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Abstract

Model-checking problems for propositional dynamic logic (PDL) and its extension PDL∩ (which
includes the intersection operator on programs) over various classes of infinite state systems
(BPP, BPA, pushdown systems, prefix-recognizable systems) are studied. Precise upper and
lower bounds are shown for the data/expression/combined complexity of these model-checking
problems.



1 Introduction

Propositional Dynamic Logic (PDL) was introduced by Fischer and Ladner in 1979 as a modal
logic for reasoning about programs [10]. In PDL, there are two syntactic entities: formulas and
programs. Formulas are interpreted in nodes of a Kripke structure and can be built up from
atomic propositions using boolean connectives. Programs are interpreted by binary relations
over the node set of a Kripke structure and can be built up from atomic programs using the
operations of union, composition, and Kleene hull (reflexive transitive closure). PDL contains
two means for connecting formulas and programs: Programs may appear in modalities in front
of formulas, i.e., if π is a program and ϕ is a formula, then 〈π〉ϕ is true in a node u if there
exists another node v, where ϕ holds and which can be reached from u via the program π.
Moreover, PDL allows to construct programs from formulas using the test operator: If ϕ is a
formula, then the program ϕ? is the identity relation on the node set restricted to those nodes
where ϕ holds. Since its invention, many different extensions of PDL were proposed, mainly by
allowing further operators on programs, like for instance the converse operator or intersection
of programs, see the monograph [13] for a detailed exposition. Recently, PDL, where programs
are defined via visibly pushdown automata, was investigated [19].

PDL and its variations found numerous applications, e.g., in program verification, agent-
based systems, and XML-querying. In AI, PDL received attention by its close relationship to
description logics and epistemic logic, see [17] for references.

In the early days of PDL, researchers mainly concentrated on satisfiability problems and
axiomatization of PDL and its variants. With the emergence of automatic verification, also
model-checking problems for modal logics became a central research topic, and consequently
model-checking problems for PDL attracted attention [17]. In this paper, we start to investigate
model-checking problems for PDL over infinite state systems. In recent years, verification of
infinite state systems became a major topic in the model-checking community. Usually, infinite
state systems, like for instance systems with unbounded communication buffers or unbounded
stacks are modeled by some kind of abstract machine, which defines an infinite transition system
(Kripke structure): nodes correspond to system states and state transitions of the system are
modeled by labeled edges. Various classes of (finitely presented) infinite transition systems
were studied under the model-checking perspective in the past, see e.g. [27] for a survey. In
[23] Mayr introduced a uniform classification of infinite state systems in terms of two basic
operations: parallel and sequential composition. In this paper, we will mainly follow Mayr’s
classification.

Let us first briefly summarize our results before arguing for the usefulness of model-checking
PDL over infinite state systems. For infinite state systems with parallel composition, PDL im-
mediately becomes undecidable. More precisely, we show that PDL becomes undecidable over
BPP (basic parallel processes), which correspond to Petri nets, where every transition needs
exactly one token for firing. This result follows easily from the undecidability of the model-
checking problem for EF (the fragment of CTL which only contains next-modalities and the
“exists finally”-modality) for Petri nets [8]. Due to this undecidability result we mainly concen-
trate on infinite state systems with only sequential composition. In Mayr’s classification these
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are pushdown systems (PDS) and BPA (basic process algebras), where the latter correspond to
stateless pushdown systems. Pushdown systems were used to model the state space of programs
with nested procedure calls, see e.g. [9]. Model-checking problems for pushdown systems were
studied for various temporal logics (LTL, CTL, modal µ-calculus) [2, 9, 16, 30, 31]. We also
include prefix-recognizable systems (PRS) into our investigation [3, 5], which extend pushdown
systems. Model-checking problems for prefix-recognizable systems were studied in [4, 15]. The
decidability of PDL for prefix-recognizable systems (and hence also BPA and PDS) follows eas-
ily from the fact that monadic second-order logic (MSO) is decidable for these systems and that
PDL can be easily translated into MSO. But from the viewpoint of complexity, this approach
to PDL model checking is quite unsatisfactory, since it leads to a nonelementary algorithm.

Our investigation of the complexity of model-checking problems follows Vardi’s methodology
from [28]. For a logic L and a class of (finitely presented infinite) systems C, there are three
different ways of measuring the complexity of the model-checking problem for L and C: (i) One
may fix a formula ϕ ∈ L and consider the complexity of verifying for a given (finite description
of an infinite) system S ∈ C whether S |= ϕ; thus, only the system belongs to the input
(data complexity or structure complexity). (ii) One may fix a system S ∈ C and consider the
complexity of verifying for a given formula ϕ ∈ L, whether S |= ϕ; thus, only the formula
belongs to the input (expression complexity). (iii) Finally, both the system and the formula
may belong to the input (combined complexity).

In Section 7 we investigate the test-free fragment of PDL over BPA, PDS, and PRS. For all
these three kinds of systems, we show that the data/expression/combined complexity of test-
free PDL is exactly the same as for EF, which is PSPACE in most cases. This changes when we
allow the test operator. In Section 8 we study full PDL. Except for the data complexity of PDL
over BPA (which is polynomial time), all complexities become EXP-complete. The results from
Section 7 and 8 are mainly derived from known results about CTL and EF model-checking for
pushdown systems [30].

In Section 9 we move to PDL with the intersection operator on programs, briefly PDL∩

[12]. This logic turned out to be notoriously difficult in the past: It does not have the tree
model property, and as a consequence the applicability of tree automata theoretic methods is
quite limited. Whereas PDL is translatable into the modal µ-calculus, PDL∩ is orthogonal to
the modal µ-calculus with respect to expressiveness. A very difficult result of Danecki states
that satisfiability of PDL∩ is in 2EXP [7]. Only recently, a matching lower bound was obtained
by Lange and Lutz [18]. Our main result from Section 9 states that the expression/combined
complexity of PDL∩ (and also the test-free fragment of PDL∩) over BPA/PDS/PRS is 2EXP
complete, whereas the data complexity goes down to EXP. For the 2EXP lower bound proof,
we combine ideas from Walukiewicz’s EXP lower bound proof for CTL over PDS [30] with
the recent 2EXP lower bound proof for satisfiability of PDL∩ [18]. For the upper bound, we
transform a PDL∩ formula ϕ into a two-way alternating tree automaton A of exponential size,
which has to be tested for emptiness. Since emptiness of two-way alternating tree automata
can be checked in exponential time [29], we obtain a doubly exponential algorithm. Most of the
inductive construction of A from ϕ uses standard constructions for two-way alternating tree
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automata. It is no surprise that the intersection operator is the difficult part in the construction
of ϕ. The problems is that two paths from a source node s and a target node t, where the
first (resp. second) path is a witness that (s, t) belongs to the interpretation of a program π1

(resp. π2) may completely diverge. This makes it hard to check for an automaton whether there
is both a π1-path and a π2-path from s to t. Our solution is based on a careful analysis of such
diverging paths in pushdown systems.

We believe that model-checking of PDL and its variants over infinite state systems is not
only a natural topic, but also a useful and applicable research direction in verification. PDL
allows directly to express regular reachability properties, which were studied e.g. in [20, 23, 32]
in the context of infinite state systems. For instance, consider the property that a process can
reach a state, where a condition ϕ holds, via a path on which the action sequence a1a2 · · ·an
is repeated cyclically. Clearly, this can be expressed in CTL (if ϕ can be expressed in CTL),
but we think that the PDL-formula 〈(a1 ◦ a2 ◦ · · · ◦ an)∗〉ϕ is a more readable specification.
Secondly, and more important, the extension PDL∩ with intersection of programs allows to
formulate natural synchronization properties between several processes, which usually cannot
be expressed in the modal µ-calculus, since they do not have the tree model property, see
Example 4.2. One might argue that the high complexity (2EXP completeness) circumvents the
application of PDL∩ model checking for pushdown systems. But note that the data complexity
(which is a better approximation to the “real” complexity of model-checking, since formulas
are usually small) of PDL∩ over pushdown systems is only EXP, which is the same as the data
complexity of CTL [30]. Moreover, to obtain an exponential time algorithm for PDL∩ it is not
really necessary to fix the formula, but it suffices to bound the nesting depth of intersection
operators in programs. One may expect that this nesting depth is small in natural formulas,
like in Example 4.2 (where it is 1). Table 1 gives an overview on our results.

2 Preliminaries

2.1 General notations

Let Σ be a finite alphabet and let ε denote the empty word. Let Σε = Σ∪{ε} and let Σ = {a |
a ∈ Σ} be a disjoint copy of Σ. For any finite word w = w1w2 · · ·wn ∈ Σ∗ (w1, . . . , wn ∈ Σ) let
wrev = wnwn−1 · · ·w1 denote the reversal of w and for any language L ⊆ Σ∗ let Lrev = {wrev |
w ∈ L} denote the reversal of L. For an arbitrary set X let idX : X → X denote the identity
function on X, i.e. idX(x) = x for all x ∈ X. Let A be a set and R,U ⊆ A × A be binary
relations over A. Then R∗ is the reflexive and transitive closure of R. The composition of R
and U is R ◦ U = {(a, c) ∈ A × A | ∃b ∈ A : (a, b) ∈ R ∧ (b, c) ∈ U}. Let A,B, and C be
sets, A ∩ B = ∅ and let f : A → C and g : B → C be functions. Then the disjoint union
f ] g : A∪B → C of f and g is defined as (f ] g)(a) = f(a) for all a ∈ A and (f ] g)(b) = g(b)
for all b ∈ B. Finally, let AB = {f | f : B → A} be the set of all functions from B to A.
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2.2 Turing machines and complexity theory

We assume the reader is familiar with Turing machines and has some basic background in com-
plexity theory [25]. More precisely, we assume the reader knows basic complexity classes such
as L (deterministic logarithmic space), P (deterministic polynomial time), PSPACE (polyno-
mial space), EXP (deterministic exponential time), and 2EXP (deterministic double exponential
time).
When proving lower bounds, we will often deal with alternating Turing machines. An alternat-
ing Turing machine (ATM) is a tupleM = (Q,Σ,Γ, q0, δ,�) where (i) Q = Qacc]Qrej]Q∃]Q∀

is a finite set of states Q which is partitioned into accepting (Qacc), rejecting (Qrej), existential
(Q∃) and universal (Q∀) states, (ii) Γ is a finite alphabet, (iii) Σ ⊆ Γ is the input alpha-
bet, (iv) q0 ∈ Q is the initial state, (v) � ∈ Γ \ Σ is the blank symbol, and (vi) the map
δ : (Q∃ ∪ Q∀) × Γ → Moves × Moves with Moves = Q × Γ × {←,→} assigns to every pair
(q, γ) ∈ (Q∃ ∪ Q∀) × Γ a pair of moves. Assume a configuration c of M is in current state
q ∈ Q∃ ∪Q∀ and scans a symbol γ ∈ Γ. If δ(q, γ) = (µ1, µ2) and ci the successor configuration
of c by making the move µi (i ∈ {1, 2}) we also write c `µi

M ci. Moreover, we call c1 the left
successor configuration and c2 the right successor configuration of c. We call a configuration c

ofM in current state q ∈ Q accepting if and only if one of the following three conditions holds:

� q ∈ Qacc or

� q ∈ Q∃ and there exists an accepting successor configuration of c or

� q ∈ Q∀ and all successor configurations of c are accepting.

We say an input w ∈ Σ∗ is accepted by an ATM M = (Q,Σ,Γ, q0, δ,�) if and only if q0w
is an accepting configuration. By L(M) ⊆ Σ∗ we denote the language accepted by M. It is
well known that alternating polynomial space equals EXP and alternating exponential space
equals 2EXP [6]. Whenever we talk about hardness we mean hardness w.r.t logarithmic space
reductions.

2.3 Finite automata

A nondeterministic finite automaton (NFA for short) is a tuple A = (Q,Σ, q0, F, δ) where the
following five conditons are true: (i) Q is a finite set of states, (ii) Σ is a finite alphabet, (iii)
q0 ∈ Q is the initial state, (iv) F ⊆ Q is the set of final states and (v) δ : Q× Σε → 2Q is the
transition function. We denote by L(A) the accepted language of an NFA. The size |A| of an
NFA A = (Q,Σ, q0, F, δ) is defined as |Q|+ |Σ|.

3 Logic

In this section P is always a finite set of atomic propositions and Σ is a always a finite set of
atomic programs.
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3.1 Kripke structures

A Kripke structure over (P,Σ) is a tuple K = (S, {→σ | σ ∈ Σ}, ρ) where (i) S is a (possibly
infinite) set of nodes, (ii) →σ⊆ S × S is a transition relation for all σ ∈ Σ and (iii) ρ : S → 2P

labels every node with a set of atomic propositions.

3.2 Propositional Dynamic Logic and extensions

PDL-formulas ϕ and PDL-programs π over (P,Σ) are defined by the following grammar, where
p ∈ P and σ ∈ Σ:

ϕ ::= p | ¬ϕ | ϕ1 ∨ ϕ2 | 〈π〉 ϕ

π ::= σ | π1 ∪ π2 | π1 ◦ π2 | π
∗ | ϕ?

