ . Since the modulo counters of M ′ have bound n, we can simulate

both, an incrementing sequence from 0 to n and a decrementing sequence from n

to 0 of a counter of M̂ by an incrementing cycle from 0 to n of a modulo counter

of M ′. However, we need to keep track in the finite state control on whether the

counters of M ′ simulate an incrementing or a decrementing cycle of a counter of

M̂ at the moment, i. e., M ′ keeps track on whether reaching the counter bound

with some modulo counter is interpreted as the situation that the corresponding

counter of M̂ reaches 0 or it reaches n.

From our considerations above, we can conclude that, on any input, M ′ reverses

the input head exactly two times more often than M . Furthermore, none of the

modulo counters is reset. �
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Next, we take a closer look at the model 2CDFA(1), i. e., a deterministic two-

way counter automaton with only one counter that is not restricted by the input

length. We can observe that in accepting computations, a 2CDFA(1) cannot reach

arbitrarily large values with its counter.

Lemma 4.18. Let M be an arbitrary 2CDFA(1). During the computation of M

on an arbitrary w ∈ L(M), the counter never reaches a value m ≥ 2 |Q| (|w|+ 2).

Proof. By definition, M stops as soon as an accepting state is reached. Let Q

be the set of states of M , let F be the set of accepting states and let CM,w :=

{[q, h, d] | q ∈ Q, 0 ≤ h ≤ |w| + 1, d ∈ N} be the set of possible configurations of

M on input w ∈ L(M). Furthermore, for every [q, h, d] ∈ CM,w let the mapping g

be defined by

g([q, h, d]) :=

[q, h, 0] if d = 0,

[q, h, 1] else.

In order to prove the statement of the lemma, we assume to the contrary that the

counter of M reaches a value m ≥ 2|Q|(|w| + 2) in the computation of M on w.

This implies that in the computation of M on w there must be a sequence of at

least m+ 1 configurations such that the first of these configurations has a counter

value of 0, the last configuration has a counter value of m and all the configurations

in between have a counter value strictly between 0 and m. More precisely, there

exists a sequence of configurations c1, c2, . . . , cm′ , m
′ > m, where ci := [qi, hi, di],

1 ≤ i ≤ m′, d1 = 0, dm′ = m and 1 ≤ di ≤ m − 1, 2 ≤ i ≤ m′ − 1. Furthermore,

qi /∈ F , 1 ≤ i < m′, as otherwise the automaton stops in a configuration ci,

1 ≤ i < m′. As |{g(c) | c ∈ CM,w}| = 2|Q|(|w| + 2) and m′ > 2|Q|(|w| + 2), we

can conclude that there exist j, j′, 1 ≤ j < j′ ≤ m′, with g(cj) = g(cj′). Since M

is deterministic, this implies that in the computation for cj and cj′ the transition

function applies the same transition; thus, the computation may enter a loop.

We consider two possible cases depending on the counter values dj and dj′ of the

configuration cj and cj′ :

• dj ≤ dj′ : This implies that M has entered an infinite loop and all states in

this loop are non-accepting. Thus, w /∈ L(M), which is a contradiction.

• dj > dj′ : This implies that M decrements the counter to value 0 before

reaching value m, which contradicts the fact that 1 ≤ di ≤ m − 1, 2 ≤ i ≤
m′ − 1, and dm′ = m.

Consequently, the assumption that the counter reaches a value m ≥ 2|Q|(|w|+ 2)

implies w /∈ L(M), which is a contradiction. �
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The above given result, that shows that the counter of 2CDFA(1) is generally

bounded, and Lemma 4.17 can be used in order to obtain the following result.

Lemma 4.19. L(2CDFA(1)) ⊆ L((∞,∞, 0) -REV-NBMCA(3)).

Proof. For every M ∈ 2CDFA(1) with a set of states QM , in every accepting com-

putation of M on any w, the counter value does not reach the value 2 |QM | (|w|+2).

This implies that there exists a constant cM depending on QM such that in every

accepting computation of M on any w the counter value does not reach the value

cM |w|. This implies that we can construct an M ′ ∈ 2CDFA(1) with a set of states

QM ′ := {qi | q ∈ QM , 1 ≤ i ≤ cM} and L(M) = L(M ′). More precisely, whenever

the counter of M is in state q and has a counter value of (k cM)+k′, k, k′ ∈ N, then

M ′ is in state qk′ and has a counter value of k. In other words, M ′ uses the sub-

script in the states as a counter bounded by cM and increments the actual counter

only every cM increments. This implies that in every accepting computation of M ′

on some w the counter value does not reach the value |w|. Hence, its counter is

bounded by |w|. Consequently, we can simulate M ′ by an M ′′ ∈ 2CDFAn(1): On

any input w, we simulate M ′ by M ′′ and abort the current computation in a non-

accepting state in the case that the counter reaches a value of |w|. Furthermore,

by Lemma 4.17, we can simulate 2CDFAn(1) by (∞,∞, 0) -REV-NBMCA(3) and,

thus, the statement of the lemma is implied. �

We note that both, the above sketched constructions and the construction

of Lemma 4.17, increase the number of input head reversals only by 2, i. e., a

2CDFA(1) that makes at most a constant number of m input head reversals can

be simulated by a (m + 2,∞, 0) -REV-NBMCA(3). Together with Theorem 4.15

we can conclude the following corollary.

Corollary 4.20. The emptiness, finiteness, universe, equivalence, inclusion and

disjointness problems are undecidable for (3,∞, 0) -REV-NBMCA(3).

Hence, our above question is answered in the negative: NBMCA with an un-

bounded number of counter reversals have undecidable problems even in the case

of only three counters and a strongly bounded number of input head reversals and

resets.

4.1.3 NBMCA without States

In this section we introduce stateless NBMCA (SL-NBMCA for short).

As already mentioned at the beginning of Section 4.1, stateless versions of

automata have first been considered just a few years ago by Yang et al. [88]. Since

then, various kinds of automata such as multi-head automata, counter machines
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and restarting automata have been investigated regarding their stateless variants

(cf. [38, 24, 37, 47]).

A stateless NBMCA can be regarded as an NBMCA with only one internal

state that is never changed. Hence, the component referring to the state is re-

moved from the transition function and transitions do not depend anymore on

the state. As a result, the acceptance of inputs by accepting state is not possible

anymore. So for stateless NBMCA we define the input to be accepted by a special

accepting transition, i. e., the transition that does not change the configuration of

the automaton anymore. On the other hand, if the automaton enters a configu-

ration for which no transition is defined, then the input is rejected and the same

happens if an infinite loop is entered. For example, (b, s1, . . . , sk)→ (r, d1, . . . , dk)

is a possible transition for an SL-NBMCA(k) and (b, s1, . . . , sk) → (0, 0, 0, . . . , 0)

is an accepting transition. For the sake of convenience we shall denote an accep-

ting transition by (b, s1, . . . , sk)→ 0. An SL-NBMCA(k) can be given as a tuple

(k,Σ, δ) comprising the number of counters, the input alphabet and the transition

function.

As already mentioned at the beginning of Section 4.1, in Ibarra et al. [38] an

example of a stateless multi-head automaton that recognises {ak} can be found.

We shall now consider a similar example with respect to SL-NBMCA, i. e., we

show how the following languages can be recognised by SL-NBMCA.

Definition 4.21. For every k ∈ N, let Sk := {ak, ε}.

We introduce an SL-NBMCA(5) that recognises S3 and prove its correctness.

Definition 4.22. Let MS3 := (5, {a}, δ) ∈ SL-NBMCA(5), where δ is defined by

1. (¢, t0, t0, t0, t0, t0)→δ (1, 1, 1, 1, 1, r),

2. (a, t1, t1, t1, t1, t0)→δ (−1, 1, 1, 1, 1, 1),

3. (¢, t0, t0, t0, t0, t1)→δ (1, 1, 0, 0, 0, 0),

4. (a, t1, t0, t0, t0, t1)→δ (1, 0, 1, 0, 0, 0),

5. (a, t1, t1, t0, t0, t1)→δ (1, 0, 0, 1, 0, 0),

6. (a, t1, t1, t1, t0, t1)→δ (1, 0, 0, 0, 1, 1),

7. ($, t1, t1, t1, t1, t0)→δ 0.

Proposition 4.23. L(MS3) = S3.
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Proof. Before we prove in a formal manner that L(MS3) = S3, we give an intuitive

understanding of how MS3 recognises S3. The first 4 counters are used to count

the 4 steps that are necessary to move the input head from the left to the right

endmarker in case that aaa is the input. However, this is only possible if all

counter bounds of these counters are 1. So initially MS3 checks whether or not all

the first 4 counters are initialised with counter bounds of 1. To this end, the input

head is moved one step to the right while the first 4 counters are incremented.

After that it is checked whether all these counters have reached their bounds after

this increment and then the input head is moved back to the left endmarker.

Then, MS3 uses the counters in order to count the occurrences of symbols a on the

input tape. Hence, the computations of MS3 comprise two parts: a first part of

checking whether or not the right counter bounds are guessed and a second part

where the symbols on the tape are counted. However, since there are no states,

the automaton is not able to distinguish between these two parts. This is mainly

due to the fact that in the first part we move the input head and, thus, necessarily

scan an input symbol. So it is possible that the counter bounds are initialised

in a way such that in the first part of the computation MS3 accidentally enters a

configuration that is also reached in the second part. In order to separate these

two parts of the computation, we need an additional counter. In the following we

formally prove the correctness of MS3 .

We first show that both inputs ε and aaa are accepted by MS3 if all the counters

1, 2, 3 and 4 are initialised with 1, counter 5 is initialised with some bound C ≥ 1

and guesses 1 as counter bound when reset by transition 1. More formally, if ε is the

input and the counters are initialised as described above, MS3 first applies transi-

tion 1 and reaches a configuration [1, (1, 1), (1, 1), (1, 1), (1, 1), (0, 1)]. As the input

is empty, at position 1 the right endmarker $ occurs; hence, MS3 applies transition

7 and accepts. If, on the other hand, aaa is the input, then MS3 again first applies

transition 1 and reaches the configuration [1, (1, 1), (1, 1), (1, 1), (1, 1), (0, 1)]. Now

it is easy to verify that transitions 2, 3, 4, 5, 6 and 7 apply in exactly this order,

and this implies that MS3 accepts aaa.

Next, we have to show that no ak
′
, k′ 6= 3, k′ 6= 0, can be accepted by MS3 .

To this end, we first take a closer look at the counter bounds and observe that

in every possible accepting computation, each of the counters 1, 2, 3 and 4 must

be initialised with counter bound 1 and for counter 5, which can be reset several

times, the last guessed bound must be 1 as well. This can be concluded from the

following considerations.

For any input, MS3 can start off with either transition 1 or 3. If transition 3 is

first applicable, then the counter message of counter 5 is initially t1, which implies

that it is initialised with bound 0. Furthermore, no matter how often counter 5 is
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incremented, its message cannot change unless it is reset. Since there does not exist

any transition that resets counter 5 when its message is t1 and since transition 7

requires the counter message of counter 5 to be t0, MS3 cannot accept the input in

this case. In a similar way we can also conclude that in an accepting computation

it is not possible that 0 is guessed as counter bound for counter 5 by a reset. This

implies that every accepting computation starts with transition 1, which in turn

means that no counter 1, 2, 3 or 4 can be initialised with 0. After transition 1,

the input head scans a symbol b ∈ {a, $}, the value of the first 4 counters is 1

and counter 5 has message t0. For such a configuration only transitions 2 and 7

are possible, which both require the counter messages of the first 4 counters to

be t1, thus, the first 4 counters must have a counter bound of 1. We recall that

we assume that the input is not empty, thus, b = a, and the only next possible

transition is transition 2, which moves the input head back to the left endmarker

and, by incrementing, sets counters 1, 2, 3 and 4 back to value 0. Furthermore,

counter 5 is incremented, which has been reset in the previous transition. We

observe two possible cases. If for counter 5 a bound greater than 1 is guessed,

then MS3 reaches configuration [0, (0, 1), (0, 1), (0, 1), (0, 1), (1, C5)], 1 < C5, which

implies that MS3 is in its initial configuration again and transitions 1 and 2 apply

in the same way as before. So the only possible case in an accepting computation

is that eventually 1 is guessed as counter bound for counter 5 by transition 1 and,

thus, a configuration [0, (0, 1), (0, 1), (0, 1), (0, 1), (1, 1)] is reached.

Now, if ak
′

with k′ > 3 is the input, then, by applying transitions 3, 4, 5 and 6

in this order, MS3 reaches the configuration [4, (1, 1), . . . , (1, 1), (0, 1)] and, since at

position 4 the symbol a occurs, MS3 rejects. If k′ < 3, then the input head reaches

the right endmarker in either configuration [k′+ 1, (1, 1), (1, 1), (0, 1), (0, 1), (1, 1)]

or [k′ + 1, (1, 1), (1, 1), (1, 1), (0, 1), (1, 1)] for which both no transition is defined.

Consequently, MS3 accepts exactly Sk.

We conclude this proof by noting that the reset of counter 5 in transition 1 is

not necessary, but convenient for the proof of the correctness. �

By generalising Definition 4.22 and Proposition 4.23 it can be shown that for

every k ∈ N, there exists an MSk ∈ SL-NBMCA(k + 2) with L(MSk) = Sk:

Proposition 4.24. For every k ∈ N, Sk ∈ L(SL-NBMCA(k + 2)).

Next, we answer the question of whether or not SL-NBMCA are as powerful

as their counterparts with states. It has been shown in [38] that two-way stateless

multi-head automata can easily simulate a finite state control by using additional

input heads to encode a state. More precisely, a two-way multi-head automaton

with a number of n states can be simulated by a stateless two-way multi-head

automaton with log(n) auxiliary input heads. Each of these additional input
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heads is interpreted as representing 0 if it scans the left endmarker and 1 if it

scans the first symbol of the input (or the right endmarker in case that the input

is empty). In this way these log(n) auxiliary input heads can be used in order to

encode a state as a binary number.

Regarding SL-NBMCA it is not completely obvious how this idea of simulating

states can be applied. This is mainly due to the fact that the counters of an

SL-NBMCA can have any counter bound, and it is not possible to control these

bounds. So it seems more difficult to use a counter as some sort of a bit that

can be flipped between 0 and 1. However, as we shall see, it is possible to define

an SL-NBMCA such that in an accepting computation certain counters must be

initialised with a counter bound of 1. Informally speaking, this is done by simply

using the input head to check whether or not certain counters have counter bounds

of 1. In order to do this, the input head has to be moved in the input, hence, as

we cannot use any states, the problem is how to separate this initial phase from

the main part of the computation.

Theorem 4.25. For every M ∈ NBMCA(k), k ∈ N, with a set of states Q, there

exists an M ′ ∈ SL-NBMCA(k + dlog(|Q|+ 1)e+ 2) with L(M) = L(M ′).

Proof. Let M := (k,Q,Σ, δ, q0, F ). We show how an M ′ := (k + dlog(|Q| +

1)e + 2,Σ, δ′) ∈ SL-NBMCA(k + dlog(|Q| + 1)e + 2) can be constructed from M

with L(M) = L(M ′). Without loss of generality we assume that, for any input

w ∈ Σ∗, M cannot reach a configuration where the state is an accepting state

and the input head scans the left endmarker. Moreover, we assume that q0 /∈ F
and that in every computation at least 2 steps are performed. Let the mapping

f1 : {t0, t1} → {0, 1} be defined by f1(t0) := 0 and f1(t1) := 1. Furthermore, let

the mapping f2 : N × N → {t0, t1} be defined by f2(n1, n2) := t0 if n1 6= n2 and

f2(n1, n2) := t1 if n1 = n2. Hence, f2 translates a counter configuration into the

resulting counter message.

First, we define M ′, and we shall prove its correctness afterwards. For the

construction of M ′ we use an encoding of states g : Q → {t0, t1}m, where m :=

dlog(|Q| + 1)e, that satisfies g(q0) = (t1, t1, . . . , t1) and, for every q ∈ Q, g(q) 6=
(t0, t0, . . . , t0). Obviously, such an encoding exists. We are now ready to define

the transition function δ′ of M ′.

First, for every transition of M , we define a transition for M ′ that performs

the same step, but instead of changing from one state into the other, it changes

the first m counter messages from the encoding of one state into the encoding of

another state. So for every transition (p, c, s1, . . . , sk) →δ (q, r, d1, . . . , dk), with
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q /∈ F , we define the transition

(c, ŝ1, . . . , ŝm, t1, t0, s1, . . . , sk)→δ′ (r, d̂1, . . . , d̂m, 0, 0, d1, . . . , dk) , (4.1)

where g(q) = (f−1
1 ((f1(ŝ1) + d̂1) mod 2), . . . , f−1

1 ((f1(ŝm) + d̂m) mod 2)) and

g(p) = (ŝ1, . . . , ŝm). Regarding the transitions of M that change the state into an

accepting state, we use slightly different transitions for M ′. For every transition

(p, c, s1, . . . , sk)→δ (q, r, d1, . . . , dk), with q ∈ F , we define the transition

(c, ŝ1, . . . , ŝm, t1, t0, s1, . . . , sk)→δ′ (r, d̂1, . . . , d̂m, 1, 1, d1, . . . , dk) , (4.2)

where, again, g(q) = (f−1
1 ((f1(ŝ1) + d̂1) mod 2), . . . , f−1

1 ((f1(ŝm) + d̂m) mod 2))

and g(p) = (ŝ1, . . . , ŝm). At this point, we observe that the above defined tran-

sitions of type (1) and (2) only work correctly, i. e., they change the encodings

of states according to the transitions of M , if the counter bound of the first m

counters is 1. This shall be a crucial point for the correctness of our approach.

By definition, ifM enters an accepting state, then the input is accepted. Hence,

if the first m counter messages of M ′ encode an accepting state of M , then M ′

can apply an accepting transition. So for every q ∈ F , b ∈ Σ ∪ {$} and for every

si ∈ {t0, t1}, 1 ≤ i ≤ k, we define

(b, ŝ1, . . . , ŝm, t0, t1, s1, . . . , sk)→δ′ 0 , (4.3)

where g(q) = (ŝ1, . . . , ŝm). The next two transitions are used by M ′ to start the

computation and to check whether the first m + 2 counters are initialised with a

bound of 1. For every si ∈ {t0, t1}, 1 ≤ i ≤ k, and for every b ∈ Σ∪{$} we define

(¢, t0, . . . , t0, t0, t0, s1, . . . , sk)→δ′ (1, 1, . . . , 1, 0, 0, d1 . . . , dk) and (4.4)

(b, t1, . . . , t1, t0, t0, s1, . . . , sk)→δ′ (−1, 0, . . . , 0, 1, 0, d1, . . . , dk) , (4.5)

where di = 0, 1 ≤ i ≤ k. This concludes the definition of M ′.

As an immediate consequence of the definition of δ′, we observe the following:

Claim (1). For every w ∈ Σ∗, for all p ∈ Q/F, q ∈ F , for all h, h′ ∈ {0, 1, . . . , |w|+
1}, for all Ci, C

′
i ∈ {0, 1, . . . , |w|}, 1 ≤ i ≤ k, for every ci ∈ {0, 1, . . . , Ci}, 1 ≤ i ≤

k, and for every c′i ∈ {0, 1, . . . , C ′i}, 1 ≤ i ≤ k,

[p, h, (c1, C1), . . . , (ck, Ck)] `∗M,w [q, h′, (c′1, C
′
1), . . . , (c′k, C

′
k)]



Chapter 4. Interlude 108

if and only if

[h, (ĉ1, 1), . . . , (ĉm, 1), (1, 1), (0, 1), (c1, C1), . . . , (ck, Ck)] `∗M ′,w
[h′, (c̃1, 1), . . . , (c̃m, 1), (0, 1), (1, 1), (c′1, C

′
1), . . . , (c′k, C

′
k)] ,

where g(p) = (f2(ĉ1, 1), . . . , f2(ĉm, 1)) and g(q) = (f2(c̃1, 1), . . . , f2(c̃m, 1)).

Proof. (Claim (1)) Before we are able to prove the statement of the claim, we have

to prove the following analogous statement. For every w ∈ Σ∗, for all p, q ∈ Q/F ,

for all h, h′ ∈ {0, 1, . . . , |w| + 1}, for all Ci, C
′
i ∈ {0, 1, . . . , |w|}, 1 ≤ i ≤ k, for

every ci ∈ {0, 1, . . . , Ci}, 1 ≤ i ≤ k, and for every c′i ∈ {0, 1, . . . , C ′i}, 1 ≤ i ≤ k,

[p, h, (c1, C1), . . . , (ck, Ck)] `∗M,w [q, h′, (c′1, C
′
1), . . . , (c′k, C

′
k)]

if and only if

[h, (ĉ1, 1), . . . , (ĉm, 1), (1, 1), (0, 1), (c1, C1), . . . , (ck, Ck)] `∗M ′,w
[h′, (c1, 1), . . . , (cm, 1), (1, 1), (0, 1), (c′1, C

′
1), . . . , (c′k, C

′
k)] ,

where g(p) = (f2(ĉ1, 1), . . . , f2(ĉm, 1)) and g(q) = (f2(c1, 1), . . . , f2(cm, 1)). This

can be concluded by observing that, by definition of the transitions of type (1), if

the first m+ 2 counters are initialised with a counter bound of 1, then the counter

instructions for the first m counters are chosen such that the encoding of states are

changed exactly according to how M changes its states. Furthermore, the input

head and the remaining counters are used in exactly the same way as it is done

by M . Thus, the above statement is correct.

Next, we consider the statement of the claim and observe that since we assume

that in every computation of M at least 2 steps are performed,

[p, h, (c1, C1), . . . , (ck, Ck)] `∗M,w [q, h′, (c′1, C
′
1), . . . , (c′k, C

′
k)]

if and only if

[p, h, (c1, C1), . . . , (ck, Ck)] `∗M,w

[p′, h′′, (c′′1, C
′′
1 ), . . . , (c′′k, C

′′
k )] `M,w

[q, h′, (c′1, C
′
1), . . . , (c′k, C

′
k)] ,

and there exists (p′, w[h′′], f2(c′′1, C
′′
1 ), . . . , f2(c′′k, C

′′
k ))→δ (q, r, d1, . . . , dk), with p′ /∈

F , h′′ + r = h′ and, for every i, 1 ≤ i ≤ k, c′i = c′′i + di mod (C ′′i + 1) if di 6= r

and c′i = 0 otherwise. By the statement from above and the definition of the
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transitions of type (2), we conclude that this holds if and only if

[h, (ĉ1, 1), . . . , (ĉm, 1), (1, 1), (0, 1), (c1, C1), . . . , (ck, Ck)] `∗M ′,w
[h′′, (c1, 1), . . . , (cm, 1), (1, 1), (0, 1), (c′′1, C

′′
1 ), . . . , (c′′k, C

′′
k )] `M ′,w

[h′, (c̃1, 1), . . . , (c̃m, 1), (0, 1), (1, 1), (c′1, C
′
1), . . . , (c′k, C

′
k)] .

where g(p) = ĉ1, . . . , ĉm, g(p′) = c1, . . . , cm and g(q) = c̃1, . . . , c̃m. This concludes

the proof of the claim. � (Claim (1))

In order to prove the correctness of M ′ we claim the following:

Claim (2). Every accepting computation of M ′ on some w ∈ L(M ′) starts with

[0, (0, 1), . . . , (0, 1), (0, 1), (0, 1), (0, C1), . . . , (0, Ck)] `M ′,w
[1, (1, 1), . . . , (1, 1), (0, 1), (0, 1), (0, C1), . . . , (0, Ck)] `M ′,w
[0, (1, 1), . . . , (1, 1), (1, 1), (0, 1), (0, C1), . . . , (0, Ck)] ,

for some Ci ∈ {0, 1, . . . , |w|}, 1 ≤ i ≤ k.

Proof. (Claim (2)) If the first m+ 2 counters are initialised with counter bounds

of 1, then at the beginning of the computation transitions (4) and (5) apply first,

which implies that exactly the above mentioned configurations are reached. So it

remains to show that for every accepting computation, the first m + 2 counters

must be initialised with 1.

First, we observe that an accepting computation cannot start with an transition

of either type (1) or type (2), as this implies that counter m+ 1 is initialised with

0, which means that the counter message of this counter stays t1 for the entire

computation and there is no accepting transition defined for the case that counter

m + 1 has a message of t1. Furthermore, it is not possible that a transition of

type (3) or transition (5) is the first transition of an accepting computation as

these transitions are not defined for the symbol ¢. Here, we use the fact that the

transitions of type (3) are only defined for input symbols different from ¢, which

is only possible because we assume that M cannot reach a configuration where

the state is an accepting state and the input head scans the left endmarker. We

conclude that an accepting computation must start with transition (4).

This implies that none of the first m+ 2 counters are initialised with 0. Tran-

sition 4 increments the first m counters, so in case that at least one of them is not

initialised with a counter bound of 1, a configuration is reached where at least one

of the first m counters has counter message t0 and counter m+ 1 and m+ 2 also

have counter message t0 while the input head scans some symbol b ∈ Σ∪{$}. For

such a configuration no transition is defined; thus, we can assume that the first
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m counters are initialised with a counter bound of 1. For the configuration that

is reached by applying transition (4), transition (5) is the only next applicable

transition. By applying transition (5), the input head is moved back to the left

endmarker and counter m + 1 is incremented. If counter m + 1 has a counter

bound strictly greater than 1, its counter bound stays t0 and a configuration is

reached where the first m counters have message t1, counters m+1 and m+2 have

messages t0 and the input head scans ¢. Again, there is no transition defined for

such a configuration. Hence, we can conclude that the counter bound of counter

m + 1 is 1 as well. So far, we have shown that an accepting computation of M ′

on some input w starts with

[0, (0, 1), . . . , (0, 1), (0, 1), (0, C ′), (0, C1), . . . , (0, Ck)] `M ′,w
[1, (1, 1), . . . , (1, 1), (0, 1), (0, C ′), (0, C1), . . . , (0, Ck)] `M ′,w
[0, (1, 1), . . . , (1, 1), (1, 1), (0, C ′), (0, C1), . . . , (0, Ck)] ,

for some C ′ ∈ {1, 2, . . . , |w|}. Hence, it remains to show that C ′ = 1.

Obviously, for an accepting computation, at some point there must a transition

of type (3) be applied. Since all transitions of type (3) require the counter message

of counter m + 1 to be t0, it is necessary that a transition of type (2) is applied.

We assume now that the counter bound of counter m+2 is strictly greater than 1.

So by applying a transition of type (2) a configuration is reached where counters

m+1 and m+2 have message t0 and the first m counters have messages ŝ1, . . . , ŝm

with g(q) = (ŝ1, . . . , ŝm) for some q ∈ F . There are only two possible sequences

of messages ŝ1, . . . , ŝm such that a transition is defined. If ŝi = t1, 1 ≤ i ≤ m,

then transition (5) might be applicable next. However, since g(q0) = (t1, . . . , t1),

this implies q0 ∈ F , which contradicts our assumption that q0 is not an accepting

state. If, on the other hand, ŝi = t0, 1 ≤ i ≤ m, then transition (4) might

be applicable but this implies that there exists a state q with g(q) = (t0, . . . , t0),

which, by definition of g, is not possible. Consequently, we can conclude that in an

accepting computation the counter bound of counter m+ 2 is 1, which concludes

the proof. � (Claim (2))

From Claims (1) and (2) we can directly conclude that w ∈ L(M) if and only

if w ∈ L(M ′). Thus, L(M) = L(M ′). �

As demonstrated by the above results SL-NBMCA can simulate NBMCA by

using additional counters. For this simulation as well as for the automaton MS3

(see Definition 4.22) recognising S3, it is a vital point that certain counters have

a counter bound of 1. The automaton MS3 uses these counters in order to count

input symbols and in the simulation of NBMCA by SL-NBMCA we interpret
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them as a binary number encoding a state. Due to the lack of states, this need for

counters to be initialised with a counter bound of 1 involves considerable technical

challenges.

4.1.4 Stateless NBMCA with Bounded Resets

As described at the beginning of Section 4.1, it is our goal to investigate the

role of nondeterminism in the case that there does not exist a finite state control

that can be used to control the nondeterminism. Since, as demonstrated by the

previous section, SL-NBMCA can simulate states using their counters, we now

consider SL-NBMCA(1). However, since it is not possible to simulate arbitrarily

large finite state controls with a fixed number of counters, we anticipate that for

any class SL-NBMCA(k), k ∈ N, similar results to the following ones exist.

We take a closer look at SL-NBMCA(1) the input heads of which operate in a

one-way manner, i. e., for every transition (b, x)→δ (y, z), we have y ∈ {0, 1}. Fur-

thermore, the number of counter resets is bounded. These classes of SL-NBMCA

shall be denoted by 1SL-NBMCAk(1), where k is the maximum number of resets

allowed. The number of resets of an 1SL-NBMCAk(1) is bounded in the follo-

wing way. In any computation of a 1SL-NBMCAk(1), the first k applications of

a transition of form (b, x) → (y, r), b ∈ Σ, x ∈ {t0, t1}, y ∈ {0, 1}, reset the

counter in accordance with the definition of NBMCA. Every further application

of a transition of that form simply ignores the counter, i. e., the counter value and

counter bound remain unchanged. More precisely, if in a computation a transition

(a, x) → (y, r) is applied after the counter has already been reset for at least k

times, then this transition is interpreted as (a, x)→ (y, 0).

This way of restricting automata is unusual compared to the common restric-

tions that are found in the literature. We shall explain this in a bit more detail

and consider input head reversal bounded automata as an example (see, e. g.,

Ibarra [36]). An input head reversal bounded automaton is an automaton that

can recognise each word of a language in such a way that the number of input

head reversals is bounded. There is no need to require the input head reversals to

be bounded in the non-accepting computations as well, as this does not constitute

a further restriction. This is due to the fact that we can always use the finite

state control to count the number of input head reversals in order to interrupt a

computation in a non-accepting state as soon as the bound of input head reversals

is exceeded. However, regarding stateless automata this is not necessarily possible

anymore and it seems that it is a difference whether a restriction is defined for all

possible computations or only for the accepting ones. Our definition of bounded

resets from above avoids these problems by slightly changing the model itself, i. e.,
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in every computation it loses the ability to reset the counter after a number of

resets.

We recall that in a computation of an NBMCA, the counters are already

nondeterministically initialised. Hence, in a computation of a 1SL-NBMCAk(1)

the counter can have k + 1 distinct counter bounds. Since the input head of

1SL-NBMCAk(1) is a one-way input head, we require all accepting transitions to

be of form ($, x)→ 0, x ∈ {t0, t1}.
The main question is whether or not the classes L(1SL-NBMCAk(1)), k ∈ N,

describe a hierarchy with respect to k. First, for every k ∈ N, we separate the

classes L(1SL-NBMCAk(1)) and L(1SL-NBMCAk+1(1)) by identifying a language

L that can be recognised by an 1SL-NBMCAk+1(1), but there exists no M ∈
1SL-NBMCAk(1) with L(M) = L. The words of the separating language for

1SL-NBMCAk(1) and 1SL-NBMCAk+1(1) are basically concatenations of k + 2

words ui, 1 ≤ i ≤ k + 2, where each ui comprises unary factors of the same

length ni, 1 ≤ i ≤ k + 2. A possible 1SL-NBMCAk+1(1) for this language can

be initialised with a counter bound of n1, it can guess ni, 2 ≤ i ≤ k + 2, as

counter bounds in the computation and it can use the counter to check the unary

factors for equality. Since it is possible that ni 6= ni+1, the automaton needs k+ 2

distinct counter bounds. Hence, a 1SL-NBMCAk(1), which can only use at most

k + 1 different counter bounds in any computation, is not able to recognise this

language. Next, we shall formally define these languages and use them in the

above illustrated way in order to separate the classes 1SL-NBMCAk(1), k ∈ N.

In the remainder of this section, we exclusively consider languages and auto-

mata defined over the alphabet Σ := {a,#1,#2}. Next, for every k ∈ N, we define

a language over Σ that shall then be shown to be in L(1SL-NBMCAk(1)) but not

in L(1SL-NBMCAk−1(1)).

Definition 4.26. For every n ∈ N0 let L̃n := {an} · {#1 · an}∗, and let L̃ :=⋃
n∈N0

L̃n. Furthermore, for every k ∈ N, let

Lk,1 := {u1 ·#2 · u2 ·#2 · · · · ·#2 · uk′ | ui ∈ L̃, 1 ≤ i ≤ k′ ≤ k} ,

Lk,2 := {u1 ·#2 · · · · ·#2 · uk ·#2 · · · · ·#2 · uk′ | ui ∈ L̃, 1 ≤ i ≤ k ≤ k′,

if uk ∈ L̃0, then ui′ ∈ L̃0, k + 1 ≤ i′ ≤ k′,

if uk ∈ L̃n, n ∈ N, then ui′ ∈ ({#1} · L̃n), k + 1 ≤ i′ ≤ k′} ,

and let Lk := Lk,1 ∪Lk,2.

Thus, the words of language L̃ consist of concatenations of factors over {a}
of the same length that are separated by occurrences of #1. The words of the

language Lk are basically concatenations of words in L̃ separated by occurrences
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of #2. However, in a word from Lk, only the first k of these elements from L̃ can

be arbitrarily chosen, for all the others the length of the factors over {a} must

be the same as for the kth word, with the only difference that they start with an

additional occurrence of #1. For example,

aa ·#1 · aa ·#2 ·#2 · aaa ·#1 · aaa ·#1 · aaa ·#2 ·#1 · aaa ·#1 · aaa ∈ L3 ,

aaaaaa ·#2 · a ·#1 · a ·#1 · a ·#2 · aaa ·#1 · aaa ·#2 ·#2 ·#1 ·#1 ·#1 ∈ L4 ,

aaaaaaaa ·#1 · aaaaaaaa ·#1 · aaaaaaaa ∈ L6 .

For every k ∈ N, we now define a 1SL-NBMCAk−1(1) that recognises exactly the

language Lk.

Definition 4.27. Let ML := (1, {a,#1,#2}, δ) ∈ SL-NBMCA(1), where δ is

defined by

1. (¢, t0)→δ (1, 0),

2. (¢, t1)→δ (1, 0),

3. (a, t0)→δ (1, 1),

4. (#1, t1)→δ (1, 1),

5. (#2, t1)→δ (1, r),

6. ($, t1)→δ 0.

For every k ∈ N, let MLk be the above defined automaton ML interpreted as an

1SL-NBMCAk−1(1).

We now explain how MLk recognises Lk in an informal way. MLk uses its

counter to count the occurrences of a on the input tape. Whenever an occurrence

of #1 is scanned, the counter must have reached its counter bound, which then

implies that the length of the factor over {a} correspond to the counter bound.

When an occurrence of #2 is scanned, the counter message must be t1 as well,

and, furthermore, in case that the input is a word from Lk, a new sequence of

possibly different factors over {a} follows and, thus, the counter is reset in order

to guess a new counter bound. As soon as all k − 1 resets are used, the counter

bound does not change anymore; hence, the remaining factors over {a} must all

have the same length. We note that k − 1 resets are sufficient as the counter is

nondeterministically initialised with a counter bound that can be used for the first

factors over {a}.

Theorem 4.28. For every k ∈ N, Lk ∈ L(1SL-NBMCAk−1(1)).
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Proof. We note that it is sufficient to show that L(MLk) = Lk. First we prove two

claims.

Claim (1). Let ¢w$, w ∈ {#1,#2, a}∗, be an arbitrary input for MLk and let

j, j′ be arbitrarily chosen with 0 ≤ j < j′ ≤ |w| + 1, w[j], w[j′] ∈ {#2, ¢, $} and

w[j′′] 6= #2, j < j′′ < j′. Furthermore, let c1, c2, . . . , cm be the initial part of a

computation of MLk on w and the counter has been reset at most k − 2 times in

this initial part of the computation. Then, for all n, n′ with 0 ≤ n, n′ ≤ |w|, the

following holds. If j 6= 0, then

cm = [j, (n, n)] `∗MLk
,w [j′, (n′, n′)] if and only if w[j + 1, j′ − 1] ∈ L̃n′ ,

and if j = 0, then

[j, (0, n)] `∗MLk
,w [j′, (n, n)] if and only if w[j + 1, j′ − 1] ∈ L̃n .

Proof. (Claim (1)) We first show that if j 6= 0, then [j, (n, n)] `∗MLk
,w [j′, (n′, n′)]

implies w[j + 1, j′ − 1] ∈ L̃n′ and if j = 0, then [j, (0, n)] `∗MLk
,w [j′, (n, n)] implies

w[j+ 1, j′− 1] ∈ L̃n. To this end, we first assume that j 6= 0 and [j, (n, n)] `∗MLk
,w

[j′, (n′, n′)] and take a closer look at this computation. Let u := w[j + 1, j′ − 1].

Initially, the input head scans w[j] = #2 and the counter configuration is (n, n),

thus, the counter message is t1. This implies that transition 5 applies, i. e., the

input head is moved to position j+ 1 and the new counter configuration is (0, n′).

If n′ = 0, the counter message is t1 and, since |u|#2 = 0, the counter is not reset

in the whole process of scanning u and therefore cannot change from t1 to t0.

Furthermore, since the input head cannot be moved over an occurrence of a with

counter message t1, we can conclude that |u|a = 0, which implies u ∈ {#1}∗ and,

hence, u ∈ L̃n′ = L̃0. If n′ ≥ 1, the first symbol of u must be an a, as the counter

message is t0 when that symbol is scanned. Now, the only applicable transition is

transition 3. This transition is successively applied as long as a’s are scanned and

the counter message is t0. Furthermore, in each step the counter is incremented.

