10 research outputs found

    A Low Power 5.8GHz Fully Integrated CMOS LNA for Wireless Applications

    Get PDF
    A low power 5.8 GHz fully integrated CMOS low noise amplifier (LNA) with on chip spiral inductors for wireless applications is designed based on TSMC 0.18 µm technology in this paper. The cascode structure and power-constrained simultaneous noise and input matching technique are adopted to achieve low noise, low power and high gain characteristics. The proposed LNA exhibit a state of the art performance consuming only 6.4mW from a 1.8V power supply. The simulation results show that it has a noise figure (NF) only 0.972 dB, which is perfectly close to NFmin while maintaining the other performances. The proposed LNA also has an input 1-dB compression point (IP1dB) of-21.22 dBm, a power gain of 17.04 dB, and good input and output reflection coefficients, which indicate that the proposed LNA topology is very suitable for the implementation of narrowband LNAs in 802.11a wireless applications

    RF Circuit linearity optimization using a general weak nonlinearity model

    Get PDF
    This paper focuses on optimizing the linearity in known RF circuits, by exploring the circuit design space that is usually available in today’s deep submicron CMOS technologies. Instead of using brute force numerical optimizers we apply a generalized weak nonlinearity model that only involves AC transfer functions to derive simple equations for obtaining design insights. The generalized weak nonlinearity model is applied to three known RF circuits: a cascode common source amplifier, a common gate LNA and a CMOS attenuator. It is shown that in deep submicron CMOS technologies the cascode transistor in both the common source amplifier and in the common gate amplifier significantly contributes IM3 distortion. Some design insights are presented for reducing the cascode transistor related distortion, among which moderate inversion biasing that improves IIP3 by 10 dB up to 5 GHz in a 90 nm CMOS process. For the attenuator, a wideband IM3 cancellation technique is introduced and demonstrated using simulations

    A 0.18 µm differential LNA with reduced power consumption

    Get PDF
    The growth of wireless services and other telecom applications has increased the demand of low-cost Radio-Frequency Integrated Circuits (RFICs) and pushed the semiconductor industry towards complete system-on-chip solutions. This work presents the design of an inductively source degenerated CMOS differential cascode Low Noise Amplifier (LNA) and without source degenerated CMOS differential cascode Low Noise Amplifier (LNA) operating at 2 GHz frequency. LNA is an electronic device used to amplify weak signals before it can be fed to other parts of the receiver. A good LNA has a low noise figure (NF), a large enough gain and low power consumption. During reception of radio signal sent by satellite in a communication system, in the receiver section, second element after antenna is LNA. The receiver is the most power hungry block and the power consumption should be as low as possible. So, noise figure and power consumption are no less important issues than gain. A Differential Cascode Low Noise Amplifier can be treated as a CS-CG two stage amplifier. An inductor is added at the drain of the main transistor to reduce the noise contribution of the cascode transistors. Another inductor connected at the gate of the cascode transistor and capacitive cross-coupling are strategically combined to reduce the noise and to increase power gain of the cascode transistors in a Differential Cascode LNA. It can reduce the power consumption, and increase the power gain of the LNA. The area occupied by the proposed design measured from the layout is observed as 1.111 mm × 1.27 mm. The LNA is designed with the 0.18 µm standard CMOS process. Cadence design tool Spectre_RF is used to design and simulation based on resistors, inductors, capacitors and transistors

    Survey on individual components for a 5 GHz receiver system using 130 nm CMOS technology

    Get PDF
    La intención de esta tesis es recopilar información desde un punto de vista general sobre los diferentes tipos de componentes utilizados en un receptor de señales a 5 GHz utilizando tecnología CMOS. Se ha realizado una descripción y análisis de cada uno de los componentes que forman el sistema, destacando diferentes tipos de configuraciones, figuras de mérito y otros parámetros. Se muestra una tabla resumen al final de cada sección, comparando algunos diseños que se han ido presentando a lo largo de los años en conferencias internacionales de la IEEE.The intention of this thesis is to gather information from an overview point about the different types of components used in a 5 GHz receiver using CMOS technology. A review of each of the components that form the system has been made, highlighting different types of configurations, figure of merits and parameters. A summary table is shown at the end of each section, comparing many designs that have been presented over the years at international conferences of the IEEE.Departamento de Ingeniería Energética y FluidomecánicaGrado en Ingeniería en Electrónica Industrial y Automátic

