29 research outputs found

    A Magneto-Mechanical Piezoelectric Energy Harvester Designed to Scavenge AC Magnetic Field from Thermal Power Plant with Power-Line Cables

    Get PDF
    Piezoelectric energy harvesters have attracted much attention because they are crucial in portable industrial applications. Here, we report on a high-power device based on a magneto-mechanical piezoelectric energy harvester to scavenge the AC magnetic field from a power-line cable for industrial applications. The electrical output performance of the harvester (×4 layers) reached an output voltage of 60.8 Vmax, an output power of 215 mWmax (98 mWrms), and a power density of 94.5 mWmax/cm3 (43.5 mWrms/cm3) at an impedance matching of 5 kΩ under a magnetic field of 80 μT. The multilayer energy harvester enables high-output performance, presenting an obvious advantage given this improved level of output power. Finite element simulations were also performed to support the experimental observations. The generator was successfully used to power a wireless sensor network (WSN) for use on an IoT device composed of a temperature sensor in a thermal power station. The result shows that the magneto-mechanical piezoelectric energy harvester (MPEH) demonstrated is capable of meeting the requirements of self-powered monitoring systems under a small magnetic field, and is quite promising for use in actual industrial applications

    Predicting Electrical Faults in Power Distribution Network

    Get PDF
    Electricity is becoming increasingly important in modern civilization, and as a result, the emphasis on and use of power infrastructure is gradually expanding. Simultaneously, investment and distribution modes are shifting from the large-scale centralized generation of electricity and sheer consumption to decentralized generators and extremely sophisticated clients. This transformation puts further strain on old infrastructure, necessitating significant expenditures in future years to ensure a consistent supply. Subsequent technical and prediction technologies can help to maximize the use of the current grid while lowering the probability of faults. This study discusses some of the local grid difficulties as well as a prospective maintenance and failure probabilistic model. To provide an effective and convenient power source to consumers, a high Volta protects and maintains under fault conditions. Most of the fault identification and localization approaches rely on real and reactive power converter observations of electronic values. This can be seen in metrics and ground evaluations derived via internet traffic. This paper provides a thorough examination of the mechanisms for error detection, diagnosis, and localization in overhead lines. The proposal is then able to make suggestions about the ways that can be incorporated to predict foreseen faults in the electrical network. The three classifiers, Random Forest, XGBoost and Decision tree are producing high accuracies, while Logistic Regression and SVM are producing realistic accuracy results

    Electric field energy harvesting from medium voltage power lines

    Get PDF
    The Smart Grid is the response of the Electrical Engineering discipline to challenges of the 21st century such as global warming. It is envisioned as an automatic entity in charge of managing electrical energy in the most efficient way and with as small an ecological impact as possible. This new model is currently being materialized with continuous research efforts all over the world to develop the technologies that will compose it. As renewable generation resources become more popular, their introduction to the grid is now changing the paradigm of how the tasks for achieving safe and efficient management of electricity should be carried out. Hence the deployment of technologies around different sections of the grid are becoming increasingly important, in particular in distribution power lines, which are the large conductors in charge of the last stages of electricity dispatch, usually at 11 kV or 22 kV in Australia and New Zealand. For the task of continuously monitoring vital line parameters, the most effective approach is the sensing and transmission of the data using wireless communication technologies. The development of the electronic devices for power line monitoring requires a cost-efficient deployment, as their number will be considerable given the large distances that distribution lines usually cover. Hence, self-powering of these electronics is essential in the design. The research field that deals with this problem is Energy Harvesting, which addresses the transfer of low amounts of energy taken from environmental sources to feed low-power-consumption loads. For the environment of distribution power lines, the discernible environmental source is within the strong electric fields produced by the high voltages in these lines. The topic that addresses this problem is called Electric Field Energy Harvesting (EFEH) and the literature around this subject is moderate and has not yet defined the basis that underlays its maximum energy transfer. This thesis addresses EFEH from medium voltage distribution power lines, focusing on an optimal solution both in terms of its adaption to the grid and of the most adequate energy conversion strategy for maximum power transfer. A non-contact EFEH technique using power line insulators is introduced, and the specific conditions under which the energy is maximised are determined. Under such conditions, the limitations that a solid-state switching converter has when transforming the EFEH supply to usable levels for low-power loads has, are identified and then addressed by the proposal of a pulsed transfer-mode flyback conversion strategy. The implementation of a self-powered, pulsed-mode energy converter is demonstrated theoretically and then practically through the development of physical prototypes. The results obtained from the investigations indicate that this conversion strategy can outperform previous works, being able to harvest higher levels of power with a reduced volume and a weaker coupling capacitance. The contribution of this research work to the scientific community is the proof of concept that a better solution for EFEH can be achieved that will enrich the set of technologies for the upcoming Smart Grid and hence contribute to achieving a more sustainable future for our society

    A Review of Fault Diagnosing Methods in Power Transmission Systems

    Get PDF
    Transient stability is important in power systems. Disturbances like faults need to be segregated to restore transient stability. A comprehensive review of fault diagnosing methods in the power transmission system is presented in this paper. Typically, voltage and current samples are deployed for analysis. Three tasks/topics; fault detection, classification, and location are presented separately to convey a more logical and comprehensive understanding of the concepts. Feature extractions, transformations with dimensionality reduction methods are discussed. Fault classification and location techniques largely use artificial intelligence (AI) and signal processing methods. After the discussion of overall methods and concepts, advancements and future aspects are discussed. Generalized strengths and weaknesses of different AI and machine learning-based algorithms are assessed. A comparison of different fault detection, classification, and location methods is also presented considering features, inputs, complexity, system used and results. This paper may serve as a guideline for the researchers to understand different methods and techniques in this field