We introduce the following abbreviations: (ϕ1 ∧ ϕ2) = ¬(¬ϕ1 ∨ ¬ϕ2), [π]ϕ = ¬〈π〉¬ϕ. We
abbreviate the program

⋃
σ∈Σ σ by Σ. We abbreviate a program π1 ◦ π2 ◦ . . . ◦ πk by ©k

i=1πi
and the k-fold iteration of a program π by πk. If a PDL program is of the form ϕ? then we
call ϕ a test formula. We call a PDL formula ϕ test-free if and only if ϕ does not contain any
test subformulas. If a PDL formula ϕ is of the form then 〈π〉ϕ′ we call ϕ a box formula and π a
box program. The semantic of PDL is defined over Kripke structures. Given a Kripke structure
K = (S, {→σ | σ ∈ Σ}, ρ) over (P,Σ), we define via mutual induction for each PDL program
π a binary relation [[π]]K ⊆ S × S and for each PDL formula ϕ a subset [[ϕ]]K ⊆ S as follows,
where σ ∈ Σ and p ∈ P:

[[σ]]K = →σ

[[π1 ∪ π2]]K = [[π1]]K ∪ [[π2]]K

[[π1 ◦ π2]]K = [[π1]]K ◦ [[π2]]K

[[π∗]]K = [[π]]∗K
[[ϕ?]]K = {(s, s) | s ∈ [[ϕ]]K}

[[p]]K = {s | p ∈ ρ(s)}

[[¬ϕ]]K = S \ [[ϕ]]K

[[ϕ1 ∨ ϕ2]]K = [[ϕ1]]K ∪ [[ϕ2]]K

[[〈π〉ϕ]]K = {s | ∃t : (s, t) ∈ [[π]]K ∧ t ∈ [[ϕ]]K}

Hence, we can also write 〈ϕ?〉ψ for ϕ∧ψ. For s ∈ S we write (K, s) |= ϕ if and only if s ∈ [[ϕ]]K.
If the Kripke structure K is clear from the context we write [[ϕ]] for [[ϕ]]K. The size |ϕ| of a
PDL-formula ϕ and the size |π| of a PDL-program π is defined by mutual induction as follows:
|p| = |σ| = 1 for all p ∈ P and σ ∈ Σ, |¬ϕ| = |ϕ|+ 1, |ϕ∨ ψ| = |ϕ|+ |ψ|+ 1, |〈π〉ϕ| = |π|+ |ϕ|,
|π1 ∪ π2| = |π1 ◦ π2| = |π1|+ |π2|+ 1, |π∗| = |π|+ 1, and |ϕ?| = |ϕ|+ 1.
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3.2.1 APDL

We can as well represent PDL-programs by NFAs. The set of all APDL formulas Φ and the set
of all APDL automata Π over (P,Σ) are the smallest sets which fulfill the following properties:
(i) P ⊆ Φ, (ii) if ϕ, ψ ∈ Φ then we have ϕ ∨ ψ,¬ϕ ∈ Φ, (iii) if A ∈ Π and ϕ ∈ Φ then we have
〈A〉ϕ ∈ Φ, and (iv) if A is an NFA over a finite subset of (the infinite alphabet) Σ∪{ϕ? | ϕ ∈ Φ}
then we have A ∈ Π. Again, the semantic of APDL is defined over Kripke structures. Given a
Kripke structure K = (S, {→σ | σ ∈ Σ}, ρ) over (P,Σ), we define via mutual induction for each
APDL automaton A a binary relation [[A]]K ⊆ S × S and for each APDL formula ϕ a subset
[[ϕ]]K ⊆ S as follows, where p ∈ P and σ ∈ Σ:

[[σ]]K = →σ

[[ϕ?]]K = {(s, s) | s ∈ [[ϕ]]K}

[[A]]K =
⋃

a1a2···an∈L(A)

[[a1]]K ◦ [[a2]]K ◦ · · · ◦ [[an]]K

[[p]]K = {s | p ∈ ρ(s)}

[[¬ϕ]]K = S \ [[ϕ]]K

[[ϕ1 ∨ ϕ2]]K = [[ϕ1]]K ∪ [[ϕ2]]K

[[〈A〉ϕ]]K = {s | ∃t : (s, t) ∈ [[A]]K ∧ t ∈ [[ϕ]]K}

As above, for s ∈ S we write (K, s) |= ϕ if and only if s ∈ [[ϕ]]K. Note that in the definition of
[[A]]K the alphabet of A may contain test formulas ϕ?. Recall that [[ϕ?]]K is the restriction of
idS to all nodes in [[ϕ]]K. The size |ϕ| of an APDL formula ϕ is inductively defined as follows:
|p| = 1 for all p ∈ P, |¬ϕ| = |ϕ| + 1, |ϕ ∨ ψ| = |ϕ| + |ψ| + 1, and finally |〈A〉ϕ| = |A| + |ϕ|
where |A| equals the size of the NFA A defined in Subsection 2.3.

Remark 3.1. For every PDL program π over Π = (P,Σ) we can compute in logarithmic
space an APDL automaton Aπ over Π such that for all Kripke structures K over Π we have
[[π]]K = [[Aπ]]K. If π is test-free then Aπ is just an ordinary NFA over Σ. This translation is
nothing but the standard translation from regular expressions to finite automata.

3.2.2 The extension PDL∩

The logic PDL∩ is the extension of PDL by the intersection of programs and allows to ensure
that two programs start and end in the same nodes of the Kripke structure respectively. Syn-
tactically, PDL∩ formulas ϕ and PDL∩-programs π over (P,Σ) are given as follows, where p ∈ P

and σ ∈ Σ:

ϕ ::= p | ¬ϕ | ϕ1 ∨ ϕ2 | 〈π〉 ϕ

π ::= σ | π1 ∪ π2 | π1 ∩ π2 | π1 ◦ π2 | π
∗ | ϕ?

Given a Kripke structure K = (S, {→σ | σ ∈ Σ}, ρ) over (P,Σ) the semantic of PDL∩ is defined
as for PDL with the addition of the intersection of programs:

[[π1 ∩ π2]]K = [[π1]]K ∩ [[π2]]K

6



In contrast to PDL, PDL∩ cannot be translated into APDL. Moreover, PDL∩ neither possesses
the finite model property nor the tree model property in contrast to PDL [13].

Example 3.2. Let the program π over {a, b} be defined as

π = a(a ∪ b)∗ ∩ b(a ∪ b)∗

Note that [[π]] is in general not the empty relation, although of course a(a ∪ b)∗ ∩ b(a ∪ b)∗

represents the empty set when interpreted as a regular expression with intersection. Let the
Kripke structure K be given as follows:

•s

•
u

•
v

•
w

• t

•
x

•
y

a

b b a

b

a

b

We have (s, t) ∈ [[π]]K and s ∈ [[〈π〉true]]K.

Conventions In the rest of this paper, we will consider PDL (and hence PDL∩) without
atomic propositions. A Kripke structure will be just a tuple K = (S, {→σ| σ ∈ Σ}) where→σ⊆
S×S. Formally, we introduce the only atomic proposition true and define [[true]]K = S. This is
not a restriction, since a Kripke structure (S, {→σ| σ ∈ Σ}, ρ) (where ρ : S → 2P, Σ∩P = ∅) can
be replaced by the new Kripke structure (S, {→σ| σ ∈ Σ ∪ P}) where →p = {(s, s) | p ∈ ρ(s)}
for all p ∈ P. By the formalisms for specifying infinite Kripke structures that we will introduce
in Section 4, we will see that (a finite description of) this propositionless Kripke structure can
be easily computed from (a finite description of) the original Kripke structure. Moreover, in
PDL formulas, we have to replace every occurrence of an atomic proposition p by the formula
〈p〉true. Hence, for the rest of this paper, we will talk about PDL formulas and PDL programs
only over a set of atomic programs Σ defined by the following grammar, where σ ∈ Σ and
[[true]]K = S:

ϕ ::= true | ¬ϕ | ϕ1 ∨ ϕ2 | 〈π〉 ϕ

π ::= σ | π1 ∪ π2 | π1 ◦ π2 | π
∗ | ϕ?

3.3 The logic CTL and its fragment EF

Let Σ be a set of atomic programs. Formulas ϕ over Σ of the logic CTL are defined by the
following grammar, where σ ∈ Σ:

ϕ ::= true | ¬ϕ | ϕ1 ∨ ϕ2 | 〈σ〉ϕ |

∃(ϕ1Uϕ2) | ∃¬(ϕ1Uϕ2)
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We introduce the abbreviations false = ¬true, [σ]ϕ = ¬〈σ〉¬ϕ where σ ∈ Σ, and ∃Fϕ =
∃(true U ϕ). Given a Kripke structure K = (S, {→σ | σ ∈ Σ}) over Σ let →=

⋃
σ∈Σ →σ be

the union of all relations →σ. A maximal path in K is a path in the relation → that is either
infinite or ends in a node without any outgoing transitions. We define for every CTL formula
ϕ a subset [[ϕ]]K inductively as follows, where σ ∈ Σ:

[[true]]K = S

[[¬ϕ]]K = S \ [[ϕ]]K

[[ϕ1 ∨ ϕ2]]K = [[ϕ1]]K ∪ [[ϕ2]]K

[[〈σ〉ϕ]]K = {s | ∃t : s→σ t and t ∈ [[ϕ]]K}

[[∃(ϕ1Uϕ2)]]K = {s | there exists a finite path s = u0 → u1 → · · · → un (n ≥ 0)

such that un ∈ [[ϕ2]]K and for all i < n : ui ∈ [[ϕ1]]K}

[[∃¬(ϕ1Uϕ2)]]K = {s | there exists a maximal path (ui)i≥0 such that s = u0

and for all i ≥ 0 : ui ∈ [[ϕ2]]K ⇒ ∃j < i : uj 6∈ [[ϕ1]]K}

As above, for s ∈ S we write (K, s) |= ϕ if and only if s ∈ [[ϕ]]K. The size |ϕ| of a CTL formula
ϕ is inductively defined as follows: |true| = 1, |¬ϕ| = |ϕ| + 1, |ϕ1 ∨ ϕ2| = |ϕ1| + |ϕ2| + 1,
|〈σ〉ϕ| = |ϕ|+ 1, and finally |∃(ϕ1Uϕ2)| = |∃¬(ϕ1Uϕ2)| = |ϕ1|+ |ϕ2|+ 1.

Formulas of modal logic over the set of atomic programs Σ form a fragment of CTL and are
defined by the following grammar, where σ ∈ Σ:

ϕ ::= true | ¬ϕ | ϕ1 ∨ ϕ2 | 〈σ〉ϕ

The logic EF extends modal logic with the addition of ∃Fϕ, i.e., EF formulas ϕ over Σ are
defined by the following grammar:

ϕ ::= true | ¬ϕ | ϕ1 ∨ ϕ2 | 〈σ〉ϕ | ∃Fϕ

Remark 3.3. The following problem can be computed in logarithmic space:
INPUT: An EF formula ϕ over Σ.
OUTPUT: A test-free PDL formula ψ over Σ such that for all Kripke structures K over Σ we
have [[ϕ]]K = [[ψ]]K.

Given a class C of Kripke structures and any logic L from above, the model-checking problem
asks: Given a Kripke structure K ∈ C, a node s of K and a formula ϕ ∈ L, does (K, s) |= ϕ

hold? Following Vardi [28], we distinguish between three measures of complexity:
� Data Complexity: One fixes a formula ϕ ∈ L and considers the complexity of verifying

for a Kripke structure K ∈ C and a node s of K whether (K, s) |= ϕ.

� Expression Complexity: One fixes a Kripke structure K ∈ C and a node s of K and
considers the complexity of verifying for a given formula ϕ ∈ L whether (K, s) |= ϕ.

� Combined Complexity: A Kripke structure K ∈ C, a node s of K, as well as a formula
ϕ ∈ L belong to the input and one considers the complexity of verifying (K, s) |= ϕ.
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4 Infinite state systems

In this section we introduce three classes of infinite state systems: Basic process algebras,
pushdown systems and prefix-recognizable systems. In the following let Σ always be a set of
atomic programs and Γ be a finite alphabet.

4.1 Basic process algebras

A basic process algebra (BPA for short) over Σ is a tuple X = (Γ,∆) where ∆ ⊆ Γε×Σ×Γ∗ is
a finite transition relation. A BPA X = (Γ,∆) over Σ describes the Kripke structure K(X ) =
(Γ∗, {→σ| σ ∈ Σ}) over Σ where for all σ ∈ Σ we have:

→σ = {(aw, vw) | w ∈ Γ∗ and (a, σ, v) ∈ ∆}

The size |X | is defined as |Γ|+
∑

(a,σ,v)∈∆ |v|+ |Σ|. If (a, σ, v) ∈ ∆, we also write a
σ
−→X v.

Example 4.1. For a finite alphabet Γ = {a1, . . . , an} we give the BPA TreeΓ = (Γ,∆) over
Γ ∪ Γ where ∆ = {(ε, a, a) | a ∈ Γ} ∪ {(a, a, ε) | a ∈ Γ}. Hence, K(TreeΓ) looks as follows:

•
ε

•a1

•a1a1 · · · •a1an
•
•
•

•a2

•a2a1 · · · •a2an
•
•
•

· · ·

• • •

• an

•ana1 · · · •anan
•
•
•

a1

a2
an

a1

a2

an

a1

an

a1

an

a1

an
a1

an

a1

an

a1

an

The BPA TreeΓ will occur several times in the rest of this paper.

4.2 Pushdown systems

A pushdown system (PDS for short) over Σ is a tuple Y = (Γ, P,∆) where (i) P is a finite
set of control states and (ii) ∆ ⊆ P × Γε × Σ × P × Γ∗ is a finite transition relation. A PDS
Y = (Γ, P,∆) over Σ describes the Kripke structure K(Y) = (PΓ∗, {→σ| σ ∈ Σ}) over Σ where
for all σ ∈ Σ we define:

→σ = {(paw, qvw) | w ∈ Γ∗ and (p, a, σ, q, v) ∈ ∆}

The size |Y| is defined as |Γ| + |P | +
∑

(p,a,σ,q,v)∈∆ |v| + |Σ|. If (p, a, σ, q, v) ∈ ∆ we also write

pa
σ
−→Y qv.
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Note that every BPA X = (Γ,∆X ) can be translated into an equivalent PDS Y(X ) =
(Γ, {p},∆) (each over Σ) with a single state p, where

∆ = {(p, a, σ, p, v) | (a, σ, v) ∈ ∆X}.

Note that a BPA is a PDS with a single control state. Moreover BPA are also known as stateless
pushdown systems.

Example 4.2. Let us consider two deterministic pushdown systems given by Yi = (Γ, Pi,∆i)
over Σi (i ∈ {1, 2}) with a common stack alphabet Γ, where Σ1∩Σ2 = ∅. The systems Y1 and Y2

may synchronize over states in the intersection P1∩P2. These two systems can be modeled by a
single pushdown system Y = (Γ, P1∪P2,∆1∪∆2) over Σ = Σ1∪Σ2. In this context, it might be
interesting to express that whenever Y1 and Y2 are in the same configuration c (a configuration
corresponds to a node in K(Y)), and Yi can reach from c a configuration ci by a local action
(from Σi), then the two systems can reach from c1 and c2 again a common configuration. This
property can be expressed by the following PDL∩ formula:

[Σ∗
1 ∩ Σ∗

2](
∧

a∈Σ1,b∈Σ2

〈a〉true ∧ 〈b〉true ⇒ 〈a ◦ Σ∗
1 ∩ b ◦ Σ∗

2〉true)

Note that since Yi is assumed to be deterministic, every node of K(Yi) has at most one a-
successor for each a ∈ Σi for all i ∈ {1, 2}.

