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The conference was organized by Y. N. Moschovakis (Los Angeles), H. Schwichtenberg

(M�unchen), and A. S. Troelstra (Amsterdam). It focused on complexity aspects of math-

ematical logic, in particular proof theory, lambda-calculus, complexity theory and the

connection between these areas.

The formal program consisted of 24 talks and two lecture series of 3 talks each, on

\Complexity-theoretic strength of higher-order linear functional programs" and \Abstrac-

tion levels and complexity", given by Martin Hofmann and Daniel Leivant. In the evenings

7 informal talks were given.
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Abstracts

Complexity-Theoretic Strength of Higher-Order Linear Functional Programs

(lecture series)

Martin Hofmann

This series of talks presents complexity-theory results related to a certain functional pro-

gramming language LFPL with lists and trees which through the use of linear typing as

well as a novel device called \resource type" has the property that all de�nable functions

are hereditarily non size increasing thus enabling in particular an automatic translation of

the �rst-order fragment into the C-programming language such that the usual functional

programs for e.g. sorting algorithms are mapped to equivalent C-programs which operate

on their input by pointer surgery and thus modify it in-place.

We show the following results

�rst order LFPL $ ETIME

�rst order LFPL with tail recursion $ LINSPACE

LFPL $ EXPTIME

LFPL with structural recursion $ PTIME

where X $ Y means that the characteristic functions de�nable in X are precisely those

in Y .

The proofs use a mixture of techniques from programming language theory and com-

putational complexity theory such as Cook's simulation of stacks, dynamic programming,

�nite models, logical relations, Scott domains, nondeterminism, realizability.

This complements and extends related results by Neil Jones which were for read only

programs that could only read but not modify their input.

Abstraction Levels and Complexity (lecture series)

Daniel Leivant

Abstraction levels, covered by set existence principles, have been used in foundational

studies to calibrate the strength of theorems in mathematical analysis. In this presentation

we show that calibrating abstraction in second order logic leads to a natural correspondence

with computational complexity classes such as polynomial time and polynomial space. This

provides simple and natural characterizations of levels of feasible mathematics.

On Continuous Normalization of the lambda-Calculus

Klaus Aehlig

(joint work with Felix Joachimski)

In an extension of the untyped coinductive lambda-calculus by void constructors (\repeti-

tion rules") a primitive recursive normalization function is de�ned. It is continuous with

respect to the natural topology on non-well-founded terms with the identity as modulus

of continuity. The number of repetition rules is locally related to the number of beta-

reductions necessary to reach and the number of applications within the normal form, as

represented by the B�ohm tree.
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Bounded Arithmetic and Height Restricted Resolution

Arnold Beckmann

Height restricted resolution is a natural restriction of resolution where the height of the

proof is bounded. Viewing dynamic ordinal analysis in the light of propositional proof

complexity shows that polylogarithmic-height restricted resolution is strongly connected

to bounded arithmetic theory S

1

2

(�). We separate polylogarithmic-height resolution from

quasi-polynomial size tree-like resolution. Inspired by this we study in�nitely many sub-

linear-height restricted resolution systems.

Provably Recursive Functions in the Context of GPA

Lev Beklemishev

Graded provability algebras (GPA) provide an abstract algebraic framework for proof the-

oretic analysis. Let T be a su�ciently weak fragment of Peano arithmetic. The GPA of

T is the Lindenbaum boolean algebra of T equipped with the additional operators [n] for

each n 2 N . The operator [n] sends a sentence ' to the sentence [n]' expressing \(T + all

true �

0

n

-sentences) proves '". The operators [n] satisfy the following identities:

[n]('!  )! ([n]'! [n] ) = > [n]'! [n+ 1]' = >

[n]([n]'! ')! [n]' = > :[n]'! [n + 1]:[n]' = >

[n]> = >

These identities correspond to a polymodal logic studied by G. Japaridze in 1988. It is

known to be decidable and completely axiomatizes the identities of the GPA of T .