This implies that if the symbol #2 on position j is followed by less than n′ a’s the

input head reaches #1 or #2 with counter message t0 and if it is followed by more

than n′ a’s, the input head reaches an a with counter message t1. In both cases no

transition is defined, so we conclude that u starts with an
′

and the symbol to the

right of the n′th symbol of u must be #1 or #2. If this symbol is #2, we conclude

u = an
′ ∈ L̃n′ . If, on the other hand, this symbol is #1, then transition 4 applies

which sets the counter value back to 0 and moves the input head to the right and

then, for the same reasons as before, n′ a’s occur followed by either #1 or #2. We

conclude that u = an
′ · (#1 · an

′
)m for some m ≥ 1; thus, u ∈ L̃n′ .
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Next, we assume that j = 0 and [j, (0, n)] `∗MLk
,w [j′, (n, n)] holds and, fur-

thermore, that n = 0. This means that the input head scans the left endmarker

¢ and the counter message is t1. Consequently, transition 2 applies which moves

the input head a step to the right and leaves the counter unchanged. Again, we

note that the counter message cannot change from t1 to t0 in the whole process

of scanning u := w[1, j′ − 1], so we conclude |u|a = 0, which implies u ∈ {#1}∗

and, hence, u ∈ L̃n′ = L̃0. If we have n ≥ 1, then, as the counter message is t0,

transition 1 applies first and the input head is moved one step to the right and

the counter configuration stays (0, n). Since the counter message is still t0 we can

conclude in the same way as before that u = an · (#1 · an)m for some m ≥ 1, thus,

u ∈ L̃n.

Next, we show that if j 6= 0, then w[j+1, j′−1] ∈ L̃n′ implies [j, (n, n)] `∗MLk
,w

[j′, (n′, n′)] and if j = 0, then w[j + 1, j′ − 1] ∈ L̃n implies [j, (0, n)] `∗MLk
,w

[j′, (n, n)]. To this end, we first observe that u := w[j + 1, j′ − 1] ∈ L̃n′ means

that there exists an m ∈ N0 with u = an
′ · (#1 · an

′
)m. Consequently, there are 4

possible cases of how u may look like:

1. If n′ = m = 0, then u = ε,

2. if n′ = 0 and m ≥ 1, then u = (#1)m,

3. if n′ ≥ 1 and m = 0, then u = an
′
,

4. if n′ ≥ 1 and m ≥ 1, then u = an
′ · (#1 · an

′
)m.

We can show that for each of the 4 cases mentioned above, [j, (n, n)] `∗MLk
,w

[j′, (n′, n′)] holds. So we assume that the input head scans position j and the

counter configuration is (n, n). This means that transition 5 is applicable, so the

input head is moved to position j + 1 and the counter changes into configuration

(0, n′). In cases 1 and 2 we assume the guessed counter bound to be n′ = 0; hence,

the counter message is t1 until the next reset is performed, i. e., until the input head

reaches position j′. So in case 1 the input head is moved to the next occurrence

of #2 and the counter changes into configuration (0, 0) = (n′, n′). For case 2 the

input head is moved over u = (#1)m by successively applying transition 4. The

counter message stays t1 the whole time until eventually the next occurrence of

#2 is reached with counter configuration (0, 0) = (n′, n′).

If, on the other hand, u starts with a factor an
′
, as in cases 3 and 4, then we

assume the guessed counter bound to be n′, which allows ML to apply transition

3 n′ times until the input head scans the symbol to the right of the last a and

the counter configuration is (n′, n′). In case 3 this symbol is already the next

occurrence of #2 at position j′ and in case 4 this symbol is another #1 followed by
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another factor an
′
. Hence, transition 4 applies and the same procedure starts over

again until the next occurrence of #1 is scanned with counter configuration (n′, n′),

and so on. Eventually, the next occurrence of #2 at position j′ is scanned with

counter configuration (n′, n′). Consequently, for all of the 4 cases [j, (n, n)] `∗MLk
,w

[j′, (n′, n′)] holds.

We can analogously show that w[j + 1, j′ − 1] ∈ L̃n implies [j, (0, n)] `∗MLk
,w

[j′, (n, n)] if j = 0. The only difference is that the first transition is not transition

5 anymore, but transition 1 or 2 depending on whether or not n = 0. From then

on we can apply exactly the same argumentation in order to show for all of the 4

cases above that [j, (0, n)] `∗MLk
,w [j′, (n, n)]. � (Claim (1))

Claim (2). Let ¢w$, w ∈ {#1,#2, a}∗, be an arbitrary input for MLk , and let

j, j′ be arbitrarily chosen with 1 ≤ j < j′ ≤ |w| + 1, w[j], w[j′] ∈ {#2, $} and

w[j′′] 6= #2, j < j′′ < j′. Furthermore, let c1, c2, . . . , cm be the initial part of a

computation of MLk on w and the counter has been reset at least k − 1 times

in this initial part of the computation. Then, for all n with 0 ≤ n ≤ |w|, the

following holds: If n = 0, then

[j, (n, n)] `∗MLk
,w [j′, (n, n)] if and only if w[j + 1, j′ − 1] ∈ {#1}∗ ,

and if n ≥ 1, then

[j, (n, n)] `∗MLk
,w [j′, (n, n)] if and only if w[j + 1, j′ − 1] ∈ ({#1} · L̃n) .

Proof. (Claim (2)) First, we show that [j, (0, 0)] `∗MLk
,w [j′, (0, 0)] implies w[j +

1, j′ − 1] ∈ {#1}∗ and that, for every n ∈ N, [j, (n, n)] `∗MLk
,w [j′, (n, n)] implies

w[j+1, j′−1] ∈ ({#1}·L̃n). To this end, we assume that [j, (0, 0)] `∗MLk
,w [j′, (0, 0)]

and take a closer look at this computation. For the sake of convenience, we define

u := w[j + 1, j′ − 1]. Initially, the input head scans w[j] = #2 and the counter

configuration is (0, 0). Thus, the counter message is t1 and therefore transition 5

applies. Since the counter has already been reset at least k − 1 times, transition

5 is interpreted as (#2, t1) →δ (1, 0), hence, the input head is moved to position

j+1 and the counter configuration stays (0, 0). Since the counter message is t1, it

is not possible that u starts with the symbol a. So it must start with symbol #1.

In a next step transition 4 applies which moves the input head a step further to

the right and does not change the counter configuration. We can conclude in the

same way as before, that the next symbol of u must be #1 and, thus, u ∈ {#1}∗.
Next, we assume that [j, (n, n)] `∗MLk

,w [j′, (n, n)] for an arbitrary n ∈ N.

Again, the input head scans w[j] = #2 and the counter configuration is (n, n).

Thus, the counter message is t1 and therefore transition (#2, t1)→δ (1, 0) applies.
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Hence, the input head is moved to position j + 1 and the counter configuration

stays (n, n). Since the counter message is still t1, symbol a cannot occur next, so

the next symbol must be #1. Now, transition 4 applies which moves the input

head another step further to the right and increments the counter to configuration

(0, n). Since n ≥ 1, we can conclude that the counter message is now t0 so

the second symbol of u must be a. In the next step, transition 3 applies which

increments the counter and moves the input head a step further to the right. This

is repeated as long as the input head scans a and the counter message does not

change to t1. It is neither possible that another a is scanned when the counter

message changes to t1 nor that the counter message is still t0 when the first symbol

different from a is scanned. Consequently, u starts with the prefix #1 · an. The

next symbol can be the occurrence of #2 at position j′ or another occurrence of

#1 which implies that transition 4 applies. As before, transition 4 moves the input

head a step further to the right and changes the counter configuration into (0, n),

so we can conclude, that the next part of u is again an; thus, u ∈ ({#1} · L̃n).

It remains to show the converse of the two statements, i. e., w[j + 1, j′ −
1] ∈ {#1}∗ implies [j, (0, 0)] `∗MLk

,w [j′, (0, 0)] and w[j + 1, j′ − 1] ∈ ({#1} · L̃n)

implies [j, (n, n)] `∗MLk
,w [j′, (n, n)]. We assume that w[j + 1, j′ − 1] ∈ {#1}∗

and consider the computation of MLk on w at configuration [j, (0, 0)]. By first

applying transition (#2, t1) →δ (1, 0) and then successively applying transition

4, the input head is moved to position j′ and the counter configuration is not

changed. Consequently, [j, (0, 0)] `∗MLk
,w [j′, (0, 0)].

Next, we assume that w[j+1, j′−1] ∈ ({#1}· L̃n). More precisely, w[j+1, j′−
1] = #1 · an ·#1 · an ·#1 · · · · ·#1 · an. We consider the configuration [j, (n, n)].

Again, transition (#2, t1) →δ (1, 0) applies first. Since #1 is scanned next and

the counter configuration is (n, n), transition 4 is applied next and therefore, the

counter changes to (0, n) and the input head scans the first occurrence of a. Now,

by successively applying transition 3, the input head is moved over the first factor

an until it scans the second occurrence of #1 and the counter configuration is

(n, n) again. This procedure repeats until configuration [j′, (n, n)] is reached and,

thus, [j, (n, n)] `∗MLk
,w [j′, (n, n)]. � (Claim (2))

We now use Claims (1) and (2) to show that Lk ⊆ L(MLk). To this end, let

w ∈ Lk be arbitrarily chosen. We first consider the case w ∈ Lk,1, which implies

that w = u1 ·#2 ·u2 ·#2 · · · · ·#2 ·uk′ , where k′ ≤ k and ui ∈ L̃, 1 ≤ i ≤ k′. More

precisely, let ui ∈ L̃ni , 1 ≤ i ≤ k′, and ji := |u1 · #2 · u2 · #2 · · · · · #2 · ui| + 1,

1 ≤ i ≤ k′. Now we can apply Claim 1 and conclude that [0, (0, n1)] `∗MLk
,w

[j1, (n1, n1)] and, for every i, 1 ≤ i ≤ k′ − 1, [ji, (ni, ni)] `∗MLk
,w [ji+1, (ni+1, ni+1)].

Consequently, [0, (0, n1)] `∗MLk
,w [|w|+ 1, (nk, nk)], i. e., MLk guesses n2, n3, . . . , nk
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as counter bounds and is initialised with counter bound n1. Therefore, we conclude

w ∈ L(MLk) and, thus, Lk,1 ⊆ L(MLk).

If w ∈ Lk,2 we can write w = u1 ·#2 · · · · ·#2 · uk ·#2 · · · · ·#2 · uk′ , ui ∈ L̃,

1 ≤ i ≤ k. Furthermore, if uk ∈ L̃0, then ui′ ∈ L̃0, k+ 1 ≤ i′ ≤ k′, and if uk ∈ L̃n,

n ∈ N, then ui′ ∈ ({#1} · L̃n), k + 1 ≤ i′ ≤ k′. As before, let ui ∈ L̃ni , 1 ≤ i ≤ k,

and ji := |u1 ·#2 ·u2 ·#2 · · · · ·#2 ·ui|+1, 1 ≤ i ≤ k′. In the same way as before, we

can apply Claim 1 to show that [0, (0, n1)] `MLk
[jk, (nk, nk)]. Let us now assume

that uk ∈ L̃0 which, by definition of Lk,2, implies ui′ ∈ L̃0, k + 1 ≤ i′ ≤ k′. Using

Claim (2), we can conclude that [ji, (nk, nk)] `∗MLk
,w [ji+1, (nk, nk)], k+ 1 ≤ i ≤ k′.

Hence, [jk+1, (nk, nk)] `∗MLk
,w [jk′ , (nk, nk)], which, together with [0, (0, n1)] `∗MLk

[jk, (nk, nk)], implies [0, (0, n1)] `∗MLk
[jk′ , (nk, nk)]; thus, w ∈MLk .

For the case that uk ∈ L̃n, n ∈ N, we can show that [jk+1, (nk, nk)] `∗MLk
,w

[jk′ , (nk, nk)] by applying Claim (2) in the same way as before. So we can conclude

that Lk ⊆ L(MLk).

It remains to prove the converse statement, i. e., L(MLk) ⊆ Lk. To this end,

let w ∈ L(MLk) be arbitrarily chosen. Obviously, there is a k′ ∈ N such that

|w|#2 = k′ − 1 and, thus, w = u1 ·#2 · u2 ·#2 · · · · ·#2 · uk′ , where ui ∈ {a,#1}∗,
1 ≤ i ≤ k′. Furthermore, let ji := |u1 ·#2 · u2 ·#2 · · · · ·#2 · ui| + 1, 1 ≤ i ≤ k′.

We shall first consider the case that k′ ≤ k and deal with the case k < k′ later

on. We note that k′ ≤ k implies that the number of occurrences of #2 is at most

k−1. Hence, in an accepting computation of MLk on w, each time the input head

scans #2 the counter is reset by applying transition 5. Now let n2, n3, . . . , nk′

be the counter bounds guessed in an accepting computation of MLk on w and,

furthermore, let n1 be the counter bound the counter is initialised with. So we can

conclude that [0, (0, n1)] `∗MLk
,w [j1, (n1, n1)], [ji, (ni, ni)] `∗MLk

,w [ji+1, (ni+1, ni+1)],

1 ≤ i ≤ k′ − 1. Referring to Claim (1) this implies that ui ∈ L̃ni , 1 ≤ i ≤ k′, and

therefore w ∈ Lk.

In case k < k′, we can write w as w = u1 ·#2 · · · · ·#2 · uk ·#2 · · · · ·#2 · uk′ ,
and in the same way as before we can conclude that ui ∈ L̃ni , 1 ≤ i ≤ k. We

know, furthermore, that w is accepted by MLk and, thus, [ji, (nk, nk)] `∗MLk
,w

[ji+1, (nk, nk)], k ≤ i ≤ k′ − 1. Now, if nk = 0, Claim (2) implies that ui ∈ {#1}∗,
k + 1 ≤ i ≤ k′, and if nk ≥ 1, ui ∈ ({#1} · L̃nk), k + 1 ≤ i ≤ k′, is implied.

Consequently, in both cases, w ∈ Lk, which shows L(MLk) ⊆ Lk. �

As described above, our next goal is to state that Lk cannot be accepted

by any 1SL-NBMCAk−2(1). To this end we first observe that for every M ∈
1SL-NBMCAk(1), k ∈ N, that accept a language Lk′ , a certain property related

to the fact that, by definition, a word w ∈ Lk′ can have k′ − 1 factors of form

c · an ·#2 · an
′ · c′, n, n′ ∈ N, c 6= a 6= c′, must be satisfied. The next lemma states
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that M must reset its counter at least once in the process of moving the input

head over any such factor.

Lemma 4.29. Let k, k′ ∈ N, k′ ≥ 2, M ∈ 1SL-NBMCAk(1) with a transition

function δ and L(M) = Lk′. Let furthermore C := (c1, c2, . . . , cm) be an arbitrary

accepting computation of M on some arbitrarily chosen w := u1 ·#2 ·u2 ·#2 · · · · ·
#2 ·uk′ with ui ∈ L̃ni, ni ≥ 2k+1, |ui|#1 ≥ 1, 1 ≤ i ≤ k′, ni 6= ni+1, 1 ≤ i ≤ k′−1,

and let j, j′, 1 ≤ j < j′ ≤ |w|, such that w[j, j′] = #1 · ani · #2 · ani+1 · #1 with

1 ≤ i ≤ k′ − 1. If, for some l, l′, 1 ≤ l < l′ ≤ m, and some pi, qi ∈ N0, 1 ≤ i ≤ 4,

cl, . . . , cl′ = [j, (p1, q1)], [j + 1, (p2, q2)], . . . , [j′ − 1, (p3, q3)], [j′, (p4, q4)] ,

then there exists an i, l + 1 ≤ i ≤ l′ − 1, such that ci is converted into ci+1 by a

transition of form (b, x)→δ (y, r), b ∈ Σ, x ∈ {t0, t1}, y ∈ {0, 1}.

Proof. We shall prove the statement of the lemma by first proving two claims

establishing certain properties of M , the 1SL-NBMCAk(1) that recognises Lk′ .

The first claim concerns the way how M scans occurrences of a.

Claim (1). In C, the transitions

T1 (a, t1)→δ (0, 1),

T2 (a, t1)→δ (1, 0),

T3 (a, t1)→δ (1, 1),

T4 (a, t0)→δ (0, 1),

T5 (a, t0)→δ (1, 0),

are not applied and the transition (a, t0)→δ (1, 1) is applied.

Proof. (Claim (1)) We shall first show that none of the transitions T1 to T5 is

applied in C. To this end, we observe that since ni ≥ 2k + 1, 1 ≤ i ≤ k′, and

there are at most k resets possible in C, we can conclude that there are at least

two consecutive occurrences of a in w such that only non-reseting transitions are

performed while these occurrences are scanned by the input head. We assume

that these occurrences are at positions p̂ and p̂ + 1. Next, we show that it is not

possible that any of the transitions T1 to T5 apply when the input head scans

position p̂. To this end, we assume to the contrary that one of these transitions is

applied in configuration [p̂, (p, q)], p, q ∈ N, p ≤ q, and then show that a word is

accepted by M that is not an element of Lk′ , which is a contradiction.

If transitions T2 or T5 apply in configuration [p̂, (p, q)], then the input head is

moved over the occurrence of a at position p̂ without changing the counter value.
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Thus, the counter message does not change. This directly implies that the word

w[1, p̂] · a · w[p̂+ 1,−] /∈ Lk′ is accepted by M as well, which is a contradiction.

If transition T4 applies in configuration [p̂, (p, q)], then the transition [p̂, (p +

1, q)] is reached and, thus, T4 is repeated until the counter reaches its bound,

i. e., M enters configuration [p̂, (q, q)]. Since the computation is accepting, a next

transition must be defined and this transition must move the head as otherwise

no transition is defined that moves the head while an occurrence of a is scanned.

Furthermore, by assumption, this transition is non-reseting. Since we have already

ruled out transition T2, the only possible next transition is T3. This implies that

configuration [p̂+1, (0, q)] is reached. Consequently, the word w[1, p̂]·a·w[p̂+1,−] /∈
Lk′ is accepted as well and, again, a contradiction is obtained.

Next we assume that transition T1 applies in configuration [p̂, (p, q)]. If q, the

current counter bound, equals 0, then the counter message cannot change and the

automaton is in an infinite loop, which contradicts the fact that the computa-

tion C is accepting. So we assume that q ≥ 1 which implies that configuration

[p̂, (0, q)] is reached by applying T1. Since C is accepting a next transition must be

applicable that is non-reseting and moves the input head. We have already ruled

out transition T5. Thus, the only possible next transition is (a, t0)→δ (1, 1) and

therefore the configuration [p̂ + 1, (1, q)] is reached. We observe that this implies

that w[1, p̂]·aq ·w[p̂+1,−] /∈ Lk′ is accepted by M as well, which is a contradiction.

It remains to consider the case that T3 is applied in configuration [p̂, (p, q)]. If

q = 0, then the counter message does not change by applying transition T3. This

implies that the effect of transition T3 is the same as of transition T2. Hence, we

can show in a similar way as before that w[1, p̂] · a · w[p̂ + 1,−] /∈ Lk′ is accepted

by M . Since this is a contradiction, we conclude that q ≥ 1 and observe that

configuration [p̂ + 1, (0, q)] is reached by applying T3. Again, as C is accepting,

a next configuration must be defined. We recall that we assume that no reseting

transition is applied while the input head scans positions p̂ and p̂+ 1. Therefore,

the next transition is non-reseting, but does not necessarily move the input head.

The only possible transitions of that kind are T4, T5 and (a, t0)→δ (1, 1). Since

w[p̂+ 1] = a, we can conclude that T4 and T5 cannot be applied in configuration

[p̂ + 1, (0, q)] in exactly the same way as we have already shown above that T4

and T5 cannot be applied in configuration [p̂, (p, q)]. Therefore the only possible

transition left is transition (a, t0)→δ (1, 1). Similarly as before, we can conclude

that in this case M accepts w[1, p̂] · aq+1 ·w[p̂+ 1,−] /∈ Lk′ and, thus, we obtain a

contradiction.

We conclude that the transition (a, t0)→δ (1, 1) is the only possible transition

that can be applied when configuration [p̂, (p, q)] is reached. This proves the

claim. � (Claim (1))
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The next claim states that M cannot move the input head over an occurrence

of #1 or #2 by a non-reseting transition if the counter message is t0.

Claim (2). For every b ∈ {#1,#2}, the transitions

T6 (b, t0)→δ (1, 0),

T7 (b, t0)→δ (1, 1)

are not defined.

Proof. (Claim (2)) We assume to the contrary that, for some b ∈ {#1,#2}, transi-

tion T6 or T7 is defined and use our accepting computation C of M on w to obtain

a contradiction, i. e., we show that M accepts a word that is not an element of

Lk′ .

As we have already shown in Claim (1), there must be a position p̂, 1 ≤ p̂ ≤ |w|,
such that ci := [p̂, (p, q)] is converted into ci+1 := [p̂ + 1, (p + 1, q)] by transition

(a, t0)→δ (1, 1). Furthermore, we can conclude that p < q.

We now assume that transition T6 is defined and consider the input w′ :=

w[1, p̂−1] ·b ·w[p̂,−], i. e., we insert an occurrence of b to the left of the occurrence

of a at position p̂. It is not possible that in configuration ci−1 the input head is

located at position p̂ as well, as this implies the application of a transition other

than (a, t0) →δ (1, 1) which, by Claim (1), must be reseting. Hence, there is a

computation of M on w′ that is identical to C up to the first i elements. So

configuration [p̂, (p, q)] is reached and, as w′[p̂] = b and p < q, T6 applies and

changes M into configuration [p̂ + 1, (p, q)]. Now, as w′[p̂ + 1,−] = w[p̂,−], it

is possible that the computation terminates with the last m − i elements of C,

where the first component of each configuration has increased by 1. Hence, w′ is

accepted by M .

Next, we assume that transition T7 is defined and consider the input w′′ :=

w[1, p̂− 1] · b · w[p̂+ 1,−], i. e., we substitute the occurrence of a at position p̂ by

an occurrence of b. There is a computation of M on w′′ that is identical to C up

to the first i elements. So configuration [p̂, (p, q)] is reached and, as w′′[p̂] = b and

p < q, T7 applies and changes M into configuration [p̂ + 1, (p + 1, q)]. Now, as

w′′[p̂+ 1,−] = w[p̂+ 1,−], it is possible that the computation terminates with the

last m− (i+ 1) elements of C. Hence, w′′ is accepted by M .

In order to conclude the proof, it remains to show that w′ /∈ Lk′ and w′′ /∈ Lk′

for every b ∈ {#1,#2}. We recall that w′ is obtained from w by inserting an

occurrence of b to the left of an occurrence of a and w′′ is obtained from w by

substituting an occurrence of a by an occurrence of b. If b = #1, then there exists

a factor c ·an ·#1 ·an
′ ·c′ in w′ (or w′′), where n 6= n′ and c 6= a 6= c′; hence w′ /∈ Lk′

(or w′′ /∈ Lk′ , respectively). If b = #2 and p̂ is such that w[p̂− 1] /∈ {¢,#2}, then
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there also exists a factor c ·an ·#1 ·an
′ · c′ in w′ (or w′′, respectively), where n 6= n′

and c 6= a 6= c′. Thus, w′ /∈ Lk′ (or w′′ /∈ Lk′ , respectively).

It remains to consider the case where w[p̂ − 1] ∈ {¢,#2} and b = #2. First,

we observe that in this case w′′ must have a factor c · #2 · an−1 · #1 · an · c′,
where c ∈ {¢,#2} and c 6= a. Consequently, w′′ /∈ Lk′ . Regarding w′, we do not

substitute an occurrence of a by an occurrence of #2, but we insert it to the left of

the occurrence of a at position p̂. So if w[p̂− 1] ∈ {¢,#2}, then it is possible that

w′ ∈ Lk′ . However, we can show that there must exist a position p̂′, 1 ≤ p̂′ ≤ |w|,
such that w[p̂′ − 1] /∈ {¢,#2} and in the computation C a configuration [p̂′, (p, q)]

is changed into [p̂′ + 1, (p + 1, q)] by transition (a, t0) →δ (1, 1). To this end, we

assume that there exists no p̂′, 1 ≤ p̂′ ≤ |w|, such that w[p̂′ − 1] 6= {¢,#2} and

in the computation C a configuration [p̂′, (p, q)] is changed into [p̂′ + 1, (p + 1, q)]

by transition (a, t0)→δ (1, 1). This implies that the input head is moved over all

the occurrences of a at a position p̂′′ with w[p̂′′ − 1] = a by a transition of form

(a, t1)→δ (1, x), and by Claim (1) of this lemma we can conclude that x = r. Since

there are n1− 1 such occurrences of a that require an application of the transition

(a, t1)→δ (1, r) in the prefix an1 of w and since n1 ≥ 2k+1, we can conclude that

all possible k resets are performed in the process of moving the input head over

the prefix an1 of w. Furthermore, after these k applications of (a, t1) →δ (1, r),

the transition (a, t1) →δ (1, r) will be interpreted as (a, t1) →δ (1, 0) for all

further occurrences of a in the prefix an1 . This implies that in the computation

C the transition (a, t1)→δ (1, 0) is applied which is a contradiction according to

Claim (1). This shows that there must exist a position p̂′, 1 ≤ p̂′ ≤ |w|, such

that w[p̂′ − 1] /∈ {¢,#2} and in the computation C a configuration [p̂′, (p, q)] is

changed into [p̂′ + 1, (p + 1, q)] by transition (a, t0) →δ (1, 1). Consequently, we

can construct a w′ with respect to that position p̂′ in the way described above and

there exists an accepting computation of M on w′, but w′ /∈ Lk′ . This concludes

the proof of Claim (2). � (Claim (2))

We can now prove the statement of the lemma. To this end, we assume that

cl, . . . , cl′ = [j, (p1, q1)], [j + 1, (p2, q2)], . . . , [j′ − 1, (p3, q3)], [j′, (p4, q4)] ,

such that, for every i, l + 1 ≤ i ≤ l′ − 1, ci is converted into ci+1 by a transition

of form (b, x) →δ (y, z), b ∈ Σ, x ∈ {t0, t1}, y, z ∈ {0, 1}. We recall that

w[j, j′] = #1 · ani · #2 · ani+1 · #1 for some i, 1 ≤ i ≤ k′ − 1. Since the input

head is moved from position j to position j + 1, we know that the transition that

converts [j, (p1, q1)] into [j+ 1, (p2, q2)] is of form (#1, x)→δ (1, y). If y 6= r, then,

by Claim (2), x = t1 is implied and if furthermore y = 0, then the occurrence of

a at position j + 1 is reached with counter message t1. Now, using Claim (1), we



Chapter 4. Interlude 123

can conclude that the only possible next transition must reset the counter, which

contradicts our assumption. Consequently, the transition that converts [j, (p1, q1)]

into [j + 1, (p2, q2)] is either (#1, t1) →δ (1, 1) or a transition of form (#1, x) →δ

(1, r). We note that regardless of which of the possible transitions apply, the

input head is moved one step to the right and the counter configuration changes

to (0, q2). We define v := w[j + 1, j′ − 1] = ani ·#2 · ani+1 . By Claims (1) and (2)

and the assumption that the input head is moved over v without counter resets,

we conclude that the input head is moved over all the occurrences of a in v by

applying transition (a, t0) →δ (1, 1). So this transition applies until either the

input head scans #2 or the counter message changes to t1. If the counter message

changes to t1 while still an occurrence of a is scanned by the input head, then,

by Claim (1), the next transition would reset the counter, which is not possible;

so we can conclude that q2 ≥ ni. If the input head reaches the occurrence of #2

with a counter message of t0, then the transition (#2, t0)→δ (0, 1) applies, since

we assume that the counter is not reset and a non-reseting transition that moves

the input head while #2 is scanned and the counter message is t0 is not possible,

according to Claim (2). However, this implies that the counter is incremented

without moving the input head until the counter message changes to t1. We

conclude that the occurrence of a to the left of the occurrence #2 could be deleted

and the computation would still be accepting. This is clearly a contradiction.

Therefore the input head reaches #2 exactly with counter message t1 and, thus,

q2 = ni. We have now reached the configuration where the input head scans #2

and the counter message is t1. If the next transition does not move the input head,

then it must increment the counter, as otherwise the transition would be accepting

which, by definition, is not possible. This results in the configuration where still #2

is scanned but with a counter message of t0. In the same way as before, by applying

Claim (2), we can conclude that for such a configuration no non-reseting transition

that moves the input head is defined. Hence, the automaton stops, which is a

contradiction. Consequently the next transition that applies when #2 is scanned is

transition (#2, t1)→δ (1, z). Furthermore, z = 1, as otherwise the first occurrence

of a to the right of #2 is reached with counter message t1, which, as already shown

above, is not possible. So transition (#2, t1) →δ (1, 1) applies and then again

several times transition (a, t0) →δ (1, 1). For the same reasons as before we can

conclude that the counter message must not change to t1 as long as occurrences of

a are scanned and; thus, q2 ≥ ni+1. If we reach the occurrence of #1 at position j′

with a counter message of t0, we have several possibilities. If a transition applies

that does not reset the counter, then, by Claim (2), it must be (#1, t0)→δ (0, 1).

On the other hand, since M is now in configuration cl′ , it is also possible that

a transition of form (#1, t0) →δ (x, r) applies. However, for all these cases we



Chapter 4. Interlude 124

observe that if we would delete the occurrence of a to the left of the occurrence

of #1 at position j′, then the changed input would still be accepted, which is a

contradiction. So we conclude that the input head reaches the occurrence of #1

exactly with counter message t1. This implies q2 = ni+1 and, hence, ni = ni+1,

which is a contradiction. This concludes the proof Lemma 4.29. �

Now we are able to show that the language Lk, that can be recognised by a

1SL-NBMCAk−1(1) (Theorem 4.28), cannot be recognised by a 1SL-NBMCAk−2(1).

Theorem 4.30. For every k ∈ N with k ≥ 2, Lk /∈ L(1SL-NBMCAk−2(1)).

Proof. We assume to the contrary that there exists an M ∈ 1SL-NBMCAk−2(1)

with L(M) = Lk. Let w := an1 ·#1 ·an1 ·#2 ·an2 ·#1 ·an2 ·#2 · · · · ·#2 ·ank ·#1 ·ank ,
with ni ∈ N, ni ≥ 2k + 1, 1 ≤ i ≤ k, and ni 6= ni+1, 1 ≤ i ≤ k − 1. Obviously,

w ∈ Lk and w satisfies the conditions of Lemma 4.29. We observe that in w, there

are k− 1 factors of form #1 · ani ·#2 · ani+1 ·#1, but in an accepting computation

of M on w, there are at most k − 2 resets possible. Hence, there must be an i,

1 ≤ i ≤ k − 1, such that the input head is moved over the factor ani · #2 · ani+1

without performing a reset. According to Lemma 4.29 this is not possible, so we

obtain a contradiction. �

This proves that for every k ∈ N there exists a language that can be reco-

gnised by a 1SL-NBMCAk(1), but cannot be recognised by a 1SL-NBMCAk−1(1).

Next, we consider the converse question, i. e., whether or not there are languages

that can be recognised by a 1SL-NBMCAk(1), but cannot be recognised by any

1SL-NBMCAk+1(1). It turns out that the existence of such languages can be

shown in a non-constructive way by applying Theorems 4.28 and 4.30 and a simple

reasoning about the following subsets of the classes 1SL-NBMCAk(1), k ∈ N:

Definition 4.31. For every k ∈ N, let 1SL-NBMCAΣ
k (1) be the class of all auto-

mata in 1SL-NBMCAk(1) that are defined over Σ.

By definition, all M ∈ 1SL-NBMCAΣ
k (1) have just one counter and are defined

over the same alphabet Σ. Hence, for all k ∈ N, the sets 1SL-NBMCAΣ
k (1), have

the same constant cardinality:

Proposition 4.32. There exists an constant m̂ ∈ N such that, for every k ∈ N,

| 1SL-NBMCAΣ
k (1)| = m̂.

We note that, in general, we cannot assume that | L(1SL-NBMCAΣ
k (1))| =

| 1SL-NBMCAΣ
k (1)|, thus, | L(1SL-NBMCAΣ

k (1))| ≤ m̂, k ∈ N. However, it is

straightforward to show that there must exist infinitely many k ∈ N, such that

| L(1SL-NBMCAΣ
k (1))| = | L(1SL-NBMCAΣ

k+1(1))| and then Theorems 4.28 and 4.30
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imply that these classes are incomparable. This result can be easily extended to

the classes L(1SL-NBMCAk(1)), k ∈ N.

Theorem 4.33. There exist infinitely many k ∈ N, such that L(1SL-NBMCAk(1))

and L(1SL-NBMCAk+1(1)) are incomparable.

Proof. We first observe that if, for some k ∈ N, the classes L(1SL-NBMCAΣ
k (1))

and L(1SL-NBMCAΣ
k+1(1)) are incomparable, then also L(1SL-NBMCAk(1)) and

L(1SL-NBMCAk+1(1)) are incomparable. This is due to the fact that, for all

k ∈ N, all the languages over Σ in L(1SL-NBMCAk(1)) are also contained in

L(1SL-NBMCAΣ
k (1)). Hence, we prove the theorem by showing that there exist

infinitely many k ∈ N such that L(1SL-NBMCAΣ
k (1)) and L(1SL-NBMCAΣ

k+1(1))

are incomparable. For the sake of convenience, for every k ∈ N, we define Γk :=

L(1SL-NBMCAΣ
k (1)). We note that it is sufficient to show |Γk| ≥ |Γk+1| in order

to conclude that Γk and Γk+1 are incomparable. This is due to the fact that by

Theorems 4.28 and 4.30 there is a language L with L ∈ Γk+1 and L /∈ Γk. Hence,

|Γk| ≥ |Γk+1| implies the existence of a language L′ with L′ ∈ Γk and L′ /∈ Γk+1.

Now let k ∈ N be arbitrarily chosen. We assume that for each k′, k ≤ k′ ≤ k′+

m̂− 1, we have |Γk′ | < |Γk′+1|. Since, for every k′ with k ≤ k′ ≤ k+ m̂, |Γk′ | ≤ m̂,

this is not possible. Hence, we conclude that there exists a k′, k ≤ k′ ≤ k+ m̂− 1,

such that |Γk′| ≥ |Γk′+1|, which implies that Γk′ and Γk′+1 are incomparable. This

concludes the proof. �

Theorem 4.33 illustrates that for special subclasses of NBMCA, namely the

classes 1SL-NBMCAk(1), k ∈ N, the restricted nondeterminism cannot be control-

led anymore in the usual way. Intuitively, this is caused by the lack of a finite state

control. This result provides some insights on the question of how the existence

of a finite state control affects the benefits of nondeterminism.

We shall now conclude this section by a brief summary of our results on state-

less NBMCA. We have shown that NBMCA can be simulated by SL-NBMCA and

that there exist infinitely many k ∈ N such that the classes L(1SL-NBMCAk(1))

and L(1SL-NBMCAk+1(1)) are incomparable. Especially the second result points

out that by giving up the finite state control we also lose the possibility to control

the nondeterminism, which, in our case, has led to a situation where we cannot

prevent automata from using their nondeterminism to the full extent. Hence, by

increasing the nondeterminism, the automata are forced to accept words they were

not able to recognise before.

However, this result refers to a very restricted class of automata and it might

be worthwhile to discuss possibilities to extend it. An obvious generalisation is to

increase the number of counters to m ∈ N and use languages similar to Lk defined

over an alphabet of {a1, a2, . . . , am,#1,#2}, i. e., for every i, 1 ≤ i ≤ m, all
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factors delimited by occurrences of #1 must have the same number of occurrences

of ai. Clearly, each counter i can then be used to count the occurrences of ai.

The difficulty with this approach is that SL-NBMCA(m) can use a part of their

counters in order to simulate a finite state control. This suggests that generalising

our results in this way might not be straightforward.

We can furthermore note that the result of Theorem 4.33 is non-constructive.

The obvious approach in order to prove it constructively would be to show that

no 1SL-NBMCAk(1) can recognise Lk (we recall that according to Theorem 4.28,

Lk can be recognised by a 1SL-NBMCAk−1(1)). The problem is that there is

in fact a 1SL-NBMCAk(1) that recognises Lk, namely the automaton MLk of

Definition 4.27 with the only difference that the transitions (¢, t0) →δ (1, 0) and

(¢, t1) →δ (1, 0) are changed into (¢, t0) →δ (1, r) and (¢, t1) →δ (1, r). More

precisely, we let the computations of MLk start with an reset that is simply not

necessary. This suggests that a constructive proof of Theorem 4.33 might be more

difficult than it appears at first glance.

4.2 Nondeterministically Initialised Multi-head

Automata

In Section 3.1, it is shown that nondeterministic two-way multi-head automata can

recognise pattern languages (Proposition 3.1). To this end, a nondeterministic two-

way multi-head automaton uses its nondeterminism exclusively in order to initially

move some of its input heads to nondeterministically chosen positions without

paying attention to the input, and then a completely deterministic computation

is performed. In the present section, we introduce and study a variant of two-

way multi-head automata that is tailored to investigating this special kind of

using nondeterminism. Since the variant to be introduced is an automaton with

restricted nondeterminism, we also study a very fundamental aspect of automata

theory, i. e., we compare the expressive power of nondeterministic two-way multi-

head automata with the expressive power of deterministic two-way multi-head

automata. We shall now discuss this aspect in a bit more detail.

