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Abstract 

 

This project is an investigation into a possible fault detection system for SWER (single 

wire earth return) electrical distribution networks in Victoria that focuses on types of 

faults that are undetectable by conventional protection systems and have the ability to 

ignite fires. The paper considers why a new detection system is required and then how it 

could be practically implemented in a general sense. More detailed investigations then 

focus on communications, power harvesting and fault detection considerations.  

The devices are proposed to be distributed across SWER networks to enact a detection 

system. The paper focuses on the many conflicting requirements and subsequent 

compromises that any eventual design will need to overcome.  It is found that electric 

field power harvesting from the Victorian SWER lines’ 12.7kV conductor can produce 

power outputs within the range required by standalone detection devices given fairly 

severe design constraints. Summaries and conclusions are drawn to a level where the 

project develops a clear methodology to go forward.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



iv 
 

 

University of Southern Queensland 

Faculty of Health, Engineering and Sciences 

 

ENG4111 & ENG4112 Research Project 

Limitations of Use 

 

The Council of the University of Southern Queensland, its Faculty of Health, Engineering 

and Science, and the staff of the University of Southern Queensland, do not accept any 

responsibility for the truth, accuracy or completeness of material contained within or 

associated with this dissertation.  

 

Persons using all or any part of this material do so at their own risk, and not at the risk 

of the Council of the University of Southern Queensland, its Faculty of Health, 

Engineering and Sciences, or the staff of the University of Southern Queensland.  

 

This dissertation reports an educational exercise and has no purpose or validity beyond 

this exercise. The sole purpose of the course pair entitles ‘Research Project’ is to 

contribute to the overall education within the student’s chosen degree program. This 

document, the associated hardware, software, drawings, and any other material set out in 

the associated appendices should not be used for any other purpose; if they are so used, it 

is entirely at the risk of the user.  

 

 

 

 

 

 



v 
 

Certification 

 

 

 

I certify that the ideas, designs and experimental work, results, analyse 

conclusions set out in this dissertation are entirely my own effort, except 

otherwise indicated and acknowledged. 

 

I further certify that the work is original and has not been previously submit 

assessment in any other course or institution, except where specifically stated 

 

 

 

Benjamin Stephens 

 

Student Number: 0061052083 

 

 

 

 

 

 

 

 

 



vi 
 

Acknowledgements  

 

 

Thanks are due to Andreas Helwig for supervision, guidance and inspiration and 

Catherine Hills for supervision and ‘special comments’ throughout the project. 

To my Dad for his major assistance with the experiment set up and providing an adequate 

table tennis opponent during study breaks. 

To my Mum for allowing us to experiment with 240V equipment, but more importantly 

being a never ending source of support and encouragement.  

To Jarden for providing the first line of defence against the real world whilst studies were 

in progress and bankrolling the project and the broader bachelor degree even when purse 

strings were very tight – I can’t promise it was a good investment. 

To Jamie for dragging me into all this University mess and helping me see it through. 

To Coach for the constant reminder that sitting at the computer all day displeases him. 

And to my immediate family as a whole, who have supported me through ongoing illness 

and some very dark times. I know I have been grumpy and sometimes insufferable but 

you put up with it and rarely let me know how much of a pain I was being. I intend on 

repaying the favour one day. 

 

Thanks all, 

 

Ben 

 

 

 

 

 



viii 
 

Contents 

Abstract ............................................................................................................................. iii 

Certification ........................................................................................................................ v 

Acknowledgements ........................................................................................................... vi 

List of Figures ................................................................................................................... xii 

List of Tables ................................................................................................................... xiv 

1 Introduction ................................................................................................................. 1 

1.1 Electricity Caused Bushfires ............................................................................... 1 

1.2 Project Aims ........................................................................................................ 2 

1.3 Justification: The Victorian Bushfire Royal Commission .................................. 2 

1.3.1  Single Wire Earth Return (SWER) protection problems ........................... 3 

1.3.2  Costs of SWER upgrades ............................................................................ 3 

1.3.3  New approaches to SWER protection and control ...................................... 4 

1.3.4 A Network of Detection Devices ................................................................ 5 

1.3.5 Victoria SWER line networks ..................................................................... 5 

1.3.6 Quoted SWER Characteristics .................................................................... 6 

2 Literature Reviews ...................................................................................................... 7 

2.1 Energy Harvesting ............................................................................................... 7 

2.1.1 Introduction and Scope ............................................................................... 7 

2.1.2 Magnetic Induction ..................................................................................... 7 

2.1.3 Electric Field ............................................................................................. 10 

2.1.4 Piezoelectric .............................................................................................. 17 

2.2 Communications ............................................................................................... 17 

2.2.1 Introduction and Scope .................................................................................... 17 

2.2.2 Device Deployment locations and range limitation .................................. 18 

2.2.3 Base Station/Gateway Deployment Locations .......................................... 19 

2.2.4 Data Traffic Requirements ........................................................................ 19 

2.2.5 Reliability .................................................................................................. 19 

2.2.6 Wireless sensor networks .......................................................................... 21 



ix 
 

2.2.7 Physical Layer ........................................................................................... 22 

2.2.8 Data – Link Layer ..................................................................................... 25 

2.2.9 Network Layer .......................................................................................... 27 

2.2.10 Transport and Application Layers ............................................................. 27 

2.2.11 Mesh Networks ......................................................................................... 28 

2.2.12 Hybrid Topologies .................................................................................... 29 

2.2.13 Wireless Mesh Networks .......................................................................... 29 

2.2.14 Range and radio propagation .................................................................... 31 

2.2.15 Long Range Wireless Sensor Networks .................................................... 33 

2.2.16 Security ..................................................................................................... 33 

2.2.17 Power line communications (PLC) ........................................................... 34 

2.3 Fault Detection .................................................................................................. 34 

2.3.1 Existing Fault Protection ........................................................................... 34 

2.3.2 High Impedance Earth Faults and Arcing ................................................. 35 

2.3.3 Network device mapping .......................................................................... 37 

2.4 Summary ........................................................................................................... 37 

3 Methodology for Energy Harvesting ........................................................................ 39 

3.1 Introduction and Scope ..................................................................................... 39 

3.2 Electrostatic Energy Harvesting Experiment .................................................... 40 

3.2.1 Experiment Aims ...................................................................................... 40 

3.2.2 Simulation Model ...................................................................................... 40 

3.2.3 Simulation Scenarios and Results ............................................................. 43 

3.2.4 Final Designs ............................................................................................. 46 

3.2.5 Lab Experiment ......................................................................................... 47 

4 Fault Detection and Mapping Development ............................................................. 55 

4.1 Introduction ....................................................................................................... 55 

4.2 Fault Detection .................................................................................................. 55 

4.2.1 Arc Detection ............................................................................................ 56 

4.2.2 Logical Open-Conductor Approach .......................................................... 57 



x 
 

4.2.3 Nodal Analysis Approach ......................................................................... 59 

4.3 Mapping ............................................................................................................ 61 

4.4  Contribution to Device Power Consumption .................................................... 62 

4.4.1 Sensing and Peripheral Circuitry............................................................... 62 

4.4.2  Processing ................................................................................................. 63 

4.4.3 GPS ........................................................................................................... 64 

4.5 Fault and Protection Systems Integration.......................................................... 64 

5 Communications System Specification ..................................................................... 66 

5.1 Introduction ....................................................................................................... 66 

5.1.1  A Word on Security .................................................................................. 66 

5.1.2 Presentation of Simultaneous Requirements ............................................. 67 

5.2 Communications Specification Discussion ....................................................... 68 

5.2.1 Hardware and Modulation ......................................................................... 68 

5.2.2 Medium Access Control ............................................................................ 68 

5.3 Power Consumption Calculation ....................................................................... 72 

6 Results and Discussion .............................................................................................. 74 

6.1 Chapter Overview ............................................................................................. 74 

6.2 Energy Harvesting Experiment Results ............................................................ 74 

6.2.1 System Capacitance Anomalies ................................................................ 74 

6.2.2 Energy Harvester with Transformer Results ............................................. 77 

6.2.3  Main 240V Experiment Results ................................................................ 78 

6.2.4 Model Performance Discussion ................................................................ 81 

6.2.5 Extrapolation to 12.7kV SWER ................................................................ 81 

6.3 Power Budget .................................................................................................... 88 

6.4  Costing Estimates .............................................................................................. 89 

7 Conclusions ............................................................................................................... 90 

7.1 Chapter Overview ............................................................................................. 90 

7.2 Achievement of Project Objectives ................................................................... 90 

7.3 Shortcomings and Possible Improvements ....................................................... 91 



xi 
 

7.4 Further Work ..................................................................................................... 92 

8  References ................................................................................................................. 93 

Appendices ...................................................................................................................... 100 

Appendix A – Project Specification ............................................................................ 100 

Appendix B – Quoted SWER Characteristics ............................................................. 101 

Appendix C – Project Phase Breakdown .................................................................... 104 

Appendix D – Matlab Electrostatic Harvester Model ................................................. 105 

Appendix E – Simulation Input Parameters and Output Figures ................................ 108 

Appendix F – 240V Experiment Output Results ........................................................ 117 

 

  



xii 
 

List of Figures 

Figure 1.1 – Victorian SWER example (Helwig 2015).......................................................6 

Figure 2.1 – Magnetic Induction equivalent tuned circuit using Brooks coil (Tashiro et al 
2011)................................................................................................................................8 

Figure 2.2 – Cylindrical electrode enclosing conductor (Keutel et al 2012).....................11 

Figure 2.3 – Capacitive Divider (Keutel et al 2012)..........................................................11 

Figure 2.4 – Capacitive System with load (Zhao et al 2012).............................................12 

Figure 2.5 – Simulated Power Output for Electric Field Harvester with varying load 
impedance..........................................................................................................................14 

Figure 2.6 – Simulated Harvester Voltage for Electric Field harvesting with varying load 
impedance..........................................................................................................................15 

Figure 2.7 – Range and redundancy limit – two consecutive node failures in a straight line 
resulting in a broken partial mesh......................................................................................20 

Figure 2.8 – Adaption of the OSI layer system for wireless sensors (Akyildiz et al 
2002)..................................................................................................................................22 

Figure 2.9 – Mesh Topology (Cecilio & Furtado 2014)....................................................28 

Figure 3.1 – Electrostatic energy harvester schematic (adaption of circuit design by Zangl 
2009)..................................................................................................................................41 

Figure 3.2 – Equivalent AC reactances encountered by the harvester...............................41 

Figure 3.3 – Thevenin equivalent DC resistances as seen by the storage capacitor..........42 

Figure 3.4A – Normal simulation – Zangl parameters......................................................44 

Figure 3.4B – Low cut-off voltage using maximum slope for charging only simulation – 
Zangl parameters................................................................................................................44 

Figure 3.5A – Normal simulation – Zhao parameters........................................................44 

Figure 3.5B – Low cut-off voltage using maximum slope for charging only simulation – 
Zhao parameters.................................................................................................................44 

Figure 3.6A – Normal simulation – 12.7kV SWER..........................................................45 

Figure 3.6B – Low cut-off voltage using maximum slope for charging only simulation – 
12.7kV SWER....................................................................................................................45 

Figure 3.7A – Normal simulation – 240V Mains..............................................................45 



xiii 
 

Figure 3.7B – Low cut-off voltage using maximum slope for charging only simulation – 
240V Mains........................................................................................................................45 

Figure 3.8 – Initial Circuit – Step down transformer included (circuit adapted from Zangl 
2009)..................................................................................................................................46 

Figure 3.9 – Second Circuit – Step down transformer removed (circuit adapted from 
Zangl 2009)........................................................................................................................46 

Figure 3.10 – Electric field energy harvesting experiment apparatus................................48 

Figure 3.11 – Electrical field energy harvesting experiment close-up including 
transformer.........................................................................................................................48 

Figure 3.12 – Electrical field energy harvesting experiment close-up of charging 
circuit..................................................................................................................................48 

Figure 3.13 – Transformer with high magnetising inductance used in initial charging 
circuit..................................................................................................................................49 

Figure 3.14 – Equivalent test circuits to determine system capacitances present..............50 

Figure 3.15 – Output from 240V harvester circuit simulation with transformer (circuit 
adapted from Zangl 2009)..................................................................................................51 

Figure 3.16 – Output from 240V harvester simulation with transformer omitted (circuit 
adapted from Zangl 2009)..................................................................................................53 

Figure 4.1 – Depiction of conductor break & response from downstream devices...........57 

Figure 4.2 – Depiction of nodal analysis implementation.................................................59 

Figure 4.3 – Schneider Electric W Series Remote Control ACR & associated control 
cabinets (Schneider Electric 2012).....................................................................................64 

Figure 4.4 – Typical Recloser – Sectionaliser deployment (Electrical Engineering 
Community 2016)..............................................................................................................64 

Figure 5.1 – Multiple hops between nodes causing TDMA delays (Djukic 2011).......69 

Figure 5.2 – Cluster of nodes and their respective ‘conflicts graph’ (Djukic 2011)..........69 

Figure 6.1 – Method of images to determine shunt capacitance for single wire system 
(Glover & Sarma 1994)......................................................................................................75 

Figure 6.2 – Actual charging waveforms vs. simulated waveforms from 240V scenario 
experiment..........................................................................................................................77 

Figure 6.3 – Drop off of peak to peak source current feeding harvester circuit from 240V 
simulation from experimental parameters..........................................................................79 

Figure 6.4 – 12.7kV SWER simulation #1........................................................................82 

Figure 6.5 – 12.7kV SWER simulation #1 average power output....................................83 

Figure 6.6 – 12.7kV SWER simulation #2........................................................................84 

Figure 6.7 – 12.7kV SWER simulation #2 average power output.....................................85 



xiv 
 

List of Tables 

Table 1.1 – Relative Costs to Upgrade Victorian SWER Networks (Parsons Brinckerhoff 
2009)....................................................................................................................................4 

Table 2.1 – Assorted RF chips with their power consumption attributes (Sourced from 
respective company datasheets).........................................................................................23 

Table 2.2 – Mesh Protocols Examples...............................................................................30 

Table 2.3 – Summary of Technologies Reviewed.............................................................38 

Table 3.1 – Simulated Power Outputs (parameters gleaned from Zangl 2009 & Zhao 2012 

experiment & put through Stephens 2016 simulation model)...........................................43 

Table 5.1 – Presentation of Wireless Communications Simultaneous Requirements.......66 

Table 6.1 – Initial experiments with step down transformer included, with & without 
Digital Multimeter (ZIN = 9.16Ohm)................................................................................77 

Table 6.2 – Estimated device power consumption breakdown..........................................86 

Table 6.3 – Cost breakdown estimates for total Victorian SWER networks.....................87 

 

 

 

 

 

 

 

 

 

 

 

 

 



xv 
 

 

Nomenclature and acronyms 

ACR   Automatic Circuit Recloser 

ADC   Analogue to Digital Converter 

CDMA   Code Division Medium Access 

CSMA/CA  Carrier Sense Multiple Access with Collision Avoidance 

DMM   Digital Multi Meter 

EIRP   Equivalent Isotropically Radiated Power 

FDMA   Frequency Division Multiple Access 

FSK   Frequency Shift Keying 

HIF   High Impedance Fault 

ISM   Industrial Scientific and Medical bands 

MAC   Medium Access Control 

OCR   Oil filled Circuit Recloser 

OFDM   Orthogonal Frequency Division Multiplexing 

OOK   On Off Keying 

QoS   Quality of Service 

RMS   Root Mean Squared 

SCADA  System Control and Data Aquisition 

SNR   Signal to Noise Ratio 

SWER   Single Wire Earth Return  

TDMA   Time Domain Medium Access 

WMN   Wireless Mesh Network 

WSN   Wireless Sensor Network 



 
 

1 Introduction 

 

  

1.1 Electricity Caused Bushfires 

The majority of bushfires in the Australian landscape are an unavoidable natural 

phenomenon. Their ferocity and level of destruction is governed by the amount of fuel 

present and the prevailing weather conditions. Given the right circumstances, catastrophic 

scenarios can occur such as when long, out of control fire fronts pass over inhabited 

areas. 

This scenario has eventuated on a number of occasions throughout Australia’s history, 

with “Ash Wednesday”, “Black Friday” and more recently, “Black Saturday” being 

added to Australian vernacular.  On Black Saturday, 7th February 2009, 173 people were 

reported to have lost their lives (ABC 2009). 119 of those were lost to the Kilmore East 

fire, which was ignited from a power pole fault (RVB 2010). This fact supports the 

opinion that more should be done to prevent avoidable ‘man made’ fire ignitions; 

especially ones developing form public infrastructure where risks such as this should be 

properly mitigated. 

The electrical infrastructure starting the Kilmore East fire was not of the ‘SWER’ type of 

distribution that is the focus of this project; however, the risk that SWER lines pose was 

demonstrated by the ignition of the Coleraine bushfire, also on Black Saturday (RVB 

2010).  
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1.2 Project Aims 

 

The main aim of the project is: 

To investigate the possibility of developing a robust and low cost sensitive fault 

detection and communications device for the existing Victorian SWER (single wire earth 

return) line network. 

 

Objectives that support the main aim are: 

• To design a simple, reliable energy harvesting system that provides power to all 

device functions. 

• To specify a meshed communications system that can support all alarm and 

condition monitoring data traffic. 

• To design a logical based fault detection system that compares nodes condition 

monitoring data to identify faults not detectable by conventional methods.    

• To specify the system and the individual device to a level where evaluation may 

be undertaken.   