4.3 Prefix-recognizable systems

We call U ⊆ Γ∗ × Γ∗ a prefix-recognizable relation over Γ if U =
⋃n

i=1Ri for some n ≥ 1
and Ri = {(uw, vw) | u ∈ Ui, v ∈ Vi, w ∈ Wi} for some regular languages Ui, Vi,Wi ⊆ Γ∗

(1 ≤ i ≤ n). We briefly write Ri = (Ui × Vi)Wi. Let PRR(Γ) denote the set of prefix-
recognizable relations over Γ. A prefix-recognizable system (PRS for short) 1 over Σ is a tuple
Z = (Γ, α) where α : Σ→ PRR(Γ) assigns to every atomic program σ ∈ Σ a prefix-recognizable
relation α(σ) such that α(σ) =

⋃nσ

i=1(L(Aσi ) × L(Bσi ))L(Cσi ) over Γ which is given by a tuple
(Aσ1 , . . . ,A

σ
nσ
,Bσ1 , . . . ,B

σ
nσ
, Cσ1 , . . . , C

σ
nσ

) of NFAs. A PRS (Γ, α) over Σ describes the Kripke
structure (Γ∗, {α(σ) | σ ∈ Σ}) over Σ. The size |Z| of a PRS Z = (Γ, α) over Σ is defined as
|Γ|+ |Σ|+

∑
σ∈Σ

∑nσ

i=1 |A
σ
i |+ |B

σ
i |+ |C

σ
i |.

Example 4.3. Given the PRS Z = ({0, 1}, α) over {0, 1,�} such that α(b) = ({ε} × {b}) {0, 1}∗

for b ∈ {0, 1} and α(�) = ({ε} × {0, 1}∗) {0, 1}∗ the described Kripke structure K(Z) is the
complete binary tree with the prefix relation �.

Note that every PDS Y = (Γ, P,∆) can be translated into an equivalent PRS Z(Y) =
(Γ ∪ P, α) (each over Σ), where for all σ ∈ Σ we have

α(σ) =
⋃

(p,a,σ,q,v)∈∆

({pa} × {qv}) Γ∗.

1PRS (prefix recognizable systems) should not be confused with PRS hierarchy defined by Mayr in [22].
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Also note that every node of the PRS from Example 4.3 has infinitely many outgoing
transitions, whereas every node of every PDS has both finitely many incoming and outgoing
transitions.

Depending on the context, we will identify (a) BPA (PDS,PRS) either with a concrete basic
process algebra (pushdown system, prefix-recognizable system) or with the class of infinite state
systems described by basic process algebras (pushdown systems, prefix-recognizable systems).
Moreover, when we mean a concrete BPA (PDS,PRS) we might also refer to the Kripke struc-
ture described by it.

Comparison to other definitions Note that our definition of basic process algebras allows
transitions of the form ε

σ
−→X v and our definition of pushdown systems allows transitions of

the form p
σ
−→Y qv where p and q are control states. It is easy to see that our definitions

describe exactly the same class of basic process algebras as defined in [21, 22] and the same
class of pushdown systems as defined in [31, 1, 30, 22]. Moreover, there are logspace transla-
tions between the two formalisms. When defining pushdown systems Y over a set of atomic
propositions P and a set of atomic programs Σ with control states P it is well-established to
introduce a mapping % : P → 2P which assings to every control state p ∈ P a subset of P.
Given such a mapping % : P → 2P our definition from above can imitate it by introducing fresh
transition rules in Y which generate correspondingly labeled self-loops at exactly those nodes
of the Kripke structure K(Y) where the atomic propositions are satisfied. More precisely, we
extend the set of atomic programs Σ by P (assuming P and Σ to be disjoint) and introduce for

all control states p ∈ P the transition rule p
η
→ p if and only if η ∈ %(p). Similar remarks apply

to basic process algebras and prefix-recognizable systems.

Table 1 summarizes our results for model-checking Propositional Dynamic Logics over the sys-
tems BPA, PDS and PRS.

Another way of describing the classes of infinite state systems BPA, PDS and PRS is by
defining them via transition systems generated by certain term rewriting rules where only
sequential composition is allowed. Besides sequential composition also parallel composition
was used for classifying infinite state systems. Mayr [22] introduced a unified framework,
allowing both sequential and parallel composition, called Process Rewrite Systems, which is a
strict hierarchy w.r.t. bisimulation. The best-known class of this hierarchy are Petri nets.

4.4 Petri nets and communication-free nets

A Petri net N over a set of atomic programs Σ is a tuple (S, T, γ, ρ) where (i) S is a finite
set of places, (ii) T is a finite set of transitions, (iii) γ : (S × T ) ∪ (T × S) → N is a weight
function, and (iv) ρ : T → Σ labels each transition with an atomic program. A marking M is
a mapping M : S → N, thus M ∈ N

S. Let M1 and M2 be markings. Then we write M1
σ
−→M2

if and only if there exists a transition t ∈ T such that (i) M1(s) ≥ γ(s, t) for all s ∈ S and

11



Table 1: Model-checking PDL over BPA, PDS, and PRS.

BPA PDS PRS

data P EXP

EF, PDL\? expression PSPACE

combined EXP

data P

PDL expression EXP

combined

data P · · ·EXP EXP

PDL∩, PDL∩\? expression

combined
2EXP

(ii) M2(s) = M1(s) + γ(t, s)− γ(s, t). A Petri net N = (S, T, γ, ρ) over Σ describes the Kripke
structure K(N ) = (NS, {→σ| σ ∈ Σ}) where →σ = {(M1,M2) ∈ N

S × N
S | M1

σ
−→ M2} for all

σ ∈ Σ.
Petri nets can also be described by transitions systems which are generated by rewriting

rules where only parallel composition is allowed on the left and on the right hand side of each
rewriting rule. A subclass of Petri nets, called basic parallel processes (BPP for short), is defined
by allowing parallel composition only at the right hand side of each rewriting rule. This class
is also known as the class of communication-free nets to be defined below. When referring to
this class we write BPP.

A communication-free net over Σ is a Petri net N = (S, T, γ, ρ) over Σ such that for all
t ∈ T there exists a unique s ∈ S such that (i) γ(s, t) = 1 and for all s′ 6= s we have γ(s′, t) = 0.

5 Undecidability of test-free PDL over BPP

It is shown in [23] that there already exists a fixed EF formula such that the model-checking
problem for Petri nets becomes undecidable. By a simple reduction from this problem one sees
that the model-checking problem of test-free PDL over BPP is undecidable. Note that in [23]
it is shown that the combined complexity of the model-checking problem of EF over BPP is
PSPACE-complete.

Theorem 5.1 (Proposition 36 in [23]). There exists a fixed EF formula ϕ over Σ such that
the following problem is undecidable:
INPUT: A Petri net N = (S, T, γ, ρ) over Σ and an initial marking M ∈ N

S.
QUESTION: (K(N ),M) |= ϕ?

12



Corollary 5.2. The following problem is undecidable:
INPUT: A communication-free net N = (S, T, γ, ρ) over Σ, an initial marking M ∈ N

S and a
test-free PDL formula ϕ over Σ.
QUESTION: (K(N ),M) |= ϕ?

Proof. Given the fixed EF formula ϕ of Theorem 5.1 and a Petri net N ′ = (S ′, T ′, γ′, ρ′) each
over Σ′ and an initial marking M ′ ∈ N

S′
, we construct (in logarithmic space) a test-free PDL

formula ‖ϕ‖ and a communication-free net N = (S, T, γ, ρ) over Σ such that:

(K(N ′),M ′) |= ϕ ⇔ (K(N ),M) |= ‖ϕ‖

We put T = Σ = T ′∪(S ′×T ′), S = S ′]{s0} for a fresh place s0. Moreover we put ρ = idT = idΣ,
M(s) = M ′(s) for all s ∈ S, M(s0) = 1 and define γ as follows, where s ∈ S and t ∈ T :

γ(s, t) =





1 if t = (s, t′) and s ∈ S ′, t′ ∈ T ′

1 if s = s0 and t ∈ T ′

0 else

and

γ(t, s) =





γ′(t, s) if t ∈ T ′ and s ∈ S ′

1 if t ∈ T ′ and s = s0

0 else

Clearly, N is a communication-free net. Let us assume that S ′ = {s1, . . . , sn}. We translate
the formula ϕ into ‖ϕ‖ inductively as follows:

‖true‖ = true

‖¬ϕ‖ = ¬‖ϕ‖

‖ϕ1 ∨ ϕ2‖ = ‖ϕ1‖ ∨ ‖ϕ2‖

‖〈σ〉ϕ‖ =

〈
⋃

t∈ρ′−1(σ)

(
©n

i=1(si, t)
γ′(si,t)

)
◦ t

〉
‖ϕ‖

‖∃Fϕ‖ =

〈


⋃

σ∈Σ′

t∈ρ′−1(σ)

(
©n

i=1(si, t)
γ′(si,t)

)
◦ t




∗〉
‖ϕ‖

It is not difficult to see that we have

(K(N ′),M ′) |= ϕ ⇔ (K(N ),M) |= ‖ϕ‖
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6 Techniques for lower bounds

Since we can consider a BPA, PDS, or PRS as a system S that manipulates a stack containing
symbols of a finite alphabet we will, on a meta level, for the rest of this section talk about stack
systems. For several lower bound proofs, we will use a technique introduced by Walukiewicz by
which he showed the EXP-hardness of model-checking CTL properties on pushdown systems
[30] . For a fixed space-bounded alternating Turing machine M this technique translates the
behaviour of M on an input w into a stack system S that traverses the computation tree of
M on input w in a depth first search manner assured by a forumla ϕ. For an input w of M
the content of the stack of S is a string that represents a path from the initial configuration
init(w) to a reachable configuration by separating all intermediate configurations on this path
by certain markers to be described below. Depending on the space bound ofM simple or more
involved representations of the configurations ofM as the a content of the stack of S are used.
Left to any existential or universal configuration c we put so called direction markers. In case
c is universal a direction marker contains the information whether the acceptance of the left or
the right successor configuration of c is checked and which move is done. In case c is existential,
the direction marker contains the information about the move that is done in order to reach the
left or the right successor configuration of c which the acceptance is checked for. For universal
configurations c∀ in current state q ∈ Q∀ and scanning a symbol γ ∈ Γ such that δ(q, γ) =
(µ1, µ2) for µ1, µ2 ∈ Moves the direction marker L(µ1, µ2) (R(µ1, µ2)) is used to separate c∀ from
its left (right) successor configuration c, i.e. c∀ `

µ1

M c (c∀ `
µ2

M c). For existential configurations
c∃ in current state q ∈ Q∃ and scanning a symbol γ ∈ Γ such that δ(q, γ) = (µ1, µ2) the marker
E(µ1) (E(µ2)) is used to separate c∃ from its left (right) successor c, i.e. c∃ `

µ1

M c (c∃ `
µ2

M c).
Let Dir∀ = {L(µ1, µ2) | (µ1, µ2) ∈ δ(Q∀,Γ)}∪{R(µ1, µ2) | (µ1, µ2) ∈ δ(Q∀,Γ)} denote the set of
universal direction markers and Dir∃ = {E(µ1), E(µ2) | (µ1, µ2) ∈ δ(Q∃,Γ)} denote the set of
existential direction markers. As in [30] these direction markers are used in order to organize a
depth-first left-to-right traversal of the computation tree of M on input w on the stack of S.
Our stack system S has to be able to do and our formula ϕ has to assure the following:

� When the top of the stack of S is an accepting configuration c this accepting configuration
has to be popped from the stack. This removal confirms that c is accepting.

� When the top of the stack of S consists of E(µ) ∈ Dir∃ followed by an existential config-
uration c∃, all these parts have to be popped from the stack, thus confirming that c∃ is
an accepting configuration ofM.

� The situation is a bit different when the top of the stack of S is L(µ1, µ2) ∈ Dir∀ followed
by a universal configuration c∀. In this case it is already assured that the left successor
configuration c1 of c∀ (i.e. c∀ `

µ1

M c1) is accepting as it has been popped from the stack.
All S now has to do is to check that c∀’s right successor configuration c2 (i.e. c∀ `

µ2

M c2) is
accepting too. Hence, L(µ1, µ2) has to be replaced by R(µ1, µ2) and c2 has to be pushed
on top of the stack. For this, an arbitrary configuration c is pushed on the stack and then
S verifies whether indeed c∀ `

µ2

M c holds.
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� When R(µ1, µ2) ∈ Dir∀ followed by a universal configuration c∀ is on top of the stack all
these parts have to be popped from the stack, thus confirming c∀ to be accepting.

� When the top of the stack of S is a universal configuration c∀ in current state q ∈ Q∀ and
scanning a symbol γ ∈ Γ such that δ(q, γ) = (µ1, µ2) and c∀ `

µ
M c1, the string c1L(µ1, µ2)

has to be pushed on top of the stack, thus initiating to check the acceptance of c1.

� Analogously, when the top of the stack of S is an existential configuration c∃ in current
state q ∈ Q∃ and scanning a symbol γ ∈ Γ such that δ(q, γ) = (µ1, µ2), a string cE(µ)
has to be pushed on top of the stack where c∃ `

µ
M c for a µ ∈ {µ1, µ2}, thus initiating to

check the acceptance of c.

The behavior of S and the assurance of the formula ϕ express the fact that there exists a path
through the computation tree ofM such that the initial configuration init(w) is accepting, i.e.,
after pushing and popping configurations separated by apropriate direction markers on and
from the stack a finite number of times, the stack eventually becomes empty. Depending on
what sorts of lower bounds we want to prove (data, expression, or combined complexity) our
stack system S and our formula ϕ depend on (the size of) the input w ofM or not.

7 Model-checking test-free PDL

7.1 Lower Bounds

A context-free grammar (CFG for short) is a quadruple G = (V,Σ, S, P ) where (i) V is a finite
set of variable symbols, (ii) Σ is a finite terminal alphabet, (iii) S ∈ V is the starting variable, and
(iv) P : V → 2(V ∪Σ)∗ is the set of production rules. We denote with L(G) the language generated
by the context-free grammar G. The size |G| of G is defined as |V |+ |Σ|+

∑
X∈V

∑
v∈P (X) |v|.

Theorem 7.1 ([14]). The following problem is P-complete:
INPUT: A CFG G = (V, ∅, S, P ) with empty terminal alphabet.
QUESTION: L(G) 6= ∅? (i.e. ε ∈ L(G)?)