    High Performance RF and Basdband Analog-to-Digital Interface for Multi-standard/Wideband Applications

    Get PDF
    The prevalence of wireless standards and the introduction of dynamic standards/applications, such as software-defined radio, necessitate the next generation wireless devices that integrate multiple standards in a single chip-set to support a variety of services. To reduce the cost and area of such multi-standard handheld devices, reconfigurability is desirable, and the hardware should be shared/reused as much as possible. This research proposes several novel circuit topologies that can meet various specifications with minimum cost, which are suited for multi-standard applications. This doctoral study has two separate contributions: 1. The low noise amplifier (LNA) for the RF front-end; and 2. The analog-to-digital converter (ADC). The first part of this dissertation focuses on LNA noise reduction and linearization techniques where two novel LNAs are designed, taped out, and measured. The first LNA, implemented in TSMC (Taiwan Semiconductor Manufacturing Company) 0.35Cm CMOS (Complementary metal-oxide-semiconductor) process, strategically combined an inductor connected at the gate of the cascode transistor and the capacitive cross-coupling to reduce the noise and nonlinearity contributions of the cascode transistors. The proposed technique reduces LNA NF by 0.35 dB at 2.2 GHz and increases its IIP3 and voltage gain by 2.35 dBm and 2dB respectively, without a compromise on power consumption. The second LNA, implemented in UMC (United Microelectronics Corporation) 0.13Cm CMOS process, features a practical linearization technique for high-frequency wideband applications using an active nonlinear resistor, which obtains a robust linearity improvement over process and temperature variations. The proposed linearization method is experimentally demonstrated to improve the IIP3 by 3.5 to 9 dB over a 2.5–10 GHz frequency range. A comparison of measurement results with the prior published state-of-art Ultra-Wideband (UWB) LNAs shows that the proposed linearized UWB LNA achieves excellent linearity with much less power than previously published works. The second part of this dissertation developed a reconfigurable ADC for multistandard receiver and video processors. Typical ADCs are power optimized for only one operating speed, while a reconfigurable ADC can scale its power at different speeds, enabling minimal power consumption over a broad range of sampling rates. A novel ADC architecture is proposed for programming the sampling rate with constant biasing current and single clock. The ADC was designed and fabricated using UMC 90nm CMOS process and featured good power scalability and simplified system design. The programmable speed range covers all the video formats and most of the wireless communication standards, while achieving comparable Figure-of-Merit with customized ADCs at each performance node. Since bias current is kept constant, the reconfigurable ADC is more robust and reliable than the previous published works

    Compact modelling in RF CMOS technology

    Get PDF
    With the continuous downscaling of complementary metal-oxide-semiconductor (CMOS) technology, the RF performance of metal-oxide-semiconductor field transistors (MOSFETs) has considerably improved over the past years. Today, the standard CMOS technology has become a popular choice for realizing radio frequency (RF) applications. The focus of the thesis is on device compact modelling methodologies in RF CMOS. Compact models oriented to integrated circuit (ICs) computer automatic design (CAD) are the key component of a process design kit (PDK) and the bridge between design houses and foundries. In this work, a novel substrate model is proposed for accurately characterizing the behaviour of RF-MOSFETs with deep n-wells (DNW). A simple test structure is presented to directly access the substrate parasitics from two-port measurements in DNWs. The most important passive device in RFIC design in CMOS is the spiral inductor. A 1-pi model with a novel substrate network is proposed to characterize the broadband loss mechanisms of spiral inductors. Based on the proposed 1-pi model, a physics-originated fully-scalable 2-pi model and model parameter extraction methodology are also presented for spiral inductors in this work. To test and verify the developed active and passive device models and model parameter extraction methods, a series of RF-MOSFETs and planar on-chip spiral inductors with different geometries manufactured by employing standard RF CMOS processes were considered. Excellent agreement between the measured and the simulated results validate the compact models and modelling technologies developed in this work