 

 

1.3 Justification: The Victorian Bushfire Royal Commission 

The 2009 Victorian Bushfire Royal Commission was undertaken as a result of the fallout 

from the Black Saturday bushfires. The Commission’s report, along with other related 

reports, has identified the particular problem of SWER powerlines with regards to their 

inability to de-energise under every fault scenario. The commission deemed this extra risk 

as unacceptable, and as such included in recommendation number 27 that all SWER lines 

be progressively replaced with other technologies that significantly reduce the bushfire 

risk.  
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1.3.1  Single Wire Earth Return (SWER) protection problems 

Single Wire Earth Return (SWER) powerlines account for close to 32% - or 28,000km – 

of Victoria’s distribution network, and are comprised of a single exposed conductor 

suspended over relatively long spans (Holland 2013). The SWER network is based 

mainly in rural and remote areas; a significant proportion of which is prone to bushfires.  

An inherent problem with SWER powerlines is the inability to detect, and thus protect 

against, sensitive earth faults. The return path for the flow of electricity occurs through 

the earth instead of a dedicated earth conductor as is the case with conventional multiple 

conductor powerlines. As a result the earth current flow is difficult to monitor, and so the 

ability to distinguish between current flowing through a normal load and that of a fault 

situation becomes more difficult (RVB 2010). Evidence at the Royal Commission was 

given by Mr Kim Griffith (State Electricity Commission of Victoria and past CEO of 

Ergon Energy) (RVB 2010) that inferred that SWER was 90 percent less effective than 

conventional distribution systems at detecting HIFs (High Impedance Faults) due to the 

return path being through the ground.  

Clearly if live conductors remain live after a fault such as a wire break or vegetation 

coming into contact with the conductor, then the possibility of fire ignition is significantly 

increased. 

 

 

1.3.2  Costs of SWER upgrades  

A Recommendation of the Commission was for all Victorian SWER lines to be removed 

and replaced with safer alternatives (RVB 2010). The financial cost of installing these 

alternatives is in the many billions of dollars (Table 1.1), with the safest of technologies – 

underground cables – being the most expensive (Parsons Brinckerhoff 2009).  
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Table 1.1 – Relative costs to upgrade Victorian SWER networks (adaption from report by 
Parsons Brinckerhoff 2009) 

Option Description Cost per Km Total  (28,000 km) 

SWER  

(concrete poles) 

Replacing like for like. Included 

here reference purposes. 

$32,244 $902,832,000 

CCT Covered Conductor  

(Insulated SWER) 

$70,448 $1,960,000,000 

ABC 

 

Aerial Bundled Cable  

(Three Phase Insulated) 

$126,759 $3,549,252,000 

Underground Three Phase direct buried into the 

ground 

$168,240 $4,710,720,000 

 

 

The Victorian Government has acknowledged these recommendations but has yet to 

commit to a blanket replacement of SWER lines, opting instead to target the most 

dangerous power lines and to introduce new protection strategies and technologies 

(Citipower 2012) 

 

 

1.3.3  New approaches to SWER protection and control 

A report generated by the ‘National Workshop on rural electricity network options to 

reduce bushfire risk’, held by The Nous Group (2010), presents some differing views to 

the Commission in identifying ways of mitigating the risk of fire ignitions from SWER 

networks. The workshop report proposed that the application of new technologies to 

existing rural distribution systems could effectively mitigate the need for blanket 

replacements. Specifically the ability to detect HIFs and to dynamically adjust protection 

characteristics to account for periods of increased fire risk was highlighted. These 

enhanced abilities were proposed to be realised from modern automatic circuit reclosers 

and other digital remote control systems that incorporated radio based communications. 

The opportunities were said to have been part of ongoing investigations by stakeholders 

already and it is the intention of this project to follow a similar line of thinking. 
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1.3.4 A Network of Detection Devices 

Proposed is the deployment of a network of reliable, low cost, communicating, ‘self 

powering’ devices spanning entire SWER networks, with the ability to detect and report 

upon electrical faults that may occur anywhere on the network. The devices are ‘self 

powered’ in that the energy required by the device is harvested from the energised SWER 

conductor. The inter device communication scheme could employ ‘meshing’ techniques, 

which provide greater levels of reliability. Finally, the fault detection function could 

detect wire break faults and other types of high impedance faults through the use of logic, 

using real-time Voltage and Current data from the devices.     

The information from the device network could be fed into gateways or base stations that 

interface with existing control networks or protection equipment, Holland (2013), noted 

that where automatic reclosers are positioned provide convenient locations for  new 

remote control or SCADA type systems to reside. This was in reference to remote data 

collection and other systems but the premise that new systems attempting to interface 

with SWER networks would be located here is applicable.   

 

 

1.3.5 Victoria SWER line networks 

Below is an example of a Victorian SWER line topology (Figure 1.1); depicted is a 

network being fed by a 100kVA isolation transformer to the left of the page. The black 

dots are positions indicating that there is a fork in the branch/trunk, or a 240V customer 

transformer is connected, and are likely the positions of strainer type power poles (they 

are supporting a change in direction for the power line which is under considerable 

tension). Not depicted are the suspension type poles that are generally there to support 

conductor spans continuing in the same direction. Average span lengths for SWER are 

205m, according to a Parsons Brinckerhoff (2009) report, and so we would expect to see 

in the range of 1-3 suspension power poles placed between the strainer poles (black dots) 

on this map. 
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Figure 1.1 – Victorian SWER example (Helwig 2015) 

 

 

1.3.6 Quoted SWER Characteristics  

Appendix B – ‘Quoted SWER Characteristics’ contains relevant quoted values and 

figures for SWER line characteristics and their respective sources, used in this report.   
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2 Literature Reviews 

 

2.1 Energy Harvesting  

 

2.1.1 Introduction and Scope 

A literature review was conducted to help find methods to best extract the energy from 

the electromagnetic field surrounding energised conductors. Methods more likely to 

achieve desired results or meet certain critical requirements were given more attention.  

The material presented reflects this mentality by following an ‘investigative’ approach 

rather than a more traditional ‘survey of technologies’ type approach. 

The power requirements of the proposed device will be one of the most critical factors of 

the design; however the size, weight and shape of any energy harvesting apparatuses will 

also need to dominate a critical review of the available technologies.  

Solar PV (photo voltaic) and wind harvesting technologies have not been considered for 

this project due to the variability of the energy sources and the burdensome mechanical 

requirements that would be placed upon the device.  

To make judgements upon the suitability of various energy harvesting techniques, an 

initial investigation into the likely approximate minimum power levels was conducted. 

The proposed device will likely have a number of functions that consume power. To 

obtain a ‘ballpark’ figure, this project focuses on the main areas expected to consume the 

vast majority of the power budget, such as communications and processing. For the 

purposes described, the required power budget is assumed to be a continuous 10mW.  

 

 

2.1.2 Magnetic Induction 

Magnetic induction harvesting techniques involve coupling the magnetic field that axially 

encircles the conductor when a current flows through it. A conductor within the changing 

magnetic field such as a ‘Brooks coil’, proposed by Tashiro et al (2011), will attempt to 

create its own field that opposes the change. An associated voltage will develop across 
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the coil terminals and a current is produced, assuming a load is placed across the 

terminals. The system can be thought of as a current transformer, where the primary 

winding is the conductor, and the secondary winding is the coil placed within the field. 

The 50Hz AC current induced in the secondary can then be converted to DC via an AC to 

DC rectifier circuit, and then converted to the desired voltage using a DC to DC 

switching converter (Roscoe et al 2009). The output power produced is proportional to 

the amount of current flow in the conductor and is independent of the voltage level.  

Tashiro et al (2011) proposes a ‘Brooks coil’ be used for the harvesting secondary coil 

due to the relative simplicity in obtaining specific inductance values, which are used to 

achieve resonance in what can be thought of as a tuned circuit; a capacitor is also added 

for this purpose. The equivalent series tuned circuit is shown in Figure 2.1.  

 

 

 

Figure 2.1 – Magnetic Induction equivalent tuned circuit using Brooks coil (Tashiro et al 
2011) 
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It is explained by Tashiro et al (2011) that the induced voltage Vin can be calculated using 

a formula based on Faraday’s law of induction and Thevenin’s theorem (eqn 2.1). 

 

 ��� = 2���	
�� 

 

(2.1) 

 

 

Where f (Hz) is the frequency, n and a2 are the number of turns and the mean radius of 

the Brooks coil respectively, and B is the mean flux density orthogonal to the cross 

sectional area.  

Power output can then be estimated using equation 2.2. 

 

 � = ������  

 

(2.2) 

 

Where VOut  is the voltage across the load resistance RL. For a given uniform magnetic 

field with flux density B = 21.2 µT (micro Tesla), Tashiro et al (2010) was able to achieve 

6.23mW of output power.   

To relate and estimate the magnetic field’s flux density to the current flowing through the 

wire we can use the formula that assumes an infinitely long wire equation 2.3. 

 

 � = ���2�� 

 

(2.3) 

 

Where I is the current in the wire and r is radial distance from the wire. According to 

equation (2.3) to obtain the 21.2 µT required for 6.23mW output, a harvester located at 

50cm from the conductor would need to have approximately 53A flowing through it.  

If power consumption for every 12.7kW SWER customer was assumed to be 1kW (rather 

optimistic) this would equate to a continuous AC current of approximately 79mA from 

each customer. In reality, the current flowing through any particular part of the network is 
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determined by the summation of current drawn downstream, thus to obtain 6.23mW we 

would need approximately 671 customers downstream of a magnetic field harvester!   

Another option proposed by Roscoe et al (2009) is to enclose the conductor with the 

secondary coil. Power output figures obtained from various different coils enclosing a 

conductor carrying 1A of current ranged from 0.06mW to 1.1mW. This limitation would 

still require many customers to be downstream of the device if it is to be provided with 

adequate power while noting that SWER networks only service between 10 to 50 

customers each in total (Nous Group 2010). ‘Threading’ the power line conductor with 

the harvester also presents a problem but semi-enclosed ‘clip on’ devices have been 

proposed and warrant further investigation.  

 

 

2.1.2.1  Summary 

The relatively low and non-uniform current flowing through rural SWER lines is not 

expected to achieve the required power budget via magnetic field harvesting by any 

practical means.  It is worth noting, however, that a current transformer may be needed in 

the proposed device for condition monitoring purposes, as opposed to power supply 

purposes, and as such could possibly be dual purpose. 

 

 

2.1.3 Electric Field  

Two conductors, such as a power line enclosed in a cylindrical electrode (Figure 2.2), will 

have a capacitance between them as described by equation 2.4. A second effective 

capacitance occurs between the electrode and the ground, as depicted in Figures 2.3 and 

2.4.  This system approximates a capacitive voltage divider between the conductor, the 

electrode and the ground as shown by the equivalent circuit (figure 2.3) and underpins the 

proposed works of Zhao et al (2012).   
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Figure 2.2 – Cylindrical electrode enclosing conductor (Keutel et al 2012) 

 

 

 

Figure 2.3 – Capacitive Divider (Keutel et al 2012) 

 

 

The capacitance between the conductor and the cylindrical electrode can be approximated 

using the formula for capacitance per unit length of a coaxial system (Zhao et al 2012). 

 

 ��� = 2������
ln ����� 	

 

 

(2.4) 

 

Where εr is the dielectric strength between the wire and electrode, l is the length of the 

harvester and r1 and r2 are the radii of the wire and cylinder respectively. 
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 	The capacitance between the cylinder and ground can be approximated using the formula 

below (Zhao et al 2012). 

 

 ��" = 2����
cosh'� �ℎ�� 	

 

 

(2.5) 

 

Where h is the height above ground in meters. 

The radial electric field associated with an energised wire conductor will result in a 

voltage difference across the plates according the capacitive voltage divider equation 

below. 

 ��� = �)*	( ��"��" +	���) 
 

(2.6) 

 

To extract the energy stored in the harvester capacitance  ��� , a load will need to be 

applied across it as shown in Figure 2.4 (Zhao 2012). 

 

 

 

Figure 2.4 – Capacitive System with load (Zhao et al 2012) 
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Finding the voltage across the load requires the use of a general impedance voltage 

divider as shown below (Zhao et al 2012). 

 

 

��� = �)*	(
.�1 + 01���.�.�1 + 01���.� +

101��"
) 

 

(2.7) 

 

Substituting (2.4) and ( 2.5) into (2.7) gives the equation (2.8) below (Zhao et al 2012). 

 

 ��� = �)*	( 01.�2����	ln	(���1)
ln ����1 cosh'� �h�� + 01.�2����	[ln ����1 + ��cosh'� �h�� ]

) 

 

(2.8) 

 

Real power dissipated in the load can be expressed as the following. 

 

 � = |���|�.�  

 

(2.9) 

 

Equations (2.8) and (2.9) were used by Zhao et al (2012) to estimate power outputs for 

various chosen parameters and by varying power line voltages and load resistances and 

simulating with Matlab. Power line voltages did not include the voltage of interest here 

(Victorian SWER 12.7kV) and so a similar exercise has been completed with the results 

shown below in Figure 2.5. Parameters were chosen to approximate the situation of a 

cylindrical harvester (length 30cm, radius 5cm, εr = 1) enclosing a SCGZ type conductor 

(radius 5mm) at a height of 7m energised to 12.7kV. 
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Figure 2.5 – Simulated Power Output for Electric Field Harvester with varying load 
impedance (Stephens 2016) 

 

 

The topology described can be thought of as a voltage source (Vac), with very high 

source impedance effectively created from the very small capacitance to ground (CEG 

equates to hundreds of MOhms at 50Hz). The simulation clearly shows a very high load 

impedance is required to obtain maximum power output which is expected. In this case 

the maximum power transfer occurs at approximately 300 MOhms. The voltage across 

the harvester capacitance will approach 1800V for a 300 MOhm load (as shown in Figure 

2.6) and thus power conditioning will be need to be considered carefully given the fairly 

extreme parameters. 
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Figure 2.6 – Simulated Harvester Voltage for Electric Field harvesting with varying load 
impedance (Stephens 2016) 

 

 

Rectification, impedance matching, voltage sensing, transforming and over voltage 

protection will need to occur in the subsequent circuitry before a load or battery can be 

connected. 

 

 

2.1.3.1  Power Conditioning 

To obtain a load impedance approaching that which is required, along with a useable 

voltage level, a voltage transformer may be utilised (Zangl et al 2009). A turns ratio of 

120 in this case will yield 15Vac at the secondary, along with presenting the capacitive 

voltage divider system with 300MOhm load if an approximately 21kOhm load is applied 

to the secondary, which is much more reasonable. 

A method of accomplishing a static load is to utilise a shunt regulator (Zangl et al 2009). 

This will effectively cause the harvester voltage (Vout) to be clamped to a specific voltage, 

as determined by the shunt regulator applied to the transformer’s secondary winding. 

Diode rectification may also be applied here.   
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High frequency Switching Converter topology methods have been proposed (Keutel et al 

2012) but the added complexities involved in the required passive start-up and control 

circuits are not likely to be considered practical or reliable enough for this purpose.  

Power conditioning for this technique is more involved due to compromises that need to 

be made between impedance matching of the load and source, and efficiency of circuits 

required to do so (Keutel et al 2012). 

 

 

2.1.3.2  Power pole mounted devices 

No research had been found that considers an electric field harvesting device that is not 

directly connected to the energised conductor. Considering the meagre power outputs 

estimated to be derived from electrodes effectively enclosing the conductor and thus 

cutting a large proportion of field lines, it is not expected that plates further removed from 

the conductor will yield useable results.         

An electric field device that is not necessarily mounted on the actual conductor was 

proposed by Moghe et al (2009) in their comparison of energy harvesting techniques for 

power systems. The core of the device is a pair of rectangular plates acting as electrodes 

with one plate electrically connected to the power line conductor. The result is effectively 

another capacitive voltage divider but with CWE and CEG calculated according to 

equations (2.10) and (2.11).   

   

   

 ��� = ������ ℎ  

 

(2.10) 

 ��" = 2����
ln �2�ℎ�  	 

 

(2.11) 
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2.1.3.3  Summary 

Essentially the electric field option for energy harvesting looks to be the most promising 

avenue for success to reliably and in every case fulfil the proposed device’s energy 

budget. Like the case for magnetic induction energy harvesting, the harvester circuit itself 

should be considered as a convenient location to ‘tap off’ conductor signals for condition 

monitoring. A circuit function that provides periodic sampling along with a low voltage 

alarm/indicator is a likely scenario.         

 

 

2.1.4 Piezoelectric 

Significant research has recently gone into converting an alternating magnetic field to an 

electrical voltage via a vibrating piezoelectric cantilever, also known as magneto-electric 

conversion (Han et al 2015). Although power outputs are promising, the inherent 

mechanical vibration of such a device raises questions as to its life span and reliability. 

Typically these types of energy harvesting devices are more suited to micro sensors 

within industrial environments requiring small distances to transmit their data. Thus, 

power budgets required will likely be much smaller (10’s of micro Watts) and unlikely to 

suit this project (Cantatore & Ouwerkerk 2006).  

 

 

2.2 Communications 

 

2.2.1 Introduction and Scope 

To identify the areas of research that are relevant to the deployment of possible 

communications systems in the environment described in the section below. It is 

important to remember the aim of this project is to specify – but not fully design – the 

communications system. 

In the wireless realm especially, the depth and breadth of communications research is 

very large. The field has branched out significantly, resulting in current research being 

more narrowly focused on sub-fields and specific applications. Broad, all-encompassing 
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‘survey of technology’ type articles such as the works from Akyildiz et al (2002) in ‘A 

survey on Sensor Networks’ are instructive, but cannot provide practical modern advice 

on wireless sensor network design due to the progression of technology since they were 

published.  

Therefore, the approach taken was to seek out sources that may cover some of the 

relevant characteristics of this project’s requirements. The characteristics, owing to their 

relatively demanding requirements, were seen to be the following: 

• Range 

• Power Consumption 

• Reliability 

 

These represent three critical design requirements, and the material presented in this 
chapter reflects that mentality.  