We show that Peano Arithmetic and its fragments I�

n

of �

n

-Induction can be embedded

in the GPA of T as �lters generated by formulas of the form hni>. The ordering relation

' <

0

 ,  ! h0i' = >, where hni = :[n]:, is well-founded on M

0

n f?g, where M

0

is

the prime sub-algebra of the GPA. The order type of <

0

is "

0

. On the basis of <

0

we de�ne

iterated operators hni

�

, where � is an element of T

0

n f?g and obtain a characterization

of �

n+1

-consequences of elements of M

0

. In particular hn + 1i> is �

2

-conservative over

h1i

�

>, where � corresponds to the ordinal !

n

= !

!

���

!

o

(n times). This characterizes

provably total recursive functions of I�

n

as the !

n

-th class of the fast growing hierarchy.

Adding Choice and Uniformity to Weak Applicative Systems

Andrea Cantini

We are concerned with the classi�cation of provably total functions within weak applicative

systems, which comprise combinatory logic, extended with

1. the type W of binary strings

2. various forms of induction on W (for \positive" and gereneralized NP-conditions)

We show that the recursive content of all systems we consider is invariant under addition

of an axiom of choice for operations and a suitable uniformity principle, restricted to

positive conditions.

As to the technical tools, we apply a method, which combines a syntactical version

of forcing, inspired by previous work of Coquand and Hofmann, with the use of a self-

referential truth predicate and the application of realizability and cut-elimination.
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Iteration of �-Operations in Admissible Set Theory without Foundation

Gerhard J

�

ager

We present a system of admissible set theory which is characterized by:

� its set existence axioms formalize a recursively inaccessible universe,

� the only induction principle available is complete induction on the natural numbers

for set,

� �-operations can be iterated along ordinals.

This theory has the proof-theoretic ordinal '!00 and thus re
ects a further aspect of

meta-predicative Mahloness.

Strong Normalization Results

Ren

�

e David

In this talk I present an elementary proof of the strong normalization of the cut elimination

procedure for the full classical natural deduction. By full I mean in the presence of all the

usual connectors (conjunction, disjunction, arrow and negation) with their intuitionistic

meaning. This result was �rst proved by P. de Groote in his TLCA'01 paper using, in

particular, a CPS style translation to the simply typed lambda calculus. The proof given

here is direct and purely arithmetical. I will also brie
y mention the use of the same kind

of method to prove the strong normalization of other systems.

Groundwork for Weak Analysis

Fernando Ferreira

Weak Analysis studies sup-exponential systems of second-order arithmetic (\analysis").

We introduce a system for feasible analysis which is able to formalize the real number

system and the notion of a continuous real function of a real variable. The system is able

to prove the intermediate value theorem, wherefore it follows that the real numbers form

a real closed ordered �eld. As an application, we show that Tarski's theory of the real

closed ordered �elds is interpretable in Raphael Robinson's theory of arithmetic Q. We

also investigate the import of Weak K�onig's lemma in our feasible setting. Finally, we

comment on stronger theories of Weak Analysis.

Remarks on the Length and Depth of Constructive Proofs

Rosalie Iemhoff

In this talk I will discuss some results and open problems concerning the length and depth

of constructive proofs. The �nal goal and hope in this area is to �nd exponential lower

bounds on the length of proofs in propositional logic (in terms of the formula that is

proved). Here the situation for intuitionistic logic is more or less similar to the one for

classical logic in that for natural systems like Gentzen calculi the best known lower bounds

are only quadratic. I will brie
y discuss in how far results on classical logic translate to a

constructive setting. In particular, I will discuss an open problem related to the Pigeonhole

Principle, which in the context of classical logic has certain properties for which it is not

clear whether they hold in intuitionistic logic as well.

Furthermore, I will talk about the depth of cut free proofs in intuitionistic logic (this is

joint work with Sam Buss). We consider the standard Gentzen calculus for intuitionistic
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propositional logic IPC and show that every intuitionistically valid sequent S has a proof

which depth is at most quadratic in the size of S. We show that this bound is tight by

presenting sequents of size n that have no cut free proof of depth < n

2

. I will discuss the

relation between this result and other results on this topic from the literature.