    Ultra-Low Power and Non-intrusive Wireless Monitoring for Smart Buildings

    Get PDF
    Wireless Sensor Networks (WSNs) offer a new solution for distributed monitoring, processing and communication. First of all, the stringent energy constraints to which sensing nodes are typically subjected. WSNs are often battery powered and placed where it is not possible to recharge or replace batteries. Energy can be harvested from the external environment but it is a limited resource that must be used efficiently. Energy efficiency is a key requirement for a credible WSNs design. From the power source's perspective, aggressive energy management techniques remain the most effective way to prolong the lifetime of a WSN. A new adaptive algorithm will be presented, which minimizes the consumption of wireless sensor nodes in sleep mode, when the power source has to be regulated using DC-DC converters. Another important aspect addressed is the time synchronisation in WSNs. WSNs are used for real-world applications where physical time plays an important role. An innovative low-overhead synchronisation approach will be presented, based on a Temperature Compensation Algorithm (TCA). The last aspect addressed is related to self-powered WSNs with Energy Harvesting (EH) solutions. Wireless sensor nodes with EH require some form of energy storage, which enables systems to continue operating during periods of insufficient environmental energy. However, the size of the energy storage strongly restricts the use of WSNs with EH in real-world applications. A new approach will be presented, which enables computation to be sustained during intermittent power supply. The discussed approaches will be used for real-world WSN applications. The first presented scenario is related to the experience gathered during an European Project (3ENCULT Project), regarding the design and implementation of an innovative network for monitoring heritage buildings. The second scenario is related to the experience with Telecom Italia, regarding the design of smart energy meters for monitoring the usage of household's appliances

    IoT and Sensor Networks in Industry and Society

    Get PDF
    The exponential progress of Information and Communication Technology (ICT) is one of the main elements that fueled the acceleration of the globalization pace. Internet of Things (IoT), Artificial Intelligence (AI) and big data analytics are some of the key players of the digital transformation that is affecting every aspect of human's daily life, from environmental monitoring to healthcare systems, from production processes to social interactions. In less than 20 years, people's everyday life has been revolutionized, and concepts such as Smart Home, Smart Grid and Smart City have become familiar also to non-technical users. The integration of embedded systems, ubiquitous Internet access, and Machine-to-Machine (M2M) communications have paved the way for paradigms such as IoT and Cyber Physical Systems (CPS) to be also introduced in high-requirement environments such as those related to industrial processes, under the forms of Industrial Internet of Things (IIoT or I2oT) and Cyber-Physical Production Systems (CPPS). As a consequence, in 2011 the German High-Tech Strategy 2020 Action Plan for Germany first envisioned the concept of Industry 4.0, which is rapidly reshaping traditional industrial processes. The term refers to the promise to be the fourth industrial revolution. Indeed, the first industrial revolution was triggered by water and steam power. Electricity and assembly lines enabled mass production in the second industrial revolution. In the third industrial revolution, the introduction of control automation and Programmable Logic Controllers (PLCs) gave a boost to factory production. As opposed to the previous revolutions, Industry 4.0 takes advantage of Internet access, M2M communications, and deep learning not only to improve production efficiency but also to enable the so-called mass customization, i.e. the mass production of personalized products by means of modularized product design and flexible processes. Less than five years later, in January 2016, the Japanese 5th Science and Technology Basic Plan took a further step by introducing the concept of Super Smart Society or Society 5.0. According to this vision, in the upcoming future, scientific and technological innovation will guide our society into the next social revolution after the hunter-gatherer, agrarian, industrial, and information eras, which respectively represented the previous social revolutions. Society 5.0 is a human-centered society that fosters the simultaneous achievement of economic, environmental and social objectives, to ensure a high quality of life to all citizens. This information-enabled revolution aims to tackle today’s major challenges such as an ageing population, social inequalities, depopulation and constraints related to energy and the environment. Accordingly, the citizens will be experiencing impressive transformations into every aspect of their daily lives. This book offers an insight into the key