By a simple reduction from the non-emptiness problem for context-free grammars, we can
prove:

Theorem 7.2. For the fixed EF formula ϕ = 〈init〉(∃F¬〈loop〉true) over Σ = {init, derive, loop}
the following problem is P-hard:
INPUT: A BPA X = (Γ,∆) over Σ.
QUESTION: (K(X ), ε) |= ϕ?

Proof. We give a logarithmic space reduction from the non-emptiness problem for context-
free grammars to the above problem. Thus, the theorem will follow from Theorem 7.1. Let
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G = (V, ∅, S, P ) be a CFG over the empty terminal alphabet. We construct a BPA X =
X (G) = (V,∆) over Σ where

∆ = {(ε, init, S)} ∪ {(X, derive, w) | X ∈ V, w ∈ P (X)} ∪ {(X, loop, X) | X ∈ V }.

It is obvious that we have:

L(G) 6= ∅ ⇔ ε ∈ L(G) ⇔ (K(X ), ε) |= 〈init〉(∃F¬〈loop〉true)

Hence, we get a P lower bound for the data complexity of EF over BPA. Over PDS, Bouajjani
et al. proved a PSPACE lower bound for the data complexity of EF:

Theorem 7.3 ([1]). There exists a fixed EF-formula ϕ over Σ such that the following problem
is PSPACE-hard:
INPUT: A PDS Y = (Γ, P,∆) over Σ and a control state p0 ∈ P .
QUESTION: (K(Y), p0) |= ϕ?

Concerning expression complexity of EF over BPA, a PSPACE lower bound was shown by
Mayr:

Theorem 7.4 ([21]). There exists a fixed BPA X = (Γ,∆) over Σ such that the following
problem is PSPACE-hard:
INPUT: An EF formula ϕ over Σ.
QUESTION: (K(X ), ε) |= ϕ?.
Moreover, this lower bound even holds if the input ϕ is a formula of modal logic.

For the rest of this section, our goal is to show an EXP lower bound of the data complexity
of EF over PRS. We will proceed in several steps. First we show an EXP lower bound for the
combined complexity of test-free PDL over PRS.

Theorem 7.5. The following problem is EXP-hard:
INPUT: A PRS Z = (Γ, α) and a test-free PDL-program π each over Σ.
QUESTION: (K(Z), ε) |= 〈π〉true?

Proof. Let M = (Q,ΣM,ΓM, q0, δ,�) be a fixed p(m)-space-bounded ATM for a polynomial
p(m) with an EXP-hard acceptance problem. Moreover, let w ∈ Σ∗

M be an input of length n. We
will construct in logarithmic space a PRS Z = Z(M, w) = (Γ, α) and a test-free PDL-program
π = π(M, w) each over a set of atomic programs Σ such that:

w ∈ L(M) ⇔ (K(Z), ε) |= 〈π〉true

We will use the technique described in Subsection 6. Let N = p(n),Ω = Q ∪ ΓM and let Dir
denote the set of all direction markers ofM. The alphabet we will use in order to represent a
sequence of configurations ofM separated by direction markers is Γ = Ω∪Dir = Q∪ΓM∪Dir.
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We represent a configuration ofM as an element of the language
⋃N−1
i=0 ΓiMQΓN−i

M . We introduce
the set Σ of atomic programs and assign to each atomic program σ ∈ Σ a prefix-recognizable
relation α(σ) to be implicitly given below. First, we introduce the atomic program popacc
which allows to pop an accepting configuration from the stack:

α(popacc) =

N−1⋃

i=0

(
ΓiMQaccΓ

N−i
M × {ε}

)
Γ∗

For all direction markers d ∈ Dir we introduce the atomic program separatesd which checks
whether the top of the stack is a word in the language ΩN+1 d ΩN+1:

α(separatesd) = ({ε} × {ε})ΩN+1 d ΩN+1Γ∗

For all q ∈ Q and γ ∈ ΓM we introduce the program checkq,γ which allows to check if the top
configuration on the stack is in state q and the read-write head ofM is currently scanning γ:

α(checkq,γ) = ({ε} × {ε}) Γ∗
M qγ Γ∗

For all 0 ≤ j ≤ N and ω, ω′ ∈ Ω we introduce the atomic program matchj,ω,ω′ which allows to
check if the top configuration has the symbol ω at position j+1 and the subsequent configuration
on the stack has the symbol ω′ at position j + 1:

α(matchj,ω,ω′) = ({ε} × {ε})ΩjωΩN−j Dir Ωjω′ΩN−jΓ∗

We now introduce the atomic program popright which pops a sequence R(µ1, µ2)v with v ∈
ΩN+1 and R(µ1, µ2) ∈ Dir∀ from the stack. The word v should (this will be assured by π) be
a universal configuration for which both left and right successor configurations are accepting.
In analogy, for the existential case, the atomic program popexist pops a sequence E(µ)v with
v ∈ ΩN+1 and E(µ) ∈ Dir∃ from the stack:

α(popright) =


 ⋃

R(µ1 ,µ2)∈Dir∀

R(µ1, µ2)Ω
N+1 × {ε}


Γ∗

α(popexist) =


 ⋃

E(µ)∈Dir∃

E(µ)ΩN+1 × {ε}


Γ∗

In the same manner for all (µ1, µ2) ∈ δ(Q∀,ΓM) we introduce the atomic program pushleftµ1,µ2

which, assuming the top of the stack to be a universal configuration, pushs the left successor
configuration of the top configuration (this will be assured by π) on top of the stack:

α(pushleftµ1,µ2
) =

(
{ε} × ΩN+1L(µ1, µ2)

)
Γ∗
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Analogously for all (µ1, µ2) ∈ δ(Q∃,ΓM) and i ∈ {1, 2} we introduce the atomic program
pushexistµi

:

α(pushexistµi
) =

(
{ε} × ΩN+1E(µi)

)
Γ∗

Once the left successor configuration of a universal configuration is accepting (i.e. it has just
been popped from the stack), we can pop the top direction marker L(µ1, µ2) from the stack
and push its right successor configuration with the apropriate direction marker R(µ1, µ2) on
top of the stack. Hence, for all (µ1, µ2) ∈ δ(Q∀,ΓM) we add the atomic program leftrightµ1,µ2

as follows:

α(leftrightµ1,µ2
) =

(
L(µ1, µ2)× ΩN+1R(µ1, µ2)

)
Γ∗

The atomic program init adds the initial configuration q0w�
N−n on top of the empty stack:

α(init) =
(
{ε} × {q0w�

N−n}
)
{ε}

The atomic program empty inserts the simple loop (ε, ε).

α(empty) = ({ε} × {ε}) {ε}

We now give some auxiliary programs which we will later put together:

� For all d ∈ Dir we introduce the program testsuccd. It checks the following: The top
of the stack is of the form c1dc2 and c1 is the successor configuration of c2 w.r.t. the
direction marker d. We give the program testsuccd only for the case that d is of the form
L(µ1, µ2) where µ1 = (q′, γ′,←) for some q′ ∈ Q and γ′ ∈ ΓM. The other cases can be
handled analogously:

testsuccd = separatesd ◦
⋃

1≤i≤N−1

©i−2
j=0 (∪γ∈ΓM

matchj,γ,γ) ◦




⋃

γ,γ′′∈ΓM
q∈Q

matchi−1,q′,γ′′ ◦matchi,γ′′,q ◦matchi+1,γ′,γ


 ◦

©N
j=i+2 (∪γ∈ΓM

matchj,γ,γ)

18



� The following program traverses the configuration tree ofM along one edge:

traverse = popacc ∪ popright ∪ popexist

∪
⋃

γ∈Γ

(
⋃

q∈Q∀
δ(q,γ)=(µ1,µ2)

checkq,γ ◦ pushleftµ1,µ2
◦ testsuccL(µ1 ,µ2)

∪
⋃

q∈Q∃,i∈{1,2}

δ(q,γ)=(µ1,µ2)

checkq,γ ◦ pushexistµi
◦ testsuccE(µi)

∪
⋃

(µ1,µ2)∈δ(Q∀,γ)

leftrightµ1 ,µ2
◦ testsuccR(µ1 ,µ2)

)

Our final program π is:

π = init ◦ traverse∗ ◦ empty

Finally, we have:

w ∈ L(M) ⇔ (K(Z), ε) |= 〈π〉true

We need the following lemma to prove an EXP lower bound for the data complexity of EF
over PRS:

Lemma 7.6. There exists a fixed EF-formula ϕ over a fixed set Θ of atomic programs such
that the following problem is computable in logarithmic space:
INPUT: A PRS Z = (Γ, α) and a test-free PDL program π each over some Σ.
OUTPUT: A PRS Z ′ = (Γ′, α′) over Θ such that:

(K(Z), ε) |= 〈π〉true ⇔ (K(Z ′), ε) |= ϕ

Proof. According to Remark 3.1 we can compute in logarithmic space an APDL automaton
Aπ = (Q,Σ, q0, F, δ) (without test-symbols) such that (K(Z), ε) |= 〈π〉true if and only if
(K(Z), ε) |= 〈Aπ〉true. We can assume Q ∩ Γ = ∅. Define M = Q × Σε × Q. For a prefix-
recognizable relation S =

⋃
i∈I(Ui × Vi)Wi ∈ PRR(Γ) and two states q, q′ ∈ Q let (q, q′)S ∈

PRR(Γ ∪Q) denote the following prefix-recognizable relation:

(q, q′)S =
⋃

i∈I

({q}Ui × {q
′}Vi)Wi

For each m ∈M we define the prefix-recognizable relation Rm ∈ PRR(Γ ∪Q) as follows:

Rm =





(q, q′)α(σ) if m = (q, σ, q′) ∈ Q× Σ×Q and q′ ∈ δ(q, σ)

({q} × {q′})Γ∗ if m = (q, ε, q′) ∈ Q× {ε} ×Q and q′ ∈ δ(q, ε)

∅ else
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Define Θ = {init, sim, final}. We put α′(init) = ({ε} × {q0}){ε}, α
′(sim) =

⋃
m∈M Rm and

α′(final) =
⋃
q∈F ({q} × {q})Γ∗. It is easy to see that the translation can be carried out in

logarithmic space and that for ϕ = 〈init〉(∃F〈final〉true) we have:

(K(Z), ε) |= 〈π〉true ⇔ (K(Z), ε) |= 〈Aπ〉true ⇔ (K(Z ′), ε) |= ϕ

Corollary 7.7. There exists a fixed EF formula ϕ over a fixed set of atomic programs Σ such
that the following problem is EXP-hard:
INPUT: A PRS Z = (Γ, α) over Σ.
QUESTION: (K(Z), ε) |= ϕ?

Proof. A direct consequence from Theorem 7.5 and Lemma 7.6.

Hence, we get an EXP lower bound for the data complexity of EF over prefix-recognizable
systems.

7.2 Upper bounds

Again in [30], Walukiewicz shows that the combined complexity of EF over pushdown systems
is in PSPACE:

Theorem 7.8 ([30]). The following problem is PSPACE-complete:
INPUT: A PDS Y = (Γ, P,∆) over Σ, a control state p ∈ P , and an EF forumula ϕ over Σ.
QUESTION: (K(Y), p) |= ϕ?

Using Theorem 7.8, we can show:

Theorem 7.9. The following problem is in PSPACE:
INPUT: A PDS Y = (Γ, P,∆) over Σ, a control state p ∈ P , and a test-free PDL formula ϕ

over Σ.
QUESTION: (K(Y), p0) |= ϕ?

Proof. We construct in polynomial time a PDS Y ′ = (Γ, P ′,∆′) over Σ′, a control state p′0 ∈ P
′,

and an EF-formula ‖ϕ‖ over Σ′ such that:

(K(Y), p0) |= ϕ ⇔ (K(Y ′), p′0) |= ‖ϕ‖

Thus, the theorem follows from Theorem 7.8. W.l.o.g. we can assume ϕ to be a box formula.
Let {ϕ1, ϕ2, . . . , ϕn} an enumeration of the set of all box subformulas of ϕ such that: ϕi is a
strict subformula of ϕj implies i < j. For all i let Ai = (Qi,Σ, qi, Fi, δi) be an APDL automaton
for the box program of ϕi. We define Q =

⊎
i∈I Qi, P

′ = (P × Q) ] {p′0} for a fresh control

state p′0, and Σ′ = Q ∪ {ε}. The transition relation ∆′ of Y ′ consists of p′0
ε
−→Y ′ (p0, qn) and the

following kinds of rules:
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� (p, q)
q
−→Y ′ (p, q) for all (p, q) ∈ P ×Q.

� (p, q)a
ε
−→Y ′ (p′, q′)v if and only if there exists a transition pa

σ
−→Y p′v and q′ ∈ δi(q, σ)

where q, q′ ∈ Qi (1 ≤ i ≤ n).

� (p, q)
ε
−→Y ′ (p, q′) if and only if q′ ∈ δi(q, ε) where q, q′ ∈ Qi and p ∈ P (1 ≤ i ≤ n).

� (p, q)
ε
−→Y ′ (p, qj) where q ∈ Fi, p ∈ P and 1 ≤ j < i ≤ n.

We give the definition of ‖ϕ‖ inductively:

‖true‖ = true

‖¬ϕ‖ = ¬‖ϕ‖

‖ϕ1 ∨ ϕ2‖ = ‖ϕ1‖ ∨ ‖ϕ2‖

‖〈Ai〉ϕ‖ = 〈ε〉

(
〈qi〉true ∧ ∃F

(
∨

q∈Fi

〈q〉true ∧ ‖ϕ‖

))

It is easy to see that the translation is computable in polynomial time and that we have:

(K(Y), p0) |= ϕ ⇔ (K(Y ′), p′0) |= ‖ϕ‖

Hence, we get a PSPACE upper bound for the combined complexity of test-free PDL over
pushdown systems.