An Optimal Lower Bound for Resolution with Width two Conjunctions

Jan Johannsen

(joint work with N. S. Narayanaswamy)

A lower bound is proved for refutation of certain clause sets in a generalization of Resolution

that allows cuts on conjunctions of width 2. The hard clauses are the Tseitin graph formulas

for a class of logarithmic degree expander graphs. The bound is optimal in the sense that

it is truly exponential in the number of variables.

Proof Mining in Analysis. Unwinding Implicit Computational Content.

Ulrich Kohlenbach

\Proof Mining" denotes the activity of extracting new numerical and computational in-

formation from prima-facie ine�ective proofs by logical transformation (so-called \Proof

Interpretation").

We �rst present general meta-theorems which guarantee the extractability of uniform

e�ective bounds for substantial classes of proofs, in particular in analysis.

We then report on the results of two case studies

1. New uniform bounds (even implying new qualitative results) on theorems due to

Istukawa, Kirk, Borwein-Reich-Sha�r and Groetsch on the asymptotic regularity of

Mann iteration of nonexpansive mappings.

2. (with Paulo Oliva) The �rst e�ective rate of strong unicity for best L

1

-approximation

by polynomials in P

n

of functions f 2 C[0; 1] with optimal "-dependency.

Feasible Arithmetic and Program Extraction

Jean-Yves Marion

This work in progress paper presents a methodology for reasoning about the computational

complexity of functional programs, which are extracted from proofs.

We suggest a �rst order arithmetic AT

0

which is a syntactic restriction of Peano Arith-

metic. We establish that the set of functions which is provably total in AT

0

, is exactly the

set of polynomial time functions.

Compared to other feasible arithmetics, AT

0

is surprisingly simpler. The main feature

of AT

0

concerns the treatment of the quanti�cation. The range of quanti�ers is restricted

to the set of actual terms which is the set of constructor terms with variables.

Although this paper addresses some theoretical aspects of program extraction, it is

relevant for practical issue, in the long term, because certifying the computational resource

consumed by a program is a challenging issue.
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Contraction-Aware lambda-Calculus

Ralph Matthes

A simply-typed lambda-calculus is presented whose normal forms exactly represent the

cut-free derivations of the contraction-free sequent calculus, invented independently by

Vorobev, Hudelmaier, Lincoln/Shankar and Dyckho�. Its crucial property is termination

of proof search without need for loop-detection.

The proposed lambda-calculus �JT follows the paradigm of generalized eliminations

put forward by von Plato and consequently also has permutative conversions. It will

be shown that strong normalization of the beta-reductions and permutative conversions

nevertheless can be established elegantly { even yielding an embedding of the system with

beta-reductions only into Girard's polymorphic lambda-calculus. The full system, however,

also has speci�c rules for the elimination of contractions. A normalization algorithm can

be given by extending the method of proving admissibility of contraction in the recent JSL

paper by Dyckho� and Negri. The termination of this algorithm is still an open question.

Finally, the collapse of the Church numerals and an approach to uniform interpolation

in this calculus are mentioned.

The Complexity of Computing the gcd

Yiannis Moschovakis

This work is inspired from work of Colson (1991) which exhibited some serious limitations

of primitive recursive algorithms, and my main aim is to focus on and explain some recent

contributions of Lou van den Dries. Part of the interest here lies in the methods of van

den Dries, which (for the �rst time, I believe) employ non-standard models of arithmetic

to establish results on the complexity of number-theoretic algorithms.

Brief summary: For � any set of partial functions on N , call a partial function f : N

n

! N

�-linear if f(~x) = w , 9u

1

9u

2

: : :9u

k

[u

1

= f

1

(~x); : : : ; u

k

= f

k

(~x); w = f

k+1

(~x)] where the

f

i

are terms from �[linear , where linear is the set of all partial functions of the form f(~x) =

a

0

+a

1

x

1

+ : : :+a

n

x

n

, (a

0

; : : : ; a

n

2 Q ); these are de�ned when a

0

+a

1

x

1

+ : : :+a

n

x

n

2 N .

Basic Lemma. If � is a primitive recursive algorithm from � which computes f : N

n

! N

and f is not \piecewise linear", then there is a �-linear partial function 	(~x) such that

for in�nitely many ~x, 	(~x) # and 	(~x) � C

�

(~x), where C

�

(~x) is the complexity of the

algorithm.