technologies that are going to shape the future of industry and society. It is subdivided into five parts: the I Part presents a horizontal view of the main enabling technologies, whereas the II-V Parts offer a vertical perspective on four different environments. The I Part, dedicated to IoT and Sensor Network architectures, encompasses three Chapters. In Chapter 1, Peruzzi and Pozzebon analyse the literature on the subject of energy harvesting solutions for IoT monitoring systems and architectures based on Low-Power Wireless Area Networks (LPWAN). The Chapter does not limit the discussion to Long Range Wise Area Network (LoRaWAN), SigFox and Narrowband-IoT (NB-IoT) communication protocols, but it also includes other relevant solutions such as DASH7 and Long Term Evolution MAchine Type Communication (LTE-M). In Chapter 2, Hussein et al. discuss the development of an Internet of Things message protocol that supports multi-topic messaging. The Chapter further presents the implementation of a platform, which integrates the proposed communication protocol, based on Real Time Operating System. In Chapter 3, Li et al. investigate the heterogeneous task scheduling problem for data-intensive scenarios, to reduce the global task execution time, and consequently reducing data centers' energy consumption. The proposed approach aims to maximize the efficiency by comparing the cost between remote task execution and data migration. The II Part is dedicated to Industry 4.0, and includes two Chapters. In Chapter 4, Grecuccio et al. propose a solution to integrate IoT devices by leveraging a blockchain-enabled gateway based on Ethereum, so that they do not need to rely on centralized intermediaries and third-party services. As it is better explained in the paper, where the performance is evaluated in a food-chain traceability application, this solution is particularly beneficial in Industry 4.0 domains. Chapter 5, by De Fazio et al., addresses the issue of safety in workplaces by presenting a smart garment that integrates several low-power sensors to monitor environmental and biophysical parameters. This enables the detection of dangerous situations, so as to prevent or at least reduce the consequences of workers accidents. The III Part is made of two Chapters based on the topic of Smart Buildings. In Chapter 6, Petroșanu et al. review the literature about recent developments in the smart building sector, related to the use of supervised and unsupervised machine learning models of sensory data. The Chapter poses particular attention on enhanced sensing, energy efficiency, and optimal building management. In Chapter 7, Oh examines how much the education of prosumers about their energy consumption habits affects power consumption reduction and encourages energy conservation, sustainable living, and behavioral change, in residential environments. In this Chapter, energy consumption monitoring is made possible thanks to the use of smart plugs. Smart Transport is the subject of the IV Part, including three Chapters. In Chapter 8, Roveri et al. propose an approach that leverages the small world theory to control swarms of vehicles connected through Vehicle-to-Vehicle (V2V) communication protocols. Indeed, considering a queue dominated by short-range car-following dynamics, the Chapter demonstrates that safety and security are increased by the introduction of a few selected random long-range communications. In Chapter 9, Nitti et al. present a real time system to observe and analyze public transport passengers' mobility by tracking them throughout their journey on public transport vehicles. The system is based on the detection of the active Wi-Fi interfaces, through the analysis of Wi-Fi probe requests. In Chapter 10, Miler et al. discuss the development of a tool for the analysis and comparison of efficiency indicated by the integrated IT systems in the operational activities undertaken by Road Transport Enterprises (RTEs). The authors of this Chapter further provide a holistic evaluation of efficiency of telematics systems in RTE operational management. The book ends with the two Chapters of the V Part on Smart Environmental Monitoring. In Chapter 11, He et al. propose a Sea Surface Temperature Prediction (SSTP) model based on time-series similarity measure, multiple pattern learning and parameter optimization. In this strategy, the optimal parameters are determined by means of an improved Particle Swarm Optimization method. In Chapter 12, Tsipis et al. present a low-cost, WSN-based IoT system that seamlessly embeds a three-layered cloud/fog computing architecture, suitable for facilitating smart agricultural applications, especially those related to wildfire monitoring. We wish to thank all the authors that contributed to this book for their efforts. We express our gratitude to all reviewers for the volunteering support and precious feedback during the review process. We hope that this book provides valuable information and spurs meaningful discussion among researchers, engineers, businesspeople, and other experts about the role of new technologies into industry and society

