2,314 research outputs found

    Liquid Intersection Types

    Full text link
    We present a new type system combining refinement types and the expressiveness of intersection type discipline. The use of such features makes it possible to derive more precise types than in the original refinement system. We have been able to prove several interesting properties for our system (including subject reduction) and developed an inference algorithm, which we proved to be sound.Comment: In Proceedings ITRS 2014, arXiv:1503.0437

    Investigations on a Pedagogical Calculus of Constructions

    Full text link
    In the last few years appeared pedagogical propositional natural deduction systems. In these systems, one must satisfy the pedagogical constraint: the user must give an example of any introduced notion. First we expose the reasons of such a constraint and properties of these "pedagogical" calculi: the absence of negation at logical side, and the "usefulness" feature of terms at computational side (through the Curry-Howard correspondence). Then we construct a simple pedagogical restriction of the calculus of constructions (CC) called CCr. We establish logical limitations of this system, and compare its computational expressiveness to Godel system T. Finally, guided by the logical limitations of CCr, we propose a formal and general definition of what a pedagogical calculus of constructions should be.Comment: 18 page

    Derivation Lengths Classification of G\"odel's T Extending Howard's Assignment

    Get PDF
    Let T be Goedel's system of primitive recursive functionals of finite type in the lambda formulation. We define by constructive means using recursion on nested multisets a multivalued function I from the set of terms of T into the set of natural numbers such that if a term a reduces to a term b and if a natural number I(a) is assigned to a then a natural number I(b) can be assigned to b such that I(a) is greater than I(b). The construction of I is based on Howard's 1970 ordinal assignment for T and Weiermann's 1996 treatment of T in the combinatory logic version. As a corollary we obtain an optimal derivation length classification for the lambda formulation of T and its fragments. Compared with Weiermann's 1996 exposition this article yields solutions to several non-trivial problems arising from dealing with lambda terms instead of combinatory logic terms. It is expected that the methods developed here can be applied to other higher order rewrite systems resulting in new powerful termination orderings since T is a paradigm for such systems

    On the Computational Meaning of Axioms

    No full text
    An anti-realist theory of meaning suitable for both logical and proper axioms is investigated. As opposed to other anti-realist accounts, like Dummett-Prawitz verificationism, the standard framework of classical logic is not called into question. In particular, semantical features are not limited solely to inferential ones, but also computational aspects play an essential role in the process of determination of meaning. In order to deal with such computational aspects, a relaxation of syntax is shown to be necessary. This leads to a general kind of proof theory, where the objects of study are not typed objects like deductions, but rather untyped ones, in which formulas have been replaced by geometrical configurations

    Dialectica Interpretation with Marked Counterexamples

    Full text link
    Goedel's functional "Dialectica" interpretation can be used to extract functional programs from non-constructive proofs in arithmetic by employing two sorts of higher-order witnessing terms: positive realisers and negative counterexamples. In the original interpretation decidability of atoms is required to compute the correct counterexample from a set of candidates. When combined with recursion, this choice needs to be made for every step in the extracted program, however, in some special cases the decision on negative witnesses can be calculated only once. We present a variant of the interpretation in which the time complexity of extracted programs can be improved by marking the chosen witness and thus avoiding recomputation. The achieved effect is similar to using an abortive control operator to interpret computational content of non-constructive principles.Comment: In Proceedings CL&C 2010, arXiv:1101.520