In [26] it is shown that each prefix-recognizable system Z can effectively be translated
into a pushdown system Y with ε-transitions, such that every node in K(Y) either has no
outgoing ε-transitions or no outgoing non-ε-transitions, see also [3]. Moreover, one gains the
prefix-recognizable system Z by factoring out the ε-transitions of Y as follows: One takes only
those nodes in K(Y) without outgoing ε-transitions (we call them ε-free nodes) and adds a σ-
transition between two nodes if and only if there exists a path between them in K(Y) consisting
of one σ-transition followed by arbitrary many ε-transitions. It is now easy to see that Theorem
7.9 implies a PSPACE upper bound for the expression complexity of test-free PDL over prefix-
recognizable systems: Given a fixed PRS Z = (Γ, α) and a test-free PDL formula ϕ each over
Σ, we effectively compute in constant time a fixed pushdown system Y with ε-transitions and
the properties from above. We add transitions to Y such that each ε-free node of K(Y) has a
self-loop labeled by # 6∈ Σ. By this modification we obtain the fixed pushdown system Y ′ over
Σ ∪ {#} with ε-transitions. Finally, we replace each occurring atomic program σ ∈ Σ in ϕ by
σ ◦ ε∗ ◦ # and hereby receive ϕ′. Clearly this construction can be carried out in polynomial
time and for some fixed node c of K(Y ′) (which corresponds to the node ε of K(Z)). we have:

(K(Z), ε) |= ϕ ⇔ (K(Y ′), c) |= ϕ′

Hence, we get the following corollary:
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Table 2: EF and test-free PDL over BPA,PDS and PRS.

BPA PDS PRS

data P EXP

EF, PDL\? expression PSPACE

combined EXP

Corollary 7.10. For every fixed PRS Z = (Γ, α) over Σ the following problem is in PSPACE:
INPUT: A test-free PDL formula ϕ over Σ.
QUESTION: (K(Z), ε) |= ϕ?

Hence, we get a PSPACE upper bound for the expression complexity of test-free PDL over
prefix-recognizable systems.

We obtain the complexity results for model-checking EF and test-free PDL over BPA, PDS,
and PRS in Table 2; the P and EXP upper bounds are treated in Section 8.2.

8 Model-checking full PDL

8.1 Lower Bounds

As proved in [30], the EXP-hardness of model-checking CTL properties of pushdown systems
already holds for a fixed pushdown system:

Theorem 8.1 ([30]). There exists a fixed PDS Y = (Γ, P,∆) over Σ and a control state p ∈ P
such that the following problem is EXP-hard:
INPUT: A CTL formula ϕ over Σ.
QUESTION: (K(Y), p) |= ϕ?

Looking at the construction in [30], the CTL formula ϕ over Σ establishing the EXP lower
bound for model-checking the fixed pushdown system Y = (Γ, P,∆) and a control state p0 ∈ P
is of the form ϕ = ∃(ψ1Uψ2), where ψ1 and ψ2 are EF formulas. It is easy to see that the PDL
formula ‖ϕ‖ = 〈(‖ψ1‖? ◦Σ)∗〉‖ψ2‖ is equivalent to ϕ, where ‖ψ1‖ (‖ψ2‖) is a logarithmic space
computable test-free PDL formula equivalent to ψ1 (ψ2) see by Remark 3.3. We now construct
the formula ϕ′ by taking ‖ϕ‖ and replacing any atomic program σ ∈ Σ by

⋃

pγ
σ−→Yqv

p ◦ γ ◦ vrev ◦ q ∪
⋃

p
σ−→Yqv

p ◦ vrev ◦ q.

We finally have, where the fixed BPA TreeΓ∪P is from example 4.1:

(K(Y), p0) |= ϕ ⇔ (K(TreeΓ∪P ), p0) |= ϕ′
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Table 3: Full PDL over BPA, PDS, and PRS.

BPA PDS PRS

data P

PDL expression EXP

combined

Hence, we obtain an EXP lower bound for the expression complexity of PDL over BPA.

Corollary 8.2. There exists a fixed BPA X = (Γ,∆) over Σ and a fixed node w ∈ Γ∗ such
that the following problem is EXP-hard:
INPUT: A PDL formula ϕ over Σ.
QUESTION: (K(X ), w) |= ϕ?

Too, in [30] the data complexity for CTL over pushdown systems is proved to be EXP-hard:

Theorem 8.3 ([30]). There exists a fixed CTL-formula ϕ over Σ such that the following
problem is EXP-hard:
INPUT: A PDS Y = (Γ, P,∆) over Σ and a control state p ∈ P .
QUESTION: (K(Y), p) |= ϕ?

Since the fixed CTL formula ϕ establishing the EXP lower bound for model checking push-
down systems is of the form ϕ = ∃(ψ1Uψ2) for two EF formulas ψ1 and ψ2 we can, as discussed
above, translate this formula into an equivalent fixed PDL formula. Hence, we obtain an EXP
lower bound for the data complexity of PDL over pushdown systems.

Corollary 8.4. There exists a fixed PDL-formula ϕ over Σ such that the following problem is
EXP-hard:
INPUT: A PDS Y = (Γ, P,∆) over Σ and a control state p ∈ P .
QUESTION: (K(Y), p) |= ϕ?

8.2 Upper bounds

Since there is a polynomial time translation from PDL into (the alternation-free fragment of
the) modal µ-calculus [13], upper bounds for the modal µ-calculus carry over to PDL. Since
for a fixed µ-calculus formula the model-checking problem over BPA is in P [31], the data
complexity of model-checking PDL over BPA is in P too. Since the combined complexity of
model-checking the modal µ-calculus over PRS is in EXP [16, 4], we also obtain an EXP upper
bound for the combined complexity of model-checking PDL over PRS.

Table 3 summarizes the results for model-checking full PDL over BPA, PDS, and PRS.
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9 Model-checking PDL with intersection

9.1 Lower bounds

In order to show an EXP lower bound for the data complexity of test-free PDL∩, we use a simple
trick that simulates a test formula by the usage of the intersection operator on programs:

Theorem 9.1. There exists a fixed test-free PDL∩ formula ϕ over Σ such that the following
problem is EXP-hard:
INPUT: A PDS Y = (Γ, P,∆) over Σ and a control state p ∈ P .
QUESTION: (K(Y), p) |= ϕ?

Proof. (sketch) Let M = (Q,Σ,Γ, q0, δ,�) be a fixed p(m) space bounded ATM for some
polynomial p with an EXP-hard acceptance problem. Let w ∈ Σ∗ be an input of length n.
We construct a fixed test-free PDL∩ formula ϕ = ϕ(M) and a PDS Y = (M, w) each over Σ
such that for some control state p of Y we have (K(Y), p) |= ϕ ⇔ w ∈ L(M). Assume the
conventions of Section 6. Let Ω = Q∪Γ, Dir be the set of direction markers ofM, and assume
that for each ω ∈ Ω our PDS Y can push (pop) the symbol ω onto (from) the stack by using
the program ω (ω). A configuration ofM can straightforwardly be represented as a word from
the language ΩN+1. It is easy, for all ω1, ω2 ∈ Ω, to define a sequence of transition rules for Y
that pop the symbol ω1 from the stack, then pop N + 1 arbitrary symbols from Ω ∪ Dir, and
finally pop the symbol ω2 from the stack. It is easy to construct, for all ω1, ω2 ∈ Ω, a fixed
test-free PDL∩ program matchω1,ω2 that invokes this sequence of transition rules. Hence by
execution of matchω1,ω2 a sequence of the form ω1(Ω∪Dir)N+1ω2 is popped from the stack. For
all ω1, ω2 ∈ Ω define testω1,ω2 = matchω1,ω2 ◦ Γ∗ and let the program loop define the identity
relation on the nodes of K(Y). For all µ ∈ MovesM, the program testsuccµ checks the following:
If the top of the stack is a configuration c1 of M, followed by a direction marker d ∈ Dir and
finally followed by a configuration c2 of M, it is true that c2 `

µ
M c1? We restrict ourselves to

the case µ = (q′, γ′,←) where q′ ∈ Q and γ′ ∈ Γ. The program testsuccµ is defined as follows:

testsuccµ =

[(
⋃

γ∈Γ

(testγ,γ ∩ loop) ◦ γ

)∗

◦



⋃

γ,γ′′∈Γ
q∈Q

(testq′,γ′ ∩ loop) ◦ q′ ◦ (testγ′′,q ∩ loop) ◦ γ′′ ◦ (testγ′,γ ∩ loop) ◦ γ′


 ◦

(
⋃

γ∈Γ

(testγ,γ ∩ loop) ◦ γ

)∗

◦
⋃

d∈Dir

d ◦ Γ∗

]

∩ loop

The rest of the construction of ϕ is analogous to the proof of Theorem 7.5.
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Hence, we get an EXP lower bound for the data complexity of test-free PDL∩ over pushdown
systems. The lower bound increases to 2EXP, when a (test-free) PDL∩ formula is part of the
input even over a fixed BPA:

Theorem 9.2. There exists a fixed BPA X = (Γ,∆) over Σ such that the following problem is
2EXP-hard:
INPUT: A test-free PDL∩-formula ϕ over Σ.
QUESTION: (K(X ), ε) |= ϕ?

Proof. Let M = (Q,ΣM,ΓM, q0, δ,�) be a fixed 2p(m) − 1 space bounded ATM for some
polynomial p with a 2EXP-hard acceptance problem. Moreover, we assume thatM fulfills the
conventions of Subsection 6. Let w = w1w2 · · ·wn ∈ Σ∗

M be an input of length n. We give
a BPA X = X (M) = (Γ,∆) over Σ = Σ(M) and a logarithmic space computable test-free
PDL∩-formula ϕ = ϕ(w,M) over Σ such that we have:

w ∈ L(M) ⇔ (K(X ), ε) |= ϕ

Let Moves = Q × ΓM × {←,→} be the set of moves of M, Dir = Dir∃ ∪ Dir∀ be the set
of universal and existential direction markers of M, let N = p(n) and Ω = Q ∪ ΓM. A

configuration c of M is a word from the language
⋃

0≤i≤2N−2 ΓiMQΓ2N−1−i
M . We will represent

the configuration c = γ0γ1 · · ·γi−1qγi+1 · · ·γ2N−1 by:

γ0[0]γ1[1] · · ·γi−1[i− 1]q[i]γi+1[i+ 1] · · ·γ2N−1[2
N − 1], (1)

where [k] denotes the binary representation of k (0 ≤ k ≤ 2N − 1) with N bits, i.e., [k] =
β0β1 · · ·βN−1 with βj ∈ {0, 1} and k =

∑N−1
j=0 2j · βj. When we speak of a cell we mean ω[i] for

an ω ∈ Ω and a 0 ≤ i ≤ 2N − 1. We put Γ = Ω ∪ {0, 1} ∪ Dir and Σ = Γ ∪ Γ ∪ {loop}. We
define the transition relation ∆ of X to be the same as the one of TreeΓ (see Example 4.1) and

additionally the rule ε
loop
−−→ ε. Thus, K(X ) is nothing else than K(TreeΓ) but where in addition

each node has a loop transition labeled by “loop”. Now we give test-free PDL∩-programs which
are only executable if certain conditions are true.

� The following little auxiliary programs are only executable from nodes w ∈ Γ∗ where
there is a factorization w = uv ∈ Γ∗ such that u is of a certain kind. After execution of
these programs, we are in v.

– X =
⋃
x∈X x for any X ⊆ Γ: Pops a single symbol x ∈ X from the stack for any

subset X ⊆ Γ.

– popi = {0, 1}
i
for all 0 ≤ i ≤ N : Pops i bits from the stack.

– cell = Ω ◦ popN : Pops a cell ω[i] from the stack, where ω ∈ Ω.

– cell0 = Ω ◦ 0
N

: Pops a cell ω[0] from the stack, where ω ∈ Ω.

– cell1 = ΓM ◦ 1
N

: Pops a cell γ[2N − 1] from the stack, where γ ∈ ΓM.
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� For each subset X ⊆ Γ we define X =
⋃
x∈X x which pushs a symbol x ∈ X on top of the

stack.

� We give a program inc which is executable only if on top of the stack there is a word
of the form ω[i]ω′[i + 1] for some ω, ω′ ∈ Ω and some 0 ≤ i < N − 1. The program inc
pops ω[i] during its execution. In order to define inc we will use the programs χj,β for all
0 ≤ j ≤ N − 1 and β ∈ {0, 1} which assure that, after popping j bits of the current cell,
a bit β can be popped that matches the bit that can be popped after popping another j
bits of the subsequent cell. Afterwards, further bits may be popped:

χj,β = popj ◦ β ◦ {0, 1}
∗
◦ Ω ◦ popj ◦ β ◦ {0, 1}

∗

We define inc as follows:

inc =

[
(
cell ◦ cell

)

∩ Ω ◦
N−1⋃

i=0

(
1
i
◦ 0 ◦ {0, 1}

∗
◦ cell ∩

{0, 1}
∗
◦ Ω ◦ 0

i
◦ 1 ◦ {0, 1}

∗
∩

N−1⋂

j=i+1

(χj,0 ∪ χj,1)

)]
◦ Γ∗

∩ cell

� We give a program conf that is only executable if the top of the stack is a legal configu-
ration in the sense of (1), i.e., a word of the form ω0[0]ω1[1] · · ·ω2N−1[2

N − 1] must be on
top of the stack, for exactly one 0 ≤ i ≤ 2N − 2 we have ωi ∈ Q, and for all other i we
have ωi ∈ ΓM. This top configuration is being popped during execution:

conf = (cell0 ◦ cell
∗
) ∩ (inc

∗
◦ cell1)

∩ (ΓM ∪ {0, 1}
∗
◦Q ◦ ΓM ∪ {0, 1}

∗
)

� We give the program cells that pushs finitely many cells ω[i] (0 ≤ i ≤ 2N − 1, ω ∈ Ω) on
top of the stack:

cells = ({0, 1}N ◦ Ω)∗

� For all µ ∈ Moves we give programs checkµ which are only executable if cdc′ is on top of
the stack where: (i) c and c′ are configurations ofM in the sense of (1), (ii) d ∈ Dir and
(iii) c′ `µM c. We restrict ourselves to the case where µ = (q ′, γ′,←). First we define some
auxiliary programs:
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– For all 0 ≤ j ≤ N−1 and β ∈ {0, 1} let σj,β = popj ◦β ◦{0, 1}
∗
. For all ω, ω′ ∈ Ω the

program πω,ω′ assumes that the top of the stack is a certain suffix of a configuration
of M followed by a direction marker d ∈ Dir and a complete configuration of M.
More precisely

ωk[k]ωk+1[k + 1] · · ·ω2N−1[2
N − 1] d ω′

0[0]ω′
1[1] · · ·ω′

2N−1[2
N − 1]

is assumed to be on top of the stack. The program πω,ω′ simply tests if ωk = ω and
ω′
k = ω′ and during execution of it ωk[k] will be popped from the stack:

πω,ω′ =



N−1⋂

i=0

⋃

β∈{0,1}

ω ◦ σi,β ◦ cell
∗
◦Dir ◦ cell

∗
◦ ω′ ◦ σi,β


 ◦ Γ∗ ∩ cell

– The program π= has the same assumptions as πω,ω′ but checks whether the content
of the top cell ω[k] equals the content of the k-th cell of the subsequent configuration:

π= =
⋃

ω∈Ω

πω,ω

Finally we give checkµ:

checkµ = loop ∩

[
conf ◦Dir ◦ conf ∩

(
π∗

= ◦
⋃

q∈Q,γ,γ′′∈ΓM

(πq′,γ′′ ◦ πγ′′,q ◦ πγ′,γ) ◦ π
∗
= ◦Dir ◦ conf

)]
◦ Γ∗

� The program testq,γ tests if the top configuration is in current state q ∈ Q∃ ∪ Q∀ and
scans the symbol γ ∈ ΓM:

testq,γ = cell
∗
◦ q ◦ popN ◦ γ ◦ Γ∗ ∩ loop

� The program traverse is only executable if we can go along one edge of the computation
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tree ofM (Qacc is the set of accepting states ofM):

traverse =
⋃

q∈Qacc
γ∈ΓM

testq,γ ◦ conf

∪
⋃

R(µ1 ,µ2)∈Dir∀

R(µ1, µ2) ◦ conf

∪
⋃

E(µ)∈Dir∃

E(µ) ◦ conf

∪
⋃

(µ1,µ2)∈δ(Q∀,ΓM)

L(µ1, µ2) ◦R(µ1, µ2) ◦ cells ◦ checkµ2

∪
⋃

q∈Q∀,γ∈ΓM
δ(q,γ)=(µ1,µ2)

testq,γ ◦ L(µ1, µ2) ◦ cells ◦ checkµ1

∪
⋃

q∈Q∃,γ∈ΓM
δ(q,γ)=(µ1,µ2),µ∈{µ1,µ2}

testq,γ ◦ E(µ) ◦ cells ◦ checkµ

� The program checkw checks whether the initial configuration q0[0]w1[1]w2[2] · · ·wn[n]�[n+
1] · · ·�[2N − 1] is a prefix of the content of the stack:

checkw =

(
conf ∩

(
q0 ◦ popN ◦©

n
i=1(wi ◦ popN) ◦ (� ◦ popN)∗

))
◦ Γ∗ ∩ loop

� We give the program final:

final = cells ◦ checkw ◦ traverse∗

Our final formula ϕ, for which we have ε ∈ [[ϕ]]K(X ) ⇔ w ∈ L(M), is:

ϕ = 〈final〉¬〈Γ〉true

Eventually, we have:

w ∈ L(M) ⇔ (K(X ), ε) |= ϕ

9.2 Upper bounds

9.2.1 Two-way alternating tree automata

Walukiewicz first proved that model-checking the modal µ-calculus over pushdown systems is
EXP-complete [31]. Cachat extended this result to prefix-recognizable systems [4]. A different
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approach is the usage of two-way alternating tree automata introduced by Vardi [29], as for
example in [16, 15]. The idea is to reduce the model-checking problem for a pushdown system
or a prefix-recognizable system to the emptiness problem of two-way alternating tree automata.

Let Γ be a finite alphabet and u ∈ Γ∗ a word. A Γ-tree is a suffix-closed subset T ⊆ Γ∗, i.e.,
for all w ∈ Γ∗, a ∈ Γ with aw ∈ T we have w ∈ T . We call the elements of T nodes and ε ∈ T is
the root of T . A node u ∈ T is called leaf if and only if au 6∈ T for all a ∈ Γ. An infinite path of
a tree T is an infinite sequence u0u1 · · · ∈ T ω such that u0 = ε is the root of T and for all i ≥ 0
we have ui+1 = aui for some a ∈ Γ . Let Σ and Γ be finite alphabets. We call a pair (T, λ)
a Σ-labeled Γ-tree if T is a Γ-tree and λ : T → Σ labels every node of T by an element of Σ.
The complete Γ-tree is the Γ ] {⊥}-labeled Γ-tree (Γ∗, λΓ) where λΓ(ε) = ⊥ and λΓ(aw) = a

for all a ∈ Γ and w ∈ Γ∗. For a finite set X we denote by B+(X) the set of all positive boolean
formulas over X. Note that true and false are positive boolean formulas. A subset Y ⊆ X

satisfies a formula θ ∈ B+(X) if and only if by assigning true to all elements in Y the formula
θ is evaluated to true. Let ext(Γ) = Γ ] {ε, ↓} denote the extension of Γ. Furthermore, we
define for all u ∈ Γ∗, a ∈ Γ : εu = u, ↓au = u, whereas ↓ε is undefined.
A two-way alternating tree automaton (TWATA for short) over Γ is a tuple T = (Q, δ,Acc),
where (i) Q is a finite non-empty set of states, (ii) δ : Q × (Γ ∪ {⊥}) → B+(Q × ext(Γ))
is the transition function, and (iii) Acc : Q → {0, . . . , m} is the priority function (where
m ∈ N) which assigns to each state an integer between 0 and m. Let T = (Q, δ,Acc) be
a TWATA over Γ, u ∈ Γ∗ a word, and let q0 ∈ Q be a state. A (q0, u)-run of T (over the
complete Γ-tree (Γ∗, λΓ)) is a (Q × Γ∗)-labeled Ω-tree R = (TR, λR) for some finite set Ω such
that the following two conditions are satisfied: (i) ε ∈ TR and λR(ε) = (q0, u) and (ii) if
w ∈ TR with λR(w) = (q, v) and δ(q, λΓ(v)) = θ, then there exists a subset Y ⊆ Q × ext(Γ)
that satisfies the formula θ and for all (q′, e) ∈ Y there exists an ω ∈ Ω with ωw ∈ TR and
λR(ωw) = (q′, ev). We say a (q0, u)-run R = (TR, λR) of T is successful if and only if for every
infinite path w1, w2, . . . of TR, min({Acc(q) | λR(wi) ∈ {q} × Γ∗ for infinitely many i}) is even.
This is precisely the parity acceptance condition as in [29]. We also write [[T , q0]] for the set
{u ∈ Γ∗ | there exists a successful (q0, u)-run of T }. Let T = (Q, δ,Acc) be a TWATA over
Γ. The size |Acc| of Acc is defined to be max{Acc(q) | q ∈ Q}. The size |T | of T is defined
as |Γ| + |Q| +

∑
θ∈ran(δ) |θ| + |Acc|. Let T1 = (Q1, δ1,Acc1) and T2 = (Q2, δ2,Acc2) each be a

TWATA over Γ. Then, we define the disjoint union T1 ] T2 of T1 and T2 to be the TWATA
(Q1 ]Q2, δ1 ] δ2,Acc1 ] Acc2).

Note that in our definition a TWATA over an alphabet Γ only runs over the complete Γ-
tree. Hence, our definition is a special case of the definition in [29, 16, 15] which more generally
considered runs of a TWATA over Σ-labeled Γ-trees. The following result was shown in [29]:

Theorem 9.3 ([29]). For a given TWATA T = (Q, δ,Acc) and a state q ∈ Q, it can be checked
in time exponential in |Q| · |Acc| whether ε ∈ [[T , q]].

It should be noted that the size of a positive boolean formula that appears in the transition
function δ of a TWATA T = (Q, δ,Acc) can be exponential in |Q|, but the size of δ only appears
polynomially in the upper bound for emptiness (and not exponentially, which would lead to a
2EXP upper bound for emptiness).
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Let T be a TWATA over the alphabet Γ with state set S. A finite automaton A over T is a
pair (Q,→A) where Q is a finite state set and →A is a set of transitions of the following form:

� p
a
−→A q for p, q ∈ Q, a ∈ Γ ∪ Γ ∪ {ε}, or

� p
T ,s
−−→A q for p, q ∈ Q, s ∈ S.

We call the latter transitions the test-transitions of A. We denote with A↓ (resp. A↑) the finite
automaton over T that results from A by removing all transitions with a label from Γ (resp.
Γ), i.e., we only keep test-transitions and transitions with a label from Γ∪ {ε} (resp. Γ∪ {ε}).
Let T be a TWATA over Γ and let A = (Q,→A) be a finite automaton over T . Define the
relation ⇒A ⊆ (Γ∗ ×Q)× (Γ∗ ×Q) as the smallest relation such that:

� (u, p)⇒A (au, q) whenever u ∈ Γ∗ and p
a
→A q (a ∈ Γ ∪ {ε})

� (au, p)⇒A (u, q) whenever u ∈ Γ∗ and p
ā
→A q (a ∈ Γ)

� (u, p)⇒A (u, q) whenever u ∈ [[T , s]] and p
T ,s
−−→A q

For every pair (p, q) ∈ Q×Q let [[A, p, q]] = {(u, v) ∈ Γ∗ × Γ∗ | (u, p)⇒∗
A (v, q)}.

9.2.2 The main construction

We now describe an automata theoretic construction which will be crucial for handling the
intersection of programs in our upper bound of PDL∩ over prefix-recognizable systems.

Let T = (S, δ,Acc) be a TWATA over Γ and let A = (Q,→A) be a finite automaton over
T . Define the set hopA ⊆ Γ∗ ×Q×Q as the smallest set such that:

� for all u ∈ Γ∗ and q ∈ Q we have (u, q, q) ∈ hopA

� if (au, p′, q′) ∈ hopA, p
a
→A p

′, and q′
ā
→A q, then (u, p, q) ∈ hopA

� if (u, p, r), (u, r, q) ∈ hopA, then (u, p, q) ∈ hopA

� if u ∈ [[T , s]], p
T ,s
−−→A q, then (u, p, q) ∈ hopA

The idea of the relation hopA is that (u, p, q) ∈ hopA if and only if A (initially being in state
p) can walk through the complete Γ-tree from the node u back to u (and finally being in state
q) where on this walk A never visits a node that is a strict suffix of u. Each time we move in
the complete Γ-tree from v to av (resp. va to v), we have to read a (resp. ā) in the automaton
A.

Lemma 9.4. We have (u, p, q) ∈ hopA if and only if there exist n ≥ 1, u1, . . . , un ∈ Γ∗, and
q1, . . . , qn ∈ Q such that

(1) u1 = un = ε,
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(2) q1 = p, qn = q, and

(3) (u1u, q1)⇒A (u2u, q2) · · · ⇒A (unu, qn).

Proof. If (u, p, q) ∈ hopA, then an induction over a proof tree for the fact (u, p, q) ∈ hopA
shows that there exist n ≥ 1, u1, . . . , un ∈ Γ∗, and q1, . . . , qn ∈ Q such that (1)–(3) from the
lemma hold. Now assume that there exist n ≥ 1, u1, . . . , un ∈ Γ∗, and q1, . . . , qn ∈ Q such
that u1 = un = ε, q1 = p, qn = q, and (u1u, q1) ⇒A (u2u, q2) · · · ⇒A (unu, qn). We prove by
induction over n that (u, p, q) ∈ hopA. If n = 1 then p = q and hence (u, p, q) ∈ hopA. If n = 2,

i.e., (u, p) ⇒A (u, q), then there must exist a test transition p
T ,s
−−→A q such that u ∈ [[T , s]].

Thus, (u, p, q) ∈ hopA. Now assume that n ≥ 3. We can distinguish the following two cases:

Case 1. There exists 1 < i < n such that ui = ε. Then, by induction we get (u, p, qi), (u, qi, q) ∈
hopA. Hence, also (u, p, q) ∈ hopA.

Case 2. There does not exist 1 < i < n such that ui = ε. Then there must exist a ∈ Γ such
that p

a
→A q2, qn−1

ā
→A q, and ui = via for some vi ∈ Γ∗ (1 < i < n). Inductively, we get

(au, q2, qn−1) ∈ hopA. Thus, (u, p, q) ∈ hopA.

The inductive definition of the set hopA can be easily translated into a TWATA:

Lemma 9.5. There exists a TWATA U = (S ′, δ′,Acc′) over Γ with state set S ′ = S ] (Q×Q)
such that:

(i) for every s ∈ S we have [[U , s]] = [[T , s]],

(ii) for every (p, q) ∈ Q×Q we have [[U , (p, q)]] = {u ∈ Γ∗ | (u, p, q) ∈ hopA}, and

(iii) |Acc′| = |Acc|.

Proof. For states in S, the transitions of U are the same as for T . If q ∈ Q and ω ∈ Γ ∪ {⊥},
then we introduce the transition

δ′((q, q), ω) = true.

If p 6= q and ω ∈ Γ ∪ {⊥}, then we introduce the transition

δ′((p, q), ω) =
∨

p′,q′∈Q,a∈Γ

p
a
→Ap′,q′

ā
→Aq

〈(p′, q′), a〉 ∨
∨

r∈Q

(〈(p, r), ε〉 ∧ 〈(r, q), ε〉) ∨
∨

s∈S

p
T ,s
−−→Aq

〈s, ε〉.

We define the priority function Acc′ as follows:

Acc′(s′) =

{
Acc(s′) if s′ ∈ S

1 if s′ ∈ Q×Q

Trivially (iii) holds. We put Acc′((p, q)) = 1 for all p, q ∈ Q since U should spend only a finite
amount of time on verifying whether u ∈ hopA for a node u ∈ Γ∗. From the definition of δ′ it
is clear that (i) holds. From the definition of hopA, the construction of δ′, and Acc′ it follows
that [[U , (p, q)]] = {u ∈ Γ∗ | (u, p, q) ∈ hopA}, hence (ii) holds.

31



Now define a new finite automaton B = (Q,→B) over the TWATA U , that results from A

by adding for every pair (p, q) ∈ Q×Q the test transition p
U ,(p,q)
−−−−→ q.

Lemma 9.6. Let u, v ∈ Γ∗ and p, q ∈ Q. Then the following three statements are equivalent:

(1) (u, v) ∈ [[A, p, q]]

(2) (u, v) ∈ [[B, p, q]]

(3) there exist a common suffix w of u and v and a state r ∈ Q with (u, w) ∈ [[B↓, p, r]] and
(w, v) ∈ [[B↑, r, q]]

Proof. The implication (3) ⇒ (2) is trivial. For (2) ⇒ (1) note that for every test-transition

p′
U ,(p′,q′)
−−−−→B q′ of B and every x ∈ [[U , (p′, q′)]] we have (x, p′, q′) ∈ hopA and hence (x, p′) ⇒∗

A

(x, q′). It remains to prove the implication (1) ⇒ (3). Assume (u, v) ∈ [[A, p, q]]. Then there
exist words w0, . . . , wn ∈ Γ∗ and states q0, . . . , qn ∈ Q such that

(u, p) = (w0, q0)⇒A (w1, q1)⇒A · · · ⇒A (wn, qn) = (v, q).