    Bandwidth Enhancement Techniques For Cmos Transimpedance Amplifier

    Get PDF
    Tez (Doktora) -- İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, 2016Thesis (PhD) -- İstanbul Technical University, Institute of Science and Technology, 2016CMOS Transferempedans Kuvvetlendiricinin bandgenis¸lig˘ i bas¸arımını gelis¸tirmeye yönelik teknikler haberles¸me teknolojisinde ve uygulamalarında ortaya çıkan hızlı gelis¸meler ve uygulamalar verilere hızlı eris¸im avantajı yanında hızlı hesaplama ve haberles¸me tekniklerine imkan veren bir bilgi çag˘ ını ortaya çıkarmıs¸tır. Sürekli artan hızlı bilgi transferi ihtiyacı, hızlı elemanların ve tümdevrelerin tasarımına yönelik aras¸tırmalara liderlik eden optik haberles¸me teknig˘ ini dog˘ urmus¸tur. Veri iletimi için mevcut ortamlar arasında optik fiber yapıları en iyi bas¸arımı sunmaktadır. Günümüzde optik fiberler çok yog˘ un sayısal veri transferinde genis¸ kullanım alanı bulmaktadır. Yog˘ un veri aktarımı kilometrelerce uzunlukta optik fiberler üzerinde önemli bir kayıp olmaksızın yapılabilmektedir. Normal s¸artlarda, is¸aret aktarımının ıs¸ık ile yapılması durumunda ortaya çıkan kayıp elektriksel yolla yapılan aktarıma gore daha düs¸üktür. Optik fiberler genel bas¸arımı iyiles¸tirmenin yanında düs¸ük maliyet avantajını da sunmaktadır. En yüksek teknolojilerde, optik fiber elemanları ve sistemleri çok yog˘ un veri aktarımı amacıyla kullanılmaktadır. Sonuç olarak optik fiber teknolojisi düs¸ük kayıpla çok yog˘ un veri aktarımını az maliyetle sunabilen bir teknoloji olarak günümüzde çok önemli bir konuma sahiptir. Genel olarak, optik haberles¸me sistemlerinde kullanılan analog devreler Galyum Arsenik (GaAs) veya Indiyum Fosfid (InP) teknolojileri ile üretilmektedir. Bu prosesler yüksek hızlı devreler için olus¸turulmakta olup optik haberles¸me sistemlerinin ihtiyaç duydug˘ u yüksek band genis¸lig˘ ine sahip devreleri üretmek için genellikle tek alternatif olarak kars¸ımıza çıkmaktadırlar. Bununla birlikte, CMOS proseslerinde ortaya çıkan hızlı gelis¸meler sayesinde daha yüksek bas¸arımlara sahip analog devreleri CMOS proses kullanarak tasarlama ve gerçekles¸tirme imkanları gittikçe artmaktadır. CMOS prosesin tercih edilmesine sebep olan en önemli avantaj maliyetlerde ortaya çıkan büyük düs¸üs¸tür. CMOS proseslerin maliyetinin düs¸ük olmasının sebebi, büyük alan kullanımı gerektiren sayısal devre gerçekles¸tirmelerinde çok genis¸ bir kullanıma sahip olmasıdır. CMOS prosesin dig˘ er bir avantajı sayısal ve analog devrelerin aynı taban üzerinde gerçekles¸tirilmesine imkan vermesidir. Transferempedans kuvvetlendirici (TIA) optik haberles¸me alıcılarındaki ilk blok olup giris¸indeki akımı çıkıs¸ında gerilime dönüs¸türmektedir. Tipik bir TIA’nın önemli bas¸arım ihtiyaçları genis¸ bandgenis¸lig˘ i, yüksek transferempedans kazancı, düs¸ük gürültü, düs¸ük güç tüketimi ve küçük grup geçikme deg˘ is¸im aralıg˘ ıdır. Nano teknolojilerdeki güncel gelis¸meler, optik alıcıların giris¸ katı uygulamalarında gerekli kolay bir s¸ekilde elde edilemeyen bas¸arımları sag˘ layabilen CMOS Transfer- empedans Kuvvetlendiricinin (TIA) tasarımını ekonomik hale getirmis¸tir. TIA tasarımında dikkat edilmesi gereken iki önemli mesele bandgenis¸lig˘ i ve giris¸ hassasiyetidir. TIA’nın bandgenis¸lig˘ i genellikle giris¸teki parasitic kapasite tarafından sınırlanmaktadır. TIA’nın bandgenis¸lig˘ i fotodiyot kapasitesi, transistor giris¸ kapasitesi ve transistor giris¸ direncinin belirledig˘ i RC zaman sabiti ile bulunabilir. Giris¸ hassasiyeti ise TIA’nın giris¸ gürültü akımından etkilenmektedir. Bundan dolayı TIA’nın bandgenis¸lig˘ i ve giris¸ is¸areti hassasiyeti bas¸arımlarını optimum bir s¸ekilde temin eden uygun devre topolojisinin belirlenmesi önemli bir meseledir. Bu tez, CMOS teknolojisi kullanan Transferempedans Kuvvetlendiricinin band- genis¸lig˘ i bas¸arımını gelis¸tirmeye yönelik yeni teknikler sunan bir çalıs¸madır. CMOS TIA’nın bandgenis¸lig˘ i bas¸arımını iyiles¸tirmeye yönelik farklı yaklas¸ımlar tez içerisinde gösterilmektedir. Bundan bas¸ka, bu çalıs¸ma transferempedansı kuvvetlendiricinin analizini ve tasarımını tam olarak anlamak için gerekli altyapı bilgisini de sunmaktadır. Bu tezde, sistemle devre tasarımı arasındaki bos¸lug˘ u doldurmak için s¸unlar