Multi-head automata, in their one-way, two-way, deterministic and nondeter-

ministic versions, have been intensely studied over the last decades (for a survey,

see Holzer et al. [31]). They were first introduced by Rabin and Scott [62] and

Rosenberg [74]. Although many results on multi-head automata have been re-

ported since then, very basic questions still remain unsolved. One of these open

problems is to determine whether or not, in the two-way case, nondeterminism

is generally more powerful, i. e., whether or not the class of languages defined by
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two-way nondeterministic multi-head automata (2NFA) is strictly larger than the

class of languages defined by two-way deterministic multi-head automata (2DFA).

In other words, we ask whether we can remove the nondeterminism from an ar-

bitrary 2NFA – compensated for, as appropriate, by enlarging its set of states

and adding several input heads – without a detrimental effect on the computa-

tional power of the automaton. It is known that 2DFA and 2NFA characterise

the complexity classes of deterministic logarithmic space (DL) and nondetermi-

nistic logarithmic space (NL), respectively (see, e. g., Sudborough [84]). Thus,

the above described problem is equivalent to the DL-NL-Problem, i. e., the long-

standing open question of whether or not DL and NL coincide. This problem has

been further narrowed down by Hartmanis [30] and Sudborough [84], such that

in fact DL = NL if and only if we can remove the nondeterminism from one-way

nondeterministic two-head automata without changing the accepted language.

In order to gain further insights into the role of nondeterminism for a certain

computation model, it is common to restrict the amount of nondeterminism (see,

e. g., Fischer and Kintala [17] and Kintala [44]). With respect to multi-head au-

tomata, we can try to enlarge the set of languages defined by 2DFA by adding

some amount of nondeterminism to the model of 2DFA and investigate the ques-

tion whether or not this leads to a strictly more powerful device. If such a new

model really is more powerful and, in terms of expressive power, still contained

in the set of 2NFA, then the DL-NL-Problem is solved. If, on the other hand,

we can show that our modification does not yield any advantages, then we have

identified a special kind of nondeterminism that is not responsible for an increase

of expressive power regarding 2DFA.

We follow this approach and introduce two-way deterministic multi-head au-

tomata, the input heads of which are nondeterministically initialised (IFA). More

precisely, in every computation each input head is initially located at some non-

deterministically chosen position in the input word; hence, the automaton, for

each input head, guesses a position in the input word. Similarly, the first state

is nondeterministically chosen from among a given set of possible initial states.

After this initialisation, the automaton behaves like a normal 2DFA, i. e., every

transition is deterministic. This model clearly is nondeterministic, but its nonde-

terminism is restricted. Although it is quite easy to see that IFA are not more

powerful than classical 2NFA, it is not obvious whether a 2NFA that, for some

constant m ∈ N, performs at most m nondeterministic steps in every accepting

computation (2NFAm), can simulate the special nondeterminism of initialising the

input heads. This is due to the fact that the natural way to move an input head to

a nondeterministically chosen position of the input word is to move it to the right

step by step, and, in each step, to guess whether it should be moved further on or
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stopped where it is. This procedure clearly requires a number of nondeterministic

steps that depends on the guessed position of the input word and, thus, is not

bounded by a constant. The question arises whether or not the model of IFA is

more powerful than 2DFA and 2NFAm. We answer this question in the negative

by showing that the nondeterminism of 2NFAm and IFA can be completely remo-

ved, i. e., they can be transformed into 2DFA, without increasing their number of

input heads.

4.2.1 Automata With Restricted Nondeterminism

In this section, we define the automata models with restricted nondeterminism

that are central for our investigations.

A Nondeterministically Initialised Multi-head Automaton (denoted by IFA(k))

is a DFA(k) M that has a set of possible initial states, denoted by I. An IFA(k)

M accepts a word w ∈ Σ∗ if and only if ĉ0 `∗M,w ĉf , where ĉf is some accepting

configuration and ĉ0 is any configuration of form (q, h1, h2, . . . , hk), where q ∈ I
and, for every i, 1 ≤ i ≤ k, 0 ≤ hi ≤ |w|+ 1.

For every f : N→ N, an NFA(k) that makes at most f(|w|) nondeterministic

moves in every accepting computation on input ¢w$ is said to have restricted

nondeterminism and is denoted by NFAf(n)(k). If f(n) = m, for some constant

m ∈ N, then we write NFAm(k).

4.2.2 The Expressive Power of IFA(k) and NFAm(k)

In this section, NFAf(n)(k), IFA(k) and DFA(k) are compared with respect to their

expressive power. First, we note that by definition, for every k ∈ N, L(DFA(k)) ⊆
L(IFA(k)) ⊆ L(NFA(k)). This is due to the fact that, since the unrestricted

nondeterminism of NFA(k) can be used to nondeterministically initialise the input

heads and to guess an initial state, an arbitrary IFA(k) can be simulated by an

NFA(k) and, on the other hand, we can easily transform any DFA(k) M into

an equivalent IFA(k) by aborting every computation that does not start with

configuration (q0, 0, 0, . . . , 0), i. e., the initial configuration of M .

As already stated at the beginning of Section 4.2,
⋃
k L(DFA(k)) coincides with

DL, the class of languages that can be accepted by deterministic Turing machines

working with O(log(n)) space, where n is the length of the input. We can show

that
⋃
k L(DFA(k)) =

⋃
k L(IFA(k)) and

⋃
k L(DFA(k)) =

⋃
k,c L(NFAc log(n)(k))

by showing how arbitrary IFA(k) and NFAc log(n)(k) can be simulated by determi-

nistic Turing machines with O(log(n)) space. We sketch these simulations very

briefly. A deterministic Turing machine can simulate an IFA(k) M1 by enumera-

ting all possible initial configurations of M1 and, for each such configuration, it
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then simulates the deterministic computation of M1 starting in this initial configu-

ration. In order to investigate all possible initial configurations, M needs to keep

track of the possible initial states of M1 as well as of the input head positions.

The numbers of input heads and possible initial states are constants, whereas each

input head position can be stored within log(n) space.

In order to simulate an NFAc log(n)(k) M2, the Turing machine M simply enu-

merates all possible binary strings α ∈ {0, 1}∗, |α| = c× log(n), and, for each such

string α, it simulates M2. If, in this simulation, M2 performs the ith nondetermi-

nistic step in its computation, then M chooses the next transition according to

the ith bit in α. This method can only be applied if the maximal nondeterministic

branching factor of M2 is 2, but it is straightforward to change it for the general

case.

It follows that an arbitrary IFA(k) or NFAf(n)(k) with f(n) = O(log(n)) can

be transformed into a DFA(k′). However, the details of such a transformation are

not provided by the above sketched simulations and the question arises whether

or not this can be done without increasing the number of input heads. In the

following, we shall prove that, in fact, for every k ∈ N, L(DFA(k)) = L(IFA(k)) =

L(NFAf(n)(k)), provided that f(n) is a constant. Next, we show that, for every

k,m ∈ N, NFAm(k) can be simulated by IFA(k).

Lemma 4.34. Let M ∈ NFAm(k), where k,m ∈ N. There exists an IFA(k) M ′

such that L(M) = L(M ′).

Proof. There exists an m̂ ∈ N, such that we can transform M into an NFAm̂(k)

M̂ := (k, Q̂,Σ, δ̂, q0, F̂ ) with L(M) = L(M̂) and, for every state p ∈ Q̂ and

for all b1, b2, . . . , bk ∈ Σ ∪ {¢, $}, |δ̂(p, b1, b2, . . . , bk)| ≤ 2. This can be done by

substituting a transition δ(p, b1, b2, . . . , bk) with |δ(p, b1, b2, . . . , bk)| = l > 2, where

δ is the transition function of M , by l − 1 transitions that have exactly two

nondeterministic choices. Obviously, this requires l−1 new states. In the following

we assume some order on the two options of a nondeterministic transition, such

that we can write nondeterministic transitions as ordered tuples rather than as

sets.

We shall now construct an IFA(k) M ′ with L(M ′) = L(M̂). Let M ′ :=

(k,Q′,Σ, δ′, I, F ′). Before we formally define M ′, we informally explain its be-

haviour. The automaton M ′ initially chooses one out of 2m̂ copies of the initial

state q0 of NFAm̂(k) M̂ . Each of these 2m̂ initial states of M ′ uniquely corresponds

to m̂ nondeterministic binary guesses that may be performed in a computation

of M̂ . This is done by storing a binary sequence of length m̂ in the initial states

of M ′. After M ′ initially guesses one of the initial states, it simulates the com-

putation of M̂ . Deterministic steps are performed in exactly the same way and
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whenever M̂ nondeterministically chooses one out of two possible transitions, then

M ′ chooses the next transition according to the first bit of the binary sequence

currently stored in the state and this first bit is then removed. We shall give the

formal definitions.

The set of states is defined by Q′ := {q(α) | q ∈ Q̂, α ∈ {0, 1}∗, |α| ≤ m̂}, the

set of initial states is defined by I := {q(α)
0 | α ∈ {0, 1}∗, |α| = m̂} and the set

of accepting states is defined by F ′ := {q(α) | q ∈ F̂ , α ∈ {0, 1}∗, |α| ≤ m̂}. For

every deterministic transition δ̂(p, b1, b2, . . . , bk) = {(q,m1,m2, . . . ,mk)} of M̂ and

for every α ∈ {0, 1}∗, |α| ≤ m̂, we define

δ′(p(α), b1, b2, . . . , bk) := (q(α),m1,m2, . . . ,mk) .

For each nondeterministic transition δ̂(p, b1, b2, . . . , bk) = ((q1,m1,1,m1,2, . . . ,m1,k),

(q2,m2,1,m2,2, . . . ,m2,k)) and for every α ∈ {0, 1}∗, |α| ≤ m̂− 1, we define

δ′(p(0·α), b1, b2, . . . , bk) := (q
(α)
1 ,m1,1,m1,2, . . . ,m1,k) ,

δ′(p(1·α), b1, b2, . . . , bk) := (q
(α)
2 ,m2,1,m2,2, . . . ,m2,k) .

This particularly means that if |δ̂(p, b1, b2, . . . , bk)| ≥ 2, then δ′(p(ε), b1, b2, . . . , bk)

is undefined. Furthermore, in every initial state q
(α)
0 , M ′ must check whether all

input heads scan the left endmarker and reject if this is not the case.

It can be easily verified that, for every input ¢w$, we have (q0, 0, 0, . . . , 0) `∗
M̂,w

(q, h1, h2, . . . , hk), q ∈ F̂ , 0 ≤ hi ≤ |w| + 1, 1 ≤ i ≤ k, by applying binary

nondeterministic choices according to the sequence α, if and only if, for some

α′ ∈ {0, 1}∗ with |α · α′| = m̂, (q
(α·α′)
0 , 0, 0, . . . , 0) `∗M ′,w (q(α′), h1, h2, . . . , hk).

Consequently, L(M̂) = L(M ′). �

From Lemma 4.34, we can immediately conclude that, for every k,m ∈ N,

the class of languages described by NFAm(k) is included in the class of languages

given by IFA(k):

Theorem 4.35. For every k ∈ N and m ∈ N, L(NFAm(k)) ⊆ L(IFA(k)).

Before we can show our second result, i. e., IFA(k) can be simulated by DFA(k),

we need to define a few more concepts. First, every IFA(k) can be transformed

into an equivalent one that has exactly one unique accepting configuration and it

halts as soon as this configuration is entered:

Definition 4.36. Let M ∈ IFA(k), k ∈ N, and let F be the set of accepting

states of M . M is well-formed if and only if F = {qf}, (qf , 0, 0, . . . , 0) is the only

possible accepting configuration that can be reached in any computation of M

and no transition δ(qf , b1, b2, . . . , bk), bi ∈ Σ ∪ {¢, $}, 1 ≤ i ≤ k, is defined.
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We observe that every IFA(k) can be transformed into an equivalent well-

formed one by introducing a new state that serves as the only accepting state.

Proposition 4.37. Let M ∈ IFA(k), k ∈ N. Then there exists a well-formed

IFA(k) M ′ with L(M) = L(M ′).

The previous proposition shows that, when dealing with IFA(k), we can as-

sume that they are well-formed. Next, we define a special configuration graph for

computations of IFA(k), a concept that has already been introduced by Sipser in

[81], where it has been applied to space-bounded Turing machines.

Definition 4.38. Let M be a well-formed IFA(k), k ∈ N, and let w ∈ Σ∗. Let

G′M,w := (V ′M,w, E
′
M,w), where V ′M,w := {(q, h1, h2, . . . , hk) | q ∈ Q, 0 ≤ hi ≤

|w|+1, 1 ≤ i ≤ k} and E ′M,w := {(c1, c2) | c2 `M,w c1}. The backward configuration

graph of M on w, denoted by GM,w, is the connected component of G′M,w that

contains (qf , 0, 0, . . . , 0).

Since the vertex (qf , 0, 0, . . . , 0) of the backward configuration graph of a well-

formed IFA(k) M cannot have an incoming edge and since all the transitions of

M are deterministic, we can conclude that the backward configuration graph is

a tree rooted by (qf , 0, 0, . . . , 0). Therefore, from now on, we shall use the term

backward configuration tree. For arbitrary M ∈ IFA(k) and w ∈ Σ∗, the backward

configuration tree can also be used to decide on the acceptance of w by M :

Proposition 4.39. Let M be a well-formed IFA(k), k ∈ N, and let I be the set of

initial states of M . For every w ∈ Σ∗, w ∈ L(M) if and only if there exists a path

from (qf , 0, 0, . . . , 0) to some vertex (q0, h1, h2, . . . , hk), q0 ∈ I, 0 ≤ hi ≤ |w| + 1,

1 ≤ i ≤ k, in the backward configuration tree of M on w.

We can now state our next result, i. e., for every k ∈ N, every IFA(k) can be

transformed into an equivalent DFA(k). We shall prove this statement by applying

a technique developed by Sipser in [81] in order to prove that every space-bounded

deterministic Turing machine can be transformed into a halting deterministic Tu-

ring machine with the same space bound. Furthermore, this technique has also

been used by Muscholl et al. [54] in order to show a similar result for determi-

nistic tree-walking automata and by Geffert et al. [25] in order to complement

deterministic two-way automata. More precisely, we show for an arbitrary IFA(k)

M , how a DFA(k) M ′ can be constructed that, on any input ¢w$, searches the

backward configuration tree of M on w for a path from (qf , 0, 0, . . . , 0) to some

(q0, h1, h2, . . . , hk), where q0 is an initial state of M . It is not obvious how M ′ can

do this, since the size of the backward configuration tree of M on w does not only

depend on the constant size of M , but also on the size of the current input ¢w$.
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Lemma 4.40. Let M ∈ IFA(k), k ∈ N. There exists a DFA(k) M ′, such that

L(M) = L(M ′).

Proof. Let M̂ ∈ IFA(k), k ∈ N, be arbitrarily chosen. By Proposition 4.37, we

can conclude that there exists a well-formed IFA(k) M := (k,Q,Σ, δ, I, {qf}) with

L(M) = L(M̂). By Proposition 4.39, for every w ∈ Σ∗, we can decide on whether

or not w ∈ L(M) by searching the backward configuration tree of M on w for

a path from (qf , 0, 0, . . . , 0) to some vertex of form (q0, h1, h2, . . . , hk), q0 ∈ I,

0 ≤ hi ≤ |w| + 1, 1 ≤ i ≤ k. Consequently, in order to prove the lemma, it is

sufficient to show that this task can be carried out by a DFA(k) M ′ if ¢w$ is the

input. More precisely, M ′ needs to perform a Depth-First-Search on the backward

configuration tree of M on w starting at the root. Obviously, it is not possible

to store the entire tree in the finite state control of M ′, as this tree grows with

the input length. However, we shall see that it is possible for M ′ to construct

the necessary parts of the tree “on-the-fly” without having to store too much

information in the states. We shall explain the main idea in more detail.

For an arbitrary w ∈ Σ∗, let (q, h1, h2, . . . , hk) be an arbitrary vertex of GM,w.

The situation that M ′ visits this vertex is represented in the following way: The

input heads ofM ′ scan the positions hi, 1 ≤ i ≤ k, of the input ¢w$ and q, the state

of M , is stored in the current state of M ′. In order to avoid confusion, this state

q shall be called the currently stored state. Initially, qf is the the currently stored

state, which, according to the above mentioned interpretation of how M ′ visits

vertices of the backward configuration tree, particularly means that the initial

configuration of M ′ corresponds to (qf , 0, 0, . . . , 0), i. e., the root of the backward

configuration tree. Now, M ′ has to visit the next vertex of GM,w according to a

Depth-First-Search traversal. Let (p, h′1, h
′
2, . . . , h

′
k) be this next vertex, so there is

an edge ((q, h1, h2, . . . , hk), (p, h
′
1, h
′
2, . . . , h

′
k)) in the backward configuration tree,

which, by definition, implies (p, h′1, h
′
2, . . . , h

′
k) `M,w (q, h1, h2, . . . , hk). Hence, in

order to move from vertex (q, h1, h2, . . . , hk) to vertex (p, h′1, h
′
2, . . . , h

′
k), M

′ must

simulate a step of M , but in the opposite direction.

The main difficulty with this procedure is that, for any vertex v in GM,w,

there may be several children to visit and, thus, we have to choose one of them

and, furthermore, the next time we visit v we need to know which children have

already been visited to decide which one to choose next. To this end we define a

rank for all possible children of a vertex in GM,w, and an order of these ranks. To

implement the Depth-First-Search, M ′ then enumerates all possible children of the

currently visited vertex v with respect to their rank and visits them. Now let u

be the first child of v that is visited in this way. As soon as the subtree rooted by

u has been completely searched, we move back to v and, in order to pick the next

child of v to visit, we need to know the rank of u. Obviously, for every vertex,
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we cannot directly store the ranks of all its children visited so far, since these

informations do not fit in the finite state control. However, by definition of the

backward configuration tree, there is exactly one transition of M that changes M

on input ¢w$ from configuration u in configuration v, i. e., from the child to the

parent. Therefore, we interpret this transition as the rank of u. This also allows

us to restore the rank while moving from the child u back to the parent v without

having to store it for the whole Depth-First-Search. Next, we shall formally define

the set of ranks and then explain their role for the construction of M ′ in more

detail:

Γ := {〈p,m1,m2, . . . ,mk, q〉 | p, q ∈ Q,mi ∈ {−1, 0, 1}, 1 ≤ i ≤ k} .

As mentioned above, a rank 〈p,m1,m2, . . . ,mk, q〉 corresponds to a transition

of M , i. e., the transition that changes M from state p to q and moves the in-

put heads according to m1,m2, . . . ,mk. Let v := (q, h′1, h
′
2, . . . , h

′
k) and u :=

(p, h1, h2, . . . , hk) be two arbitrarily chosen configurations of M on input ¢w$. We

say that u is an actual child of v with rank 〈p,m1,m2, . . . ,mk, q〉 if, for every i,

1 ≤ i ≤ k, mi = h′i − hi, and δ(p, w[h1], w[h2], . . . , w[hk]) = (q,m1,m2, . . . ,mk).

If, for every i, 1 ≤ i ≤ k, mi = h′i − hi, but δ(p, w[h1], w[h2], . . . , w[hk]) 6=
(q,m1,m2, . . . ,mk), then u is a ghost child of v with rank 〈p,m1,m2, . . . ,mk, q〉.
Obviously, u is an actual child of v if and only if u is also a child of v in the

backward configuration tree of M on w, whereas ghost children do not exist in

the backward configuration tree. However, it shall be very convenient to allow M ′

to visit ghost children and to interpret the backward configuration tree to contain

ghost children as well. We also need an order over the set of ranks, but, as any

such order is sufficient for our purpose, we simply assume that an order is given

and we define a mapping next : Γ → Γ ∪ {0}, such that, for every r ∈ Γ that is

not the last rank in the order, next(r) is the successor of r and next(r) = 0 if r is

the last rank. Now we are ready to formalise the constructions described above.

We assume that M ′ visits vertex v := (p, h1, h2, . . . , hk) of the backward confi-

guration tree right now, i. e., p is the currently stored state and the input heads

scan positions h1, h2, . . . , hk of the input ¢w$. We distinguish two operational

modes of M ′: Either M ′ just moved to v from its parent (mode 1) or it just moved

back to v from one of its children (mode 2). In order to distinguish and change

between these two different modes, M ′ uses an indicator implemented in the finite

state control.

If M ′ is in mode 1, then it moved from the parent vertex u := (q, h′1, h
′
2, . . . , h

′
k)

to v. We assume that when this happens, the rank rv := 〈p,m1,m2, . . . ,mk, q〉
of v is already stored in the finite state control. By consulting the transition
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function δ of M , M ′ can check whether or not δ(p, w[h1], w[h2], . . . , w[hk]) =

(q,m1,m2, . . . ,mk), i. e., it checks whether or not v is an actual child or a ghost

child. If v is a ghost child, then M goes back to u by changing the currently

stored state back to q, moving the input heads according to m1,m2, . . . ,mk and

changing into mode 2. This is possible, since all necessary information for this

step is provided by the rank r. If, on the other hand, v is an actual child, then

M ′ stores the smallest possible rank rmin in the finite state control and visits the

child of v with rank rmin while staying in mode 1.

If M ′ is in mode 2, then it has just been moved back to v from some child v′

and we assume that the rank rv′ of v′ is stored in the finite state control. Now,

if next(rv′) = 0, then all children of v have been visited, thus, M ′ must go back

to the parent vertex of v and stay in mode 2. Furthermore, this has to be done

in a way that the rank of v is restored. Again, let u := (q, h′1, h
′
2, . . . , h

′
k) be the

parent vertex of v. By definition, the rank of v is rv := 〈p,m1,m2, . . . ,mk, q〉,
where, for every i, 1 ≤ i ≤ k, mi = h′i − hi, and, since v is an actual child,

δ(p, w[h1], w[h2], . . . , w[hk]) = (q,m1,m2, . . . ,mk). Hence, all required information

to restore the rank of v is provided by the transition function δ and the currently

stored state p. So M ′ stores rank rv in the finite state control and moves back to

vertex v by changing the currently stored state to q and moving the input heads

according to mi, 1 ≤ i ≤ k.

If, on the other hand, there exists a child of v that has not yet been visited and

the rank of this child is next(rv′) = 〈q′,m′1,m′2, . . . ,m′k, p〉, then next(rv′) is stored

in the finite state control and M ′ visits the child corresponding to rank next(rv′).

This is done by changing the currently stored state from p to q′ and moving the

input heads exactly in the opposite direction as given by m′1,m
′
2, . . . ,m

′
k, i. e., for

every i, 1 ≤ i ≤ k, the instruction for head i is (−m′i). Furthermore, M ′ changes

into mode 1.

In the procedure above, it can happen that the next child to visit has a rank

that requires input heads to be moved to the left of the left endmarker or to the

right of the right endmarker. By definition of an IFA(k), such a child can only be

a ghost child, thus, we can simply ignore it and proceed with the next rank. As

soon as a vertex of form (q0, h1, h2, . . . , hk), q0 ∈ I, 0 ≤ hi ≤ |w|+ 1, 1 ≤ i ≤ k, is

visited, M ′ accepts and if, in mode 2, M moves back to (qf , 0, 0, . . . , 0) from the

child with the highest rank, then M ′ rejects w. This proves L(M) = L(M ′). �

From Lemma 4.40, we can immediately conclude the following theorem:

Theorem 4.41. For every k ∈ N, L(IFA(k)) ⊆ L(DFA(k)).

From Theorems 4.35 and 4.41 we can now conclude that, for every k,m ∈ N,

L(NFAm(k)) ⊆ L(IFA(k)) ⊆ L(DFA(k)) and, by combining this result with the
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fact that, by definition, for every k,m ∈ N, L(DFA(k)) ⊆ L(NFAm(k)) trivially

holds, we obtain the following corollary:

Corollary 4.42. For every k,m ∈ N, L(NFAm(k)) = L(IFA(k)) = L(DFA(k)).

Thus, with reference to the questions addressed at the beginning of Section 4.2,

we conclude that if nondeterminism yields an actual advantage, in terms of the

expressive power of two-way multi-head automata, then this nondeterminism must

be unrestricted. The proof of this insight is facilitated by the use of IFA(k), which,

in contrast to NFAm(k), provide the neat property of initially performing only one

nondeterministic step followed by a completely deterministic computation.

4.2.3 Recognising Pattern Languages Deterministically

In this section, we show how pattern languages can be recognised by IFA. To this

end, we recall that in the proof of Proposition 3.1, Section 3.1, page 26, we have

already seen, for any pattern α, how a 2NFA(2 | var(α)|+1) can recognise LZ,Σ(α),

Z ∈ {E,NE}. Intuitively, this has been done by using 2 | var(α)| input heads in

order to implement | var(α)| counters. These counters are initially incremented

to nondeterministically chosen values, which are then interpreted as lengths of

factors of the input word. Thus, a factorisation of the input word is guessed

and it is then deterministically checked whether or not this factorisation satisfies

the pattern α. Since in this procedure the only nondeterministic steps consist

of initially incrementing the counters to nondeterministically chosen values, i. e.,

moving input heads to nondeterministically chosen positions in the input word,

we can easily implement this procedure using an IFA(2 | var(α)| + 1). According

to Corollary 4.42, this implies the statement of Proposition 3.3, a formal proof

of which is omitted in Section 3.1. Furthermore, we can conclude the following

corollary:

Corollary 4.43. For every pattern α ∈ (Σ∪X)∗ and Z ∈ {E,NE}, LZ,Σ(α) ∈ DL.

In this regard, the results presented in Section 4.2 can be used in order to

gain insights into the space complexity of pattern languages. However, we have

to keep in mind that Corollary 4.43 is not a result about the space complexity

of the membership problem for pattern languages, as defined in Section 2.2.2.1,

since it only states that the membership problem for every fixed pattern language

can be solved deterministically in logarithmic space (with respect to the length

of the input word). In fact, it is very unlikely that the problem Z-PATMem,

Z ∈ {E,NE}, is in NL or DL, since this implies that Z-PATMem is in P (cf.

Sipser [82]); thus, the classes P and NP would coincide.
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Although it is interesting to know that single pattern languages have deter-

ministic logarithmic space complexity, we believe that complexity results on the

problem Z-PATMem are more important. In the next section, we shall turn again

towards this question.



Chapter 5

Second Approach: Relational

Structures

In Chapter 3, a special kind of automaton model, the Janus automaton, is used

in order to show that the variable distance is a crucial parameter with respect to

the membership problem for pattern languages, i. e., it is shown that bounding

the variable distance yields classes of patterns for which the membership problem

can be solved efficiently. In this chapter, we approach the problem of identifying

such parameters of patterns in a quite different and more general way. More pre-

cisely, in Section 5.1, we encode patterns and words as relational structures and,

thus, reduce the membership problem to the homomorphism problem for relational

structures. Our main result, a meta-theorem about the complexity of the mem-

bership problem, states that any parameter of patterns that is an upper bound for

the treewidth of the corresponding relational structures, if restricted to a constant,

allows the membership problem to be solved in polynomial time. In this new fra-

mework, we can restate the known results about the complexity of the membership

problem mentioned in Section 2.2.2.1. Moreover, in Sections 5.2 and 5.3, we apply

our meta-theorem in order to identify new and, compared to the old results, rather

large classes of patterns with a polynomial time membership problem. Therefore,

we provide a convenient way to study the membership problem for pattern lan-

guages, which, as shall be pointed out by our results, has still potential for further

improvements.

5.1 A Meta-Theorem

The main result of this section can be informally stated in the following way. If

a class of patterns can be encoded as special kinds of relational structures (to

be defined in this section) in such a way that the treewidth of the corresponding

137
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encodings is bounded by a constant, then the membership problem with respect

to this class of patterns can be solved in polynomial time.

5.1.1 Patterns and Words as Relational Structures

We now introduce a way of representing patterns and terminal words as relational

structures. Our overall goal is to reduce the membership problem for pattern lan-

guages to the homomorphism problem for relational structures. For the remainder

of this chapter, we define Σ to be some fixed terminal alphabet.

Representing words as relational structures is a common technique when ma-

thematical logic is applied to language theory (see, e. g., Thomas [85] for a survey).

However, our representations of patterns and words by structures substantially dif-

fer from the standard technique, since our approach is tailored to the homomor-

phism problem for structures and, furthermore, we want to exploit the treewidth.

In order to encode patterns and terminal words, i. e., an instance of the mem-

bership problem for pattern languages, we use the relational vocabulary τΣ :=

{E, S, L,R} ∪ {Db | b ∈ Σ}, where E, S are binary relations and L,R,Db, b ∈ Σ,

are unary relations. The vocabulary depends on Σ, the alphabet under conside-

ration. In order to represent a pattern α by a τΣ-structure, we interpret the set of

positions of α as the universe. The roles of S, L, R and Db, b ∈ Σ, are straight-

forward: S relates adjacent positions, L and R denote the leftmost and rightmost

position, respectively, and, for every b ∈ Σ, the relation Db contains the positions

in α where the terminal symbol b occurs. For the encoding of the variables, we do

not explicitly store their positions in the pattern, which seems impossible, since

the number of different variables can be arbitrarily large and we can only use

a finite number of relation symbols. Instead, we use the relation E in order to

record pairs of positions where the same variable occurs and, furthermore, this

is done in a “sparse” way. More precisely, the relation E relates some positions

with the same variable, i. e., positions i, j with α[i] = α[j], in such a way that

the symmetric transitive closure of E contains all pairs (i, j) with α[i] = α[j] and

α[i] ∈ X. This way of interpreting the relation E is crucial for our results.

We now state the formal definition and shall illustrate it afterwards.

Definition 5.1. Let α be a pattern and let Aα be a τΣ-structure. Aα is an α-

structure if it has universe Aα := {1, 2, . . . , |α|} and SAα := {(i, i + 1) | 1 ≤ i ≤
|α| − 1}, LAα := {1}, RAα := {|α|}, for every b ∈ Σ, DAαb := {i | α[i] = b}, and

EAα is such that, for all i, j ∈ Aα,

� (i, j) ∈ EAα implies α[i] = α[j] and i 6= j,

� α[i] = α[j] implies that (i, j) is in the symmetric transitive closure of EAα .
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Since τΣ contains only unary and binary relation symbols, it is straightforward

to derive the Gaifman graph from an α-structure, which is simply a graph with

two different kinds of edges due to SAα and EAα . Hence, in the following, we shall

switch between these two models at our convenience without explicitly mentioning

it. In the previous definition, the universe as well as the interpretations for the

relation symbols S, L, R and Db, b ∈ Σ, are uniquely defined for a fixed pattern α,

while there are several possibilities of defining an interpretation of E. Intuitively,

a valid interpretation of E is created by connecting different occurrences of the

same variable by edges in such a way that all the occurrences of some variable

describe a connected component. The simplest way of doing this is to add an edge

between any two occurrences of the same variable, i. e., EAα := {(i, j) | α[i] =

α[j]}. However, we shall see that for our results the interpretation of E is crucial

and using the one just mentioned is not advisable. Another example of a valid

interpretation of E is the following one. For every x ∈ var(α), let lx be the leftmost

occurrence of x in α. Defining EAα :=
⋃
x∈var(α){(lx, i) | lx < i ≤ |α|, α[i] = x}

yields another possible α-structure.

Next, we define a canonical α-structure, i. e., the interpretation of E is such that

every occurrence of a variable x at position i is connected to the next occurrence

of x to the right of position i.

Definition 5.2. Let α be a pattern. The standard α-structure (or Asα for short)

is the α-structure where EA
s
α := {(i, j) | 1 ≤ i < j ≤ |α|,∃ x ∈ X such that x =

α[i] = α[j] and α[k] 6= x, i < k < j}.

As an example, we consider the standard α-structure Asα for the pattern

α := x1 a bx1 bx2 ax1 x2 x1. The universe of Asα is Aα = {1, 2, . . . , 10} and the

relations are interpreted in the following way. SA
s
α = {(1, 2), (2, 3), . . . , (9, 10)},

LA
s
α = {1}, RAsα = {10}, DA

s
α

a = {2, 7}, DA
s
α

b = {3, 5} and, finally, EA
s
α =

{(1, 4), (4, 8), (6, 9), (8, 10)}.
We now introduce our representation of words over the terminal alphabet Σ as

τΣ-structures. We recall that it is our goal to represent the membership problem

for pattern languages as homomorphism problem for relational structures. Hence,

the way we represent terminal words by τΣ-structures must cater for this purpose.

Furthermore, we have to distinguish between the E case and the NE case. We

first introduce the NE case and shall afterwards point out how to extend the

constructions for the E case. We choose the universe to be the set of all possible

factors of w, where these factors are represented by their unique start and end

positions in w; thus, two factors that are equal but occur at different positions

in w are different elements of the universe. The interpretation of L contains all

prefixes and the interpretation of R contains all suffixes of w. The interpretation
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of S, which for patterns contains pairs of adjacent variables, contains now pairs of

adjacent (non-overlapping) factors of w. The relation E is interpreted such that it

contains all pairs of factors that are equal and non-overlapping. Finally, for every

b ∈ Σ, Db contains all factors of length one that equal b. This is necessary for the

possible terminal symbols in the pattern.

For the E case, the empty factors of w need to be represented as well. To this

end, for every i, 0 ≤ i ≤ |w|, we add an element iε to the universe denoting the

empty factor between positions i and i + 1 in w. The interpretations of S and R

are extended to also contain the empty prefix and the empty suffix, respectively,

and relation S is extended to relate non-empty factors to adjacent empty factors

and, in addition, each empty factor is also related to itself by S. Next, we formally

define this construction for the NE case and its extension to the E case.

Definition 5.3. Let w ∈ Σ∗ be a terminal word. The NE-w-structure (Aw) with

universe Aw is defined by

� Aw := {(i, j) | 1 ≤ i ≤ j ≤ |w|},

� EAw := {((i, j), (i′, j′)) | j < i′ or j′ < i,w[i, j] = w[i′, j′]},

� SAw := {((i, j), (j + 1, j′)) | 1 ≤ i ≤ j, j + 1 ≤ j′ ≤ |w|},

� LAw := {(1, j) | 1 ≤ j ≤ |w|},

� RAw := {(i, |w|)| | 1 ≤ i ≤ |w|} and,

� for every b ∈ Σ, DAwb := {(i, i) | w[i] = b}.

Let Aw be the NE-w-structure with universe Aw. We define the E-w-structure

(Aεw) with universe Aεw as follows:

� Aεw := Aw ∪ {iε | 0 ≤ i ≤ |w|},

� EA
ε
w := EAw ∪ {(iε, jε) | 0 ≤ i ≤ |w|, 0 ≤ j ≤ |w|},

� SA
ε
w := SAw ∪ {(iε, iε) | 0 ≤ i ≤ |w|} ∪

{((i, j), jε)) | 1 ≤ i ≤ j ≤ |w|} ∪ {(iε, (i+ 1, j)) | 0 ≤ i ≤ j ≤ |w|},

� LA
ε
w := LAw ∪ {0ε},

� RA
ε
w := RAw ∪ {|w|ε} and,

� for every b ∈ Σ, D
Aεw
b := DAwb .
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We illustrate the above definition with a brief example. To this end, let w :=

abab. According to Definition 5.3, the universe of the NE-w-structure Aw is the

set of all factors of w, given by their start and end positions in w, i. e.,

Aw = {(1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (2, 3), (2, 4), (3, 3), (3, 4), (4, 4)} .

For every i, j, k, 1 ≤ i ≤ j < k ≤ 4, the elements (i, j) and (j + 1, k) are in S

relation under Aw. Thus,

SAw = {((1, 1), (2, 2)), ((1, 1), (2, 3)), ((1, 1), (2, 4)), ((1, 2), (3, 3)),

((1, 2), (3, 4)), ((1, 3), (4, 4)), ((2, 2), (3, 3)), ((2, 2), (3, 4)),

((2, 3), (4, 4)), ((3, 3), (4, 4))} .

Every prefix of w is in L relation and every suffix of w is in R relation under Aw.

Hence, LAw = {(1, 1), (1, 2), (1, 3), (1, 4)} and RAw = {(1, 4), (2, 4), (3, 4), (4, 4)}.
Furthermore, DAwa and DAwb contain all factors that correspond to a single oc-

currence of a and b, respectively, which implies DAwa = {(1, 1), (3, 3)}, DAwb =

{(2, 2), (4, 4)}. Finally, two elements (i, j) and (i′, j′) are in E relation under Aw
if and only if w[i, j] = w[i′, j′]; thus,

EAw = {((1, 1), (3, 3)), ((2, 2), (4, 4)), ((1, 2), (3, 4)),

((3, 3), (1, 1)), ((4, 4), (2, 2)), ((3, 4), (1, 2))} .

5.1.2 Reduction to the Homomorphism Problem for

Relational Structures

In the following, we state that the membership problem for pattern languages

can be reduced to the homomorphism problem for relational structures. We shall

informally explain this for the case of NE-pattern languages given by patterns

that do not contain any terminal symbols. Let α be a pattern without terminal

symbols and let w be a terminal word, let Aα be an α-structure and let Aw be

the NE-w-structure. If there exists a substitution h that maps α to w, then we

can construct a homomorphism g from Aα to Aw by mapping the positions of

α to the factors of w according to the substitution h. If two positions in α are

adjacent, then so are their images under h in w and the same holds for equal

variables in α; hence, g is a valid homomorphism. If, on the other hand, there

exists a homomorphism g from Aα to Aw, then the elements of the universe of

Aα, i. e., positions of α, are mapped to factors of w such that a factorisation of

w is described. This is enforced by the relations S, L and R. Furthermore, this
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mapping from α to w induced by g is a substitution, since the symmetric transitive

closure of EAα contains all pairs (i, j) with α[i] = α[j] and α[i] ∈ X. For general

patterns with terminal symbols and for the E case the idea is the same, but the

situation is technically more complex.