Let µ = min{|wj| | 0 ≤ j ≤ n} denote the length of the shortest word of all the wj. Let d =
|u|−µ, e = |v|−µ, il = min{j : |wj| = µ+ l} (for all 0 ≤ l ≤ d) and jl = max{j : |wj| = µ+ l}
(for all 0 ≤ l ≤ e). Note that il and jl indeed exist. Let xl = wil for 0 ≤ l ≤ d. Clearly, for
all 0 < l ≤ d we have xl = wil = wi(l−1)−1. By definining rl = qil and r′l = qil−1−1 we have
(xl, rl, r

′
l) ∈ hopA, hence by Lemma 9.5 we have xl ∈ [[U , (rl, r′l))]]. Moreover, there exists al ∈ Γ

such that (xl, r
′
l)⇒A (xl−1, rl−1) where xl = alxl−1, thus (xl, rl)⇒∗

B↓ (xl−1, rl−1). Analogously,
let yl = wjl for 0 ≤ l ≤ e. We have yl = wjl−1+1 = wjl. By definining s′l = qjl−1+1 and sl = qjl
we have (yl, s

′
l, sl) ∈ hopA. Hence by Lemma 9.5 we have yl ∈ [[U , (s′l, sl)]]. Moreover, there

exists bl ∈ Γ such that (yl−1, sl−1) ⇒A (yl, s
′
l) where yl = blyl−1. Thus (yl−1, sl−1) ⇒

∗
B↑ (yl, sl).

Clearly, we have x0 = y0 and (x0, r0, s0) ∈ hopA. Hence by Lemma 9.5 we have x0 ∈ [[U , (r0, s0)]].
Altogether, we get:

(u, p) = (w0, q0) = (xd, rd)⇒
∗
B↓ (xd−1, rd−1)

· · · ⇒∗
B↓ (x0, r0)⇒B↑ (y0, s0)⇒

∗
B↑ (y1, s1)⇒

∗
B↑

· · · (ye−1, se−1)⇒
∗
B↑ (ye, se) = (wn, qn) = (v, q)

Obviously, x0 is a common suffix of u and v, since u = adad−1 · · ·a1x0 and v = bebe−1 · · · b1x0.
Finally we have (u, x0) ∈ [[B↓, p, r0]] and (x0, v) ∈ [[B↑, r0, q]]. This completes the proof of the
lemma.

We define the set dropB ⊆ Γ∗ ×Q×Q as the smallest set such that:

� for all u ∈ Γ∗ and p ∈ Q, (u, p, p) ∈ dropB

� if (u, p′, q′) ∈ dropB, p
ā
→B p

′, and q′
a
→B q, then (au, p, q) ∈ dropB
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� if u ∈ [[U , s′]], p
U ,s′

−−→B r, and (u, r, q) ∈ dropB, then (u, p, q) ∈ dropB

� if u ∈ [[U , s′]], r
U ,s′

−−→B q, and (u, p, r) ∈ dropB, then (u, p, q) ∈ dropB

The idea of the relation dropB is that (u, p, q) ∈ dropB if and only if B (initially being in
state p) can walk through the complete Γ-tree from the node u back to u (and finally being
in state q) where on this walk B only visits nodes that are a suffix of u. Each time we move
in the complete Γ-tree from v to av (resp. from va to v), we have to read a (resp. ā) in the
automaton B.

Again, the inductive definition of dropB can be easily translated into a TWATA:

Lemma 9.7. We have (u, p, q) ∈ dropB if and only if there exist r ∈ Q and a suffix v of u such
that (u, v) ∈ [[B↓, p, r]] and (v, u) ∈ [[B↑, r, q]].

Proof. If (u, p, q) ∈ dropB, then an induction over a proof tree for the fact (u, p, q) ∈ dropB
shows that there exist r ∈ Q and a suffix v of u such that (u, v) ∈ [[B↓, p, r]] and (v, u) ∈
[[B↑, r, q]]. Now assume that (u, v) ∈ [[B↓, p, r]] and (v, u) ∈ [[B↑, r, q]] for some suffix v of u and
some state r ∈ Q. There exist m,n ≥ 0 such that (u, p) ⇒m

B↓ (v, r) ⇒n
B↑ (u, q). By induction

on m + n we prove (u, p, q) ∈ dropB. If m + n = 0, then p = q and hence, (u, p, q) ∈ dropB.
Now assume that m > 0 or n > 0. We can distinguish the following three cases:

Case 1. (u, p)⇒B↓ (u, p′)⇒m−1
B↓ (v, r). Thus, there exists a test-transition p

U ,s′

−−→B p
′ such that

u ∈ [[U , s′]]. By induction we get (u, p′, r) ∈ dropB. Hence, (u, p, q) ∈ dropB.

Case 2. (v, r)⇒n−1
B↑ (u, q′)⇒B↑ (u, q). This case can be treated analogously to case 1.

Case 3. u = au′ for some a ∈ Γ and u′ ∈ Γ∗ such that (u, p) ⇒B↓ (u′, p′) ⇒m−1
B↓ (v, r) ⇒n−1

B↑

(u′, q′)⇒B↑ (u, q). Then we must have p
ā
→B p

′ and q′
a
→B q. Moreover, by induction we have

(u′, p′, q′) ∈ dropB. Hence, we get (u, p, q) ∈ dropB.

Again, the inductive definition of dropB can be easily translated into a TWATA:

Lemma 9.8. There exists a TWATA V = (S ′′, δ′′,Acc′′) with state set S ′′ = S ′ ] (Q×Q) such
that: 2

(i) for every state s′ ∈ S ′ of U we have [[V, s′]] = [[U , s′]],

(ii) for every state (p, q) ∈ Q×Q we have [[V, (p, q)]] = {u ∈ Γ∗ | (u, p, q) ∈ dropB}, and

(iii) |Acc′′| = |Acc|.

2Note that S′′ contains two disjoint copies of Q ×Q. In the rest of this subsection, when writing (p, q) for
p, q ∈ Q, we implictly assume that (p, q) ∈ S ′′ \ S′.
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Proof. For states of U , the transitions of V are the same as for U . Now let (p, q) ∈ Q × Q be
a state of V, which does not belong to S ′. If p = q and ω ∈ Γ ∪ {⊥}, then we introduce the
transition

δ′′((q, q), ω) = true.

If p 6= q and a ∈ Γ, then we introduce the transition

δ′′((p, q), a) =
∨

p′,q′∈Q

p
ā
→Bp′,q′

a
→Bq

〈(p′, q′), ↓〉 ∨
∨

s′∈S′,r∈Q

p
U,s′

−−→Br

(〈s′, ε〉 ∧ 〈(r, q), ε〉) ∨
∨

s′∈S′,r∈Q

r
U,s′

−−→Bq

(〈s′, ε〉 ∧ 〈(p, r), ε〉).

If p 6= q, then we introduce the transition

δ′′((p, q),⊥) =
∨

s′∈S′,r∈Q

p
U,s′

−−→Br

(〈s′, ε〉 ∧ 〈(r, q), ε〉) ∨
∨

s′∈S′,r∈Q

r
U,s′

−−→Bq

(〈s′, ε〉 ∧ 〈(p, r), ε〉).

The priority function Acc′′ is defined as follows:

Acc′′(s′′) =

{
Acc′(s′′) if s′′ ∈ S ′

1 if s′′ ∈ Q×Q

Trivially (iii) holds. From the definition of δ′′ it is clear that (i) holds. From the definition of
dropB and the construction of δ′′ and Acc′′ it follows that [[V, (p, q)]] = {u ∈ Γ∗ | (u, p, q) ∈
dropB}, hence (ii) holds.

Let C = (Q,→C) be the finite automaton over the TWATA V, that results from B by

adding for every pair (p, q) ∈ Q × Q the test transition p
V ,(p,q)
−−−−→ q. Note that the state set of

A, B and C is Q. For two words u, v ∈ Γ∗ we denote with inf(u, v) the longest common suffix
of u and v.

Lemma 9.9. Let u, v ∈ Γ∗ and p, q ∈ Q. Then the following three statements are equivalent:

(1) (u, v) ∈ [[A, p, q]]

(2) (u, v) ∈ [[C, p, q]]

(3) there exists a state r ∈ Q with (u, inf(u, v)) ∈ [[C↓, p, r]] and (inf(u, v), v) ∈ [[C↑, r, q]]

Proof. The implications (1) ⇒ (2) and (3) ⇒ (2) are trivial. For (2) ⇒ (1) note that for every

test-transition p′
V ,(p′,q′)
−−−−→ q′ of C and every x ∈ [[V, (p′, q′)]] we have (x, p′, q′) ∈ dropB and hence

(x, p′) ⇒∗
B (x, q′). Thus, (u, p) ⇒∗

C (v, q) implies (u, p) ⇒∗
B (v, q), and hence (by Lemma 9.6)

(u, p)⇒∗
A (v, q). It remains to show (1)⇒ (3). Thus, assume that (u, v) ∈ [[A, p, q]]. By Lemma

9.6 we have (u, p)⇒∗
B↓ (w, r)⇒∗

B↑ (u, q) for some state r ∈ Q and some common suffix w of u
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and v. Since inf(u, v) is the longest common suffix of u and v, there must exist p′, q′ ∈ Q such
that

(u, p)⇒∗
B↓ (inf(u, v), p′)⇒∗

B↓ (w, r)⇒∗
B↑ (inf(u, v), q′)⇒∗

B↑ (u, q).

By Lemma 9.7 we have (inf(u, v), p′, q′) ∈ dropB, i.e., inf(u, v) ∈ [[V, (p′, q′)]] by Lemma 9.8.
Hence, we get

(u, p)⇒∗
C↓ (inf(u, v), p′)⇒C (inf(u, v), q′)⇒∗

C↑ (u, q).

This implies (3).

9.2.3 A 2EXP upper bound for the combined complexity of PDL∩ over PRS

Let Z = (Γ, α) be a PRS and ϕ be a PDL∩ formula each over Σ. In this subsection we want
to give an upper bound of 2EXP for checking (K(Z), ε) |= ϕ. We will translate Z and ϕ into
a TWATA T = (S, δ,Acc) over Γ together with a state s ∈ S such that (K(Z), ε) |= ϕ if and
only if ε ∈ [[T , s]]. The number of states of T grows exponentially in the size of the formula
ϕ and polynomially in the size of Z. The size of the priority function Acc will be linear in
the size of ϕ. This proves a 2EXP upper bound by Theorem 9.3. From now on any occurring
TWATA will implicitly be over Γ and the size of the priority function will at least be 1. The
construction of T will be done inductively over the structure of the formula ϕ. More precisely,
for every subformula ψ of ϕ we will construct a TWATA T (ψ) together with a state s of T (ψ)
such that [[ψ]] = [[T (ψ), s]]. For every program π that occurs in ϕ we construct a TWATA T (π)
and a finite automaton A(π) over T (π) such that [[π]] = [[A(π), p, q]] for two states p and q of
A(π).

The case ψ = true is clear, the case ψ = ψ1 ∨ ψ2 can be skipped since [[ψ1 ∨ ψ2]] =
[[¬(¬ψ1 ∧ ¬ψ2)]] = [[¬〈(¬ψ1)?〉¬ψ2]]. If ψ = ¬θ, then we apply the standard complementation
procedure, see e.g. [24], where all positive boolean formulas in the right-hand side of the
transition function are dualized and the acceptance condition is complemented by incrementing
the priority of every state. When our subformula ψ is of the form 〈π〉θ for an PDL∩ program
π and a subformula θ we have inductively already constructed A = A(π) with state set Q
and T (π) = (S1, δ1,Acc1) such that [[π]] = [[A(π), p, q]] for two states p, q ∈ Q. Too, we have
inductively already constructed T (θ) = (S2, δ2,Acc2) such that [[θ]] = [[T (θ), s2]] for some state
s2 ∈ S2. We define the TWATA T (ψ) = (S, δ,Acc) with S = Q ] S1 ] S2. For states in S1 or
in S2 the transitions of T (ψ) are the same as for T (π) or T (θ), respectively. For states q ′ ∈ Q
and a ∈ Γ we define:

δ(q′, a) =
∨

q′′∈Q

q′
a−→Aq′′

〈q′′, ↓〉 ∨
∨

q′′∈Q,b∈Γ

q′
b−→Aq′′

〈q′′, b〉 ∨
∨

q′′∈Q

q′
ε−→Aq′′

〈q′′, ε〉 ∨

∨

q′′∈Q,r∈S1

q′
T ,r
−−→Aq′′

(〈r, ε〉 ∧ 〈q′′, ε〉) ∨ ((q′ = q) ∧ 〈s2, ε〉).
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and for q′ ∈ Q we define

δ(q′,⊥) =
∨

q′′∈Q

q′
ε−→Aq′′

〈q′′, ε〉 ∨
∨

q′′∈Q,r∈S1

q′
T ,r
−−→Aq′′

(〈r, ε〉 ∧ 〈q′′, ε〉) ∨ ((q′ = q) ∧ 〈s2, ε〉).

The priority function Acc is defined as follows:

Acc(s) =





1 if s ∈ Q

Acc1(s) if s ∈ S1

Acc2(s) if s ∈ S2

We put Acc(s) = 1 for all s ∈ Q since we want to assure that the automaton A(π) is simulated
for a finite time only, since ψ is a box formula with existential modality. We obtain [[ψ]] =
[[T (ψ), p]].

Let us now describe the construction of A(π) and T (π) for each occurring PDL∩ program π.

Case π = ψ?: We can assume that there exists a TWATA T (ψ) and a state r of T (ψ) such
that [[ψ]] = [[T (ψ), r]]. The TWATA T (π) is T (ψ). The automaton A(π) has two states p and q

with the only transition p
T ,r
−−→ q. Hence, we have [[π]] = [[A(π), p, q]] = {(u, u) | u ∈ [[T (ψ), r]]}.