    Sensor to improve detection of line break or earth faults for Victorian answer lines

    Get PDF
    This project is an investigation into a possible fault detection system for SWER (single wire earth return) electrical distribution networks in Victoria that focuses on types of faults that are undetectable by conventional protection systems and have the ability to ignite fires. The paper considers why a new detection system is required and then how it could be practically implemented in a general sense. More detailed investigations then focus on communications, power harvesting and fault detection considerations. The devices are proposed to be distributed across SWER networks to enact a detection system. The paper focuses on the many conflicting requirements and subsequent compromises that any eventual design will need to overcome. It is found that electric field power harvesting from the Victorian SWER lines’ 12.7kV conductor can produce power outputs within the range required by standalone detection devices given fairly severe design constraints. Summaries and conclusions are drawn to a level where the project develops a clear methodology to go forward

    Development and characterization of sensors fabricated from polymer based magnetoelectric nanocomposites

    Get PDF
    Tese de Doutoramento em Engenharia Electrónica e de ComputadoresSensors are increasingly used in many applications areas, integrated in structures, industrial machinery, or in the environment, contributing to improve the society level of well-being. It is expected that sensorization will play on of the most relevant roles in the fourth industrial revolution, and allow, together with mechanization and informatization, a full automation. Particularly, magnetic sensors allow measurements, without physical contact, of parameters such as direction, presence, rotation, angle, or current, in addition to magnetic field. In this way, for most applications, such sensors offer a safe, noninvasive and non-destructive measurement, as well as provide a reliable and almost maintenance-free technology. Industry demands for smaller, cheaper and low-powered magnetic sensors, motivating the exploration of new materials and different technologies, such as polymerbased magnetoelectric (ME) composites. These composites are flexible, versatile, lightweight, low cost, easy to model in complicated shapes, and typically involve a lowtemperature fabrication process, being in this way, a solution for innovative magnetic sensor device applications. Therefore, the main objective of this thesis is the development of polymer-based ME sensors to be incorporated into technological devices. Thus, the ME effect is increasingly being considered an attractive alternative for magnetic field and current sensing, being able to sense static and dynamic magnetic fields. In order to obtain a wide-range ME response, a nanocomposite of Tb0.3Dy0.7Fe1.92 (Terfenol-D)/CoFe2O4/poly(vinylidene fluoride-trifluoroethylene) (P(VDF-TrFE)) was produced and their morphological, piezoelectric, magnetic and magnetoelectric properties investigated. The obtained composites reveals a high piezoelectric response (≈-18 pC∙N- 1) that is independent of the weight ratio between the fillers. In turn, the magnetic properties of the composites are influenced by the composite composition. It was found that the magnetization saturation values decrease with increasing CoFe2O4 content (from 18.5 to 13.3 emu∙g-1) while the magnetization and coercive field values increase (from 3.7 to 5.5 emu∙g-1 and from 355.7 to 1225.2 Oe, respectively) with increasing CoFe2O4 content. Additionally, the films show a wide-range dual-peak ME response at room temperature with the ME coefficient increasing with increasing weight content of Terfenol-D, from 18.6 mV∙cm-1∙Oe-1 to 42.3 mV∙cm-1∙Oe-1. The anisotropic ME effect on a Fe61.6Co16.4Si10.8B11.2 (FCSB)/poly(vinylidene fluoride) (PVDF)/FCSB laminate composite has been used for the development of a magnetic field sensor able to detect both magnitude and direction of ac and dc magnetic fields. The accuracy (99% for both ac and dc sensors), linearity (92% for the dc sensor and 99% for the ac sensor), sensitivity (15 and 1400 mV∙Oe-1 for the dc and ac fields, respectively), and reproducibility (99% for both sensors) indicate the suitability of the sensor for applications. A dc magnetic field sensor based on a PVDF/Metglas composite and the corresponding readout electronic circuits for processing the output ME voltage were developed. The ME sensing composite presents an electromechanical resonance frequency close to 25.4 kHz, a linear response (r2=0.997) in the 0–2 Oe dc magnetic field range, and a maximum output voltage of 112 mV (ME voltage coefficient α33 of ≈30 V∙cm-1∙Oe-1). By incorporating a charge amplifier, an ac–rms converter and a microcontroller with an on chip analog-to-digital converter (ADC), the ME voltage response is not distorted, the linearity is maintained, and the ME output voltage increases to 3.3 V (α33effective=1000 V∙cm-1∙Oe-1). The sensing device, including the readout electronics, has a maximum drift of 0.12 Oe with an average total drift of 0.04 Oe, a sensitivity of 1.5 V∙Oe-1 (15 kV∙T-1), and a 70 nT resolution. Such properties allied to the accurate measurement of the dc magnetic field in the 0–2 Oe range makes this polymerbased device very attractive for applications, such as Earth magnetic field sensing, digital compasses, navigation, and magnetic field anomaly detectors. A dc current sensor device based on a ME PVDF/Metglas composite, a solenoid, and the corresponding electronic instrumentation were developed. The