yapılmıs¸tır: - Band genis¸lig˘ i bas¸arımının arttırılmasının matematiksel analizlerle anlas¸ılması. - Gerçekles¸tirilebilir yeni devre yapılarının tanıtılması. - Teklif edilen tasarımların CMOS teknolojisiyle gerçekles¸tirilebilirlig˘ inin kapsamlı ve detaylı simülasyonlar kullanılarak gösterilmesi. Sunulan yeni devre yapılarının ilki olarak, negatif empedans devresinin bandgenis¸lig˘ i artıs¸ı için kullanılabileceg˘ i bu tezde gösterilmis¸ olup bu teknik bu tezde TIA’nın çıkıs¸ kutpu için uygulanmaktadır. Bandgenis¸lig˘ i, kazancı (gmRout) arttırarak ve çıkıs¸ta aynı zaman sabiti korunarak arttırılabilir. Çıkıs¸ direnci arttırılarak kazanç (A) yükseltilebilir. Çıkıs¸ direnci çıkıs¸a uygulanacak bir negative direnç devresi ile arttırılabilir. Çıkıs¸ta aynı zaman sabitini korumak için ise negatif kapasite devresi kullanılabilir. Daha yüksek kazanç deg˘ eri (A) rezistif geribesleme sayesinde giris¸ direncini azaltarak giris¸ kutbunun yükselmesini sag˘ lamaktadır. Sonuç olarak, bandgenis¸lig˘ i bas¸arımında bir iyiles¸tirme elde edilebilmektedir. Teklif edilen topoloji ile 7GHz bandgenis¸lig˘ ine ve 54.3dB’lik kazanca sahip bir TIA tasarlanmıs¸tır. Teklif edilen TIA’nın 1.8V’luk besleme kaynag˘ ından çektig˘ i toplam güç 29mW’tır. Teklif edilen TIA’nın 0.18um CMOS proses ile post-serimi yapılmıs¸tır. Benzetimle elde edilmis¸ giris¸ gürültü akım yog˘ unlug˘ u 5.9pA/ Hz olup kapladıg˘ ı alan 230umX45um olmus¸tur. Tezde bir sonraki çalıs¸mada es¸les¸tirme teknig˘ i kullanılarak genis¸ bantlı bs¸r TIA tasarlanmıs¸tır. Giris¸te seri empedans es¸les¸tirme teknig˘ i ve çıkıs¸ta T tipi es¸les¸tirme yapısı birlikte kullanılarak TIA’nın bandgenis¸lig˘ i bas¸arımının iyi bir düzeyde iyiles¸tirilebileceg˘ i gösterilmis¸tir. Bu yaklas¸ım 0.18um CMOS teknolojisi ile yapılmıs¸ bir tasarım örneg˘ i ile desteklenmis¸tir. Post serim sonuçları 50fF’lık bir fotodiyot kapasitesi için 20GHz’lik bandgenis¸lig˘ i, 52.6dB’lik transferdirenci kazancı, 8.7pA/ Hz ‘lik giris¸ gürültü akımı ve 3pS’den daha az grup geçikmesi bas¸arımılarını vermis¸tir. Bu TIA uygulaması 1.8V’luk besleme kaynag˘ ından 1.3mW güç çekmis¸tir. Tezin üçüncü as¸amasında TIA band genis¸lig˘ i bas¸arımını arttırmaya yönelik bas¸ka bir yapı sunulmaktadır. Bu yapı, literatürde bilinen regule edilmis¸ ortak geçitli mimari ile birlikte farklı rezonans frekanslarına sahip iki rezonans devresinin paralel kullanımını içermektedir. Teklif edilen TIA devresinde, kapasite dejenarasyon ve seri endüktif tepe teknikleri kutup-sıfır kompanzasyonu için kullanılmıs¸tır. 100fF’lık fotodiyot kapasitesine sahip bir TIA 0.18um CMOS prosesi ili tasarlanmıs¸tır. Post-serim sonuçları 13GHz’lik bandgenis¸lig˘ i, 53dB’lik transferdirenci kazancı, 24pA/ Hz ‘lik xxvi giris¸ gürültü akımı ve 5pS’den daha az grup geçikmesi bas¸arımılarını vermis¸tir. Bu TIA uygulaması 1.8V’luk besleme kaynag˘ ından 11mW güç çekmis¸tir. Tezin dördüncü as¸amasında, regule edilmis¸ ortak geçitli mimari kullanan TIA’nın bandgenis¸lig˘ i bas¸arımını arttırmaya yönelik bir teknik tanıtılmıs¸tır. Bu teknik, resistif kompanzasyon teknig˘ ini ve merdiven es¸les¸tirme yapısını bir kaskod akım kaynag˘ ı ile birlikte kullanmaya dayanmaktadır. Bu yapının bas¸arımını göstermek amacıyla, 0.18um CMOS prosesi ile bir tasarım yapılmıs¸tır. Post-serim sonuçları 8.4GHz’lik bandgenis¸lig˘ i, 51.3dB’lik transferdirenci kazancı, 20pA/ Hz ‘lik giris¸ gürültü akımı ve 4pS’den daha az grup geçikmesi bas¸arımılarını vermis¸tir. Bu TIA uygulaması 1.8V’luk besleme kaynag˘ ından 17.8mW güç çekmis¸tir. Tezin son as¸amasında, tezde sunulan teknikler ve yapıların kendi aralarında kars¸ılas¸tırılması verilmektedir. Kars¸ılas¸tırma öncelikli olarak band genis¸lig˘ i, transferempedansı kazancı, gürültü, güç tüketimi, grup geçikme deg˘ is¸im aralıg˘ ı ve kapladıg˘ ı alan için yapılmaktadır. Bunlara ek olarak, sunulan yapıların kullandıg˘ ı tekniklerin avantajlı yanları ile birlikte (kararlılık üzerinde olus¸abilecek negatif etkiler gibi) dezavantajlı tarafları da tezin son as¸amasında verilmektedir. Tezin son as¸amasında yapılan kars¸ılas¸tırmalar, en iyi bant genis¸lig˘ i bas¸arımının es¸les¸tirme teknig˘ ini kullanan yapıdan elde edildig˘ ini göstermektedir. Bununla birlikte dig˘ er yapıların da band genis¸lig˘ i bas¸arımı