    Mathematische Logik

    Get PDF
    [no abstract available

    A Possible and Necessary Consistency Proof

    Get PDF
    After Gödel's incompleteness theorems and the collapse of Hilbert's programme Gerhard Gentzen continued the quest for consistency proofs of Peano arithmetic. He considered a finitistic or constructive proof still possible and necessary for the foundations of mathematics. For a proof to be meaningful, the principles relied on should be considered more reliable than the doubtful elements of the theory concerned. He worked out a total of four proofs between 1934 and 1939. This thesis examines the consistency proofs for arithmetic by Gentzen from different angles. The consistency of Heyting arithmetic is shown both in a sequent calculus notation and in natural deduction. The former proof includes a cut elimination theorem for the calculus and a syntactical study of the purely arithmetical part of the system. The latter consistency proof in standard natural deduction has been an open problem since the publication of Gentzen's proofs. The solution to this problem for an intuitionistic calculus is based on a normalization proof by Howard. The proof is performed in the manner of Gentzen, by giving a reduction procedure for derivations of falsity. In contrast to Gentzen's proof, the procedure contains a vector assignment. The reduction reduces the first component of the vector and this component can be interpreted as an ordinal less than epsilon_0, thus ordering the derivations by complexity and proving termination of the process.De begränsningar av formella system som uppdagades av Gödels ofullständighetsteorem år 1931 innebär att Peanoaritmetikens konsistens endast kan bevisas med hjälp av fundamentala principer som inte kan formaliseras inom systemet. Trots att Hilberts finitistiska metoder inte kunde producera ett konsistensbevis, så fortsatte sökandet efter ett bevis med konstruktiva metoder. För att ett bevis skall vara meningsfullt borde principerna som används vara mera pålitliga än de element som betvivlas inom teorin. Avhandlingens titel hänvisar till ett citat av Gentzen då han motiverar behovet av konsistensbevis för första ordningens aritmetik. Gentzen själv producerade fyra konsistensbevis och analyserade hur väl dessa stämde överens med Hilberts program. Gentzen använde konstruktiva metoder i sina bevis, men det debatteras huruvida dessa metoder kan anses vara finitistiska. Det tredje och mest kända beviset presenterar en reduktion av härledningar av kontradiktioner. Med hjälp av transfinit induktion visas att reduktionsprocessen terminerar i en enkel härledning som konstateras vara omöjlig. Därför kan det inte finnas någon härledning av en kontradiktion. Avhandlingen undersöker och jämför Gentzens bevis från olika aspekter. Konsistensen av intuitionistisk Heytingaritmetik bevisas både i sekvenskalkyl och i naturlig deduktion. Det tidigare beviset är i Gentzens anda och innehåller ett snittelimineringsbevis för kalkylen och en syntaktisk studie av den aritmetiska delen av systemet. Det senare beviset påminner om ett normaliseringsbevis och visar terminering med hjälp av en vektortilldelning.Gödelin vuonna 1931 jullkaisemista epätäydellisyyslauseista seurausi rajoituksia formaalisille järjestelmille: Niiden mukaan Peano-aritmetiikan ristiriidattomuus voidaan todistaa ainoastaan periaatteilla, jotka eivät ole formalisoitavissa järjestelmän itsensä sisällä. Vaikka Hilbertin finitistisillä menetelmillä ei siksi pystytty tuottamaan konsistenssitodistusta, todistuksen etsiminen jatkui konstruktiivisillä menetelmillä. Jotta todistus olisi mielekäs, siinä käytettyjen periaatteiden oli oltava luotettavampia kuin teorian itsensä sisältämät periaatteet. Väitöskirjan otsikko viittaa Gentzenin kirjoitukseen, jossa hän perustelee ensimmäisen kertaluvun aritmetiikan konsistenssitodistuksen tarvetta. Gentzen itse laati neljä sellaista konsistenssitodistusta ja analysoi, missä määrin ne olivat yhdenmukaisia Hilbertin ohjelman kanssa. Gentzen käytti konstruktiivisia menetelmiä todistuksissaan ja on paljon väitelty kysymys, voidaanko näitä menetelmiä pitää finitistisinä. Kolmannessa ja tunnetuimassa Gentzenin todistuksessa esitetään ristiriitaisuuksien päättelyn reduktiomenetelmä. Transfiniittistä induktiota käyttämällä osoitetaan, että reduktioprosessi päättyy yksinkertaiseen päättelyyn, jollainen on erikseen todettu mahdottomaksi. Tämän vuoksi ristiriitaa ei voida päätellä. Väitöskirjassa selvitetään ja vertaillaan Gentzenin todistuksia eri näkökulmista. Intuitionistisen Heyting-aritmetiikan ristiriidattomuus osoitetaan sekä sekvenssikalkyylissä että luonnollisessa päättelyssä. Ensimmäinen todistus seuraa Gentzenin henkeä ja siinä sovelletaan ns. leikkaussäänön eliminointitodistusta sekä syntaktista analyysia järjestelmän aritmeettisesta osasta. Jälkimmäinen todistus muistuttaa luonnollisen päättelyn normalisointitodistusta ja näyttää reduktion päättymisen vektorimäärityksen avulla
    corecore