Lemma 5.4. Let α be a pattern, w ∈ Σ∗ and let Aα be an α-structure. Then

w ∈ LNE,Σ(α) (or w ∈ LE,Σ(α)) if and only if there exists a homomorphism from

Aα to Aw (or from Aα to Aεw, respectively).

Proof. We only prove the E-case, i. e., w ∈ LE,Σ(α) if and only if there exists

a homomorphism from Aα to Aεw. The proof for the NE-case is easier and can

be done analogously. We start with the if direction. To this end, we assume

that there exists a homomorphism g : Aα → Aεw from Aα to Aεw, i. e., for every

p, q ∈ Aα,

� if (p, q) ∈ EAα , then (g(p), g(q)) ∈ EAεw ,

� if (p, q) ∈ SAα , then (g(p), g(q)) ∈ SAεw ,

� for every b ∈ Σ, if p ∈ DAαb , then g(p) ∈ DA
ε
w

b

� g(1) ∈ LAεw and

� g(|α|) ∈ RAεw .

For the sake of convenience, we partition the universe of Aεw into Aεw = A¬εw ∪Aεw,

where A¬εw := {(i, j) | 1 ≤ i ≤ j ≤ |w|} and Aεw := {iε | 0 ≤ i ≤ |w|}. For every

p ∈ Aα, if g(p) = (s, t) ∈ A¬εw , then we define h(α[p]) := w[s, t] and if, on the

other hand, g(p) ∈ Aεw, then we define h(α[p]) := ε. We can observe that if α[p]

is a terminal b ∈ Σ, then p ∈ DAαb . Thus, g(p) ∈ DA
ε
w

b , which implies g(p) = (s, s)

with w[s] = b and, therefore, h(b) = b. For every p, q ∈ Aα with α[p] = α[q] and

α[p] ∈ X, (p, q) is in the symmetric transitive closure of EAα . We note that, by

definition, EA
ε
w equals its symmetric transitive closure. Hence, we can conclude

that (g(p), g(q)) ∈ EAεw , which implies that w[s, t] = w[s′, t′], where (s, t) := g(p)

and (s′, t′) := g(q). Since h(α[p]) = w[s, t] and h(α[q]) = w[s′, t′], we may conclude

h(α[p]) = h(α[q]). Consequently, h is a valid substitution and it remains to show

h(α) = w.

For every p ∈ Aα, p < |α|, (p, p + 1) ∈ SAα and, thus, (g(p), g(p + 1)) ∈ SAεw .

By definition of SA
ε
w , this implies that either

1. g(p) = (s, t) ∈ A¬εw and g(p+ 1) = (t+ 1, t′) ∈ A¬εw ,

2. g(p) = sε ∈ Aεw and g(p+ 1) = (s+ 1, t′) ∈ A¬εw ,
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3. g(p) = (s, t) ∈ A¬εw and g(p+ 1) = tε ∈ Aεw or

4. g(p) = sε ∈ Aεw and g(p+ 1) = sε ∈ Aεw.

By the definition of h above, we can conclude that, for every p, q ∈ Aα, p < q,

with g(p) = (s, t) ∈ A¬εw and g(q) = (s′, t′) ∈ A¬εw , h(α[p, q]) = w[s, t′]. Now let

l, r ∈ Aα such that g(l), g(r) ∈ A¬εw and, for every i with 1 ≤ i < l and r < i ≤ |w|,
g(i) ∈ Aεw. This particularly means that g(l) = (1, t) and g(r) = (s′, |w|). Since

1 ∈ LAα and |α| ∈ RAα , we can conclude that g(i) = 0ε, 1 ≤ i < l, and g(i) = |w|ε,
r < i ≤ |α|. Consequently, h(α[1, l−1]) = ε, h(α[l, r]) = w and h(α[r+1, |α|]) = ε;

hence, h(α) = w.

For the only if direction, we assume that there exists a substitution h with

h(α) = w. We define a mapping g : Aα → Aεw in the following way. For every

p ∈ Aα, if h(α[p]) 6= ε, then we define g(p) := (|h(α[1, p−1])|+1, |h(α[1, p])|) ∈ A¬εw
and, if h(α[p]) = ε, then we define g(p) := |h(α[1, p − 1])|ε ∈ Aεw. It remains to

show that g is a homomorphism from Aα to Aεw. For every b ∈ Σ, if p ∈ DAαb , then

α[p] = h(α[p]) = b; thus, g(p) = (s, s), where s := |h(α[1, p])|, and, since h(α) = w,

w[s] = b, which implies g(p) ∈ D
Aεw
b . Obviously, either g(1) = (1, |h(α[1])|) or

g(1) = 0ε, and therefore g(1) ∈ LAεw . Similarly, either g(|α|) = (|h(α[1, |α|− 1])|+
1, |h(α[1, |α|])|) or g(|α|) = |α|ε, which implies g(|α|) ∈ RAεw . For every p, q ∈ Aα,

if (p, q) ∈ EAα , then α[p] = α[q] and, since h(α[p]) = h(α[q]), either g(p) = (s, t)

and g(q) = (s′, t′) with w[s, t] = w[s′, t′] or g(p) = sε and g(q) = s′ε. In both cases

we can conclude that (g(p), g(q)) ∈ EA
ε
w . Let p ∈ Aα, p < |α|. We recall that

(p, p+ 1) ∈ SAα and observe four possible cases:

� If g(p), g(p+ 1) ∈ A¬εw , then g(p) = (s, t) and g(p+ 1) = (t+ 1, t′).

� If g(p) ∈ Aεw and g(p+ 1) ∈ A¬εw , then g(p) = sε and g(p+ 1) = (s+ 1, t′).

� If g(p) ∈ A¬εw and g(p+ 1) ∈ Aεw, then g(p) = (s, t) and g(p+ 1) = tε.

� If g(p), g(p+ 1) ∈ A¬εw , then g(p) = sε and g(p+ 1) = sε.

For all of these cases, (g(p), g(p + 1)) ∈ SAεw is implied. This shows that g is an

homomorphism from Aα to Aεw, which concludes the proof of the lemma. �

The above lemma shows that the membership problem for pattern languages

is reducible to the homomorphism problem for relational structures and, thus, it

can be solved by first transforming the pattern and the word into an α-structure

and the NE-w-structure or E-w-structure and then deciding the homomorphism

problem for these structures.

In the following, we say that a set of patterns P has bounded treewidth if and

only if there exists a polynomial time computable mapping g that maps every
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α ∈ P to an α-structure, such that {g(α) | α ∈ P} has bounded treewidth. From

Theorem 2.14 of Section 2.3.2 and Lemma 5.4 we can conclude the following result.

Corollary 5.5. Let P ⊆ (X ∪ Σ)+ be a set of patterns with bounded treewidth.

Then NE-PATMem(P ) and NE-PATMem(P ) are decidable in polynomial time.

Proof. We assume that P has a bounded treewidth of k ∈ N. Let α ∈ P and

let w ∈ Σ∗. Obviously, w can be converted into the E-w-structure Aεw or into

the NE-w-structure Aw in time O(|w|4). Furthermore, by assumption, an α-

structure Aα that satisfies tw(Aα) ≤ k can be computed in polynomial time.

From Theorem 2.14, it follows that we can check whether or not there exists a

homomorphism from Aα to Aεw (or from Aα to Aw, respectively) in polynomial

time. Now with Lemma 5.4, we can conclude the statement of the corollary. �

Due to Corollary 5.5, the task of identifying classes of patterns for which the

membership problem is decidable in polynomial time can now be seen from a

different angle, i. e., as the problem of finding classes of patterns with bounded

treewidth. The fact that we can easily rephrase known results about the com-

plexity of the membership problem for pattern languages (see Section 2.2.2.1) in

terms of standard α-structures with a bounded treewidth, stated by the following

proposition, indicates that this point of view is natural and fits with our current

knowledge of the membership problem for pattern languages.

Proposition 5.6. For every k ∈ N, the sets of patterns {α | α is regular},
{α | α is non-cross}, {α | | var(α)| ≤ k} and {α | vd(α) ≤ k} have all boun-

ded treewidth.

Proof. If α is regular, then Asα is a path and, thus, tw(Asα) = 1. If α is non-

cross, then it is straightforward to construct a path decomposition of Asα with a

width of at most 2. We can note that, By Lemma 2.5, scd(α) ≤ vd(α) + 1 and,

obviously, vd(α)+1 ≤ | var(α)|. In Section 5.2, Lemma 5.9, it shall be shown that

tw(Asα) ≤ scd(α) + 1, which implies that {α | | var(α)| ≤ k} and {α | vd(α) ≤ k}
have bounded treewidth. �

We conclude that our encodings of patterns and words as relational structures

provide a convenient way to approach the membership problem for pattern lan-

guages and the hardness of the membership problem seems to be covered by the

treewidth of the α-structures.

In the next section, we show that the numerical parameter of the scope coin-

cidence degree of a pattern α is an upper bound for the treewidth of the standard

α-structure; thus, restricting it yields classes of patterns with a polynomial time

solvable membership problem. At the end of Section 5.2, we compare this result
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with the main result of Chapter 3, i. e., the membership problem for patterns with

a bounded variable distance can be solved in polynomial time. Moreover, in Sec-

tion 5.3, we identify a large class of patterns with a bounded treewidth of 2, but

an unbounded scope coincidence degree.

5.2 Application I: The Scope Coincidence

Degree

In order to show that, for every k ∈ N, the set {α | scd(α) ≤ k} has bounded

treewidth we define, for any pattern α, a path decomposition of its standard α-

structure.

Definition 5.7. Let α be a pattern and let V := {v1, v2, . . . , v|α|} be the set

of vertices of the Gaifman graph of its standard α-structure, where, for every i,

1 ≤ i ≤ |α|, vi corresponds to α[i]. We inductively construct a sequence Pα of

subsets of V in the following way.

1. Add {v1} to Pα, add {v1, v2} to Pα, define B := {v1, v2} and i := 3.

2. Define B := B ∪ {vi} and, if α[i− 2] is a terminal symbol or the rightmost

occurrence of a variable in α, then define B := B \ {vi−2}.

3. Add B to Pα.

4. If α[i] = x ∈ X, but α[i] is not the leftmost occurrence of x, then define

B := B \ {vj}, where j < i, α[j] = x and, for every j′, j < j′ < i, α[j′] 6= x.

5. Define i := i+ 1 and if i ≤ |α|, then go to step 2.

Intuitively, the sequence Pα := (B1, B2, . . . , Bk) is constructed in the following

way. The first two sets are {v1} and {v1, v2}, respectively, and every following

set is obtained from the previous one by adding the next vertex vi and removing

vi−2 if it corresponds to a terminal or the rightmost occurrence of a variable.

Furthermore, if vi corresponds to a variable that is not the leftmost occurrence of

that variable, then the previous occurrence of this variable is still in our set and can

now be removed. This ensures that for every edge {vi, vj} of the Gaifman graph

of the standard α-structure, there exists an l, 1 ≤ l ≤ k, such that {vi, vj} ⊆ Bl.

Furthermore, it can be easily verified that, for every vertex v of the Gaifman graph

of the standard α-structure, there exist i, j, 1 ≤ i < j ≤ k, such that v ∈
⋂j
l=iBl

and v /∈ ((
⋃i−1
l=1 Bl) ∪ (

⋃k
l=j+1Bl)). Since, for every i, 1 ≤ i ≤ k, exactly one

element Bi is added to Pα in the construction of Definition 5.7, we can conclude

that k = |α|. We can further note that, for every i, 2 ≤ i ≤ k, Bi contains exactly
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one new vertex that is not already contained in Bi−1, i. e., |Bi\Bi−1| = 1. Next, we

shall illustrate Definition 5.7 by a short example. Let β := x1ax2x1abx2x3x3. Then

Pα = ({v1}, {v1, v2}, {v1, v2, v3}, {v1, v3, v4}, {v3, v4, v5}, {v3, v5, v6}, {v3, v6, v7},
{v7, v8}, {v8, v9}).

The above considerations imply the following:

Proposition 5.8. Let α be a pattern. Then Pα := (B1, B2, . . . , Bk) is a path

decomposition of the Gaifman graph of its standard α-structure. Moreover, k = |α|
and, for every i, 2 ≤ i ≤ |α|, |Bi \Bi−1| = 1.

We call Pα the standard path decomposition of α and we shall now show that

the width of the standard path decomposition is bounded by the scope coincidence

degree of the corresponding pattern.

Lemma 5.9. Let α be a pattern. Then the standard path decomposition of α has

width at most scd(α) + 1.

Proof. Let Pα := (B1, B2, . . . , B|α|) be the standard path decomposition of α.

We assume to the contrary that Pα has a width of at least scd(α) + 2, which

implies that there exists a q, 1 ≤ q ≤ |α|, such that |Bq| = m ≥ scd(α) + 3.

Let Bq := {vi1 , vi2 , . . . , vim}, where the vertices of Bq are in ascending order with

respect to their indices. By definition of the standard path decomposition of α, for

every j, 1 ≤ j ≤ m−2, vij corresponds to an occurrence of a distinct variable yj in

α. Furthermore, for every j, 1 ≤ j ≤ m−2, there must exist an occurrence of yj to

the left and to the right of position q in α. This is due to the fact that if there is no

occurrence of yj to the left of q, then no vertex that corresponds to an occurrence

of variable yj is contained in Bq, and if there is no occurrence of yj to the right of

q, then vertex vij would have been removed in step 2 of the procedure described

in Definition 5.7. This directly implies that the scopes of variables y1, y2, . . . , ym−2

coincide and, since m ≥ scd(α) + 3, there are at least scd(α) + 1 variables in α,

the scopes of which coincide, which is a contradiction. �

By the previous lemma, we can conclude that, for every pattern α, the tree-

width of the standard α-structure is bounded by the scope coincidence degree of

α. Hence, for every k ∈ N, the class of patterns {α | scd(α) ≤ k} has bounded

treewidth, and with Corollary 5.5 we can conclude the following:

Theorem 5.10. Let Z ∈ {E,NE} and let k ∈ N. The problem Z-PATMem({α |
scd(α) ≤ k}) is solvable in polynomial time.

However, we are interested in a more detailed analysis of the time complexity

of the membership problem for patterns with a bounded scope coincidence degree.
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To this end, we give an algorithm that solves the homomorphism problem for the

standard α-structure and a w-structure by using the standard path decomposition

of α and analyse its time complexity. This algorithm follows the obvious way of

using tree decompositions, which has already been briefly outlined at the end of

Section 2.3.2. Hence, the main effort is to determine its runtime.

Theorem 5.11. Let k ∈ N and Z ∈ {E,NE}. The problem Z-PATMem({α |
scd(α) ≤ k}) is solvable in time O(|α| × |w|2(k+3) × (k + 2)2).

Proof. We only show that NE-PATMem({α | scd(α) ≤ k}) is solvable in time

O(|α| × |w|2(k+3) × (k + 2)2), since the E case can be dealt with analogously. Let

(α,w) be an instance of NE-PATMem({α | scd(α) ≤ k}). We decide on whether

or not w ∈ LNE,Σ(α) by reduction to the homomorphism problem for relational

structures. To this end, we first need to construct Asα and Aw, which can be done

in time O(|w|4 + |α|). Let Aα and Aw be the universes of Asα and Aw, respectively,

and let Pα := (B1, B2, . . . , B|α|) be the standard path decomposition of α. Before

we give an algorithm deciding on whether or not there exists a homomorphism

from Asα to Aw, we introduce some helpful notations.

Let h be a partial mapping from Aα to Aw. We say that h satisfies condition

(∗) if and only if, for every R ∈ τΣ and for all a1, a2, . . . , aar(R) ∈ Aα for which h is

defined, (a1, a2, . . . , aar(R)) ∈ RA
s
α implies (h(a1), h(a2), . . . , h(aar(R))) ∈ RAw . Let

A := (a1, a2, . . . , ak) and B := (b1, b2, . . . , bk) be arbitrary tuples of equal length.

Then A 7→ B denotes the mapping that, for every 1 ≤ i ≤ k, maps ai to bi. For

any C ⊆ Aα, ord(C) is a tuple containing the elements from C in increasing order

(recall that Aα = {1, 2, . . . , |α|}). Two partial mappings g and h from Aα to Aw

are called compatible if and only if, for every a ∈ Aα for which both h and g are

defined, g(a) = h(a) is satisfied.

In the following, we shall describe an algorithm that decides on whether or

not there exists a homomorphism from Asα to Aw. First, we compute a set H1

of all tuples C of size |B1| containing elements from Aw such that the mapping

ord(B1) 7→ C satisfies condition (∗). After that, for every i, 2 ≤ i ≤ |α|, we

inductively compute a set Hi that is defined in the following way. For every

tuple C of size |Bi| containing elements from Aw, if the mapping ord(Bi) 7→ C

satisfies condition (∗) and the set Hi−1 contains a tuple C ′ such that the mappings

ord(Bi) 7→ C and Bi−1 7→ C ′ are compatible, then we add C to Hi.

We now claim that there exists a homomorphism from Asα to Aw if and only

if H|α| is nonempty. In order to prove this claim, we first assume that there exists

a homomorphism from Asα to Aw. Now, for every i, 1 ≤ i ≤ |α|, let Ci be the

tuple of elements from Aw, such that the mappings ord(Bi) 7→ Ci, 1 ≤ i ≤ |α|,
if combined, form h. We note that this particularly implies that each two of the
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mappings ord(Bi) 7→ Ci, 1 ≤ i ≤ |α|, are compatible. Since h is a homomorphism

from Asα to Aw, for every i, 1 ≤ i ≤ |α|, the mapping ord(Bi) 7→ Ci satisfies

condition (∗). This implies that C1 ∈ H1 holds and if, for some i, 1 ≤ i ≤ |α| − 1,

Ci ∈ Hi is satisfied, then, since the mappings ord(Bi) 7→ Ci and ord(Bi+1) 7→ Ci+1

are compatible, Ci+1 ∈ Hi+1 follows. By induction, this implies that H|α| contains

C|α| and, thus, is nonempty.

Next, we assume that H|α| is nonempty; thus, it contains some C|α|. By defi-

nition, this directly implies that, for every i, 1 ≤ i ≤ |α| − 1, Hi contains some

element Ci and, without loss of generality, we can also conclude that, for every

i, 1 ≤ i ≤ |α| − 1, the mappings ord(Bi) 7→ Ci and ord(Bi+1) 7→ Ci+1 are com-

patible. Furthermore, since, for every a ∈ Aα, there must exist at least one i,

1 ≤ i ≤ |α|, with a ∈ Bi and, for all j, j′, 1 ≤ j < j′ ≤ |α|, a ∈ (Bj ∩ Bj′)

implies a ∈ Bj′′ , j ≤ j′′ ≤ j′, we can conclude that each two of the mappings

ord(Bi) 7→ Ci, 1 ≤ i ≤ |α|, are compatible and for every a ∈ Aα at least one of the

mappings ord(Bi) 7→ Ci, 1 ≤ i ≤ |α|, is defined. This particularly implies that we

can construct a total mapping h from Aα to Aw by combining all the mappings

ord(Bi) 7→ Ci, 1 ≤ i ≤ |α|. Now let a1, a2, . . . , aar(R) be arbitrary elements from

Aα such that, for some R ∈ τΣ, (a1, a2, . . . , aar(R)) ∈ RA
s
α . Since there must exist

an i, 1 ≤ i ≤ |α|, with a1, a2, . . . , aar(R) ∈ Bi and since Ci ∈ Hi, i. e., ord(Bi) 7→ Ci

satisfies condition (∗), we can conclude that (h(a1), h(a2), . . . , h(aar(R))) ∈ RAw ,

which implies that h is a homomorphism from Asα to Aw.

It remains to determine the runtime of the above algorithm. A central element

of that algorithm is to check whether or not, for some i, 1 ≤ i ≤ |α|, and some tuple

C of size |Bi| containing elements from Aw, the mapping ord(Bi) 7→ C satisfies

condition (∗). Since the arity of any relation symbol in τΣ is at most 2, this can be

done in time O(|Bi|2). The set H1 can be computed by simply considering every

tuple C of elements from Aw of size |B1| and checking whether ord(B1) 7→ C

satisfies condition (∗). Thus, time O(|B1|2 × |Aw||B1|) is sufficient for computing

H1 and it remains to compute Hi, for every i, 2 ≤ i ≤ |α|. We recall that in order

to compute such an Hi, we need to collect all tuples C of size |Bi| containing

elements from Aw such that the mapping ord(Bi) 7→ C satisfies condition (∗)
and the set Hi−1 contains a tuple C ′ such that the mappings ord(Bi) 7→ C and

ord(Bi−1) 7→ C ′ are compatible. However, this can be done without having to

enumerate all possible tuples C of size |Bi| and then check for each such tuple

whether or not Hi−1 contains a tuple C ′ such that the mappings ord(Bi) 7→ C and

ord(Bi−1) 7→ C ′ are compatible. This is due to the fact that, by Proposition 5.8,

|Bi \ Bi−1| = 1, thus, all elements but one of the tuple C are already determined

by the condition that there needs to be a C ′ ∈ Hi−1 such that the mappings

ord(Bi) 7→ C and ord(Bi−1) 7→ C ′ are compatible. Consequently, there are at
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most |Aw| × |Hi−1| tuples that need to be checked for whether or not they satisfy

condition (∗). We conclude that the set Hi can be computed in time O(|Aw| ×
|Aw||Bi−1| × |Bi|2) = O(|Aw||Bi−1|+1 × |Bi|2). Since, by Lemma 5.9, the width of

the standard path decomposition is at most k + 1, which implies |Bi| ≤ k + 2, for

every i, 1 ≤ i ≤ |α|, we can conclude that the total runtime of the algorithm is

O(|α| × |Aw|k+3 × (k + 2)2) = O(|α| × |w|2(k+3) × (k + 2)2). �

The above result is similar to, but much stronger than the result that every

class of patterns with a bounded variable distance has a polynomial time mem-

bership problem (see Chapter 3). This is due to the fact that if the variable

distance is bounded by a constant, then this constitutes a much stronger restric-

tion on the structure of a pattern than if the scope coincidence degree is restricted.

Intuitively, this can be illustrated by the following scenario. For an arbitrary pat-

tern α := α1 · α2, we insert a pattern β with var(α) ∩ var(β) = ∅ into α, i. e.,

α′ := α1 · β · α2. Now, if var(α1) ∩ var(α2) 6= ∅, then the variable distance of α′

increases at least by | var(β)| − vd(α) compared to α regardless of the structure

of β. This implies that it is rather difficult to enlarge a pattern by inserting new

variables without increasing its variable distance. On the other hand, the scope

coincidence degree of α′ increases at least by scd(β)− scd(α) compared to α. This

implies that the scope coincidence degree of α′ depends on the structure of β or,

more precisely, on the scope coincidence degree of β.

5.3 Application II: Mildly Entwined Patterns

In this section, we shall identify another structural property of patterns that allows

the membership problem to be solved in polynomial time and that is incomparable

to the variable distance and the scope coincidence degree. Next, we define this

property.

Let α be a pattern. We say that two variables x, y ∈ var(α) are entwined (in

α) if and only if there exists a factorisation α = β · x · γ1 · y · γ2 · x · γ3 · y · δ or

α = β · y · γ1 · x · γ2 · y · γ3 · x · δ, where β, γ1, γ2, γ3, δ ∈ (X ∪ Σ)∗. If no two

variables in α are entwined, then α is a nested pattern. Intuitively, in a nested

pattern, if a variable x occurs between two occurrences of another variable y,

then all occurrences of x occur between these two occurrences of y. For example,

x1 x3 x3 x4 x4 x1 x5 x5 x1 x2 x6 x7 x7 x6 x2 is a nested pattern.

Next, we define a class of patterns that comprises entwined variables, but in a

very restricted form.

Definition 5.12. Let α be a pattern. Two variables x, y ∈ var(α), x 6= y, are

closely entwined if they are entwined and, for every factorisation α = β · x · γ1 · y ·
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γ2 ·x ·γ3 · y · δ or α = β · y ·γ1 ·x ·γ2 · y ·γ3 ·x · δ, with β, γ1, γ2, γ3, δ ∈ (X ∪Σ)∗ and

|γ2|x = |γ2|y = 0, γ2 = ε is implied. A pattern α is closely entwined if and only if

all variables that are entwined are closely entwined.

In a closely entwined pattern, we allow variables to be entwined, but in the

closest possible way, i. e., we require γ2 to be empty. The following is an example

for a closely entwined pattern: β := x1 x4 x1 x4 x5 x5 x4 x2 x1 x3 x2 x3 x2. In β the

variables x1 and x4, the variables x1 and x2 and the variables x2 and x3 are all

pairs of variables that are entwined and, furthermore, they are all closely entwined.

Obviously, the set of nested patterns is a proper subset of the class of closely

entwined patterns. Next, we define a class of patterns that properly lies between

the classes of nested patterns and closely entwined patterns.

Definition 5.13. A pattern α is mildly entwined if and only if it is closely entwined

and, for every x ∈ var(α), if α = β ·x ·γ ·x · δ with β, γ, δ ∈ (X ∪Σ)∗ and |γ|x = 0,

then γ is nested.

Intuitively, a mildly entwined pattern is by definition a closely entwined pat-

tern with the additional condition that every factor that lies between two conse-

cutive occurrences of a variable is a nested pattern. Obviously, there exist closely

entwined patterns that are not mildly entwined (e. g., x1 x2 x3 x2 x3 x1) and mildly

entwined patterns that are not nested (e. g., x1 x2 x1 x2). The following constitutes

a more involved example for a mildly entwined pattern:

γ := x1 x3 x4 x4 x3 x3 x1 x2 x3 x5 x5 x2 x5 x6 x6 x2 .

First, we can note that the variables x1 and x3 are closely entwined, x2 and x3 are

closely entwined, x2 and x5 are closely entwined and these are the only pairs of

variables that are entwined. Furthermore, every factor between two consecutive

occurrences of the same variable is nested. We emphasise that a factor γ between

two consecutive occurrences of the same variable can still contain occurrences of

a variable that is entwined with other variables in γ, as long as γ, considered

individually, is nested. For example, the factor x3x4x4x3x3 in between the first

two occurrences of x1 in γ contains variable x3, which is entwined with variables

x1 and x2.

Since we can decide in polynomial time on whether or not a given pattern is

nested or closely entwined, we can also decide on whether or not a given pattern

is mildly entwined in polynomial time.

We shall now show that the membership problem with respect to the class of

mildly entwined patterns can be decided in polynomial time. To this end, we need

to introduce a special class of graphs:
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Definition 5.14. A graph is called outerplanar if and only if it can be drawn

on the plane in such a way that no two edges cross each other and no vertex is

entirely surrounded by edges (or, equivalently, all vertices lie on the exterior face).

For example, a cycle with 4 vertices is outerplanar, but the complete graph

with 4 vertices, although planar, is not outerplanar.

Next, we show that a pattern is mildly entwined if and only if its standard

α-structure is outerplanar.

Lemma 5.15. Let α be a pattern. The Gaifman graph of the standard α-structure

is outerplanar if and only if α is mildly entwined.

Proof. Let G be the Gaifman graph of the standard α-structure and let V :=

{v1, v2, . . . , v|α|} be its set of vertices, where, for every i, 1 ≤ i ≤ |α|, vi corresponds

to α[i]. We first show the only if direction by contraposition. To this end, we

assume that α is not mildly entwined, which implies that α is either not closely

entwined or there exists an x ∈ var(α) such that α = β · x · γ · x · δ with |γ|x = 0

and γ is not nested. If α is not closely entwined, then there are x, y ∈ var(α)

such that α = β · x · γ1 · y · γ2 · x · γ3 · y · δ with |γ2|x = |γ2|y = 0 and γ2 6= ε.

Furthermore, without loss of generality, we can assume that |γ1|x = |γ3|y = 0.

Now let px, qx, py, qy be the positions of the occurrences of x and y shown by the

above factorisation of α, i. e., px = |β| + 1, py = px + |γ1| + 1, qx = py + |γ2| + 1

and qy = qx + |γ3| + 1. We note that, since |γ1 · γ2|x = 0 and |γ2 · γ3|y = 0,

there are edges {vpx , vqx} and {vpy , vqy} in G and, furthermore, there exists paths

(vpx , vpx+1, . . . , vpy) and (vqx , vqx+1, . . . , vqy). This directly implies that, for every

i, py < i < qx, the vertex vi is necessarily entirely surrounded by edges. Since

α[py + 1, qx− 1] = γ2 6= ε, there exists at least one such vertex and, thus, G is not

outerplanar.

If, on the other hand, there exists an x ∈ var(α) such that α = β ·x ·γ ·x ·δ with

|γ|x = 0 and γ is not nested, then we can conclude that, for some y, z ∈ var(α),

α = β · x · γ1 · y · γ2 · z · γ3 · y · γ4 · z · γ5 · x · δ and, without loss of generality,

|γ2 · γ3|y = |γ3 · γ4|z = 0. Now let px, qx, py, qy, pz and qz be the positions of

the occurrences of variables x, y and z, respectively, as highlighted by the above

factorisation. We note that in G there are edges {vpx , vqx}, {vpy , vqy} and {vpz , vqz}
and, in a similar way as above, this implies that vertex vpz or vqy is necessarily

entirely surrounded by edges.

It remains to show that if α is mildly entwined, then G is outerplanar. To this

end, we assume that α is mildly entwined and show how to draw a diagram of G
on the plane that satisfies the following condition referred to as (∗): no two edges

cross each other and no vertex is entirely surrounded by edges. First, we draw

the path (v1, v2, . . . , v|α|) in a straight line and note that the diagram of this path
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satisfies condition (∗). We shall now step by step add the remaining edges, which

we call E-edges, since they are induced by the relation symbol E, and then show

that in every step condition (∗) is maintained. In the following procedure, each of

the E-edges will be drawn either above or below the path and we call a vertex vi

covered above or covered below (by an edge) if and only if we have already drawn

an E-edge {vj, vj′} with j < i < j′ above (or below, respectively) the path. We

note that a vertex in the diagram is entirely surrounded by edges if and only if

it is covered below and above at the same time. Next, we pass through the path

from left to right, vertex by vertex. If for the current vertex vp there does not

exist an E-edge {vp, vq} with p < q (e. g., if vp corresponds to a terminal symbol

or to the rightmost occurrence of a variable), then we simply ignore this vertex

and move on to the next one. If, one the other hand, such an E-edge exists, then

we carry out one of the following steps.

1. If vp is not covered above or below, then we draw the edge {vp, vq} above

the path.

2. If vp is covered above or below by some edge and vq is covered by the same

edge, then we draw {vp, vq} above the path (or below the path, respectively).

3. If vp is covered above or below by some edge and vq is not covered by this

edge, then we draw {vp, vq} below the path (or above the path, respectively).

It remains to show that each of the three steps above maintain condition (∗). If

step 1 applies, then, since vp is not covered by an edge, the subgraph with vertices

vp, vp+1, . . . , v|α| is still a path and, thus, drawing {vp, vq} above that path does

not violate condition (∗). Now let us assume that step 2 applies and vp is covered

above by some edge {vp′ , vq′} with p′ < p < q < q′. This implies that none of

the vertices vi, p
′ < i < q′, can be covered below by some edge, as otherwise they

would be entirely surrounded by edges. So we can draw the edge {vp, vq} above the

path and still no vertex is entirely surrounded by edges. However, we have to show

that we do not cross another edge by drawing {vp, vq} in this way. To this end, we

assume that there exists another edge {vp̂, vq̂} that has already be drawn and that

now crosses {vp, vq} and we shall show that this assumption contradicts with the

fact that α is mildly entwined. First, we can note that {vp̂, vq̂} must be an E-edge

that has been drawn above with either p < p̂ < q < q̂ or p̂ < p < q̂ < q. We shall

only consider the first of these two cases, since the second one can be handled

analogously. Now, if q̂ < q′, then α[p′ + 1, q′ − 1] is not nested, but, for some

x ∈ var(α), α[p′] = α[q′] = x and |α[p′ + 1, q′ − 1]|x = 0. This is a contradiction

to the fact that α is mildly entwined. If, on the other hand, q′ < q̂, then we can

observe the following. Let α = β · x · γ1 · y · γ2 · x · γ3 · y · δ with p′ = |β| + 1,
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p̂ = |β · x · γ1|+ 1, q′ = |β · x · γ1 · y · γ2|+ 1 and q̂ = |β · x · γ1 · y · γ2 · x · γ3|+ 1.

Since {vp′ , vq′} and {vp̂, vq̂} are E-edges, we can conclude that |γ2|x = |γ2|y = 0,

but, since p̂ < q < q′, γ2 6= ε. This is a contradiction to the fact that α is closely

entwined. Therefore, we can conclude that in fact {vp, vq} does not cross an

already existing edge and, thus, the diagram still satisfies condition (∗). If in step

2 vertex vp is covered below instead of above, then an analogous argumentation

can be used.

Finally, we assume that step 3 applies and vp is covered above by some edge

{vp′ , vq′} with p′ < p < q′ < q. We recall that α[p′] = α[q′] and α[p] = α[q] and,

since α is closely entwined, this implies that p + 1 = q′. Now we assume that

no edge other than {vp′ , vq′} covers vp, which particularly means that vq′ is not

covered by any edge. We conclude that we can draw the edge {vp, vq} below the

path without crossing an existing edge and since p + 1 = q′, i. e., there are no

vertices between vp and vq′ , no vertex is entirely surrounded by edges. It remains

to show that there is in fact no other edge {vp̂, vq̂} that covers vp. To this end, we

assume that there exists such an edge and note that this implies that one of the

following 4 cases holds (recall that p+ 1 = q′):

1. p̂ < p′ < p < q′ < q < q̂,

2. p̂ < p′ < p < q′ < q̂ < q,

3. p′ < p̂ < p < q′ < q < q̂,

4. p′ < p̂ < p < q′ < q̂ < q.

We can now show in a similar way as above, that cases 2 to 4 imply that α is not

closely entwined and case 1 implies that there exists a variable x ∈ var(α) such

that α = β · x · γ · x · δ with |γ|x = 0 and γ is not nested. This contradicts our

assumption that α is mildly entwined and, thus, we can conclude that in fact no

edge other than {vp′ , vq′} covers vp. If in step 3 vertex vp is covered below instead

of above, then an analogous argumentation can be used. This shows that the

diagram drawn by the above procedure satisfies condition (∗), which proves that

G is outerplanar. �

It is a well known fact that the class of outerplanar graphs has a bounded

treewidth:

Theorem 5.16 (Bodlaender [8]). If G is an outerplanar graph, then tw(G) ≤ 2.

Consequently, by Lemma 5.15 and Theorem 5.16, the class of mildly entwined

patterns has bounded treewidth. Using Corollary 5.5, we can conclude that the

membership problem with respect to mildly entwined patterns is decidable in

polynomial time.



Chapter 5. Second Approach: Relational Structures 154

Theorem 5.17. Let Z ∈ {E,NE} and let P be the class of mildly entwined pat-

terns. The problem Z-PATMem(P ) is solvable in polynomial time.

Theorem 5.10 and the above Theorem 5.17, which both are applications of

Corollary 5.5, constitute the two main results of this chapter. According to the

definition of properties and parameters of patterns as given in Section 2.2.1, Theo-

rem 5.10 shows that the membership problem can be solved efficiently if the pa-

rameter of the scope coincidence degree is bounded, and the statement of Theo-

rem 5.17 is similar, but with respect to patterns that satisfy the property of being

mildly entwined.

We shall now compare patterns with bounded scope coincidence degree and

mildly entwined patterns. If a pattern has a scope coincidence degree of 1, then

it is a non-cross pattern and, thus, it is also mildly entwined. The converse

of this statement is not true, i. e., there are mildly entwined patterns with an

arbitrarily large scope coincidence degree. This is illustrated by the pattern α :=

x1 · x2 · · · · · xk · xk · xk−1 · · · · · x1, k ∈ N. It can be easily verified that α is nested

and, thus, also mildly entwined and, furthermore, scd(α) = k. Consequently, for

every k ≥ 2, the class of patterns with a scope coincidence degree of at most k and

the class of mildly entwined patterns are incomparable, which shows that by our

general approach, we have identified a parameter and a property of patterns that

both contribute to the complexity of the membership problem, but in completely

different ways.

We conclude this section by mentioning that the concept of outerplanarity

of graphs can be generalised to k-outerplanarity in the following way. The 1-

outerplanar graphs are exactly the outerplanar graphs and, for every k ≥ 2, a

graph is k-outerplanar if and only if it can be drawn on the plane in such a way

that no two edges cross each other and, furthermore, if we remove all vertices on the

exterior face and all their adjacent edges, then all remaining components are (k−
1)-outerplanar. It can be shown that if a graph G is k-outerplanar, then tw(G) ≤
3k − 1 (see Bodlaender [8] for further details on k-outerplanarity). Consequently,

the property of being mildly entwined can be generalised to a parameter of patterns

that corresponds to the k-outerplanarity of their standard α-structures. However,

it is not straightforward to identify such a parameter of patterns, and therefore it

is left to future research.

5.4 Ideas for Further Applications

In this chapter, we define a way of encoding patterns as relational structures, and

we show that any parameter of patterns that is an upper bound for the treewidth
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of these encodings, if restricted, allows the membership problem for pattern lan-

guages to be solved in polynomial time. We then apply this meta-result in order to

prove that all classes of patterns with a bounded scope coincidence degree and the

class of mildly entwined patterns have a polynomial time membership problem.