ME sample exhibits a maximum α33 of 34.48V∙cm-1∙Oe-1, a linear response (r2=0.998) and a sensitivity of 6.7 mV∙A-1. With the incorporation of a charge amplifier, a precision ac/dc converter and a microcontroller, the linearity is maintained (r2=0.997), the ME output voltage increases to a maximum of 2320 mV and the sensitivity is increased to 476.5 mV∙A-1. Such features indicate that the fabricated ME sensing device is suitable to be used in non-contact electric current measurement, motor operational status checking, and condition monitoring of rechargeable batteries, among others. In this way, polymer-based ME composites proved to be suitable for magnetic field and current sensor applications.Os sensores estão a ser cada vez mais utilizados em diversas áreas, integrados em estruturas, máquinas industriais ou projetos ambientais, contribuindo para melhorar o nível de bem-estar e eficiência da nossa sociedade. Espera-se que a “sensorização” contribua decisivamente para a quarta revolução industrial, e que permita, em conjunto com a mecanização e a informatização, uma completa automação. Em particular, os sensores magnéticos permitem medir parâmetros como a direção, presença, rotação, ângulo ou corrente, para além do campo magnético, tudo isto sem qualquer contacto físico. Assim, para a maioria das aplicações, estes sensores oferecem uma medição segura, não invasiva e não destrutiva, para além de garantirem uma tecnologia confiável e de escassa manutenção. A indústria procura e exige sensores magnéticos mais pequenos, mais baratos e de baixo consumo, daí a motivação para explorar novos materiais e diferentes tecnologias, tais como os compósitos magnetoelétricos (ME) baseados em polímeros. Estes compósitos são flexíveis, versáteis, leves, de baixo custo, fáceis de se modelar em formas complexas e tipicamente envolvem um processo de fabricação a baixa temperatura, constituindo uma solução fiável e de qualidade para os sensores magnéticos. É da constatação deste potencial que surge este estudo e o objetivo desta tese: o desenvolvimento de sensores ME de base polimérica. O efeito ME é cada vez mais considerado como uma alternativa credível para a medição de campo magnético e da intensidade da corrente elétrica, podendo detetar campos magnéticos estáticos e dinâmicos. De modo a obter uma gama mais alargada de resposta ME, produziram-se nanocompósitos de Tb0.3Dy0.7Fe1.92 (Terfenol-D)/CoFe2O4/poli(fluoreto de vinilideno trifluor-etileno) (P(VDF-TrFE) e as suas propriedades morfológicas, piezoelétricas, magnéticas e magnetoelétricas foram investigadas. Os compósitos obtidos revelam uma elevada resposta piezoelétrica (≈-18 pC∙N-1) que é independente da percentagem de cada material magnetoestrictivo. Por sua vez, as propriedades magnéticas são influenciadas pela composição dos compósitos. Verificou-se que a magnetização de saturação diminuí com o aumento da percentagem de CoFe2O4 (de 18.5 para 13.3 emu∙g-1) enquanto que a magnetização e o campo coercivo aumentam (de 3.7 para 5.5 emu∙g-1 e de 355.7 para 1225.2 Oe, respetivamente) com o aumento da percentagem em massa de CoFe2O4. O efeito ME anisotrópico num compósito Fe61.6Co16.4Si10.8B11.2 (FCSB)/ poli(fluoreto de vinilideno) (PVDF)/FCSB laminado foi utilizado para desenvolver um sensor de campo magnético capaz de detetar tanto a magnitude como a direção de campos magnéticos ac e dc. A exatidão (99% para ambos os sensores ac e dc), linearidade (92% para o sensor dc e 99% para o ac), sensibilidade (15 e 1400 mV∙Oe-1 para o sensor dc e ac, respetivamente) e reprodutibilidade (99% para ambos os sensores) indicam a aptidão destes sensores para aplicações avançadas. Desenvolveu-se ainda um sensor de campo magnético dc baseado num compósito ME de PVDF/Metglas, bem como a correspondente eletrónica de leitura para processar a tensão de saída ME. O compósito ME apresenta uma ressonância eletromecânica de aproximadamente 25.4 kHz, uma resposta linear (r2=0.997) para uma gama de campos magnéticos dc entre 0–2 Oe e uma tensão de saída máxima de 112 mV (coeficiente ME α33≈30 V∙cm-1∙Oe-1). Ao incorporar um amplificador de carga, um conversor ac–rms e um microcontrolador com um conversor analógico-digital (ADC), a tensão ME não é distorcida, a linearidade manteve-se e a tensão ME aumentou para 3.3 V (α33efectivo=1000 V∙cm-1∙Oe-1). O sensor, incluindo a eletrónica de leitura, obteve um desvio máximo de 0.12 Oe com um desvio total médio de 0.04 Oe, uma sensibilidade de 1.5 V∙Oe-1 (15 kV∙T-1) e 70 nT de resolução. Tais propriedades aliadas à medida exata do campo magnético dc entre 0–2 Oe tornam este dispositivo indicado para aplicações como sensores de campo magnético terrestre, compassos digitais, navegação e detetores de anomalia no campo magnético. Foi ainda possível desenvolver e otimizar um sensor de corrente baseado num compósito ME de PVDF/Metglas, num solenoide e na correspondente eletrónica de instrumentação. A amostra ME exibe um α33 máximo de 34.48V∙cm-1∙Oe-1, uma resposta linear (r2=0.998) e uma sensibilidade de 6.7 mV∙A-1. Com a incorporação de um amplificador de carga, um conversor ac/dc de precisão e um microcontrolador, a linearidade manteve-se, a tensão ME aumentou para um máximo de 2320 mV e a sensibilidade subiu para 476.5 mV∙A-1. Estas propriedades tornam este sensor ME apropriado para a medição de corrente elétrica sem contato, para a verificação do estado de funcionamento de motores e para monitorização da condição de baterias recarregáveis, entre outros. Concluindo-se deste modo que os compósitos de ME com base em polímeros provaram ser adequados para aplicações na medição de campos magnéticos e intensidade de corrente elétrica