Corollary with � = ;: for any primitive recursive � which computes the greatest common

divisor, there is a rational e > 0 such that for in�nitely many x; y C

�

(x; y) � e(x + y).

Theorem (van den Dries): The same result with � = fmod; quot;�g where quot and mod

are the quotient and remainder of integer division, respectively, and � is multiplication.
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On the Computational Complexity of Imperative Programming Languages

Karl-Heinz Niggl

(joint work with Lars Kirstiansen)

The present work builds on work on rami�ed analysis of recursion and aims at making

these concepts applicable for imperative programming languages.

The starting point is a simple programming language on stacks (X, Y , Z, : : : ) over

an arbitrary but �xed alphabet �. Stack programs are built from the usual basic opera-

tions push(a;X), pop(X), nil(X) by means of sequencing P

1

;P

2

, conditional statements

if top(X) � a[P ] and loops statements foreach X[P ], provided P contains no operation

push(a;X), pop(X) or nil(X).

The operational semantics is standard, except possibly the call-by-value semantics for

loop statements foreach X[P ], allowing one to inspect every symbol on the control stack

X while preserving the contents of X.

The question addressed is whether one can extract information out of the syntax of a

stack program so as to separate programs which run in polynomial time from programs

with exponential time, and so forth.

In this talk syntactical criteria are given that separate nesting of loops which do not

cause a blowup in running time from those which might do. This gives rise to a measure �

that assigns in a purely syntactic fashion to each stack program P a natural number �(P )

such that the following holds: The functions computable by a stack program of �-measure

0 are precisely the polynomial-time computable functions.

Using the same measure for loop programs as introduced and studied by Meyer and

Ritchie, one obtains in the same way the following characterization: The functions com-

putable by a loop program of �-measure n are exactly the functions in E

n+2

.

On Modi�ed Bar Recursion and its Relation to Spector's Bar Recursion

Paulo Oliva

(joint work with Ulrich Berger)

We introduce a variant of Spector's bar recursion in �nite types to give a realizability

interpretation of the classical axiom of dependent choice allowing for the extraction of

witnesses from proofs of 89-formulas in classical analysis. In this talk we also settle the

relation between this new form of bar recursion and Spector's original de�nition.

Implicit Complexity and Bounded Arithmetic Theories

Chris Pollet

Bounded arithmetic theories are weak fragments of arithmetic useful in the study of com-

putational complexity classes. In this talk we will discuss known techniques for doing

independence proofs in these theories. We will then consider the question of classifying the

�

b

1

-de�nable multifunctions of a particular bounded arithmetic theory, S

2

. Such a classi�-

cation might prove useful in proving new independence results. We will then indicate why

an implicit complexity approach to this characterization might be reasonable.
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The Axiom of Choice in Constructive Set Theory

Michael Rathjen

(joint work with Sergei Tupailo)

The axiom of choice does not have an unambiguous status in constructive mathematics. On

the one hand it is said to be an immediate consequence of the constructive interpretation of

the quanti�ers. Any proof of 8x 2 a 9y 2 b �(x; y) must yield a function f : a! b such that

8x 2 a �(x; f(x)). This is certainly the case in Martin-L�of's intuitionistic theory of types.

On the other hand, from the very earliest days, the axiom of choice has been criticized

as an excessively non-constructive principle even for classical set theory. Moreover, it has

been observed that the full axiom of choice cannot be added to systems of constructive

set theory without yielding constructively unacceptable cases of excluded middle. On the

other hand, it has been shown by Peter Aczel that constructive set theory has a canonical

interpretation in Martin-L�of's type theory and that this interpretation also validates several

choice principles, e.g., the axiom of countable choice and the axiom of dependent choices.

The main aim of the talk is to present joint work with Sergei Tupailo in which we give

a characterization of a restricted class of set-theoretic statements realizable in Martin-L�of

type theory. This class contains all the statements that �gure in ordinary mathematics.