In the definition of an α-structure (Definition 5.1), there are several different

ways of how the relation symbol E can be interpreted. Thus, for a single pattern α,

there are many possible α-structures that all permit an application of Theorem 5.5.

However, the standard way of encoding patterns (Definition 5.2) turns out to be

sufficient for all results in the present paper. It would be interesting to know

whether or not, for some pattern α, there exists an α-structure Aα that is better

than the standard one, i. e., tw(Aα) < tw(Asα). We conjecture that this question

can be answered in the negative.

Section 5.3 constitutes an application of a more general technique that can be

described in the following way. We consider an arbitrary class A of graphs with

bounded treewidth and then we identify a class of patterns P and a polynomial

time computable function g that maps the patterns of P to α-structures such that

P̂ ⊆ A, where P̂ := {Gα | α ∈ P,Gα is the Gaifman graph of g(α)}. Ideally, the

class P can be characterised in terms of a parameter or a property of patterns

that can be computed in polynomial time.

This indicates that, by applying the above described general technique, other

classes of patterns with a polynomial time membership problem can be found, for

example, by using the class of k-outerplanar graphs as the class of graphs with

bounded treewidth, as outlined at the end of Section 5.3.



Chapter 6

Pattern Languages and the

Chomsky Hierarchy

It is one of the many beneficial properties of regular and also context-free languages

that their membership problem is comparatively easy to solve. Pattern languages,

on the other hand, are context-sensitive languages and they are usually not regular

or context-free; thus, their membership problem is hard to solve. This context-

sensitivity of pattern languages is indicated by the fact that they can be interpreted

as generalisations of the well known copy language {xx | x ∈ Σ∗}, which for

|Σ| ≥ 2 is a standard textbook example of a context-sensitive and non-context-free

language. An exception, as mentioned in Chapter 2, are regular patterns, which

do not contain variables with multiple occurrences, and therefore they describe

regular languages. This particularly implies that their membership problem can be

solved efficiently (cf. Shinohara [80]). While it is not difficult to show that regular

patterns necessarily describe regular languages, we can observe that with respect

to alphabets of size 2 and 3, pattern languages can be regular or context-free in

an unexpected way, i. e., there are non-regular patterns, the pattern languages

of which are nevertheless regular or context-free. For instance, the NE-pattern

language of α := x1 x2 x2 x3 is regular for |Σ| = 2, since squares are unavoidable

for binary alphabets, which means that the language is co-finite. Surprisingly,

for terminal alphabets of size 2 and 3, there are even certain E- and NE-pattern

languages that are context-free but not regular. This recent insight is due to Jain

et al. [40] and solves a longstanding open problem.

We wish to further investigate this existence of pattern languages that appear

to be variants of the copy language, but are nevertheless regular or context-free.

More precisely, we seek to identify criteria for patterns where the seemingly high

complexity of a pattern does not translate into a high complexity of its pattern

language (and, as an immediate result, the membership problem is also less com-

156
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plex than expected). Since, as demonstrated by Jain et al., this phenomenon does

not occur for E-pattern languages if the pattern does not contain any terminal

symbols or if the size of the terminal alphabet is at least 4, our investigations

focus on patterns with terminal symbols and on small alphabets of sizes 2 or 3.

6.1 Definitions and Known Results

For the regularity of E-pattern languages, so-called block-regular patterns play

an important role. Hence, we recapitulate these block-regular patterns as defined

by Jain et al. [40]. Every factor of variables of α that is delimited by terminal

symbols is called a variable block. More precisely, for every i, j, 1 ≤ i ≤ j ≤ |α|,
α[i, j] is a variable block if and only if α[k] ∈ X, i ≤ k ≤ j, α[i− 1] ∈ Σ or i = 1

and α[j + 1] ∈ Σ or j = |α|. A pattern α is block-regular if in every variable block

of α there occurs at least one variable x with |α|x = 1. Let Z ∈ {E,NE}. The class

of Z-pattern languages defined by regular patterns and block-regular patterns are

denoted by Z-PATΣ,reg and Z-PATΣ,b-reg, respectively. To avoid any confusion, we

explicitly mention that the term regular pattern always refers to a pattern with

the syntactical property of being a regular pattern and a regular E- or NE-pattern

language is a pattern language that is regular, but that is not necessarily given by

a regular pattern.

Known Characterisations

It can be easily shown that every E- or NE-pattern language over a unary alpha-

bet is a regular language (cf. Reidenbach [63] for further details). Hence, the

classes of regular and context-free pattern languages over a unary alphabet are

trivially characterised. In Jain et al. [40] it has been shown that for any alpha-

bet of cardinality at least 4, the regular and context-free E-pattern languages are

characterised by the class of regular patterns.

Theorem 6.1 (Jain et al. [40]). Let Σ be an alphabet with |Σ| ≥ 4. Then

(E-PATΣ ∩REG) = (E-PATΣ ∩CF) = E-PATΣ,reg.

Unfortunately, the above mentioned cases are the only complete characteri-

sations of regular or context-free pattern languages that are known to date. In

particular, characterisations of the regular and context-free E-pattern languages

with respect to alphabets with cardinality 2 and 3, and characterisations of the

regular and context-free NE-pattern languages with respect to alphabets with car-

dinality at least 2 are still missing. In the following, we shall briefly summarise

the known results in this regard, and the reader is referred to Jain et al. [40] and

Reidenbach [63] for further details. Jain et al. [40] present the example patterns
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� α1 := x1 x2 x3 ax2 x4 x4 x5 ax6 x5 x7 and

� α2 := x1 x2 x3 ax2 x4 x4 x5 bx6 x5 x7,

and they show that LE,{a,b}(α1) and LE,{a,b,c}(α2) are regular languages that cannot

be described by regular patterns. Moreover, in [40] it is shown that the patterns

� β1 := ax1 ax2 ax1 ax3 and

� β2 := x1 ax2 bx3 ax2 bx4

describe non-regular context-free E-pattern languages with respect to alphabet size

2 and 3, respectively. More precisely, LE,{a,b}(β1) ∈ CF \REG and LE,{a,b,c}(β2) ∈
CF \REG. Regarding NE-pattern languages, it is shown that, for every alphabet

Σ with cardinality at least 2, the class (NE-PATΣ ∩REG) is not characterised by

regular patterns, and with respect to alphabet sizes 2 and 3 it is not characte-

rised by block-regular patterns either. Furthermore, for alphabet sizes 2 and 3,

it is shown that the patterns β1 and β2 from above are also examples for non-

regular context-free NE-pattern languages, i. e., LNE,{a,b}(β1) ∈ CF \REG and

LNE,{a,b,c}(β2) ∈ CF \REG. For alphabets with cardinality of at least 4 the exis-

tence of such patterns is still open.

6.2 Regularity and Context-Freeness of Pattern

Languages: Sufficient Conditions and

Necessary Conditions

Since their introduction by Shinohara [80], it has been known that, for both the

E and NE case and for any terminal alphabet, regular patterns can only describe

regular languages. This is an immediate consequence of the fact that regular

patterns do not use the essential mechanism of patterns, i. e., repeating variables

in order to define sets of words that contain repeated occurrences of variable

factors. In Jain et al. [40], the concept of regular patterns is extended to block-

regular patterns, defined in Section 6.1. By definition, every regular pattern is a

block-regular pattern. Furthermore, in the E case, every block-regular pattern α

is equivalent to the regular pattern obtained from α by substituting every variable

block by a single occurrence of a variable.

Proposition 6.2. Let Σ be some terminal alphabet and let α ∈ (Σ ∪ X)∗ be

a pattern. If α is regular, then LNE,Σ(α) ∈ REG. If α is block-regular, then

LE,Σ(α) ∈ REG.
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As mentioned in Section 6.1, for alphabets of size at least 4, both the class

of regular patterns and the class of block-regular patterns characterise the set of

regular and context-free E-pattern languages. However, in the NE case as well as

in the E case with respect to alphabets of size 2 or 3, Jain et al. [40] demonstrate

that block-regular patterns do not characterise the set of regular or context-free

pattern languages.

Obviously, the regularity of languages given by regular patterns or block-

regular patterns follows from the fact that there are variables that occur only

once in the pattern. Hence, it is the next logical step to ask whether or not the

existence of variables with only one occurrence is also necessary for the regularity

or the context-freeness of a pattern language. Jain et al. [40] answer that ques-

tion with respect to terminal-free patterns or, more precisely, an answer directly

follows from the results provided in [40]. So the following Theorem 6.3 is due to

Jain et al., but we feel that it is appropriate to point out how exactly it can be

concluded from the results provided in [40], which is done in a separate proof for

Theorem 6.3.

Theorem 6.3 (Jain et al. [40]). Let Σ be a terminal alphabet with |Σ| ≥ 2 and let α

be a terminal-free pattern with |α|x ≥ 2, for every x ∈ var(α). Then LE,Σ(α) /∈ CF

and LNE,Σ(α) /∈ REG.

Proof. Let Σ′ be an alphabet with |Σ′| = 2 and Σ′ ⊆ Σ. By Lemma 11 of [40],

it follows that LE,Σ′(α) /∈ CF. Since LE,Σ(α) ∩ Σ′∗ equals LE,Σ′(α) and since the

class of context-free languages is closed under intersection with regular sets, we

can conclude that LE,Σ(α) /∈ CF.

In order to show LNE,Σ(α) /∈ REG, we can apply the proof of Theorem 6.a

of [40], which states that for any terminal alphabet Σ′ with |Σ′| ≥ 4 and for any

pattern β that is not block-regular, LNE,Σ′(β) is not a regular language. However,

for terminal-free patterns in which every variable occurs at least twice this proof

also works for an alphabet of size 2 and 3, since we do not need the two terminal

symbols to both sides of the variable block (cf. [40] for details). �

We can note that Proposition 6.2 and Theorem 6.3 characterise the regular

and context-free E-pattern languages given by terminal-free patterns with respect

to alphabets of size at least 2. More precisely, for every alphabet Σ with |Σ| ≥ 2

and for every terminal-free pattern α, if α is block-regular, then LE,Σ(α) is regular

(and, thus, also context-free) and if α is not block-regular, then every variable of α

occurs at least twice, which implies that LE,Σ(α) is neither regular nor context-free.

However, for the NE case, we cannot hope for such a simple characterisation.

This is due to the close relationship between the regularity of NE-pattern languages



Chapter 6. Pattern Languages and the Chomsky Hierarchy 160

and the combinatorial phenomenon of unavoidable patterns, as already mentioned

at the beginning of this chapter.

In the following, we concentrate on E-pattern languages over alphabets of

size 2 and 3 (since for all other alphabet sizes complete characterisations are

known) that are given by patterns that are not terminal-free (since, as described

above, the characterisation of regular and context-free E-pattern languages given

by terminal-free patterns has been settled). Nevertheless, some of our results also

hold for NE-pattern languages and we shall always explicitly mention if this is the

case.

The next two results present a sufficient condition for the non-regularity and

a sufficient condition for the non-context-freeness of pattern languages over small

alphabets. More precisely, we generalise Theorem 6.3 to patterns that are not

necessarily terminal-free. The first result states that for a pattern α (that may

contain terminal symbols), if every variable in α occurs at least twice, then both

the E- and NE-pattern language of α, with respect to alphabets of size at least

two, is not regular.

Theorem 6.4. Let Σ be an alphabet with |Σ| ≥ 2, let α ∈ (Σ ∪X)∗ be a pattern,

and let Z ∈ {E,NE}. If, for every x ∈ var(α), |α|x ≥ 2, then LZ,Σ(α) /∈ REG.

Proof. We only prove that LNE,Σ(α) /∈ REG since LE,Σ(α) /∈ REG can be shown

in exactly the same way. To this end, we assume to the contrary that LNE,Σ(α) ∈
REG and we let n be the constant from Lemma 2.2 (see page 9) with respect to

LNE,Σ(α). Furthermore, we assume that α := u0 · y1 · u1 · y2 · u2 · · · · · uk−1 · yk · uk,
where yi ∈ X, 1 ≤ i ≤ k, and ui ∈ Σ∗, 0 ≤ i ≤ k. Now, we let w be the word

obtained from α by substituting every variable by the word banbna, i. e.,

w = u0 · banbna · u1 · banbna · u2 · · · · · uk−1 · banbna · uk .

By first applying Lemma 2.2 on the factor banbna that results from y1, then on

the factor banbna that results from y2 and so on, we can obtain the word

w′ := u0 · ban1bn2a · u1 · ban3bn4a · u2 · · · · · uk−1 · ban2k−1bn2ka · uk ,

where n × |α| < n1, and, for every i, 1 ≤ i ≤ 2k − 1, ni × |α| < ni+1. We

shall now show that w′ /∈ LNE,Σ(α). To this end, we assume to the contrary that

there exists a substitution h with h(α) = w′. Let p, 1 ≤ p ≤ |α|, be such that

α[p,−] is the shortest suffix of α such that bn2ka · uk is a suffix of h(α[p,−]). If

h(α[p,−]) = v · bn2ka · uk, v 6= ε, then α[p] must be a variable, since otherwise

bn2ka · uk is also a suffix of h(α[p + 1,−]) which implies that α[p,−] is not the

shortest suffix of α such that bn2ka · uk is a suffix of h(α[p,−]). Moreover, for
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similar reasons, we can conclude that h(α[p]) = v · v′, where v′ is a non-empty

prefix of bn2k . Now if h(α[p]) contains the whole factor an2k−1 , then, since α[p] is a

repeated variable in α, there are two non-overlapping occurrences of factor an2k−1 in

h(α), which is a contradiction, since there are no two non-overlapping occurrences

of factor an2k−1 in w′. So we can conclude that either h(α[p,−]) = bn2ka · uk
or h(α[p,−]) = am · bn2ka · uk and α[p] is a variable with h(α[p]) = am · bl,
1 ≤ m < n2k−1, l 6= 0.

There must exist at least one variable x ∈ var(α) with |h(x)| > n2k−1, since

otherwise |h(α)| ≤ |α| × n2k−1 < n2k < |w′|, which is a contradiction. Now let

z ∈ var(α) be such a variable, i. e., |h(z)| > n2k−1. We recall that h(α[1, p− 1]) :=

u0 · ban1bn2a · u1 · · · · · uk−1 · ban2k−1−m. If z ∈ var(α[1, p − 1]), then there are to

cases to consider. If, for some i, 1 ≤ i ≤ k − 1, h(z) contains a factor abn2ia or

a factor ban2i−1b, then we obtain a contradiction, since in w′ there is exactly one

occurrence of such a factor, but there are at least two occurrences of variable z in

α. If, on the other hand, h(z) contains no such factor, then h(z) is a factor of the

suffix bn2k−2a · uk−1 · ban2k−1−m of h(α[1, p− 1]). Since |h(z)| > n2k−1, this implies

that h(z) must have a suffix aq, where q > n2k−1−(n2k−2 + |uk−1|+2). We observe

that

n2k−1 − (n2k−2 + |uk−1|+ 2) > n2k−1 − (3× n2k−2) >

|α| × n2k−2 − (3× n2k−2) = (|α| − 3)× n2k−2 .

Now, we can conclude that since (|α|−3)×n2k−2 > (|α|−3)×|α|×n2k−3 > n2k−3,

q > n2k−3. This directly implies that in h(α[1, p− 1]) there does not exist another

occurrence of factor aq and, thus, there is exactly one occurrence of variable z in

α[1, p − 1], which implies that there must be another occurrence of variable z in

α[p,−]. This particularly means that there is an occurrence of h(z) in h(α[p,−]) =

am · bn2ka · uk. We recall that h(z) contains aq as a suffix, which implies that in

h(α[p,−]), h(z) cannot end in bn2ka · uk, since this means that the whole suffix aq

is contained in bn2ka · uk. So h(z) must entirely be contained in am, which is a

contradiction, since |h(z)| > n2k−1 and m < n2k−1.

This proves that the word w′ is not in LNE,Σ(α), which, by Lemma 2.2, implies

LNE,Σ(α) /∈ REG. �

For alphabets of size at least 3 Theorem 6.4 can be strengthened, i. e., if every

variable in a pattern α occurs at least twice, then the E- and the NE-pattern

language of α are not context-free. This result is due to Reidenbach [73].

Theorem 6.5 (Reidenbach [73]). Let Σ be an alphabet with |Σ| ≥ 3, let α ∈
(Σ ∪X)+ be a pattern, and let Z ∈ {E,NE}. If, for every x ∈ var(α), |α|x ≥ 2,
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then LZ,Σ(α) /∈ CF.

At this point, we recall that patterns, provided that they contain repeated

variables, describe languages that are generalisations of the copy language, which

strongly suggests that these languages are context-sensitive, but not context-free

or regular. However, as stated at the beginning of this chapter, for small alphabets

this is not necessarily the case and the above results provide a strong indication

of where to find this phenomenon of regular and context-free copy languages.

More precisely, by Theorems 6.4 and 6.5, the existence of variables with only

one occurrence is crucial. Furthermore, since, in the terminal-free case, regular

and context-free E-pattern languages are characterised in a compact and simple

manner, we should also focus on patterns containing terminal symbols.

Consequently, we concentrate on the question of how the occurrences of ter-

minal symbols in conjunction with non-repeated variables can cause E-pattern

languages to become regular. To this end, we shall now consider some simply struc-

tured examples of such patterns for which we can formally prove whether or not

they describe a regular language with respect to terminal alphabets Σ2 := {a, b}
and Σ≥3, where {a, b, c} ⊆ Σ≥3. Most parts of the following propositions require

individual proofs, some of which, in contrast to the simplicity of the example

patterns, are surprisingly involved. If, for some pattern α and Z ∈ {E,NE},
LZ,Σ2(α) /∈ REG, then LZ,Σ≥3

(α) /∈ REG. This follows directly from the fact that

regular languages are closed under intersection. Hence, in the following examples,

we consider LZ,Σ≥3
(α) only if LZ,Σ2(α) is regular.

Firstly, we consider the pattern x1 · d · x2x2 · d′ · x3, which, for all choices of

d, d′ ∈ {a, b}, describes a regular E-pattern language with respect to Σ2, but a

non-regular E-pattern language with respect to Σ≥3.

Proposition 6.6.

LE,Σ2(x1 a x2 x2 a x3) ∈ REG ,

LE,Σ≥3
(x1 a x2 x2 a x3) /∈ REG ,

LE,Σ2(x1 a x2 x2 b x3) ∈ REG ,

LE,Σ≥3
(x1 a x2 x2 b x3) /∈ REG .

Proof. Let α1 := x1ax2x2ax3 and let α2 := x1ax2x2bx3. It follows from Lem-

mas 6.13 and 6.11, respectively, that LE,Σ2(α1) and LE,Σ2(α2) are regular lan-

guages. Hence, it only remains to prove that LE,Σ≥3
(α1) /∈ REG and LE,Σ≥3

(α2) /∈
REG.

We assume that LE,Σ≥3
(α1) ∈ REG and we shall show that this assumption

leads to a contradiction. Let w := a · cnb · cnb · a ∈ LE,Σ≥3
(α1), where n is the
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constant of Lemma 2.2 (see page 9) with respect to LE,Σ≥3
(α1). By Pumping

Lemma 2, there exists a word w′ := a · cnb · cn′b · a, n < n′, with w′ ∈ LE,Σ≥3
(α1),

which is obviously not the case.

Similarly, we can show that the assumption LE,Σ≥3
(α2) ∈ REG leads to a

contradiction. Let v := a ·cnb ·cnb ·b ∈ LE,Σ≥3
(α2), where n is odd and n is greater

than the constant of Lemma 2.2 with respect to LE,Σ≥3
(α2). By Lemma 2.2, there

exists a word v′ := a · cnb · cn′b · b, n < n′, with v′ ∈ LE,Σ≥3
(α2), which is not the

case, since for every factor a · u · b in v′, u is not a square. �

Next, we insert another occurrence of a terminal symbol between the two

occurrences of x2, i. e., we consider β := x1·d·x2·d′·x2·d′′·x3, where d, d′, d′′ ∈ {a, b}.
Here, we find that LZ,Σ(β) ∈ REG if and only if Z = E, Σ = Σ2 and d = d′′,

d 6= d′ 6= d′′.

Proposition 6.7. For every Z ∈ {E,NE},

LZ,Σ2(x1 a x2 a x2 a x3) /∈ REG ,

LZ,Σ2(x1 a x2 a x2 b x3) /∈ REG ,

LE,Σ2(x1 a x2 b x2 a x3) ∈ REG ,

LNE,Σ2(x1 a x2 b x2 a x3) /∈ REG ,

LZ,Σ≥3
(x1 a x2 b x2 a x3) /∈ REG .

Proof. Let α1 := x1ax2ax2ax3, α2 := x1ax2ax2bx3 and α3 := x1ax2bx2ax3. It

follows from Proposition 6.10 that LZ,Σ2(α1) /∈ REG, LZ,Σ2(α2) /∈ REG and

LZ,Σ≥3
(α3) /∈ REG. It remains to prove that LE,Σ2(α3) ∈ REG and LNE,Σ2(α3) /∈

REG. We shall first prove LE,Σ2(α3) ∈ REG. To this end, we claim that

LE,Σ2(α3) = L(r), where r := Σ∗2 · a · (bb)∗b · a · Σ∗2. It can be easily verified

that L(r) ⊆ LE,Σ2(α3). In order to prove the converse, we let h be an arbi-

trary substitution for α3. If h(x2) ∈ L(b∗), then h(α3) ∈ L(r). Thus, we as-

sume that h(x2) = bn · û · bn′ , where n, n′ ∈ N0, û ∈ Σ∗2 and û starts and ends

with an occurrence of a (note that this includes the case û = a). We note that

h(α3) = u · a · bn · û · bn+n′+1 · û · bn′ · a · v, where u := h(x1) and v := h(x3). In

order to prove that h(α3) ∈ L(r) it is sufficient to identify a factor of form abka in

h(α3), where k is odd. If n is odd, then a ·bn · û[1] is such a factor and if n′ is odd,

then û[−] ·bn′ ·a is such a factor. If both n and n′ are even, then û[−] ·bn+n′+1 · û[1]

is a factor of form abka, k odd, since n + n′ + 1 is odd. Hence, h(α3) ∈ L(r) and

LE,Σ2(α3) ⊆ L(r) is implied, which concludes the proof.

Next, in order to prove LNE,Σ2(α3) /∈ REG, we assume to the contrary that

LNE,Σ2(α3) ∈ REG and we define w := b · a · abna · b · abna · a · b ∈ LNE,Σ2(α3),

where n is greater than the constant of Lemma 2.2 (see page 9) with respect
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to LNE,Σ2(α3) and n is even. By applying Lemma 2.2, we can obtain the word

w′ := b · a · abna · b · abn′a · a · b, where n < n′ and n′ is even. It can be verified

that for every factor of form a · u · b · v · a, u, v ∈ Σ+
2 , in a · abna · b · abn′a · a,

u 6= v, which implies that w′ /∈ LNE,Σ2(α3). Consequently, with Lemma 2.2, we

can conclude that LNE,Σ2(α3) /∈ REG. �

The next type of pattern that we investigate is similar to the first one, but

it contains two factors of form xx instead of only one, i. e., β′ := x1 · d · x2x2 ·
d′ · x3x3 · d′′ · x4, where d, d′, d′′ ∈ {a, b}. Surprisingly, LE,Σ2(β′) is not regular if

d = d′ = d′′, but regular in all other cases. However, if we consider the NE case or

alphabet Σ≥3, then β′ describes a non-regular language with respect to all choices

of d, d′, d′′ ∈ {a, b}.

Proposition 6.8. For every Z ∈ {E,NE},

LZ,Σ2(x1 a x2 x2 a x3 x3 a x4) /∈ REG ,

LE,Σ2(x1 a x2 x2 b x3 x3 a x4) ∈ REG ,

LNE,Σ2(x1 a x2 x2 b x3 x3 a x4) /∈ REG ,

LE,Σ≥3
(x1 a x2 x2 b x3 x3 a x4) /∈ REG ,

LE,Σ2(x1 a x2 x2 a x3 x3 b x4) ∈ REG ,

LNE,Σ2(x1 a x2 x2 a x3 x3 b x4) /∈ REG ,

LE,Σ≥3
(x1 a x2 x2 a x3 x3 b x4) /∈ REG .

Proof. We define α1 := x1ax2x2ax3x3ax4, α2 := x1ax2x2bx3x3ax4 and α3 :=

x1ax2x2ax3x3bx4. We shall now prove the lemma by proving each of the 7 state-

ments as individual claims.

Claim (1). LZ,Σ2(α1) /∈ REG, Z ∈ {E,NE}.

Proof. (Claim (1)) We first prove that LNE,Σ2(α1) /∈ REG. To this end, we assume

to the contrary that LNE,Σ2(α1) is a regular language and let k ∈ N be the constant

from Lemma 2.2 (see page 9) with respect to LNE,Σ2(α1). Furthermore, let h be

the substitution defined by h(x1) = h(x4) = b, h(x2) := bnab and h(x3) := bmab,

where, k < n, 6n < m < 12n and both n and m are odd. We note that h(α1) =

b · a · bnab · bnab · a · bmab · bmab · a · b. By applying Lemma 2.2 first on the second

occurrence of factor bn and then on the second occurrence of factor bm, we can

obtain the word

w := b · a · bnab · bn′ab · a · bmab · bm′ab · a · b ,

such that 2n < n′ < 4n and 12n < m′. Since we assume that LNE,Σ2(α1) ∈ REG,
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we can conclude from Lemma 2.2 that w ∈ LNE,Σ2(α1). Let p1, p2, . . . , p7 be exactly

the positions in w where there is an occurrence of a. We shall now show that, for

all r, s, t, 1 ≤ r < s < t ≤ 7, the factor w[pr + 1, ps− 1] is not a non-empty square

or the factor w[ps+1, pt−1] is not a non-empty square. This directly implies that

there does not exist a substitution g with g(α1) = w and, thus, w /∈ LNE,Σ2(α1),

which is a contradiction.

We can note that, for all r, s, with 1 ≤ r < s ≤ 7, if s − r is even, then

w[pr+1, ps−1] has an odd number of a’s and, thus, it is not a square. Furthermore,

since n and m are odd numbers, w[p1 + 1, p2 − 1] and w[p4 + 1, p5 − 1] cannot

be squares and since w[p3 + 1, p4 − 1] = w[p6 + 1, p7 − 1] = b, these cannot

be squares either. The factor w[p1 + 1, p4 − 1] = bnab · bn′ab is not a square

since n 6= n′ and, since m 6= m′, the same holds for w[p4 + 1, p7 − 1]. The factor

w[p1 +1, p6−1] = bnab ·bn′ab ·a ·bmab ·bm′ cannot be a square, since 2n < n′ < 4n,

6n < m < 12n and 12n < m′ implies that n+n′+2 < m+m′+1, and with similar

argumentations, we can conclude that factors w[p2 + 1, p7 − 1], w[p2 + 1, p5 − 1]

and w[p3 +1, p6−1] are no squares as well. We conclude that the only factors that

can possibly be squares are w[p2 + 1, p3 − 1] and w[p5 + 1, p6 − 1]. However, for

all r, s, t, 1 ≤ r < s < t ≤ 7, it is impossible that (r, s) = (2, 3) and (s, t) = (5, 6).

Hence, we obtain a contradiction as described above and, thus, we can conclude

that LNE,Σ2(α1) /∈ REG. Moreover, in exactly the same way, we can also prove

that LE,Σ2(α1) /∈ REG. This is due to the fact that in the word w there are no two

occurrences of symbol a without occurrences of symbol b in between them, i. e., we

do not need to consider the empty squares. So by exactly the same argumentation,

we can show that w is not in LE,Σ2(α1) /∈ REG, which, since h(α1) clearly is in

LE,Σ2(α1), leads to a contradiction in the same way. � (Claim (1))

Claim (2). LE,Σ2(α2) ∈ REG.

Proof. (Claim (2)) We claim that LE,Σ2(α2) = L(r), where r := Σ∗2·a·(bb)∗·b·a·Σ∗2.

First, we can note that L(r) ⊆ LE,Σ2(α2) trivially holds. Now let h be an arbitrary

substitution. In order to prove that h(α2) ∈ L(r), it is sufficient to show that in

h(α2) there occurs a factor of form a · b2n−1 · a, n ∈ N.

We first consider the case that h(x2) = bn · u · bn′ , n, n′ ∈ N0, where u starts

and ends with the symbol a. We note that if n is odd, then in h(α2) there occurs

the factor a · bn · a. If, on the other hand, n is even and n′ is odd, then n + n′

is odd and in h(α2) there occurs the factor a · bn+n′ · a. Furthermore, if n′ and n

are even, then we cannot directly conclude that there exists a factor a · b2n−1 · a,

n ∈ N, and we have to take a closer look at h(x3). If h(x3) ∈ L(b∗), then we have

the factor a · bn′ · b · h(x3) · h(x3) · a that necessarily is of form an a · b2n−1 · a,

n ∈ N. If, on the other hand, h(x3) = bm · v · bm′ , m,m′ ∈ N0, where v starts and
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ends with an a, then we have to consider several cases depending on whether m

and m′ is odd or even. If m is even, then the factor a · bn′ · b · bm · a occurs in

h(α2), where n′ + m + 1 is odd. If, on the other hand, m is odd and m′ is even,

then the factor a · bm′+m · a occurs in h(α2), where m′ + m is odd. Finally, if m′

and m are odd, then the factor a · bm′ · a occurs in α2. So we can conclude that

if h(x2) = bn · u · bn′ , then there necessarily occurs a factor of form a · b2n−1 · a,

n ∈ N in h(α2).

It remains to consider the case where h(x2) ∈ L(b∗). We first note that if

also h(x3) ∈ L(b∗), then the factor a · h(x2) · h(x2) · b · h(x3) · h(x3) · a occurs in

h(α2), that is of form a · b2n−1 · a, n ∈ N. So we need to consider the case that

h(x3) = bm ·v ·bm′ , m,m′ ∈ N0, where v starts and ends with a. If m is even, then

the factor a · h(x2) · h(x2) · b · bm · a occurs in h(α2), that is of form a · b2n−1 · a,

n ∈ N. If m′ is odd, then the factor a ·bm′ ·a occurs and, finally, if m is odd and m′

is even, then factor a · bm · bm′ · a occurs in h(α2). Consequently, h(α2) necessarily

contains a factor of form a · b2n−1 · a, n ∈ N. Thus, h(α2) ∈ L(r), which shows

that L(r) ⊆ LE,Σ2(α2) holds. � (Claim (2))

Claim (3). LNE,Σ2(α2) /∈ REG

Proof. (Claim (3)) We assume that LNE,Σ2(α2) is a regular language and we define

w := b·a·abna·abna·b·b·b·a·b ∈ LNE,Σ2(α2), where n is greater than the constant

of Lemma 2.2 (see page 9) with respect to LNE,Σ2(α2) and n is even. By pumping,

we can produce a word w′ := b ·a ·abna ·abn′a ·b ·b ·b ·a ·b, where n < n′ and n′ is

even. Now we can note that in w′, for every factor of form a ·u ·b ·v ·a, u, v ∈ Σ′+,

in a · abna · abn′a · b · b · b · a, u is not a square or v is not a square. This implies

that w′ /∈ LNE,Σ2(α2), which is a contradiction to Lemma 2.2. � (Claim (3))

Claim (4). LE,Σ≥3
(α2) /∈ REG.

Proof. (Claim (4)) We assume that LE,Σ≥3
(α2) ∈ REG and we define w := a ·cnb ·

cnb · b · a ∈ LE,Σ≥3
(α2), where n is greater than the constant of Lemma 2.2 (see

page 9) with respect to LE,Σ≥3
(α2) and n is odd. By pumping, we can produce a

word w′ := a · cnb · cn′b · b · a, where n < n′. Since in w′ there is no factor of form

a · vv · b, v ∈ Σ∗≥3, we can conclude that w′ /∈ LE,Σ≥3
(α2), which contradicts with

Lemma 2.2. � (Claim (4))

Claim (5). LE,Σ2(α3) ∈ REG.

Proof. (Claim (5)) We claim that LE,Σ2(α3) = L(r), where r := Σ∗2·a·(bb)∗·a·b·Σ∗2.

First, we can note that L(r) ⊆ LE,Σ2(α3) trivially holds. Now let h be an arbitrary

substitution. We shall show that h(α3) ∈ L(r), which implies that LE,Σ2(α3) ⊆
L(r). If h(x2) starts with the symbol a, h(x2) ends with the symbol a or h(x3)
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starts with the symbol a, then the factor a · a · b occurs in h(α3), which implies

that h(α3) ∈ L(r). Hence, we only need to consider the following case: if h(x2) is

non-empty, then it starts and ends with the symbol b and if h(x3) is non-empty,

then it starts with the symbol b. Next, we can note that if h(x2) is empty or

h(x2) = bn, n ∈ N, then, since h(x3) is either empty or it starts with b, the factor

a · a · b occurs in h(α3) or the factor a · b2n · a · b occurs in h(α3), respectively,

which implies that h(α3) ∈ L(r). Therefore, we need to take a closer look at the

case that h(x2) = bn · u · bn′ , n, n′ ∈ N, where u starts and ends with the symbol

a. If u contains the factor a · a, then the factor a · a · b is contained in h(α3), thus,

h(α3) ∈ L(r). If, on the other hand, u does not contain the factor a · a, i. e., every

a in u is followed by a b, then we need to use a different argumentation. We note

that in h(α3) the factors a · bn · a · b and a · bn′ · bn · a · b occur. Furthermore,

since h(x3) is either empty or it starts with b, we can also conclude that the factor

a · bn′ · a · b occurs in h(α3). We can now observe that if n is even or n′ is even,

then h(α3) ∈ L(r). Furthermore, if n is odd and n′ is odd, then n + n′ is even

and, thus, h(α3) ∈ L(r). Consequently, for all possible cases, h(α3) ∈ L(r), which

implies that LE,Σ2(α3) ⊆ L(r). � (Claim (5))

Claim (6). LNE,Σ2(α3) /∈ REG.

Proof. (Claim (6)) We assume that LNE,Σ2(α3) is a regular language and we define

w := b ·a ·bna ·bna ·a ·b ·b ·b ·a ∈ LNE,Σ2(α3), where n is greater than the constant

of Lemma 2.2 (see page 9) with respect to LNE,Σ2(α3) and n is odd. By pumping,

we can produce a word w′ := b · a · bna · bn′a · a · b · b · b · a, where n < n′ and n′

is odd. Now we can note that in w′ there is no factor of form a · vv · a, v ∈ Σ+
2 .

Thus, w′ /∈ LNE,Σ2(α3), which contradicts Lemma 2.2. � (Claim (6))

Claim (7). LE,Σ≥3
(α3) /∈ REG

Proof. (Claim (7)) This claim can be proved analogously to the claim LE,Σ≥3
(α2) /∈

REG. � (Claim (7))

This concludes the proof of the proposition.

�

We call two patterns α, β ∈ (Σ2 ∪X)∗ almost identical if and only if |α| = |β|
and, for every i, 1 ≤ i ≤ |α|, α[i] 6= β[i] implies α[i], β[i] ∈ Σ2. The above

examples show that even for almost identical patterns α and β, we can have the

situation that α describes a regular and β a non-regular language. Even if α

and β are almost identical and further satisfy |α|a = |β|a and |α|b = |β|b, then

it is still possible that α describes a regular and β a non-regular language (cf.

Proposition 6.7 above). This implies that the regular E-pattern languages over an
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alphabet with size 2 require a characterisation that caters for the exact order of

terminal symbols in the patterns.

The examples considered in Propositions 6.6 and 6.8 mainly consist of factors

of form d · xx · d′, d, d′ ∈ Σ2, where x does not have any other occurrence in the

pattern. Hence, it might be worthwhile to investigate the question of whether or

not patterns can also describe regular languages if we allow them to contain factors

of form d ·xk ·d′, where k ≥ 3 and there is no other occurrence of x in the pattern.

In the next result, we state that if a pattern α contains a factor d · xk · d′ with

d = d′, k ≥ 3 and |α|x = k, then, for every Z ∈ {E,NE}, its Z-pattern language

with respect to any alphabet of size at least 2 is not regular and, furthermore, for

alphabets of size at least 3, we can show that this also holds for d 6= d′.

Theorem 6.9. Let Σ and Σ′ be terminal alphabets with {a, b} ⊆ Σ and {a, b, c} ⊆
Σ′. Let α := α1 · a · zl · a · α2, let β := β1 · a · zl · c · β2, where z ∈ X, α1, α2 ∈
((Σ∪X)\{z})∗, β1, β2 ∈ ((Σ′∪X)\{z})∗ and l ≥ 3. Then, for every Z ∈ {E,NE},
LZ,Σ(α) /∈ REG and LZ,Σ′(β) /∈ REG.

Proof. We first prove that LNE,Σ(α) /∈ REG. Let k be the constant of Lemma 2.1

(see page 8) with respect to LNE,Σ(α) and let h be the substitution defined by

h(z) := bk
′ · a · b, where k′ ≥ k, k′ mod l = 1, and h(x) := b, x ∈ var(α) \ {z}.

We can note that w := h(α) = u · a · (bk′ · a · b)l · a · v, where u and v equal h(α1)

and h(α2), respectively. Obviously, |w| ≥ k and w ∈ LNE,Σ(α). We shall now

show that for every factorisation w = v1 · v2 · v3 with |v1v2| ≤ k and v2 6= ε, there

exists a t ∈ N0 such that v1 · vt2 · v3 /∈ LNE,Σ(α), which, by Lemma 2.1, proves that

LNE,Σ(α) is not regular. We first note that |v1v2| ≤ k and v2 6= ε implies that

� v2 = u′, where u′ is a factor of u with 1 ≤ |u′| ≤ k or

� v2 = u′ · a · bi, where u′ is a suffix of u and 0 ≤ i ≤ k − (|u′|+ 1) or

� v2 = bi, where 1 ≤ i ≤ k − (|u|+ 1).