    Development of Textile Antennas for Energy Harvesting

    Get PDF
    The current socio-economic developments and lifestyle trends indicate an increasing consumption of technological products and processes, powered by emergent concepts, such as Internet of Things (IoT) and smart environments, where everything is connected in a single network. For this reason, wearable technology has been addressed to make the person, mainly through his clothes, able to communicate with and be part of this technological network. Wireless communication systems are made up of several electronic components, which over the years have been miniaturized and made more flexible, such as batteries, sensors, actuators, data processing units, interconnectors and antennas. Turning these systems into wearable systems is a demanding research subject. Specifically, the development of wearable antennas has been challenging, because they are conventionally built on rigid substrates, hindering their integration into the garment. That is why, considering the flexibility and the dielectric properties of textile materials, making antennas in textile materials will allow expanding the interaction of the user with some electronic devices, by interacting through the clothes. The electronic devices may thus become less invasive and more discrete. Textile antennas combine the traditional textile materials with new technologies. They emerge as a potential interface of the human-technology-environment relationship. They are becoming an active part in the wireless communication systems, aiming applications such as tracking and navigation, mobile computing, health monitoring and others. Moreover, wearable antennas have to be thin, lightweight, of easy maintenance, robust, and of low cost for mass production and commercialization. In this way, planar antennas, the microstrip patch type, have been proposed for garment applications, because this type of antenna presents all these characteristics, and are also adaptable to any surface. Such antennas are usually formed by assembling conductive (patch and ground plane) and dielectric (substrate) layers. Furthermore, the microstrip patch antennas, radiate perpendicularly to a ground plane, which shields the antenna radiation, ensuring that the human body is exposed only to a very small fraction of the radiation. To develop this type of antenna, the knowledge of the properties of textile materials is crucial as well as the knowledge of the manufacturing techniques for connecting the layers with glue, seam, adhesive sheets and others. Several properties of the materials influence the behaviour of the antenna. For instance, the bandwidth and the efficiency of a planar antenna are mainly determined by the permittivity and the thickness of the substrate. The use of textiles in wearable antennas requires thus the characterization of their properties. Specific electrical conductive textiles are available on the market and have been successfully used. Ordinary textile fabrics have been used as substrates. In general, textiles present a very low dielectric constant, εr, that reduces the surface wave losses and increases the impedance bandwidth of the antenna. However, textile materials are constantly exchanging water molecules with the surroundings, which affects their electromagnetic properties. In addition, textile fabrics are porous, anisotropic and compressible materials whose thickness and density might change with low pressures. Therefore, it is important to know how these characteristics influence the behaviour of the antenna in order to minimize unwanted effects. To explain some influences of the textile material on the performance of the wearable antennas, this PhD Thesis starts presenting a survey of the key points for the design and development of textile antennas, from the choice of the textile materials to the framing of the antenna. An analysis of the textile materials that have been used is also presented. Further, manufacturing techniques of the textile antennas are described. The accurate characterization of textile materials to use as a dielectric substrate in wearable systems is fundamental. However, little information can be found on the electromagnetic properties of the regular textiles. Woven, knits and nonwovens are inhomogeneous, highly porous, compressible and easily influenced by the environmental hygrometric conditions, making their electromagnetic characterization difficult. Despite there are no standard methods, several authors have been adapting techniques for the dielectric characterization of textiles. This PhD Thesis focuses on the dielectric characterization of the textile materials, surveying the resonant and non-resonant methods that have been proposed to characterize the textile and leather materials. Also, this PhD Thesis summarizes the characterization of textile materials made through these methods, which were validated by testing antennas that performed well. Further a Resonant-Based Experimental Technique is presented. This new method is based on the theory of resonance-perturbation, extracting the permittivity and loss tangent values based on the shifts caused by the introduction of a superstrate on the patch of a microstrip antenna. The results obtained using this method have shown that when positioning the roughest face of the material under test (MUT) in contact with the resonator board, the extracted dielectric constant value is lower than the one extracted with this face positioned upside-down. Based on this observation, superficial properties of textiles were investigated and their influence on the performance of antennas was analysed. Thus, this PhD Thesis relates the results of the dielectric characterization to some structural parameters of textiles, such as surface roughness, superficial and bulk porosities. The results show that both roughness and superficial porosity of the samples influence the measurements, through the positioning of the probes. Further, the influence of the positioning of the dielectric material on the performance of textile microstrip antennas was analysed. For this, twelve prototypes of microstrip patch antennas were developed and tested. The results show that, despite the differences obtained on the characterization when placing the face or reverse-sides of the MUT in contact with the resonator board, the obtained average result of εr is well suited to design antennas ensuring a good performance. According to the European Commission Report in 2009, “Internet of Things — An action plan for Europe”, in the next years, the IoT will be able to improve the quality of life, especially in the health monitoring field. In the Wireless Body Sensor Network (WBSN) context, the integration of textile antennas for energy harvesting into smart clothing is a particularly interesting solution for a continuous wirelessly feed of the devices. Indeed, in the context of wearable devices the replacement of batteries is not easy to practice. A specific goal of this PhD Thesis is thus to describe the concept of the energy harvesting and then presents a survey of textile antennas for RF energy harvesting. Further, a dual-band printed monopole textile antenna for electromagnetic energy harvesting, operating at GSM 900 and DCS 1800 bands, is also proposed. The antenna aims to harvest energy to feed sensor nodes of a wearable health