A system of networked devices deployed on or near most power poles within one or more 

SWER line networks gives rise to specific requirements, options and limitations in 

regards to proposed communication schemes.  

 

 

2.2.2 Device Deployment locations and range limitation 

SWER suspension poles present possible convenient locations from which to deploy 

devices, either directly on the pole or clipped on to the adjacent conductor itself. 

Maximum spans between poles are quoted to be 380m for both ASCR/AC and SC/GZ 

conductor types (Parsons Brinckerhoff 2009) and even up to 1000m for special cases 

(Nous Group 2010).  The extreme case of the 1000 meter span gives us our absolute 

minimum for device communications range; although this provides no redundancy should 

that link fail.  

 

 

 



2. Literature Reviews   
19 

 

2.2.3 Base Station/Gateway Deployment Locations 

Network isolation transformers that feed the circuit or automatic circuit reclosers (ACRs) 

that provide over current protection, may be convenient places to deploy a base station 

(communications gateway). The base station inter-connects with other utility 

communications systems such as wireless SCADA (supervisory control and data 

acquisition), WiMAX (Worldwide Interoperabilty of Wireless Access) or simply 

interfaces with the existing protection devices which will need to have remote control 

enabled. The base station will require much greater processing and communications 

capabilities and thus will need to be powered differently from the standard devices.  

 

 

2.2.4 Data Traffic Requirements 

The system requires a means to communicate urgent real-time fault detection warnings 

(event driven) as well as low priority periodic condition monitoring data (storage and 

forward). Both require information traffic to reach the base station in order for the 

information to be forwarded to their destinations. Both have very different requirements 

in terms of Quality of Service (QoS).  Due to the information needing to be forwarded via 

multiple nodes, ‘multi-hop’ techniques must be used. 

If periodic data is to be forwarded to the base station from all nodes (many to one) from 

the radially structured network, then it is clear that nodes closer to the base station will 

see more data throughput than others due the accumulation of forwarded data from the 

outlying nodes. Intuitively, these areas will define the minimum bandwidth requirements. 

Another consideration will be the ability of the base station to send out messages for 

control, updates or possibly synchronisation messages to any or all nodes (one to many).   

 

 

2.2.5 Reliability 

It is important that the protection system of an electrical distribution network is highly 

reliable and robust. Communications presents as a possible weak link in a protection 

system, thus any communications network design must account for this.  
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Proposed is a system where reliability is enacted both through redundancy (inherent to 

mesh topology) and robust node design. Unfortunately, the area for the mesh to cover is 

large, and thus sensor density will be very low.  The idea is that every node can 

communicate with no less than two nodes further upstream and two downstream, which 

effectively constitutes an ‘N plus 1’ redundancy scheme. This severely diminishes the 

mesh’s ability to cover sensor loss such as is expected in a small scale, high density 

scheme (Akyildiz & Wang 2005) where many multiple paths are possible. It is therefore a 

requirement that the proposed devices themselves are sufficiently robust. 

 

 

 

Figure 2.7 – Range and redundancy limit – two consecutive node failures in a straight line 
resulting in a broken partial mesh (Stephens 2016) 

 

 

Figure 2.7 shows a theoretical straight line of wireless nodes with the ideal circular 

ranges of nodes B and E depicted. Any traffic either direction would only halt if both C 

and D drop out, as there is at least two paths present. Other alternative possibilities 

include using devices within range, deployed on other nearby power line strings or spurs 

to provide additional redundant paths; however, this cannot be relied upon.   

Wired solutions are generally immune to this type of problem, but are impractical in this 

application given the installation costs. Power Line Communication (PLC) however, 

utilises the existing conductor and will be considered as an option. Given that powerlines 

are designed for power transmission and not data transmission, it would be likely that 
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communications transmitted along the conductor would require repeating. PLC can 

indeed be ‘meshed’ these days, according to Maxim Integrated (2012), which would 

effectively solve reliability problems with conventional PLC topologies.  This being the 

case, then approaching the reliability problem with the above redundancy idea (inherent 

with mesh) is again relevant for PLC. 

To enact a methodology like the one described requires each node to have at least double 

the range of the maximum span. Estimating this figure becomes more difficult for 

wireless sensors as terrain and other path loss mechanisms become a factor. Line of sight 

is basically guaranteed between consecutive poles, but for poles further away obstacles 

such as hills and vegetation will come into play. 

 

 

2.2.6 Wireless sensor networks 

Wireless sensor networks (WSNs) are a name given to a network of low power 

communicating devices. The functions of the devices (otherwise termed ‘nodes’) include: 

• Communications 

• Sensors / Actuators 

• Processing 

• Power Management  

 

Figure 2.8 below is an adaption of the OSI network layer model presented by (Akyildiz et 

al 2002) which helps depict the extra ‘parallel’ layers that need to be considered for WSN 

design for all the regular layers. The model is not absolute, but provides a useful base for 

which to break down the node and network functions. 
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Figure 2.8 – Adaption of the OSI layer system for wireless sensors (Akyildiz et al 2002) 

 

 

2.2.7 Physical Layer 

This layer describes how transceivers transmit and receive emissions over the physical 

medium. Areas such as frequency selection, modulation techniques, spread spectrum 

techniques, and radio hardware are generally included here.  

The proposed device has certain requirements that will likely require an in-depth analysis 

of this layer to achieve certain characteristics mainly to do with output power, sensitivity 

and power consumption during its different states (transmitting, receiving and idle).    

 

 

2.2.7.1 RF Hardware 

Modern WSN hardware technology is at a level where many components – transceiver, 

Processor, ADCs (analogue to digital converters) – can be found on single SoCs (system 

on chip) (Popovici et al 2013). Recently these modules have adapted the title ‘mote’, after 

the initial module called the Mica-Mote was designed by a group at University of 
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California, Berkley (Willis 2007). Willis (2007) performs an extensive review of many of 

the available motes on offer. 

Due to the lack of range of existing motes, the design will likely need to select individual 

chips and combine to create a new type of mote that will serve the purpose, as has been 

achieved by Willis & Kikkert (2006) 

Several transceivers, receivers, and RF Amplifier modules were compared for their power 

consumption information to help estimate power budget requirements for the 

communications module (Table 2.1).  

 

 

Table 2.1 – Assorted RF chips with their power consumption attributes (Sourced from 
respective company datasheets) 

Power Figures of Commercial RF Modules Examples 

Manufacturer Model/Type Max 

Output 

(dBm) 

Sensitivity 

(dbm) 

Consumption 

Rx (mW) Tx (mW) Idle (uW) 

Silicon Labs Si4355 

Receiver 

N/A -116 18 -  

HOPE RF 

Electronic 

RF65W 

Receiver 

N/A -120 28.8 - 1.8 

Chipcon CC1000 

Transceiver 

10 -108 24.8 56 4.2 

Texas 

Instruments 

TRF37C73 RF 

Amplifier 

18dB 

(GAIN) 

N/A - 182 413 

Microchip MRF89XAM9 

Transceiver 

10 -105 6.3 52.5 136 

 

 

2.2.7.2  Frequency Selection 

Industrial Scientific and Medical (ISM) bands are frequency bands used across the world 

for many and various applications that generally do not involve telecommunications and 

broadcasting. These are generally unlicensed bands throughout the spectrum and are 

defined for Australia by the Australian Communications and Media Authority (ACMA 
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2008). The ISM bands are not completely uniform across the world but include the 

following in Australia:   

1. 6.780 MHz 

2. 13.56 MHz 

3. 27.12 MHz 

4. 40.68 MHz 

5. 915 MHz 

6. 2.45 GHz 

7. 5.8 GHz 

8. 24.125 GHz 

9. 61.25 GHz 

10. 122.5 GHz 

11. 245 GHz 

 

Generally for regular far-field (wavelength smaller than distance) radio propagation 

requires antenna lengths with at least one quarter of the wavelength. As the frequency 

decreases the antennae size increases. Also as frequency increases, the signal loss 

associated with free space (FSPL) increases according to (eqn 2.12) 

 

 56�7 = (4�9)�
:�  

 

 

(2.12) 

The ACMA (2008), through Australian legislation, also define the bandwidths and 

allowable emission power levels for particular bands and also the type of emissions 

(analogue modulation, digital modulation and frequency hopping methods etc). For the 

40.68Mhz band the allowable EIRP (Equivalent Isotropically Radiated Power) is 1W for 

all transmitters, and in 915MHz is 1W for digitally modulated and frequency hopping 

transmitters and only 3mW for all others. 
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2.2.7.3  Modulation 

Generally transceivers in wireless sensor nodes support simple modulation techniques 

such as on-off keying (OOK), frequency shift keying (FSK) and certain types of phase 

shift keying (PSK) (Willis 2007). The limitation here is the power required to enact more 

complex modulation – or even spread spectrum techniques – is not available. The higher 

data rates or higher channel efficiencies born from more elaborate modulations 

techniques such as 64-QAM are not required for most WSN cases, including for this 

project.  

It is also noted that certain types of modulation that ‘pass through the origin’ are not 

appropriate for the Class ‘C’ type amplifiers used to provide efficient gain for the RF 

motes (Willis 2007). 

 

 

2.2.7.4  RF power conserving hardware 

Magno et al (2014) noted that in VLSI design it is widely accepted that asynchronous 

systems consume less power than synchronous systems. This idea is analogous to the 

mentality behind the design of a low power Wake Up Radio Receiver (WuR) which 

listens for specific asynchronous ‘beacon’ signals  (using similar to OOK  modulation) to 

tell the module to ‘wake up’. The WuR module has the power to switch on other modules 

such as the transmitter or processor with extra low ‘power gating’ circuitry. The obvious 

advantage here is that the device can be listening in a low power state for long periods, 

saving energy. Unfortunately the WuRs exhibit relatively poor sensitivity an attribute also 

noted by (Ammar et al 2015). Surprisingly the power saving advantage offered by WuR 

is almost completely offset by the effective loss of receiving range especially if low level 

modulation techniques such FSK or OOK are already in use for regular communications.  

 

 

2.2.8 Data – Link Layer 

This layer defines how the physical layer is used (Medium Access Control, MAC) and 

thus will be very important in determining the energy consumption of the wireless 

communication. Traditional MAC protocols are not considered useful for WSNs because 
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they do not take into account energy conservation (Ullah & Kwak 2010). Also, protocols 

designs for WSNs are taking an ‘information centric’ rather than ‘communication centric’ 

approach to MAC and routing protocol design as it places more emphasis on the 

efficiency of communications (Popovici et al 2013).  

The field of Wireless Body Area Networks (WBAN) is an area where power consumption 

is foremost in the mind of protocol designers, and as such may offer insight for other 

power sensitive applications of WSNs such as this one. A ‘traffic adaptive’ MAC 

protocol (TaMAC) is proposed by Ullah & Kwak (2010), which is intended to use 

beaconing or ‘wake up’ signals to prompt nodes to switch from a low power listening 

state to full power ‘on’ state.   

Ullah & Kwak (2010) also recognised the problem that ‘aggregate’ type sensor networks 

have when many nodes detect the same event. A common event will cause many nodes to 

transmit at the same time, competing for the same medium and creating contention issues. 

Ullah & Kwak (2010) suggests that, from this viewpoint, contention-based protocols 

(such as CSMA) will be unsuitable for WBANs and may be similar for this project due to 

the scenario where a wire break fault will cause all downstream nodes to try and transmit 

the fault indication at the same time. 

A distributed version of Time Division Multiple Access (TDMA) called SMACS (Self 

Organising Medium Access Control for Sensor Networks) is also considered useful for 

WSNs (Akyildiz et al 2002). TDMA is a synchronous method of nodes accessing the 

medium, upon which time slots are assigned. The duty cycle of which may be alterable to 

such an extent that power may be significantly conserved. This method will incur greater 

transmission delays (latency) however especially for ‘round trip’ traffic where the node 

delays will become accumulative.  

FDMA (Frequency Division Multiple Access) is considered to require a hardware 

complexity that is too great to install on small low power motes (Willis 2007). Other 

hybrid approaches, including applications of CDMA (Coded Division Medium Access), 

require further investigating. 

An analogous approach to Srbinovski et al (2015) energy aware adaptive sampling could 

be implemented in possible new TDMA based MAC designs and possibly exist already. 

The idea here is that input from energy harvesting function is fed to a dynamic MAC 

protocol, which can alter the duty cycle among other things that generally govern the 

transceiver activity.  
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2.2.9 Network Layer 

The Network Layer is primarily concerned with routing methods and protocols. Routing 

for this project is unlikely to be a critical factor given the low data rates and lack of 

alternate routes to choose from. There are many routing protocols that are applicable to 

WSNs, and it is noted that some algorithms have been developed to be energy conscious 

in terms of routing (Willis 2007 & Akyildiz et al 2002). 

This layer does however present opportunities to augment medium access control 

protocols such as TDMA so that methods may be introduced to decrease over all round 

trip propagation delays such as ‘Spatial Re-Use’ where simultaneous transmissions can 

occur between pairs of nodes that do not conflict (not within range of each other) (Djukic 

& Valaee 2007).  

Implementation of security arrangements are also expected to occur at this level where 

authentication (ability to discern who the transmitter is) being the primary goal.  

 

 

2.2.10 Transport and Application Layers 

These layers are not considered layers that warrant extensive research in WSNs just yet, 

likely due to the amount of variations in the lower layers. 

For this project, the application layer will represent the area where an onboard alarm 

detection algorithm interacts with alarm indication transmissions etc. Also SWER 

network node mapping – identification, location coordinates and possible integration of a 

GPS module – could occur as defined by this region, rather than as a function of the main 

program. 
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2.2.11 Mesh Networks 

 

 

Figure 2.9 – Mesh Topology (Cecilio & Furtado 2014) 

 

 

Mesh networks attempt in various methods to ensure every node can communicate with 

any other nodes within its range. A core function of mesh networks is to be aware of 

multiple paths between source and destinations, and to enact a path change when linking 

nodes drop out (Cecilio & Furtado 2014). Essentially, the system becomes ‘self 

organising’ and ‘self healing’ to some extent, and the number of paths are only limited by 

the number of nodes that can ‘see’ each other (Figure 2.9). This topology will be the only 

topology considered in this project. 

 

 



2. Literature Reviews   
29 

 

2.2.12 Hybrid Topologies 

Topologies that make use of more than one type to create a network are called hybrid 

topologies. Mesh and star topologies have been combined to take advantages of each – 

e.g. self healing of mesh, and simplicity of the star. The idea of a Wireless Mesh Network 

(WMN) having gateways to an infrastructure backbone is described as one type of WMN 

by Akyildiz and Wang (2005), and could be argued to be a hybrid topology just across 

different technologies.   

As any two SWER networks will unlikely be similar, it is expected by the author that to 

apply hybrid topologies to all different SWER networks would be too difficult and time 

consuming to be practical.  An infrastructure backbone would likely require a wired 

communications link that spanned the entire network; again, this is clearly not practical.   

 

 

2.2.13 Wireless Mesh Networks 

Wireless Mesh Networks (WMNs) is an ongoing research area in itself. It represents a 

dynamic system whereby where nodes can join and leave with peer to peer links made 

and broken automatically (Akyildiz et al 2005). It can also be thought of as a group of 

wireless routers operating in ad-hoc mode, with dedicated Medium Access Control and 

Routing Protocols to enact the mesh network.  

Akyildiz and Wang (2005) points out Industry standards groups IEEE802.11, 

IEEE802.15 and IEEE802.16 have all contributed to WMN research and protocol 

standards design (Table 2.2). The research continues to attract a lot of attention, with 

many different MAC and routing protocols being designed for an expanding number of 

WMN applications.    
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Table 2.2 – Mesh Protocols Examples  

Protocol Families Contributing to Mesh Systems 

Industry Standard 

Group 

Network Classification Familiar Protocol families 

associated with these standards 

IEEE 802.11 Local Area Networks, 

Medium Area Networks  

Wi-Fi 

IEEE 802.15 Wireless Personal Area Networks Bluetooth, Zigbee 

IEEE 802.16 Wireless Medium Area Networks WiMAX 

 

 

Vast differences in network requirements and deployments of WMNs have led to many 

approaches to design and implementation. It was suggested by Parth & Dutta (2011) that 

a ‘joint design approach’ is likely required for WMN designers, who are invariably 

attempting to deal with multiple competing attributes such as: performance, band width, 

latency, jitter, reliability, power consumption, range, mobility, and quality of service. A 

regular problem is that existing protocols will satisfy some but not all of their criteria, 

making appropriate selections difficult. 

Wireless Sensor Networks operating in a mesh topology constitute a sub set of WMNs 

and are afflicted by the same intractable design problems. Unfortunately these can be 

augmented further as Wireless Sensor Networks WSNs is a research area in itself and 

does not necessarily infer a mesh topology.  

Some families of Protocols that are applicable to modern Wireless Mesh Sensor 

Networks were identified by Alcaraz and Lopez (2010)  

• Wireless HART HCF 

• 802.15.4 

• 802.15.5 

• Zigbee Pro 

• ISA 100.11a 
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IEEE 802.16 standards (such as WiMax) seem more appropriate to a wider area mesh 

network due to the greater independence of nodes to operate without a dedicated 

backbone network as is the case with the proposed system. WiMax itself is a subscription 

based system with much higher power and complexity requirements and is not 

recommended for this application. 

 

 

2.2.14 Range and radio propagation 

According to the Friis transmission equation (eqns 2.13 & 2.14) the power at a receiver 

distance ‘d’ from a transmitter is obtained for ideal (free space) emissions (Grini 2006). 

 

 �� = ��:�;�;�16��9�  

 

(2.13) 

 

Where Pt  and Pr are the transmitted and received power figures, Gt and Gr are the 

respective gains for isotropic radiated type (non directional) antennas and λ is the 

wavelength. For use with figures in log ratios equation 2.14 can be used. 