We first consider the case that v2 = bi, 1 ≤ i ≤ k − (|u| + 1), and, furthermore,

we assume that i is a multiple of l, which implies that k′ − i is not a multiple

of l, since k′ is not a multiple of l. Next, we consider the word v1 · v0
2 · v3 =

u ·a ·bk′−i ·a ·b · (bk′ ·a ·b)l−1 ·a ·v. We want to show that v1 ·v0
2 ·v3 /∈ LNE,Σ(α). To

this end, we first note that if there exists a substitution g with g(α) = v1 · v0
2 · v3,

then, since u and v are obtained by substituting all variables of α1 and α2 by a

word of length 1, u must be a prefix of g(α1) and v must be a suffix of g(α2). This

implies that, in order to conclude v1 ·v0
2 ·v3 /∈ LNE,Σ(α), it is sufficient to show that

every factor of form a ·w ·a, w ∈ Σ∗, of a ·bk′−i ·a ·b · (bk′ ·a ·b)l−1 ·a is not of form

a · (w′)l · a, w′ ∈ Σ∗. We first note that the factor a · bk′−i · a · b · (bk′ · a · b)l−1 · a is
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obviously not of this form. For all other factors a·w·a of a·bk′−i ·a·b·(bk′ ·a·b)l−1 ·a,

where |w|a ≥ 1, we have |w|a ≤ l − 1, thus, they cannot be of form a · (w′)l · a,

w′ ∈ Σ∗, either. Consequently, it remains to take a closer look at the factors

a · w · a, where |w|a = 0. We can observe that for these factors the length of w is

either k′+1, k′− i or 1, and, since l ≥ 3, neither k′+1, k′− i nor 1 is a multiple of

l. This implies that these factors are also not of form a · (w′)l · a, w′ ∈ Σ∗, which

proves that v1 · v0
2 · v3 /∈ LNE,Σ(α).

Next, we consider the case that v2 = bi, where i is not a multiple of l. Now if

k′ − i is not a multiple of l, then we can show in exactly the same way as before

that v1 ·v0
2 ·v3 /∈ LNE,Σ(α). If, on the other hand, k′−i is a multiple of l, then, since

k′ mod l = 1, we can conclude that i mod l = 1 and, thus, k′ + i mod l = 2.

We now consider the word v1 · v2
2 · v3 = u · a · bk′+i · a · b · (bk′ · a · b)l−1 · a · v. As

demonstrated above, k′+ i is not a multiple of l and, thus, we can apply the same

argumentation as before in order to show that v1 · v2
2 · v3 /∈ LNE,Σ(α).

In order to conclude the proof, we have to consider the case that v2 = u′, where

u′ is a factor of u with 1 ≤ |u′| ≤ k and the case that v2 = u′ · a · bi, where u′ is a

suffix of u and 0 ≤ i ≤ k−(|u′|+1). We first assume that v2 = u′ with u = q1 ·u′ ·q2,

1 ≤ |u′| ≤ k, and consider the word v1 · v0
2 · v3 := q1 · q2 · a · (bk

′ · a · b)l · a · v.

If there exists a substitution g with g(α) = v1 · v0
2 · v3, then, since |q1 · q2| < |u|,

we can conclude that q1 · q2 · a is a prefix of g(α1), which implies that, in order to

conclude v1 · v0
2 · v3 /∈ LNE,Σ(α), it is sufficient to show that every factor a · w · a,

w ∈ Σ∗ of (bk
′ · a · b)l · a is not of form a · (w′)l · a, v ∈ Σ∗. This can be easily

seen, since |(bk′ · a · b)l · a|a ≤ l + 1 and, for every factor of form a · w · a, where

|w|a = 0, we can observe that |w| equals either k′ + 1 or 1, and, since l ≥ 3,

neither of these is a multiple of l. If v2 = u′ · a · bi, where u′ is a suffix of u and

0 ≤ i ≤ k − (|u′| + 1), then we can argue analogously. This proves that for every

factorisation w = v1 · v2 · v3 with |v1v2| ≤ k and v2 6= ε, there exists a t ∈ N0 such

that v1 · vt2 · v3 /∈ LNE,Σ(α), which, by Lemma 2.1, implies that LNE,Σ(α) is not

regular.

It can be shown analogously that LE,Σ(α) /∈ REG. The only difference of

the prove is that the substitution h erases all variables of α1 and α2 instead of

substituting them by b. This is necessary to be able to assume that for any other

substitution g, h(α1) must be a prefix of g(α1) and h(α2) must be a suffix of g(α2).

It remains to show that LNE,Σ′(β) /∈ REG and LE,Σ′(β) /∈ REG. We shall first

show that LNE,Σ′(β) /∈ REG. Let k be the constant of Lemma 2.2 (see page 9)

with respect to LNE,Σ′(β) and let h be the substitution defined by h(z) := bk ·a and

h(x) := b, x ∈ var(β)\{z}. We can note that w := h(β) = u·a·(bk ·a)l·c·v, where u

and v equal h(β1) and h(β2), respectively. Obviously, |w| ≥ k and w ∈ LNE,Σ′(β).

By applying Lemma 2.2, we can obtain a word w′ := u·a·bk′ ·a·(bk ·a)l−1 ·c·v with



Chapter 6. Pattern Languages and the Chomsky Hierarchy 170

k < k′. We shall now show that w′ /∈ LNE,Σ′(β). To this end, we first note that if

there exists a substitution g with g(β) = w′, then, since u and v are obtained by

substituting all variables of β1 and β2 by a word of length 1, u must be a prefix

of g(β1) and v must be a suffix of g(β2). This implies that, in order to conclude

w′ /∈ LNE,Σ′(β), it is sufficient to show that every factor of form a ·w · c, w ∈ Σ′+,

in a · bk′ · a · (bk · a)l−1 · c is not of form a · (w′)l · c, w′ ∈ Σ′+. It is easy to see

that a · bk′ · a · (bk · a)l−1 · c is not of this form and for all other factors of form

a · w · c, w ∈ Σ′+, we have |w|a ≤ l − 1, which implies that w cannot be of form

(w′)l, w′ ∈ Σ′+. This implies that w′ /∈ LNE,Σ′(β) and, thus, LNE,Σ′(β) /∈ REG.

It can be shown analogously that LE,Σ′(β) /∈ REG. The only difference of

the prove is that the substitution h erases all variables of β1 and β2 instead of

substituting them by b. �

In the examples of Propositions 6.6, 6.7 and 6.8 as well as in the above theorem,

we do not consider the situation that two occurrences of the same variable are

separated by a terminal symbol. In the next result, we state that, in certain cases,

this implies non-regularity of pattern languages.

Proposition 6.10. Let Σ and Σ′ be terminal alphabets with |Σ| ≥ 2 and |Σ′| ≥ 3

and let Z ∈ {E,NE}. Furthermore, let α1 ∈ (Σ ∪ X)∗ and α2 ∈ (Σ′ ∪ X)∗ be

patterns.

1. If there exists a γ ∈ (Σ ∪X)∗ with | var(γ)| ≥ 1 such that, for some d ∈ Σ,

� α1 = γ · d · δ and var(γ) ⊆ var(δ),

� α1 = γ · d · δ and var(δ) ⊆ var(γ) or

� α1 = β · d · γ · d · δ and var(γ) ⊆ (var(β) ∪ var(δ)),

then LZ,Σ(α1) /∈ REG.

2. If in α2 there exists a non-empty variable block, all the variables of which

also occur outside this block, then LZ,Σ′(α2) /∈ REG.

Proof. We first prove point 1 of the proposition. To this end, we assume that

LNE,Σ(α) is a regular language. Furthermore, we assume that for α one of the

three cases described in point 1 is satisfied with d = b. Let w be the word obtained

from α by substituting all variables in var(γ) by an, where n is the constant of

Pumping Lemma 2 with respect to LNE,Σ(α), and all other variables by a. By

applying Lemma 2.2 (see page 9), we can obtain a word w′ from w by pumping

the part that results from γ without pumping the other parts of the word. Since

every variable of γ occurs in the other parts as well, and since we only substituted

the variables that do not occur in γ by a, we can conclude that w′ is not in
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LNE,Σ(α), which proves that LNE,Σ(α) /∈ REG. Furthermore, the above proof can

be applied in exactly the same way in order to show that LE,Σ(α1) /∈ REG.

Point 2 of the proposition can be proved analogously. If in α2 there exists a

variable block, all the variables of which also occur outside this block, then we can

substitute all variables in this block by an, where n is the constant of Lemma 2.2

with respect to LNE,Σ′(α) and, since |Σ′| ≥ 3, we can assume that the variable

block is not delimited by a to either side. Furthermore, we substitute all variables

that do not occur in the variable block by a. Now we can show in exactly the

same way as before that the thus obtained word is not in LNE,Σ′(α), which proves

LNE,Σ′(α) /∈ REG and LE,Σ′(α) /∈ REG can be shown in exactly the same way. �

We conclude this section by referring to the examples presented in Proposi-

tions 6.6, 6.7 and 6.8, which, as described above, suggest that complete characteri-

sations of the regular E-pattern languages over small alphabets might be extremely

complex. In the next section, we wish to find out about the fundamental mecha-

nisms of the above example patterns that are responsible for the regularity of their

pattern languages. Intuitively speaking, some of these example patterns describe

regular languages, because they contain a factor that is less complex than it seems

to be, e. g., for the pattern β := x1 · a · x2x2 · a · x3x3 · b · x4 it can be shown that

the factor a · x2x2 · a · x3x3 · b could be replaced by a · x(bb)∗ · a · b (where x(bb)∗

is a special variable that can only be substituted by a unary string over b of even

length) without changing its E-pattern language with respect to Σ2. This directly

implies that LE,Σ2(β) = L(Σ∗2 · a(bb)∗ab · Σ∗2), which shows that LE,Σ2(β) ∈ REG.

In the next section, by generalising the above observation, we develop a method

that allows us to transform complicated patterns into shorter and equivalent ones

that can be easily seen to describe a regular language.

6.3 Regularity of E-Pattern Languages: A

Sufficient Condition Taking Terminal

Symbols into Account

In this section we investigate the phenomenon that a whole factor in a pattern can

be substituted by a less complex one, without changing the corresponding pattern

language. This technique can be used in order to show that a complicated pattern

is equivalent to one that can be easily seen to describe a regular language.

For the sake of a better presentation of our results, we slightly redefine the

concept of patterns. A pattern with regular expressions is a pattern that may

contain regular expressions. Such a regular expressions is then interpreted as a
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variable with only one occurrence that can only be substituted by words des-

cribed by the corresponding regular expression. For example LE,Σ2(x1b
∗x1a

∗) =

{h(x1x2x1x3) | h is a substitution with h(x2) ∈ L(b∗), h(x3) ∈ L(a∗)}. Obviously,

patterns with regular expressions exceed the expressive power of classical patterns.

However, we shall use this concept exclusively in the case where a classical pat-

tern is equivalent to a pattern with regular expressions. For example, the pattern

x1 ·a ·x2x3x3x2 ·a ·x4 is equivalent to the pattern x1 ·a(bb)∗a ·x2 (see Lemma 6.13).

Next, we present a lemma that states that in special cases whole factors of a

pattern can be removed without changing the corresponding pattern language.

Lemma 6.11. Let α := β ·y·β′·a·γ ·b·δ′·z ·δ, where β, δ ∈ (Σ2∪X)∗, β′, γ, δ′ ∈ X∗,
y, z ∈ X and |α|y = |α|z = 1. Then LE,Σ2(α) ⊆ LE,Σ2(β·y·ab·z·δ). If, furthermore,

var(β′ · γ · δ′) ∩ var(β · δ) = ∅, then also LE,Σ2(β · y · ab · z · δ) ⊆ LE,Σ2(α).

Proof. Let h be an arbitrary substitution. We obtain a substitution g from h in

the following way. For every x ∈ var(β · δ) \ {y, z}, we define g(x) := h(x). If the

last symbol in h(γ) is a, then we define g(y) := h(y · β′) · a · h(γ)[1, |h(γ)| − 1] and

g(z) := h(δ′ · z). If the first symbol in h(γ) is b, then we define g(y) := h(y · β′)
and g(z) := h(γ)[2, |h(γ)|] · b · h(δ′ · z). If the last symbol in h(γ) is b and the first

symbol in h(γ) is a, then h(γ) = u · a · b · v, u, v ∈ Σ∗2. In this case, we define

g(y) := h(y ·β′) · a ·u and g(z) := v · b ·h(δ′ · z). We observe that in all these cases

we have g(β · y · a · b · z · δ) = h(α) and, thus, LE,Σ2(α) ⊆ LE,Σ2(β · y · a · b · z · δ).
Next, we assume further that var(β′ · γ · δ′) ∩ var(β · δ) = ∅. Let g be a

substitution. Obviously, g(β · y · a · b · z · δ) = h(α), where h(x) := g(x) if

x ∈ (var(β ·δ)∪{y, z}) and h(x) := ε otherwise. This implies LE,Σ2(β ·y ·a·b·z ·δ) ⊆
LE,Σ2(α). �

The fact that LE,Σ2(x1 · a · x2x2 · b · x3) ∈ REG has already been stated in

Proposition 6.6. We can now note that this result is a simple application of

Lemma 6.11, which implies LE,Σ2(x1 · a · x2x2 · b · x3) = LE,Σ2(x1 · ab · x3). It is

straightforward to construct more complex applications of Lemma 6.11 and it is

also possible to apply it in an iterative way. For example, by applying Lemma 6.11

twice, we can show that

LE,Σ2(x1x2x3 · a · x2x4 · b · x3x4x5x6 · b · x6x7 · a · x7x8 · b · x9 · a · x10) =

LE,Σ2(x1 · ab · x5x6 · b · x6x7 · a · x7x8 · b · x9 · a · x10) =

LE,Σ2(x1 · ab · x5 · ba · x8 · b · x9 · a · x10) ∈ REG .

In the previous lemma, it is required that the factor γ is delimited by different

terminal symbols and, in the following, we shall see that an extension of the



Chapter 6. Pattern Languages and the Chomsky Hierarchy 173

statement of Lemma 6.11 for the case that γ is delimited by the same terminal

symbols, is much more difficult to prove.

Roughly speaking, Lemma 6.11 holds due to the following reasons. Let α :=

y · β′ · a · γ · b · δ′ · z be a pattern that satisfies the conditions of Lemma 6.11, then,

for any substitution h (with respect to Σ2), h(α) necessarily contains the factor

ab. Conversely, since y and z are variables with only one occurrence and there are

no terminals in β′ · γ · δ′, α can be mapped to every word that contains the factor

ab. On the other hand, for α′ := y · β′ · a · γ · a · δ′ · z, h(α′) does not necessarily

contain the factor aa and it is not obvious if the factor β′ · a · γ · a · δ′ collapses to

some simpler structure, as it is the case for α. In fact, Theorem 6.9 states that if

β′ = δ′ = ε and γ = x3, then LE,Σ2(α′) /∈ REG.

However, by imposing a further restriction with respect to the factor γ, we can

extend Lemma 6.11 to the case where γ is delimited by the same terminal symbol.

In order to prove this result, the next lemma is crucial, which states that for any

terminal-free pattern that is delimited by two occurrences of symbols a and that

has an even number of occurrences for every variable, if we apply any substitution

to this pattern, we will necessarily obtain a word that contains a unary factor over

b of even length that is delimited by two occurrences of a.

Lemma 6.12. Let α ∈ X∗ such that, for every x ∈ var(α), |α|x is even. Then

every w ∈ LE,Σ2(a · α · a) contains a factor ab2na, n ∈ N0.

Proof. First, we introduce the following definition that is convenient for this proof.

A factor of form abna, n ∈ N0, is called a b-segment. If n is even, then abna is

an even b-segment and if n is odd, then abna is an odd b-segment. In a word w ∈
{a, b}∗, b-segments that share exactly one occurrence of symbol a are considered

to be distinct b-segments, e. g., in aab2ab4abab7a, there are 5 b-segments, 3 of

which are even b-segments.

Before we can prove the statement of the lemma, we first prove the following

claim:

Claim (1). Let w1 ∈ (a · Σ∗2), w3 ∈ (Σ∗2 · a), w2, v ∈ Σ∗2 and v does not contain

any even b-segment. If w1 · w2 · w3 has an odd number of even b-segments, then

w1 · v · w2 · v · w3 has an odd number of even b-segments as well.

Proof. (Claim (1)) We assume that for w1, w2, w3 and v the conditions of the

lemma are satisfied and, for the sake of convenience, we define w := w1 · w2 · w3

and w′ := w1 ·v ·w2 ·v ·w3. Intuitively, the statement of the lemma can be rephrased

as follows. No matter where the two occurrences of v are inserted into w, the total

number of even b-segments increases or decreases only by an even number. Since

v does not contain any even b-segment, only the (possibly empty) prefix or suffix
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over b of v can turn odd b-segments of w in even ones or vice versa. We shall

first consider the case that |w2|a ≥ 1, i. e., w2 contains at least one occurrence of

symbol a, and we recall that, since w1 ∈ (a ·Σ∗2) and w3 ∈ (Σ∗2 · a), w1 has a suffix

of form ab∗ and w3 has a prefix of form b∗a. Furthermore, since |w2|a ≥ 1, w2 has

a prefix of form b∗a and a suffix of form ab∗. In summary, this implies that we

can write w′ as

w′ = w′1 · a · bn · v · bn
′ · w′2 · bm · v · bm

′ · a · w′3 ,

where n, n′,m,m′ ∈ N0, w′2[1] = w′2[−] = a, w1 = w′1 · a · bn, w2 = bn
′ ·w′2 · bm and

w3 = bm
′ · a · w′3, and, furthermore,

w = w′1 · a · bn+n′ · w′2 · bm+m′ · a · w′3 .

Obviously, all the even b-segments in the factors w′1 · a, w′2 and a · w′3 also occur

in w′. Therefore, it is sufficient to compare the number of even b-segments in the

factors a · bn+n′ · a and a · bm+m′ · a with the number of even b-segments in the

factors a · bn · v · bn′ · a and a · bm · v · bm′ · a.

If v = bk, k ∈ N0, then the b-segment a · bn+n′ · a is changed into the b-

segment a ·bn+k+n′ ·a and the b-segment a ·bm+m′ ·a is changed into the b-segment

a ·bm+k+m′ ·a. If k is even, then in w′ we have the same number of even b-segments

as in w, since n + k + n′ is even if and only if n + n′ is even, and m + k + m′ is

even if and only if m+m′ is even. If, on the other hand, k is odd, then n+ k+ n′

is even if and only if n + n′ is odd, and m + k + m′ is even if and only if m + m′

is odd. Thus, if n + n′ and m + m′ are both even or both odd, then the number

of even b-segments in w′ has decreased (or increased, respectively) by 2 compared

to the number of even b-segments in w. If, on the other hand, n + n′ is even

and m + m′ is odd or the other way around, then in w′ there are as many even

b-segments as in w. So we can conclude that if v = bk, k ∈ N0, then the number

of even b-segments in w′ is odd.

We shall now assume that there is at least one occurrence of a in v, i. e.,

v = bk · u · bk′ , k, k′ ∈ N0, where u[1] = u[−] = a. This implies

w′ = w′1 · a · bn+k · u · bk′+n′ · w′2 · bm+k · u · bk′+m′ · a · w′3 .

In the following we shall show that, for all possible choices of n, n′,m,m′, k, k′ ∈
N0, the number of even b-segments among the b-segments a · bn+k · a, a · bk′+n′ · a,

a · bm+k · a and a · bk′+m′ · a is even if and only if the number of even b-segments

among the b-segments a · bn+n′ · a and a · bm+m′ · a is even. To this end, it is

sufficient to note that if (n + n′) and (m + m′) are both even or both odd, then,
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for all possible choices of n, n′,m,m′, k, k′ ∈ N0, either exactly 0, 2 or all 4 of the

numbers (n+ k), (k′ + n′), (m+ k) and (k′ +m′) are even. If, on the other hand,

one number of (n + n′) and (m + m′) is even and the other one is odd, then, for

all possible choices of n, n′,m,m′, k, k′ ∈ N0, either exactly 1 or 3 of the numbers

(n + k), (k′ + n′), (m + k) and (k′ + m′) are even. This directly implies that the

number of even b-segments in w′ is odd, since, by assumption, the number of even

b-segments in w is odd.

It remains to consider the case that w2 = bl, l ∈ N0. We note that this implies

the following.

w′ = w′1 · a · bn · v · bl · v · bm · a · w′3 ,

where n, l,m,∈ N0, w1 = w′1 ·a ·bn, w2 = bl and w3 = bm ·a ·w′3, and, furthermore,

w = w′1 · a · bn+l+m · a · w′3 .

If v = bk, k ∈ N0, then w′ = w′1 ·a ·bn+k+l+k+m ·a ·w′3 and, since (n+k+ l+k+m)

is even if and only if (n+ l +m) is even, we can directly conclude that w′ has as

many even b-segments as w.

If, on the other hand, v = bk · u · bk′ , k, k′ ∈ N0, where u[1] = u[−] = a, then

w′ = w′1 · a · bn+k · u · bk′+l+k · u · bk′+m · a · w′3 .

Similarly as before, we can show that, for all possible choices of n, l,m, k, k′ ∈ N0,

the number of even b-segments among the b-segments a · bn+k · a, a · bk′+l+k · a
and a · bk′+m · a is even if and only if a · bn+l+m · a is an odd b-segment. To this

end, it is sufficient to note that if (n+ l+m) is even, then, for all possible choices

of n, l,m, k, k′ ∈ N0, either exactly 1 or all 3 of the numbers (n + k), (k′ + l + k)

and (k′ + m) are even. If, on the other hand, (n + l + m) is odd, then, for all

possible choices of n, l,m, k, k′ ∈ N0, either exactly 0 or 2 of the numbers (n+ k),

(k′ + l + k) and (k′ +m) are even. This directly implies that the number of even

b-segments in w′ is odd, since, by assumption, the number of even b-segments in

w is odd.

Hence, for all possible choices of w1, w2, w3 and v, w′ has an odd number of

even b-segments, which concludes the proof. � (Claim (1))

We are now ready to prove the statement of the lemma, i. e., for every w ∈
LE,Σ2(a · α · a), w contains an even b-segment. Let h be a substitution with

h(a · α · a) = w. Obviously, if, for some x ∈ var(α), h(x) contains an even b-

segment, then h(a ·α · a) contains an even b-segment. Consequently, we only have

to consider the case that, for every x ∈ var(α), h(x) does not contain an even

b-segment.
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We can note that there are words u1, u2, . . . , uk, such that u1 = a · a, uk =

h(a ·α ·a) and, for every i, 2 ≤ i ≤ k, the word ui can be obtained by inserting two

occurrences of a word v into the word ui−1. More precisely, we start with u1 = a ·a
and insert two occurrences of h(x1) into u1 in order to obtain u2, then we repeat

this step in order to construct u3 and after
|β|x1

2
such steps we stop. Next, we do

the same for
|β|x2

2
steps with respect to h(x2) and so on. Clearly, since, for every

x ∈ var(α), |α|x is even, this can be done in such a way that uk = h(a · α · a) is

satisfied. Furthermore, since u1 has an odd number of even b-segments, we can

conclude with the above claim that, for every i, 1 ≤ i ≤ k, the word ui has an

odd number of even b-segments, which implies that uk = h(a · α · a) = w has at

least one even b-segments. This concludes the proof. �

By applying Lemma 6.12, we can show that if a pattern α := β·y·β′·a·γ·a·δ′·z·δ
satisfies the conditions of Lemma 6.11, all variables in γ have an even number of

occurrences and there is at least one variable in γ that occurs only twice, then the

factor y · β′ · a · γ · a · δ′ · z can be substituted by a regular expression.

Lemma 6.13. Let α := β ·y·β′·a·γ ·a·δ′·z ·δ, where β, δ ∈ (Σ2∪X)∗, β′, γ, δ′ ∈ X∗,
y, z ∈ X, |α|y = |α|z = 1 and, for every x ∈ var(γ), |γ|x is even. Then LE,Σ2(α) ⊆
LE,Σ2(β · y · a(bb)∗a · z · δ). If, furthermore, var(β′ · γ · δ′)∩ var(β · δ) = ∅ and there

exists a z′ ∈ var(γ) with |α|z′ = 2, then also LE,Σ2(β · y ·a(bb)∗a · z · δ) ⊆ LE,Σ2(α).

Proof. Let h be an arbitrary substitution. We first note that we can prove h(α) ∈
LE,Σ2(β ·y ·a · (bb)∗ ·a ·z ·δ) by showing that h(y ·β′ ·a ·γ ·a ·δ′ ·z) contains a factor

of form a · bn · a, where n is even. We note that Lemma 6.12 directly implies that

h(a · γ · a) contains such a factor. Thus, LE,Σ2(α) ⊆ LE,Σ2(β · y · a · (bb)∗ · a · z · δ)
follows.

In order to prove the second statement of the lemma, we assume that var(β′ ·
γ · δ′) ∩ var(β · δ) = ∅ and there exists a z′ ∈ (var(γ) \ var(β · β′ · δ′ · δ)) with

|γ|z′ = 2. Now let h be an arbitrary substitution and let h(β ·y ·a · (bb)∗ ·a ·z ·δ) =

h(β ·y) ·a ·b2n ·a ·h(z ·δ), n ∈ N0. Obviously, h(β ·y ·a ·(bb)∗ ·a ·z ·δ) = g(α), where,

for every x ∈ (var(β · δ)∪ {y, z}), g(x) := h(x), for every x ∈ var(β′ · γ · δ′) \ {z′},
g(x) := ε and g(z′) := bn. This implies LE,Σ2(β · y · a · (bb)∗ · a · z · δ) ⊆ LE,Σ2(α),

which concludes the proof. �

Obviously, Lemmas 6.11 and 6.13 can also be applied in any order in the

iterative way pointed out above with respect to Lemma 6.11. We shall illustrate

this now in a more general way. Let α be an arbitrary pattern such that

α := β · y1 · β′1 · a · γ1 · a · δ′1 · z1 · π · y2 · β′2 · b · γ2 · a · δ′2 · z2 · δ ,
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with β, π, δ ∈ (Σ2 ∪ X)∗, β′1, β
′
2, γ1, γ2, δ

′
1, δ
′
2 ∈ X∗ and y1, y2, z1, z2 ∈ X. If the

factors y1 · β′1 · a · γ1 · a · δ′1 · z1 and y2 · β′2 · b · γ2 · a · δ′2 · z2 satisfy the conditions

of Lemma 6.13 and Lemma 6.11, respectively, then we can conclude that α is

equivalent to α′ := β · y1 · a(bb)∗a · z1 · π · y2 · ba · z2 · δ. This particularly means

that the rather strong conditions

1. var(β′1 · γ1 · δ′1) ∩ var(β · π · β′2 · γ2 · δ′2 · δ) = ∅,

2. var(β′2 · γ2 · δ′2) ∩ var(β · β′1 · γ1 · δ′1 · π · δ) = ∅

must be satisfied. However, we can state that LE,Σ2(α) = LE,Σ2(α′) still holds if

instead of conditions 1 and 2 from above the weaker condition var(β′1 · γ1 · δ′1 · β′2 ·
γ2 · δ′2)∩ var(β · π · δ) = ∅ is satisfied. This claim can be easily proved by applying

the same argumentations as in the proofs of Lemmas 6.11 and 6.13, and we can

extend this result to arbitrarily many factors of form yi · β′i · c1 · γi · c2 · δ′i · zi,
c1, c2 ∈ Σ2. Next, by the following definition, we formalise this observation in

terms of a relation on patterns with regular expressions.

Definition 6.14. For any two patterns with regular expressions α and α′, we

write α B α′ if and only if the following conditions are satisfied.

� α contains factors αi ∈ (Σ2 ∪X)∗, 1 ≤ i ≤ k, where, for every i, 1 ≤ i ≤ k,

αi := yi · β′i · di · γi · d′i · δ′i · zi, with β′i, γi, δ
′
i ∈ X+, yi, zi ∈ X, |α|yi =

|α|zi = 1, di, d
′
i ∈ Σ2 and, if di = d′i, then, for every x ∈ var(γi), |γi|x is even

and there exists an x′ ∈ var(γi) with |α|x′ = 2. Furthermore, the factors

α1, α2, . . . , αk can overlap by at most one symbol and the variables in the

factors α1, α2, . . . , αk occur exclusively in these factors.

� α′ is obtained from α by substituting every αi, 1 ≤ i ≤ k, by yi · did′i · zi, if

di 6= d′i and by yi · di(d′′i d′′i )∗d′i · zi, d′′i ∈ Σ, d′′i 6= di, if di = d′i.

By generalising Lemmas 6.11 and 6.13, we can prove that α B α′ implies that

α and α′ describe the same E-pattern language with respect to alphabet Σ2.

Theorem 6.15. Let α and α′ be patterns with regular expressions. If α B α′,

then LE,Σ2(α) = LE,Σ2(α′).

Proof. We assume that α B α′ is satisfied, which implies that α contains factors

αi ∈ (Σ2∪X)∗, 1 ≤ i ≤ k, where, for every i, 1 ≤ i ≤ k, αi := yi ·β′i ·di ·γi ·d′i ·δ′i ·zi,
with β′i, γi, δ

′
i ∈ X+, yi, zi ∈ X, |α|yi = |α|zi = 1, di, d

′
i ∈ Σ2 and, if di = d′i, then,

for every x ∈ var(γi), |γi|x is even and there exists an x′ ∈ var(γi) with |α|x′ = 2.

Furthermore, the factors α1, α2, . . . , αk can overlap by at most one symbol and the

variables in the factors α1, α2, . . . , αk occur exclusively in these factors. Moreover,
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α′ is obtained from α by substituting every αi, 1 ≤ i ≤ k, by α′i := yi · di · d′i · zi,
if di 6= d′i and by α′i := yi · di · (d′′i d′′i )∗ · d′i · zi, d′′i 6= di, if di = d′i.

By Lemmas 6.11 and 6.13, we can conclude that LE,Σ2(α) ⊆ LE,Σ2(π1), where

π1 is obtained from α by substituting α1 by α′1. In the same way, we can also

conclude that LE,Σ2(π1) ⊆ LE,Σ2(π2), where π2 obtained from π1 by substituting

α2 by α′2. By repeating this argumentation, LE,Σ2(α) ⊆ LE,Σ2(α′) follows.

It remains to prove that LE,Σ2(α′) ⊆ LE,Σ2(α). To this end, let h be an arbitrary

substitution. We shall show that h(α′) ∈ LE,Σ2(α) by defining another substitution

g that satisfies h(α′) = g(α). First, let A ⊆ {1, 2, . . . , k} be such that, for every

i, 1 ≤ i ≤ k, di = d′i if and only if i ∈ A. Moreover, for every i ∈ A, let xi be

a variable that satisfies xi ∈ var(γi) with |α|xi = 2. Now, for every x ∈ var(α) \
(
⋃k
i=1 var(β′i ·γi ·δ′i)), we define g(x) := h(x). For every x ∈ (

⋃
var(β′i ·γi ·δ′i)\{xi |

i ∈ A}), we define g(x) := ε. So it only remains to define g(xi), for every xi ∈ A.

To this end, we first note that, for every i ∈ A, α′i = yi · di · (d′′i d′′i )∗ · d′i · zi. Now,

for every i ∈ A, let ni ∈ N0 be such that h maps (d′′i d
′′
i )
∗ to (d′′i )

ni . Finally, for

every i ∈ A, we define g(xi) := (d′′i )
ni . It can be easily verified that g(α) = h(α′).

Thus, LE,Σ2(α′) ⊆ LE,Σ2(α), which concludes the proof. �

We conclude this section by discussing a more complex example that illustrates

how Definition 6.14 and Theorem 6.15 constitute a sufficient condition for the

regularity of the E-pattern language of a pattern with respect to Σ2. Let α be the

following pattern.

x1ax2x
2
3bx4x3x5x6︸ ︷︷ ︸

α1:=y1·β′1·a·γ1·b·δ′1·z1

x2
7 x8x9x5x3ax4x5x4x9x10bx11︸ ︷︷ ︸

α2:=y2·β′2·a·γ2·b·δ′2·z2

ax12bx13ax14x15bx
2
15x

2
16bx17︸ ︷︷ ︸

α3:=y3·β′3·a·γ3·b·δ′3·z3

.

By Definition 6.14, α B β holds, where β is obtained from α by substituting

the above defined factors α1, α2 and α3 by factors x1 · ab · x6, x8 · ab · x11 and

x14 · b(aa)∗b · x17, respectively, i. e.,

β := x1abx6x7x7x8abx11ax12bx13ax14b(aa)∗bx17 .

Furthermore, by Theorem 6.15, we can conclude that LE,Σ2(α) = LE,Σ2(β). Howe-

ver, we can also apply the same argumentation to different factors of α, as pointed

out below:

x1ax2x
2
3bx4x3x5x6x

2
7x8x9x5x3ax4x5x4x9x10︸ ︷︷ ︸

α1:=y1·β′1·a·γ1·b·δ′1·z1

bx11ax12bx13ax14x15bx
2
15x

2
16bx17︸ ︷︷ ︸

α2:=y2·β′2·a·γ2·b·δ′2·z2

.
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Now, again by Definition 6.14, α B β′ is satisfied, where

β′ := x1ax2bax10bx11ax12bx13ax14b(aa)∗bx17 .

Since every variable of β′ has only one occurrence, it can be easily seen that

LE,Σ2(β′) ∈ REG and, by Theorem 6.15, LE,Σ2(α) ∈ REG follows.

The above example demonstrates how the relation B and Theorem 6.15 can

be used in order to show that a pattern describes a regular E-pattern language.

Hence, in order to solve the membership problem for a pattern language LE,Σ2(α),

it might be worthwhile to first check whether or not α B β for some pattern β

with regular expressions and every variable of β has only one occurrence. If this is

the case, then we can conclude that LE,Σ2(α) is a regular language, which allows

the membership problem for LE,Σ2(α) to be solved faster. If, on the other hand,

this is not the case, then we cannot conclude that LE,Σ2(α) is not regular, but we

might still be able to find a pattern β with α B β and β has much fewer variables

than α (as it is the case in the example above), which again helps to solve the

membership problem for LE,Σ2(α).



Chapter 7

Beyond Pattern Languages

As mentioned in Section 2.2.2, due to their simple definition, pattern languages

have connections to many areas of theoretical computer science. In particular,

there exist numerous language generating devices that also use the most funda-

mental mechanism of patterns, i. e., the homomorphic substitution of symbols,

as a basic element. A prominent example for such language generators are the

well-known L systems (see Kari et al. [43] for a survey), but also many types

of grammars as, e. g., Wijngaarden grammars, macro grammars, Indian parallel

grammars or deterministic iteration grammars, use homomorphic substitution as a

central concept (cf. Albert and Wegner [2] and Bordihn et al. [9] and the references

therein). Albert and Wegner [2] introduce H-systems, which use homomorphic

substitution in a more puristic way, without any grammar like mechanisms. A

language generating device of practical importance, which can be easily seen to be

related to pattern languages and which has already been briefly described in Sec-

tion 2.2.3.1, are the extended regular expressions with backreferences (denoted by

REGEX). More recent models like pattern expressions (Câmpeanu and Yu [12]),

synchronized regular expressions (Della Penna et al. [59]) and EH-expressions

(Bordihn et al. [9]) are mainly inspired directly by REGEX.

Compared to most of the above devices, pattern languages use the concept

of homomorphic substitution in a rather basic way. Hence, the question arises

whether insights into pattern languages can be extended to other, more general

language generating devices. For negative results of pattern languages as, e. g.,

the NP-hardness of their membership problem or the undecidability of their in-

clusion problem, this is straightforward: every language generating device the

corresponding language class of which contains the full class of pattern languages

as, e. g., REGEX, shares these negative results. On the other hand, if we want

to apply the proof techniques of Chapters 3 and 5 in order to identify parameters

of REGEX that, if restricted, allow the membership problem for REGEX to be

solved efficiently, then a deeper understanding of the role that homomorphic sub-

180
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stitutions play for REGEX is required. We shall now point out that for REGEX,

it is surprisingly difficult to gain insights in this regard.

To this end, we recall that, intuitively speaking, a backreference in a REGEX

points back to an earlier subexpression, meaning that it has to be matched to

the same word the earlier subexpression has been matched to. For example, r :=

(1 (a | b)∗ )1 · c · \1 is a REGEX, where \1 is a backreference to the referenced

subexpression between the parentheses (1 and )1. The language described by r,

denoted by L(r), is the set of all words wcw, w ∈ {a, b}∗.
From an intuitive point of view, REGEX are a combination of the concept of

homomorphic substitution and regular expressions. For example, the REGEX r

can also be given as a string xcx, where the symbol x can be substituted by words

from {a, b}∗, i. e., both occurrences of x must be substituted by the same word.

However, due to the possible nesting of referenced subexpressions, the concepts of

regular expressions and substitutions seem to be inherently entangled and there

is no easy way to treat them separately. We illustrate this with the example t :=

(1 a
∗ )1 ·(2 (b·\1)∗ )2 ·\2·\1. The language L(t) := {an(ban)m(ban)man | n,m ≥ 0}

cannot that easily be described in terms of a single string and substitutions, e. g.,

by the string xyyx, where x can be substituted by words from {an | n ≥ 0},
and y by words of form {(ban)m | n,m ≥ 0}, since then we can obtain words

an(ban
′
)m(ban

′
)man with n 6= n′. In fact, two separate steps of substitution seem

necessary, i. e., we first substitute y by words from {(bz)n | n ≥ 0} and after that

we substitute x and z by words from {an | n ≥ 0}, with the additional requirement

that x and z are substituted by the same word. More intuitively speaking, the nes-

ting of referenced subexpressions require iterated homomorphic substitution, but

we also need to carry on information from one step of homomorphic substitution

to the next one.