üzerinde önemli iyiles¸tirmeler yaptıg˘ ı ortaya konulmaktadır. Gürültü açısından ise en yüksek bas¸arımın negatif empedans teknig˘ ini kullanan yapıda elde edildig˘ i görülmektedir. Bu yapı aynı zamanda düs¸ük alan kullanımı imkanı da sunmaktadır. Tezde sunulan dig˘ er iki yapı ise özellikle yüksek deg˘ erli fotodiyot kapasiteleri için incelenmis¸ olup band genis¸lig˘ i bas¸arımı üzerinde önemli iyiles¸tirmeler yaptıkları gösterilmektedir. Sonuç olarak, bu tezde transferempedans kuvvetlendiricinin bandgenis¸lig˘ i bas¸arımını iyiles¸tiren farklı teknikler sunulmakta olup bu teknikler ayrıntılı ve kars¸ılas¸tırmalı olarak incelenmektedir. Tezde verilen sonuçlar sunulan yeni tekniklerin bas¸arımlarının yüksek oldug˘ unu ve literature yeni ve güçlü alternatfiler sunuldug˘ unu göstermektedir. Tezde sunulan yaklas¸ımların ve tekniklerin gelecekte yapılacak benzer aras¸tırmalara hem yardımcı olacak hem de referans olacak nitelikte oldug˘ u düs¸ünülmektedir.The accelerated development of integrated systems in the communication technology and their application are among the significant technologies that have developed the information era by empowering high-speed computation and communication technique besides high-speed access to stored data. The continuous growth demand for high-speed transport of information has rekindled optical communications, leading to derived research on high-speed device and integrated circuit design. Among the available medium to transfer the data, optical fibers have the best performance. Optical fibers are very common these days to transport very high rate digital data. Such high speed data rates can be transported over kilometers of optical fiber and without significant loss. Normally loss is very low when the signal is transmitted using light rather than electrical signal. These fibers also have the advantage of being low cost in addition to improvement of performance. In state-of-the-art technology, fiber optic devices and systems are evidently employed to realize very high data rates. Fiber optic communication is a solution because high data rates can be transmitted through this high capacity cable with high performance. Traditionally, analog circuits used in optical communication systems are implemented using Gallium Arsenide (GaAs) or Indium Phosphide (InP) technologies. These processes are designed for high speed circuits, and have been traditionally the only technologies able to produce the high bandwidth circuits required in optical communication systems. However, due to the aggressive scaling of the CMOS process, it is now becoming possible to design high performance analog circuits in CMOS. The primary advantage of moving to a CMOS process is a dramatic reduction in cost due to its widespread use in high volume digital circuits. Another advantage of using CMOS is its ability to integrate digital and analog circuits onto the same substrate. Transimpedance amplifier (TIAs) is the first building block in the optical communication receiver that converts the small signal current to a corresponding output voltage signal. The important requirements of a typical TIA are large bandwidth, high transimpedance gain, low noise, low power consumption, and small group delay variation. Current developments in nanoscale technologies made it economically feasible to design CMOS transimpedance amplifier (TIA) that satisfies the stringent performances necessary for the front-end optical transceivers applications such as low power, low cost and high integration which offers the most economical solution in the consumer application market. In designing of TIA, the two major factors that must be considered are the bandwidth and the input sensitivity. The bandwidth of TIA is usually limited by the parasitic capacitance at the input stage, and it can be calculated by its RC time constant contributed by photodiode capacitance, parasitic capacitance and input resistance of the amplifier. The sensitivity is affected by the input current noise of the TIA. Therefore it is challenge to choose the suitable circuit topology that provides an optimal trade-off between bandwidth and input signal sensitivity for TIA. This thesis is an attempt toward providing novel techniques to extend the