monitoring system. The gains of the antenna are around 1.8 dBi and 2.06 dBi allied with a radiation efficiency of 82% and 77.6% for the lowest and highest frequency bands, respectively. To understand and improve the performance of the proposed printed monopole textile antenna, several manufacturing techniques are tested through preliminary tests, to identify promising techniques and to discard inefficient ones, such as the gluing technique. Then, the influence of several parameters of the manufacturing techniques on the performance of the antenna are analysed, such as the use of steam during lamination, the type of adhesive sheet, the orientation of the conductive elements and others. For this, seven prototypes of the printed monopole textile antenna were manufactured by laminating and embroidering techniques. The measurement of the electrical surface resistance, Rs, has shown that the presence of the adhesive sheet used on the laminating process may reduce the conductivity of the conductive materials. Despite that, when measuring the return loss of printed monopole antennas produced by lamination, the results show the antennas have a good performance. The results also show that the orientation of the conductive fabric does not influence the performance of the antennas. However, when testing embroidered antennas, the results show that the direction and number of the stitches in the embroidery may influence the performance of the antenna and should thus be considered during manufacturing. The textile antennas perform well and their results support and give rise to the new concept of a continuous substrate to improve the integration of textile antennas into clothing, in a more comfortable and pleasure way. A demonstrating prototype, the E-Caption: Smart and Sustainable Coat, is thus presented. In this prototype of smart coat, the printed antenna is fully integrated, as its dielectric is the textile material composing the coat itself. The E-Caption illustrates the innovative concept of textile antennas that can be manipulated as simple emblems. The results obtained testing the antenna before and after its integration into cloth, show that the integration does not affect the behaviour of the antenna. Even on the presence of the human body the antenna is able to cover the proposed resonance frequencies (GSM 900 and DCS 1800 bands) with the radiation pattern still being omnidirectional. At last, the exponential growth in the wearable market boost the industrialization process of manufacturing textile antennas. As this research shows, the patch of the antennas can be easily and efficiently cut, embroidered or screen printed by industrial machines. However, the conception of a good industrial substrate that meets all the mechanical and electromagnetic requirements of textile antennas is still a challenge. Following the continuous substrate concept presented and demonstrated through the E-Caption, a new concept is proposed: the continuous Substrate Integrating the Ground Plane (SIGP). The SIGP is a novel textile material that integrates the dielectric substrate and the conductive ground plane in a single material, eliminating one laminating process. Three SIGP, that are weft knitted spacer fabrics having one conductive face, were developed in partnership with the Borgstena Textile Portugal Lda, creating synergy between research in the academy and industry. The results of testing the performance of the SIGP materials show that the integration of the ground plane on the substrate changes the dielectric constant of the material, as a consequence of varying the thickness. Despite this, after the accurate dielectric and electrical characterization, the SIGP I material has shown a good performance as dielectric substrate of a microstrip patch antenna for RF energy harvesting. This result is very promising for boosting the industrial fabrication of microstrip patch textile antennas and their mass production and dissemination into the IoT network, guiding future developments of smart clothing and wearables.Os atuais desenvolvimentos socioeconómicos e tendências de estilo de vida apontam para um crescimento do consumo de produtos e processos tecnológicos, impulsionado por conceitos emergentes como a Internet das Coisas, onde tudo tudo está conectado em uma única rede. Por esta razão, as tecnologias usáveis (wearable) estão a afirmar-se propondo soluções que tornam o utilizador possivelmente através das suas roupas, capaz de comunicar com e fazer parte desta rede. Os sistemas de comunicações sem fios são constituídos por diversos componentes eletrónicos, que com o passar dos anos foram sendo miniaturizados e fabricados em materiais flexíveis, tais como as baterias, os sensores, as unidades de processamento de dados, as interconexões e as antenas. Tornar os sistemas de comunicações sem fios em sistemas usáveis requer trabalho de investigação exigente. Nomeadamente, o desenvolvimento de antenas usáveis tem sido um desafio, devido às antenas serem tradicionalmente desenvolvidas em substratos rígidos, que dificultam a sua integração no vestuário. Dessa forma, considerando a flexibilidade e as propriedades dielétricas dos materiais têxteis, as antenas têxteis trazem a promessa de permitir a interacção dos utilizadores com os dispositivos eletrónicos através da roupa, tornando os dispositivos menos invasivos e mais discretos. As antenas têxteis combinam os materiais têxteis tradicionais com novas tecnologias e emergem assim como uma potencial interface de fronteira entre seres humanos-tecnologias-ambientes. Expandindo assim a interação entre o utilizador e os dispositivos eletrónicos ao recurso do vestuário. Assim, através das antenas têxteis, o vestuário torna-se uma parte ativa nos sistemas de comunicação sem fios, visando aplicações como rastreamento e navegação, computação móvel, monitorização de saúde, entre outros. Para isto, as antenas para vestir devem ser finas, leves, de fácil manutenção, robustas e de baixo custo para produção em massa e comercialização. Desta forma, as antenas planares do tipo patch microstrip têm sido propostas para aplicações em vestuário, pois apresentam todas estas características e também são adaptáveis a qualquer superfície. Estas antenas são geralmente formadas pela sobreposição de camadas condutoras (elemento radiante e plano de massa) e dielétricas (substrato). Além disso, as antenas patch microstrip irradiam perpendicularmente ao plano de massa, que bloqueia a radiação da antena, garantindo que o corpo humano é exposto apenas a uma fração muito pequena da radiação. Para desenvolver este tipo de antena, é crucial conhecer as propriedades dos materiais têxteis, bem como as técnicas de fabricação para conectar as camadas, com cola, costuras, folhas adesivas, entre outros. Diversas propriedades dos materiais influenciam o comportamento da antena. Por exemplo, a permitividade e a espessura do substrato determinam a largura de banda e a eficiência de uma antena planar. O uso de têxteis em antenas usáveis requer assim uma caracterização precisa das suas propriedades. Os têxteis condutores elétricos são materiais específicos que estão disponíveis comercialmente em diversas formas e têm sido utilizados com sucesso para fabricar o elemento radiante e o plano de massa das antenas. Para fabricar o substrato dielétrico têm sido utilizados materiais têxteis