The above considerations indicate that in REGEX there can be complex inter-

dependencies between the concepts of regular expressions and homomorphic sub-

stitution. Therefore, in order to extend results about the complexity of the mem-

bership problem for pattern languages to the membership problem for REGEX

languages, it might be necessary to further research this issue. To this end, we

study alternative possibilities to combine regular expressions and homomorphic

substitutions, with the objective of reaching the expressive power of REGEX as

closely as possible, without exceeding it. More precisely, we combine patterns with

regular expressions by first adding the alternation and star operator to patterns

and, furthermore, by letting their variables be typed by regular languages, i. e.,

the words variables are replaced with are from given regular sets. Then we iterate

this step by using this new class of languages again as types for variables and so

on.
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We also take a closer look at pattern expressions, which are introduced by

Câmpeanu and Yu [12] as a convenient tool to define REGEX languages. In

[12], many examples are provided that show how to translate a REGEX into an

equivalent pattern expression and vice versa. It is also stated that this is possible

in general, but a formal proof for this statement is not provided (in fact, from

the following Theorem 7.13 and 7.17 it follows that there are indeed REGEX

that describe languages that cannot be described by pattern expressions). In the

present chapter, we show that pattern expressions are much weaker than REGEX

and they describe a proper subset of the class of REGEX languages (in fact,

they are even weaker than REGEX that do not contain referenced subexpressions

under a star). These limits in expressive power are caused by the above described

difficulties due to the nesting of referenced subexpressions.

On the other hand, pattern expressions still describe an important and natural

subclass of REGEX languages, that has been independently defined in terms of

other models and, as shown in this work, also coincides with the class of languages

resulting from the modification of patterns described above. We then refine the

way of how pattern expressions define languages in order to accommodate the

nesting of referenced subexpressions and we show that the thus obtained class

of languages coincides with the class of languages given by REGEX that do not

contain a referenced subexpression under a star.

Finally, we briefly discuss the membership problem for REGEX with a res-

tricted number of backreferences, which, in the unrestricted case, is NP-complete.

Although it seems trivial that this problem can be solved in polynomial time, the

situation is complicated by subexpressions that occur and are referenced under

a star, which represent arbitrarily many distinct subexpressions with individual

backreferences.

7.1 Patterns with Regular Operators and

Types

In this section, we combine pattern languages with regular languages and regular

expressions. More precisely, we first define pattern languages, the variables of

which are typed by regular languages1 and after that we add the regular operators

of alternation and star.

Let PAT := {α | α ∈ (Σ ∪ X)+}. We always assume that, for every i ∈
1We recall that at the end of Section 3.3.2, we already use regular-typed patterns and in

Section 6.3, we use regular expressions in patterns, which, technically, are regular-typed patterns,
too. Furthermore, the learnability of patterns with types has been investigated by Wright [87]
and Koshiba [46].
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N, xi ∈ var(α) implies {x1, x2, . . . , xi−1} ⊆ var(α). For an arbitrary class L

of languages and a pattern α with | var(α)| = m, an L-type for α is a tuple

T := (Tx1 , Tx2 , . . . , Txm), where, for every i, 1 ≤ i ≤ m, Txi ∈ L and Txi is called

the type language of (variable) xi. A substitution h satisfies T if and only if, for

every i, 1 ≤ i ≤ m, h(xi) ∈ Txi .

Definition 7.1. Let α ∈ PAT, let L be a class of languages and let T be an

L-type for α. The T -typed pattern language of α is defined by LT (α) := {h(α) |
h is a substitution that satisfies T }. For any class of languages L, LL(PAT) :=

{LT (α) | α ∈ PAT, T is an L-type for α} is the class of L-typed pattern languages.

We note that {Σ∗}-typed and {Σ+}-typed pattern languages correspond to the

classes of E-pattern languages and NE-pattern languages, respectively, as defined

in Chapter 2. It is easy to see that LREG(PAT) is contained in the class of REGEX

languages. The substantial difference between these two classes is that the backre-

ferences of a REGEX can refer to subexpressions that are again REGEX and, thus,

may describe non-regular languages, while REG-typed pattern languages are gi-

ven by patterns all the variables of which are typed by regular languages. Hence,

in order to increase the expressive power of typed patterns in this regard, it seems

necessary to type the variables with languages from LREG(PAT) instead of REG

and then using the thus obtained languages again as type languages and so on.

However, as demonstrated by the following proposition, this approach leads to a

dead end:

Proposition 7.2. For any class of languages L, LL(PAT) = LLL(PAT)(PAT).

Proof. Let L′ := LL(PAT). We first show that L′ ⊆ LL′(PAT). To this end, let

L ∈ L′. Obviously, L = L(L)(x1), where (L) is an L′-type for the pattern x1. Thus,

L ∈ LL′(PAT) and L′ ⊆ LL′(PAT) follows.

To prove LL′(PAT) ⊆ L′, we let L′ ∈ LL′(PAT). This implies that there exists

a pattern β and an L′-type T ′ := (Tx1 , Tx2 , . . . , Txm) for β with LT ′(β) = L′.

Furthermore, since T ′ is an L′-type, for every i, 1 ≤ i ≤ m, there exists a pattern

αi and an L-type T ′i such that LT ′i (αi) = Txi . Now, for every i, 1 ≤ i ≤ m, we

transform αi into α′i by uniformly renaming the variables in αi in such a way that,

for every i, j with 1 ≤ i < j ≤ m, var(α′i) ∩ var(α′j) = ∅, and
⋃

1≤i≤m var(α′i) =

{x1, x2, . . . , xk}, where k =
∑m

i=1 | var(αi)|. We can now obtain a pattern α from

β by substituting every occurrence of xi in β by αi, 1 ≤ i ≤ m. We note that

LT̂ (α) = LT ′(β), where T̂ is an L-type for α that is constructed by combining all

the L-types T ′i , 1 ≤ i ≤ m. This implies that L′ ∈ L′ and, thus, LL′(PAT) ⊆ L′,

which concludes the proof. �
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Proposition 7.2 demonstrates that typed pattern languages are invariant with

respect to iteratively typing the variables of the patterns. This suggests that

if we want to extend pattern languages in such a way that they can describe

larger subclasses of the class of REGEX languages, then the regular aspect cannot

completely be limited to the type languages of the variables. This observation

brings us to the definition of PATro := {α | α is a regular expression over (Σ ∪
X ′), where X ′ is a finite subset of X}, the set of patterns with regular operators.

For the sake of convenience, in the remainder of this chapter, whenever we use a

regular expression over the alphabet (Σ∪X), we actually mean a regular expression

over (Σ∪X ′), for some finite subset X ′ of X. In order to define the language given

by a pattern with regular operators, we extend the definition of types to patterns

with regular operators in the obvious way.

Definition 7.3. Let α ∈ PATro and let T be a type for α. The T -typed pattern

language of α is defined by LT (α) :=
⋃
β∈L(α) LT (β). For any class of languages

L, we define LL(PATro) := {LT (α) | α ∈ PATro, T is an L-type for α}.

Patterns with regular operators are also used in the definition of pattern ex-

pressions (see Câmpeanu and Yu [12] and Section 7.2) and have been called regular

patterns by Bordihn et al. in [9]. As an example, we define α := (x1ax1 | x2bx2)∗ ∈
PATro and T := (L(c∗),L(d∗)). The language LT (α) can be generated in two

steps. We first construct L(α) = {β1 ·β2 · · · · ·βn | n ∈ N0, βi ∈ {x1ax1, x2bx2}, 1 ≤
i ≤ n} and then LT (α) is the union of all typed pattern languages LT (β), where

β ∈ L(α). Thus, LT (α) = {w1 · w2 · · · · · wn | n ∈ N0, wi ∈ {cmacm, dmbdm | m ∈
N0}, 1 ≤ i ≤ n}.

It seems reasonable to assume that REG-typed patterns with regular operators

are strictly more powerful than REG-typed patterns without regular operators.

In the following proposition, we formally prove this intuition.

Proposition 7.4. L{Σ∗}(PAT) ⊂ LREG(PAT) ⊂ LREG(PATro).

Proof. The inclusions follow from the definitions and we only have to show that

they are proper. We can first note that since there are regular languages not

in L{Σ∗}(PAT), e. g., all finite languages with cardinality at least 2, and REG ⊆
LREG(PAT), we can conclude L{Σ∗}(PAT) ⊂ LREG(PAT).

It remains to show that there exists a language that is in LREG(PATro), but not

in LREG(PAT). To this end, we define α := (x1 ·c ·x1 | ε) ∈ PATro and T := (a+).

Clearly, LT (α) = {an · c · an | n ∈ N} ∪ {ε} and LT (α) ∈ LREG(PATro). We shall

now prove that LT (α) /∈ LREG(PAT). To this end, we assume to the contrary

that there exists a pattern β and a REG-type Tr := (Tx1 , Tx2 , . . . , Txm) for β such

that LTr(β) = LT (α). Without loss of generality, we can assume that, for every
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i, 1 ≤ i ≤ m, Txi 6= {ε}. We note that since ε ∈ LTr(β), for every i, 1 ≤ i ≤ m,

ε ∈ Txi and β ∈ X+. We can further note that if there exists an i, 1 ≤ i ≤ m, such

that Txi contains a non-empty word u without an occurrence of c, then we can

produce a non-empty word w without any occurrence of c by substituting every

variable in β by ε except xi, which is substituted by u. Since such a word is not

in LTr(β), this is a contradiction and we can assume that, for every i, 1 ≤ i ≤ m,

and for every non-empty u ∈ Txi , there is exactly one occurrence of c in u. This

implies that if there is more than one occurrence of a variable in β, then we can

produce a word with at least two occurrences of c. Thus, β = x1 holds. Now, since

we assume LTr(β) = LT (α), it follows that Tx1 = LT (α), which is a contradiction,

since LT (α) is not a regular language, but Tx1 is. �

The invariance of typed patterns – represented by Proposition 7.2 – does not

hold anymore with respect to patterns with regular operators. Before we formally

prove this claim, we shall define an infinite hierarchy of classes of languages given

by typed patterns with regular operators. The bottom of this hierarchy are the

REG-typed pattern languages with regular operators. Each level of the hierarchy

is then given by patterns with regular operators that are typed by languages from

the previous level of the hierarchy and so on.

Definition 7.5. Let Lro,0 := REG and, for every i ∈ N, we define Lro,i :=

LLro,i−1
(PATro). Furthermore, we define Lro,∞ =

⋃∞
i=0 Lro,i.

It follows by definition, that the classes Lro,i, i ∈ N0, form a hierarchy and

we strongly conjecture that it is proper. However, here we only separate the first

three levels of that hierarchy.

Theorem 7.6. Lro,0 ⊂ Lro,1 ⊂ Lro,2 ⊆ Lro,3 ⊆ Lro,4 ⊆ . . . .

Proof. The inclusions follow by definition and it is obvious that Lro,0, which is the

set of regular languages, is properly included in Lro,1. Hence, it only remains to

show that there exists a language in Lro,2 that is not in Lro,1. To this end, we define

L := {(ancan)md(ancan)m | n,m ∈ N} and first note that L(L1)(x1 · d · x1) = L,

where L1 := L(L(a+))((x1 · c · x1)+), which shows that L ∈ Lro,2.

We now assume that L ∈ Lro,1 and show that this assumption leads to a

contradiction. If L ∈ Lro,1, then there exists a pattern with regular operators α

and a regular type T := (Tx1 , Tx2 , . . . , Txm) for α such that LT (α) = L. We shall

first assume that L(α) is finite. Since the number of occurrences of c as well as

the length of unary factors over a is unbounded in the words of L, there must

exist at least one variable x such that, for every n ∈ N, there exists a word in Tx

containing a factor c · an′ · c · an′ · c, where n ≤ n′. This particularly implies that

there also exists a word in Tx containing a factor c · an′ · c · an′ · c, where n′ is
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greater than the constant of Lemma 2.2 (see page 9) with respect to the regular

language Tx. By applying Lemma 2.2, we can show that in Tx there exists a word

containing a factor c · am · c · am′ · c, m 6= m′, which is a contradiction, since this

implies that there is a word in L that contains the factor c · am · c · am′ · c.

Next, we assume that L(α) is infinite. We further assume that α does not

contain any terminal symbols and, furthermore, for every i, 1 ≤ i ≤ m, Txi 6= {ε}.
This is not a loss of generality, since terminal symbols can be easily represented

by variables with only a single occurrence and a type language of form {b}, b ∈ Σ,

and any variable that is typed by {ε} can be erased without changing LT (α).

Since every word of L contains exactly one occurrence of d, we can conclude that

in α there are variables y1, y2, . . . , yl, l ∈ N, such that, for every i, 1 ≤ i ≤ l,

Tyi contains at least one word with exactly one occurrence of d. Furthermore,

for every β ∈ L(α), there exists a j, 1 ≤ j ≤ l, such that β = δ · yj · γ and

var(δ · γ)∩ {y1, y2, . . . , yl} = ∅. This is due to the fact that if a β ∈ L(α) contains

more than one occurrence of a variable yi, 1 ≤ i ≤ l, then L(α) contains a word

with more than one occurrence of d. Since L(α) is infinite, for some j, 1 ≤ j ≤ l,

there exists a word δ · yj · γ in L(α) such that var(δ · γ) ∩ {y1, y2, . . . , yl} = ∅ and

|δ| > k or |γ| > k, where k is the constant of Lemma 2.2 with respect to the

regular language L(α). This implies that δ (or γ, respectively) can be arbitrarily

pumped and, since every type language contains at least one non-empty word, this

implies that there is a word in LT (α) of form u · d · v with |u| > |v| (or |u| < |v|,
respectively), which is a contradiction. This shows that in fact L /∈ Lro,1 and,

thus, Lro,1 ⊂ Lro,2 is implied. �

In the following section, we take a closer look at the class Lro,∞. We shall

show that it coincides with the class of languages that are defined by the already

mentioned pattern expressions and we formally prove it to be a proper subset of

the class of REGEX languages.

7.2 Pattern Expressions

We define pattern expressions as introduced by Câmpeanu and Yu [12], but we

use a slightly different notation.

Definition 7.7. A pattern expression is a tuple (x1 → r1, x2 → r2, . . . , xn → rn),

where, for every i, 1 ≤ i ≤ n, ri ∈ PATro and var(ri) ⊆ {x1, x2, . . . , xi−1}. The set

of all pattern expressions is denoted by PE.

In [12], the language of a pattern expression p := (x1 → r1, x2 → r2, . . . , xn →
rn) is defined in the following way. Since, by definition, r1 is a classical regular
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expression, it describes a regular language L. The language L is then interpreted

as a type for variable x1 in every ri, 2 ≤ i ≤ n. This step is then repeated, i. e.,

L(L)(r2) is the type for x2 in every rj, 3 ≤ j ≤ n, and so on.

Definition 7.8. Let p := (x1 → r1, x2 → r2, . . . , xn → rn) be a pattern expression.

We define Lp,x1 := L(r1) and, for every i, 2 ≤ i ≤ n, Lp,xi := LTi(ri), where Ti :=

(Lp,x1 , Lp,x2 , . . . , Lp,xi−1
) is a type for ri. The language generated by p with respect to

iterated substitution is defined by Lit(p) := Lp,xn and Lit(PE) := {Lit(p) | p ∈ PE}.

We illustrate the above definition with an example. Let

q := (x1 → a∗, x2 → x1(c | d)x1, x3 → x1cx2)

be a pattern expression. According to the above definition, Lit(q) = {akcamuam |
k,m ∈ N0, u ∈ {c, d}}. We note that in a word akcamuam ∈ Lit(q), both ak and

am are substitution words for the same variable x1 from the type language Lq,x1 .

However, k 6= m is possible, since, intuitively speaking, ak is picked first from

Lq,x1 as the substitution word for x1 in x1cx2 and then am is picked from Lq,x1

as substitution word for x1 in x1(c | d)x1 in order to construct the substitution

word amuam for x2 in x1cx2. Consequently, occurrences of the same variable in

different elements of the pattern expression do not need to be substituted by the

same word. We shall later see that this behaviour essentially limits the expressive

power of pattern expressions.

As mentioned before, the class of languages described by pattern expressions

with respect to iterated substitution coincides with the class Lro,∞ of the previous

section.

Theorem 7.9. Lro,∞ = Lit(PE).

Proof. Let p := (x1 → r1, x2 → r2, . . . , xn → rn) be a pattern expression and, for

every i, 1 ≤ i ≤ n, let the languages Lp,xi be defined as in Definition 7.8. We

prove by induction that, for every i, 1 ≤ i ≤ n, Lp,xi ∈ Lro,i−1, which implies

Lit(PE) ⊆ Lro,∞. First, we note that Lp,x1 ∈ REG and, thus, Lp,x1 ∈ Lro,0. Next,

we assume that for some i, 2 ≤ i ≤ n, and for every j, 1 ≤ j < i, Lp,xj ∈ Lro,j−1.

This implies that T := (Lp,x1 , Lp,x2 , . . . , Lp,xi−1
) is an Lro,i−2-type for ri. Thus,

LT (ri) ∈ Lro,i−1 and, since LT (ri) = Lp,xi , we can conclude that Lp,xi ∈ Lro,i−1.

Next, we shall prove by induction that, for every i ∈ N0, Lro,i ⊆ Lit(PE).

Obviously, Lro,0 is included in Lit(PE). Now we assume that for some k ∈ N,

Lro,k−1 ⊆ Lit(PE) holds and we show that this implies Lro,k ⊆ Lit(PE). To this

end, we let L ∈ Lro,k, which implies that there exists a pattern αk with regular

operators with var(αk) = {x1, x2, . . . , xm} and, for every i, 1 ≤ i ≤ m, there
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exists a language Txi ∈ Lro,k−1, such that L(Tx1 ,...,Txm )(αk) = L. Now, for every

i, 1 ≤ i ≤ m, let pi be a pattern expression with Lit(pi) = Txi . Such pattern

expressions exist since Txi ∈ Lro,k−1 ⊆ Lit(PE), 1 ≤ i ≤ m. We assume that, for

every i, 1 ≤ i ≤ m, the last element of pi is xi → βi and the sets of variables used

in the pattern expressions pi, 1 ≤ i ≤ m, as well as the set of variables in αk are

pairwise disjoint. We construct a pattern expression p̂ by adding all the elements

of the pattern expressions pi, 1 ≤ i ≤ m, to a new tuple in such a way that, for

every i, 1 ≤ i ≤ m, the relative order of all the elements in pi is not changed.

Furthermore, we add the element z → αk to the right of p̂, where z is a new

variable. By definition, for every i, 1 ≤ i ≤ m, Lp̂,xi = Lit(pi) = Txi . This directly

implies that Lit(p̂) = L(Tx1 ,...,Txm )(αk) and, thus, L ∈ Lit(PE) and Lro,k ⊆ Lit(PE)

follows. This implies that Lro,∞ ⊆ Lit(PE), which concludes the proof. �

In the following, we define an alternative way of how pattern expressions can

describe languages, i. e., instead of substituting the variables by words in an ite-

rative way, we substitute them uniformly. It shall be shown later own that this

amendment increases the expressive power of pattern expressions.

Definition 7.10. Let p := (x1 → r1, x2 → r2, . . . , xn → rn) ∈ PE. A word w ∈ Σ∗

is in the language generated by p with respect to uniform substitution (Luni(p), for

short) if and only if there exists a substitution h such that h(xn) = w and, for

every i, 1 ≤ i ≤ n, there exists an αi ∈ L(ri) with h(xi) = h(αi).

For the pattern expression q from above, a word w is in Luni(q) if there is a

substitution h with h(x3) = w and there exist α1 ∈ L(a∗), α2 ∈ L(x1(c | d)x1)

and α3 ∈ L(x1cx2), such that h(x1) = h(α1), h(x2) = h(α2) and h(x3) = h(α3).

Since α1 = an, n ∈ N0, α2 = x1ux1, u ∈ {c, d}, and α3 = x1cx2, this implies that

w is in Luni(q) if there is a substitution h and an α := x1cx1ux1, u ∈ {c, d}, such

that w = h(α) and h satisfies the type (L(a∗)). Thus, Luni(q) = {ancanuan | n ∈
N0, u ∈ {c, d}}, which is a proper subset of Lit(q).

For an arbitrary pattern expression p := (x1 → r1, x2 → r2, . . . , xn → rn), the

language Luni(p) can also be defined in a more constructive way. We first choose

a word u ∈ L(r1) and, for all i, 1 ≤ i ≤ n, if variable x1 occurs in ri, then we

substitute all occurrences of x1 in ri by u. Then we delete the element x1 → r1

from the pattern expression. If we repeat this step with respect to variables

x2, x3, . . . , xn−1, then we obtain a pattern expression of form (xn → r′n), where r′n

is a regular expression over Σ. The language Luni(p) is the union of the languages

given by all these regular expression.

The language Lit(q) can be defined similarly. We first choose a word u1 ∈ L(r1)

and then we substitute all occurrences of x1 in r2 by u1. After that, we choose

a new word u2 ∈ L(r1) and substitute all occurrences of x1 in r3 by u2 and so
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on until there are no more occurrences of variable x1 in q and then we delete the

element x1 → r1. Then this step is repeated with respect to x2, x3, . . . , xn−1.

The above considerations yield the following proposition:

Proposition 7.11. Let p := (x1 → r1, x2 → r2, . . . , xm → rm) be a pattern

expression. Then Luni(p) ⊆ Lit(p) and if, for every i, j, 1 ≤ i < j ≤ m, var(ri) ∩
var(rj) = ∅, then also Lit(p) ⊆ Luni(p).

Proof. We recall that every word w ∈ Lit(p) is a member of a language given by a

classical regular expression that can be constructed by applying procedure 1: We

first choose a word u1 ∈ L(r1) and then we substitute all occurrences of x1 in r2

by u1. After that, we choose a new word u2 ∈ L(r1) and substitute all occurrences

of x1 in r3 by u2 and so on until there are no more occurrences of variable x1 in q

and then we delete the element x1 → r1. Then we repeat this step with respect

to variables x2, x3, . . . , xm−1.

On the other hand, every word in Luni(p) is a member of a language given by a

classical regular expression that can be constructed by applying procedure 2: We

choose a word u ∈ L(r1) and, for all i, 1 ≤ i ≤ n, if variable x1 occurs in ri,

then we substitute all occurrences of x1 in ri by u and delete the element x1 → r1

from the pattern expression. Then we repeat this step with respect to variables

x2, x3, . . . , xm−1.

Obviously, every classical regular expression constructed by procedure 2 can

also be constructed by procedure 1 by substituting every occurrence of a variable

xi by exactly the same word. Hence, Luni(p) ⊆ Lit(p). Furthermore, if, for every

i, j, 1 ≤ i < j ≤ m, var(ri) ∩ var(rj) = ∅, then, for every i, 1 ≤ i ≤ m − 1, there

is exactly one j, i < j ≤ m, such that xi occurs in rj, and, thus, procedure 1 and

procedure 2 are identical, which implies Lit(p) = Luni(p). �

The interesting question is whether or not there exists a language L ∈ Luni(PE)

with L /∈ Lit(PE) or vice versa. Intuitively, for any pattern expression p, it seems

obvious that it is not essential for the language Lit(p) that there exist occurrences

of the same variable in different elements of p and it should be possible to trans-

form p into an equivalent pattern expression p′, the elements of which have disjoint

sets of variables and, thus, by Proposition 7.11, Lit(p) = Luni(p
′). Hence, for the

language generated by a pattern expression with respect to iterated substitution,

the possibility of using the same variables in different elements of a pattern ex-

pression can be considered as mere syntactic sugar that keeps pattern expressions

concise. On the other hand, the question of whether or not, for every pattern

expression p, we can find a pattern expression p′ with Luni(p) = Lit(p
′), is not that

easy to answer. The following lemma states that there are in fact languages that
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can be expressed by some pattern expression with respect to uniform substitution,

but not by any pattern expression with respect to iterated substitution.

Lemma 7.12. There exists a language L ∈ Luni(PE) with L /∈ Lit(PE).

Proof. We define the language L := {(anc)m · b · an · d · (anc)m | n,m ∈ N} and

a pattern expression p := (x1 → a+, x2 → (x1 · c)+, x3 → x2 · b · x1 · d · x2).

Obviously, Luni(p) = L and, thus, L ∈ Luni(PE). In the following we shall show

that L /∈ Lit(PE). To this end, we first prove the following claim.

Claim (1). Let q be a pattern expression. There exists a pattern expression q′ :=

(x1 → t′1, x2 → t′2, . . . , xm′ → t′m′), such that, for every i, 1 ≤ i ≤ m′ − 1, L(t′i) is

infinite and Lit(q) = Lit(q
′).

Proof. (Claim (1)) Let q := (x1 → t1, x2 → t2, . . . , xm → tm) and let l, 1 ≤ l ≤ m,

be the smallest number such that L(tl) := {β1, β2, . . . , βk} is finite. If l is not

defined because, for every i, 1 ≤ i ≤ m, L(ti) is infinite or if l = m, then q already

satisfies the condition of the lemma, i. e., for every i, 1 ≤ i ≤ m − 1, L(t′i) is

infinite. If, on the other hand, l ≤ m− 1, then we can transform q into a pattern

expression q′′ := (x1 → t′′1, x2 → t′′2, . . . , xl−1 → t′′l−1, xl+1 → t′′l+1, . . . , xm → t′′m) in

the following way. For every i, l+ 1 ≤ i ≤ m, we replace ti by (ti,1 | ti,2 | . . . | ti,k),
where, for every j, 1 ≤ j ≤ k, ti,j is obtained from ti by substituting every

occurrence of xl by βj. For every i, 1 ≤ i ≤ l − 1, we do not change ti, i. e.,

t′′i := ti. Hence, the element xl → tl has been removed from q. It is straightforward

to see that Lit(q) = Lit(q
′′). Furthermore, by repeating this procedure, q can be

transformed into q′ = (x1 → t′1, x2 → t′2, . . . , xm′ → t′m′), where, for every i,

1 ≤ i ≤ m′ − 1, L(t′i) is infinite and Lit(q) = Lit(q
′). � (Claim (1))

We now assume contrary to the statement of the lemma, that there exists a

pattern expression p′ := (x1 → r1, x2 → r2, . . . , xm → rm) with Lit(p
′) = L, which

shall lead to a contradiction. For every i, 1 ≤ i ≤ m, let Lp′,xi be the language

as introduced in Definition 7.8. By the above claim, we can also assume that, for

every i, 1 ≤ i ≤ m− 1, L(ri) is infinite. Next, we prove the following claim.

Claim (2). For every i, 1 ≤ i ≤ m, if Lp′,xi contains a word with an occurrence of

b or d, then L(ri) is finite.

Proof. (Claim (2)) We first show that if, for some i, 1 ≤ i ≤ m, there exists a word

w ∈ Lp′,xi with |w|b ≥ 1, then all words in Lp′,xi contain exactly one occurrence

of b. To this end, we note that every word in Lp′,xi has at most one occurrence of

b, since every word in L contains at most one occurrence of b. Furthermore, it is

not possible that there exists a word w ∈ Lp′,xi with |w|b = 1 and another word

w′ ∈ Lp′,xi with |w′|b = 0, since this implies that there are two words in Lit(p
′)
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with a different number of occurrences of b, which is a contradiction. In the same

way we can show that if there exists at least one word in Lp′,xi with an occurrence

of symbol d, then every word in Lp′,xi contains exactly one occurrence of symbol

d.

Next, we assume that for some l, 1 ≤ l ≤ m, Lp′,xl contains a word with an

occurrence of b or d, but, contrary to the above claim, L(rl) is infinite. Now if

Lp′,xl contains a word with an occurrence of b, then, as pointed out above, all the

words of Lp′,xl contain exactly one occurrence of b, which implies that, for every

β ∈ L(rl), β = γ · z · γ′, where either z = b or z = xj, 1 ≤ j < l, such that all

the words of Lp′,xj contain exactly one occurrence of b. Moreover, since L(rl) is

infinite, we can assume that |γ| or |γ′| exceeds the constant of Lemma 2.2 (see

page 9) for the regular language L(rl). Consequently, by applying the Lemma 2.2,

we can produce a word γ̂ · z · γ′ ∈ L(rl) with |γ| < |γ̂| or a word γ · z · γ̂ ∈ L(rl)

with |γ′| < |γ̂|, respectively. Since, without loss of generality, we can assume that,

for every i, 1 ≤ i ≤ m, Lp,xi 6= {ε}, this directly implies that there exists a word

w ∈ Lit(p
′) that is of form w = u · b · v, where it is not satisfied that there exist

n,m ∈ N with |u| = (n+1)m and |v| = (n+1)m+n+1, which is a contradiction.

If Lp′,xl contains a word with an occurrence of d and L(rl) is infinite, then we can

obtain a contradiction in an analogous way. Consequently, if any Lp′,xi , 1 ≤ i ≤ m,

contains a word with an occurrence of b or d, then L(ri) is finite. � (Claim (2))

The above claim particularly implies that, since Lp′,xm clearly contains words

with b and d, L(rm) is finite and, for every i, 1 ≤ i ≤ m−1, since L(ri) is infinite,

Lp′,xi does not contain a word with an occurrence of b or d. Hence, without loss of

generality, we can assume that rm := (β1 | β2 | . . . | βk) with βi := γi ·b ·γ′i ·d ·γ′′i ∈
PAT, 1 ≤ i ≤ k. For every i, 1 ≤ i ≤ k, and for every j, 1 ≤ j ≤ m − 1, let

L̂i be the set of all words that can be obtained by substituting every occurrence

of xj in βi by some word from Lp′,xj , i. e., L̂i := L(Lp′,x1
,...,Lp′,xm−1

)(βi). Obviously,

Lit(p
′) = L̂1 ∪ L̂2 ∪ . . . ∪ L̂k. This implies that there must exist at least one s,

1 ≤ s ≤ k, such that the number of occurrences of c and the length of the factor

between the occurrence of b and d is unbounded in the words of L̂s. More precisely,

there must exist at least one s, 1 ≤ s ≤ k, such that, for every n ∈ N, there exists

a word w ∈ L̂s with |w|c > n and a word w′ ∈ L̂s with w′ = u · b · an′ · d · v, for

some n′, n < n′. This implies that in γs there must occur a variable xj such that

the number of occurrences of c is unbounded in Lp′,xj . Moreover, we can assume

that there is also an occurrence of xj in γ′′s , since otherwise there would be a word

in L̂s with a different number of occurrences of c to the left of b than to the right

of d. Similarly, in γ′s there must occur a variable xj′ such that Lp′,xj′ is an infinite

unary language over {a}, which particularly implies that j 6= j′. We note further
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that in Lp′,xj , there exists a word u with a factor c ·an ·c, for some n ∈ N. We can

now obtain β′s by substituting every occurrence of xj in βs by u. Next, we obtain

β′′s from β′s by substituting every occurrence of xj′ by a word an
′

with n < n′.

Next, for every i, 1 ≤ i ≤ m − 1, we substitute all occurrences of variable xi in

β′′s by some word from Lp′,xi . The thus constructed word is in L̂s, but not in L,

since it contains both a factor c · an · c and b · an′′ · d with n < n′ ≤ n′′. This is a

contradiction. �

From Lemma 7.12 we can conclude the main result of this section, i. e., the class

of languages given by pattern expressions with respect to iterated substitution is

a proper subset of the class of languages given by pattern expressions with respect

to uniform substitution.

Theorem 7.13. Lit(PE) ⊂ Luni(PE).

Proof. Since, by Theorem 7.9, Lro,∞ = Lit(PE) holds, it is sufficient to show

Lro,∞ ⊆ Luni(PE) in order to conclude Lit(PE) ⊆ Luni(PE), which can be done

in exactly the same way as Lro,∞ ⊆ Lit(PE) has been shown in the proof of

Theorem 7.9. From Lemma 7.12, we can then conclude that this inclusion is

proper. �

We conclude this section by mentioning that in Bordihn et al. [9], it has been

shown that H∗(REG,REG), a class of languages given by an iterated version of

H-systems (see Albert and Wegner [2] and Bordihn et al. [9]), also coincides with

Lit(PE), which implies Lro,∞ = Lit(PE) = H∗(REG,REG) ⊂ Luni(PE).

In the following section, we take a closer look at the larger class Luni(PE) and

compare it to the class of REGEX languages.

7.3 REGEX

We use a slightly different notation for REGEX compared to the one used by

Câmpeanu et al. in [11].

A REGEX is a regular expression, the subexpressions of which can be num-

bered by adding an integer index to the parentheses delimiting the subexpres-

sion (i. e., (n . . . )n, n ∈ N). This is done in such a way that there are no

two different subexpressions with the same number. The subexpression that is

numbered by n ∈ N, which is called the nth referenced subexpression, can be

followed by arbitrarily many backreferences to that subexpression, denoted by

\n. For example, (1 a | b )1 · (2 (c | a)∗ )2 · (\1)∗ · \2 is a REGEX, whereas

r1 := (1 a | b )1·(1 (c | a)∗ )1·(\1)∗·\2 and r2 := (1 a | b )1·\2·(2 (c | a)∗ )2·(\1)∗·\2
are not a REGEX, since in r1 there are two different subexpressions numbered by 1
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and in r2 there is an occurrence of a backreference \2 before the second referenced

subexpression.

There are two aspects of REGEX that need to be discussed in a bit more detail.

For the REGEX ((1 a
+ )1 | b) · c · \1, if we choose the option b in the alternation,

then \1 points to a subexpression that has not been “initialised”. Normally, such

a backreference is then interpreted as the empty word, which seems to be the

only reasonable way to handle this situation, but, on the other hand, conflicts

with the intended semantics of backreferences, particularly in the above example,

since it actually means that \1 can be the empty word, whereas the referenced

subexpression (1 a
+ )1 does not match the empty word.

Another particularity appears whenever a backreference points to a subexpres-

sion under a star, e. g., s := ((1 a
∗ )1 · b · \1)∗ · c · \1. One might expect s to define

the set of all words of form (anban)mcan, n,m ≥ 0, but s really describes the set

{an1ban1 · an2ban2 · · · · · anmbanm · c · anm | m ≥ 1, ni ≥ 0, 1 ≤ i ≤ m} ∪ {c}. This

is due to the fact that the star operation repeats a subexpression several times

without imposing any dependencies between the single iterations. Consequently,

in every iteration of the second star in s, the referenced subexpression (1 a∗ )1 is

treated as an individual instance and its scope is restricted to the current iteration.

Only the factor that (1 a∗ )1 matches in the very last iteration is then referen-

ced by any backreference \1 outside the star. A way to see that this behaviour,

which is often called late binding of backreferences (see Câmpeanu and Yu [12]),

is reasonable, is to observe that if we require (1 a∗ )1 to take exactly the same

value in every iteration of the star, then, for some REGEX r, this may lead to

L(r∗) 6= (L(r))∗.

A formal definition of the language described by a REGEX is provided by

Câmpeanu et al. in [11]. Here, we stick to the more informal definition which has

already been briefly outlined in the introduction to Chapter 7 and that we now

recall in a bit more detail.

A word w is in L(r) if and only if we can obtain it from r in the following

way. We move over r from left to right. We treat alternations and stars as it

is done for classical regular expressions and we note down every terminal symbol

that we read. When we encounter the ith referenced subexpression, then we store

the factor ui that is matched to it and from now on we treat every occurrence of

\i as ui. However, there are two special cases we need to take care of. Firstly,

when we encounter the ith referenced subexpression for a second time, which is

possible since the ith referenced subexpression may occur under a star, then we

overwrite ui with the possible new factor that is now matched to the ith referenced

subexpression. This entails the late binding of backreferences, which has been

described in the introduction of the present chapter. Secondly, if a backreference \i
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occurs and there is no factor ui stored that has been matched to the ith referenced

subexpression, then \i is interpreted as the empty word.

We also define an alternative way of how a REGEX describes a language, that

shall be useful for our proofs. The language with necessarily initialised subexpres-

sions of a REGEX r, denoted by Lnis(r), is defined in a similar way as L(r) above,

but if a backreference \i occurs and there is currently no factor ui stored that has

been matched to the ith referenced subexpression, then instead of treating \i as the

empty word, we interpret it as the ith referenced subexpression, we store the factor

ui that is matched to it and from now on every occurrence of \i is treated as ui.

For example, let r := ((1 a
∗ )1 | ε) ·b ·\1 ·b ·\1. Then L(r) := {anbanban | n ∈ N0}

and Lnis(r) := L(r) ∪ {banban | n ∈ N0}.
We can note that the late binding of backreferences as well as non-initialised

referenced subexpressions is caused by referenced subexpression under a star or in

an alternation. Next, we define REGEX that are restricted in this regard.

Definition 7.14. A REGEX r is alternation confined if and only if the existence

of a referenced subexpression in the option of an alternation implies that all the

corresponding backreferences occur in the same option of the same alternation.

A REGEX r is star-free initialised if and only if every referenced subexpression

does not occur under a star. Let REGEXac and REGEXsfi be the sets of REGEX

that are alternation confined and star-free initialised, respectively. Furthermore,

let REGEXsfi,ac := REGEXac ∩REGEXsfi.