Case π = σ ∈ Σ: Assume that α(σ) =
⋃nσ

i=1(L(Aσi ) × L(Bσi ))L(Cσi ). Let the homomorphism
h : Γ → Γ with h(a) = a for all a ∈ Γ be given. From the representation of α(σ) we can
easily construct finite automata Ai, Bi, Ci such that L(Ai) = h(L(Aσi )), L(Bi) = L(Bσi )

rev, and
L(Ci) = h(L(Cσi )). Let Ci = (Qi,Γ, qi, Fi,→Ci

). First, we give the TWATA T (π) = (S, δ,Acc)
over Γ where S =

⊎nσ

i=1Qi and Acc(s) = 1 for all s ∈ S. The transition function δ is defined as
follows, where a ∈ Γ, si ∈ Si (1 ≤ i ≤ nσ):

δ(si, a) =
∨

s′
i
∈Si

s′
i
∈δi(si,a)

(s′i, ↓) ∨
∨

s′
i
∈Si

s′
i
∈δi(si,ε)

(s′i, ε)

Moreover, for si ∈ Si (1 ≤ i ≤ nσ), we define:

δ(si,⊥) =
∨

s′
i
∈Si

s′
i
∈δi(si,ε)

(s′i, ε) ∨ (si ∈ Fi)

The automaton A(π) results from the disjoint union of all automata Ai and Bi, by adding
two fresh states p, q. There is an ε-transition from p to all initial states of all Ai and an ε-
transition from all final states of all Bi to q. There is a test transition labeled by T (π), qi
between any final state of Ai and any initial state of Bi in A(π) for all 1 ≤ i ≤ nσ. Clearly
[[π]] = [[A(π), p, q]].
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Case π = π1 ∪ π2, π = π1 ◦ π2, or π = χ∗: In these cases we construct A(π) by using the
standard automata-constructions for union, concatenation, and Kleene-star. In case π = π1∪π2

or π = π1 ◦ π2 we set T (π) = T (π1) ] T (π2), whereas for π = χ∗ we set T (π) = T (χ).

It remains to construct A(π1 ∩ π2) and T (π1 ∩ π2). For this, we use the construction of Section
9.2.2:

Constructing A(π1 ∩ π2) and T (π1 ∩ π2)

Assume that the finite automata A(πi) = (Qi,→A(πi)), where A(πi) is over the TWATA
T (πi) = (Si, δi,Acci), are already constructed (i ∈ {1, 2}). Thus, [[A(πi), pi, qi]] = [[πi]] for
some states pi, qi ∈ Qi. We first construct the finite automaton C(πi) over the TWATA
V(πi) = (S ′′

i , δ
′′
i ,Acc′′i ) as described in Section 9.2.2. Note that |S ′′

i | = |Si| + 2 · |Qi|
2. We

take T (π1 ∩ π2) = V(π1) ] V(π2). The finite automaton A(π1 ∩ π2) is the product automa-
ton of C(π1) = (Q1,→C(π1)) and C(π2) = (Q2,→C(π2)), where test transitions can be done
asynchronously:

� The state set of A(π1 ∩ π2) is Q1 ×Q2.

� For a ∈ Γ∪Γ we have (r1, r2)
a
→A(π1∩π2) (r′1, r

′
2) if and only if r1

a
→C(π1) r

′
1 and r2

a
→C(π2) r

′
2.

� For a state s1 of V(π1) we have the test transition

(r1, r2)
T (π1∩π2),s1
−−−−−−−→A(π1∩π2) (r′1, r2)

if and only if r1
V(π1),s1
−−−−→C(π1) r

′
1.

� For a state s2 of V(π2) we have the test transition

(r1, r2)
T (π1∩π2),s2
−−−−−−−→A(π1∩π2) (r1, r

′
2)

if and only if r2
V(π2),s2
−−−−→C(π2) r

′
2.

Lemma 9.10. We have [[A(π1 ∩ π2), (p1, p2), (q1, q2)]] = [[π1 ∩ π2]].

Proof. Since (u, v) ∈ [[π1 ∩ π2]] if and only if (u, v) ∈ [[π1]] and (u, v) ∈ [[π2]], we know by
induction that it suffices to prove: (u, v) ∈ [[A(πi), pi, qi]] for all i ∈ {1, 2} if and only if
(u, v) ∈ [[A(π1 ∩ π2), (p1, p2), (q1, q2)]]. So let (u, v) ∈ [[A(πi), pi, qi]] for all i ∈ {1, 2}. Then
Lemma 9.9 implies the existence of a state ri ∈ Qi such that (u, inf(u, v)) ∈ [[C(πi)

↓, pi, ri]]
and (inf(u, v), v) ∈ [[C(πi)

↑, ri, qi]] for all i ∈ {1, 2}. This implies (u, inf(u, v)) ∈ [[A(π1 ∩
π2)

↓, (p1, p2), (r1, r2)]] and (inf(u, v), v) ∈ [[A(π1 ∩ π2)
↑, (r1, r2), (q1, q2)]]. Thus, we have (u, v) ∈

[[A(π1∩π2), (p1, p2), (q1, q2)]]. On the other hand, any run witnessing (u, v) ∈ [[A(π1∩π2), (p1, p2),
(q1, q2)]] is a witness for (u, v) ∈ [[C(πi), pi, qi]] for all i ∈ {1, 2}. By Lemma 9.9 we obtain
(u, v) ∈ [[A(πi), pi, qi]] for all i ∈ {1, 2}.
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From the construction of A(π1 ∩ π2) and T (π1 ∩ π2) we immediately get:

Remark 9.11. Let A(πi) = (Qi,→A(πi)), T (πi) = (Si, δi,Acci), A(π1 ∩ π2) = (Q,→A(π1∩π2))
and T (π1 ∩ π2) = (S, δ,Acc). Then we have (i) |Q| = |Q1| · |Q2|, (ii) |S| = |S1| + |S2| + 2 ·
|Q1|2 + 2 · |Q2|2, and |Acc| = max{|Acc1|, |Acc2|}.

Recall that Z is the prefix-recognizable system and ϕ is the PDL∩ formula of our input and
we want to check (K(Z), ε) |= ϕ. A careful analysis of the constructions outlined above, allows
us to prove inductively:

Lemma 9.12. If |Z| and |ϕ| are sufficiently large, then the following two statements hold:

� For any subformula ψ of ϕ with T (ψ) = (S, δ,Acc) we have |S| ≤ |Z|2·|ψ|
2
and |Acc| ≤ |ψ|.

� For any subprogram π of ϕ such that A(π) = (Q,→A(π)) and T (π) = (S, δ,Acc) we have

(i) |Q| ≤ |Z||π|, (ii) |S| ≤ |Z|2·|π|
2
, and (iii) |Acc| ≤ |π|.

Proof. We show the lemma via mutual structural induction over ψ and π. The case ψ = true

is trivial. Let π = σ ∈ Σ be an atomic program and α(σ) =
⋃nσ

i=1(L(Aσi ) × L(Bσi ))L(Cσi ). We
can assume

∑nσ

i=1 |C
σ
i | ≥ 2. Hence, we have |Q| =

∑nσ

i=1(|Q(Aσi )| + |Q(Bσi )|) + 2 and therefor
|Q| ≤ |Z|. Moreover, we have |S| =

∑nσ

i=1 |Q(Cσi )|, hence |S| ≤ |Z|. By construction we have
|Acc| = 1 = |π|. Let us continue with the structural induction over ψ. In case ψ = ¬θ and
T (θ) = (S ′, δ′,Acc′) then by the standard complementation of T (θ) yielding T (ψ) we have S =
S ′. Moreover, by induction we have |Acc′| ≤ |θ|, hence |Acc| = |Acc′|+ 1 ≤ |θ|+ 1 = |ψ|. Now
assume ψ = 〈π〉θ. Let A(π) = (Q,→A(π)), T (π) = (S1, δ1,Acc1), and T (θ) = (S2, δ2,Acc2).
Then by construction we have:

|S| = |Q|+ |S1|+ |S2|
induction

≤ |Z||π| + |Z|2·|π|
2

+ |Z|2·|θ|
2

≤ |Z|4·|π|·|θ|+2·|π2|+2·|θ|2

≤ |Z|2·|ψ|
2

Let us continue with structural induction of π. The cases π = χ∗ and π = ψ? are easy to see.
Assume π = π1∪π2 or π = π1◦π2 and letQi to be the state set of A(πi) and T (πi) = (Si, δi,Acci)
(i ∈ {1, 2}). By the the standard construction we get:

|Q| = |Q1|+ |Q2|
induction

≤ |Z||π1| + |Z||π2|

≤ |Z||π1|+|π2|

= |Z||π|

The estimation of |S| and |Acc| is straightforward again.
Now assume π = π1 ∩ π2. Let Qi to be the state set of A(πi) and T (πi) = (Si, δi,Acci)
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Table 4: PDL∩ and test-free PDL∩ over BPA,PDS and PRS.

BPA PDS PRS

data P · · ·EXP EXP

PDL∩, PDL∩\? expression

combined
2EXP

(i ∈ {1, 2}). By Remark 9.11 we have |Q| = |Q1| · |Q2| and |S| = |S1|+ |S2|+2 · |Q1|2 +2 · |Q2|2.
Hence, we get:

|Q| = |Q1| · |Q2|
induction

≤ |Z||π1| · |Z||π2|

= |Z||π|

|S| = |S1|+ |S2|+ 2 · |Q1|
2 + 2 · |Q2|

2

induction

≤ |Z|2·|π1|2 + |Z|2·|π2|2 + 2 · |Z|2·|π1| + 2 · |Z|2·|π2|

≤ |Z|2·(|π1|2+|π2|2+|π1|+1+|π2|+1)

≤ |Z|2·(|π1|+|π2|)2

= |Z|2·|π|
2

By induction we have |Acci| ≤ |πi| for all i ∈ {1, 2}. Thus, |Acc| = max{|Acc1|, |Acc2|} ≤
|Acc1|+ |Acc2| ≤ |π1|+ |π2|+ 1 = |π|.

Hence, by construction of T (ϕ), Lemma 9.12, and Theorem 9.3 we get a 2EXP upper bound
for the combined complexity of PDL∩ over prefix-recognizable systems.

Theorem 9.13. The following problem is in 2EXP:
INPUT: A PRS Z = (Γ, α) and a PDL∩ formula ϕ each over Σ.
QUESTION: (K(Z), ε) |= ϕ?

When the PDL∩ formula is not part of the input, the complexity goes down to EXP by
Lemma 9.12.

Corollary 9.14. For any fixed PDL∩ formula ϕ over Σ the following problem is in EXP:
INPUT: A PRS Z = (Γ, α) over Σ.
QUESTION: (K(Z), ε) |= ϕ?

Table 4 summarizes the results for model-checking (test-free) PDL∩ over BPA, PDS, and
PRS.
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10 Further considerations

We can now ask what other kinds of interesting extensions of PDL there are and how the
complexity of the model-checking problem over BPA, PDS and PRS increases. Instead of
subjoining PDL with the intersection of programs receiving PDL∩, we can as well more generally
add an operator for the complementation of programs receiving PDL¬. PDL¬ formulas ϕ and
PDL¬ programs π over Σ are given by the following grammar, where σ ∈ Σ:

ϕ ::= true | ¬ϕ | ϕ1 ∨ ϕ2 | 〈π〉ϕ

π ::= σ | π1 ∪ π2 | π1 ◦ π2 | π
∗ | ¬π | ϕ?

The semantic of PDL¬ over a Kripke structure K = (S, {→σ| σ ∈ Σ}) is defined as for PDL —
additionally with the semantic of the complementation of a PDL¬ program defined as follows:

[[¬π]]K = (S × S) \ [[π]]K

Clearly we can represent the intersection π1∩π2 as ¬(¬π1 ∪¬π2). The function Tower : N→ N

is defined as Tower(0) = 1 and Tower(n) = 2Tower(n−1) for all n ≥ 1. We want to give a simple

reduction proving model-checking PDL¬ to be hard for DTIME
(
Tower

(
n

log∗(n)2

))
already over

a fixed BPA. Therefor we introduce star-free expressions. Let Σ be a finite alphabet. Then
star-free expressions α over Σ are given by the following grammar, where a ∈ Σ:

α ::= ∅ | ε | a | α1 ∪ α2 | α1;α2 | α̂

The language L(α) defined by a star-free expression α is inductively defined as L(∅) = ∅,
L(ε) = {ε}, L(α1 ∪α2) = L(α1)∪L(α2), L(α1;α2) = L(α1)L(α2) and finally L(α̂) = Σ∗ \L(α).
The size of a star-free expression α is inductively defined as |∅| = |ε| = 1, |α1 ∪α2| = |α1;α2| =
|α1|+ |α2|+ 1 and finally |α̂| = |α|+ 1.

Theorem 10.1 ([11]). For a fixed alphabet Γ the following problem is hard for

DTIME
(
Tower

(
n

log∗(n)2

))
:

INPUT: A star-free expression α over Γ.
QUESTION: L(α) = Γ∗?

Corollary 10.2. There exists a fixed BPA X = (Γ,∆) over Σ such that the following problem

is hard for DTIME
(
Tower

(
n

log∗(n)2

))
:

INPUT: A PDL¬ formula ϕ over Σ.
QUESTION: (K(X ), ε) |= ϕ?

Proof. Given a star-free expression α over some fixed alphabet Γ we give a fixed BPA X = (Γ,∆)
and a (polynomial time computable) PDL¬ formula ϕ each over Σ such that

L(α) = Γ∗ ⇔ (K(X ), ε) |= ϕ.
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We put Σ = Γ∪ Γ∪ {empty} and define ∆ to be the transition relation of TreeΓ (see Example
4.1). Note that the program empty ∈ Σ does not occur as a labeling in ∆. We give a test-free
PDL¬ program ‖α‖ over Γ such that [[‖α‖]] = {(wx, x) | x ∈ Γ∗, w ∈ L(α)} inductively follows:

‖∅‖ = empty

‖a‖ = a

‖α1 ∪ α2‖ = ‖α1‖ ∪ ‖α2‖

‖α1;α2‖ = ‖α1‖ ◦ ‖α2‖

‖α̂‖ = Γ
∗
∩ ¬‖α‖

for all a ∈ Γ. Finally we have:

L(α) = Γ∗ ⇔ ∀w ∈ Γ∗ : (w, ε) ∈ [[‖α‖]] ⇔ (K(X ), ε) |= [Γ∗]〈‖α‖〉¬〈Γ〉true

11 Open problems

On the technical side it remains to close the gap between P and EXP for the data complexity
of PDL∩ over BPA. Another fruitful research direction might be to extend PDL∩ by a unary
fixpoint operator. The resulting logic is strictly more expressive than PDL∩ and the modal
µ-calculus. We are confident that our complexity results for PDL∩ can be extended to this
logic.
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[11] M. Fürer. Nicht-elementare untere Schranken in der Automatentheorie. PhD thesis, ETH
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