The realizable statements turn out to be those provable in an extension of CZF via the

so-called ��-axiom of choice.

Classes, Trees, Objects and Interaction

Anton Setzer

(joint work with Peter Hancock)

We introduce the concept of a state-dependent interactive program in dependent type

theory. A world, i.e., the signature of such a system, is given by a quadruple (S;C;R; n),

where S is the set of states, C : S ! Set is the set of interactive commands, the program

can execute, R : (s : S; c : C(s)) ! Set is the set of answers from the real world to such

commands, and n : (s : S; c : C(s); r : R(s; c)) ! S is the next state of the system, after

that command has been executed. Interactive programs are then possibly non-well-founded

trees, with nodes labeled by states and commands, and branching degree being the set of

responses to such a command, such that the states are in accordance with n. They can

be seen as well as elements of the �nal coalgebra of the functor F = �X; s:�c : C(s):�r :

R(s; c):X(n(s; c; r)) on the category of presheaves over S.

Strictly positive functors are equivalent to the functors mentioned before and we intro-

duce type theoretical rules for �nal coalgebras over such functors: The introduction rule

states that if A : S! Set and f : (s : S; A(s))! F(A; s), then intro(A; f) : (s : S; A(s))!

F

1

(s), the elimination rule that there exists some elim : (s : S;F

1

(s)) ! F(F

1

; s),

and the equality rule that elim(s; intro(A; f; s; a)) = F(intro(A; f))(s; f(s; a)). A com-

putationally more e�cient, but otherwise equivalent introduction rule uses as type of f

(s : S; A(s))! F(F

1

(A+ F

1

); s).

We sketch a model of the resulting type theory. We then indicate why the above men-

tioned more e�cient introduction rule extends Coquand's principle of guarded recursion.

We now look at examples of state-dependent coalgebras: the set of strictly increasing

streams and bisimulation.

Finally we look at the relationship of the concepts of object-oriented programming and

the notions introduced above: interfaces can be seen as the command/response set of an
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interactive program (however the order between command and response is interchanged),

objects are interactive programs (i.e. elements of the �nal coalgebras) and classes are

functions from some set to the set of objects (given by the constructors of that class).

Safe Weak Minimization Revisited

Dieter Spreen

Minimization operators of di�erent strength have been studied in the framework of \pred-

icative (safe) recursion". In this talk a modi�cation of these operators is presented. By

adding the new operator to those used by Bellantoni-Cook and Leivant to characterize the

polynomial-time computable functions one obtains a characterization of the nondetermin-

istic polynomial-time computable multifunctions. Thus, the generation of the nondeter-

ministic polynomial-time multifunctions from the deterministic polynomial time functions

parallels the generation of the computable functions from the primitive recursive functions.

Algorithms and Recursive Abstract State Machines

Robert F. St

�

ark

Y. Gurevich has shown that if an algorithms satis�es i) the sequential time postulate, ii)

the abstract state postulate and iii) the uniformly bounded exploration postulate, then its

one-step transformation can be computed by an Abstract State Machine (ASM). Many

recursive algorithms, however, do not exactly �t into Gurevich's framework. Therefore, we

introduce a logic for sequential-time, deterministic, recursive ASMs with parallel function

updates. Unlike other logics for ASMs which are based on dynamic logic, our logic is

based on an atomic predicate for function updates and on a de�nedness predicate for the

termination of the evaluation of transition rules. We do not assume that the transition rules

of ASMs are in normal form. Instead, we allow structuring concepts including sequential

composition and possibly recursive submachine calls. We show that several axioms that

have been proposed for reasoning about ASMs are derivable in our system. The main

technical result is that the logic is complete for hierarchical (non-recursive) ASMs. In fact,

for hierarchical ASMs, the logic is a de�nitional extension of �rst-order predicate logic.

Relating Toposes and First Oder Set Theories

Thomas Streicher

(joint work with Awodey, Butz, Simpson)

From the early seventies it is known that bounded Zermelo set theory (bZ) is equiconsistent

with Higher Order Arithmetic (HOA), the logic of toposes with NNO (natural numbers

object). In our work we show more, namely that every topos E appears as the full subcat-

egory of sets of a model of a weak class theory (bounded intuitionistic Zermelo set theory

with strong collection and urelements, called biZ + (Coll)).