We now illustrate the above definition. The REGEX ((1 a
∗ )1 b \1 | (2 a |

b )2 aa \2) is alternation confined, whereas ((1 a
∗ )1 b \1 | (2 a | b )2 aa \2) \1 is not.

On the other hand, The REGEX ((a∗bc)∗ | (1 ac | abb )1) \1 is star-free initialised,

whereas (((1 a
∗b )1 c)∗ | ac) \1 is not.

We can show that the condition of being alternation confined does not impose

a restriction on the expressive power of a star-free initialised REGEX. The same

holds with respect to their languages with necessarily initialised subexpressions.

Furthermore, for every star-free initialised REGEX r, the language L(r) can also

be given as the language with necessarily initialised subexpressions of a star-free

initialised REGEX and vice versa. This is formally stated in the next lemma,

which shall be useful for proving the main result of this section.

Lemma 7.15.

L(REGEXsfi) = L(REGEXsfi,ac) = Lnis(REGEXsfi) = Lnis(REGEXsfi,ac) .

Proof. We first note that, since REGEXsfi,ac ⊆ REGEXsfi, L(REGEXsfi,ac) ⊆
L(REGEXsfi) and Lnis(REGEXsfi,ac) ⊆ Lnis(REGEXsfi) trivially hold. Next, we
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observe that if a REGEX r is star-free initialised and alternation confined, then

Lnis(r) = L(r). This is due to the fact that if r is star-free initialised and alterna-

tion confined, then it is impossible that, while matching r to some word, a backre-

ference occurs that points to a referenced subexpression that has not been initia-

lised. This particularly implies L(REGEXsfi,ac) = Lnis(REGEXsfi,ac). In order to

conclude the proof, it is sufficient to show that L(REGEXsfi) ⊆ L(REGEXsfi,ac)

and Lnis(REGEXsfi) ⊆ Lnis(REGEXsfi,ac).

In the following, we say that an alternation (s | t) of a REGEX is confining,

if all referenced subexpressions in s are referenced only in s and all referenced

subexpressions in t are referenced only in t. Otherwise, an alternation is called

non-confining.

We first prove that L(REGEXsfi) ⊆ L(REGEXsfi,ac). To this end, let r be a

star-free initialised REGEX that is not alternation confined, which implies that

r := r1 · (r2 | r3) · r4, where the alternation (r2 | r3) is non-confining. For the sake

of concreteness, let r2 contain exactly the lth1 , l
th
2 , . . . , l

th
k referenced subexpressions

and let r3 contain exactly themth
1 ,m

th
2 , . . . ,m

th
n referenced subexpressions. We now

define t1, which is a copy of r1 ·r2 ·r4, where all backreferences \mi, 1 ≤ i ≤ n, have

been deleted and t2, which is a copy of r1·r3·r4, where all backreferences \li, 1 ≤ i ≤
k have been deleted. We note that t1 and t2 are valid REGEX and, since r is star-

free initialised, (r2 | r3) is not under a star in r, which implies that L(r) = L(t1)∪
L(t2). Next, let t′1 and t′2 be obtained from t1 and t2, respectively, by renaming

all referenced subexpressions and their corresponding backreferences such that in

t′1 and t′2 there are no referenced subexpressions that are numbered by the same

number. We can note that r′ := (t′1 | t′2) is a valid REGEX and, since L(t′1) = L(t1)

and L(t′2) = L(t2), L(r′) = L(r) is implied. Moreover, r′ is star-free initialised,

the alternation (t′1 | t′2) is confining and in each t′1 and t′2 there is one fewer

alternation compared to r. Consequently, by repeating the above construction,

we can transform r into a REGEX r′′ that is star-free initialised, alternation

confined and L(r′′) = L(r) holds. This proves L(REGEXsfi) ⊆ L(REGEXsfi,ac).

Next, we prove Lnis(REGEXsfi) ⊆ Lnis(REGEXsfi,ac). Again, let r be a star-

free initialised REGEX that is not alternation confined, which implies that r :=

r1 · (r2 | r3) · r4, where the alternation (r2 | r3) is non-confining. Let (p1 rp1 )p1 ,

(p2 rp2 )p2 , . . ., (pk rpk )pk be exactly the referenced subexpressions in r3 and

we assume them to be ordered with respect to their nesting, i. e., for every i, j,

1 ≤ i < j ≤ k, if the pth
i referenced subexpression occurs in the pth

j referenced

subexpression, then pj ≤ pi is implied. We now obtain s′ from r1 · r2 · r4 in the

following way. We first substitute the leftmost occurrence of \p1 by (p1 rp1 )p1 .

Next, if there does not already exist an occurrence of (p2 rp2 )p2 (which might

be the case if (p2 rp2 )p2 is contained in rp1), then we substitute the leftmost
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occurrence of \p2 by (p2 rp2 )p2 . This step is then repeated with respect to the

referenced subexpressions (p3 rp3 )p3 , . . . , (pk rpk )pk . We observe that, for every

i, 1 ≤ i ≤ k, there is at most one occurrence of (pi rpi )pi in s′ and if there

exists a backreference \pi, then it occurs to the right of (pi rpi )pi . This implies

that s′ is a valid REGEX. Next, we transform r1 · r3 · r4 into t′ in the same

way, just with respect to the referenced subexpressions in r2. Finally, s and t are

obtained from s′ and t′, respectively, by renaming all referenced subexpressions

and the corresponding backreferences in such a way that s and t do not have any

referenced subexpressions labeled by the same number. We define r′ := (s | t)
and we can note that r′ is a valid star-free initialised REGEX. Furthermore, since

r is star-free initialised, (r2 | r3) is not under a star in r, which implies that

Lnis(r
′) = Lnis(r). We further note that the alternation (s | t) is confining and in

each s and t there is one fewer alternation compared to r. This implies that by

successively applying the above transformation now to s and t and so on, r can be

transformed into a star-free initialised REGEX r′′ that is also alternation confined

and Lnis(r
′′) = Lnis(r). This proves Lnis(REGEXsfi) ⊆ Lnis(REGEXsfi,ac). �

In the following, we take a closer look at the task of transforming a pattern

expression p into a REGEX r, such that Luni(p) = L(r). Although, this is possible

in general, a few difficulties arise, that have already been pointed out by Câmpeanu

and Yu in [12] (with respect to Lit(p)).

The natural way to transform a pattern expression into an equivalent REGEX

is to successively substitute the occurrences of variables by referenced subexpres-

sions and appropriate backreferences. However, this is not always possible. For

example, consider the pattern expression q := (x1 → (a | b)∗, x2 → x∗1 ·c ·x1 ·d ·x1).

If we simply transform q into rq := (1 (a | b)∗ )∗1 · c · \1 · d · \1, then we obtain

an incorrect REGEX, since Luni(q) 6= L(rq). This is due to the fact that the

referenced subexpression is under a star. To avoid this, we can first rewrite q

to q′ := (x1 → (a | b)∗, x2 → (x1 · x∗1 | ε) · c · x1 · d · x1), which leads to

rq′ := ((1 (a | b)∗ )1 · (\1)∗ | ε) · c · \1 · d · \1. Now we encounter a different

problem: Luni(q
′) contains the word cabadaba, but in L(rq′) the only word that

starts with c is cd. This is due to the fact that if we choose the second option

of ((1 (a | b)∗ )1 · (\1)∗ | ε), then all \1 are set to the empty word. However, we

note that the language with necessarily initialised subexpressions of rq′ is exactly

what we want, since Lnis(rq′) = Luni(q). Hence, we can transform any pattern

expression p to a REGEX rp that is star-free initialised and Luni(p) = Lnis(rp).

Lemma 7.16. For every pattern expression p, there exists a star-free initialised

REGEX r with Luni(p) = Lnis(r).
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Proof. Let p := (x1 → r1, x2 → r2, . . . , xm → rm) be an arbitrary pattern ex-

pression. Now we assume that, for some i, 1 ≤ i ≤ m, ri contains a subexpres-

sion (q)∗, where (q)∗ is not under a star and q contains the leftmost occurrence

of a variable. We can obtain r′′i from ri by substituting (q)∗ by (q · (q)∗ | ε).
It can be easily verified that L(ri) = L(r′′i ). Furthermore, we can repeat this

step until we obtain an r′i from ri such that L(ri) = L(r′i) and the leftmost oc-

currence of any variable in r′i does not occur under a star. By applying this

construction to every ri, 1 ≤ i ≤ m, we can transform p into a pattern expression

p′ := (x1 → r′1, x2 → r′2, . . . , xm → r′m), where, for every i, 1 ≤ i ≤ m, the left-

most occurrence of any variable in r′i does not occur under a star. Furthermore,

for every i, 1 ≤ i ≤ m, L(ri) = L(r′i), which implies Luni(p
′) = Luni(p).

Next, we construct a REGEX t with Lnis(t) = Luni(p
′) in the following way.

First, we transform rm into tm−1 by substituting the leftmost occurrence of xm−1

by (m−1 rm−1 )m−1 and all other occurrences of xm−1 by \m − 1. Since we can

assume that there is at least one occurrence of xm−2 in rm or in rm−1, we can

conclude that in tm−1 there is at least one occurrence of variable xm−2. Next,

we obtain tm−2 from tm−1 by substituting the leftmost occurrence of xm−2 by

(m−2 rm−2 )m−2 and all other occurrences of xm−1 by \m− 1. In the same way as

before, we can conclude that in tm−2 there exists at least one occurrence of variable

xm−3. This procedure is now repeated until we obtain t1 and we observe that in

t1 there is no occurrence of a variable, for every i, 1 ≤ i ≤ m− 1, there is exactly

one subexpression labeled by i and all occurrence of \i occur to the right of this

subexpression. Consequently, t1 is a valid REGEX. Moreover, since, for every i,

1 ≤ i ≤ m, the leftmost occurrence of any variable in r′i does not occur under a

star, we can conclude that t1 is star-free initialised. For the sake of convenience,

we shall call t1 simply t.

It remains to show that Lnis(t) = Luni(p
′) holds. Let (1 s1 )1, (2 s2 )2,

. . . , (m−1 sm−1 )m−1 be the referenced subexpressions in t. By definition of t,

for every i, j, 1 ≤ i < j ≤ m− 1, the jth referenced subexpression does not occur

in the ith referenced subexpression. This particularly implies that s1 is a classical

regular expression. Now let s be a classical regular expression that is obtained

from t in the following way: We substitute the first referenced subexpression and

all backreferences \1 by some word u1 ∈ L(s1) (as explained above s1 is a classical

regular expression). After that, we substitute the second referenced subexpression

and all backreferences \2 by some word u2 ∈ L(s′2), where s′2 is a classical regular

expression that is obtained from s2 by substituting the first referenced subexpres-

sion and all backreferences \1 by u1. This step is then repeated, i. e., for every

3 ≤ i ≤ m − 1, we substitute the ith referenced subexpression and all backrefe-

rences \i by some word ui ∈ L(s′i), where s′i is a classical regular expression that



Chapter 7. Beyond Pattern Languages 198

is obtained from si by substituting, for every j, 1 ≤ j < i, the jth referenced

subexpression and all backreferences \j by uj. We note that in a similar way, we

can also transform p′ into s, i. e., by substituting all occurrences of variable x1 in

the elements r′i, 2 ≤ i ≤ m, by the word u1 ∈ Luni(r
′
1) and then we repeat this

step with respect to variables x2, x3, . . . , xm and words u2, u3, . . . , um. Moreover,

every classical regular expression s that can be obtained in this way from p′ can

also be obtained from t by the above described construction.

By definition of the language of a pattern expression with respect to uniform

substitution, Luni(p
′) is the union of all L(s), where s is a classical regular expres-

sion that can be obtained from p′ in the above described way. Moreover, since t is

star-free initialised, Lnis(t) is the union of all L(s), where s is a classical regular

expression that can be obtained from t in the above described way. We note that

this is only true since we consider the language with necessarily initialised subex-

pressions of t. This directly implies that Luni(p
′) = Lnis(t), which concludes the

proof. �

We recall that Lemma 7.15 states that every star-free initialised REGEX r

can be transformed into a star-free initialised REGEX r′ with Lnis(r) = L(r′).

Consequently, Lemmas 7.15 and 7.16 imply that every pattern expression p can

be transformed into a star-free initialised REGEX r with Luni(p) = L(r). For

example, the pattern expression q introduced on page 196 can be transformed

into the REGEX tq := ((1 (a | b)∗ )1 · (\1)∗ · c · \1 · d · \1 | c · (2 (a | b)∗ )2 · d · \2),

which finally satisfies Luni(q) = L(tq).

Theorem 7.17. Luni(PE) ⊆ L(REGEXsfi).

Proof. We can note that Lemma 7.16 implies Luni(PE) ⊆ Lnis(REGEXsfi) and

Lemma 7.15 states Lnis(REGEXsfi) ⊆ L(REGEXsfi). Consequently, Luni(PE) ⊆
L(REGEXsfi). �

In the remainder of this section, we show the converse of Theorem 7.17, i. e.,

every star-free initialised REGEX r can be transformed into a pattern expression

that describes the language L(r) with respect to uniform substitution. However,

this cannot be done directly if r is not alternation confined. As an example,

we consider r := ((1 (a | b)∗ )1 | (2 c∗ )2) · (\1)∗ · \2. Now the natural way

to transform r into a pattern expression is to substitute the first and second

referenced subexpression and the corresponding backreferences by variables x1

and x2, respectively, and to introduce elements x1 → (a | b) and x2 → c∗, i. e.,

pr := (x1 → (a | b), x2 → c∗, x3 → (x1 | x2) · (x1)∗ · x2). Now Luni(pr) contains

the word cccabababccc, whereas every word in L(r) that starts with c does

not contain any occurrence of a or b, thus, Luni(pr) 6= L(r). So in order to
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transform star-free initialised REGEX into equivalent pattern expressions, again

Lemma 7.15 is very helpful, which states that we can transform every star-free

initialised REGEX into an equivalent one that is also alternation confined.

Theorem 7.18. L(REGEXsfi) ⊆ Luni(PE).

Proof. In order to prove the statement of the theorem, we shall use a combination

of pattern expressions and REGEX, i. e., pattern expressions p := (x1 → r1, x2 →
r2, . . . , xm → rm), where rm is not a pattern with regular operators, but a REGEX

with possible occurrences of variables x1, x2, . . . , xm−1. The language Luni(p) is

then defined in a similar way as for standard pattern expressions, i. e., it is the

union of all L(r), where r is a REGEX (without variables), that can be obtained

from p in the following way. We first choose a word u ∈ L(r1) and, for all i,

1 ≤ i ≤ m, if variable x1 occurs in ri, then we substitute all occurrences of x1 in

ri by u and delete the element x1 → r1 from the pattern expression. This step

is then repeated with respect to the variables x2, x3, . . . , xm−1 until we obtain a

REGEX.

Now let p := (x1 → r1, x2 → r2, . . . , xm → rm) be an arbitrary such pattern

expression, where rm is a star-free initialised and alternation confined REGEX.

Furthermore, let the ith referenced subexpression in r be (i qi )i, where qi is a clas-

sical regular expression. Obviously, there must exist at least one such referenced

subexpression. We note that qi may contain variable symbols and we assume that

xj occurs in qi and, for every l, j < l ≤ m − 1, xl does not occur in qi. Now, we

transform p into p′ := (x1 → r1, . . . , xj → rj, z → qi, xj+1 → rj+1, . . . , xm → r′m),

where r′m is obtained from rm by substituting (i qi )i and all occurrences of \i by

z. If qi does not contain a variable, then p′ := (z → qi, x1 → r1, . . . , xm → r′m).

We can observe, that since rm is alternation confined and star-free initialised, by

applying the above described method, we can obtain exactly the same REGEX

from p and p′, which implies that Luni(p) = Luni(p
′).

By successively applying this construction, we can transform an arbitrary

star-free initialised and alternation confined REGEX r into a pattern expres-

sion p with L(r) = Luni(p). Since, by Lemma 7.15, every star-free initialised

REGEX can be transformed into an equivalent one that is also alternation confi-

ned, L(REGEXsfi) ⊆ Luni(PE) follows. �

From Theorems 7.17 and 7.18, we can conclude that the class of languages des-

cribed by pattern expressions with respect to uniform substitution coincides with

the class of languages given by regular expressions that are star-free initialised.

Corollary 7.19. L(REGEXsfi) = Luni(PE).
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The previous result in particular shows that pattern expressions can be used

in order to describe a large class of REGEX languages, i. e., the class of languages

given by star-free initialised REGEX. Since pattern expressions have a simple and

clear structure (in fact, syntactically, they are tuples of regular expressions) we

conjecture that, in many cases, they provide a more suitable means to describe

star-free initialised REGEX languages and they particularly represent the nested

structure of backreferences more clearly.

In Sections 7.1 and 7.2 and in the present section, we have investigated several

proper subclasses of the class of REGEX languages and their mutual relations,

which can be summarised in the following way:

L{Σ∗}(PAT) ⊂ LREG(PAT) ⊂ Lro,1 ⊂ Lro,2 ⊆ Lro,3 ⊆ . . . ⊆ Lro,∞ =

H∗(REG,REG) = Lit(PE) ⊂ Luni(PE) = L(REGEXsfi) ⊆ L(REGEX) .

We conclude this section by discussing these relations. First, we can note that,

indicated by Lro,∞ = H∗(REG,REG) = Lit(PE) ⊂ L(REGEX), several natural

ways to combine regular expressions with homomorphic substitution do not lead to

the class of REGEX languages, but to the substantially smaller class of languages

that are described by pattern expressions with respect to iterated substitution.

The relation Lit(PE) ⊂ Luni(PE) demonstrates that the lack of expressive power

of language generating devices such as typed patterns with regular operators (see

Section 7.1), iterated H-systems (see Albert and Wegner [2] and Bordihn et al. [9])

and pattern expressions with respect to iterated substitution (see Section 7.2 and

Câmpeanu and Yu [12]) seems to be caused by their lack of handling the nested

structure of backreferences.

7.4 REGEX with a Bounded Number of

Backreferences

Since the class of pattern languages is properly included in the class of REGEX

languages, it is not surprising that the membership problem for REGEX languages

is NP-complete, which is formally proved by Aho [1]. It can be easily shown

that the membership problem for pattern languages can be solved by a naive

algorithm in time that is exponential only in the number of different variables (see

Section 2.2.2.1). Hence, the membership problem for patterns with a bounded

number of variables can be solved in polynomial time and Aho claims that the same

holds for REGEX with respect to the number of backreferences. More precisely,

in Aho [1] it is stated that the membership problem for REGEX languages can
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be solved in time that is exponential only in the number of backreferences in the

following way. Let k be the number of referenced subexpressions in a REGEX r

and let w be an input word. We first choose k factors u1, u2, . . . , uk of w and then

try to match r to w in such a way that, for every i, 1 ≤ i ≤ k, the ith referenced

subexpression is matched to ui. This is done with respect to all possible k factors

of w. For this procedure we only need to keep track of the k possible factors of

w, thus, time O(|w|2k) is sufficient. However, this approach is incorrect (which is

a known fact in the language theory community), since it ignores the possibility

that the referenced subexpressions under a star (and their backreferences) can be

matched to a different factor in every individual iteration of the star. On the other

hand, if we first iterate every expression under a star that contains a referenced

subexpression an arbitrary number of times, then, due to the late binding of

backreferences, we introduce arbitrarily many new referenced subexpressions and

backreferences, so there is an arbitrary number of factors to keep track of.

The question of whether or not the membership problem for REGEX with a

bounded number of backreferences can be solved in polynomial time is arguably the

first question that comes to mind when we try to identify subclasses of REGEX

with a polynomial time membership problem. Consequently, an answer to this

question is of considerable importance.

We give a positive answer to that question, by showing that for any REGEX

r, a nondeterministic two-way multi-head automaton (see Section 2.3.1) can be

constructed that accepts exactly L(r) with a number of input heads that is boun-

ded by the number of referenced subexpressions in r and a number of states that

is bounded by the length of r.

Lemma 7.20. Let r be a REGEX with k referenced subexpressions. There exists a

nondeterministic two-way (3k+ 2)-head automaton with O(|r|) states that accepts

L(r).

Proof. We assume that r is completely parenthesised. We shall now define a

nondeterministic two-way (2 + 3k)-head automaton M that accepts L(r). This

automaton uses 2k input heads in order to implement k individual counters as

described in Observation 2.11 (page 21). One input head is the main head, another

one is the auxiliary head and the remaining k heads are enumerated from 1 to k.

Initially, all input heads are located at the left endmarker. The finite state control

contains a special pointer, referred to as the r-pointer, that is initially located

at the left end of r. In the computation of M , this r-pointer is moved over r

and every time it enters or leaves a new subexpression, i. e., whenever it is moved

over a left or right parenthesis, respectively, a sequence of operations is triggered.

Before we define these operations more precisely, we shall informally explain how
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M accepts words from L(r) and how it handles backreferences.

The main head is moved over the input from left to right, checking whether

or not the input word satisfies r, just as it is done by a classical nondeterministic

finite automaton that accepts the language given by a classical regular expression.

Simultaneously, the r-pointer is moved over r. When the r-pointer enters the

referenced subexpression i, then we move head i to the position of the main head,

we start counting every following step of the main head on counter i and we

stop counting as soon as the r-pointer has left the referenced subexpression i.

This means that we store the length of the factor that has been matched to the

referenced subexpression i in counter i, whereas head i now scans the position

where this factor starts. Now if the r-pointer encounters a backreference \i, it

is checked whether or not at the positions scanned by the main head and head

i the same factor occurs with the length stored by counter i. It is also possible

that \i is encountered without having visited the referenced subexpression i. In

this case, counter i stores 0, which means that \i is treated as the empty word. If

the r-pointer encounters the referenced subexpression i for a second time, which

is possible since it can occur under a star, then counter i and head i are simply

reset and then the referenced subexpression i is handled in exactly the same way

as before. This ensures that in different iterations of a star every referenced

subexpression is treated individually and only the factor that is matched to it in

the very last iteration is stored for future backreferences.

We are now ready to define the operations that M performs when the r-pointer

enters or leaves a subexpression. In the following definitions, we say that the r-

pointer visits a subexpression if it is located somewhere between its delimiting

parenthesis.

We assume that the r-pointer has just entered a new subexpression r′. If r′

is the ith referenced subexpression, then we set counter i to zero and we move

head i to the position of the main head, which can be done by using the auxiliary

head. If, on the other hand, r′ is not a referenced subexpression, we simply skip

the aforementioned operations. Next, we perform the operations listed below and

we define p1, p2, . . . , pm to be exactly the referenced subexpressions the r-pointer

visits at the moment.

� If r′ = (ε), then the r-pointer leaves r′.

� If r′ = (a), for some a ∈ Σ, then we move the main head a step to the right

and reject the input if the symbol on that new position does not equal a.

Furthermore, for every i, 1 ≤ i ≤ m, counter pi is incremented. Finally, the

r-pointer leaves r′.

� If r′ = (s | s′), then we nondeterministically choose to enter either s or s′
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with the r-pointer.

� If r′ = (s)∗, then we enter s with the r-pointer.

� If r′ = (\i), then we move the main head and head i simultaneously to the

right for l steps, where l is the value of counter i, and reject the input if they

do not scan the same symbols in every step. After that, head i is moved back

to the left for l steps and, for every j, 1 ≤ j ≤ m, counter pj is incremented

by l. If in this procedure the main head is moved over the right endmarker,

then the input is rejected. Finally, the r-pointer leaves r′.

If the r-pointer leaves a subexpression r′, then the following operations are per-

formed.

� If r′ is not followed by a star or by symbol “|”, then we move the r-pointer

over the next parenthesis.

� If r′ is followed by symbol “|”, then we can conclude that some subexpression

s follows that is followed by a right parenthesis. In this case we move the

r-pointer completely over the part “| s)”.

� If r′ is followed by a star, then we nondeterministically choose to move the

r-pointer over the next parenthesis or to re-enter subexpression r′.

� If the r-pointer has reached the end of r and the main head scans the right

endmarker, then M accepts its input. If, on the other hand, the main head

does not scan the right endmarker, then the input is rejected.

It can be easily verified that a word is in L(r) if and only if it is possible that M

accepts that word.

Since the finite state control only needs to keep track of the position of the

r-pointer, a number of O(|r|) states are sufficient. �

In the above proof, we use a number of input heads of a nondeterministic

two-way multi-head automaton as mere counters in order to keep track of lengths

of factors. This corresponds to the way we use the modulo counters of Janus

automata in order to recognise pattern languages (see Section 3.3). However,

the 2NFA that is used in the proof of Lemma 7.20 also uses several input heads

for scanning the input and, thus, in the context of this proof a 2NFA is more

convenient than an NBMCA or a Janus automaton.

Since we can solve the acceptance problem of a given two-way multi-head

automaton M and a given word w in time that is exponential only in the number

of input heads, we can conclude the following result:
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Theorem 7.21. Let k ∈ N. The membership problem for REGEX with at most

k referenced subexpressions can be solved in polynomial time.

Proof. Let r be a REGEX with k referenced subexpressions and let w be an

arbitrary word. By the proof of Lemma 7.20, we can transform r into a (3k + 2)-

head automaton Mr that accepts exactly L(r). Furthermore, this transformation

can be done in polynomial time and Mr has O(|r|) states. We can check whether

or not w is accepted by Mr in the following way. We interpret every possible

configuration of Mr on input w as a vertex of a graph G and there is a directed edge

from a vertex c to a vertex c′ if and only if Mr can change from the configuration c

to the configuration c′. Now w is accepted by Mr if and only if there exists a path in

G from the start configuration to an accepting configuration. This can be checked

in time linear in the size of G. Since there are at most O(|r|×|w|3k+2) configurations

of Mr on input w, we can conclude that the size of G is O((|r| × |w|3k+2)2). This

implies that we can decide in polynomial time on whether or not w ∈ L(r). �

Consequently, the above result generalises the polynomial time solvability of

the membership problem for patterns with a bounded number of variables to

the class of REGEX with a bounded number of referenced subexpressions, which

constitutes a possible starting point for further research on the complexity of the

membership problem for REGEX languages. It is particularly worth mentioning

that while it is trivial to show that the membership problem for patterns with a

bounded number of variables can be solved in polynomial time, it requires some

more effort to show the analogue with respect to REGEX and the number of refe-

renced subexpressions. We conjecture that identifying more complicated structu-

ral parameters of REGEX that, if restricted, yield a polynomial time membership

problem is more challenging than for pattern languages.
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Conclusions and Discussion

We first summarise the content of this thesis chapter by chapter (except for Chap-

ters 1 and 2) in Section 8.1 and then, in Section 8.2, we provide a more general

discussion of our main results. In Section 8.3, we investigate some ideas to gene-

ralise our results, which are left for future research.

8.1 Summary of the Thesis

Chapter 3

In this chapter, we use finite automata as a tool to solve the membership problem

for pattern languages. In Section 3.1, we give an overview of how pattern lan-

guages can be recognised by multi-head automata. More precisely, we show how

nondeterministic two-way, nondeterministic one-way and deterministic two-way

multi-head automata can recognise pattern languages, while we are not able to

show whether or not pattern languages can be recognised by deterministic one-

way multi-head automata. Based on these considerations, we introduce a new

automata model in Section 3.2, the nondeterministically bounded modulo counter

automata (NBMCA) and, as a more specialised version of NBMCA that is tailored

to the following application, we introduce the Janus automata.

Section 3.3 contains our first approach to the task of finding classes of patterns

for which the membership problem can be solved efficiently and, in this regard,

our main result states that any class of patterns with a bounded variable distance

provides this property. Our proof technique is based on Janus automata, and we

also show that, under a natural assumption, this approach is optimal. Never-

theless, it is briefly outlined how our automata based approach can be improved

and it is shown that these improvements lead to substantial technical difficulties.

Moreover, we point out that for further improvements it is crucial to harmonise

the movements of the two input heads of Janus automata in a clever way, which

205
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leads to a scheduling problem that we investigate on its own in Section 3.4. This

scheduling problem can also be stated as the problem of computing shuffle words

with minimum scope coincidence degree. We present a polynomial time algorithm

for this problem.

Chapter 4

Section 4.1 is devoted to a thorough investigation of the model of NBMCA, which,

in its more specialised variant of the Janus automata, has been proved to be a

useful tool in the context of Chapter 3. Our main research questions concern

expressive power, decidability questions and stateless variants of NBMCA. We

first show that NBMCA can be simulated by classical nondeterministic two-way

multi-head automata (2NFA) and vice versa. The simulation of NBMCA by 2NFA

is straightforward, whereas the simulation of 2NFA by NBMCA involves some

technical hassle, mainly because this simulation is quite economical with respect

to the numbers of required counters, which allows us to conclude a hierarchy result

for the language classes defined by NBMCA. More precisely, it is shown that the

class of languages corresponding to NBMCA with k counters is properly included

in the class of languages corresponding to NBMCA with k + 2 counters.

Since all interesting problems are undecidable for the unrestricted class of

NBMCA, we consider NBMCA for which the input head reversals, counter rever-

sals and counter resets are bounded by a constant. It is shown that for this class

of NBMCA the emptiness, infiniteness and disjointness problem are decidable.

However, if only the counter reversals are unbounded, then again all interesting

problems are undecidable.

For stateless variants of NBMCA, we show that a finite state control can be

simulated by a number of counters, which implies that stateless NBMCA can

simulate NBMCA with a finite state control. The technical challenges for such

simulations are caused by the strong restriction of the modulo counters. Further-

more, for a very restricted version of stateless NBMCA, i. e., stateless one-way

NBMCA with only one counter, which can be reset only a constant number of k

times (1SL-NBMCAk(1)), it is shown that there are languages that can be reco-

gnised by some 1SL-NBMCAk(1), but no 1SL-NBMCAk′(1), k′ 6= k, can recognise

the same language.

In Section 4.2, we introduce and investigate the nondeterministically initialised

multi-head automata (IFA), which form a special variant of multi-head automata.

These IFA work similarly to classical deterministic two-way multi-head automata,

but their input heads are initially nondeterministically distributed over the input

word. This model is motivated by how multi-head automata can recognise pattern
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languages, described in Section 3.1. It is shown that IFA can be determinised,

i. e., they have the same expressive power as deterministic two-way multi-head

automata. As an immediate result it follows that pattern languages are in DL,

the class of languages that can be recognised in deterministic logarithmic space.

Chapter 5

This chapter contains our second approach to the task of finding classes of patterns

for which the membership problem can be solved efficiently. The two respective

main results of this chapter are that any class of patterns with a bounded scope

coincidence degree and the class of mildly entwined patterns have a polynomial

time membership problem. Our proof technique differs quite substantially from

the automata based approach of Chapter 3 and is much more general. In Sec-

tion 5.1, we first introduce a way to encode patterns and words into relational

structures and then we show that these encodings constitute a reduction of the

membership problem for pattern languages to the homomorphism problem for re-

lational structures. This allows us to apply the concept of the treewidth to these

relational structures, which results in a meta-theorem stating that if a class of

patterns satisfies that the treewidth of the corresponding encodings as relational

structures is bounded by a constant, then the membership problem with respect

to this class of patterns can be solved in polynomial time. The two main results

mentioned above, which are presented in Sections 5.2 and 5.3, respectively, are

direct applications of this meta-theorem. It is also briefly outlined how our meta-

theorem could be used to identify further classes of patterns with a membership

problem that can be solved in polynomial time.

Chapter 6

In this chapter, we investigate the phenomenon that, with respect to alphabets of

size 2 or 3, patterns can describe regular or context-free languages in an unexpec-

ted way. This particularly implies that for these patterns it is substantially easier

to solve the membership problem. In Section 6.1, we give an overview of what is

currently known about this phenomenon. Then, in Section 6.2, we provide some

strong necessary conditions for the regularity of pattern languages and we give

numerous examples that demonstrate the hardness of finding characterisations of

the regular pattern languages, with respect to alphabets of size 2 and 3. A neces-

sary condition for the regularity of E-pattern languages over an alphabet of size

2, which particularly takes terminal symbols into account, is given in Section 6.3.
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Chapter 7

In Chapter 7, we investigate several possibilities to extend pattern languages with

regular languages and regular expressions, in order to describe subclasses of the

class of REGEX languages. We consider several classes of typed pattern languages

in Section 7.1 and languages given by pattern expressions in Section 7.2. We

extend the original definition of how pattern expressions describe languages and

it is shown that our versions of typed pattern languages coincide with the class of

languages given by pattern expressions. On the other hand, our refined versions

of pattern expressions are strictly more powerful and in Section 7.3 it is shown

that they coincide with the class of languages that are given by REGEX that do

not contain referenced subexpressions under a star. In Section 7.4, we prove that

the membership problem for languages that are given by REGEX with a bounded

number of backreferences can be solved in polynomial time.

8.2 Discussion of the Results

With respect to the membership problem of pattern languages, the presented

classes of patterns for which the membership problem can be solved efficiently are

the most important results. It is convenient to state these results in form of the

structural properties or parameters that need to be restricted in order to obtain a

polynomial time membership problem. In this regard, we identify the parameters

of the variable distance and the scope coincidence degree as well as the property for

patterns of being mildly entwined as substantially contributing to the complexity

of the membership problem for pattern languages. These results constitute much

deeper insights into the complexity of the membership problem than the ones

provided by the parameter of the number of variables or the properties for patterns

of being regular or non-cross.

As mentioned in Section 2.2.1 (Lemma 2.5), the scope coincidence degree is

a lower bound for the variable distance, which implies that any class of patterns

with a bounded variable distance also has a bounded scope coincidence degree.

Consequently, the result that the membership problem can be solved efficiently

if the scope coincidence degree is bounded (see Theorem 5.10, page 146) implies

that the membership problem can be solved efficiently if the variable distance is

bounded (see Theorem 3.20, page 54). However, the conceptual aspect of the

results given in Chapter 3, i. e., the automaton based approach, is not covered

by the results of Chapter 5. Moreover, while for our Janus automaton further

improvements, e. g., an extension to regular-typed pattern languages, as described

at the end of Section 3.3.2, can be easily implemented, it is not straightforward
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to see how the encodings of patterns and words as relational structures given in

Chapter 5 need to be modified in order to accommodate similar amendments.

This aspect shall be discussed in more detail in the following section.

8.3 Further Research Ideas

Regarding our two main approaches presented in Chapters 3 and 5, we have already

outlined possible improvements and we have mentioned some open problems in

Sections 3.3.3 and 5.4, respectively.

From a more applied point of view, the probably most promising research task

is to find a way to generalise the results presented in Chapters 3 and 5 to extended

regular expressions with backreferences. In the following, we wish to investigate

this task a little further.

We call a REGEX r unnested if and only if r does not contain a referenced

subexpression within a referenced subexpression. This implies that in an unnested

REGEX, every backreference points to a classical regular expressions. Hence, in

terms of pattern languages, unnested REGEX languages correspond to the class

of REG-typed pattern languages (LREG(PAT)) introduced in Chapter 7 (Defi-

nition 7.1, page 183). It is straightforward to generalise the transformation of

patterns into Janus automata presented in Chapter 3 (Theorem 3.10, page 38) to

unnested REGEX. Informally speaking, this can be done by using the finite state

control of the Janus automaton in order to check whether or not the factors that

are matched are members of a regular language.

Generalising the approach of encoding patterns and words as relational struc-

tures, described in Chapter 5, to the class of unnested REGEX is not as straight-

forward. The problem is that we have to refine the encodings given in Defini-

tions 5.1 and 5.3 in the following way. Let Aα be an α-structure for some pattern

α and let Aw be the NE-w-structure for some word w. Furthermore, let Aα and

Aw be the universes of Aα and Aw, respectively. We now interpret α as an un-

nested REGEX, i. e., we simply add a regular type T := (Tx1 , Tx2 , . . . , Txm) to α.

Obviously, it is now possible that there exists a homomorphism from Aα and Aw,

but w /∈ LT (α). Consequently, in order to reduce the membership problem for

nested REGEX languages to the homomorphism problem for relational structures,

we have to make sure that a homomorphism can map an element i ∈ Aα to an

element (j, j′) ∈ Aw only if w[j, j′] ∈ Txα[i]
. This could be achieved by introducing,

for every i, 1 ≤ i ≤ m, a unary relation symbol T̂xi that is interpreted in the

following way: T̂Aαxi := {j | α[j] = xi} and T̂Awxi := {(j, j′) | w[j, j′] ∈ Txi}. Ho-

wever, this requires an unbounded number of relation symbols, which contradicts

the definition of the homomorphism problem for relational structures.
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A simpler way to generalise the results of Chapter 5 is to modify the algorithm

described in the proof of Theorem 5.11 (page 147) that solves the membership

problem with respect to patterns with a bounded scope coincidence degree in

the following way. In the step where, for every i, 1 ≤ i ≤ |α|, we inductively

compute the set Hi, we do not only check for every tuple C of size |Bi| containing

elements from Aw whether or not the mapping ord(Bi) 7→ C satisfies condition

(∗) (defined on page 147) and the set Hi−1 contains a tuple C ′ such that the

mappings ord(Bi) 7→ C and Bi−1 7→ C ′ are compatible, but also whether or not

the mappings ord(Bi) 7→ C and Bi−1 7→ C ′ map an element i ∈ Aα to an element

(j, j′) ∈ Aw only if w[j, j′] ∈ Txα[i]
. This can be done by checking the membership

of a word to a regular language.

Consequently, we can conclude that our two main approaches to the member-

ship problem for pattern languages can be generalised to the membership problem

for REG-typed pattern languages (or unnested REGEX languages) with little ef-

fort. Thus, the difficult task is to achieve a generalisation to the full class of

REGEX languages. We anticipate that for both, the automaton based approach

and the reduction to the homomorphism problem for relational structures, this is

not trivial.
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