bandwidth of the transimpedance amplifier using CMOS technology. Different approaches used to improve the bandwidth of CMOS TIAs are covered. Moreover, this research provides the necessary background knowledge to fully understand the analysis and design of the transimpedance amplifier (TIA). Bridging the gap between system and circuit design is done by: Understanding the bandwidth expansion by mathematical analysis. Introducing new circuit architectures that can be realized. Demonstrating implementation of the proposed designs using extensive simulations in CMOS technology. It is shown in this thesis that, using a negative impedance NI circuit can be used for bandwidth extension. In our application, the negative impedance is incorporated into the output pole of TIA. The bandwidth can be improved by increasing the gain (A = gmRout ) and by maintaining the same time constant at the output pole. A better gain A can be obtained if the output resistance Rout is increased. Increasing Rout can be done by placing a negative resistance RIN in parallel with the output resistance Rout . In order to maintain the same time constant at the output node, a negative capacitance can be used. It have been reported that, the shunt feedback architecture is used to improve the bandwidth of TIA. Increasing the gain A effectively decreases the input resistance and hence increase the frequency of the input pole due to feedback. As a result, an improvement of the bandwidth can be obtained. Using the proposed topology, a wide band transimpedance amplifier with a bandwidth of 7 GH z and transimpedance gain of 54.3 dBΩ is achieved. The total power consumption of the proposed TIA from the 1.8 V power supply is 29 mW . The TIA is designed in 0.18 µ m CMOS technology. The simulated input referred noise current spectral density is 5.9 pA/√H z and the TIA occupies 230µ m × 45µ m of area. Furthermore, a wide band TIA is designed using the matching technique. It is shown that by simultaneously using of series input matching topology and T-output matching network, the bandwidth of the TIA can be obviously improved. This methodology is supported by a design example in a 0.18 µ m CMOS technology. The post layout simulation results show a bandwidth of 20 GH z with 50 f F photodiode capacitance, a transimpedance gain of 52.6 dBΩ, 11 pA/√H z input referred noise and group delay less than 8.3 ps. The TIA dissipates 1.3 mW from a 1.8 V supply voltage. In addition, a new design possessing to extend the bandwidth of the TIA is presented. This TIA employs a parallel combination of two series resonate circuits with different resonate frequencies on the conventional regulated common gate (RGC) architecture. In the proposed TIA, a capacitance degeneration and series inductive peaking technique are used for pole-zero elimination. The TIA is implemented in a 0.18 µ m CMOS process, where a 100 f F photodiode is considered. The post layout simulation results show a transimpedance gain of 53 dBΩ transimpedance gain along with a 13 GH z bandwidth. The designed TIA consumes 11 mW from a 1.8 V supply, and its group-delay variation is 5 ps with 24 pA/√H z input referred noise. xxii In the last phase of the work, a technique to enhance the bandwidth of the regulated common gate (RCG) transimpedance amplifier is described. The technique is based on using a cascode current mirror with resistive compensation technique and a ladder matching network. In order to verify the operation and the performance of the proposed technique, a CMOS design example is designed using the 0.18µ m CMOS process technology. The post layout simulation results show that, the proposed TIA achieved a bandwidth of 8.4 GH z, a transimpedance gain of 51.3 dBΩ and input referred noise current spectral density of 20 pA/√H z. The average group-delay variation is 4 ps over the bandwidth and the TIA consumes 17.8 mW from a 1.8 V supply. To sum up, this thesis focuses on various design techniques of transimpedance amplifier (TIA) that improves the bandwidth performance. We believe that, our approaches and techniques exhibit a path which other future researchers can follow and as well refer to as their researching domain and also could be used in their research applications.DoktoraPh