 

 �� = �� +	;� +	;� + 20 log ? :
4�@ − 20log	(9) 

 

(2.14) 

 

This equation is useful with radio and antenna design to estimate the minimum link 

budget (Pt - Pr ) required to achieve a required range. In general the figure obtained will be 

much lower than is actually needed due to a number of factors contributing to path loss 

not being accounted for in this equation. 
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A rule of thumb to help designers include path loss proffered by Chipcon and Texas 

Instruments in various application notes and states (Grini 2006): 

• 120db link budget is needed at 433Mhz to achieve 2000m 

• Plus 6db doubles this distance 

• Double the frequency – half the range  

 

This is basically adding approximately 28dB to the link budget figure obtained in 

equation 2.14 to account for any number of real world circumstances. This will be useful 

for ‘ball park’ type calculations, but further analysis would be required if more accurate 

modelling is needed and environmental conditions are known.  

Effects contributing to path loss can be caused by terrain, obstacles, reflections (multiple 

paths), refraction (atmosphere and curved earth effects), diffractions (radiation scatter by 

obstacles) and antenna heights (Willis 2007). BER (bit error rate) and transceiver noise 

figures also need to be taken into account when attempting to define a maximum range.  

For the situation involving devices deployed at or near the top of consecutive 12 meter 

high power poles having line of sight with each other, the problem of modelling the radio 

propagation should not be a strenuous one. The main effects will be attributed to by the 

vegetation either side of the cleared power line route, and the ground itself. Possible 

solutions to model this situation could utilise The Two Ray model for line of sight 

conditions and the Plane-Earth model for low lying antennas (Willis 2007). 

For devices deployed on non consecutive power poles it is likely vegetation and non line 

of sight problems will be encountered. According to McLarnon (2005), a forest will cause 

0.4dB/m at 3GHz, 0.1dB/m at 1GHz and 0.05dB/m at 200Mhz and using these figures 

some measure of degradation to the link budget could be immediately obtained.  

As ranges usually less than 1Km it will be unlikely that more than one or two hills or 

valleys will separate transmitter and receiver, and thus it may be adequate to use 

diffraction loss formulas based on single obstacles found on the path. The Dougherty and 

Malony formula can be used for rounded obstacles or the Fresnel Integral for knife edge 

obstructions. Alternatively more complete computer models such as ITM (Irregular 

Terrain Model) or the PTP (Point to Point model) to give a more general view of 

expected field strengths in the area after providing a range of environmental parameters to 

the computer program (Willis 2007). 
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2.2.15 Long Range Wireless Sensor Networks 

Some research has gone into long range wireless sensor networks including (Willis 2007) 

from James Cook University whose main objective was to ‘investigate what changes are 

required to existing wireless sensor nodes to allow long-range communications’.   

Willis (2007) project addresses the need for long range wireless networks (LRWSN) in 

large areas of land that are commonly encountered in the Australian landscape. The study 

briefly surveys the existing wireless sensor protocols and technologies currently 

available, and then discusses and develops appropriate radio propagation models for 

various applications.  

A hardware prototype was designed for use in the 40MHz ISM band. The device was 

called the JCUmote and was developed from the adaption of existing device called the 

Mica2.  CSMA/CA and MintRoute were used as the data-link and network layers 

respectively and the sensor processor was installed with the TinyOS operating system 

which is effectively a cut down version of Linux.  

The test was reported largely successful in demonstrating an operational Wireless sensor 

network over long range in a variety of landscapes. The sensor nodes deployed had 

ranges over 10Km, but were not subjected to the same power and antenna constraints as 

this project nor was the network completely ‘meshed’. 

 

 

2.2.16 Security 

Powerlines are important infrastructure providing an essential service to the public. By its 

nature, a wireless system is more prone to interference from third parties than that of 

wired alternative due to the medium of transmission being open to anyone within range. 

Ad-hoc type networks are inherently more difficult again to enact security due to the high 

constraints it places upon sensor node hardware (Alcaraz & Lopez 2010). Alcaraz and 

Lopez (2010) provide a security analysis upon Wireless Mesh Sensor Networks.   

Security of wireless mesh communications systems is an area of research that is ongoing 

and not at all mature nor does a consensus agree on how to approach it. For this reason it 

will be considered out of scope for this paper, but by no means can it be left out of any 
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design considerations and will indeed need to be designed into the system from the 

ground up.   

2.2.17 Power line communications (PLC) 

Recent advances in Power line communication resulting in new protocol ‘G3-PLC’ by 

Maxim Integrated being developed, are opening up the possibility for the relatively old 

technology to be ‘meshed’ (Maxim Integrated, 2012). G3-PLC uses orthogonal frequency 

division multiplexing (OFDM) with enhanced error correcting facilities to enable data 

rates fast enough – quoted up to 300kbps – to contend with the amount of ‘message 

forwarding’ and ‘two way communication’ that occurs with meshed networks.  

It was noted by Kikkert and Reid (2009) in a report on PLC and BPL (Broadband over 

Powerlines) that SWER lines in particular were not suitable for BPL applications due to 

the SWER line’s transmission characteristics being unable to support frequencies up into 

the MHz region. PLC (which used up to 200kHz) was deemed to be OK for SWER but 

the report predates the release of G3-PLC. Data on the G3-PLC MAX2992 transceiver 

from Maxim Integrated indicates an operating frequency of 10Hz to 490kHz. Gay et al 

(2009) considered condition monitoring using PLC for SWER to be feasible and noted 

that PLC frequencies can reach up to 500kHz plus, inadvertently lending support to the 

notion that G3-PLC will work on SWER.  

The technology is mainly focussed on meter reading applications but may be applicable 

for this project given that the proposed devices may well need to be deployed directly on 

to the conductor. Power consumption may be prohibitively high however (possibly into 

hundreds of mW) to be used with the proposed energy harvesting options.     

 

 

2.3 Fault Detection 

 

2.3.1 Existing Fault Protection 

Protection schemes for the Victorian SWER lines typically used Oil filled Circuit 

Reclosers (OCRs) situated at points that essentially divide the individual SWER line 

networks into protected sections. The OCRs are manually set, i.e. with no remote 

communications, and can be adjusted to open the circuit once a specific over-current 
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condition is exceeded (Holmes 2011). The reclose setting can be adjusted – also manually 

set – to set the number of and timing of reclose attempts. 

ACRs have the ability to be set remotely and provide similar functionality to OCRs but 

provide for greater sensitivity and faster response times (Holmes 2011). They can utilise 

SCADA systems to remotely reprogram the devices, and this presents a possible avenue 

for interface with future technologies. 

Some variants of new generation ACRs utilise the IEC 61850 communications 

protocol/standard, providing an even greater possibility of integration for this project. 

 

 

2.3.2 High Impedance Earth Faults and Arcing 

When an energised conductor contacts an object that is in contact with the ground, the 

object provides a path for the current to flow to earth. The object will have a certain 

resistance or impedance that restricts that flow. A tree branch or other low conducting 

materials will have high impedance and thus the fault current may not be enough to trip 

any over current protection present on the line. This scenario is generally what is deemed 

to be a high impedance earth fault.  

Upon the conductor first striking the high impedance object, arcing will often result. 

Often the strike will not be ‘clean’ and many strikes will occur, causing multiple arcs. 

Even when the conductor and object has physically settled, the contact between the two is 

often not adequate enough to pass electricity without some arcing between them.  

The arcing can identify itself as a high frequency voltage ‘spike’ or RF transient on the 

conductor, and could be detected for a certain length down the line depending upon the 

magnitude before intrinsic characteristics of the line, i.e. line inductance, start to filter it 

out. The nature of the poor connection between the conductor and grounded object gives 

rise to an intermittent conduction scenario which also adds to the earth fault signature. 

Due to the highly variant nature of HIFs and load profiles, these faults are difficult to 

detect effectively. Many methods have been tried in the past, with no single method being 

found to cover all possible scenarios and, in some instances, no methods have been found 

effective (Kawady et al 2010).  
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For HIFs to ignite a fire, arcing is generally required to be present thus detection of the 

arcing itself could present an opportunity to protect against bushfire ignition. According 

to Kawady et al (2010) there are three main approaches for detecting arcing:  

•  Frequency domain methods where periodic fourier transforms are applied to 

current and voltage signals and compared to known arcing spectral 

signatures 

•  Time domain methods which compare certain aspects of voltage and current 

waveforms to known arcing waveform signatures 

• Non conventional methods such as wavelet analysis where tine and frequency 

domains are plotted against each other and compared against known arcing 

signatures for this realm. 

 

All of these techniques involve analysing the current or voltage waveforms or subsequent 

spectral components to try to detect signatures of arcing. Unfortunately these signatures 

will also appear different when various types of loads are present on the line. 

Complicating matters further is the fact that modern power electronics such as inverters 

and motor controls can exhibit signatures similar to certain HIFs due to their non linear 

and high frequency current draw that are also attributes of arc 

currents (Kawady et al 2010). 

Much of the literature reviewed to date in this area has focused on source-side or load-

side monitoring and detection (Djuric & Terzija 1995). The nature of this project is to 

have multiple points of monitoring across the network and thus it may be possible to 

achieve better results having possible faults closer to the detection device as well as 

having the ability to differentiate between other nearby devices. The location of the fault 

itself may even be possible using spread spectrum time domain reflectometry (Smith et al 

2005). 

In Holland’s (2013) summary of possible high impedance fault detection techniques for 

SWER, Holland includes methods involving measurements of the third harmonic current 

phase angle with respect to the primary voltage waveform, other waveform signature 

based techniques and an open conductor detection system such as the one proposed.  

For this project it is proposed that devices simultaneously monitor current flow as well as 

voltage. More sophisticated fault detection may then be made possible using both the data 
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streams using logic and ‘sum and difference’ techniques using nodal analysis 

incorporating Kirchhoff’s Current Law (KCL). 

 

 

2.3.3 Network device mapping 

Any usable fault detection system of the nature proposed will require that the system as a 

whole is ‘aware’ of the orientation of the network, and the relative and absolute locations 

(GPS co-ordinates) of all the devices. This will be for two fold reasons. 

a) To determine where faults are located by comparing adjacent nodes data  

b) To notify the maintenance crews of the area in which the fault lies  

This is not an area that has attracted significant research due to the highly specific 

application being dealt with. 

 

 

2.4 Summary 

Presented are investigations into communications, power harvesting, fault detection and 

over-all system research areas. Initial findings reveal the most promising technologies 

and methodologies that should be investigated further for their application to this project. 

A summary is compiled in Table 2.3 below. 
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Table 2.3 – Summary of Technologies Reviewed 

Technology Comments 

Energy Harvesting  

Electrostatic Harvesting Primary method to investigate, possibility of 10’s of milli Watts  

Magnetic Induction 

Harvesting 

Alternative method, probable  insufficient current flow in conductor 

Piezoelectric Harvesting Mechanical vibration a disadvantage, added complexity and low 

output 

Communications  

Hardware Focus on low power consumption modules with simple modulation 

techniques 

Medium Access Control Ability to deal with contention and guaranteed Quality of Service 

required. TDMA methods look promising 

Mesh  Methods complying  with IEEE801.16 seem most suitable 

Fault detection  

Arc Detection Difficult to differentiate between normal loads and arcing faults 

Open Conductor Logic Simple and effective approach however does not capture  all HIFs 

Wavelet analysis Computational overheads seem prohibitive for small low powered 

devices 
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3 Methodology for Energy Harvesting 

 

3.1 Introduction and Scope 

 

The general theories to be verified in this project are as follows: 

A power budget sufficient for all functional requirements of the individual device can be 

obtained from the SWER line conductor by utilising energy harvesting techniques such as 

magnetic induction and electrostatic methods. 

The detection mechanism will be actuated by a strategy that identifies devices as nodes of 

a network. If a fault such as a line break occurs somewhere on the network, devices 

(nodes) downstream of this break will lose power. By making a series of comparisons 

between nodes’ input power, the system will be able to reliably detect line breaks and 

possibly even other earth faults.   

 

The general methods by which these theories are to be tested are the following: 

• Design, model, build and test an energy harvesting prototype that utilises either 

electrostatic or magnetic induction techniques, or both, to help provide data and 

understanding on deriving power from the conductor of 12.7kV SWER lines. The 

prototype will be a scaled 0- 240V, 0 -10A version of the live conductor (this 

method is expected to provide directly relevant data for magnetic induction 

techniques but be only moderately relevant to electrostatic techniques; a 12.7kV 

experiment is out of the scope for this project). The primary experiment however 

will concentrate on the electrostatic technique due it exhibiting the most 

promising method of energy harvest in the 12.7kV SWER situation.  

• Design the overall system operating mechanism via software algorithms and 

visual aids (interactive flow charts), simulate and test scenarios. Demonstrate 

how the system can determine a genuine fault and discriminate against all other 

normal operating conditions.   
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• Design the overall device to a level so that the power budget can be accurately 

determined, as well as exploring other possible limitations to do with reliability, 

complexity, implementation and cost.  

• Research and propose other methods that could detect earth faults on SWER 

networks such as detection of the accompanying high frequency arcing.  

 

 

3.2 Electrostatic Energy Harvesting Experiment 

 

3.2.1 Experiment Aims 

• Create and test a simulation model that will be used to easily test changes in 

physical parameters in the design of the 12.7kV SWER design version. The 

model will be audited against the 240V electrostatic physical experiment. 

• Determine practical limits that prohibit certain aspects of physical designs. 

• Identify physical components that affect the system not taken into account in the 

model. 

• Ultimately help to identify a reasonably accurate power budget figure that would 

be realised for a 12.7kV SWER design installation. 

 

 

3.2.2 Simulation Model 

The general schematic of the electrostatic energy harvester is shown in figure 3.1. The 

design is based on ideas presented by Zangl (2009) and Zhao (2012). Both examples use 

a cylindrical conductive electrode that surrounds the conductor (C1) which presents one 

half of a capacitive voltage divider (the other half is between the electrode and ground 

(C2)). Both also use a transformer to help match impedances between the load (energy 

storage circuit) and the source. 
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Figure 3.1 – Electrostatic energy harvester schematic (adaption of circuit design by Zangl 
2009) 

 

The transformer itself can significantly load the harvesting device if the primary 

magnetising inductance is not very high (in the range of kilo-Henries). The significant 

impedances as seen by the harvester are depicted in the equivalent circuit shown in Figure 

3.2. 

 

 

Figure 3.2 – Equivalent AC reactances encountered by the harvester (Stephens 2016) 

 

 

The transformer primary voltage is thus affected by the four major impedances present as 

depicted. This equivalent circuit is used in the model to initially determine the 

transformer secondary voltage which in turn can be used to determine the final DC 
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storage capacitor voltage (after rectification). This voltage will be used with the Thevenin 

equivalent DC resistances as seen by the storage capacitor to then determine the RC 

charging time constant (see Figure 3.3).  

 

 

 

Figure 3.3 – Thevenin equivalent DC resistances as seen by the storage capacitor (Stephens 
2016) 

 

 

Once the time constant is determined charging times can be determined and thus average 

power outputs found from the charge stored in the capacitor. 

The equations used are: 

 �B��CDE =	�F��CG − �F��CG 	H	I
'�JKLM*NOPQRSK 

(3.1) 

 

   

 TB��EU 	(VWX�IY) = 0.5H�B��CDE	H	�B��CDE�  (3.2) 

 

   

 �C\E�CDE(T
]]Y) = TF��CG −T^����CG]F��CG − ]^����CG  
(3.3) 
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The code for the Matlab model can be found in Appendix D. 

3.2.3 Simulation Scenarios and Results 

To help verify the model, it was run after being provided with parameters matching that 

of Zangl (2009) and Zhao (2012)’s experiments. The results were convincing of the 

models legitimacy. The model was then run to simulate the 12.7kV SWER and 240V 

mains situations. 

It was noted that power could be increased significantly if was calculated using only the 

charging voltage of up to approximately only 1 time constant where the charging slope is 

greatest. This could conceivably be realised with practical circuits if the capacitor storage 

voltage was still high enough to be utilised. The power for normal and low cut-off storage 

capacitor voltage figures are shown in Table 3.1 along with the storage capacitor charging 

voltage waveforms. For all other input parameters used and outputs for all simulations see 

Appendix E. 

 

Table 3.1 – Simulated Power Outputs (parameters gleaned from Zangl 2009 & Zhao 2012 

experiment and put through Stephens 2016 simulation model) 

Simulation Conductor 

AC Voltage 

Power Output – 

Measured / 

Quoted (mW)  

Power Output – 

Simulated (mW)  

Power Output – 

Simulated using lower 

cut-off Vsc (mW) 

Zangl 150000 370 229.5 344.8 

Zhao 60000 16.4 14 21.6 

SWER 12700 - 2.8 4.3 

Mains 240 - .0063 0.009 

 

 

Limitations of the Zangl and Zhao simulations arise from as number of parameters being 

unknown. The major unknowns were the relative permittivity of the harvester 

capacitance, the magnetising inductance of the transformer and the actual storage circuit 

and measurement technique used to take the energy and power measurements.  

Parameters used for the 12.7kV and 240V Mains systems were kept as similar as possible 

to for model verification purposes. According to the model, outputs for the 12.7kV 

SWER and 240V mains systems could be boosted significantly to 18.6mW and 60uW 
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respectively simply by adding a polystyrene dielectric to the energy harvester capacitance 

(Figures 3.4 to 3.7). 