The key idea is to show that every topos is equivalent to one with a good system of

inclusions I saying which types are in the subset relation. Using I we construct a forcing

model for biZ + (Coll) conservative over the original topos.
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A Proof-Theoretic Characterization of the Basic Feasible Functionals

Thomas Strahm

In this talk we will present a simple classical Feferman-style self-applicative theory PT

and exhibit its relationship to the Melhorn-Cook-Urquhart basic feasible functionals BFF.

This class of functionals has proven to be a robust candidate for the notion of type two

feasibility. It is shown that a type two functional provably converges in PT i� it is basic

feasible. Moreover, PT naturally contains well-known �rst and higher order systems of

classical bounded arithmetic. Extensions of this work to other complexity classes will be

sketched.

Non-Standard Construction of Gibbs States

Alasdair Urquhart

The main results of this talk concern a construction for equilibrium states in mean �eld

models of generalized spin systems. For �nite-range interactions, there is a well known

construction due to Van Hove that de�nes the thermodynamic limit for such systems.

In the case of weak, in�nite-range interactions such as occur in mean �eld models, this

procedure seems not to apply, so that textbook discussions of such models as the Curie-

Weiss model usually omit discussion of the meaning of the thermodynamic limit in this

case. In this talk, I sketch how non-standard analysis can be used to give a meaning to

the thermodynamic limit. The construction allows a general de�nition of Gibbs state by

employing the DLR equations; the Gibbs states de�ned in this way can be decomposed

into pure states.

Proof Theory and Analytic Number Theory

Andreas Weiermann

We investigate the �ne structure of several combinatorial independence results using an-

alytic combinatorics. This approach applies to the Paris Harrington theorem, the Hydra

game, the Goodstein process and Friedman style miniaturizations of well-orderedness and

well-partial orderedness principles. For example, the strength of Kruskal's theorem can be

measured in terms of

1

log

2

(�)

where � = 2:95576 : : : is Otter's tree constant.

A Fragment of System F Characterizing the Functions Provably Recursive in

ID

n

(informal talk)

Klaus Aehlig

A subsystem of the polymorphic lambda-calculus is presented that captures precisely the

functions provably total in the system ID

n

of n iterated inductive de�nitions. The restric-

tion is that every subtype of the form 8�� occurring in the typability derivation must not

contain free type variables and that the nesting depth of type quanti�ers is at most n+ 1.

The proof that every term typable in that way denotes a function provably total in ID

n

proceeds in two steps: a natural proof in a fragment of second order arithmetic with the

same restriction for second order variables and a cut-elimination proof for that system

which can be formalized in ID

n

. As ID

n

can be embedded into that system of second

order arithmetic a proof theoretic characterization thereof is obtained, which might be of

independent interest.
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The proof that every function provably total in ID

n

can be de�ned in the said fragment

of system F is an interpretation of the proof (embedded in second order arithmetic) as

terms.

Turing machines with non-strict oracles are Turing incomplete (informal talk)

Ulrich Berger

We consider type 2 functionals F : (N

k

?

! N

?

)�N

n

?

! N

?

where N

?

is the 
at domain of

partial natural numbers and N

k

?

! N

?

is the set of monotone functions from N

k

?

to N

?

.

Let x, y and z range over N

?

and i;m over N . The primitive recursive functionals of

type 2 are de�ned by projection F (g; ~x) = x

i

, use of base functions f , that is F (g; ~x) =

f(F

1

(g; ~x); : : : ; F

m

(g; ~x)), \oracle calls", that is F (g; ~x) = g(F

1

(g; ~x); : : : ; F

k

(g; ~x)) and

primitive recursion:

F (g; ~x;?) = ?

