57 research outputs found

    ADAPTIVE CAPACITY ALLOCATION IN MPLS NETWORKS

    Get PDF
    Traffic Congestion is one of the salient issues that affect overall network performance. Network traffic has become very dynamic due to a variety of factors, such as, the number of users varies with time of the day, multimedia applications, bursts in traffic due to a failure and so on. Recently, Multi-Protocol Label Switching (MPLS) networks have emerged as a technology with many promising features such as traffic engineering, QoS provisioning, and speeding up the traffic transmission. However, MPLS still suffers from the nonstationary/transient conditions that sometimes cause congestion. Actually, congestion does not always occur when the network is short capacity, but rather, when the network resources are not efficiently utilized. Thus, it is very important to develop an algorithm that efficiently and dynamically adjusts the available capacity. In this thesis, we propose an adaptive capacity allocation scheme. We have started our consideration with a single traffic class system that has dynamic traffic where traffic arrival is considered at the level of connection/call arrival. We assume that the virtual network for this traffic class operates as a loss system; i.e. if a connection does not find bandwidth, the connection is blocked and cleared from the system. Then, we extended our work to include the multiple traffic classes. Two cases have been studied and analyzed; when classes have no coupling and when they are coupled. The capacity allocation scheme is derived from a first-order, differential equation-based, fluid-flow model that captures the traffic dynamics. The scheme aims to maintain the connection blocking probability within a specified range by dynamically adjusting the allocated capacity. A fluid flow differential equation model is developed to model the changing traffic environment. Using the fluid flow model, Lyapunov Stability theory is used to derive a novel adaptive capacity adjustment scheme which guarantees overall system stability while maintaining the target QoS parameters. Numerical results are given which show that the Lyapunov control based scheme successfully provides the desired QoS requirements and performs better than existing schemes in the literature

    Resource management for multimedia traffic over ATM broadband satellite networks

    Get PDF
    PhDAbstract not availabl

    Improved learning automata applied to routing in multi-service networks

    Get PDF
    Multi-service communications networks are generally designed, provisioned and configured, based on source-destination user demands expected to occur over a recurring time period. However due to network users' actions being non-deterministic, actual user demands will vary from those expected, potentially causing some network resources to be under- provisioned, with others possibly over-provisioned. As actual user demands vary over the recurring time period from those expected, so the status of the various shared network resources may also vary. This high degree of uncertainty necessitates using adaptive resource allocation mechanisms to share the finite network resources more efficiently so that more of actual user demands may be accommodated onto the network. The overhead for these adaptive resource allocation mechanisms must be low in order to scale for use in large networks carrying many source-destination user demands. This thesis examines the use of stochastic learning automata for the adaptive routing problem (these being adaptive, distributed and simple in implementation and operation) and seeks to improve their weakness of slow convergence whilst maintaining their strength of subsequent near optimal performance. Firstly, current reinforcement algorithms (the part causing the automaton to learn) are examined for applicability, and contrary to the literature the discretised schemes are found in general to be unsuitable. Two algorithms are chosen (one with fast convergence, the other with good subsequent performance) and are improved through automatically adapting the learning rates and automatically switching between the two algorithms. Both novel methods use local entropy of action probabilities for determining convergence state. However when the convergence speed and blocking probability is compared to a bandwidth-based dynamic link-state shortest-path algorithm, the latter is found to be superior. A novel re-application of learning automata to the routing problem is therefore proposed: using link utilisation levels instead of call acceptance or packet delay. Learning automata now return a lower blocking probability than the dynamic shortest-path based scheme under realistic loading levels, but still suffer from a significant number of convergence iterations. Therefore the final improvement is to combine both learning automata and shortest-path concepts to form a hybrid algorithm. The resulting blocking probability of this novel routing algorithm is superior to either algorithm, even when using trend user demands

    Theory and applications of artificial neural networks

    Get PDF
    In this thesis some fundamental theoretical problems about artificial neural networks and their application in communication and control systems are discussed. We consider the convergence properties of the Back-Propagation algorithm which is widely used for training of artificial neural networks, and two stepsize variation techniques are proposed to accelerate convergence. Simulation results demonstrate significant improvement over conventional Back-Propagation algorithms. We also discuss the relationship between generalization performance of artificial neural networks and their structure and representation strategy. It is shown that the structure of the network which represent a priori knowledge of the environment has a strong influence on generalization performance. A Theorem about the number of hidden units and the capacity of self-association MLP (Multi-Layer Perceptron) type network is also given in the thesis. In the application part of the thesis, we discuss the feasibility of using artificial neural networks for nonlinear system identification. Some advantages and disadvantages of this approach are analyzed. The thesis continues with a study of artificial neural networks applied to communication channel equalization and the problem of call access control in broadband ATM (Asynchronous Transfer Mode) communication networks. A final chapter provides overall conclusions and suggestions for further work