 

 

  

Figure 3.4 A – Normal (Stephens 2016)  Figure 3.4 B – Low cut-off voltage using 
maximum slope for charging only 
(Stephens 2016)  

 

Note: Both simulations run using parameters in Zangl’s experiment – found in Appendix D 

  

 

 

  

Figure 3.5 A – Normal (Stephens 2016)  Figure 3.5 B – Low cut-off voltage using 
maximum slope for charging only 
(Stephens 2016)  

 

Note: Both simulations run using parameters in Zhao’s experiment – found in Appendix D 
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Figure 3.6 A – Normal (Stephens 2016)  Figure 3.6 B – Low cut-off voltage using 
maximum slope for charging only 
(Stephens 2016)  

 

Note: Both simulations for 12.7kV SWER – parameters can be found in Appendix D 

 

 

 

  

Figure 3.7 A – Normal (Stephens 2016)  Figure 3.7 B – Low cut-off voltage using 
maximum slope for charging only 
(Stephens 2016)  

 

Note: Both simulations for 240V Mains – parameters can be found in Appendix D 
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3.2.4 Final Designs 

The final designs take into account practicalities of the 240V RMS scenario. It is 

understood that due to the magnetising impedance of the step down transformer 

(featuring in Figure 3.8) being an unknown quantity (before procurement at least) and 

likely being a significant burden on the harvester, a second experiment will take place 

that forgoes it completely in an attempt to quantify its effect on power transfer (Figure 

3.9). Also of concern is the possibility that with zero initial voltage on the storage 

capacitor (presents as a short) the impedance will be so low as to inhibit the diodes from 

switching on, thus no current will flow causing no charge to build up on the capacitor.  

 

 

 

Figure 3.8 – Initial Circuit – Step down transformer included (circuit adapted from Zangl 
2009) 
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Figure 3.9 – Second Circuit – Step down transformer removed (circuit adapted from Zangl 

2009) 

Another practical issue of concern is the effect of measuring equipment loading down the 

circuits under test. This is expected to be significant due to the relatively low input 

impedance of the ‘Meterman 38XR’ chosen to perform the real time voltage 

measurements across the storage capacitor. Due to the very high effective source 

impedance presented by the ground to harvester capacitance, a large portion of the very 

small current being supplied will be shunted through the meter instead of charging the 

capacitor, and at the same time placing a large effect on the voltage divider resulting in a 

much smaller voltage across the harvester electrodes. This in turn will clearly limit the 

final charging voltage available to the storage capacitor. 

This problem will be accounted for in two ways: 

1. Measure the meter’s input impedance before taking measurements and include in 

the subsequent power calculations 

2. Conduct subsequent experiments without the meter and test after periods of 

charging, making sure the storage capacitor has a value large enough to ensure 

reasonably accurate readings that would otherwise be obscured by rapid 

discharging through meter.  

 

 

3.2.5 Lab Experiment 
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A 27cm long aluminium cylinder with a radius of 3.75cm was acquired and prepared to 

be suspended via insulating material to a taut copper insulated wire (Figure 3.10). It was 

decided that the wire need not be stripped of insulation as the contribution to the relative 

permittivity to the conductor – harvester capacitance was considered negligible (free air is 

used as the ‘dielectric’ as this will assist achieving a lower capacitance which is desirable 

as it will shunt less current away from the storage capacitor simultaneously causing a 

greater voltage drop across it for harvesting). 

A virtual ground plane was constructed from conductive sheet metal (Figure 3.11) and 

was fixed beneath the suspended harvester. The area was cleared as much as possible 

from other conducting objects including the ground to minimise other stray capacitances 

but this was not perfect considering mains cables were present to provide supply and 

were also hardwired in the vicinity. 

 

Figure 3.10 – Electric field energy harvesting experiment apparatus (Stephens 2016)  

 

 

Figure 3.11 – Electric field energy harvesting experiment close up including transformer 
(Stephens 2016)  
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Figure 3.12 – Electric field energy harvesting experiment close up of charging circuit with 
transformer omitted (Stephens 2016)  

The Meterman 38XR multimeter input impedance measured to be approximately 9.16 

Mega Ohms via its contribution to a resistive voltage divider combination with a 1.21 

Mega Ohm resistor. 

The transformer (Figure 3.13) magnetising impedance was measured by inserting the 

primary, then secondary, into a voltage divider circuit driven from a regular 12V, 50 

Hertz AC voltage source. The winding resistance was considered negligible and thus all 

current flowing threw it was considered reactive. This was basically a pseudo ‘no load’ 

transformer test but without the power meter to measure the power factor as one was not 

available. Transformer magnetising impedance or ‘self inductances’ were measured to be: 

• Primary – 14.12V across and 45uA through yielding 313.78 kOhms  (988.7 

Henries) 

• Secondary -8.18 V across and 590uA through yielding 13.86 kOhms (44.1 

Henries) 

 

 

Figure 3.13 – Transformer with high magnetising inductance used in initial charging circuit 
(Stephens 2016)  
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The capacitances either side of the harvester (ground and conductor) were measured by 

removing the one and inserting the multimeter in its place and considering the system as a 

general impedance voltage divider (Figure 3.14). This was performed to understand the 

divider’s capacitance ratio more than the absolute values themselves as this method is 

prone to inaccuracies brought about by the multimeter leads themselves likely to 

contribute to stray capacitances. These figures were nonetheless simulated to aid in 

verifying (or otherwise) experimental data. Capacitances measured were: 

• Conductor to Harvester Capacitance  - 24.41pF (130.4 MOhm @ 50Hz) 

• Harvester to Ground Capacitance – 127.5pF (25.0 MOhm @ 50Hz) 

 

Figure 3.14 – Equivalent test circuits to determine system capacitances present (Stephens 
2016)  

 

The values obtained were much larger than expected using the formulas utilised by Zhao 

et al (2012) and will be discussed in chapter 6. It is worth noting however that estimates 

obtained by Zangl et al (2009) were also significantly larger than that of Zhao for similar 

scenarios thus pointing to a possible area that is not adequately addressed as yet. 

The measured capacitance values were inserted into the LTSpice simulation for the 

harvester circuit including the transformer as shown in Figure 3.15. The output waveform 

shown is the charging voltage of the storage capacitor. The maximum reached here is 

approximately 800mV which is not at all expected. The maximum voltage reached is 

expected to be set by the secondary voltage, which is in turn set by the voltage across the 

top half of the voltage divider (transformer primary voltage) as shown below. 
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 �_��`C�a(_ECb	) =	√2	H	240	H	 ? 130.4
130.4 + 25@ = 	284.8� 

= �_��`C�a(_ECb	)H	 f√998.8√44.1 h 

�ijk(_ECb) = 59.84� = �l��CG	B��CDE 

 

(3.4) 

 

Attempts to understand and rectify this problem with the simulation were unsuccessful 

but the experiment went ahead regardless. As mentioned previously it was uncertain 

whether this initial test with the transformer was going to correctly harvest energy for the 

reasons stated. 
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Figure 3.15 – Output from 240V harvester circuit simulation with transformer (circuit 
adapted from Zangl 2009) 
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The experiment conducted was actually successful in charging the 0.47uF storage 

capacitor in some scenarios. The results are tabled and discussed in Chapter 6. 

The main experiment setup is described by the circuit below (Figure 3.16) along with the 

simulation output and expected results. The voltage reaches a maximum of approximately 

280V which is close to the expected maximum voltage of 284.8V calculated from the 

impedance voltage divider at 50Hz. The maximum is reached in approximately 3500 secs 

(about 58 mins) equating to approximately 250uW average power being delivered to the 

22uF storage capacitor. 

The experiment was conducted and the results are detailed in Chapter 6. 
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Figure 3.16 – Output from 240V harvester simulation with transformer omitted (circuit 
adapted from Zangl 2009) 
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4 Fault Detection and Mapping Development 

 

4.1 Introduction 

The fault detection function, along with its timely communication of alerts to local 

protection infrastructure, is the primary role of the proposed system. Any deployed 

system must meet minimum reliability, repeatability and accuracy standards to ensure 

safety and quality of service for SWER line power customers.  

 

 

4.2 Fault Detection  

The fault detection function, along with its timely communication of alerts to local 

protection infrastructure, is the primary role of the proposed system. Any deployed 

system must meet minimum reliability, repeatability and accuracy standards to ensure 

safety and quality of service for SWER line power customers.  

As the system is proposed to complement the existing over-current type protection, the 

type of faults being monitored by this system will be of the high impedance type. 

Detection of this type of fault was summarised in section 2.3.2 by Kawady et al (2010) 

and Holland (2013) which basically differentiates between detection that relies upon real 

time HIF signature recognition (detecting arcing using waveform analysis, spectrum 

analysis or wavelet analysis) and that of a ‘open conductor’ logic based approach. The 

former will be looked at briefly here but it is expected the reliability of this method is 

questionable and also likely to be over taxing on the meagre hardware abilities of the 

onboard processors and memory capabilities given the limited available power. The latter 

approach conversely provides for a simple and logical solution which would suggest a 

reliable solution for wire break type faults. 

The logic based system could conceivably be extended to not just monitoring the local 

Power line voltage, but with the addition of current monitoring transformers, the local 

current could be measured and compared against neighbouring devices to ensure there are 

no effective ‘leaks’ inadvertently discovering where fault current may be flowing.    
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4.2.1 Arc Detection  

The fundamental attribute of a successful arc detection function is the ability to 

distinguish between the signatures of the many various types of ‘normal’ modern loads 

and that of a high impedance arcing fault. This is an area of research that has been 

ongoing for a number of decades and the consensus is largely inconclusive regarding its 

effectiveness.  Its application has only really occurred in highly specialised circumstances 

where either a fault has already been detected or where the types of loads (and thus the 

type of current they draw) were previously known.  

Studies by Djuric and Terzija (1995) that involved simulating arcing waveforms showed 

that during an arcing event the supplying voltage waveform starts to resemble a 

squarewave. From this premise it was shown that a continuous Fourier Transform could 

be performed on the voltage waveform to obtain its spectral components and then 

compared against that of a squarewave’s spectral signature using a ‘least error squares’ 

technique. The investigation showed success for simulated arc waveforms in certain 

scenarios but did not equate to successful practical arc detection because the arcing 

waveforms proved to be much too complex and varied to reliably identify due various 

parameters including the nature of changing arc paths, different geometries and rates of 

cooling. This type of system found a relatively narrow application of detecting arcing on 

power lines that had already tripped over-current protection, and was attempting to assert 

whether the line was broken and arcing on the ground for instance. 

The problem with arc detection was illustrated further by Kawady et al (2010) where an 

investigation was undertaken to compare the harmonic load profile of downed conductors 

to that of a series of common loads. Loads that were investigated included: 

• A three phase 400/230V 3kW static load resistor, 

• a three phase 400/230V 7.5kW induction motor,  

• Single phase 230V 3.5kW Air conditioner 

Kawady et al (2010) recognised also that an ‘...economic, versatile and dependable 

detector’ required more research and better understanding of the underlying properties of 

arcing fault waveform signatures than was currently understood. 

A more recent study by Wang et al (2014) compared Fourier transform techniques of arc 

detection to wavelet analysis techniques using synthesised data. The main focus was 

regarding arcing detection on DC photo-voltaic cells and concluded that the wavelet 

analysis was superior in that it required much lower sampling rates, used less memory 
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and slower processing than the fourier transform technique for similar results. On the 

whole however, the downfall of arc detection was again highlighted by Wang et al’s 

suggestion ‘...arc faults in deployed systems are seemingly random and challenging to 

faithfully create experimentally in the laboratory, which makes the study of arc fault 

signature detection difficult’ 

Despite technological advancements regarding the processing power and speed of 

computer systems the techniques used so far do not seem to present an acceptable avenue 

for a standalone arc detection system. This case was strongly suggested by Li & Redfern 

(2001), who questioned the economies of extra investment in the area and also the 

implications for quality of supply if indeed detection systems based on this technology 

were deployed. He summarised ‘ ...There is always a compromise between the probability 

of tripping a healthy circuit and leaving a downed conductor live’, and concluded that no 

techniques were found to be totally reliable.  

 

 

4.2.2 Logical Open-Conductor Approach  

The nature of distributed devices across the SWER network allow for inherent 

possibilities that extend further than those at single ‘line side’ monitoring localities. The 

detection of an ‘open’ or broken conductor is the most obvious of the advantages posed. 

Devices deriving their power electrostatically from the power line voltage are in a 

position to easily monitor the voltage simultaneously. Upon detection of a significant 

voltage drop the device need only have enough power in reserve to communicate the 

event occurrence, along with its coordinates, to neighbouring devices for reasonable a 

period of time (Figure 4.1). The system would then need to determine the status of 

devices further downstream of the alerted device in order to reliably label it is a fault.  
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Figure 4.1 – Depiction of conductor break and response from downstream devices (Stephens 
2016)  

 

 

As the end goal is to prevent bushfire ignition and other obvious associated dangers with 

a live downed conductor, then the speed of communicating the fault to the local 

protection equipment becomes important. It is necessary to understand the sequence of 

events that must take place in order to estimate relevant quantities such as average and 

maximum duration times from the fault event to eventual interface with protection 

equipment and subsequent line trip. Accurate figures would only be obtained from 

running various simulations of line break faults at all locations and would be highly 

dependent upon the type of communications system used to convey the fault event alert. 

Performance of the speed of communication would need to be judged against 

conventional circuit tripping theory and practice, as well as more specific bushfire related 

data such as that being produced by reports such as the ‘Probability of Bushfire Ignition 

from Electric Arc Faults’ by Coldham et al (2011). The Interim Report produced in 2011, 

studied the bushfire ignition likelihood over a range various scenarios with much 

attention paid to fault currents in the range of 50 and 200 amperes but also looked at the 

lower end of the scale at 4.2 amperes (much more relevant to the case of SWER network 

HIF fault currents). It was noted within the report that under worst case conditions (45°C 

air temperature, < 20% humidity, vegetation moisture content ~5% and wind speed of 
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10kph) that a fault current of 4.2 amperes produced sustained ignition 50% of the time if 

left for around 155 milli-seconds. In comparison, a fault that was cleared in 40 milli-

seconds or less reduced the probability to essentially zero percent.       

 

 

 4.2.3 Nodal Analysis Approach 

In the previous section harvester/detector devices will need to be deployed at almost 

every suspension pole (some poles may be skipped in short lengths are encountered). If 

devices extra devices are deployed so that either side of customer take off points (as 

shown below) are monitored, then it is theoretically possible to progressively ‘cross 

reference’ local currents across the entire network. The idea is that Kirchhoff’s Current 

Law should essentially be conserved either side of any power pole or ‘node’ in the 

system. The Customer take off point will present a point where this cannot occur (mainly 

because there is no-where to deploy a device) and so these points would not be covered 

by this scheme and so devices will need to be either side of this point to minimise the 

unprotected section.  

By referring to Figure 4.2 below, we can see that: 

• I1 should equal I2 

• I2 should equal I3 + I5  

• I3 should equal I4 

• I6 should equal I7 
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If these equations are not conserved then there is a current ‘leak’ which indicates a fault 

(assuming measurements are accurate and within tolerances). The analysis itself will need 

to be undertaken in designated devices across the network and will require neighbouring 

devices to periodically transmit their current telemetry. Clearly this will place greater 

burden on the device’s meagre power reserves and a trade off between the frequency of 

analysis (thus timeliness of any fault detection) and also power conservation. Also 

devices will now also need miniature current transformers and subsequent hardware 

componetry to measure the local current draw. Further to that a greater amount of time 

will need to go into manually initialising the system, as devices will need to know their 

relative positions within the network and which devices are to perform the analyses. 

Despite these drawbacks, serious consideration ought to be given to this possibility on 

any actual practical deployment as it presents the opportunity to capture almost all SWER 

network High Impedance faults. 

 

 

I1 I2 

I3 
I4 

I5 

I6 

I7 

Harvester 

Power pole 
Customer 

Take Off 

Figure 4.2 – Depiction of nodal analysis implementation (Stephens 2016)  
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4.3 Mapping  

The device network, and the SWER network it is distributed across, will need to be 

geographically defined and be locatable down to the individual device level in the event 

of a fault. In a line break fault situation the furthest upstream device that is reporting the 

fault will be inherently the closest to the fault. Service crews or the utility’s 

administration will need to interrogate either the system via the base station gateway or 

the device itself to determine its location. This feature has the ability to significantly 

reduce the time it takes for crews to find the fault location as the fault is now narrowed 

down to the closest suspension pole. 

To enable this functionality, devices will require low cost, low power GPS receivers such 

as the ‘Snapshot’ by Baseband Technologies that can provide occasional GPS coordinates 

updates to the device for it to store in memory after power cycling or re-boots. This type 

of technology is mature and needs no software overheads such as map or navigational 

systems and thus much of the cost is omitted. The hardware can in fact sit idle most of the 

time to save power until the device needs an update for whatever reason. Then for the 

devices co-ordinates can be partnered with the device’s ID for any transmissions that may 

need to be interpreted at some stage by people. 

The Base Station will however need more information than just a list of its nodes 

identifications and GPS co-ordinates. To aid in guarding against ‘false positive’ fault 

events it may preferable to require more than one or even several neighbouring nodes to 

report a line break fault (loss of voltage detection) simultaneously. Without a logical map 

of the nodes relative locations being known to the base station then it is not possible to 

recognise which nodes are neighbours to whom.  

After devices are deployed across a SWER network for the first time, personnel familiar 

with the system would need to initialise it by creating a logical map of the devices’ 

relative locations which will invariably follow the course of the SWER network with all 

its spurs and branches. This would then need to be hardcoded into non-volatile memory 

of the base station and the system tested until accuracy was assured. 