    High performance building blocks for wireless receiver: multi-stage amplifiers and low noise amplifiers

    Get PDF
    Different wireless communication systems utilizing different standards and for multiple applications have penetrated the normal people's life, such as Cell phone, Wireless LAN, Bluetooth, Ultra wideband (UWB) and WiMAX systems. The wireless receiver normally serves as the primary part of the system, which heavily influences the system performance. This research concentrates on the designs of several important blocks of the receiver; multi-stage amplifier and low noise amplifier. Two novel multi-stage amplifier typologies are proposed to improve the bandwidth and reduce the silicon area for the application where a large capacitive load exists. They were designed using AMI 0.5 m µ CMOS technology. The simulation and measurement results show they have the best Figure-of-Merits (FOMs) in terms of small signal and large signal performances, with 4.6MHz and 9MHz bandwidth while consuming 0.38mW and 0.4mW power from a 2V power supply. Two Low Noise Amplifiers (LNAs) are proposed, with one designed for narrowband application and the other for UWB application. A noise reduction technique is proposed for the differential cascode Common Source LNA (CS-LNA), which reduces the LNA Noise Figure (NF), increases the LNA gain, and improves the LNA linearity. At the same time, a novel Common Gate LNA (CG-LNA) is proposed for UWB application, which has better linearity, lower power consumption, and reasonable noise performance. Finally a novel practical current injection built-in-test (BIT) technique is proposed for the RF Front-end circuits. If the off-chip component Lg and Rs values are well controlled, the proposed technique can estimate the voltage gain of the LNA with less than 1dB (8%) error
    corecore