F (g; ~x; 0) = F

0

(g; ~x)

F (g; ~x;m+ 1) = F

1

(g; ~x;m; F (g; ~x;m))

The �-recursive functionals are obtained by adding the scheme

F (g; ~x) = �m[F

1

(g; ~x;m) = 0] =

8

>

>

<

>

>

:

m if F

1

(g; ~x;m) = 0

and F

1

(g; ~x; i) > 0 for all i < m

? if no such m exists

On the other hand, the recursive functionals are obtained (sloppy speaking) by allowing

in the de�ning schemes for the primitive recursive functionals the function symbol F to

occur on the right hand side. An example of a recursive functional is

H : (N

2

?

! N

?

)! N

?

! N

?

H(g; x) = g(x;H(g; x+ 1))

In other words, H(g; x) = g(x; g(x+ 1; g(x+ 2; : : : . It is shown that this functional is not

�-recursive by proving the following main lemma: Let F be �-recursive and ~x such that

F (?

1

; ~x) = ?, where the oracle ?

1

always returns ?. Then there is an m 2 N such that

for all g with F (g; ~x) 6= ? there are m

1

; m

2

< m such that g(m

1

; m

2

) 6= ?.

A Recursion Theorem for Nonwellfounded Trees (informal talk)

Wilfried Buchholz

Let T := N

<!

! N . We consider systems of equations (�) F

i

= t

i

(X

1

; :::; X

m

; x

1

; :::; x

k

)

(i = 0; :::; p) where F

0

; :::; F

p

are function variables of type T

m

�N

k

! T, and t

1

; :::; t

p

are

terms build up (respecting types) from the variables X

1

; :::; X

m

of type T and x

1

; :::; x

k

of

type N by means of the following function symbols:

{ F

0

; :::; F

p

;

{ hd : T ! N , tl : T�N ! T, cons : N�(N ! T) ! T;

{ �nitely many symbols for primitive recursive functions f : N

n

! N .

(The formation rule for cons reads: r : N , t : T =) cons(r; �x:t) : T.)

The symbols hd, tl, cons come with a �xed interpretation, namely hd(�) = �(hi),

tl(�; n) = ��:�(hni��), cons(a; f)(hi) = a, cons(a; f)(hni��) = f(n)(�).

We establish a syntactic condition C such that if (�) satis�es C, then (�) has a unique

solution F

!

0

; :::; F

!

p

: T

m

�N

k

! T, and moreover the functionals �~�;~a; �:F

!

i

(~�; �)(�) (i =

0; :::; p) are primitive recursive.
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An application of this result to proof theory is the following: One easily veri�es that

Mints' continuos cut-reducing operator R

1

(on possibly nonwellfounded derivations of !-

arithmetic) can be de�ned by an equation system (�) satisfying our condition C, and

therefore R

1

is primitive recursive (hence continuous).

Proof Theory and Explicit Substitution (informal talk)

Roy Dickhoff

We outline a proof of the strong normalization of a system of cut-reduction rules for

Herbelin's sequent calculus, the system being strong enough to simulate �-reduction of the

�-calculus; the cut rules may in fact be considered as explicit substitution constructors.

An Elementary Fragment of System F (informal talk)

Jan Johannsen

(joint work with Klaus Aehlig)

A fragment of second-order lambda calculus (System F ) is de�ned that characterizes the

elementary recursive functions. Type quanti�cation is restricted to be non-interleaved and

strati�ed, that is, the types are assigned levels, and a quanti�ed variable can only be

instantiated by a type of smaller level, with a slightly liberalized treatment of the level

zero.

Contraction-Aware lambda-Calculus. Examples and Discussion. (informal talk)

Ralph Matthes

After a review of the de�nition of the calculus, it is shown that every Church numeral above

1 reduces to numeral 1 in the calculus. An example is given that local con
uence does not

hold. The discussion is meant to see relations with certain functor category semantics and

with calculi of explicit substitution.

The Borel Hierarchy in Intuitionistic Mathematics (informal talk)

Wim Veldman

A subset X of Baire space N is called positively Borel if and only if it may be obtained from

basic open sets by the operations of countable union and countable intersection. We show

how to formulate and prove an intuitionistic Borel Hierarchy Theorem. We also mention

some surprising examples of sets that are not positively Borel.

Edited by Klaus Aehlig
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