To enact the proposed nodal analysis, information from this logical map held by the base 

station will need to be communicated to the relevant nodes performing the periodical 

nodal analysis. This could be easily achieved automatically by algorithms within the base 

station and nodes but does rely on the absolute accuracy of the logical map itself.       
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4.4  Contribution to Device Power Consumption 

Ignoring any RF transmissions resulting from fault analysis and detection (this will be 

dealt with in the communications specification Chapter), the average powered required 

for the general fault detection function is analysed. Hardware that needs to support this 

function is: 

• Sensing and peripheral circuitry 

• Processing 

• GPS 

 

 

4.4.1 Sensing and Peripheral Circuitry 

For voltage and current measurements there will require some passive (and thus power 

consuming) circuitry to manipulate the voltage and current signals into a usable form to 

provide inputs to buffers or amplifiers. 

 For voltage measurement it is intuitive to simply set up an extra high impedance (greater 

than 10Gohm total ) voltage diver directly across the harvester plates (conductor and 

cylinder electrodes) and providing a point whereby a high impedance buffer can be 

connected and provide input to a ADC. The problem with this is that the cylinder 

electrode will not be a stable reference due to the attached charging circuit representing a 

‘varying’ parallel impedance. Unless the processing code is exhaustively calibrated it will 

unlikely to be able to accurately determine the actual voltage present on the conductor. A 

significant voltage drop should still be easily distinguished from normal operation 

however and thus the main function of line break detection is still supported.  

For the power consumption the worst case scenario for the voltage detection would occur 

from a 1000 volt voltage drop across a 10Gohm voltage divider which equates to 100uW.  

Buffers and amplifiers for this situation will need to be carefully selected. There is 

generally a trade off between low power consumption and high input impedance. Two 

extremes are Linear Technologies’ LTC6268 which boast an input resistance of greater 

than 1000GOhm but also consume 16mA per amplifier. On the other side of the spectrum 

Maxim’s MAX9943 offer 550uA per amplifier consumption but requires up to 90nA of 

bias current which equates to 20Mohm input resistance. A possible trade off may be 
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found in Op Amps such as the LT1881 which quote supply currents of 0 .65mA per 

amplifier and 200pA input bias current. This would provide an input impedance of 

15GOhm and approximately 2mW consumption per channel. Two channels are required 

and thus we can safely allocate 4mW of power to the buffer and amplifier requirements. 

Current measurement (which could be omitted if nodal analysis is not required) would 

involve placing a brooks coil or similar within the conductors magnetic field which 

would be acceptable anywhere within the harvester cylinder with the caveat that it is 

perpendicular to the axial field lines. Using equations 2.1 and 2.3 to estimate voltage and 

currents for the magnetic coupling system reveals voltages of around 1- 5mV driving 5-

10uA through a 700 Ohm load (calculated from 70mA flow through the conductor which 

is assumed to roughly be the draw from a single customer using 1kW). This will also not 

be difficult to drive a low power operational amplifier and power consumption concerns 

on this side are irrelevant as the power is drawn from the magnetic coupling of the 

conductor. 

 

 

4.4.2  Processing 

All processing will need to be performed by a dedicated ultra low power embedded 

microcontroller such as the ‘EFM32’ using the 32-Bit ARM Cortex M-3 controller. This 

type of MCU is expected to be required as opposed to an ‘all in one’ or ‘System on Chip’ 

(SoC) type modules that integrate transceivers into a monolithic type unit such as the 

Texas Instruments’ RF430 series.  These type of modules are designed for off the shelf 

type situations but remove some of the possibility to directly control the activity of the 

RF transmitter due to the tight integration of hardware and protocols. 

 The EFM32 will require greater design overheads than monolithic alternatives but it 

boasts active power consumptions around 180uA per Mega Hertz at 3V. Assuming the 

system was clocked at a modest 20Mhz then we can account for around 10mW 

consumption during active periods (which would be most of the time) plus an extra 

1.3mW for two ADC’s required for the sensing of voltage and current signals. A 

complete table of power consumption contributions is provided in the Results and 

Discussion Chapter. 
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4.4.3 GPS 

Modern low cost and low power GPS receiver modules can be easily integrated into 

embedded systems, especially if all that is required is the occasional co-ordinate update as 

opposed to a suite of maps and navigational software. The main difficulty in this scenario 

will be in making provision for the antenna and shielding from capacitive and inductive 

coupling mechanisms arising from the near field radiation caused by the high voltage 

conductor along with the RF transmissions from the Transmitter module.  

A likely candidate is Baseband Technologies’ ‘Snapshot’ low power GPS modules that 

quote battery life figures of 18 days to one year from an 18mAh battery at 3V. Assuming 

the worst case scenario this equates to an average of 1.39mW. 

 

 

4.5 Fault and Protection Systems Integration 

Any fault detection system needs to be interfaced with a protection system for action to 

be taken on faults detected. Existing protection infrastructure on SPAusnet’s Victorian 

SWER networks are noted to legacy type Automatic Circuit Reclosers (ACR’s) with 

manual control only (Holland 2013), and it is expected that the remaining SWER 

networks operated by PowerCor have a similar situation. This presents no present 

opportunity to interface with the detection network proposed. 

The main option involves replacing existing ACR’s with remote control versions like the 

W- Series ACR by Schneider as shown (Figure 4.3).  
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Figure 4.3 – Schneider Electric W Series Remote Control ACR & associated control cabinets 
(Schneider Electric 2012) 

 

Remote control sectionalisers could present a possible alternative as these could possibly 

compliment existing protection hardware instead of straight replacement. This would 

however be using the sectionaliser slightly out of scope to what it was intended 

considering that their use is generally to isolate circuits that have already been de-

energised from an upstream recloser (Figure 4.4 shows typical deployment). 

 

 

Figure 4.4 – Typical Recloser – Sectionaliser deployment (Electrical Engineering 
Community 2016)  

 

 

The possibility that sectionalisers could open on very small fault currents such as those 

existing for 12.7kV SWER high impedance faults would need to be investigated.
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5 Communications System Specification 

 

5.1 Introduction 

To specify a communications system for this application in terms of a conventional fixed 

set of specific constraints would be an unnecessary road block to a successful design and 

regardless would be impossible to do without almost completing the design first. With 

this in mind, this chapter attempts to focus on the most arduous of requirements in order 

to build some framework around how a design should be attempted.  

 

 

5.1.1  A Word on Security 

It should be noted that security concerns have not been addressed here as it has been 

considered out of scope. Any design must consider security issues throughout all the 

relevant OSI layers and likely from an overall system approach as well.  

Implementing security in this type of wireless mesh network will be tough because nodes 

are more susceptible attacks than their wired alternatives and they have much less 

computational power to execute things such as encryption, decryption, certificate and key 

authentications etc. The key here will be to attempt to quantify ‘how much’ security is 

needed that adequately addresses the fact that parties could potentially ‘hack’ the system 

and cause the local SWER network to trip.  This could well be a decision that is deferred 

to utility companies or political decision makers but the emphasis for the engineer must 

be on quantifying the risk of a compromised network, the cost of implementing different 

levels of security and to make an informed recommendation. 
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5.1.2 Presentation of Simultaneous Requirements 

 

Table 5.1 – Presentation of Wireless Communications Simultaneous Requirements 

Requirement  Specification 

(Quantitative) 

Specification  

(Qualitative) 

Comment 

Min Range 2km (LOS)  Trade off - Isotropic radiation for 

meshing or directional for 

distance? 

ISM frequency 915Mhz?  Lower is better for range vs. Tx 

power but limited by Antenna 

length; opportunity for 

government to use purchased 

bandwidth? 

Min Node Density 5 Each node must be within 

range of 2 neighbouring 

nodes either side  

 

Data Handling  Priority ‘event driven’ and 

second priority ‘store and 

forward’ 

Must have the ability to prioritise 

data packets 

Max propagation 

delay for fault alert 

<40mS  Max time based on probable arc 

ignition at 4.2A in worst case 

conditions 

Max RF radiation 1W EIRP Digitally modulated (3mW 

max for analogue or no 

modulation)   

EIRP =Effective Isotropic 

Radiated Power 

Quality of Service 

(QoS) 

 Must include provision for 

guaranteed delivery  

Must satisfy reliability 

requirements of Utility 

Max Average Power 

Consumption per 

Device 

Approximately 

10 mW 

Receiver –always listening. 

Transmitter -sporadic bursts 

when necessary. 

Ability to have direct control 

over the transmitter activity is 

essential 

Topology  Self Healing ‘partial’ mesh. 

Alternative paths found 

upon node drop out. 

‘Partial’ implies that nodes need 

not all be within range of all 

other nodes 

Base Station 1  Master, instigates integrity 

checks, holds database of 

node statuses and network 

structure. Interfaces with 

protection system or Utility 

SCADA. 

Bigger power supply will provide 

opportunity to increase 

sensitivity and transmit power to 

increase range.  
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5.2 Communications Specification Discussion  

 

5.2.1 Hardware and Modulation 

In section 2.2.7.1 a number of typical RF transmitter, receiver and amplifier modules 

were considered for their relevant sensitivity, gain, transmit power and power 

consumption figures. These are relatively simple digital modules and modulation 

techniques are generally limited to Frequency Shift Keying (FSK) and On Off Keying 

(OOK).  

Data rates for FSK can be automatically scaled up or back according to the link’s signal 

to noise ratio (SNR). The greater the SNR, the more discrete frequency elements can 

successfully be recovered to represent a greater number of symbols. Considering it from a 

range perspective, if extra range is required there will be an associated lower SNR. It 

therefore becomes more difficult to differentiate between frequency shifts and so the 

shifts themselves are increased making communication still possible but with a lower 

number of possible symbols being represented and thus a lower data rate. 

On Off Keying as the name suggests is a very simple form of digital modulation 

technique with the simplest form basically being the presence of the carrier wave during a 

fixed period being a ‘one’ and the absence of the carrier being a ‘zero’. Any binary 

encoding techniques can be used such as Morse code.  

A design decision will be needed to be made early on between these types of hardware 

and modulation techniques taking into consideration expected data rates, range and power 

consumption. It is expected that a separate RF amplifier module is required to provide 

significant gain (approximately 10 -20dB) to the output of the chosen transceiver.   

 

 

5.2.2 Medium Access Control 

It is expected that to achieve predictable levels of reliability and Quality of Service (QoS) 

for a complex and dynamic situation such as a wireless mesh, synchronous type medium 

access control methods (TDMA) will be required. However during design other methods 

should be looked at such as CSMA/CA (Carrier Sense Multiple Access with Collision 

Avoidance) that implement ‘back off’ algorithms to deal with medium access contention. 
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This will especially be the case if synchronous methods are deemed to introduce too 

much delay. Considering that data rates are expected to be very low, asynchronous 

methods may actually be favourable to TDMA but the main issue will be the fact that for   

 

 

5.2.2.1  TDMA with Spatial Re-Use 

TDMA (Time Division Multiple Access) allocates time slots for nodes to transmit to 

guarantee against contention or conflicts. In its pure form it is synchronous and from this 

method provides means to accurately predict delay times per ‘hop’ (node to node 

communication’). It can introduce Quality of Service (QoS) by allocating segments 

within a slot to ‘guaranteed delivery’ and ‘best effort delivery’ traffic data as well as a 

control segment which includes such operations as synchronising and routing table 

updates.   

For this application the ability to obtain QoS metrics such as maximum total time delays 

for guaranteed traffic is beneficial but its downfall has historically been that those delay 

times can be significantly greater than asynchronous methods if not designed carefully 

with little wasted bandwidth.  

Spatial Re-Use (Djukic & Valaee 2007) is a method that becomes useful with partial 

mesh networks like the one proposed and can be simply thought of as multiple pairs of 

node to node communication using the same time slot because they are out of range and 

do not conflict with each other. Djukic presents a solution to utilise the idea of spatial re-

use within a wireless mesh network which complies with IEEE801.16. The paper focuses 

on minimising the scheduling delay (which accumulates at every hop over the network – 

see Figure 5.1). It is based on determining the link bandwidths (defined by the number of 

slots a link can use within a frame) at the initialisation stage and then using a modified 

Bellman-Ford algorithm to design schedules that minimise TDMA delays. These delays 

generally occur when data packets requiring to be forwarded are not received in time to 

be transmitted in the time slot usually allocated for that particular link. Subsequently it 

must wait until the next opportunity occurs, with this waiting time representing the 

TDMA delay. 
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Figure 5.1 – Multiple hops between nodes causing TDMA delays (Djukic 2011) – vi  are nodes 
and ei  are directional links  

 

 

 

Figure 5.2 – Cluster of nodes and their respective ‘conflicts graph’ (Djukic 2011) – ci are the 
conflicts, ei are the nodes. Each node requires their own conflict graph to base their local 
scheduling and then harmonising needs to occur with neighbouring nodes  

 

 

The network is initialised thus: 

• Nodes establish local links (Figure 5.2) 

• Nodes gather conflict information 

• Nodes establish local schedules 

• Nodes attempt to harmonise schedules with neighbours 

• Base Station sends a ‘schedule detection wave’ down through the network 

• The wave reaches the ‘leaf’ nodes and instigate waves back to the Base Station 

• The nodes add information to the wave as it passes by 



5. Communications System Specification  
71 

 

• The Base Station collates the information and determines if all schedules have 

‘converged’ 

• Activation of the network occurs when all schedules have converged 

• A loss of a node will result in loss of convergence and thus the procedure is 

repeated 

 

Djukic describes the ability to estimate the maximum TDMA delay as the time it takes 

for the longest return path to be travelled with the equation 

 

 m`CM = 2ℎ
n ol 

 

(5.1) 

 

Where m`CM is the maximum delay, h is the ‘height’ of the tree, H is the amount of 

spatial re-use applied and olis the frame duration.  

For our purposes the longest delay of particular interest is the time it takes for the furthest 

‘leaf’ node to send an ‘alert packet’ or ‘fault packet’ to the base station. This would be 

half the tree height. To obtain a frame duration we would need to consider the maximum 

amount of slots that would be required during a frame. It is assumed that the total amount 

of data from all nodes contributing to their local frame allocation will easily fit into the 

minimum 2mS frame duration as defined by IEEE802.16.  

The next step is to determine maximum a ‘tree height’ which is the greatest number of 

nodes that will be encountered from the end of a SWER network to the base station. If we 

take the longest SWER network to be 20km and devices place at every suspension pole 

with 205m average spans then we have a height of 98.  This provides a maximum 

duration time of 196mS if no spatial reuse was enacted.  

It is worth recalling here that a requirement of the system is to have fault alerts taking less 

than 40mS to be communicated to help ensure bushfire ignition does not occur. Clearly 

this system needs a spatial reuse figure of at least 5 to come close to attaining this figure 

that needs to incorporate an interface with protection circuit as well. Considering the 

network is considerably spread out with very low node densities it is expected that this 

figure is attainable. 
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5.3 Power Consumption Calculation 

To obtain power consumption estimations for the communications section a fundamental 

or ‘first principals ‘type approach is used with multiple being assumptions made. Firstly 

an estimation of the lin budget required is found by using equation t.t and assuming that 

isotropic antennas are used as opposed to directional. This will be a key design element as 

there is a trade off here of line of sight range and the ability to mesh with adjacent nodes 

(on different SWER branches) for increased network reliability, but for now it will be 

assumed that the redundancy of the mesh is more important and thus isotropic antennas 

will be assumed. 

 Next it will be assumed that the antennas have transmit and receive gains of 0dBi and the 

range we are after is 2km.  Using the figures from Microchip’s MRF89XAM9A 

Transceiver module we obtain a sensitivity figure of -105dBm (which consumes a 

constant 6.5mW in active listening mode). We obtain the minimum transmit power 

according to the Friis Free Space link budget equation below 

 

 �� = �� −	;� −	;� − 20 log ? :
4�@ + 20log	(9) 

 

(5.2) 

�� = −7.339�q = 185XT 

 

However this assumes no path loss at all. Using the rule of thumb that accounts generally 

for path loss as discussed in the communications literature review: 

• 120db link budget is needed at 433Mhz to achieve 2000m. 

• Plus 6db doubles this distance 

• Double the frequency  - half the range 

 

It follows that we require a 126dB link budget which forces a transmit power of 21dBm 

or 126mW. Judging from the transmit powers and corresponding transmit consumption 

figures in Table 2.1, it is clear that the efficiency ratios of different modules lie between 

0.346 and 0.179 with the stand alone amplifier being the most efficient. As our 
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requirements closer match the transmit power capabilities of the Texas Instruments 

TRF37C73 RF amplifier, thus the efficiency factor used is 0.346 which obtains an active 

power consumption of 364mW (burst only). 

To obtain average power for the transmitter an estimation of how long and often the 

transmitter is active is required. Clearly this will be proportional to the quantity of and 

frequency of data transmission required. As fault event data is rarely encountered this can 

be safely ignored assuming enough energy is stored in the battery for this type of event. If 

periodic nodal analysis is implemented as described in section 4.3.2 then devices will 

constantly need to transmit their current data to neighbouring nodes. To limit the amount 

of time a possible fault goes undetected then it will likely be necessary to transmit once 

every TDMA frame (see section 5.3.2) which was assumed to be 2mS. As the sensitivity 

of the MRF89XAM9A of -105dBm was quoted when using a 25Kbs FSK bit rate, and 

assuming all information could fit within a 16 bit packets (optimistic) then we obtain an 

active time of 640uS. From this we obtain an average power consumption of 116.5mW 

which may well be prohibitive. 

If nodal analysis is omitted from the fault protect6ion scheme and line break faults are 

solely focussed on then transmitter active times can be reduced significantly. If we can 

then assume that periodic transmissions can be user defined and the design of which will 

revolve around how often the network integrity should be checked. Assuming this is 

checked once a minute and is instigated by the base station in a downstream then reverse 

upstream wave of transmissions across the network, then nodes will need to transmit 

twice every minute. As data will accumulate from every node across many hops then the 

total amount of data per transmission will be much larger. If we assume a maximum of 

200 nodes per network each contributing 16 bits of data then transmissions will need to 

cater for up to 3.2kbits. This equates to transmitting 128mS every minute resulting in an 

average power of 777uW. 