convencionais. Geralmente, os materiais têxteis apresentam uma constante dielétrica (εr) muito baixa, o que reduz as perdas de ondas superficiais e aumenta a largura de banda da antena. No entanto, os materiais têxteis estão constantemente a trocar moléculas de água com o ambiente em que estão inseridos, o que afeta as suas propriedades eletromagnéticas. Além disso, os tecidos e os outros materiais têxteis planares são materiais porosos, anisotrópicos e compressíveis, cuja espessura e densidade variam sob muito baixas pressões. Portanto, é importante saber como estas grandezas e características estruturais influenciam o comportamento da antena, de forma a minimizar os efeitos indesejáveis. Para explicar algumas das influências do material têxtil no desempenho das antenas usáveis, esta Tese de Doutoramento começa por fazer o estado da arte sobre os pontos-chave para o desenvolvimento de antenas têxteis, desde a escolha dos materiais têxteis até ao processo de fabrico da antena. Além disso, a tese identifica e apresenta uma análise dos materiais têxteis e técnicas de fabricação que têm sido utilizados e referidos na literatura. A caracterização rigorosa dos materiais têxteis para usar como substrato dielétrico em sistemas usáveis é fundamental. No entanto, pouca informação existe sobre a caracterização das propriedades eletromagnéticas dos têxteis vulgares. Como já referido, os tecidos, malhas e não-tecidos são materiais heterogéneos, altamente porosos, compressíveis e facilmente influenciados pelas condições higrométricas ambientais, dificultando a sua caracterização eletromagnética. Não havendo nenhum método padrão, vários autores têm vindo a adaptar algumas técnicas para a caracterização dielétrica dos materiais têxteis. Esta Tese de Doutoramento foca a caracterização dielétrica dos materiais têxteis, revendo os métodos ressonantes e não ressonantes que foram propostos para caracterizar os materiais têxteis e o couro. Além disso, esta Tese de Doutoramento resume a caracterização de dieléctricos têxteis feita através dos métodos revistos e que foi validada testando antenas que apresentaram um bom desempenho. No seguimento da revisão, apresenta-se uma Técnica Experimental Baseada em Ressonância. Esta nova técnica baseia-se na teoria da perturbação de ressonância, sendo a permitividade e tangente de perda extraídas com base nas mudanças de frequência causadas pela introdução de um superstrato no elemento radiante de uma antena patch microstrip. Os resultados de caracterização obtidos através deste método revelam que, ao posicionar a face mais rugosa do material em teste em contato com a placa de ressonância, o valor da constante dielétrica extraída é inferior ao valor extraído quando esta face é colocada ao contrário. Com base nesta observação, as propriedades estruturais da superfície dos materiais têxteis foram investigadas e a sua influência no desempenho das antenas foi analisada. Assim, esta Tese de Doutoramento relaciona os resultados da caracterização dielétrica com alguns parâmetros estruturais dos materiais, como rugosidade da superfície, porosidades superficial e total. Os resultados mostram que tanto a rugosidade como a porosidade superficial das amostras influenciam os resultados, que dependem assim do posicionamento do material que está a ser testado. Também foi analisada a influência do posicionamento do material dielétrico na performance das antenas têxteis tipo patch microstrip. Para isso, foram desenvolvidos e testados doze protótipos de antenas patch microstrip. Os resultados mostram que, apesar das diferenças observadas durante o processo de caracterização, o valor médio da permitividade é adequado para a modelação das antenas, garantindo um bom desempenho. De acordo com o relatório da Comissão Europeia, “Internet das Coisas - Um plano de ação para a Europa”, emitido em 2009, nos próximos anos a Internet das Coisas poderá melhorar a qualidade de vida das pessoas, nomeadamente pela monitorização da saúde. No contexto das Redes de Sensores Sem Fios do Corpo Humano, a integração de antenas têxteis para recolha de energia em roupas inteligentes é uma solução particularmente interessante, pois permite uma alimentação sem fios e contínua dos dispositivos. De fato, nos dispositivos usáveis a substituição de baterias não é fácil de praticar. Um dos objetivos específicos desta Tese de Doutoramento é, portanto, descrever o conceito de recolha de energia e apresentar o estado da arte sobre antenas têxteis para recolha de energia proveniente da Rádio Frequência (RF). Nesta tese, é também proposta uma antena impressa do tipo monopolo de dupla banda, fabricada em substrato têxtil, para recolha de energia eletromagnética, operando nas bandas GSM 900 e DCS 1800. A antena visa recolher energia para alimentar os nós de sensores de um sistema usável para monitorização da saúde. Os ganhos da antena apresentada foram cerca de 1.8 dBi e 2.06 dBi, aliados a uma eficiência de radiação de 82% e 77.6% para as faixas de frequência mais baixa e alta, respetivamente. Para entender e melhorar o desempenho da antena impressa tipo monopolo de dupla banda em substrato têxtil, várias técnicas de fabrico foram testadas através de testes preliminares, de forma a identificar as técnicas promissoras e a descartar as ineficientes, como é o caso da técnica de colagem. De seguida, analisou-se a influência de vários parâmetros das técnicas de fabrico sobre o desempenho da antena, como o uso de vapor durante a laminação, o tipo de folha adesiva, a orientação dos elementos irradiantes e outros. Para isto, sete protótipos da antena têxtil monopolar impressa foram fabricados por técnicas de laminação e bordado. As medições da resistência elétrica superficial, Rs, mostrou que a presença da folha adesiva usada no processo de laminagem pode reduzir a condutividade dos materiais condutores. Apesar disso, ao medir o S11 das antenas impressas tipo monopolo produzidas por laminagem, os resultados mostram que as antenas têm uma boa adaptação da impedância. Os resultados também mostram que a orientação do tecido condutor, neste caso um tafetá, não influencia o desempenho das antenas. No entanto, ao testar antenas bordadas, os resultados mostram que a direção e o número de pontos no bordado podem influenciar o desempenho da antena e, portanto, estas são características que devem ser consideradas durante a fabricação. De um modo geral, as antenas têxteis funcionam bem e seus resultados suportam e dão origem ao um novo conceito de substrato contínuo para melhorar a integração de antenas têxteis no vestuário, de maneira mais confortável e elegante. A tese apresenta um protótipo demonstrador deste conceito, o E-Caption: A Smart and Sustainable Coat. Neste protótipo de casaco inteligente, a antena impressa está totalmente integrada, pois o seu substrato dielétrico é o próprio mat

    A Flexible Design Space Exploration Platform for Wireless Sensor Networks

    Get PDF
    My dissertation presents a flexible design space exploration platform for wireless sensor networks and an extensible design flow. The conceived platform enables the fast creation and evaluation of custom sensor node hard- and software architectures without developing custom hardware. One important feature of my platform is that it allows the evaluation of the computational- and communication domain of a sensor node in respect to power consumption
    corecore