    Congestion Avoidance Testbed Experiments

    Get PDF
    DARTnet provides an excellent environment for executing networking experiments. Since the network is private and spans the continental United States, it gives researchers a great opportunity to test network behavior under controlled conditions. However, this opportunity is not available very often, and therefore a support environment for such testing is lacking. To help remedy this situation, part of SRI's effort in this project was devoted to advancing the state of the art in the techniques used for benchmarking network performance. The second objective of SRI's effort in this project was to advance networking technology in the area of traffic control, and to test our ideas on DARTnet, using the tools we developed to improve benchmarking networks. Networks are becoming more common and are being used by more and more people. The applications, such as multimedia conferencing and distributed simulations, are also placing greater demand on the resources the networks provide. Hence, new mechanisms for traffic control must be created to enable their networks to serve the needs of their users. SRI's objective, therefore, was to investigate a new queueing and scheduling approach that will help to meet the needs of a large, diverse user population in a "fair" way

    Telemedicine

    Get PDF
    Telemedicine is a rapidly evolving field as new technologies are implemented for example for the development of wireless sensors, quality data transmission. Using the Internet applications such as counseling, clinical consultation support and home care monitoring and management are more and more realized, which improves access to high level medical care in underserved areas. The 23 chapters of this book present manifold examples of telemedicine treating both theoretical and practical foundations and application scenarios

    Investigation of the tolerance of wavelength-routed optical networks to traffic load variations.

    Get PDF
    This thesis focuses on the performance of circuit-switched wavelength-routed optical network with unpredictable traffic pattern variations. This characteristic of optical networks is termed traffic forecast tolerance. First, the increasing volume and heterogeneous nature of data and voice traffic is discussed. The challenges in designing robust optical networks to handle unpredictable traffic statistics are described. Other work relating to the same research issues are discussed. A general methodology to quantify the traffic forecast tolerance of optical networks is presented. A traffic model is proposed to simulate dynamic, non-uniform loads, and used to test wavelength-routed optical networks considering numerous network topologies. The number of wavelengths required and the effect of the routing and wavelength allocation algorithm are investigated. A new method of quantifying the network tolerance is proposed, based on the calculation of the increase in the standard deviation of the blocking probabilities with increasing traffic load non-uniformity. The performance of different networks are calculated and compared. The relationship between physical features of the network topology and traffic forecast tolerance is investigated. A large number of randomly connected networks with different sizes were assessed. It is shown that the average lightpath length and the number of wavelengths required for full interconnection of the nodes in static operation both exhibit a strong correlation with the network tolerance, regardless of the degree of load non-uniformity. Finally, the impact of wavelength conversion on network tolerance is investigated. Wavelength conversion significantly increases the robustness of optical networks to unpredictable traffic variations. In particular, two sparse wavelength conversion schemes are compared and discussed: distributed wavelength conversion and localized wavelength conversion. It is found that the distributed wavelength conversion scheme outperforms localized wavelength conversion scheme, both with uniform loading and in terms of the network tolerance. The results described in this thesis can be used for the analysis and design of reliable WDM optical networks that are robust to future traffic demand variations

    Performance issues in optical burst/packet switching

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-642-01524-3_8This chapter summarises the activities on optical packet switching (OPS) and optical burst switching (OBS) carried out by the COST 291 partners in the last 4 years. It consists of an introduction, five sections with contributions on five different specific topics, and a final section dedicated to the conclusions. Each section contains an introductive state-of-the-art description of the specific topic and at least one contribution on that topic. The conclusions give some points on the current situation of the OPS/OBS paradigms

    Optimization inWeb Caching: Cache Management, Capacity Planning, and Content Naming

    Full text link
    Caching is fundamental to performance in distributed information retrieval systems such as the World Wide Web. This thesis introduces novel techniques for optimizing performance and cost-effectiveness in Web cache hierarchies. When requests are served by nearby caches rather than distant servers, server loads and network traffic decrease and transactions are faster. Cache system design and management, however, face extraordinary challenges in loosely-organized environments like the Web, where the many components involved in content creation, transport, and consumption are owned and administered by different entities. Such environments call for decentralized algorithms in which stakeholders act on local information and private preferences. In this thesis I consider problems of optimally designing new Web cache hierarchies and optimizing existing ones. The methods I introduce span the Web from point of content creation to point of consumption: I quantify the impact of content-naming practices on cache performance; present techniques for variable-quality-of-service cache management; describe how a decentralized algorithm can compute economically-optimal cache sizes in a branching two-level cache hierarchy; and introduce a new protocol extension that eliminates redundant data transfers and allows “dynamic” content to be cached consistently. To evaluate several of my new methods, I conducted trace-driven simulations on an unprecedented scale. This in turn required novel workload measurement methods and efficient new characterization and simulation techniques. The performance benefits of my proposed protocol extension are evaluated using two extraordinarily large and detailed workload traces collected in a traditional corporate network environment and an unconventional thin-client system. My empirical research follows a simple but powerful paradigm: measure on a large scale an important production environment’s exogenous workload; identify performance bounds inherent in the workload, independent of the system currently serving it; identify gaps between actual and potential performance in the environment under study; and finally devise ways to close these gaps through component modifications or through improved inter-component integration. This approach may be applicable to a wide range of Web services as they mature.Ph.D.Computer Science and EngineeringUniversity of Michiganhttp://deepblue.lib.umich.edu/bitstream/2027.42/90029/1/kelly-optimization_web_caching.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/90029/2/kelly-optimization_web_caching.ps.bz
    corecore