Understandably much has been assumed here and the fact remains that any design that 

has power consumption in mind can and will need to analyse the tradeoffs between it and 

network integrity and other factors such as security , housekeeping and condition 

monitoring overheads. For simplicity and a measure of surety, a total figure for average 

transceiver (receiver plus transmitter) power will be set to a 10mW requirement. 
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6 Results and Discussion 

 

6.1 Chapter Overview 

This chapter brings together results from the 240V energy harvesting experiments along 

with commentary on their validity and the implications on the simulation models. Outputs 

from 12.7kV SWER scenario simulations are presented and discussed. Conclusions are 

made on the likelihood of all devices being adequately powered and finally an attempt to 

estimate the cost of implementing the proposed system across Victoria’s SWER networks 

is offered. 

 

 

6.2 Energy Harvesting Experiment Results 

 

6.2.1 System Capacitance Anomalies 

The expected values of capacitance for the 240V scaled experiment were calculated from 

the geographical construction of the harvester apparatus with the following attributes: 

 Cylinder Radius    - 3.75cm 

 Conductor Radius   - 0.5mm 

 Cylinder length    - 27cm 

 Height from Ground Plane  - 60cm 

 Relative Dielectric   - 1 
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Using equations 2.5 and 2.4 we obtain the following expected electrode to ground and 

wire to electrode capacitances: 

 

 ��" = 2����
cosh'� �ℎ�� 	

= 4.335r5 

 

��� = 2������
ln ����� 	

= 3.48r5 

 

 

 

The values that were measured of ��" = 127.8r5  and ��� = 24.41r5 are clearly well 

out of the expected range and have no bearing on the overall ratio either. At first the 

problem was considered to be the fault of the measurement technique, but after initial 

simulations using these figures and cross referencing with initial tests, it seemed much 

more likely that these were in fact close to the actual capacitances present. 

After further investigation, it was considered that due to the experiment needing to be 

conducted inside a shed due to bad weather, there may be issues with stray capacitances 

playing havoc on the system. As the shed was constructed from steel and iron with 

earthed members, there were in effect many more avenues for stray capacitances to occur 

such as from walls, beams etc. Moving the apparatus to different locations around the 

shed yielded significantly different system capacitances and thus the theory was all but 

proven. 

This result removes any possibility of verifying the above equations in testing their 

usefulness for the modelling of harvesting system capacitances in the rural power line 

scenario.  

For accurate predictions of energy harvesting output for the intended SWER line 

application, these estimated capacitances need to have a reasonable degree of accuracy. A 

‘sanity check’ is required and can be found from industry knowledge regarding standard 

and accepted methods of calculating or estimating parameters such as  line or ‘shunt’ 

capacitances and associated figures for ‘charging’ current. 

It was noted by Zangl (2009) from performing a finite element analysis that the 

disturbance of the overall electric field due to the harvester tube is hardly noticeable away 
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from the immediate harvester – conductor area. We can intuitively infer from this that the 

‘baseline’ capacitance between the harvester and ground is indeed the original line or 

shunt capacitance of the SWER line if the harvester were not present at all. To find this 

figure the method of images is used as described by the diagrams and accompanying 

equation below to find the per meter shunt capacitance (Figure 6.1). 

 

 

 

Figure 6.1 – Method of images to determine shunt capacitance for single wire system (Glover 
& Sarma 1994)  

 

 

 

 �st��� = 2���
ln	(2n� )			(5/q) 

 

(6.1) 

Assuming: 

• SWER Power pole height of 12.5m 

• Conductor attachment height of 10.5m  

• Area of interest slightly removed from power pole with height 10m 

• Conductor type SCGZ with radius 0.003m 

 

We obtain the figure of 6.32pF/m shunt capacitance which corresponds to 25.2uA per 

meter of ‘charging’ current. It is worth noting that it is generally accepted that 12.7kV 
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SWER has a ‘charging’ current of 25mA per kilometre which clearly concurs with the 

calculated figure (Chapman 2001).  

We note that equation 6.1 obtains exactly the same figure if we considered a harvester of 

1m length and the harvester radius equal to the conductor itself, and so we can safely 

harbour a significant degree of confidence in this equation to estimate the harvester to 

ground capacitance. This is important as this figure essentially governs our harvester 

system source impedance and thus power output performance. 

 

 

6.2.2 Energy Harvester with Transformer Results 

AS expected the tests conducted that included the step down transformer in circuit 

yielded much lower outputs than those without (shown later). Some typical results for 

reference and comparison purposes are shown below (Table 6.1). In some cases the 

digital multimeter (DMM) was connected across the storage capacitor during charging 

and we can see that this severely affected average power (energy over time) transferred to 

the capacitor. It was for this reason that the number of results were limited because to get 

accurate figures the charging needed to be stopped before measurement could occur – and 

subsequently the storage capacitor would be significant discharged during the 

measurement and the whole charging process would need to start again. To increase the 

value of the capacitor to ensure a longer RC time constant with the DMM, the system 

needed charging times extending into hours thus also making it difficult to get many 

measurement results for analysis. 

For measurements of this nature an electrostatic voltmeter (which have input impedances 

into the Giga Ohms and may not even have to contact the device under test) would be the 

perfect instrument but one was unfortunately unable to be procured. 
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Table 6.1 – Initial experiments with step down transformer included, with & without Digital 
Multimeter (ZIN = 9.16Ohm) 

Experiments – 0.47uF 

Storage Capacitor 

Voltage on 

Storage Capacitor 

Instantaneous Power 

dissipated into DMM  

Average Storage 

Power 

30 seconds charge time 

DMM in parallel with 

storage capacitor 

14V 21uW 1.5uW 

30 seconds charge time 

No DMM 

45V N/A 15.9uW 

10 mins charge time 

No DMM 

260V N/A 26.5uW 

 

 

 

6.2.3  Main 240V Experiment Results 

The main experiment involved removing the step down transformer and charging a 22uF 

capacitor and the results are shown below in Figure 6.2, with data in Appendix F.   

 

 

 

Figure 6.2 – Actual charging waveforms vs. simulated waveforms from 240V scenario 
experiment (Stephens 2016)  
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A clear discrepancy exists between the simulation model and the test results in regards to 

the charging rate and also the maximum charge voltage obtained.  

The charging rate is believed to be significantly affected by the leakage current in the 

standard 450V 105°C aluminium electrolytic capacitor used to store the charge. The 

capacitor manufacturer in this Jamicon does not publish data on leakage current but 

similar capacitors from other manufacturers quote figures that are proportional to the 

capacitance value and the applied voltage in addition to a constant of anywhere between 

1-10uA. This is very significant considering the initial source currents were expected to 

be in the order of 10uA RMS (see Figure 6.3 where the solid blue is showing the peak to 

peak source currents entering the harvester circuit).    
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Figure 6.3 – Drop off of peak to peak source current feeding the harvester circuit from 240V 

simulation from experimental parameters (Stephens 2016) 

This clearly will have had a major effect on the energy stored in the capacitor at any 

particular time and has rendered any meaningful examination of the model fruitless. It 

was initially investigated into taking in account the leakage current in the model but in 

this system the phenomena is highly non-linear and any attempt will be implemented with 

little confidence. A much more acceptable and simple next step would involve using 

types of capacitors with leakage currents orders of magnitude lower than that of the 

electrolytic such as Teflon and the other plastic capacitor types (polypropylene, 

polystyrene etc).  This has not been conducted and would need to be done in future work. 

The anomaly of the maximum charging voltage exceeding that of what was expected is 

considered to be the result of significant temperature decrease during the duration of the 

experiment. The experiment was initiated in the mid afternoon and extended just over 

five hours whereby the permittivity of the air is expected to have increased in the ‘free 

space’ between the harvester and virtual ground compared to the relatively insulated 

permittivity inside the sealed harvester. In this way it is expected that the system 

capacitances have changed and thus the voltage divider ratio has subsequently been 

altered contributing towards a greater voltage drop across harvester.  

 

 

6.2.4 Model Performance Discussion 

As highlighted in the previous section the performance of the model has not been able to 

be verified by the experiment due to significant oversights mainly in regard to the storage 

capacitor’s leakage current. As such the prediction for the 12.7kV SWER scenario which 

will be based on this model will be unable to be stated with a high degree of certainty. 

 

 

6.2.5 Extrapolation to 12.7kV SWER  

It is recognised that the available power output from an electric field energy harvester 

deployed on a 12.7kV SWER line will struggle to power all functions of the proposed 

device. It is for this reason that it is considered unrealistic to attempt to insert a step down 

transformer into the harvester circuit due to the burden it will present. As a result the 
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voltages present will be significant, and thus the circuit must have components rated up to 

approximately 1kV. The required capacitive voltage divider present will attempt to push 

voltages well above this if left to continually charge. A practical circuit will need to 

incorporate voltage clamping mechanisms and likely a way to continually ‘tap’ off the 

stored energy into a battery or secondary super capacitor. With this in mind, the predicted 

‘clamped’ output from a 12.7kV SWER power line electric field energy harvester is 

shown below (Figure 6.4). Two scenarios are shown along with their respective predicted 

power outputs. Power is once again calculated using the below equations 6.2 and 6.3, 

with results shown in Figure 6.5. 

 

TB��EU 	(VWX�IY) = 0.5H�B��CDE	H	�B��CDE�  (6.2) 

 

  

�C\E�CDE(T
]]Y) = TF��CG −T^����CG]F��CG − ]^����CG  
(6.3) 

 

 

Scenario 1 attributes: 

• SWER Power pole height of 12.5m 

• Conductor attachment height of 10.5m  

• Area of interest slightly removed from power pole with height 10m 

• Conductor type SCGZ with radius 0.003m 

• Cylinder radius  10cm 

• Cylinder length  50cm 

• Relative Permittivity of 1 

 

 

��" = 2����
cosh'� �ℎ�� 	

= 5.25r5 

 

��� = 2������
ln ����� 	

= 7.93r5 
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Figure 6.4 – 12.7kV SWER simulation #1 (Stephens 2016) 
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Figure 6.5 – 12.7kV SWER simulation #1 Average Power Output (Stephens 2016)  

 

 

Further simulation is conducted by altering the parameters to approach practical limits to 

obtain maximum power outputs; results shown in Figures 6.6 and 6.7. 

Scenario 2 Attributes: 

• SWER Power pole height of 12.5m 

• Conductor attachment height of 10.5m  

• Area of interest slightly removed from power pole with height 10m 

• Conductor type SCGZ with radius 0.003m 

• Cylinder radius  15cm 

• Cylinder length  75cm 

• Relative Permittivity of 1 

 

��" = 2����
cosh'� �ℎ�� 	

= 8.52r5 
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��� = 2������
ln ����� 	

= 10.67r5 
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Figure 6.6 – 12.7kV SWER simulation #2 (Stephens 2016) 

 

 

 

Figure 6.7 – 12.7kV SWER simulation #2 Average Power Output (Stephens 2016) 

 

 

From the simulation we can see that 22.86mW is approaching a hard limit. Even this 

assumes deploying cylinder s of 30cm diameter and 75cm long, on rural SWER lines 10 

meters in the air which will clearly be subject to all sorts of weather events. Wind 

resistance alone may make this size an improbability. The internal circuitry will need to 

overcome several problems of its own mainly in regards to the high voltages and the need 

for careful design work going into conditioning this power to usable voltage levels 

whereby a battery can be charged, without losing too much energy in the process. 
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6.3 Power Budget  

A breakdown of the devices estimated average power consumptions are shown below in 

Table 6.2. 

 

 

Table 6.2 – Estimated device power consumption breakdown  

Device/Function Line Break Detection Only 

P(avg) [mWatts] 

Line Break and Nodal 

Analysis Detection 

P(avg) [mWatts] 

Embedded Microcontroller Unit 10 10 

Analogue to Digital Converters 0.65 1.3 

Passive Circuitry 0.1 0.1 

Buffers and Amplifiers 2 4 

RF Transmitter Activity 3.5 116.5 

RF Receiver Activity 6.5 6.5 

Total 22.75 138.4 

 

 

Extrapolating the simulation model to the 12.7kW SWER scenario we obtained a 

theoretical maximum output of 22.86mW and thus this does bring into the realms of 

possibly a net positive power budget (with line break detection employed only). It is 

however extremely tight and requires the harvester volume and shape to be awkwardly 

large and having the internal power supply components needing to deal with near kilovolt 

conditions (increasing cost and decreasing reliability).  

The scenario for the nodal analysis type of detection which had the promise of capturing 

all previously undetected HIF faults looks to be not feasible due to the high number of 

local periodic RF transmissions required to keep abreast of nodal currents. The frequency 

could indeed be dropped and thus more average power conserved but this in turn will 

increase the time that possible faults go unnoticed effectively increasing the time that 
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protection components can trip a faulted system. In a practical deployment of the system 

it may be decided that to capture these extra faults, even with the delayed time to 

notification, might be ‘better than not’ employing it.   

6.4  Costing Estimates 

A broad picture of cost breakdown estimates for the total Victorian SWER networks is 

shown in Table 6.3. 

Table 6.3 – Cost breakdown estimates for total Victorian SWER networks  

Costs Per Device  

(or per Pole) 

Per Network Total  

Research and Development* N/A N/A $400,000 

Testing (1 Network) N/A N/A $200,000 

Device Hardware $1000 $98,000 $137,200,000 

Base Station $5000 $5000 $7,000,000 

Assembly $120 $11,760 $16,464,000 

Deployment $500 $49,000 $68,000,000 

Remote Control Sectionalisers or ACR’s ** N/A $50,000** $70,000,000** 

Total   $299,264,000 

Costs Per Device  

(or per Pole) 

Per Network Total  

Maintenance and upgrades per annum 

(First 3 years) 

N/A $5000 $7,000,000 

Maintenance and upgrades per annum 

(Next 10 years) 

N/A $2500 $3,500,000 

Maintenance and upgrades per annum  

(Last 12 years) 

N/A $4000 $5,600,000 

Total (Over 25 years expected lifespan) N/A N/A $123,000,000 

 

* Based on equivalent to 2 years work for engineers at $100 per hour. 

** Assumes $50,000 per SWER network which are assumed to have an average of 20km 

of powerlines per circuit equating to 1400 SWER networks. Using these assumptions data 

was extracted from Parsons Brinkerhoff report: ESV Power line Bushfire Safety Review 

– Cost Benefit Analysis (2011) 

The deployment of the proposed system is estimated to cost less than one tenth of the cost 

to replace all SWER networks across Victoria with underground cabling even when 

considering ongoing costs over 25 years.
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7 Conclusions 

 

7.1 Chapter Overview  

This chapter is a brief look at how overall project objectives were satisfied or otherwise 

along with proposed future work. 

 

 

7.2 Achievement of Project Objectives  

 

• To design a simple, reliable energy harvesting system that provides power to all 

device functions. 

The Energy harvesting system and its output was identified as the primary indicator of a 

feasible distributed device detection system.  Respectively this objective was given 

significant attention and results show that the detection system in its simplest form (line 

break detection) could potentially be adequately powered. It was shown that it is unlikely 

more sophisticated forms of fault detection are able to be implemented due to their 

increased power consumption.   

 

• To specify a meshed communications system that can support all alarm and 

condition monitoring data traffic. 

It was identified that to specify a meshed communications system for the proposed 

network of detection devices would require significant customised approaches as off the 

shelf options (hardware, protocols etc) are not applicable or adequate due to the many 

practical constraints (reliability, timeliness, power consumption etc). Investigations 
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focussing on the most important elements of the system point to a design being possible 

but more research is required. 

• To design a logical based fault detection system that compares nodes condition 

monitoring data to identify faults not detectable by conventional methods.    

It was shown that an open detector logic based fault detection system should indeed be 

possible and implemented relatively easily. More sophisticated logic based methods were 

discussed such as nodal analysis to capture a greater percentage of HIFs and are 

promising however the extra burden on the power supply is likely to be too great. 

 

• To specify the system and the individual device to a level where evaluation may 

be undertaken.   

To properly evaluate the detection system would require a number of devices to be fully 

designed and deployed across a scaled system and put into fault scenarios. To model the 

systems with its many intractable elements such as communications, fault detection and 

power supply would prove to be an exercise that amounted to much greater effort than 

actually building a prototype system. To model individual elements such as the open 

conductor detection method would be an exercise in triviality and provide little insight. 

 

 

7.3 Shortcomings and Possible Improvements  

The greatest opportunity missed occurred during the selection of the storage capacitor for 

the scaled 240V energy harvesting experiment. The ‘leakage current’ parameter was not 

assessed and proved to a major factor in the average power produced by the harvester. 

Hence the experiment essentially failed to validate one way or another the models used to 

approximate the physical system. 
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7.4 Further Work  

Before further work that expands on the findings of this paper, it is highly recommended 

that the scaled experiment be performed again with more appropriate components as 

mentioned in the previous section. The results of which should be used to verify models 

especially those involving the use of circuit simulator LTSpice. 

Upon an adequate power supply being determined, a full investigation focusing on the 

wireless mesh communications system needs to be performed culminating in an initial 

design and evaluation.  

Further to this a design and construction of the device including integration of power 

supply, processor, transceiver, sensors and casing should occur. This will inevitably be 

follow by prototype testing and performance analysis.  
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Appendix B – Quoted SWER Characteristics  

 

Below are a number of Victorian SWER line characteristics relevant to the project, along 

with their sources. 

 

The Nous Group report (2010): 

Penetration of SWER technology in Victoria 

Approximate Total length of SWER powerlines in Victoria = 28000km 

Typical loads 

 ‘ 

SWER networks typically supply 10 -50 customers over distances up to 20km 

’ SWER lines generally run point-to point,  

Voltage 

Victorian SWER is at a 12.7kV potential 

Conductor Types 

 ‘ 

Highly strung galvanised steel consisting of three strands are the most common in 

Victoria.  

Maximum Spans 

Maximum spans can be up to 1000m in special cases and often more than 500m 
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Parsons Brinckerhoff (2009): 

Conductor Type: 

‘4/3/2.5 ACSR/AC line for highly loaded sections and 3/2.75 SC/GZ for lesser loaded 

sections and tee-offs. 

 Isolation transformers: 

 25 kVA to 1125kVA’.  

Distribution transformers: 

5 kVA up to 25 kVA.’ 

Power Poles: 

12.5m wooden pole. 

Maximum Span Length: 

 Maximum span length is 380m  

Average Span Length 

205m 

 

Coldham et al (2011): 

Probability of Bushfire Ignition 

 worst case conditions for bushfire ignition - 45°C air temperature, < 20% 

humidity, vegetation moisture content ~5% and wind speed of 10kph) that a fault current 

of 4.2 amperes produced sustained ignition 50% of the time if left for around 155 milli-

seconds. In comparison, a fault that was cleared in 40 milli-seconds or less reduced the 

probability to essentially zero percent.      
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Standards Australia (2010):  

Current Flow  

‘ 

Generally 8 Amperes  

 

 

Holland (2013): 

Power Poles:   

max height = 1 

P AusNet have 521 SWER ACRs  None have remote control 

ACRs are placed strategically along distribution feeders and at the start of each SWER 

system.   
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Appendix C – Project Phase Breakdown  

 

To move the project forward to achieve its aims, the following methodology is proposed:  

 

Table 3.1: Project Phase and Task Descriptions 

Phase 1 Start Up Phase Status 

1A Further Research of energy harvesting techniques - with view to select a 

general design solution that best caters for the proposed application 

(simple, long life, low maintenance, 12.7kV , low current etc) 

Complete 

1B Further Research High Impedance fault detection techniques – with view 

to select a general design solution that best caters for the proposed 

application (local/short detection range, low processing power etc).  

Complete 

1C Further research into low power, low data, and long range meshed 

communications networks for wireless and wired mediums. 

Complete 

1D Refine System Performance Specification – Narrow focus, make critical 

decisions on technologies, 

functions, methods and compatibilities 

Complete 

1E Resources Check Complete 

Phase 2 Design Phase  

2A Complete General System interoperability – This need only be general 

concepts but is needed to help define such things as power budgets and 

fault detection ranges which are required to set specific design criteria 

Complete 

2B Complete energy harvesting prototype design Complete 

2C Complete communications system specification Complete 

2D Complete fault detection and device mapping design Complete 

2E Complete overall system specification/design Commenced 

Phase 3 Build Phase  

3A Build Energy Harvesting Prototype and test jig Complete 

3B Write test program for chosen fault detection technique Complete 

Phase 4 Test/Simulate Phase  

4A Test Energy Harvesting device Completed 

4B Simulate fault detection scenarios  Complete 

Phase 5 Analysis Phase  

5A Energy harvesting performance  Commenced 

5B Fault detection performance Complete 

5C System Performance  Not applicable 

Phase 6 Write Up Phase  

6A Draft Dissertation Complete 
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6B Final Dissertation Complete 

Appendix D – Matlab Electrostatic Harvester Model  

 

% Model to calculate harvested power and energy from an 

electrostatic (capacitive) energy harvester  
% installed on a single phase electrical distribution conductor  
% 
% This model provides energy   

  
clear all; 
close all; 

  
%Global constants 
e_vaccuum = 8.854e-12; % permitivity of free space 

  
%Harvestor Atributes  
length = 0.55; % meters (m) 
enclosure_radius = 0.025; % meters (m) 
height = 0.5; % height from ground meters (m) 
e_relative = 2.4; % relative permitivity   

  
%Conductor atributes  
Vac = 240; % Powerline Volatge Volts (RMS) 
frequency = 50; % Hertz 
wire_radius = 0.01; % meters (m) - (for SWER SCGZ 3/2.75 use 

0.003m) 

  
%Power conditioning and load atributes 
Transformer_ratio = 120; % N1/N2 for reference (N1/N2)^2 = (L1/L2) 
Magnetising_Inductance = 10000; % (Henries) L1 of transformer 
Load_Resistor = 1 % (Ohms) total Resistance (including ESR) in the 

RC storage ciruit 
Storage_Capacitance = 1 % (Farads) 
Storage_Cap_Voltage = 0.23 % (Volts) Max Cap Voltage - cut-off 

circuits to protect and/or harvest 

  
%Simulation atributes 
samples= 10000; 
max_time = 2000 %seconds 
time = [0:(max_time/samples):max_time]; 

  
% Derived atributes 
omega = 2*pi*frequency; %radian frequency 
Harvestor_Capacitance = 

(2*pi*e_vaccuum*e_relative*length)/(log(enclosure_radius/wire_radi

us)) 
Harvestor_Reactance = 1/(i*omega*Harvestor_Capacitance); 
Ground_Capacitance = 

2*pi*e_vaccuum*length/(acosh(height/enclosure_radius)) 
% Ground_Capacitance = 19e-12; 
Ground_Reactance = 1/(i*omega*Harvestor_Capacitance); 
Magnetising_Reactance = i*omega*Magnetising_Inductance; 

  
% Final condition calculation 
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% Calculating equivalent AC resistance appearing across conductor 

and harvestor electrode 
%  Transformer magnetising inductance  // harvestor capacitance  

  
Zprimary = 

Magnetising_Reactance*Harvestor_Reactance/(Magnetising_Reactance + 

Harvestor_Reactance); 

  
% Capacitor Charging time is related to a final condition 

(secondary voltage after rectification) if the storage 
% capacitor had no upper voltage limit 
% Practically Final secondary voltage appearing after capacitor is 

fully charged is set 
% by Storage_Cap_Voltage and enforced by overvoltage cutout 

circuit 

  
Vsec_final =  sqrt(2)*( abs(( Vac*( Zprimary/(Zprimary + 

Ground_Reactance) ) )/Transformer_ratio) ) 

  
% Equivalent resistance seen by storage capacitor (treating 

reactances as pure resistors and ignoring rectifier diode effects)  

  
Req = Load_Resistor + ( ( ( (abs( Zprimary ) )*( abs( 

Ground_Reactance ) ) )/( ( abs( Zprimary) ) + (abs( 

Ground_Reactance) ) ) )/(Transformer_ratio^2) ) 

  

  

 

  
% Calculating average power from energy stored in cap over time 

elapsed 

  
if Storage_Cap_Voltage > Vsec_final 
    disp('Secondary Voltage will not reach Max Capacitor Voltage') 
    Energy_stored = 0.5*Storage_Capacitance*(Vsec_final^2) 
    disp('Joules'); 

    

     
    time_elapsed = -(Req*Storage_Capacitance)*log((Vsec_final-

0.98*Vsec_final)/Vsec_final) 
    average_power = (Energy_stored)/time_elapsed 
    disp('Watts'); 

     
else 
     Energy_stored = 

0.5*Storage_Capacitance*(Storage_Cap_Voltage^2)  
     disp('Joules'); 

     

     
    time_elapsed = -(Req*Storage_Capacitance)*log((Vsec_final - 

Storage_Cap_Voltage)/Vsec_final) 
    average_power = (Energy_stored)/time_elapsed 
    disp('Watts'); 

     
end 
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 Vcap = Vsec_final + ( -Vsec_final*exp(-

time./(Req*Storage_Capacitance)) ); 
    for i = 1:samples 
        if Vcap(i) > Storage_Cap_Voltage; 
            Vcap(i) = Storage_Cap_Voltage; 
        end 
    end 

     
plot(time,Vcap); 
title([num2str(Storage_Capacitance),' Farad Storage Capacitor 

Voltage' ,]); 
xlabel('Time (seconds)'); 
ylabel('Capacitor Voltage (V)'); 
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Appendix E – Simulation Input Parameters and Output Figures 

 

Zangle Parameters 

%Global constants 
e_vaccuum = 8.854e-12; % permitivity of free space 
  
%Harvestor Atributes  
length = 0.55; % meters (m) 
enclosure_radius = 0.15; % meters (m) 
height = 4.5; % height from ground meters (m) 
e_relative = 1; % relative permitivity   
  
%Conductor atributes  
Vac = 150000; % Powerline Volatge Volts (RMS) 
frequency = 50; % Hertz 
wire_radius = 0.03; % meters (m) - (for SWER SCGZ 3/2.75 use 0.003m) 
  
%Power conditioning and load atributes 
Transformer_ratio = 100; % N1/N2 for reference (N1/N2)^2 = (L1/L2) 
Magnetising_Inductance = 3500; % (Henries) L1 of transformer 
Load_Resistor = 1 % (Ohms) total Resistance (including ESR) in the RC storage ciruit 
Storage_Capacitance = 4.7e-6 % (Farads) 
Storage_Cap_Voltage = 50 % (Volts) Max Cap Voltage - cut-off circuits to protect and/or 
harvest 
  
%Simulation atributes 
samples= 10000; 
max_time = 0.005 % seconds 
time = [0:(max_time/samples):max_time]; 
 
 

 

Zangle Simulation 1  

>> overall_model 

Load_Resistor =1 

Storage_Capacitance =4.7000e-06 

Storage_Cap_Voltage =50 

max_time =0.0050 
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Harvestor_Capacitance =1.9011e-11 

Vsec_final =14.1164 

Req = 110.9557 

Secondary Voltage will not reach Max Capacitor Voltage 

Energy_stored = 4.6829e-04Joules 

time_elapsed = 0.0020 

average_power = 0.2295Watts 

 

 

Zangle Simulation 2 

Zangle Second Sim 

overall_model 

Load_Resistor = 1 

Storage_Capacitance = 4.7000e-06 

Storage_Cap_Voltage = 8 

max_time = 0.0050 

Harvestor_Capacitance =1.9011e-11 

Vsec_final =14.1164 

Req =110.9557 

Energy_stored =1.5040e-04Joules 

time_elapsed =4.3616e-04 

average_power = 0.3448Watts 
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Zhao Parameters 

%Global constants 
e_vaccuum = 8.854e-12; % permitivity of free space 
  
%Harvestor Atributes  
length = 0.2; % meters (m) 
enclosure_radius = 0.05; % meters (m) 
height = 0.9; % height from ground meters (m) 
e_relative = 1; % relative permitivity   
  
%Conductor atributes  
Vac = 60000; % Powerline Volatge Volts (RMS) 
frequency = 50; % Hertz 
wire_radius = 0.01; % meters (m) - (for SWER SCGZ 3/2.75 use 0.003m) 
  
%Power conditioning and load atributes 
Transformer_ratio = 120; % N1/N2 for reference (N1/N2)^2 = (L1/L2) 
Magnetising_Inductance = 10000; % (Henries) L1 of transformer 
Load_Resistor = 1 % (Ohms) total Resistance (including ESR) in the RC storage ciruit 
Storage_Capacitance = 3.6 % (Farads) 
Storage_Cap_Voltage = 5 % (Volts) Max Cap Voltage - cut-off circuits to protect 
  
%Simulation atributes 
samples= 10000; 
max_time = 3000 %seconds 
time = [0:(max_time/samples):max_time]; 

 

 

Zhao Simulation 1 

>> overall_model 

Load_Resistor = 1 

Storage_Capacitance =3.6000 

Storage_Cap_Voltage =5 

max_time =3000 

Harvestor_Capacitance =6.9131e-12 

Ground_Capacitance =3.1055e-12 

Vsec_final =4.8913 
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Req = 219.1662 

Secondary Voltage will not reach Max Capacitor Voltage 

Energy_stored =43.0652Joules 

time_elapsed =3.0866e+03 

average_power =0.0140 Watts 

 

 

Zhao Simulation 2 

overall_model 

Load_Resistor = 1 

Storage_Capacitance =3.6000 

Storage_Cap_Voltage = 3 

max_time = 3000 

Harvestor_Capacitance =6.9131e-12 

Ground_Capacitance =3.1055e-12 

Vsec_final =4.8913 

Req =219.1662 

Energy_stored =16.2000 Joules 

time_elapsed =749.6931 

average_power = 0.0216 Watts 
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12.7kV SWER Parameters 

%Global constants 
e_vaccuum = 8.854e-12; % permitivity of free space 
  
%Harvestor Atributes  
length = 0.55; % meters (m) 
enclosure_radius = 0.025; % meters (m) 
height = 7; % height from ground meters (m) 
e_relative = 1; % relative permitivity   
  
%Conductor atributes  
Vac = 12700; % Powerline Volatge Volts (RMS) 
frequency = 50; % Hertz 
wire_radius = 0.003; % meters (m) - (for SWER SCGZ 3/2.75 use 0.003m) 
  
%Power conditioning and load atributes 
Transformer_ratio = 120; % N1/N2 for reference (N1/N2)^2 = (L1/L2) 
Magnetising_Inductance = 10000; % (Henries) L1 of transformer 
Load_Resistor = 1 % (Ohms) total Resistance (including ESR) in the RC storage ciruit 
Storage_Capacitance = 1 % (Farads) 
Storage_Cap_Voltage = 2.7 % (Volts) Max Cap Voltage - cut-off circuits to protect 
and/or harvest 
  
%Simulation atributes 
samples= 10000; 
max_time = 2000 %seconds 
time = [0:(max_time/samples):max_time]; 

 

 

12.7kV SWER Simulation 1 

> overall_model 

Load_Resistor = 1 

Storage_Capacitance =1 

Storage_Cap_Voltage =2.7000 

max_time = 2000 

Harvestor_Capacitance = 1.4431e-11 

Ground_Capacitance =4.8353e-12 

Vsec_final =2.1942 
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Req =219.1662 

Secondary Voltage will not reach Max Capacitor Voltage 

Energy_stored = 2.4073Joules 

time_elapsed =857.3830 

average_power = 0.0028Watts 

 

 

12.7kV SWER Simulation 2 

> overall_model 

Load_Resistor =1 

Storage_Capacitance =1 

Storage_Cap_Voltage =1.8000 

max_time =2000 

Harvestor_Capacitance =1.4431e-11 

Ground_Capacitance =4.8353e-12 

Vsec_final =2.1942 

Req =219.1662 

Energy_stored =1.6200Joules 

time_elapsed =376.2367 

average_power =0.0043 Watts 
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12.7kV SWER Simulation 3 

Relative dialectric = 2.4 (polystyrene) 

>> overall_model 

Load_Resistor =  1 

Storage_Capacitance = 1 

Storage_Cap_Voltage = 1.8000 

max_time = 200 

Harvestor_Capacitance = 3.4634e-11 

Ground_Capacitance = 4.8353e-12 

Vsec_final = 5.4915 

Req =219.1662 

Energy_stored = 1.6200Joules 

time_elapsed =  87.0450 

average_power = 0.0186Watts 

 

 

240V Mains Simulation 1 

(Parameters same as previous) 

Relative dialetric = 2.4 (Polystyrene) 

>> overall_model 

Load_Resistor = 1 

Storage_Capacitance =  1 

Storage_Cap_Voltage = 1.8000 

max_time = 2000 



Appendices  
115 

 
Harvestor_Capacitance =3.4634e-11 

Ground_Capacitance = 8.2959e-12 

Vsec_final =0.1038 

Req =219.1662 

Secondary Voltage will not reach Max Capacitor Voltage 

Energy_stored =0.0054Joules 

time_elapsed = 857.3830 

average_power =6.2806e-06Watts 

 

 

240V Mains Simulation 2 

>> overall_model 

Load_Resistor =1 

Storage_Capacitance =1 

Storage_Cap_Voltage =0.0800 

max_time = 2000 

Harvestor_Capacitance =3.4634e-11 

Ground_Capacitance = 8.2959e-12 

Vsec_final = 0.1038 

Req =219.1662 

Energy_stored =0.0032Joules 

time_elapsed =322.9448 

average_power =9.9088e-06 Watts 
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240V Mains Simulation 3 

Increased conductor size 

>> overall_model 

Load_Resistor =  1 

Storage_Capacitance =1 
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Appendix F – 240V Experiment Output Results  

 

Using 22uF Storage Capacitor  

 

Time 
(Mins) 

Time 
(S) 

Voltage 
(V) 

Energy 
(J) 

Delta Energy 
(J) 

Average Power 
(W) 

15 900 113 0.140459 0.140459 0.000156066 

30 1800 151 0.250811 0.110352 6.13067E-05 

45 2700 177 0.344619 0.093808 3.47437E-05 

60 3600 195 0.418275 0.073656 0.00002046 

75 4500 211 0.489731 0.071456 1.58791E-05 

90 5400 224 0.551936 0.062205 1.15194E-05 

105 6300 234 0.602316 0.05038 7.99683E-06 

120 7200 245 0.660275 0.057959 8.04986E-06 

135 8100 255 0.715275 0.055 6.79012E-06 

150 9000 265 0.772475 0.0572 6.35556E-06 

165 9900 272 0.813824 0.041349 4.17667E-06 

180 10800 279 0.856251 0.042427 3.92843E-06 

195 11700 284 0.887216 0.030965 2.64658E-06 

210 12600 290 0.9251 0.037884 3.00667E-06 

225 13500 295 0.957275 0.032175 2.38333E-06 

240 14400 299 0.983411 0.026136 0.000001815 

255 15300 303 1.009899 0.026488 1.73124E-06 

270 16200 307 1.036739 0.02684 1.65679E-06 

285 17100 310 1.0571 0.020361 1.1907E-06 

300 18000 314 1.084556 0.027456 1.52533E-06 

315 18900 316 1.098416 0.01386 7.33333E-07 

 

 

 

 


